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Your work is going to fill a large part of your life,

and the only way to be truly satisfied

is to do what you believe is great work.

And the only way to do great work

is to love what you do.

If you haven’t found it yet, keep looking.

Don’t settle.

As with all matters of the heart, you’ll know when you find it.
Steve Jobs

"Vedi caro amico cosa ti scrivo e ti dico
e come sono contento

di essere qui in questo momento,

vedi caro amico cosa si deve inventare
per poterci ridere sopra,

per continuare a sperare.”
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Abstract

Sub-grid scale (SGS) models are required in order to model the influence of the unresolved small
scales on the resolved scales in large-eddy simulations (LES), the flow at the smallest scales of
turbulence.

In the following work two SGS models are presented and deeply analyzed in terms of accuracy
through several LESs with different spatial resolutions, i.e. grid spacings.

The first part of this thesis focuses on the basic theory of turbulence, the governing equations of
fluid dynamics and their adaptation to LES. Furthermore, two important SGS models are presented:
one is the Dynamic eddy-viscosity model (DEVM), developed by [Germano et al., 1991], while the
other is the Explicit Algebraic SGS model (EASSM), by [Marstorp et al., 2009].

In addition, some details about the implementation of the EASSM in a Pseudo-Spectral Navier-
Stokes code [Chevalier et al., 2007] are presented.

The performance of the two aforementioned models will be investigated in the following chapters,
by means of LES of a channel flow, with friction Reynolds numbers Re, = 590 up to Re, = 5200,
with relatively coarse resolutions. Data from each simulation will be compared to baseline DNS
data.

Results have shown that, in contrast to the DEVM, the EASSM has promising potentials for flow
predictions at high friction Reynolds numbers: the higher the friction Reynolds number is the better
the EASSM will behave and the worse the performances of the DEVM will be.

The better performance of the EASSM is contributed to the ability to capture flow anisotropy at
the small scales through a correct formulation for the SGS stresses.

Moreover, a considerable reduction in the required computational resources can be achieved using
the EASSM compared to DEVM. Therefore, the EASSM combines accuracy and computational

efficiency, implying that it has a clear potential for industrial CFD usage.
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Abstract
Versione Italiana

Nelle Simulazioni a grandi vortici (Large-eddy simulations, LES), dei modelli per la scala di
sottogriglia (Sub-grid scale, SGS) sono necessari per riprodurre I'influenza delle pia piccole scale
della turbolenza, quindi non risolte, su quelle che invece vengono risolte direttamente.

Nel seguente lavoro sono presentati due modelli SGS, la cui accuratezza verra poi analizzata at-
traverso varie LES a diverse risoluzioni spaziali, e quindi diversi intervalli di differenziazione.

La prima parte della tesi si concentra sulla teoria della turbolenza, partendo dalle equazioni costi-
tutive della fluidodinamica, fino alla loro versione per LES.

Due importanti modelli SGS sono stati presentati: il primo é il modello Dynamic eddy-viscosity
model (DEVM), di [Germano et al., 1991], il secondo é il modello SGS Esplicito Algebrico, Ezplicit
Algebraic SGS model (EASSM), di [Marstorp et al., 2009].

Saranno inoltre forniti dettagli aggiuntivi sull’implementazione del modello EASSM su un codice di
Fluidodinamica Computazionale (Computational Fluid Dynamics, CFD), Pseudo-Spettrale Navier-
Stokes sviluppato nel Linné Flow Centre del Dipartimento di Ingegneria Meccanica del KTH di
Stoccolma, da [Chevalier et al., 2007].

I seguenti capitoli verteranno sull’analisi della stima di un flusso in un canale, channel flow, fatta
dai modelli descritti in precedenza, per un basso numero di Reynolds basato sull’attrito, Re, = 590,
fino a Re, = 5200. I dati ottenuti da ciascuna simulazione verranno confrontati con dati di Simu-
lazioni Numeriche Dirette (Direct Numerical Simulations, DNS).

Dai risultati ottenuti si pué concludere che, differentemente dal modello DEVM, 'EASSM ha
promettenti potenzialitd nella stima del flusso ad alti numeri di Reynolds Re,: pia alto é tale
numero, pit il modello EASSM dara risultati accurati, mentre le performances del DEVM peggior-
eranno.

Le migliori performance del modello Esplicito Algebrico possono senz’altro essere attribuite alla sua
abilita di calcolare in maniera corretta I’anisotropia alle piccole scale tramite una formulazione cor-
retta degli stress di sottogriglia, SGS.

In conclusione, data la ridotta quantita di risorse computazionali richiesta per effettuare simulazioni
rispetto al DEVM, tale modello combina accuratezza e efficienza computazionale, tanto che puo’

essere preso in considerazione per un utilizzo nella CFD industriale.



II



CONTENTS

Turbulence
1.1 Introduction to Turbulence . . . . . . . . . . . . .. . . e
1.2 Numerical approaches to N-S solution . . . . . . ... . ... ... ... .. .. ...

1.3 A particular case: Turbulent Channel Flow . . . . .. .. ... ... .........

Large Eddy Simulation

2.1 The filtering operation . . . . . . . . ...
2.2 Governing equations of LES and the closure problem . . . . . . .. .. .. ... ...
2.3 An example of a closure: the Eddy Viscosity Model (EVM) . . .. ... ... ....
2.4 Subgrid-scale dissipation . . . . . . ...

Subgrid-scale stress models for LES

3.1 Tensorial polynomial formulation of the SGS stress tensor . . . . . .. .. ... ...
3.2 The dynamic procedure for EVM (DEVM) . .. .. .. ... ... ... ......
3.3 Explicit Algebraic SGS stressmodel . . . . . . ... o oL

Implementation in a CFD code
4.1 The need for accuracy: spectral methods . . . . . .. ... .. ... ... ......

4.2 The SIMSON code . . . . . . . . 0 e

12
17

25
26
27
27
28

31
31
33
34




5 Postprocessing tools for turbulence

5.1 Mean Values . . . . . . . . . e e e e e e
5.2 Root-mean squared Values, rms . . . . . . . . . .. ...

5.3 Vortical structures . . . . . . . . .. L.

6 Results

6.1 LES at Rey = 590« o o oo
6.2 LES at Rer = 2000 . .« o oo e
6.3 LES at Rer = 5200 . © o o oo

7 Conclusions & future work

v

49
49
50
51

53
54
64
72

81



TESI - VERSIONE ITALTANA

Prova ad immaginare un pennacchio di fumo fuoriuscente da una pipa di un uomo pensante,
seduto su di una sedia a dondolo. Anche in questo piccolo aspetto della vita quotidiana la turbu-
lenza gioca un ruolo fondamentale.

Il noto fisico Richard Feynman definii la turbulenza come il pit importante problema della fisica
classica che ancora non é stato risolto.

Nel corso degli anni diversi scienziati hanno provato di comprendere il vero comportamento di tale
fenomeno, la cui complessita giace nelle equazioni che lo descrivono. Per un fluido Newtoniano,
la turbolenza é definita dalle equazioni di Navier-Stokes, un sistema di equazioni non-lineari alle
derivate parziali, la cui soluzione analitica ancora non é stata ottenuta.

Tuttavia, degli approcci alternativi per ottenere delle soluzioni sono stati sviluppati finora: un
metodo consiste nell’effettuare degli esperimenti: tramite gallerie del vento siamo in grado di ripro-
durre flussi in svariate condizioni, dalle situazioni classiche di strato limite (moto su di una parete)
e flusso in un canale, fino a casi pit complicati, come il flusso attorno ad un corpo tozzo (come una
automobile) e un corpo aerodinamico, come un aeroplano.

Gli esperimenti hanno come fine principale I’analisi delle qualita del flusso (come pressione e veloc-
ita) attraverso delle sonde e delle tecniche di visualizzazione, come la Particle Image Velocimetry
(PIV).

Un esempio molto recente di analisi sperimentale di turbolenza lungo un condotto a sezione circolare



(il cosiddetto pipe) ad alti numeri di Reynolds é senza dubbio il progetto CICLoPE, sviluppato da
[Talamelli et al., 2009] nell’Universita di Bologna.

D’altro canto, un approccio diverso é quello di sfruttare ’analisi numerica e passare alla implemen-
tazione del sistema N-S su codici di Fluidodinamica Computazionale.

Tuttavia, la soluzione numerica e completa fornita dalle Simulazioni Numeriche Dirette (DNS),
in grado di descrivere la turbolenza a qualsiasi scala, non é sempre possibile a causa delle grandi
risorse computazionali richieste, in particolare ad elevati numeri di Reynolds. Per questo motivo,
I’obiettivo principale del progetto CICLoPE é quello di comprendere a pieno il fenomeno della tur-
bolenza qualora non sia possibile ottenere dati tramite DNS.

Comunque, la tecnica DNS non ¢é la sola in grado di riprodurre numericamente un preciso flusso.
Una seconda possibilitd si chiama la simulazione a grandi vortici (Large-eddy simulation - LES);
questa tecnica é in grado di raggiungere, con opportuni modelli per le piccole scale della turbolenza,
una soddisfacente accuratezza computazionale con una ragionevole quantité di risorse computazion-
ali.

A tale avviso, la tesi vertera sull’impiego e il test di due modelli innovativi per le piccole scale
della turbolenza; in particolare verra messa a confronto ’accuratezza di ciascun modello con ’altro,
rispetto anche i risultati forniti da DNS. Le simulazioni sono state compiute a tre diversi numeri
di Reynolds; in particolare 'ultimo caso, di maggiore importanza, é relativo al massimo numero di
Reynolds raggiunto finora da DNS.

La prima parte della tesi comprendera la descrizione della turbolenza, sia da un punto di vista fisico
che matematico. Saranno considerate le equazioni di N-S per un fluido Newtoniano, con flusso in-
comprimibile e turbolento, in un canale.

Nel secondo capitolo la tecnica LES saré espressa nei dettagli, mentre nel terzo verranno presentati
due modelli di scala sotto-griglia (sub-grid scale - SGS). Il quarto capitolo spieghera dei dettagli tec-
nici sull'implementazione delle simulazioni, dei due modelli, e della parallelizazione MPT utilizzata.
Nel quinto capitolo cenni di metodi statistici per I’analisi della turbolenza saranno affrontati. I
risultati verranno presentati nel sesto capitolo, e infine saranno fornite delle conclusioni nel settimo

capitolo.



INTRODUCTION

Imagine a smoking plume coming out from a pipe of a thinking man, this is a typical everyday
life scenario where turbulence plays a main role. The physicist Richard Feynman defined it as the
most important unsolved problem of classical physics.

Scientists along the years have tried to understand the real behaviour of this phenomenon, which
gains its complexity because of the equations that describes it. For a Newtonian fluid, turbulence
is traced by Navier-Stokes equations, a system of non-linear differential equations whose analytical
solution has not been provided yet.

Anyway, alternative approaches has been developed across the years up to now: the most intuitive
and old way to understand fluid motion is to make experiments: through the employment of wind
tunnels we can reproduce the flow in several conditions, from the basical channel flow and boundary
layer to the more complex ones, like the flow across a bluff body (like a car) or an airplane. This
technique involves the analysis of the flow properties (like pressure and velocity) through probes
and advanced visualization techniques such as Particle Image Velocimetry (PIV).

A recent example whose aim is to describe high Reynolds number turbulence across a pipe is nev-
ertheless the CICLOPE experiment, a big project developed by

[Talamelli et al., 2009] in University of Bologna.

The second approach is thus to use numerical analysis in order to implement codes able to numeri-

cally solve Navier-Stokes system. However, the numerical and complete solution of the flow at any



scale is not always achievable because of the limited computational resources. For that reason, the
main CICLoPE project’s aim is to understand turbulence phenomena further the Reynolds number
limit dictated by Direct Numerical Simulations.

However, DNS is not the only technique able to reproduce numerically a given flow. A possible
second choice is called Large-eddy simulation; this technique is able to reach a satisfying computa-
tional accuracy with a reasonable amount of computational resources.

In this thesis Navier-Stokes equations for a Newtonian fluid and an incompressible flow in a turbu-
lent channel flow scenario will be described in the first chapter, together with a physical description
of turbulence. In the second chapter the Large-eddy simulation (LES) technique will be explained
in detail, while in the third one two LES sub-grid scale models are shown. In chapter four some
technical details of the implementation of the LES, of the models, with a particular focus on MPI
parallelization are pointed out. Some theory about turbulence statistics will be faced in the fifth

chapter. Results will be displayed in chapter six; conclusions are given in chapter seven.



CHAPTER

TURBULENCE

"Everybody is a genius. But if you judge a fish by its ability to climb a tree,
it will live its whole life believing that it is stupid. (A.Einstein)”

1.1 Introduction to Turbulence

The phenomenon of turbulence is found in several applications, for example, combustion tumbling
in Internal Combustion Engines (ICEs), the wake of a Formula 1 car, the jet spread by the nozzle
of a supersonic aircraft engine.

