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Abstra
t

Sub-grid s
ale (SGS) models are required in order to model the in�uen
e of the unresolved small

s
ales on the resolved s
ales in large-eddy simulations (LES), the �ow at the smallest s
ales of

turbulen
e.

In the following work two SGS models are presented and deeply analyzed in terms of a

ura
y

through several LESs with di�erent spatial resolutions, i.e. grid spa
ings.

The �rst part of this thesis fo
uses on the basi
 theory of turbulen
e, the governing equations of

�uid dynami
s and their adaptation to LES. Furthermore, two important SGS models are presented:

one is the Dynami
 eddy-vis
osity model (DEVM), developed by [Germano et al., 1991℄, while the

other is the Expli
it Algebrai
 SGS model (EASSM), by [Marstorp et al., 2009℄.

In addition, some details about the implementation of the EASSM in a Pseudo-Spe
tral Navier-

Stokes 
ode [Chevalier et al., 2007℄ are presented.

The performan
e of the two aforementioned models will be investigated in the following 
hapters,

by means of LES of a 
hannel �ow, with fri
tion Reynolds numbers Reτ = 590 up to Reτ = 5200,

with relatively 
oarse resolutions. Data from ea
h simulation will be 
ompared to baseline DNS

data.

Results have shown that, in 
ontrast to the DEVM, the EASSM has promising potentials for �ow

predi
tions at high fri
tion Reynolds numbers: the higher the fri
tion Reynolds number is the better

the EASSM will behave and the worse the performan
es of the DEVM will be.

The better performan
e of the EASSM is 
ontributed to the ability to 
apture �ow anisotropy at

the small s
ales through a 
orre
t formulation for the SGS stresses.

Moreover, a 
onsiderable redu
tion in the required 
omputational resour
es 
an be a
hieved using

the EASSM 
ompared to DEVM. Therefore, the EASSM 
ombines a

ura
y and 
omputational

e�
ien
y, implying that it has a 
lear potential for industrial CFD usage.
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Abstra
t

Versione Italiana

Nelle Simulazioni a grandi vorti
i (Large-eddy simulations, LES ), dei modelli per la s
ala di

sottogriglia (Sub-grid s
ale, SGS ) sono ne
essari per riprodurre l'in�uenza delle piú pi

ole s
ale

della turbolenza, quindi non risolte, su quelle 
he inve
e vengono risolte direttamente.

Nel seguente lavoro sono presentati due modelli SGS, la 
ui a

uratezza verrá poi analizzata at-

traverso varie LES a diverse risoluzioni spaziali, e quindi diversi intervalli di di�erenziazione.

La prima parte della tesi si 
on
entra sulla teoria della turbolenza, partendo dalle equazioni 
osti-

tutive della �uidodinami
a, �no alla loro versione per LES.

Due importanti modelli SGS sono stati presentati: il primo é il modello Dynami
 eddy-vis
osity

model (DEVM), di [Germano et al., 1991℄, il se
ondo é il modello SGS Espli
ito Algebri
o, Expli
it

Algebrai
 SGS model (EASSM), di [Marstorp et al., 2009℄.

Saranno inoltre forniti dettagli aggiuntivi sull'implementazione del modello EASSM su un 
odi
e di

Fluidodinami
a Computazionale (Computational Fluid Dynami
s, CFD), Pseudo-Spettrale Navier-

Stokes sviluppato nel Linné Flow Centre del Dipartimento di Ingegneria Me

ani
a del KTH di

Sto

olma, da [Chevalier et al., 2007℄.

I seguenti 
apitoli verteranno sull'analisi della stima di un �usso in un 
anale, 
hannel �ow, fatta

dai modelli des
ritti in pre
edenza, per un basso numero di Reynolds basato sull'attrito, Reτ = 590,

�no a Reτ = 5200. I dati ottenuti da 
ias
una simulazione verranno 
onfrontati 
on dati di Simu-

lazioni Numeri
he Dirette (Dire
t Numeri
al Simulations, DNS ).

Dai risultati ottenuti si puó 
on
ludere 
he, di�erentemente dal modello DEVM, l'EASSM ha

promettenti potenzialitá nella stima del �usso ad alti numeri di Reynolds Reτ : piú alto é tale

numero, piú il modello EASSM dará risultati a

urati, mentre le performan
es del DEVM peggior-

eranno.

Le migliori performan
e del modello Espli
ito Algebri
o possono senz'altro essere attribuite alla sua

abilitá di 
al
olare in maniera 
orretta l'anisotropia alle pi

ole s
ale tramite una formulazione 
or-

retta degli stress di sottogriglia, SGS.

In 
on
lusione, data la ridotta quantitá di risorse 
omputazionali ri
hiesta per e�ettuare simulazioni

rispetto al DEVM, tale modello 
ombina a

uratezza e e�
ienza 
omputazionale, tanto 
he puo'

essere preso in 
onsiderazione per un utilizzo nella CFD industriale.
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TESI - VERSIONE ITALIANA

Prova ad immaginare un penna

hio di fumo fuorius
ente da una pipa di un uomo pensante,

seduto su di una sedia a dondolo. An
he in questo pi

olo aspetto della vita quotidiana la turbu-

lenza gio
a un ruolo fondamentale.

Il noto �si
o Ri
hard Feynman de�nii la turbulenza 
ome il piú importante problema della �si
a


lassi
a 
he an
ora non é stato risolto.

Nel 
orso degli anni diversi s
ienziati hanno provato di 
omprendere il vero 
omportamento di tale

fenomeno, la 
ui 
omplessitá gia
e nelle equazioni 
he lo des
rivono. Per un �uido Newtoniano,

la turbolenza é de�nita dalle equazioni di Navier-Stokes, un sistema di equazioni non-lineari alle

derivate parziali, la 
ui soluzione analiti
a an
ora non é stata ottenuta.

Tuttavia, degli appro

i alternativi per ottenere delle soluzioni sono stati sviluppati �nora: un

metodo 
onsiste nell'e�ettuare degli esperimenti: tramite gallerie del vento siamo in grado di ripro-

durre �ussi in svariate 
ondizioni, dalle situazioni 
lassi
he di strato limite (moto su di una parete)

e �usso in un 
anale, �no a 
asi piú 
ompli
ati, 
ome il �usso attorno ad un 
orpo tozzo (
ome una

automobile) e un 
orpo aerodinami
o, 
ome un aeroplano.

Gli esperimenti hanno 
ome �ne prin
ipale l'analisi delle qualitá del �usso (
ome pressione e velo
-

itá) attraverso delle sonde e delle te
ni
he di visualizzazione, 
ome la Parti
le Image Velo
imetry

(PIV).

Un esempio molto re
ente di analisi sperimentale di turbolenza lungo un 
ondotto a sezione 
ir
olare
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(il 
osiddetto pipe) ad alti numeri di Reynolds é senza dubbio il progetto CICLoPE, sviluppato da

[Talamelli et al., 2009℄ nell'Universitá di Bologna.