In automotive engineering, for example, the study of aerodynamics around a car involves the char-
acterization of a turbulent wall-bounded flow, called a Boundary Layer. It was intensively studied
by L.Prandtl in 1904; here turbulence is the main responsible for friction and wake drag.

In a solid rocket motor nozzle, there’s a generation of a plume, where turbulent motions of many
scales can be observed; from eddies and bulges comparable in size to the width of the plume to the

smallest, scales the camera can resolve. Turbulence is of an unsteady, irregular, seemingly random
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and chaotic nature, since the motion of every eddy is unpredictable.

Figure 1.1 — Large-eddy simulation of jet from a rectangular nozzle. The rectangular nozzle is
shown in gray with an isosurface of temperature (gold) cut along the center plane of the nozzle
showing temperature contours (red/yellow). The acoustic field is visualized by (blue/cyan)

contours of the pressure field taken along the same plane, from P.Moin.

While laminar flow is a smooth and steady flow motion, where any induced perturbations are
damped out due to the relatively strong viscous forces, in turbulent flows other forces may be acting
that counteract the action of viscosity. If such forces are large enough, the equilibrium of the flow
is upset and the fluid cannot adapt suddenly to viscosity. The forces that upset this equilibrium
can include buoyancy, inertia, or even rotation. In a channel, viscous and inertial forces acting on

the fluid are proportional to

F, xvL (1.1)
F, xVL? (1.2)

where v is the fluid viscosity, and L and V are the characteristic velocity and length scales. If
the viscous forces on the fluid are large compared with others, any disturbances introduced in the
flow will tend to be damped out. On the other hand, if the inertial forces become large, the fluid
will tend to break up into eddies. For greater inertial forces, the eddies will break up into even
smaller eddies. This will continue until we reach a small enough length scale (eddy size) on which

the viscous forces dominate.
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The largest of these eddies will be constrained by the physical size constraints on the flow (like
channel diameter); the smaller eddies will be constrained by the viscous forces which act strongest
at the smallest length scales. Therefore, one of the difficulties associated with the prediction of

turbulent flow is that the range of length scales can be very large.

The description of turbulence involves different concepts like turbulence energy production, transfer

and dissipation. Richardson’s famous poem gives a good idea about turbulence:

Big whorls have little whorls
That feed on their velocity
And little whorls have lesser whorls

And so on to viscosity (in the molecular sense)

This is the description of the energy cascade concept. It states that turbulent flows can be con-
sidered as an agglomerate of eddies of different sizes. Large energy containing eddies are unstable
and break down and transfer energy to smaller eddies. The process goes on till the smallest one,
the Kolmogorov scale, where energy is dissipated into heat by viscous effects.

This is the great conclusion that Kolmogorov made in 1941, and his first hypothesis is completely
based on that: at sufficiently high Reynolds number, the statistics of the small scales are universal

and are determined solely by viscosity, v, and the energy dissipation rate, €.

Using dimensional analysis, it is possible to derive the Kolmogorov length scale n, timescale ¢,

3\ 1/4 1/2
v 14
= B t: — = 1/4 1_3
" <€> oy <€> L= () (13)

Then, in accordance to Richardson’s poem, Kolmogorov made a second hypothesis, based on

and velocity scale v,,:

the fact that at sufficiently high Reynolds number the statistics of the scales which are sufficiently
larger than 7 and much smaller than the largest energetic scales are solely described by e. This
hypothesis refers to the inertial range of scales. The kinetic energy spectrum of these scales can be

described by

E(k) = Cye*Pk =0 (1.4)
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Figure 1.2 — Turbulence energy vs wavenumber spectrum, from J. M. McDonough.

where k is the wave number and Cj, =~ 1.5 [Sreenivasan, 1995] is the Kolmogorov constant.
From the last diagram, it’s clear that turbulence has different behaviours according to the wavenum-

ber. Basing on these concepts, we can distinguish four different regions:
1. the large scale, determined by the problem domain geometry;
2. the integral scale (A), which is an O(1) fraction (often taken to be ~ 0.2) of the large scale;

3. the Taylor microscale which is an intermediate scale, found in the Kolmogorov’s inertial

subrange (n < 2& < A)

4. the Kolmogorov (or dissipation) scale (n) which is the smallest of turbulence scales, the inner

scale

1.1.1 3D Nature of Turbulence

Turbulence is rotational and a three-dimensional phenomenon. It is characterized by large
fluctuations in vorticity, which are responsible for vortex stretching and length scale reduction. These
characteristics are identically zero in two dimensions and these are the reasons why turbulence is
hard to describe both analytically and numerically.

These three-dimensional dynamical mechanisms are highly complex and nonlinear, however the flow
can be assumed as bi-dimensional for large scale 2D structures. These structures play a dominant

role in the transport of scalar material. Nevertheless, three-dimensional motions are not negligible
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in the smaller scale, where they are fundamental for mixing, most of all at molecular scales (e.g. in

combustion problems).

1.1.2 Order & Randomness

Despite turbulence is chaotic, it consists of completely random motions that can aggregate in
coherent structures. Typical examples are turbulent boundary layers and homogeneous turbulent
shear flows, which exhibit horseshoe, or hairpin vortices (see figure 1.3) that appear to be inherent
characteristics. Free shear flows like the mixing layer reveal coherent vortex structures very clearly,
again even for very high turbulence intensities.

The concepts of order and randomness have also led to some new analytic approaches and new
interpretations in the study of turbulence. The names of these disciplines are known as Chaos,
Bifurcation Theory, and Dynamical Systems [McDonough, 2007]. These theories have been faced
for the study of turbulence, in particular in the area of hydrodynamic stability and transition from
laminar flow to turbulent one. Come to attention of mathematicians, physicists and engineers, these
phenomena is of a remarkable non-linearity, which makes turbulence unpredictable and complex to
describe.

As a nonlinear problem, it can be seen that the solutions to these problems with the same nonlinear
equations with only slight differences in initial conditions, will rapidly diverge. Therefore, a suitable
definition of turbulence must necessarily involve a complex dynamical system with many degrees

of freedom.

Figure 1.3 — Hairpin vortices on a turbulent boundary layer, from a DNS by P. Schlatter.
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1.1.3 The Reynolds number

Turbulence can be seen also a play between inertial forces and viscous. Therefore the ratio
between them is crucial in order to characterize a flow. The Reynolds number plays that role, and
in turbulent flows holds

def UL

Re = — > 1. (1.5)
v

For many flows of practical importance (e.g. a flow on airplane wings) the Reynolds number
can be on the order of Re ~ 10%. This means that the viscous forces, that are molecular forces, act
in smaller scales than in the large ones. However, in any turbulent flow the molecular viscosity is
always important at some scale. As the flow Reynolds number increases, the region where viscous
effects are remarkable, decreases in thickness and the velocity of the flow changes very rapidly from
zero at the surface to the free-stream velocity at the outer edges of the boundary layer. Again, we
see the tendency of the nonlinear inertial terms to generate discontinuities at high wavenumbers.
Once more, the Reynolds number can be interpreted also in terms of length and time scale ratios.
Let’s consider a duct of width L, with a flow velocity U. The time a fluid particle, with transverse
velocity u’ takes to cross the duct is called the inertial time, T; ~ L/u’. At the same way, viscous
forces have a time scale, T, ~ L?/v.

In a turbulent flow, the inertial time-scale will be mich less than the diffusive time-scale,

1.1.4 Navier-Stokes equations

Turbulence behaviour is completely described by the governing equations of fluid mechanics,
i.e. the continuity and Navier-Stokes (N-S) equations. In case of incompressible flows, they are
expressed in the following way on non-dimensional form:

ou; Ou;  Ouu; dp 1 9%

. _ S 1.
dx; 0 ot dz; dx; " Re 0z;0x; (L.7)

where Re is the characteristic Reynolds number of the flow, u;, i = 1,2, 3 are the velocity com-

ponents, p is the pressure. Note that Einstein’s summation convention is used here, where i = 1, 2, 3.

Together with the main flow field, sometimes we need also to understand phenomenas that in-

volves the characterisation of a passive scalar.

10
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By definition, the word passive refers to the condition that the resulting density differences are so
small that the effect from the scalar on the flow is negligible. So a passive scalar can be heat or
temperature in a flow or a concentration of a substance.

Therefore is also possible to use Navier-Stokes equations 1.7 to describe the development of a pas-

sive scalar, 0:

@ ou;) 1 920 (18)
ot Ox; " RePr O0x;0x; ’

where Pr is the Prandtl number, defined as the ratio of momentum diffusivity to thermal

diffusivity:

11
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1.2 Numerical approaches to N-S solution

There are several numerical approaches to solve the system 1.7. The most intuitive one is called
Direct Numerical Simulation, DNS, whereby the governing euquations are solved without making
any assumption, resolving all the scales from the smallest to the largest one. Therefore it provides
all the information of a turbulent flow, without any approximations. Since the computational cost
of DNS scales with the Reynolds number is ~ Re3”/1* [Choi and Moin, 2012|, this is not affordable
for practical engineering analyses at high Reynolds number.

So a more practical approach has been developed, based on the Reynolds’ decomposition [Reynolds, 1894]:

wi =T +up, 0=0+0 (1.9)

where the overline represents the ensemble averaged quantity, and v} and ¢’ are the velocity and
scalar components fluctuations, respectively.
Using the Reynolds decomposition in equations 1.7 and 1.8, and taking an ensemble average of all

terms, the Reynolds-averaged N-S (RANS) equations are derived:

ou, Owmw;  9p 1 0w Oujuy  dup 0 (1.10)
ot ox;  Ow; Redw;0x;  Ox; = Ox; '
7 ou.l 27 o0
00 omg 1 97 o i)

ot Ox;  RePr dz;0x; O0x;

Note that here turbulence is solely described by the Reynolds stress tensor Tu; and scalar
flux vector W These terms have to be properly modelled in order to close the problem. Each
model involves approximations which limits its accuracy. Therefore, this approach provides only
an approximate simulation of the mean flow.

The first simple model was developed by Boussinesq in 1877. It is based on an eddy wviscosity

formulation

9 — 10w ou
T — 2K = —9 iy == ty 1.12
’U%UJ 3 61_] VTSU’ Sl] 2 <8SCJ 81’1> ( )

where K = uju//2 is the mean turbulent kinetic energy, S;; is the mean strain-rate tensor, the
symmetric part of the mean velocity gradient tensor, v7 is the eddy viscosity we use to model as the
product of a certain scale with length A of the eddies and velocity V. Using dimensional analysis

the eddy viscosity can be roughly estimated as

12
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vr ~ AV. (1.13)

Eddy viscosity is then modeled accordingly to some characteristics of the flow.
For instance, algebraic models (or zero equation models) relate length A and velocity V' to the
mean velocity field and the flow geometry characteristics like velocity gradient, distance to the wall,
thickness of the shear layer etc. These kind of models work quite well for the specific case that they
are designed for, e.g. attached boundary layers and different types of thin shear layers. However,
they don’t give satisfactory results for general cases.
Better results can be achieved using one-equation models, they typically solve an additional
transport equation for the turbulent kinetic energy, K, or the eddy viscosity, vr. One-equation
models give good results for attached boundary layers and other thin shear layer flows, but for
complex flows. A good example is the Spalart-Allmaras [Spalart and Allmaras, 1992] model (SA),
that solves for the eddy viscosity. This is very suitable for aeronautical applications and actually
is the standard model for external aerodynamics CFD analyses at Boeing.
Two-equations models solve two transport equations for two quantities that can be used for
determining the length and velocity scale needed to compute the eddy viscosity. The most common
are K —e and K —w models, where transport equations for the turbulent kinetic energy, K and for
the dissipation rate, € or the turbulence frequency w are solved. Nowadays the implementation of
these models in commercial CED codes (e.g., ANSYS Fluent) presents additional corrections that
might be dependent on non-local quantities such as the wall distance. One important and most
recent example is the Menter SST K — w model [Menter, 1994], which is suitable for separated
flows; it is the standard turbulence model used at Airbus.
Despite eddy viscosity two-equations models are still dominating in industrial CFD, there’s a big de-
mand for more accurate prediction of complex flow situations, including onset of separation, highly
curved flows, rapidly rotating flows etc. In these situations, eddy viscosity Boussinesq’ hypothesis
(1.12) does not describe the real physics well. An effect of decorrelation caused by rotation occurs
at high rotation rates, and generally the alteration of production to dissipation ratio is a direct
consequence of that.
This phenomena, for instance, is an important aspect which eddy viscosity models does not take
into account, because the model is insensitive to system rotation.
A better alternative to these models are the Reynolds Stress Models. They solve transport
equations for each Reynolds stress components derived from the modelled N-S equations, in order

to model the Reynolds stress tensor. This approach is more physically coherent, but it’s compu-

13



1.2 Numerical approaches to N-S solution 1. Turbulence

tationally more expensive and complicated than the others. However, those differential Reynolds
stress models can be simplified using the weak equilibrium assumption by Rodi [Rodi, 1992]. Details
about this will be shown in 2. The algebraic relation is implicit in Reynolds stresses, but there are
some explicit solutions ([Pope, 1975]; [Gatski and Speziale, 1993]; [Wallin and Johansson, 2000]).
These models are called Explicit Algebraic Reynolds Stress Models (EARSM).