D'altro 
anto, un appro

io diverso é quello di sfruttare l'analisi numeri
a e passare alla implemen-

tazione del sistema N-S su 
odi
i di Fluidodinami
a Computazionale.

Tuttavia, la soluzione numeri
a e 
ompleta fornita dalle Simulazioni Numeri
he Dirette (DNS),

in grado di des
rivere la turbolenza a qualsiasi s
ala, non é sempre possibile a 
ausa delle grandi

risorse 
omputazionali ri
hieste, in parti
olare ad elevati numeri di Reynolds. Per questo motivo,

l'obiettivo prin
ipale del progetto CICLoPE é quello di 
omprendere a pieno il fenomeno della tur-

bolenza qualora non sia possibile ottenere dati tramite DNS.

Comunque, la te
ni
a DNS non é la sola in grado di riprodurre numeri
amente un pre
iso �usso.

Una se
onda possibilitá si 
hiama la simulazione a grandi vorti
i (Large-eddy simulation - LES);

questa te
ni
a é in grado di raggiungere, 
on opportuni modelli per le pi

ole s
ale della turbolenza,

una soddisfa
ente a

uratezza 
omputazionale 
on una ragionevole quantitá di risorse 
omputazion-

ali.

A tale avviso, la tesi verterá sull'impiego e il test di due modelli innovativi per le pi

ole s
ale

della turbolenza; in parti
olare verrá messa a 
onfronto l'a

uratezza di 
ias
un modello 
on l'altro,

rispetto an
he i risultati forniti da DNS. Le simulazioni sono state 
ompiute a tre diversi numeri

di Reynolds; in parti
olare l'ultimo 
aso, di maggiore importanza, é relativo al massimo numero di

Reynolds raggiunto �nora da DNS.

La prima parte della tesi 
omprenderá la des
rizione della turbolenza, sia da un punto di vista �si
o


he matemati
o. Saranno 
onsiderate le equazioni di N-S per un �uido Newtoniano, 
on �usso in-


omprimibile e turbolento, in un 
anale.

Nel se
ondo 
apitolo la te
ni
a LES sará espressa nei dettagli, mentre nel terzo verranno presentati

due modelli di s
ala sotto-griglia (sub-grid s
ale - SGS). Il quarto 
apitolo spiegherá dei dettagli te
-

ni
i sull'implementazione delle simulazioni, dei due modelli, e della parallelizazione MPI utilizzata.

Nel quinto 
apitolo 
enni di metodi statisti
i per l'analisi della turbolenza saranno a�rontati. I

risultati verranno presentati nel sesto 
apitolo, e in�ne saranno fornite delle 
on
lusioni nel settimo


apitolo.
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INTRODUCTION

Imagine a smoking plume 
oming out from a pipe of a thinking man, this is a typi
al everyday

life s
enario where turbulen
e plays a main role. The physi
ist Ri
hard Feynman de�ned it as the

most important unsolved problem of 
lassi
al physi
s.

S
ientists along the years have tried to understand the real behaviour of this phenomenon, whi
h

gains its 
omplexity be
ause of the equations that des
ribes it. For a Newtonian �uid, turbulen
e

is tra
ed by Navier-Stokes equations, a system of non-linear di�erential equations whose analyti
al

solution has not been provided yet.

Anyway, alternative approa
hes has been developed a
ross the years up to now: the most intuitive

and old way to understand �uid motion is to make experiments: through the employment of wind

tunnels we 
an reprodu
e the �ow in several 
onditions, from the basi
al 
hannel �ow and boundary

layer to the more 
omplex ones, like the �ow a
ross a blu� body (like a 
ar) or an airplane. This

te
hnique involves the analysis of the �ow properties (like pressure and velo
ity) through probes

and advan
ed visualization te
hniques su
h as Parti
le Image Velo
imetry (PIV).

A re
ent example whose aim is to des
ribe high Reynolds number turbulen
e a
ross a pipe is nev-

ertheless the CICLoPE experiment, a big proje
t developed by

[Talamelli et al., 2009℄ in University of Bologna.

The se
ond approa
h is thus to use numeri
al analysis in order to implement 
odes able to numeri-


ally solve Navier-Stokes system. However, the numeri
al and 
omplete solution of the �ow at any

3



s
ale is not always a
hievable be
ause of the limited 
omputational resour
es. For that reason, the

main CICLoPE proje
t's aim is to understand turbulen
e phenomena further the Reynolds number

limit di
tated by Dire
t Numeri
al Simulations.

However, DNS is not the only te
hnique able to reprodu
e numeri
ally a given �ow. A possible

se
ond 
hoi
e is 
alled Large-eddy simulation; this te
hnique is able to rea
h a satisfying 
omputa-

tional a

ura
y with a reasonable amount of 
omputational resour
es.

In this thesis Navier-Stokes equations for a Newtonian �uid and an in
ompressible �ow in a turbu-

lent 
hannel �ow s
enario will be des
ribed in the �rst 
hapter, together with a physi
al des
ription

of turbulen
e. In the se
ond 
hapter the Large-eddy simulation (LES) te
hnique will be explained

in detail, while in the third one two LES sub-grid s
ale models are shown. In 
hapter four some

te
hni
al details of the implementation of the LES, of the models, with a parti
ular fo
us on MPI

parallelization are pointed out. Some theory about turbulen
e statisti
s will be fa
ed in the �fth


hapter. Results will be displayed in 
hapter six; 
on
lusions are given in 
hapter seven.
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CHAPTER

1

TURBULENCE

�Everybody is a genius. But if you judge a �sh by its ability to 
limb a tree,

it will live its whole life believing that it is stupid. (A.Einstein)�

1.1 Introdu
tion to Turbulen
e

The phenomenon of turbulen
e is found in several appli
ations, for example, 
ombustion tumbling

in Internal Combustion Engines (ICEs), the wake of a Formula 1 
ar, the jet spread by the nozzle

of a supersoni
 air
raft engine.

In automotive engineering, for example, the study of aerodynami
s around a 
ar involves the 
har-

a
terization of a turbulent wall-bounded �ow, 
alled a Boundary Layer. It was intensively studied

by L.Prandtl in 1904; here turbulen
e is the main responsible for fri
tion and wake drag.

In a solid ro
ket motor nozzle, there's a generation of a plume, where turbulent motions of many

s
ales 
an be observed; from eddies and bulges 
omparable in size to the width of the plume to the

smallest s
ales the 
amera 
an resolve. Turbulen
e is of an unsteady, irregular, seemingly random
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1.1 Introdu
tion to Turbulen
e 1. Turbulen
e

and 
haoti
 nature, sin
e the motion of every eddy is unpredi
table.

Figure 1.1 � Large-eddy simulation of jet from a re
tangular nozzle. The re
tangular nozzle is

shown in gray with an isosurfa
e of temperature (gold) 
ut along the 
enter plane of the nozzle

showing temperature 
ontours (red/yellow). The a
ousti
 �eld is visualized by (blue/
yan)


ontours of the pressure �eld taken along the same plane, from P.Moin.

While laminar �ow is a smooth and steady �ow motion, where any indu
ed perturbations are

damped out due to the relatively strong vis
ous for
es, in turbulent �ows other for
es may be a
ting

that 
ountera
t the a
tion of vis
osity. If su
h for
es are large enough, the equilibrium of the �ow

is upset and the �uid 
annot adapt suddenly to vis
osity. The for
es that upset this equilibrium


an in
lude buoyan
y, inertia, or even rotation. In a 
hannel, vis
ous and inertial for
es a
ting on

the �uid are proportional to

Fv ∝ νL (1.1)

Fi ∝ V L2
(1.2)

where ν is the �uid vis
osity, and L and V are the 
hara
teristi
 velo
ity and length s
ales. If

the vis
ous for
es on the �uid are large 
ompared with others, any disturban
es introdu
ed in the

�ow will tend to be damped out. On the other hand, if the inertial for
es be
ome large, the �uid

will tend to break up into eddies. For greater inertial for
es, the eddies will break up into even

smaller eddies. This will 
ontinue until we rea
h a small enough length s
ale (eddy size) on whi
h

the vis
ous for
es dominate.
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1. Turbulen
e 1.1 Introdu
tion to Turbulen
e

The largest of these eddies will be 
onstrained by the physi
al size 
onstraints on the �ow (like


hannel diameter); the smaller eddies will be 
onstrained by the vis
ous for
es whi
h a
t strongest

at the smallest length s
ales. Therefore, one of the di�
ulties asso
iated with the predi
tion of

turbulent �ow is that the range of length s
ales 
an be very large.

The des
ription of turbulen
e involves di�erent 
on
epts like turbulen
e energy produ
tion, transfer

and dissipation. Ri
hardson's famous poem gives a good idea about turbulen
e:

Big whorls have little whorls

That feed on their velo
ity

And little whorls have lesser whorls

And so on to vis
osity (in the mole
ular sense)

This is the des
ription of the energy 
as
ade 
on
ept. It states that turbulent �ows 
an be 
on-

sidered as an agglomerate of eddies of di�erent sizes. Large energy 
ontaining eddies are unstable

and break down and transfer energy to smaller eddies. The pro
ess goes on till the smallest one,

the Kolmogorov s
ale, where energy is dissipated into heat by vis
ous e�e
ts.

This is the great 
on
lusion that Kolmogorov made in 1941, and his �rst hypothesis is 
ompletely

based on that: at su�
iently high Reynolds number, the statisti
s of the small s
ales are universal

and are determined solely by vis
osity, ν, and the energy dissipation rate, ε.

Using dimensional analysis, it is possible to derive the Kolmogorov length s
ale η, times
ale tη

and velo
ity s
ale vη:

η =

(
ν3

ε

)1/4

, tη =

(
ν

ε

)1/2

, vη = (νε)1/4 (1.3)

Then, in a

ordan
e to Ri
hardson's poem, Kolmogorov made a se
ond hypothesis, based on

the fa
t that at su�
iently high Reynolds number the statisti
s of the s
ales whi
h are su�
iently

larger than η and mu
h smaller than the largest energeti
 s
ales are solely des
ribed by ε. This

hypothesis refers to the inertial range of s
ales. The kineti
 energy spe
trum of these s
ales 
an be

des
ribed by

E(k) = Ckε
2/3k−5/3

(1.4)

7



1.1 Introdu
tion to Turbulen
e 1. Turbulen
e

Figure 1.2 � Turbulen
e energy vs wavenumber spe
trum, from J. M. M
Donough.

where k is the wave number and Ck ≈ 1.5 [Sreenivasan, 1995℄ is the Kolmogorov 
onstant.

From the last diagram, it's 
lear that turbulen
e has di�erent behaviours a

ording to the wavenum-

ber. Basing on these 
on
epts, we 
an distinguish four di�erent regions:

1. the large s
ale, determined by the problem domain geometry;

2. the integral s
ale (Λ), whi
h is an O(1) fra
tion (often taken to be ∼ 0.2) of the large s
ale;

3. the Taylor mi
ros
ale whi
h is an intermediate s
ale, found in the Kolmogorov's inertial

subrange (η ≪ 2π
κ ≪ Λ)

4. the Kolmogorov (or dissipation) s
ale (η) whi
h is the smallest of turbulen
e s
ales, the inner

s
ale

1.1.1 3D Nature of Turbulen
e

Turbulen
e is rotational and a three-dimensional phenomenon. It is 
hara
terized by large

�u
tuations in vorti
ity, whi
h are responsible for vortex stret
hing and length s
ale redu
tion. These


hara
teristi
s are identi
ally zero in two dimensions and these are the reasons why turbulen
e is

hard to des
ribe both analyti
ally and numeri
ally.

These three-dimensional dynami
al me
hanisms are highly 
omplex and nonlinear, however the �ow


an be assumed as bi-dimensional for large s
ale 2D stru
tures. These stru
tures play a dominant

role in the transport of s
alar material. Nevertheless, three-dimensional motions are not negligible

8



1. Turbulen
e 1.1 Introdu
tion to Turbulen
e

in the smaller s
ale, where they are fundamental for mixing, most of all at mole
ular s
ales (e.g. in


ombustion problems).

1.1.2 Order & Randomness

Despite turbulen
e is 
haoti
, it 
onsists of 
ompletely random motions that 
an aggregate in


oherent stru
tures. Typi
al examples are turbulent boundary layers and homogeneous turbulent

shear �ows, whi
h exhibit horseshoe, or hairpin vorti
es (see �gure 1.3) that appear to be inherent


hara
teristi
s. Free shear �ows like the mixing layer reveal 
oherent vortex stru
tures very 
learly,

again even for very high turbulen
e intensities.

The 
on
epts of order and randomness have also led to some new analyti
 approa
hes and new

interpretations in the study of turbulen
e. The names of these dis
iplines are known as Chaos,

Bifur
ation Theory, and Dynami
al Systems [M
Donough, 2007℄. These theories have been fa
ed

for the study of turbulen
e, in parti
ular in the area of hydrodynami
 stability and transition from

laminar �ow to turbulent one. Come to attention of mathemati
ians, physi
ists and engineers, these

phenomena is of a remarkable non-linearity, whi
h makes turbulen
e unpredi
table and 
omplex to

des
ribe.

As a nonlinear problem, it 
an be seen that the solutions to these problems with the same nonlinear

equations with only slight di�eren
es in initial 
onditions, will rapidly diverge. Therefore, a suitable

de�nition of turbulen
e must ne
essarily involve a 
omplex dynami
al system with many degrees

of freedom.