In particular, in the EA model [Wallin and Johansson, 2000] the flow anisotropy (a;;) is described
as an explicit expression in terms of the (normalized) mean strain and rotation tensors with addi-
tional scalar parameters. This leads to a comparable computational efforts, as compared to eddy
viscosity two-equation models.

There’s also an interesting analogy for the scalar # modeling. Taylor developed an analogue way to

formulate the eddy diffusivity model (EDM) for the mean turbulent scalar flux w0’ [Taylor, 1915]

85 vr
"9 = —Dp—, Dp=—
ul T@xi’ T PTT

(1.14)
where D7 is the eddy diffusivity coefficient and Prp the turbulent Prandtl number.
In an analogous way to K — ¢ model, Nagano & Kim [Kim, 1988] developed the Ky — £y model.
The time scale 79 = Ky/ep, is used to compute Dy ~ K1y.
Still, model 1.14 is not completely correct. According to Batchelor, eddy diffusivity assumes an

alignment between the )¢’ vector and the mean scalar gradient, so it has to be considered itself a

tensor. The following expression will hold then:

00
0 = —D;.: 1.15
uz J axj ( )
Where the eddy diffusivity tensor can be rewritten as [Daly and Harlow, 1970]
—— 00
D;j = —Cyprouin 9; (1.16)

and Cy is a model coefficient.
In the same way, scalar can be modelled with an Explicit Algebraic model, in this case called the
Explicit Algebraic Scalar Flux Models (EASFM).
A trade-off between accuracy and computational effort is Large-eddy simulations (LES) of turbulent
flows. In LES there’s a separation of scales, in the sense that only large-scale eddies are resolved,
while the remaining small scales (which are called sub-grid scales, SGS) are modelled, once the
resolved scales have been computed. The separation of scales is generally done using a grid. To-

gether with filtering, LES focuses its turbulence prediction accuracy on a time-dependent solution
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1. Turbulence 1.2 Numerical approaches to N-S solution

of the Navier-Stokes equations. This is therefore a physically-coherent approach since turbulence
is unstationary.

Despite more computationally expensive than RANS, LES gives a better description of turbulence,
and unlike DNS, is able to provide a good resolution of the flow in an acceptable amount of com-
putational time. Recently, that time has been estimated by Choi & Moin [Choi and Moin, 2012],
to scale as ~ Re20/14,

A fair and simplified distinction between DNS and LES can be noticed having a look to the vortical
structures, for both of the cases, in figure 1.4. At a first glance, we can see that in LES vortical
structures are underestimated and fewer, compared to the DNS, which is able, instead, to give a
complete and detailed description of them.

The first LES model was developed by Smagorinsky [Smagorinsky, 1963] for meteorological appli-
cations using an eddy viscosity assumption in the SGS model. This model has been improved later
on by Germano [Germano et al., 1991] introducing the dynamic procedure, which gives a correct
asymptotic near-wall behaviour of the eddy viscosity, and improved transitional flows predictions.
However, eddy-viscosity models are not anisotropic, that is, they are not able to capture flow
anisotropy well, a feature of the flow, which is not neglectable near the walls.

For that reason several non-linear models (which are of course anisotropic), have been developed
recently, and some of them will be described in detail in chapter 3. In particular, the aim of this
thesis is to test the accuracy in flow prediction of the Explicit Algebraic SGS model (EASSM),
developed by Marstorp [Marstorp et al., 2009].
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1.2 Numerical approaches to N-S solution 1. Turbulence
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Figure 1.4 — Vortical structures in turbulent channel flow at Rer = 590, visualized by

isosurfaces of A2, colored by the velocity magnitude, from a) DNS by P.Schlatter b) LES

simulation with the Explicit Algebraic model .
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1. Turbulence 1.3 A particular case: Turbulent Channel Flow

1.3 A particular case: Turbulent Channel Flow

Mathematical models for fluid dynamics have been already defined. In order to solve the models,
a mathematical problem needs to be defined in a proper time and space domains.
According to the space domain, in a different geometry, physical quantities and the flow will behave
in a different way. For this reason we need to set a particular case, so that the flow can be univocally
classified.

In this thesis we are considering the case of Channel Flow, with the following properties:

e turbulent, in the sense that the Reynolds number is sufficiently high such that the regime

can be assumed as turbulent;

e fully developed, so that velocity statistics are constant along z-axis. In other words, the
flow is statistically stationary and statistically one-dimensional [Pope, 2000], with velocity

statistics only variable along the y-axis. In other words:

(uy=U=Uly), )=V=0, uv=u"(y) (1.17)

Channel flow belongs to the wall-bounded shear flows class: flow motion is contained between
two solid surfaces. Therefore, no-slip conditions are imposed on the walls, where the fluid velocity

is assumed to be zero. The following picture shows the qualitative behaviour of the velocity.

}‘,

Figure 1.5 — Channel Flow mean velocity profile, with «’ fluctuations contour plot in the

background, from Lee & Moser DNSs at Rer = 1000 [Lee and Moser, 2014|
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1.3 A particular case: Turbulent Channel Flow 1. Turbulence

Furthermore, a statistically symmetric flow geometry w.r.t. the mid-plane y = § is confirmed by

experiments; therefore the statistics of (u,v,w) at y are the same as those of (u, —v,w) at 20 — y.

Reynolds number is always used to characterize the flow, in this case we will refer to two

particular Reynolds numbers,

| def Ur0 1.1

Re » (1.18)
)

Rey ™ “7 (1.19)

where 1.18 is based on the friction velocity u,, defined as follows:

ur Sl (1.20)

7w is the mean wall shear stress and ¢§ is the channel half-width.

The bulk velocity @ in 1.19, is defined as

25
u = % /(u)dy (1.21)
0

For a turbulent, channel flow, the following result holds:
Re, ~ 0.166 Rej)®® (1.22)

Note that the specified formula 1.22 will be used for the derivation of Rey, which will be con-
sidered as an input quantity in the computations.
As previously stated, channel flow is a wall-bounded shear flow. In a boundary layer or a wall-
bounded shear flow the characteristic length for streamwise development is much larger than the
cross-stream extent of the region with significant velocity variation.
So its behaviour can be observed studying a two-dimensional steady flow scenario with the thin
shear layer approximation [Johansson and Wallin, 2012]. This approximation states that the char-
acteristic streamwise development length, L is much larger than ¢, the shear layer thickness. As we
will confirm later, in channel flow there will be a layer, whose thickness is small compared to the
characteristic length, whereby viscous effects friction depends on.
Thanks to this approximation, the Navier-Stokes equations can be simplified to the thin shear layer

equation:
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1. Turbulence 1.3 A particular case: Turbulent Channel Flow

oU _oU  1dRy, 0 [ oU ——

EASNS VA A e 1.2

U@x+vay pd$+3y<yay u'v (1.23)
—_—

total shear stress

where Py if the pressure at the wall. Note that all the velocities in 1.23 are mean values, and
the only component, responsible for turbulence is the last one on the right-hand-side, which is called
the Reynolds stress. Together with the viscous stress, the Reynolds stress generates the total shear
stress.

In particular, using the channel flow assumptions given in 1.17, the thin-shear layer equation be-

comes

1dPy d au  ——
0= - = — W 1.24
pd:c+dy<ydy uv) ( )

Integrated in the wall-normal direction it reads

1dP, dU dU S
0= ———Oy V— —U— —u'v" 40 (1.25)
p dx dy dy o
N

At the centerline (y = §) the total shear stress is zero, therefore we have the following condition:

1 dPO u2

- —_2T 1.26

p dx h ( )
meaning that the pressure gradient is related to the friction velocity and the width of the channel.

Plugging this relation in 1.25, we can see that the total shear stress develops linearly across the

channel:
d __
l/d—U —u'v =u? (1 — %) (1.27)
Y
which in wall units becomes
vt yt
dy—+ — ’LL/’U/ = (1 — 5—+ (128)

where the quantities y* and 6T are scaled by the inner (viscous) lengthscale

)

pdef Y YUr
Iy v

Considerations. Depending on the region considered, equation 1.28 assumes different forms.

In the outer layer, where viscous effects are negligible, the left-hand-side of 1.28 becomes
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1.3 A particular case: Turbulent Channel Flow 1. Turbulence

+
——t Y
—uT =1 (1.29)

On the other hand, close to the wall, y/§ << 1, viscous effects will be not negligible anymore,
therefore the following relation holds
du+ +

dy—+ —uv =1 (130)

that is compatible with the law of the wall, since there’s not influence of the Reynolds number.

It’s a constant stress region:

vt 2 — gy (1.31)

W = By(yh) (1.32)

Moreover, for large Reynolds numbers, we can also assume that there is an overlap region for

wall distances vy,

b <<y <<$§

where § is boundary layer thickness and ¢, the viscous lengthscale. This is a particular region
where outer and inner layer descriptions hold simultaneously.
Derivating the following 1.31 w.r.t. y* we’ll have an expression which is independent of lengthscale.

Therefore holds

y+ d®,y (y+)
dy*t

so that, once integrated, it gives a logarithmic law:

= const (1.33)

1
d(yT) = Elny+ +B (1.34)

where £ = 0.38 is the Karman constant and B=4.1, according to observations. In the following
figure 6.22 a mean velocity diagram is shown, together with the law of the wall and the log law, at

Re, = 5200.
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1. Turbulence 1.3 A particular case: Turbulent Channel Flow
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Figure 1.6 — —: <u >1 vs yT, at Re; = 5200, from [Lee and Moser, 2014], —.— : law of the

wall, — - : log law

As we can see from the previous picture, the first velocity region called viscous sublayer, follows
the law of the wall, and it extends out to approximately y* = 5. Despite the absolute magnitude
of the turbulent fluctuations are small in this region, the relative (wall-parallel) intensities are
large. As we increase y™, we will have a buffer region, where the maximum turbulence production
is at y© = 12 and the maximum turbulence intensity at y™ = 15. Log-layer starts between
50 < yT < 200, and it extends to y/d & 0.15, where § is the channel half-width. Beyond the log
layer, there’s finally the outer region.

The maximum turbulence production and Reynolds stress.

The turbulence production in the near-wall region of wall-bounded flows can be formulated as

Pt =—

(1.35)

w'v' AUt ~(1_ dUT \dU™*
w2 dyt dyt | dyt

The latter approximation is valid if viscous effects are small. From this we can derive that the

maximum production is found where

AU+ 1
— =— 1.36
dyt 2 ( )
which leads to
1
A—— 1
Pmax 4 ( -37)

Therefore the turbulent production is maximum whereas both viscous and Reynolds stresses are

exactly the same, that is in the near-wall region; it generally happens when y+ ~ 12. Moreover, it’s
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1.3 A particular case: Turbulent Channel Flow 1. Turbulence

also possible to estimate where the maximum Reynolds shear stress occurs. Deriving equation 1.28
w.r.t. yT, and denoting the Reynolds shear stress as 7, normalized by inner units, the following
relation holds:

d?Ut  drt 1

- = 1.
dy+? T dyt 5+ (1.38)

if we also assume that the Reynolds stress is maximum in the log-region, taking the derivative
1.34 w.rt y* we have

LUt 1

dy+2 - IierZ (139)

meaning that the maximum of the Reynolds stress is at

= T
y'rtbaac = - = fie (140)
K K

Then, in terms of outer scale we can say that the position where the Reynolds stress reaches its
/2.

. . . -1
maximum is proportional to Re;

y'ﬂ;;zz _ H_1/2R€;1/2 o Re;1/2 (].4:].)

This also can be proved using DNS results at different friction Reynolds numbers. An example

of Reynolds stress profiles is shown in figure 1.7.

-1 H H H H H H H H H
-1 -0.8 -06 -04 -02 0 02 04 06 08 1
y/é
Figure 1.7 - —u/v/ normalized by u, vs y/d, from [Lee and Moser, 2014], ---: Re, = 550,

-+ Rer =1000, --- : Rer = 5200

22



1. Turbulence 1.3 A particular case: Turbulent Channel Flow

The maximum Reynolds shear stress can be derived as well, using the relation 1.38 and 1.40,

together with the log-law:

+ :1_y7i_mz_#:1 2 2

T _— = .
e h+ fiy;rrw,w vV kht V kRer

(1.42)

We already have talked about turbulence and its production in a qualitative sense, but, in order
to describe it properly and to understand the phenomenon in a complete and detailed sense, a focus
on the three components of the velocity, they are v/, v and w’, is necessary. As we’ll see in the
next chapters, the computations of these components play an important role in the validation of a
LES model.