Figure 1.3 � Hairpin vorti
es on a turbulent boundary layer, from a DNS by P. S
hlatter.
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1.1 Introdu
tion to Turbulen
e 1. Turbulen
e

1.1.3 The Reynolds number

Turbulen
e 
an be seen also a play between inertial for
es and vis
ous. Therefore the ratio

between them is 
ru
ial in order to 
hara
terize a �ow. The Reynolds number plays that role, and

in turbulent �ows holds

Re
def

=
UL

ν
≫ 1. (1.5)

For many �ows of pra
ti
al importan
e (e.g. a �ow on airplane wings) the Reynolds number


an be on the order of Re ∼ 106. This means that the vis
ous for
es, that are mole
ular for
es, a
t

in smaller s
ales than in the large ones. However, in any turbulent �ow the mole
ular vis
osity is

always important at some s
ale. As the �ow Reynolds number in
reases, the region where vis
ous

e�e
ts are remarkable, de
reases in thi
kness and the velo
ity of the �ow 
hanges very rapidly from

zero at the surfa
e to the free-stream velo
ity at the outer edges of the boundary layer. Again, we

see the tenden
y of the nonlinear inertial terms to generate dis
ontinuities at high wavenumbers.

On
e more, the Reynolds number 
an be interpreted also in terms of length and time s
ale ratios.

Let's 
onsider a du
t of width L, with a �ow velo
ity U . The time a �uid parti
le, with transverse

velo
ity u′ takes to 
ross the du
t is 
alled the inertial time, Ti ∼ L/u′. At the same way, vis
ous

for
es have a time s
ale, Tv ∼ L2/ν.

In a turbulent �ow, the inertial time-s
ale will be mi
h less than the di�usive time-s
ale,

Tv
Tin

=
u′L

ν
> 1. (1.6)

1.1.4 Navier-Stokes equations

Turbulen
e behaviour is 
ompletely des
ribed by the governing equations of �uid me
hani
s,

i.e. the 
ontinuity and Navier-Stokes (N-S) equations. In 
ase of in
ompressible �ows, they are

expressed in the following way on non-dimensional form:

∂ui
∂xi

= 0;
∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

(1.7)

where Re is the 
hara
teristi
 Reynolds number of the �ow, ui, i = 1, 2, 3 are the velo
ity 
om-

ponents, p is the pressure. Note that Einstein's summation 
onvention is used here, where i = 1, 2, 3.

Together with the main �ow �eld, sometimes we need also to understand phenomenas that in-

volves the 
hara
terisation of a passive s
alar.
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tion to Turbulen
e

By de�nition, the word passive refers to the 
ondition that the resulting density di�eren
es are so

small that the e�e
t from the s
alar on the �ow is negligible. So a passive s
alar 
an be heat or

temperature in a �ow or a 
on
entration of a substan
e.

Therefore is also possible to use Navier-Stokes equations 1.7 to des
ribe the development of a pas-

sive s
alar, θ:

∂θ

∂t
+
∂uiθ

∂xj
=

1

RePr

∂2θ

∂xj∂xj
(1.8)

where Pr is the Prandtl number, de�ned as the ratio of momentum di�usivity to thermal

di�usivity:

Pr
def

=
µcp
k
.
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1.2 Numeri
al approa
hes to N-S solution

There are several numeri
al approa
hes to solve the system 1.7. The most intuitive one is 
alled

Dire
t Numeri
al Simulation, DNS, whereby the governing euquations are solved without making

any assumption, resolving all the s
ales from the smallest to the largest one. Therefore it provides

all the information of a turbulent �ow, without any approximations. Sin
e the 
omputational 
ost

of DNS s
ales with the Reynolds number is ∼ Re37/14 [Choi and Moin, 2012℄, this is not a�ordable

for pra
ti
al engineering analyses at high Reynolds number.

So a more pra
ti
al approa
h has been developed, based on the Reynolds' de
omposition [Reynolds, 1894℄:

ui = ui + u′i, θ = θ + θ′ (1.9)

where the overline represents the ensemble averaged quantity, and u′i and θ
′
are the velo
ity and

s
alar 
omponents �u
tuations, respe
tively.

Using the Reynolds de
omposition in equations 1.7 and 1.8, and taking an ensemble average of all

terms, the Reynolds-averaged N-S (RANS) equations are derived:

∂ui
∂t

+
∂uiuj
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

−
∂u′iu

′

j

∂xj
,

∂ui
∂xi

= 0 (1.10)

∂θ

∂t
+
∂uiθ

∂xj
=

1

RePr

∂2θ

∂xj∂xj
−
∂u′jθ

′

∂xj
(1.11)

Note that here turbulen
e is solely des
ribed by the Reynolds stress tensor u′iu
′

j and s
alar

�ux ve
tor u′jθ. These terms have to be properly modelled in order to 
lose the problem. Ea
h

model involves approximations whi
h limits its a

ura
y. Therefore, this approa
h provides only

an approximate simulation of the mean �ow.

The �rst simple model was developed by Boussinesq in 1877. It is based on an eddy vis
osity

formulation

u′iu
′

j −
2

3
Kδij = −2νTSij , Sij =

1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(1.12)

where K = u′iu
′

i/2 is the mean turbulent kineti
 energy, Sij is the mean strain-rate tensor, the

symmetri
 part of the mean velo
ity gradient tensor, νT is the eddy vis
osity we use to model as the

produ
t of a 
ertain s
ale with length Λ of the eddies and velo
ity V . Using dimensional analysis

the eddy vis
osity 
an be roughly estimated as

12
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νT ∼ ΛV. (1.13)

Eddy vis
osity is then modeled a

ordingly to some 
hara
teristi
s of the �ow.

For instan
e, algebrai
 models (or zero equation models) relate length Λ and velo
ity V to the

mean velo
ity �eld and the �ow geometry 
hara
teristi
s like velo
ity gradient, distan
e to the wall,

thi
kness of the shear layer et
. These kind of models work quite well for the spe
i�
 
ase that they

are designed for, e.g. atta
hed boundary layers and di�erent types of thin shear layers. However,

they don't give satisfa
tory results for general 
ases.

Better results 
an be a
hieved using one-equation models, they typi
ally solve an additional

transport equation for the turbulent kineti
 energy, K, or the eddy vis
osity, νT . One-equation

models give good results for atta
hed boundary layers and other thin shear layer �ows, but for


omplex �ows. A good example is the Spalart-Allmaras [Spalart and Allmaras, 1992℄ model (SA),

that solves for the eddy vis
osity. This is very suitable for aeronauti
al appli
ations and a
tually

is the standard model for external aerodynami
s CFD analyses at Boeing.

Two-equations models solve two transport equations for two quantities that 
an be used for

determining the length and velo
ity s
ale needed to 
ompute the eddy vis
osity. The most 
ommon

are K− ε and K−ω models, where transport equations for the turbulent kineti
 energy, K and for

the dissipation rate, ε or the turbulen
e frequen
y ω are solved. Nowadays the implementation of

these models in 
ommer
ial CFD 
odes (e.g., ANSYS Fluent) presents additional 
orre
tions that

might be dependent on non-lo
al quantities su
h as the wall distan
e. One important and most

re
ent example is the Menter SST K − ω model [Menter, 1994℄, whi
h is suitable for separated

�ows; it is the standard turbulen
e model used at Airbus.

Despite eddy vis
osity two-equations models are still dominating in industrial CFD, there's a big de-

mand for more a

urate predi
tion of 
omplex �ow situations, in
luding onset of separation, highly


urved �ows, rapidly rotating �ows et
. In these situations, eddy vis
osity Boussinesq' hypothesis

(1.12) does not des
ribe the real physi
s well. An e�e
t of de
orrelation 
aused by rotation o

urs

at high rotation rates, and generally the alteration of produ
tion to dissipation ratio is a dire
t


onsequen
e of that.

This phenomena, for instan
e, is an important aspe
t whi
h eddy vis
osity models does not take

into a

ount, be
ause the model is insensitive to system rotation.

A better alternative to these models are the Reynolds Stress Models. They solve transport

equations for ea
h Reynolds stress 
omponents derived from the modelled N-S equations, in order

to model the Reynolds stress tensor. This approa
h is more physi
ally 
oherent, but it's 
ompu-

13
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tationally more expensive and 
ompli
ated than the others. However, those di�erential Reynolds

stress models 
an be simpli�ed using the weak equilibrium assumption by Rodi [Rodi, 1992℄. Details

about this will be shown in 2. The algebrai
 relation is impli
it in Reynolds stresses, but there are

some expli
it solutions ([Pope, 1975℄; [Gatski and Speziale, 1993℄; [Wallin and Johansson, 2000℄).

These models are 
alled Expli
it Algebrai
 Reynolds Stress Models (EARSM).

In parti
ular, in the EA model [Wallin and Johansson, 2000℄ the �ow anisotropy (aij) is des
ribed

as an expli
it expression in terms of the (normalized) mean strain and rotation tensors with addi-

tional s
alar parameters. This leads to a 
omparable 
omputational e�orts, as 
ompared to eddy

vis
osity two-equation models.

There's also an interesting analogy for the s
alar θ modeling. Taylor developed an analogue way to

formulate the eddy di�usivity model (EDM) for the mean turbulent s
alar �ux u′iθ
′
[Taylor, 1915℄

u′iθ
′ = −DT

∂θ

∂xi
, DT =

νT
PrT

(1.14)

where DT is the eddy di�usivity 
oe�
ient and PrT the turbulent Prandtl number.

In an analogous way to K − ε model, Nagano & Kim [Kim, 1988℄ developed the Kθ − εθ model.

The time s
ale τθ = Kθ/εθ, is used to 
ompute DT ∼ Kτθ.

Still, model 1.14 is not 
ompletely 
orre
t. A

ording to Bat
helor, eddy di�usivity assumes an

alignment between the u′iθ
′
ve
tor and the mean s
alar gradient, so it has to be 
onsidered itself a

tensor. The following expression will hold then:

u′iθ
′ = −Dij

∂θ

∂xj
(1.15)

Where the eddy di�usivity tensor 
an be rewritten as [Daly and Harlow, 1970℄

Dij = −Cθτθu′iu
′

j

∂θ

∂xj
(1.16)

and Cθ is a model 
oe�
ient.

In the same way, s
alar 
an be modelled with an Expli
it Algebrai
 model, in this 
ase 
alled the

Expli
it Algebrai
 S
alar Flux Models (EASFM).

A trade-o� between a

ura
y and 
omputational e�ort is Large-eddy simulations (LES) of turbulent

�ows. In LES there's a separation of s
ales, in the sense that only large-s
ale eddies are resolved,

while the remaining small s
ales (whi
h are 
alled sub-grid s
ales, SGS) are modelled, on
e the

resolved s
ales have been 
omputed. The separation of s
ales is generally done using a grid. To-

gether with �ltering, LES fo
uses its turbulen
e predi
tion a

ura
y on a time-dependent solution

14
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of the Navier-Stokes equations. This is therefore a physi
ally-
oherent approa
h sin
e turbulen
e

is unstationary.

Despite more 
omputationally expensive than RANS, LES gives a better des
ription of turbulen
e,

and unlike DNS, is able to provide a good resolution of the �ow in an a

eptable amount of 
om-

putational time. Re
ently, that time has been estimated by Choi & Moin [Choi and Moin, 2012℄,

to s
ale as ∼ Re26/14.

A fair and simpli�ed distin
tion between DNS and LES 
an be noti
ed having a look to the vorti
al

stru
tures, for both of the 
ases, in �gure 1.4. At a �rst glan
e, we 
an see that in LES vorti
al

stru
tures are underestimated and fewer, 
ompared to the DNS, whi
h is able, instead, to give a


omplete and detailed des
ription of them.

The �rst LES model was developed by Smagorinsky [Smagorinsky, 1963℄ for meteorologi
al appli-


ations using an eddy vis
osity assumption in the SGS model. This model has been improved later

on by Germano [Germano et al., 1991℄ introdu
ing the dynami
 pro
edure, whi
h gives a 
orre
t

asymptoti
 near-wall behaviour of the eddy vis
osity, and improved transitional �ows predi
tions.

However, eddy-vis
osity models are not anisotropi
, that is, they are not able to 
apture �ow

anisotropy well, a feature of the �ow, whi
h is not negle
table near the walls.

For that reason several non-linear models (whi
h are of 
ourse anisotropi
), have been developed

re
ently, and some of them will be des
ribed in detail in 
hapter 3. In parti
ular, the aim of this

thesis is to test the a

ura
y in �ow predi
tion of the Expli
it Algebrai
 SGS model (EASSM),

developed by Marstorp [Marstorp et al., 2009℄.
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a)
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Figure 1.4 � Vorti
al stru
tures in turbulent 
hannel �ow at Reτ = 590, visualized by

isosurfa
es of λ2, 
olored by the velo
ity magnitude, from a) DNS by P.S
hlatter b) LES

simulation with the Expli
it Algebrai
 model .
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1.3 A parti
ular 
ase: Turbulent Channel Flow

Mathemati
al models for �uid dynami
s have been already de�ned. In order to solve the models,

a mathemati
al problem needs to be de�ned in a proper time and spa
e domains.

A

ording to the spa
e domain, in a di�erent geometry, physi
al quantities and the �ow will behave

in a di�erent way. For this reason we need to set a parti
ular 
ase, so that the �ow 
an be univo
ally


lassi�ed.

In this thesis we are 
onsidering the 
ase of Channel Flow, with the following properties:

� turbulent, in the sense that the Reynolds number is su�
iently high su
h that the regime


an be assumed as turbulent;

� fully developed, so that velo
ity statisti
s are 
onstant along x-axis. In other words, the

�ow is statisti
ally stationary and statisti
ally one-dimensional [Pope, 2000℄, with velo
ity

statisti
s only variable along the y-axis. In other words:

〈u〉 = U = U(y), 〈v〉 = V = 0, u′v′ = u′v′(y) (1.17)

Channel �ow belongs to the wall-bounded shear �ows 
lass: �ow motion is 
ontained between

two solid surfa
es. Therefore, no-slip 
onditions are imposed on the walls, where the �uid velo
ity

is assumed to be zero. The following pi
ture shows the qualitative behaviour of the velo
ity.