In particular, it’s possible to derive the Reynolds stress tensor making the square of the root-mean-
square value of these three components:

uu  uv uww!

Tyl

u; = W W |- (1.43)

uvw' v'w ww
In the following picture all the components of the Reynolds stress are shown. Important to un-
derline is the relation between the maximum turbulence production, and the peaks in the Reynolds

stress profiles.
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Figure 1.8 — Variances of the velocity fluctuations, normalized in wall units, from DNS of
[Lee and Moser, 2014] at Re; = 1000, —: W+, — v/v’+, W
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1.3 A particular case: Turbulent Channel Flow 1. Turbulence

Anisotropy of the flow. A fundamental aspect, which is strongly relevant for the complete
understanding of the aforementioned work, is the concept of anisotropy in turbulence.
From a physical point of view, anisotropy is a property of the flow which is not aligned with the
velocity direction and the velocity gradient.
For a fully-developed channel flow the quantities v/w’ and v/w’ = 0 are zero. The Reynolds stress

tensor becomes:

/

Tij=—p| W T 0 |- (1.44)

0 0 733
in case of isotropic turbulence, the diagonal terms are equal, i.e. 711 = 792 = 733 and all the
deviatoric terms are zero. Therefore, for a specific LES model, the ability to capture the anisotropy

of the flow consists in reproducing different diagonal terms, i.e. uw'u’ # v'v' # w/'w'.

24



CHAPTER

LARGE EDDY SIMULATION

"Anziety is the hand maiden of creativity. (T.S. Eliot)”

Reynolds-averaged Navier Stokes (RANS) equations-based simulations are able to solve only
the mean velocity field of the flow. RANS simulations rely heavily on modelling since all turbulent
motions are modelled and therefore they are not always accurate.

In Direct Numerical Simulations (DNS), the unsteady Navier-Stokes equations are solved without
using models. Therefore, DNS is very accurate. However, the computational power demand for
DNS is too large for industrial applications. Therefore, a new method which combines a reasonable
flow prediction accuracy with a limited amount of computational cost has been strongly required
in recent years.

Large-eddy simulation (LES) represents an alternative that fits those requirements. This particular
method employs a separation of scales [Rasam, 2014]: a filtering operation decomposes the velocity
field (generally together with a scalar one) into a resolved part, represented by the computational
grid, and an unresolved part, which is modelled through physically realistic models. In other words,

LES could be considered a 2-step method:
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2.1 The filtering operation 2. Large Eddy Simulation

1. the solution of the large scales of turbulence on a relatively coarse grid ;

2. the modelling of the smaller unresolved scales, the so-called subgrid-scales (SGS), based on

the resolved velocity field.

2.1 The filtering operation

Step 1. Let’s consider now a general time and space-dependent function ¢(z,t). The filtering
operation consists of a convolution of a kernel Ga on that function (Leonard, 1975), over the domain

D of the grid:

B t) = / o, 1)Ca(z — £)de (2.1)

D

There are several options for the filter: the commonly used ones are spectral cutoff, box and
Gaussian filters. In spectral codes, spectral filters are the most suitable ones for filtering, since they
act on a spectral space (where the code works on) and are more precise. Figure below shows the

difference between the different kinds of filtering methods.
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Figure 2.1 — —.— : Sharp-spectral filter, —- : Gaussian filter, — — : Box filter, r = &, from

[Pope, 2000]

Remark. If ¢(z,t) = ¢(x) the operator Ga is homogeneous. Moreover, the filtered velocity
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2. Large Eddy Simulation 2.2 Governing equations of LES and the closure problem

field @(x,t) is not a deterministic variable, implying that

Uz, t) #a(x,t), o(z,t)#0.

2.2 Governing equations of LES and the closure problem

The filtering operation leads to the filtered Navier-Stokes equations:

o0u; . Ou; | Oduju; - Op N 1 921, - aTS_GS )
Ox; ot Ox; dx;  Re dx;0x; o, .

here 7;; is the SGS stress tensor. Leonard [Leonard, 1974] proposed a possible decomposition

of non-linear terms (i.e. the SGS stress tensor), in the following way:

TEGS = ’LL/Z\’U,/j - ﬂzﬂj = Lij + Cij + Rij (23)

where

Lij = ﬂzﬂj — Hiﬂj, (24)
Cij = iy — 1 (2.5)
Rij = u;ug, (26)

and v, = u; — ;.
In the Leonard decomposition R;; is the Reynolds subgrid tensor and represents the interaction
between subgrid-scales; Cj; is the cross-stress tensor and accounts for large vs small scale interac-
tions; finally L;;, the Leonard tensor, gives the interactions between the large scales.

7'5GS is the unknown additive part in the filtered Navier-Stokes equation, and therefore needs to

be modelled.

2.3 An example of a closure: the Eddy Viscosity Model (EVM)

Step 2. There are several ways to model the subgrid scale stress tensor. As previously written,
the first and simple model was developed by Smagorinsky [Smagorinsky, 1963], for meteorological
applications. It originates from the RANS model, taking into account Boussinesq’s hypothesis. The

EVM consists of a linear formulation of the deviatoric part of TSGS ,
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2.4 Subgrid-scale dissipation 2. Large Eddy Simulation

Tkk Q
TSGS = ?5”- -2 vsgs Sij (2.7)
) - EVM
isotropic contribution
where
vsas = (C.A)[S] (2.8)

§ij and |§ | are the resolved strain-rate tensor and its magnitude, respectively. A is the filter

scale, vggg is the SGS eddy viscosity, and Cy is the model coefficient, the Smagorinsky coefficient.

Note that vggg is a constant rather than dependent of direction. According to the recent paper
of Spalart [Spalart, 2015], in a simple shear flow with two of the axes aligned with the velocity
direction and the gradient direction, such that the strain tensor S;; have zero and equal diagonal
terms, this model predicts constant and equal diagonal terms of the Reynolds stress tensor, i.e.
T11 = T22 = 733

Therefore EVM can be considered an isotropic model, since vggs doesn’t take into account any
effect of anisotropy.

As we’ll discuss further, this model can be improved using a dynamic procedure, where the C;

coefficient is computed during the simulation.

2.4 Subgrid-scale dissipation

An important aspect of LES is the impact of SGS on the resolved scales. In other words, LES
predictions are strongly dependent on the contribution of 7,545 tensor on the resolved kinetic energy

K = u;u;/2. Consider the kinetic energy equation

0K 0 - ou; Ju; 0 (.. 0K _ ~
4+ —(’LLJK) =y _ - w;p+v— —u;T; | + TSGSSI'J‘ (2.9)
8t 8:cj aSCj &rj 8:01 81‘1 ——
. .Y —SGS
advection diz;?;ggfon dif fusion dissipation

Since LES by definition, are carried out for large scales, and the grid scale is much larger than
Kolmogorov one, the viscous dissipation term is so small so that it is negligible compared to the
others. From a physical point of view, diffusion term transfers energy in space, but not in a volume-
averaged sense [Rasam, 2014]. For that reason, an additional term is therefore required in order to
reproduce the correct energy transfer from the large to the smaller scales. SGS dissipation covers

that role
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2. Large Eddy Simulation 2.4 Subgrid-scale dissipation

I =-75955,; (2.10)

The mean SGS dissipation behaves as a sink term, while the instantaneous one gives negative
(backscatter) and positive (forward scatter) contributions in the transfer.
The following picture shows the SGS dissipation (red line), together with the dissipation of the

resolved scales (blue line); their total contribution is shown by the red line.
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Figure 2.2 — Dissipation of the resolved scales, ¢, together with the SGS dissipation, II, and

their sum — at increasing resolutions, from LES at Rer = 590 shown in chapter 6.

The previous consideration leads to the fact that an investigation on SGS dissipation behaviour
is very important in an accuracy assessment of LES.
Based on this principle, several investigations have been carried out by Chow & Moin [Chow and Moin, 2003],
Ghosal [Ghosal, 1996] and Kravchenko & Moin [Kravchenko et al., 1996].
Geurts & Frohlich [Geurts and Frohlich, 2002] introduced the SGS activity parameter, defined as

follows

- <€SGS>
<eSGS> 4 <eh>

(2.11)

where <e#> = 2[,L§7jj§ij is the viscous dissipation.
With increasing resolution, SGS dissipation decreases while viscous one increases, therefore s be-
comes smaller. A remarkable aspect is that, the coarser is the resolution , the bigger is s . This
can be proved having a look at 2.11: if we use a coarse grid, the resolution will be smaller such
that viscous dissipation will be negligible, and s will reach its maximum unity value. This occurs

when the cutoff filter of the LES is well in the inertial subrange and the viscous dissipation is rather
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2.4 Subgrid-scale dissipation 2. Large Eddy Simulation

small.
Starting from the previous definition, Geurts & Frohlich [Geurts and Frohlich, 2002] defined an
error norm as

Ergs — Epns

g = (2.12)

Epns
where E pg is the mean resolved kinetic energy integrated over the flow domain, while Epns
is the same quantity, computed from filtered DNS data instead, with the same filter width as in
the LES.
The accuracy assessment consists of computing the relation between dr and s: in the picture
below [Rasam et al., 2011] it is shown that the relative error §5 drops almost exponentially with
decreasing s (i.e. high resolution); results refer to a LES with the explicit algebraic SGS stress
model (EASSM) [Marstorp et al., 2009] at Re, = 934, for six different resolutions. This result
shows that with increasing resolution the SGS contribution becomes smaller and the accuracy of
the LES higher. In other words, the resolution of the LES must be sufficiently high to obtain an

acceptable solution.

Figure 2.3 — Normalized error é g of the resolved kinetic energy, integrated over the channel
width [Rasam et al., 2011] w.r.t. the filtered DNS value vs s. Arrow points to increasing

resolution cases.
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CHAPTER

SUBGRID-SCALE STRESS MODELS
FOR LES

"Logic will get you from A to B.

”

Imagination will take you everywhere. (A.Einstein)

In this chapter two different LES models are going to be analyzed; the first one is an improvement
of the classic Smagorinsky model, the Dynamic EVM.
The second one is a particular non-linear model using an explicit algebraic formulation for the SGS
stress tensor.

In the following section a decomposition of the SGS stress tensor is given.

3.1 Tensorial polynomial formulation of the SGS stress tensor

A useful approach that leads to several non-linear models is based on a decomposition of the

SGS stress tensor, through a polynomial expansion.
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3.1 Tensorial polynomial formulation of the SGS stress tens&: Subgrid-scale stress models for LES

Similar to RANS approach for Reynolds stress closures, SGS stress tensor can be expressed in terms
of strain and rotation rate tensors.

Lund & Novikov [Lund and Novikov, 1993] expressed the deviatoric part of the SGS stress tensor
5GS,d

T

the Kronecker delta d;; and the filter size A as

as a general tensorial function of the filtered strain-rate S;; and rotation-rate §2;; tensors,

1 ~  ~ -
TS = 7508 - 3 ThkOij = f(Sij, Qij, 045, A) (3.1)
where
~ 1({0u; 0uj ~ 1({0w; Ou,;
P ? Q _ i ¥ ) 9
SZ] 2 ((91'] + 8.11), * 2 (al'] (91'Z> (3 )

As Pope [Pope, 1975] showed the Reynolds stresses in RANS, 7;; can be formulated as a tensor
polynomial with ten elements of differents powers of §7jj and ﬁij and their combination.
Coefficients are functions of §ij and ﬁij invariants or both, and they are derived using the Cayley-

Hamilton theorem:

10
o ZﬁkT(k)a (3.3)

k=1

so that the ten polynomial tensors are:
TL =8
T®? =82 — 11151
TG) = Q2 — 1111
TW = SQ — QS
TG = §20 — OS2
T® =802 + QS - 21V
T = $202 + Q282 - 2VI
T® = SNS? — 208
TO = QSQ? — Q2SN
T = 05202 — 22820

)

and () are scalar coefficients that are functions of five tensorial invariants

IIg = tr(S?), Ilo=tr(92?%),

IIIg = tr(S%), IV =tr(SQ?),
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3. Subgrid-scale stress models for LES 3.2 The dynamic procedure for EVM (DEVM)

V = tr(S?Q?).

Thus, equation 3.3 is the most generla formulation for 7¢ in terms of S;-j and Q;j

3.2 The dynamic procedure for EVM (DEVM)

Regarding to the model coefficient Cy for the eddy-viscosity model, it has been demonstrated
that a dynamic computation of Cy (that is, during the simulation), can significantly improve the
flow prediction accuracy.

The computation of Cy is done by taking into account the resolved scales, according to a scale
invariance assumption.