Figure 1.5 � Channel Flow mean velo
ity pro�le, with u′
�u
tuations 
ontour plot in the

ba
kground, from Lee & Moser DNSs at Reτ = 1000 [Lee and Moser, 2014℄
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Furthermore, a statisti
ally symmetri
 �ow geometry w.r.t. the mid-plane y = δ is 
on�rmed by

experiments; therefore the statisti
s of (u, v, w) at y are the same as those of (u,−v, w) at 2δ − y.

Reynolds number is always used to 
hara
terize the �ow, in this 
ase we will refer to two

parti
ular Reynolds numbers,

Reτ
def

=
uτδ

ν
(1.18)

Reb
def

=
uδ

ν
(1.19)

where 1.18 is based on the fri
tion velo
ity uτ , de�ned as follows:

uτ
def

=
√
τW /ρ (1.20)

τW is the mean wall shear stress and δ is the 
hannel half-width.

The bulk velo
ity u in 1.19, is de�ned as

u =
1

2δ

2δ∫

0

〈u〉dy (1.21)

For a turbulent 
hannel �ow, the following result holds:

Reτ ≈ 0.166Re0.88b (1.22)

Note that the spe
i�ed formula 1.22 will be used for the derivation of Reb, whi
h will be 
on-

sidered as an input quantity in the 
omputations.

As previously stated, 
hannel �ow is a wall-bounded shear �ow. In a boundary layer or a wall-

bounded shear �ow the 
hara
teristi
 length for streamwise development is mu
h larger than the


ross-stream extent of the region with signi�
ant velo
ity variation.

So its behaviour 
an be observed studying a two-dimensional steady �ow s
enario with the thin

shear layer approximation [Johansson and Wallin, 2012℄. This approximation states that the 
har-

a
teristi
 streamwise development length, L is mu
h larger than δ, the shear layer thi
kness. As we

will 
on�rm later, in 
hannel �ow there will be a layer, whose thi
kness is small 
ompared to the


hara
teristi
 length, whereby vis
ous e�e
ts fri
tion depends on.

Thanks to this approximation, the Navier-Stokes equations 
an be simpli�ed to the thin shear layer

equation:

18



1. Turbulen
e 1.3 A parti
ular 
ase: Turbulent Channel Flow

U
∂U

∂x
+ V

∂U

∂y
= −1

ρ

dP0

dx
+

∂

∂y

(
ν
∂U

∂y
− u′v′

)

︸ ︷︷ ︸
total shear stress

(1.23)

where P0 if the pressure at the wall. Note that all the velo
ities in 1.23 are mean values, and

the only 
omponent responsible for turbulen
e is the last one on the right-hand-side, whi
h is 
alled

the Reynolds stress. Together with the vis
ous stress, the Reynolds stress generates the total shear

stress.

In parti
ular, using the 
hannel �ow assumptions given in 1.17, the thin-shear layer equation be-


omes

0 = −1

ρ

dP0

dx
+

d

dy

(
ν
dU

dy
− u′v′

)
(1.24)

Integrated in the wall-normal dire
tion it reads

0 = −1

ρ

dP0

dx
y + ν

dU

dy
− ν

dU

dy

∣∣∣∣∣
y=0︸ ︷︷ ︸

u2
τ

−u′v′ + 0 (1.25)

At the 
enterline (y = δ) the total shear stress is zero, therefore we have the following 
ondition:

1

ρ

dP0

dx
= −u

2
τ

h
(1.26)

meaning that the pressure gradient is related to the fri
tion velo
ity and the width of the 
hannel.

Plugging this relation in 1.25, we 
an see that the total shear stress develops linearly a
ross the


hannel:

ν
dU

dy
− u′v′ = u2τ

(
1− y

δ

)
(1.27)

whi
h in wall units be
omes

dU+

dy+
− u′v′

+
=

(
1− y+

δ+

)
(1.28)

where the quantities y+ and δ+ are s
aled by the inner (vis
ous) lengths
ale

y+
def

=
y

l∗
=
yuτ
ν

Considerations. Depending on the region 
onsidered, equation 1.28 assumes di�erent forms.

In the outer layer, where vis
ous e�e
ts are negligible, the left-hand-side of 1.28 be
omes
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− u′v′
+
= 1− y+

δ+
(1.29)

On the other hand, 
lose to the wall, y/δ << 1, vis
ous e�e
ts will be not negligible anymore,

therefore the following relation holds

dU+

dy+
− u′v′

+ ≈ 1 (1.30)

that is 
ompatible with the law of the wall, sin
e there's not in�uen
e of the Reynolds number.

It's a 
onstant stress region:

U+ def

=
U

uτ
= Φ1(y

+) (1.31)

u′v′
+
= Φ2(y

+) (1.32)

Moreover, for large Reynolds numbers, we 
an also assume that there is an overlap region for

wall distan
es y,

ℓ∗ << y << δ

where δ is boundary layer thi
kness and ℓ∗ the vis
ous lengths
ale. This is a parti
ular region

where outer and inner layer des
riptions hold simultaneously.

Derivating the following 1.31 w.r.t. y+ we'll have an expression whi
h is independent of lengths
ale.

Therefore holds

y+
dΦ1(y

+)

dy+
≡ const (1.33)

so that, on
e integrated, it gives a logarithmi
 law :

Φ(y+) =
1

κ
lny+ +B (1.34)

where κ = 0.38 is the Kármán 
onstant and B=4.1, a

ording to observations. In the following

�gure 6.22 a mean velo
ity diagram is shown, together with the law of the wall and the log law, at

Reτ = 5200.
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PSfrag repla
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Figure 1.6 � � : < u >+
vs y+, at Reτ = 5200, from [Lee and Moser, 2014℄, �.� : law of the

wall, � � : log law

As we 
an see from the previous pi
ture, the �rst velo
ity region 
alled vis
ous sublayer, follows

the law of the wall, and it extends out to approximately y+ = 5. Despite the absolute magnitude

of the turbulent �u
tuations are small in this region, the relative (wall-parallel) intensities are

large. As we in
rease y+, we will have a bu�er region, where the maximum turbulen
e produ
tion

is at y+ = 12 and the maximum turbulen
e intensity at y+ = 15. Log-layer starts between

50 < y+ < 200, and it extends to y/δ ≈ 0.15, where δ is the 
hannel half-width. Beyond the log

layer, there's �nally the outer region.

The maximum turbulen
e produ
tion and Reynolds stress.

The turbulen
e produ
tion in the near-wall region of wall-bounded �ows 
an be formulated as

P+ = −u
′v′

u2τ

dU+

dy+
≃
(
1− dU+

dy+

)
dU+

dy+
(1.35)

The latter approximation is valid if vis
ous e�e
ts are small. From this we 
an derive that the

maximum produ
tion is found where

dU+

dy+
=

1

2
(1.36)

whi
h leads to

P+
max =

1

4
(1.37)

Therefore the turbulent produ
tion is maximum whereas both vis
ous and Reynolds stresses are

exa
tly the same, that is in the near-wall region; it generally happens when y+ ≈ 12. Moreover, it's
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also possible to estimate where the maximum Reynolds shear stress o

urs. Deriving equation 1.28

w.r.t. y+, and denoting the Reynolds shear stress as τ , normalized by inner units, the following

relation holds:

d2U+

dy+2
+
dτ+

dy+
= − 1

δ+
(1.38)

if we also assume that the Reynolds stress is maximum in the log-region, taking the derivative

1.34 w.r.t y+ we have

d2U+

dy+2 = − 1

κy+2 (1.39)

meaning that the maximum of the Reynolds stress is at

y+max =

√
h+

κ
=

√
Reτ
κ

(1.40)

Then, in terms of outer s
ale we 
an say that the position where the Reynolds stress rea
hes its

maximum is proportional to Re
−1/2
τ :

ymax

h
= κ−1/2Re−1/2

τ ∝ Re−1/2
τ (1.41)

This also 
an be proved using DNS results at di�erent fri
tion Reynolds numbers. An example

of Reynolds stress pro�les is shown in �gure 1.7.
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Figure 1.7 � −u′v′ normalized by uτ vs y/δ, from [Lee and Moser, 2014℄, · · · : Reτ = 550,

· · · : Reτ = 1000, · · · : Reτ = 5200
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The maximum Reynolds shear stress 
an be derived as well, using the relation 1.38 and 1.40,

together with the log-law:

τ+max = 1− y+max

h+
− 1

κy+max
= 1− 2√

κh+
= 1− 2√

κReτ
. (1.42)

We already have talked about turbulen
e and its produ
tion in a qualitative sense, but, in order

to des
ribe it properly and to understand the phenomenon in a 
omplete and detailed sense, a fo
us

on the three 
omponents of the velo
ity, they are u′, v′ and w′
, is ne
essary. As we'll see in the

next 
hapters, the 
omputations of these 
omponents play an important role in the validation of a

LES model.

In parti
ular, it's possible to derive the Reynolds stress tensor making the square of the root-mean-

square value of these three 
omponents:

u′iu
′

j =




u′u′ u′v′ u′w′

u′v′ v′v′ v′w′

u′w′ v′w′ w′w′


 . (1.43)

In the following pi
ture all the 
omponents of the Reynolds stress are shown. Important to un-

derline is the relation between the maximum turbulen
e produ
tion, and the peaks in the Reynolds

stress pro�les.
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1.3 A parti
ular 
ase: Turbulent Channel Flow 1. Turbulen
e

Anisotropy of the �ow. A fundamental aspe
t, whi
h is strongly relevant for the 
omplete

understanding of the aforementioned work, is the 
on
ept of anisotropy in turbulen
e.

From a physi
al point of view, anisotropy is a property of the �ow whi
h is not aligned with the

velo
ity dire
tion and the velo
ity gradient.

For a fully-developed 
hannel �ow the quantities u′w′
and v′w′ = 0 are zero. The Reynolds stress

tensor be
omes:

τij = −ρ




τ11 u′v′ 0

u′v′ τ22 0

0 0 τ33


 . (1.44)

in 
ase of isotropi
 turbulen
e, the diagonal terms are equal, i.e. τ11 = τ22 = τ33 and all the

deviatori
 terms are zero. Therefore, for a spe
i�
 LES model, the ability to 
apture the anisotropy

of the �ow 
onsists in reprodu
ing di�erent diagonal terms, i.e. u′u′ 6= v′v′ 6= w′w′
.
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CHAPTER

2

LARGE EDDY SIMULATION

�Anxiety is the hand maiden of 
reativity. (T.S. Eliot)�

Reynolds-averaged Navier Stokes (RANS) equations-based simulations are able to solve only

the mean velo
ity �eld of the �ow. RANS simulations rely heavily on modelling sin
e all turbulent

motions are modelled and therefore they are not always a

urate.

In Dire
t Numeri
al Simulations (DNS), the unsteady Navier-Stokes equations are solved without

using models. Therefore, DNS is very a

urate. However, the 
omputational power demand for

DNS is too large for industrial appli
ations. Therefore, a new method whi
h 
ombines a reasonable

�ow predi
tion a

ura
y with a limited amount of 
omputational 
ost has been strongly required

in re
ent years.

Large-eddy simulation (LES) represents an alternative that �ts those requirements. This parti
ular

method employs a separation of s
ales [Rasam, 2014℄: a �ltering operation de
omposes the velo
ity

�eld (generally together with a s
alar one) into a resolved part, represented by the 
omputational

grid, and an unresolved part, whi
h is modelled through physi
ally realisti
 models. In other words,

LES 
ould be 
onsidered a 2-step method:
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2.1 The �ltering operation 2. Large Eddy Simulation

1. the solution of the large s
ales of turbulen
e on a relatively 
oarse grid ;

2. the modelling of the smaller unresolved s
ales, the so-
alled subgrid-s
ales (SGS), based on

the resolved velo
ity �eld.

2.1 The �ltering operation

Step 1. Let's 
onsider now a general time and spa
e-dependent fun
tion φ(x, t). The �ltering

operation 
onsists of a 
onvolution of a kernelG∆ on that fun
tion (Leonard, 1975), over the domain

D of the grid:

φ̃(x, t) =

∫

D

φ(x, t)G∆(x− ξ)dξ (2.1)

There are several options for the �lter: the 
ommonly used ones are spe
tral 
uto�, box and

Gaussian �lters. In spe
tral 
odes, spe
tral �lters are the most suitable ones for �ltering, sin
e they

a
t on a spe
tral spa
e (where the 
ode works on) and are more pre
ise. Figure below shows the

di�eren
e between the di�erent kinds of �ltering methods.

Figure 2.1 � �.� : Sharp-spe
tral �lter, �- : Gaussian �lter, � � : Box �lter, r = ξ, from

[Pope, 2000℄

Remark. If φ(x, t) = φ(x) the operator G∆ is homogeneous. Moreover, the �ltered velo
ity
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2. Large Eddy Simulation 2.2 Governing equations of LES and the 
losure problem

�eld ũ(x, t) is not a deterministi
 variable, implying that

˜̃u(x, t) 6= ũ(x, t), ũ′(x, t) 6= 0.

2.2 Governing equations of LES and the 
losure problem

The �ltering operation leads to the �ltered Navier-Stokes equations:

∂ũi
∂xi

= 0;
∂ũi
∂t

+
∂ũiũj
∂xj

= − ∂p̃

∂xi
+

1

Re

∂2ũi
∂xj∂xj

−
∂τSGS

ij

∂xj
(2.2)

here τij is the SGS stress tensor. Leonard [Leonard, 1974℄ proposed a possible de
omposition

of non-linear terms (i.e. the SGS stress tensor), in the following way:

τSGS
ij = ũiuj − ũiũj = Lij + Cij +Rij (2.3)

where

Lij = ˜̃uiũj − ũiũj, (2.4)

Cij = ˜̃uiu′j − ˜̃uju′i (2.5)

Rij = ũ′iu
′

j , (2.6)

and u′i = ui − ũi.