The crucial point of this dynamic procedure is the so-called Germano identity. Let’s now denote a
test filter, A= 23, A= V/Q, where Q is the volume of a computational cell. The Germano identity

is defined as follows:

ZLij = Tij — Tuj (3.4)

where T;; is the SGS stress tensor filtered at the test filter level, and .Zj; = ?@ — 5@ Then

Z;; is applied in this way:

1
L — ggkk(sij = —2C.M;; (3.5)

where
Mi; = N?|S|S; — A?|S|S,;. (3.6)

The system of equations 3.5 is over-determined. In order to have a unique value of Cy Germano

contracted it in:
c, = —%—g;i (3.7)
ij g

Moreover, to make Cy variations smoother, a spatial averaging (.) has been applied.
Together with a better performance of the EVM, the Germano identity gives a correct asymptotic
near-wall behaviour for vgas.
It has also been shown that is possible to apply Germano identity for the dynamic computation of

Prsgs in the EDM [Moin et al., 1991], improving performances in the scalar prediction.
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3.3 Explicit Algebraic SGS stress model 3. Subgrid-scale stress models for LES

3.3 Explicit Algebraic SGS stress model

Anisotropic effects of turbulence are important in several conditions: examples are near-wall
flow behaviour and boundary layes separation cases with curvature, swirl, rotation.
As it was discussed before, the Dynamic Smagorinsky model is an isotropic model, in the sense that
the SGS viscosity vsgs is direction-independent.
Therefore, in order to capture flow anisotropy, DEVM is not suitable.
In the same spirit as Reynolds stress-based models are necessary for RANS, non-linear SGS models
are needed for LES.
A recent example of those is the nonlinear dynamic SGS stress model by Wang & Bergstrom
[Wang and Bergstrom, 2005], which consists of three base tensors and three dynamic coefficients.
One of the terms in the model is similar to the DEVM model. Wang & Bergstrom [Wang and Bergstrom, 2005]
showed that the dynamic non-linear model predicts a more realistic tensorial alignment of the SGS
stress than eddy-viscosity models and can provide for backscatter without clipping or averaging of
the dynamic model parameters.
The model here discussed is called Explicit Algebraic SGS stress model (EASSM), was devel-
oped by Marstorp [Marstorp et al., 2009] and is similar to the EARSM by Wallin & Johansson
[Wallin and Johansson, 2000], which is based on a modelled transport equation of the Reynolds
stresses and on the assumption that the advection and diffusion of the Reynolds stress anisotropy
are negligible.

Analogous to the Reynolds stress anisotropy tensor we define the SGS stress anisotropy tensor as

Tij 2
aij = KSZZ;S - 55@‘ (3.8)
For simplicity, we’ll consider TZ-‘?GS = 75. Moreover, Ksgs = (uju; — u;1;)/2 is the SGS kinetic

energy.

In a non-rotating frame the transport equation for a;; reads

Da: aD.ﬂ};c 7. §DKsacs .
K ij igk __ Tij k _ Ty _ SPNPS | I )
SGS < 02, Ksos 0o Kecs (P —¢) +Pij —eij + ij, (3.9)
advection dif frsion
where fD,fSGS = fDZ.T;{v/2 is the sum of the turbulent and molecular fluxes of the SGS stress

and SGS kinetic energy, respectively.
Although the production of the SGS stress P;; and SGS kinetic energy P = P;;/2 are given in

terms of 7;; and filtered gradients, the SGS pressure strain II;; and SGS dissipation rate tensor e;;
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need to be modelled. Those terms are
ou; ou;

4~ _ ~ _ _
Pij = *Tika—xk - Tjka—xk = Ksgs l - §Sij — (@ixSkj + Sikar;) + (@irQr; — Qrar;) |,  (3.10)

9 -
I = ;(Sijp — Si;D), (3.11)

Oui Qu; Oty %> (3.12)

=2 —
&1 v (8:L‘k (9£Ck (9:Ck 8:L'k
and their modelling leads to [Launder et al., 1975]

3~ 9¢y + 6 ~ ~ 2 ~ Tceo — 10 ~ ~
Il;; = —eciaij+Ksas 351“-1-2171 (aikskj‘f'sikakj_gakmsmk(sij)+2171(aikﬂkj_ﬂikakj) ,
(3.13)
2
Eij = 5_51'3'7 (314)

3

where ¢; is a relaxation coefficient and ¢ = 5/9 is a parameter of the model for the rapid part
of II;;, which depends directly on changes in the resolved velocity gradients, and € = €;;/2.
Like in Wallin & Johansson’s [Wallin and Johansson, 2000] RANS model, the derivation of the
EASSM model involves the weak equilibrium assumption, which implies that the advection and
diffusion terms of the Reynolds stress anisotropy are neglected. In order to simplify the model,

together with the weak equilibrium assumption, we assume also that P = . This leads to

0= Pij —E&ij + Hij. (3.15)

Using the modelling given by 3.13 and 3.14 in 3.15 we have

11 ~ 4
- Esij + §(aikaj — Qixar;) (3.16)

C1055 = T
note that 7* = Kggg/e is the SGS time scale.
Finally, equation 3.16 has been solved using an ansatz
*Q 23 5 O
aij = P17 Sij 4 Bat™ (SirQkj — Qi Skyj), (3.17)

where 8y and (3, are model parameters and functions of the filtered stress and strain-rate. Using

that ansatz, equation 3.16 becomes
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2 *~ * o a P o
Ti; = Ksas 55@' + P17 + BaT Z(Sikaj — Qi Skj) |, (3.18)

which is the main EASSM model formulation. Using normalized strain and stress-rate tensors

it can be rewritten as

2 < o* O)* O* QO*
Tij = g(sinSGS + B1KscsS;; + BaKsas (S5, — QSk;) - (3.19)

eddy—wviscosity anisotropy of

SGS stresses
The second term on the right-hand-side is an eddy viscosity term responsible for SGS dissipation,
whereas the third term reproduces anisotropic effects of SGS stresses and gives a disalignment of

the SGS stress and resolved strain-rate tensors. ;1 and 4 coefficients have the form:

_E 901/4 6 :_E 1
20[(9c1/4)2 + 2] T 20[(9e1/4)? + [P

B = (3.20)

where |(~2*| = /2II} =4/ 27*2S~2ik§ki < 0 is the SGS time scale-normalized second invariant.

The unknown quantities Kggs and 7* can be dynamically or non-dynamically computed.

The equation 3.19 can also be related to the tensorial formulation of the SGS stress tensor, given
in the previous section : the first term on the right-hand side reproduces the isotropic part of the
SGS stress, while the second and third terms can be considered as two polynomial tensors, for the
case k =1 and k = 4.

The dynamic version of the EASSM involves Germano’s dynamic procedure; here the SGS kinetic

energy is modelled in terms of the squared Smagorinsky velocity scale A|§ij| [Yoshizawa, 1986]:

Ksas = ¢A?|Sy;], (3.21)

where A is the filter scale; |S;;] = (25;;5:;)"/2, and ¢ is a dynamic parameter, computed in the
following way:

o A2 A o~ ——

ﬂﬂl — ﬁl’ﬁz = C& 2§ij§ij — Cg22§ij§ij- (3.22)

The quantities with 7 are test-filtered quantities. In this case the equation is not over-
determined, because the number of filter operations needed for the dynamic constant computation
is smaller than in DEVM.

Once ¢ is computed, it is possible to obtain the coefficient ¢; and the SGS time scale 7*:
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(25 L LBCLE
1 = C/l\/g(QC )2_55 T = C/3 28 |S| ! (323)

where ¢} = 3.12, ¢4 = 0.91, C) = 1.5 is the Kolmogorov constant and C, = 0.1.
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CHAPTER

4

IMPLEMENTATION IN A CFD CODE

)

"Patience is the companion of wisdom. (St.Augustine)’

In this chapter the implementation of the previous DEVM and EASSM models in a CFD code

will be explained, together with a particular focus on pseudospectral methods and their features.

4.1 The need for accuracy: spectral methods

The aim of this thesis is to prove the effectiveness in prediction of the flow properties, given a
specific turbulence model. In order to measure the accuracy of it, first we have to ensure that the
only accuracy error that could be generated is given by the model, i.e. the accuracy is independent
from the main code and the numerical method used. To fit this requirement, we need our code
to have a numerical scheme which is not affected by numerical errors (e.g. truncation errors),
therefore the use of the classic finite-difference (FD) method or finite-elements method (FEM) is
not recommended for this purpose.

While finite-elements methods chop the interval in x into a number of sub-intervals, and choose the
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¢n(x) to be local functions which are polynomials of fixed degree, non-zero only over a couple of
sub-intervals, spectral methods use global basis functions in which ¢, (x) is a polynomial of high
degree which is non-zero over the entire computational domain, except at isolated points.

Once more, spectral methods, even if they generate algebraic equations with full matrices ( in
contrast with the FD, which uses sparse ones), the high order of the basis functions gives high
accuracy for a given number of degrees of freedom N.

Despite spectral methods are the most useful when the geometry of the problem is fairly smooth and
regular, when fast iterative matrix-solvers are used, spectral methods can be much more efficient
than FEMs and FDs schemes. Therefore, for the case of channel flow, where the geometry is simple,

they represents the best choice in terms of accuracy.

4.1.1 Accuracy and memory saving properties

Finite difference methods approximate the unknown u(z) by a sequence of overlapping polyno-
mials which interpolate u(x) at a set of grid points. The derivative of the local interpolant is used
to approximate the derivative of u(x). The result consists of a weighted sum of the values of u(x)
at the interpolation points. The following picture shows how the polynomials are in the different
methods.

Spectral
One high-order polynomial for WHOLE domain

ﬂmﬁ

Finite Difference
Multiple Overlapping Low-Order Polynomials

N

Figure 4.1 — Spectral methods and finite difference schemes

To ensure a computational ease, together with completeness and rapid convergence of the solu-
tion, there are several alternatives for the choice of the basis functions.
One of the best combinations used is to employ Fourier series in x and z directions, where the
solution is assumed to be periodic; along the y direction, instead, the solution won’t be periodic,
and Chebychev polynomials represents the best disguise for a spectral method [Boyd, 2001] there.

For this reason, a code with such combination like this one is called a Pseudo-Spectral method.
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4. Implementation in a CFD code 4.2 The SIMSON code

Let’s consider now a 3-points FD method (like a second-order one), and a N-point pseudo-spectral
method. It has been proved that, to equal the accuracy of the pseudospectral procedure for N = 10,
one would need a 10" order finite difference or FEM with a O(h'?) error.

Increasing N, the pseudospectral method have two positive aspects: the interval h between grid
point becomes smaller, and the error rapidly decreases even if the order of the method is fixed;
which is not true, since the order of the method is not fized. The combination of these two aspects
makes this method extremely efficient: passing from N = 10 to N = 20, the error becomes O(h?°),

with also a new smaller h, since h is O(1/N). Summarizing it holds that
Pseudospectral error ~ O[(1/N)"]

which means that the error decreases faster than any finite power of N because the power
in the error formula is always increasing, too. We can describe this behaviour as infinite order
or exponential convergence. This feature makes the pseudospectral method the best choice when
many decimal places of accuracy are needed.
This is not the only one benefit of using spectral method, though. Pseudospectral methods are also
memory-minimizing, this means that the number of degrees of freedom required in each dimension
by them are about half as the ones needed by a fourth-order FD method. This leads to the fact
that high-resolution problems could be solved satisfactorily by spectral methods, when a three-
dimensional second order FD code would fail because of the need for eight or ten times as many

grid points would exceed the core memory of the available computer.

4.2 The SIMSON code

To perform the LES, the SIMSON code has been used. SIMSON is a pseudo-Spectral Solver for
IncoMpreSsible bOuNdary layer flows, developed by Chevalier [Chevalier et al., 2007]. In Simson
channel and boundary layer solvers have been combined together with many additional features
developed over the years. The code can compute either direct numerical simulations (DNSs) or
large-eddy simulations (LESs); in LES mode, different subgrid-scale models are available, including
the DEVM. The EASSM has been recently implemented.

The code is completely written in Fortran 75/90 and can be run with distributed or with shared
memory parallelization using the Message Passing Interface (MPI) or OpenMP.

The wall-parallel directions are discretized using Fourier series and the wall-normal direction using
Chebyshev series. Time integration is performed using a third order Runge-Kutta method for the

advective and forcing terms, and a Crank-Nicolson method for the viscous terms.
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4.2.1 Theory

The SIMSON code is an incompressible Navier-Stokes solver. In a rotating reference frame, N-S

equations are, written in tensor notation:

Qu;  Op 0 (1 1,
5t~ o + €ijrug (W + 2Q) — oz <§uju]> + EV u; + Fj,

8’U,i
81‘1'

=0, (41)

where (wi1,ws,ws3) = (x,w, V) are the vorticities along streamwise, wall-normal and spanwise
coodinates. € is the angular velocity of the coodinate frame around axis k. The body force
F = (Fy, Fy, F3) is used for numerical purposes and to introduce external disturbances to the flow.

Taking the divergence of the momentum equations we derive the Poisson equation for the pressure

o 1
V2p = %[eijkuj (wk + 2Qk) + Fl] - V2 <§ujuj> (42)

H;
Applying the Laplace operator to the momentum equations for the wall-normal velocity one

finds

ovV2v 0? 0? 0 (0H, 0OHs 1
=|=—+=—|H—=—|—+— —V? 4.3
ot (8:02 - 022 )2 oy \ Ox - 0z - Re " " (4.3)
for numerical purposes, this equation can be rewritten as a system of equations:
00 _ 1
52 =hy +35V?0
V20 = ¢,

where

0? 0? 0 (0Hy 0H;
hv_(@—i_@)}b_a_y(W—’— 82) (4.5)

Moreover, taking the curl of the momentum equations, an equation for the normal vorticity can

be derived as well:

.
h. = OH, OH3
w

- 0z Oz

(4.6)

The system of equation above can be solved with the same numerical routine. Once the normal
velocity v and vorticity w have been calculated, the other velocity components can be computed

from the incompressibility constraint and the wall-normal vorticity definition.

42



4. Implementation in a CFD code 4.2 The SIMSON code

4.2.2 Numerical method

Time discretization. The time discretization used by Simson can be explained using the
following equation:
o

S =G+ Ly (4.7)

1 represents ¢ or w. L is the linear diffusion and is implicitly discretized by a Crank-Nicolson
(CN) scheme, while G is explicitly discretized by a third order three or four stage Runge-Kutta

(RK3) scheme. The overall time discretization can be shown in the following way

L n+1 L n
,l/)nJrl _ 1/}71 + anGn + bnanl + (an + bn) <W>, (48)
where a, and b,, are constants chosen according to the explicit scheme.
Using the scheme 4.8 in 4.7, the previously written equations become:
L= e V2 ¢t = {14 92 V2 6" + anh + bahy ™,
(4.9)
v2,Un+1 — ¢n+1,
and
oGt Onge ) e (g Gt bnge) ey et (4.10)
2Re - 2Re e e ‘

Horizontal discretization. The horizontal discretization has been made using a Fourier
expansion, assuming that the solution is periodic. Each variable is assumed to be spanwise and

streamwise-dependent, that is

u(z, z) = Z Z (e, B )2+ Am2) (4.11)

where a; = 27l /xp, and B, = 27m/z;, and N, and N, are the number of Fourier modes in the
two directions. Note that k2 = o 4+ 32. Using this discretization the equations 4.9 can be rewritten

as

(1 — (D — k2>> gt = (1 + S (D? — k%) " + anhiy + buhiy

(D% — k2)ont! = $n+1,

(4.12)
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where D stands for the derivative in wall-normal direction.

Wall-normal discretization. The normal discretization has been done through Chebychev’s

polynomials. Using an example of second order constant coefficient ordinary differential equation

(D? —w)b = f, ¥(0)=7_1, ¥(yr) = (4.13)

This is solved expanding v, its second derivative, fand the boundary conditions in Chebychev

series:

Ny
U(y) =D U Ti(y), (4.14)
j=0
o~ Ny o~
D¥)(y) = > P T5(y), (4.15)
j=0
Fw) =S F1). (4.16)
j=0
p(1) = Zy{/?j =, (4.17)
j=0
o~ Ny ~
B(=1) =Y (=19 = 7.4, (4.18)
j=0

where T} are the Chebychev polynomials of order j and N, the highest order of polynomial
included in the expansion.

Non-linear terms. Non-linear terms of LES equation, gTﬂ;{, are known to be computationally
expensive anyhow. Despite the computation of the whole velocity field is performed in a Fourier
space through Fast Fourier Trasforms (FFTs), i.e. in the complex space (C), the non-linear terms
are calculated coming back to real space, R . Then the following computation will be finished in

Fourier space.
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4.2.3 MPI parallelization

An important process able to boost performances of the CFD code and decrease computational
time is the parallelization of the code.
In serial computations the problem is broken into a discrete series of instructions, which are executed

sequentially one after another on a single processor.

l instructions
N 3 2 H

Figure 4.2 — Serial computation scheme

Different from serial runnings, in parallel computing:

A problem is broken into discrete parts that can be solved concurrently;

Each part is further splitted in to a series of instructions;

Instructions from each part execute simultaneously on different processors;

e cach processor send/receive information to/from the other ones through MPI communication,

therefore

An overall control/coordination mechanism is employed.
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instructions

-l ==
-l -
-l 1 -E
-~ ==

Figure 4.3 — Parallel computation scheme

For parallelization purposes, the computational problem should be able to be broken apart into
discrete pieces of work that can be solved simultaneously, and execute multiple program instructions
at any moment in time. Of course, the problem is expected to be solved in less time with multiple
compute resources than with a single compute resource. Typically, compute resources can be
either a single computer with multiple processors/cores or an arbitrary number of such computers
connected by a network. There’s also a way to quantify how much computational time can be saved
using parallel computing. Amdahl’s Law states that potential program speedup is defined by the

fraction of code (P) that can be parallelized:

1
dup = —— 4.19
speedup = +—— (4.19)
If none of the code can be parallelized, P = 0 and the speedup = 1 (no speedup), while if all of
the code is parallelized, P = 1 and the speedup is infinite (in theory).
If 50% of the code can be parallelized, speedup,q, = 2, meaning the code will run twice as fast.
Introducing the number of processors performing the parallel fraction of work, the relationship can

be modeled by:

1

FINTS (4.20)

speedup =

where P is the parallel fraction, N the number of processors and S the serial fraction.

The diagrams in the next page show how parallelization improves performances in terms of speedup.
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4.2.3.1 MPI communication between processes

Once the problem has been splitted into several processors, the necessity of coomunication be-
tween processes occurs. In other words, we need processors to send and receive data between them,
in order to run a distributed simulation.

Communication occurs when a portion of one process’ address space is copied into another process’
address space. This operation is cooperative and occurs only when the first process executes a send
operation and the second process executes a receive operation. On the sender’s side, the way to
describe data is to specify a starting address, a length of the message (in bytes), the destination
address, and a tag. The tag is needed for the matching between messages, it is an information (an
integer) to let the process control which messages it receives.

On the other side, the receiver will need to receive the address and the length of the place the data
has to be placed, together with the tag, the source and the length of the message received. The
message interface therefore will be:

send (address, length, destination, tag)

and

recv (address, length, source, tag, actlen).

10 25 i e s R T
Parallel Partion
g D50 — |
, 50% mm—
D7 0% E ]
B
e o 15
= =
g H
=3 @
n =
4 “ 0
3
2 5
.
0 0
0% 10% 20% 30% 40% S0% B0% T0% a0% 0% — O = @ 0 o = m o o
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8192
16384
32768
B5536

Parallel Portion of Code

Number of Processors

Figure 4.4 — Parallel computing performances diagrams [Laure, 2014]

In SIMSON code parallelization is made using Message-Passing Interface protocol. In partic-
ular, what MPI parallelization does is to split the computational grid into several parts, equal to
the number of available processors; then every CPU processor (or core) computes its part at the

same time. There are several ways the computational domain can be split to; however the most
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common ones are 1D parallelization and 2D parallelization. In the following simulations both of

the parallelization methods are used; in the figure below both types of them are shown.

BLOCK CYCLIC

1D

BLOCK, * * BLOCK BLOCK, BLOCK

CYCLIC, * * CYCLIC CYCLIC, CYCLIC

Figure 4.5 — Parallel computing distributions [Gropp et al., 1999]

In this work two versions of SIMSON code have been used. The former one is 1D parallelized,
therefore the domain is splitted in rectangular processors, only in 1 direction, which is along the z
axis (configuration CYCLIC,*) .

The latter one is the 2D parallelization: in SIMSON code it involves the domain splitting in x
(nprocx is the number of processors in that direction) and z (nprocz) and the total number of
processes is then nproc = nprocx * nprocz. Therefore the BLOCK,BLOCK configuration has been
implemented.

To carry on simulations, several supercomputers that belong to the Swedish National Infrastructure
for Computing (SNIC) will be used. For the last and more time-consuming simulation, Lindgren

supercomputer will be employed. A photo of it is shown below.

Figure 4.6 — Lindgren supercomputer at PDC, KTH
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CHAPTER

POSTPROCESSING TOOLS FOR
TURBULENCE

"However difficult life may seem,

there is always something you can do and succeed at. (S. Hawking)”

Once the simulation has been run, the output generated is a turbulent velocity field, and has to
be postprocessed using several tools; some of them come from statistical analysis. The results are

the mean values, two-point time statistics, i.e. correlations, and the so-called vortical structures.

5.1 Mean Values

The simplest statistical property is the mean value, or first moment. The mean value of a random
variable at a particular spatial location can be derived by averaging the long time measurement of

that variable. Considering the measurement period 7" we have:
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(u) = lim L[ uwar. (5.1)

where (u) indicates the mean value of a random variable u (the flow velocity in this case), and
to is the measurement starting time. This time average only makes sense if 5.1 is independent, of
to and T for large T'; in this case we would say that the integral converges and the flow can be
assumed as statistically steady and therefore is meant as a stationary process.
However, this integral doesn’t converge in some situations. In such cases the mean flow behaviour

can be described by the ensemble average, which is taken on a finite volume V', and defined as:

(uy = VlgnOO % /u(x)d:cdydz. (5.2)
%

The integration is therefore performed over a volume at one instant of time. Note that the
previous relation holds only if the flow is spatially-independent. In a discrete volume domain we

can refer to a number of samples, N, and the equation 5.3 becomes

N—o0

N
(u)y = lim %Zu(x) (5.3)

Since we will consider a fully-developed flow, in our specific case we will assume the mean value
as the quantity of the flow which is averaged both in time, and space. Thus, the flow will be

assumed to be statistically stationary, i.e. mean velocities keep constant along the x and z-axis.

5.2 Root-mean squared Values, rms

Turbulence has to be quantified also in its strength. In turbulence, the root-mean squared oper-

ation consists in the square root of the of the mean value of the squared of the velocity fluctuations,

/.
Ui.

Ui rms = <u;(t)2> (54)

on a discrete domain

(5.5)

Ui, rms =
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5.3 Vortical structures

Up to now we have described turbulence in a statistical way. However, a useful method to
analyze vortical structures is well appreciated.
Between different methods that have been developed during the past years, we can find several
criteria to identify vortices, but the most precise and coherent one is the Ao structures method.
According to the paper of Jeong & Hussain [Jeong and Hussain, 1995], the Ao method uses the
strain and rotation-rate tensors to determine the existence of a local pressure minimum due to
vortical motion; the vortex core is defined as a connected region with two negative eigenvalues of
S? + Q2.
Since S2 + Q2 is a symmetric tensor, it has only real eigenvalues.
Calling the eigenvalues A1, A2 and A3, with A\; > Ay > A3, the requirement for a pressure minimum

is that Ay < 0 within the vortex core. In particular,

t?‘(SQ + QQ) = A + Ao+ A3. (56)

Considering a general velocity gradient for a planar flow:

a b
Vu = (5.7)
C —a
which can be rewritten in
a® +be 0
S?+0? = (5.8)
0 a? + be

Ao is the second eigenvalue of that tensor. The condition previous cited requires that Ao < 0,

therefore a2 + be < 0.
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CHAPTER

RESULTS

“Continuous effort - not strength or intelligence - is the key to unlocking our potential.

(W.Churchill)”

In this chapter results of several LES at different Re, will be analyzed. The substantial differ-
ences between DEVM and EASSM model will be commented upon and special attention will be
paid to anisotropy effects of the latter model. In all the simulations, the flow domain is a rectan-
gular box. Streamwise and spanwise dimensions are varied with the friction Reynolds number. A

sketch of the flow domain is shown in figure 6.1
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Figure 6.1 — Sketch of the flow domain used for LESs.

The resolution of the LES is defined in terms of grid spacings; AT, A;, AT are the grid spacings
in physical space in streamwise, wall-normal and spanwise directions respectively, in wall units; in

x and z directions they are defined as

Al = —Re,, AT = = Re, (6.1)

where N, and N, are the number of Fourier modes, I, and [, the lengths of the computational
box, in x and z directions, and Re; is the Reynolds number based on friction velocity.
The following simulations were started using an initial field, generated with random fluctuations.
Then they have been run for some time, in order to reach a statistically stationary state. Once the

simulations have been finished, statistics of the flow has been collected for a certain time period.

6.1 LES at Re. =590

In this section LES results of turbulent channel flow at the bulk Reynolds number corresponding
to the DNSs of Moser & Kim at Re, = 590, are presented. In order to show anisotropic effects of
the EASSM, the related results have been compared with the isotropic DEVM model. Three cases,
with ascending order of resolution, are presented. For these simulations,a computational box with
a streamwise and spanwise size of 27 and 7wd respectively, where § is the channel half width, has
been chosen. The bulk Reynolds number is Re, = ud/v = 10935 and the friction Reynolds number
is Re, = 593 in the DNS.

The parameters of the LES are given in table 6.1. Since Re; in the LESs is the same as in the DNS,
Re, can vary. The table shows that Re, depends on the SGS model and the resolution.
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Table 6.1 — Channel Flow simulations, for Re- = 590. The first three cases have been
computed with the Dynamic Smagorinsky model (DEVM) while the latter ones refer to the
explicit algebraic SGS model (EASSM). N, Ny, N. are the numbers of Fourier modes in the

streamwise, wall-normal and spanwise directions, respectively. A and A are

yT,min y+ maz

the minimum and maximum grid spacings in wall-normal direction. 7, /7, pns is the ratio

between the wall shear stress given by the LES and the one from DNS.

AT

Case SGS model N, xN,xN, Al A} —t— Re, —Tu—
DSO0 DEVM 64 x 65 x 64 58 29 0.68 ~27.69 564 0.92
DS1 DEVM 96 x 97 x 72 38 25 031~1891 578 097
DS2 DEVM 128 x 97 x 96 29 19 031~1891 583 0.99
EA0 EASSM 64 x 65 x 64 57 29 0.70 ~ 28.65 584 0.99
EA1 EASSM 96 x 97 x 72 39 26 032~1947 595 1.03
EA2 EASSM 128 x 97 x 96 29 19 031~19.20 587 1.00

Table 6.2 — Channel Flow simulations for Rer = 590. MPI parallelization details. The first
three cases have been computed with the Dynamic Smagorinsky model (DEVM) while the
latter ones refer to the explicit algebraic SGS model (EASSM)

Case SGS model n (no. processors) N (no. nodes) Supercomputer
DSo DEVM 16 2 Abisko

DS1 DEVM 16 2 Abisko

DS2 DEVM 12 1 Povel

EA0 EASSM 12 1 Povel

EA1  EASSM 16 1 Povel

EA2 EASSM 16 1 Povel
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Convergence criterion. In order to obtain reliable results, the convergence of the solution

has been checked in two ways:
1. the stationarity of the turbulent kinetic energy;
2. the approach to steady-state of the total shear stress.

After several time units, t = 2000, the diagram below ensures the steady-state of the solution,

since the total shear stress assumes the shape of a perfectly-straight line.

15708 06 0402 0 02 04 06 08 1
y/o
Figure 6.2 — Deviatoric part of the Reynolds stress profile in wall units, together with the
total shear stress (in dashed line). —— : EA0 —— : DS0

Resolution study. Before investigating the main characteristics of the flow, an important
aspect to look at is the effect of the spatial resolution, which can be checked by studying the ratio
between the friction at the wall for the LES case and the one for the DNS case, i.e. Tyai1/Twail, DNS-

This ratio can be readily derived from the Re. of each case,

2 2
Twall —_ PU; Rez

(6.2)

- 2 - 2
Twall, DNS  PUZ pDNS Re‘r,DNS

This value should be one is the LES perfectly agrees with DNS.
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Figure 6.3 — Variation of averaged wall shear stress, normalized with the DNS value, with

resolution. —A— : EASSM cases, — () — : DEVM cases, — : DNS

From figure 6.3 we can see the different trends of the two models adopted. While the DEVM gives
a monotonic behaviour as the resolution increases, the EASSM convergence of the 7,4 towards the

DNS profile is not monotonic. Overall the EASSM gives the best predictions in comparison with
the DNS.

Profiles. The mean velocity profiles are shown in figure 6.22. EASSM predictions are clearly
more accurate than DEVM at any resolution; the difference in results becomes remarkable as soon
as we go further from the inner region and we approach the outer layer, towards the centreline.

The DEVM overpredicts the mean velocity profile at coarser resolutions, while EASSM approaches

fairly well the DNS velocity profile also at the coarsest resolution.
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Figure 6.4 — Mean velocity profiles in wall units at increasing resolutions. — : EAQ, — - — :
EAl, —— : EA2, —: DSO, —- —: DS1, —— : DS2. —: DNS

The components of Reynolds stress tensor are shown in figure 6.5. The presence of the walls
and the shear forces the flow to be highly anisotropic. Therefore, fluctuations along streamwise
direction are much bigger than in the wall-normal and spanwise directions. Here the DEVM shows
a good prediction of the u' component, while the estimation of the other components v and w’
is quite inaccurate compared to the EASSM. This is reasonable, since the DEVM is an isotropic
model and doesn’t properly model the SGS anisotropy.

By contrast, we can conclude that the EASSM gives a good prediction of the anisotropy, which is
well modelled through the SGS model. A close-up of the deviatoric component of the Reynolds
stress profile is shown in figure 6.6. Both models seem to give a good performance. The effects of

increasing resolution are highlighted in the figure: the arrow points to ascending resolution cases.
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6. Results

6.1 LES at Re, = 590
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Figure 6.5 — Reynolds stress components profiles in wall units at different resolutions.

—: EAO, — - — : EA1l, —— : EA2, — : DSO, — - —:

DS1, —— : DS2, — : DNS.
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Figure 6.6 — Reynolds shear stress profile in wall units at increasing resolutions.
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6.1 LES at Re, = 590 6. Results

The following diagram shows that EASSM and DEVM have a similar prediction also of the ratio
turbulence production P and the turbulent dissipation e, and they present results close to DNS.
Regarding EASSM, an important aspect to remark is the P = ¢ assumption in the SGS model.

However, this assumption is not valid for the resolved scales.
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Figure 6.7 — Turbulent production-dissipation ratio at increasing resolutions. — - — : EAIL,

——: EA2, —. — : DS1, —— : DS2, — : DNS
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6. Results 6.1 LES at Re, = 590

SGS Anisotropy effects. Let’s perform now a deep analysis of the contribution of the sub-grid
scale model to prediction performance. First of all, a distinction between the resolved quantities

and the SGS ones must be defined. In order to focus on anisotropy prediction, we will analyze

the deviatoric part of the Reynolds stress. Let’s call the resolved part of this quantity TI;_, and

the SGS contribution (given by the specific model)

quantity will be

+ _ _r+  _SGS+
Tig = T13 + 7o (6.3)
1 1 —
Te
09} . 09} 2
oS 12 ~V
0.8F fiA= N 0.8F 117 3
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Y |
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Figure 6.8 — Deviatoric part of the Reynolds stress profile in wall units, a) with DEVM

, T152GS,+‘ Therefore, the total prediction of the

y/o

model b) with EA model. Black arrows point at increasing resolutions. — : DNS

From the figures above we can note an important aspect of the SGS models: at increasing
resolutions, the SGS prediction decreases, while the resolved part increases. This is reasonable:
the finer the resolution is, the larger the range of resolved scales will be. Therefore, the SGS
contribution will become smaller with increasing resolution. Vice versa, at the smallest resolution

we can analyze the performances of each model: EASSM gives the best prediction, its contribution

is larger than DEVM, and is a superior model for the quality of the flow predictions given.
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6.1 LES at Re, = 590 6. Results

Flow visualizations. Some flow visualizations of the fluctuating flow field have been carried out
in order to capture the elongated structures (streaks), which have been generated by the influence
of the wall shear stress at a very small distance from the wall. LES results are compared with DNS
(by a courtesy of P.Schlatter), at the same friction Reynolds number.

Although the description of the streaks is not that detailed, LES with the EASSM model is able to
capture some of this particular structures at the wall. On the other hand, DNS gives a complete
description and the flow is perfectly described since a wider range of scales have been computed.

The streaks are only seen in the visualizations of the streamwise velocity field; in the visualizations

of the other two velocity components the streaks are absent.

6 500 1000 1500 20 - 2500 3000 3500
a) X

0 500 1000 1500 2000 2500 3000 3500
b) x*

Figure 6.9 — Horizontal contour plots of streamwise fluctuations u/* at y* =~ 8, along the

zz plane, a) simulation EA2, b) DNS by P.Schlatter.
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6. Results 6.1 LES at Re, = 590

Figure 6.10 — Horizontal contour plots of wall-normal fluctuations v/t at y* ~ 8, along the

zz plane, simulation EA2, b) DNS by P.Schlatter.
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Figure 6.11 — Horizontal contour plots of spanwise fluctuations w'* at y+ =~ 8, along the

zz plane, simulation EA2, b) DNS by P.Schlatter.
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6.2 LES at Re. = 2000

Let’s study now a higher Re, case. In this section LES of a channel flow at the bulk Reynolds
number corresponding to the DNSs of Jiménez et al (2006) of Re, = 2000, are presented.
For this case two simulations have been carried out, one with the DEVM and the other with EASSM,
with a computational box 574 long in streamwise direction and 27§ long in spanwise direction. The
bulk Reynolds number is Re;, = 43466 and the DNS friction Reynolds number is Re, = 2003.

Details of these simulations are shown in table 6.3.

Table 6.3 — Channel Flow simulations, for Re; = 2000. The first case has been computed
with the Dynamic Smagorinsky model (DEVM) while the latter one refers to the explicit
algebraic SGS model (EASSM)

+
Case SGS model N,xN,xN., A} AF —Zu_  Re, _Tu_
DS  DEVM 160 x 193 x 160 180 72  0.25~30.04 1836 0.84
EA  EASSM 160 x 193 x 160 198 79  0.27 ~32.98 2016 1.01

Table 6.4 — Channel Flow simulations, for Re, = 2000. MPI parallelization details. The
first case has been computed with the Dynamic Smagorinsky model (DEVM) while the latter
one refer to the explicit algebraic SGS model (EASSM)

Case SGS model n (no. processors) N (no. nodes) Supercomputer
DS DEVM 40 5 Abisko
EA EASSM 40 2 Povel

From the 7, /7w, pns value we can note that the LES with DEVM strongly deviates from DNS;
on the other hand, EASSM ratio agrees with DNS. Despite the resolution of the LESs is coarse, we
can deduce that EASSM gives the best prediction of Re..

Profiles. While in the previous simulations mean velocity profiles have been well-predicted by
both EASSM and DEVM, here the difference between these two methods becomes more notable.
Steady-state has been reached after ¢ = 800, and EASSM gives a good prediction of the entire profile,
while DEVM gives results that deviates strongly from DNS as the outer layer is approached. The
good performance of EASSM is confirmed when having a look at the root-mean-squared of the
streamwise, wall-normal and spanwise fluctuations. Due to an additional description of anisotropy,

the EASSM is able to capture well the values of the fluctuations peaks, which are visible close to
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6. Results 6.2 LES at Re, = 2000

the wall.

Like the previous Re, = 590 case, the deviatoric part of the Reynolds stress is well predicted by
both methods, however, the EASSM still gives the results closest to the DNS. The close-up of the
Reynolds shear stress picture in proximity of the peak shows an important feature of the EASSM.
EASSM is more successful in the peak prediction. This means that the DEVM would require a

substantially better resolution for a similar result, therefore using more computational time.
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Figure 6.12 — Mean velocity profiles in wall units. — : EA — : DSO — : DNS
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Figure 6.13 — a,b,c)Root-mean squared fluctuations in wall units, on a semilogarithmic plot
d) Deviatoric part of the Reynolds stress, with total shear stress in dashed line.
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Figure 6.14 — Deviatoric part of the Reynolds stress profile in wall units. — : EA — : DS0

— : DNS
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6. Results 6.2 LES at Re, = 2000

Regarding turbulent production vs dissipation ratio, we note that the DEVM underpredicts
it largely, most of all in the outer region, while the explicit algebraic model shows a reasonable

agreement with DNS. Results are shown in figure 6.15.
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Figure 6.15 — Turbulent production-dissipation ratio. — : EA — : DS0 — : DNS
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6.2 LES at Re, = 2000 6. Results

SGS Anisotropy effects. In the following diagrams the different contributions from the

resolved scales and the SGS scales to the Reynolds shear stress are given, according to the definition
6.3.
Looking at the peaks (at —1 < y/§ < —0.9) we can see that both models give a higher contribution
of the SGS stresses, with respect to the Re,; = 590 case. It could be reasonable to expect that at
higher friction Reynolds number, the bigger will be the anisotropy of the flow, most of all near the
wall. For this reason the anisotropic EASSM gives the best estimation of the total Reynolds shear
stress; the contribution of the SGS model is five times bigger than in the DEVM.
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Figure 6.16 — Deviatoric part of the Reynolds stress profile in wall units, a) with DEVM

model b) with EA model. Black arrows point at increasing resolutions. — : DNS
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6. Results 6.2 LES at Re, = 2000

Flow visualizations. As in the previous section, some snapshots of the flow in LES, with the
Explicit Algebraic (EA) and the Dynamic Smagorinsky (DS) models are presented; the snapshots
have been generated at a very close distance to the wall. From a physical point of view, in this case
more elongated structures are visible. This is reasonable, the higher the friction Reynolds number,
the larger the total shear stress will be, with a strong contribution given by the Reynolds stress.
Therefore, longer and more energetic structures will appear, than in other lower Re, cases.
Experimental (with particle-image velocimetry, PIV) and DNS studies have given a deeper insight
of these spatially coherent, stress-bearing structures and shown that they play an important role
in transport problems, particularly in the near-wall region [Marusic et al., 2010]. Therefore, in this
case the accuracy of the model is investigated regarding the capability of the model to capture these
elongated structures.

The EA is seen to be more able to predict these. In particular, it captures a wider range of

fluctuating amplitudes, with respect to the DS model.

% e
- e T — —
o 05 1 15 2 25 3

b) <

|
4

Figure 6.17 — Horizontal contour plots of streamwise fluctuations v/t at y* ~ 8, along the

zz plane, a) simulation EA2, b) simulation DS2.
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Figure 6.18 — Horizontal contour plots of wall-normal fluctuations v/t at y* ~ 8, along the

zz plane, simulation EA2, b) simulation DS2.

Figure 6.19 — Horizontal contour plots of spanwise fluctuations w’t at y* =~ 8, along the

zz plane, simulation EA2, b) simulation DS2.
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6. Results 6.2 LES at Re, = 2000

Ao structures. The accuracy of the model have also been studied by looking at the ability
to predict the vorticity. Here vortical structures, computed by the lambda method are shown.
The most significant difference between the two models concerns here the generation of vortical
structures in the centerline; here the DEVM presents fewer vortical structures than the EASSM.
This is a consequence given by the anisotropy estimation, since anisotropy strongly influences the

flow vorticity.
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Figure 6.20 — Vortical structures in turbulent channel flow at Rer = 2000, visualized by

isosurfaces of A2, colored by the velocity magnitude, from EA simulation.
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Figure 6.21 — Vortical structures in turbulent channel flow at Rer = 2000, visualized by

isosurfaces of A2, colored by the velocity magnitude, from DS simulation.
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6.3 LES at Re. = 5200

For this final case, we will show some results of LES, computed for the friction Reynolds number
Re,; = 5200. All the results will be compared with the DNS performed by Lee & Moser (2014).
Differently from the other two simulations, in the Re, = 5200 LES with the EASSM an important
issue has been faced: the previous 1D-parallelized code wasn’t able to carry out simulations, because
of the limited amount of processors that could be used. This problem has been solved implementing
the EASSM in the SIMSON 2D parallelized code, where the work of this thesis has been focused
on. Thus, it has been possible to largely extend the number of processors and, with the help of
larger supercomputers, the computation has been carried out in roughly half a month.

The simulation has been carried out with a computational box 574 long in streamwise direction and
270 long in spanwise direction. The bulk Reynolds number is Re, = 128127 and the DNS friction
Reynolds number is Re, = 5186.

Details of these simulations are shown in table 6.5.

Table 6.5 — Channel Flow LES simulation with the explicit algebraic SGS model (EASSM),

at Rer = 5200
+
Case SGS model N,xN,xN. A+ AF —Zv Re, —»
min~max Tw,DNS
EA  EASSM 512 x 385 x 512 162 65  0.17 ~42.54 5293 1.04

Table 6.6 — Channel Flow simulations, for Re, = 5200 LES with the explicit algebraic SGS
model (EASSM). MPT parallelization details.

Case SGS model n (no. processors) N (no. nodes) Supercomputer

EA EASSM 16/32 x 16/32 11/43/64 Lindgren/Triolith

Despite the resolution is still coarse, the 7,,/7y, png value shows that the Re, prediction with

the EASSM model is very close to DNS.
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6. Results 6.3 LES at Re, = 5200

Profiles. Here the good prediction of the mean velocity profile given by EASSM is even more
visible in figure 6.22. The EASSM gives results that are very close to the DNS, but they begin to
differ as we approach the outer layer. The underprediction by the EASSM of the outer layer can
be due to convergence problems due to the limited time of the entire simulation, which is slightly
small according to the previous experiences. In fact, the maximum time units reached are ¢ = 210.
This could indicate that the LES is not fully converged yet.

The Reynolds stress components are however well-estimated by the EASSM, apart from the fact
that the v’ and w’ fluctuations peaks are shifted a bit in the wall-normal direction.

Reynolds stress profiles are well computed, the only exception stays in the R, inner layer profile
! Anisotropy is captured in a good way: Reynolds shear stress prediction gives only very small
discrepancies, because of the limited simulation time and the not complete apparoach to the steady-
state. Once more, the resolution used for the LES seems quite suitable for this friction Reynolds

number.
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Figure 6.22 — Mean velocity profiles in wall units. — : EA — : DNS

"However, the misprediction of this quantity in the inner layer is due by the SGS model, and it has been proved

that it doesn’t influence the other results at all.
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Figure 6.23 — Reynolds stress components profiles in wall units, on a semilogarithmic plot.

d) Reynolds shear stress, with total shear stress in dashed line. — : EA, — : DNS
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Figure 6.24 — Deviatoric part of the Reynolds stress profile in wall units. — : EA — : DNS
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6. Results 6.3 LES at Re, = 5200

SGS Anisotropy effects. Let’s consider only LES with EASSM. In the Re, = 590 LES a fair
and high resolution of the flow has been used so that the SGS contribution revealed to be relatively
small compared to the resolved scale one. In contrast, Re, = 2000 LES has been performed using
a relatively low resolution in terms of grid spacings. As a consequence, the SGS contribution
becomes significant with respect to the resolved scales. In terms of resolution, the Re, = 5200 is
an intermediate case, with grid spacings that are bigger than in the Re, = 590 case and smaller
than in the Re, = 2000 case.

For simplicity, a reminding table with the respective grid spacings for each EASSM case is shown

below.

Table 6.7 — Channel Flow simulations, for different Re,.

T
Ay

Case SGS model A A} ——t— Re,
EA2 EASSM 58 29  0.31~19.20 587
EA EASSM 198 79 0.27 ~ 32.98 2016
EA EASSM 162 65 0.17 ~ 42.54 5293

As a result, the SGS contribution is anyway notable and pushed most of all towards the wall,

where it helps in the overall prediction.
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Figure 6.25 — Deviatoric part of the Reynolds stress profile in wall units, with EA model.
— : DNS
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6.3 LES at Re, = 5200 6. Results

Flow visualizations. A rough resolution check can also be done by having a look at some
snapshots of the flow at a very close distance from the wall. Here we can say that the resolution
chosen for the streamwise and spanwise direction is right for the purpose of this simulation. Once
more, some elongated structures are visible, and their length appears to be longer than in the
previous cases. According to Hutchins [Hutchins and Marusic, 2007] in the near-wall region there
are large-scale high-speed events, where the local istantaneous Reynolds stresses (all components:
u?,0?,w? and ww) are amplified, and large low-speed events, where they are damped. This is due
to the local shear rate near the wall, which is higher under high-speed events.

Regarding the resolution adopted, one may say that for the predictions of the spanwise fluctuations

are accurate with a wide range of values shown.

0 05 1 15 2 25 3

Figure 6.26 — Horizontal contour plots of streamwise u/* fluctuations at y ~ —4, along the

xz plane, simulations EA at Re, = 5200. The abscissa is divided by a factor of 10—%.
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Figure 6.27 — Horizontal contour plots of wall-normal v'* and spanwise fluctuations w’* at
y &~ —0d, along the zz plane, simulations EA at Rer = 5200. The abscissa is divided by a
factor of 10~4.
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6.3 LES at Re, = 5200 6. Results

Ao structures. For resolution reasons, this case is hard to postprocess in terms of volume
renderings. Therefore, Ay structures for this last case are visualized only for a part of the main flow
domain. In order to see how the model behaves at the wall, we have decided to reduce the domain

in the following way:

Ny X Ny x N, =512 x 385 x 512 — 256 x 195 x 256

Vortical structures are coloured by the the velocity magnitude. The more we approach the
centreline, the weaker the vortical structures will be. A possible reason to that lies in the fact that
this simulation is a LES, so that the resolution adopted is not enough to completely describe the
smallest scales that appears on the centreline. Therefore, LES is not able to completely capture

vortical structures that are generated along the centreline.
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Figure 6.28 — Vortical structures in turbulent channel flow at Re, = 5200, visualized by

isosurfaces of A2, and coloured by the velocity magnitude, from EA simulation.
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LES vs DNS: a volume perspective. To complete the analysis of the LES and the impact
of EASSM on anisotropy prediction let’s have an overall look to the results in terms of volume
renderings of the flow. In the figures below the volume rendering of the LES with the EASSM
together with the volume rendering from the DNS simulation of Lee & Moser are shown; both of
them have been computed at Re, = 5200. The resolution of the LES is high enough so that it can
be compared with the DNS.

The LES is able to predict a wide range of scales, including small scales that are visible by the
human eye. Apart from the smallest structures, the LES volume rendering seems of a reasonable

quality and structures near the wall seem to be well-predicted.
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Figure 6.29 — Volume rendering of the u velocity in a turbulent channel flow at Re; = 5200,

from LES with the EASSM .

Figure 6.30 — Volume rendering of the u velocity in a turbulent channel flow at Re; = 5200,

from a DNS of Lee & Moser (2014).
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High-Reynolds number reliability of the EASSM. As it was written before, EASSM is a
LES model that solves an additional equation for anisotropy in order to model the SGS stress ten-
sor. By contrast, DEVM is an eddy-viscosity based model that doesn’t take into account anisotropy
at all.

If we increase the friction Reynolds number anisotropic effects will become larger and larger, espe-
cially near the wall. Therefore, increasing the LES friction Reynolds number, we would expect the
Explicit Algebraic model to improve the flow prediction, and the Dynamic Smagorinsky model to
degrade. In order to investigate this aspect, a collection of the LES at the best resolution has been
done, and a particular focus on the Reynolds shear stress has been given in figure 6.31.

For computational reasons, LES with DEVM are given only for the first two friction Reynolds
numbers. The results are satisfactory and consistent with the expectations: Dynamic Smagorinsky
performances become worse and worse as soon as we push the Reynolds number up to Re, = 5200,

while the EASSM get closer and closer to DNS results.

Thus, we think that with increasing Re LES with the EASSM shows better and better agreement
with DNS.
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Figure 6.31 — A close-up of the Reynolds shear stress peaks very close to the wall, for three
different Reynolds numbers.—A— : EA cases, — * — : DEVM cases, — : DNS
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CHAPTER

7

CONCLUSIONS & FUTURE WORK

"Towards Infinite and Beyond! (B.Lightyear)”

Large-eddy simulations of a fully developed channel flow have been performed at three different
friction Reynolds numbers: Re, = 590, Re, = 2000 and Re, = 5200. The first simulations, carried
out for Re, = 590, proved the capacity of the EASSM model to capture anisotropy effects of the
flow. SGS contribution to the overall estimation of the flow, and in particular to the Reynolds shear
stress, decreases with increasing resolutions. In contrast to the Dynamic Smagorinsky model, the
averaged wall shear stress ratio of LES with the EASSM has a non-monotonic behaviour. Thus the
EASSM overpredicts as well as underpredicts the wall shear stress.

EASSM has also revealed to be more accurate and suitable for high friction Reynolds number flows.
The LES at Re, = 2000 shows that the EASSM prediction of the mean flow velocity profile is much
closer to the DNS results than LES with DEVM. This is a remarkable aspect most of all in the
outer layer, where a big gap between DNS and LES with DEVM is noticed. A deeper study of the
root-mean-squared fluctuations in x, y and z direction proves the ability of the anisotropic model

to capture in a better way the peaks found close to the wall. Similar results have been obtained
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for the LES with the EASSM of the last case at Re, = 5200; EASSM behaved fairly well regarding
the computation of the Reynolds stress components, especially for the Reynolds shear stress.

We have found that the gap in terms of accuracy between DEVM and EASSM becomes larger and
larger at increasing friction Reynolds numbers. This is reasonable, the higher the friction Reynolds
number, the more the effects of flow anisotropy are important, most of all near the wall. Therefore,
EASSM is able to give a satisfactory performance also at high Re,, while the DEVM gives get
worse and worse predictions.

Another important aspect is that a considerable reduction of computational resources is possible
using the EASSM. The accuracy achieved with a coarser mesh is comparable only to a DEVM
case with a fine mesh. The coarser the mesh, the lower the computational time needed to run the
simulation.

In this thesis work, only non-rotating flows, are investigated. However, the EASSM is also very
suitable for LES of rotating flows, e.g. rotating channel flows. A possible continuation of this
work would be a complete study of LES of rotating channel flows with separation cases and the
investigation of the behaviour of the Explicit Algebraic SGS Scalar Flux (EASFM), for the case at
Re, = 5200 and beyond. Complex geometries will also be taken into account in further studies.
The work will be continued with a PhD work in LES modelling at KTH, in order to present the
results at the European Turbulence Conference 15 (ETC15) where the simulation results with the
Explicit Algebraic SGS model at Re, = 5200 will be compared with the performances of the
Dynamic Smagorinsky model, together with DNS data as reference.

The simulation time will be increased using a more powerful supercomputer, in order to reach a

fully developed steady state of the flow.
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