In the Leonard de
omposition Rij is the Reynolds subgrid tensor and represents the intera
tion

between subgrid-s
ales; Cij is the 
ross-stress tensor and a

ounts for large vs small s
ale intera
-

tions; �nally Lij , the Leonard tensor, gives the intera
tions between the large s
ales.

τSGS
ij is the unknown additive part in the �ltered Navier-Stokes equation, and therefore needs to

be modelled.

2.3 An example of a 
losure: the Eddy Vis
osity Model (EVM)

Step 2. There are several ways to model the subgrid s
ale stress tensor. As previously written,

the �rst and simple model was developed by Smagorinsky [Smagorinsky, 1963℄, for meteorologi
al

appli
ations. It originates from the RANS model, taking into a

ount Boussinesq's hypothesis. The

EVM 
onsists of a linear formulation of the deviatori
 part of τSGS
ij ,
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2.4 Subgrid-s
ale dissipation 2. Large Eddy Simulation

τSGS
ij =

τkk
3
δij

︸ ︷︷ ︸
isotropic

−2 νSGS︸ ︷︷ ︸
EV M

contribution

S̃ij (2.7)

where

νSGS = (Cs∆̃)2|S̃| (2.8)

S̃ij and |S̃| are the resolved strain-rate tensor and its magnitude, respe
tively. ∆̃ is the �lter

s
ale, νSGS is the SGS eddy vis
osity, and Cs is the model 
oe�
ient, the Smagorinsky 
oe�
ient.

Note that νSGS is a 
onstant rather than dependent of dire
tion. A

ording to the re
ent paper

of Spalart [Spalart, 2015℄, in a simple shear �ow with two of the axes aligned with the velo
ity

dire
tion and the gradient dire
tion, su
h that the strain tensor Sij have zero and equal diagonal

terms, this model predi
ts 
onstant and equal diagonal terms of the Reynolds stress tensor, i.e.

τ11 = τ22 = τ33.

Therefore EVM 
an be 
onsidered an isotropi
 model, sin
e νSGS doesn't take into a

ount any

e�e
t of anisotropy.

As we'll dis
uss further, this model 
an be improved using a dynami
 pro
edure, where the Cs


oe�
ient is 
omputed during the simulation.

2.4 Subgrid-s
ale dissipation

An important aspe
t of LES is the impa
t of SGS on the resolved s
ales. In other words, LES

predi
tions are strongly dependent on the 
ontribution of τSGS
ij tensor on the resolved kineti
 energy

K = ũiũj/2. Consider the kineti
 energy equation

∂K

∂t
+

∂

∂xj
(ũjK)

︸ ︷︷ ︸
advection

= − ν
∂ũi
∂xj

∂ũi
∂xj︸ ︷︷ ︸

viscous
dissipation

− ∂

∂xi

(
ũip̃+ ν

∂K

∂xi
− ũiτij

)

︸ ︷︷ ︸
diffusion

+ τSGS
ij S̃ij︸ ︷︷ ︸
−SGS

dissipation

(2.9)

Sin
e LES by de�nition, are 
arried out for large s
ales, and the grid s
ale is mu
h larger than

Kolmogorov one, the vis
ous dissipation term is so small so that it is negligible 
ompared to the

others. From a physi
al point of view, di�usion term transfers energy in spa
e, but not in a volume-

averaged sense [Rasam, 2014℄. For that reason, an additional term is therefore required in order to

reprodu
e the 
orre
t energy transfer from the large to the smaller s
ales. SGS dissipation 
overs

that role
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2. Large Eddy Simulation 2.4 Subgrid-s
ale dissipation

Π = −τSGS
ij S̃ij (2.10)

The mean SGS dissipation behaves as a sink term, while the instantaneous one gives negative

(ba
ks
atter) and positive (forward s
atter) 
ontributions in the transfer.

The following pi
ture shows the SGS dissipation (red line), together with the dissipation of the

resolved s
ales (blue line); their total 
ontribution is shown by the red line.
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hapter 6.

The previous 
onsideration leads to the fa
t that an investigation on SGS dissipation behaviour

is very important in an a

ura
y assessment of LES.

Based on this prin
iple, several investigations have been 
arried out by Chow &Moin [Chow and Moin, 2003℄,

Ghosal [Ghosal, 1996℄ and Krav
henko & Moin [Krav
henko et al., 1996℄.

Geurts & Fröhli
h [Geurts and Fröhli
h, 2002℄ introdu
ed the SGS a
tivity parameter, de�ned as

follows

s =
<εSGS>

<εSGS>+<εµ>
(2.11)

where <εµ> = 2µS̃ijS̃ij is the vis
ous dissipation.

With in
reasing resolution, SGS dissipation de
reases while vis
ous one in
reases, therefore s be-


omes smaller. A remarkable aspe
t is that, the 
oarser is the resolution , the bigger is s . This


an be proved having a look at 2.11: if we use a 
oarse grid, the resolution will be smaller su
h

that vis
ous dissipation will be negligible, and s will rea
h its maximum unity value. This o

urs

when the 
uto� �lter of the LES is well in the inertial subrange and the vis
ous dissipation is rather
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2.4 Subgrid-s
ale dissipation 2. Large Eddy Simulation

small.

Starting from the previous de�nition, Geurts & Fröhli
h [Geurts and Fröhli
h, 2002℄ de�ned an

error norm as

δE =

∣∣∣∣∣
ELES − ẼDNS

ẼDNS

∣∣∣∣∣ (2.12)

where ELES is the mean resolved kineti
 energy integrated over the �ow domain, while ẼDNS

is the same quantity, 
omputed from �ltered DNS data instead, with the same �lter width as in

the LES.

The a

ura
y assessment 
onsists of 
omputing the relation between δE and s: in the pi
ture

below [Rasam et al., 2011℄ it is shown that the relative error δE drops almost exponentially with

de
reasing s (i.e. high resolution); results refer to a LES with the expli
it algebrai
 SGS stress

model (EASSM) [Marstorp et al., 2009℄ at Reτ = 934, for six di�erent resolutions. This result

shows that with in
reasing resolution the SGS 
ontribution be
omes smaller and the a

ura
y of

the LES higher. In other words, the resolution of the LES must be su�
iently high to obtain an

a

eptable solution.

Figure 2.3 � Normalized error δE of the resolved kineti
 energy, integrated over the 
hannel

width [Rasam et al., 2011℄ w.r.t. the �ltered DNS value vs s. Arrow points to in
reasing

resolution 
ases.
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CHAPTER

3

SUBGRID-SCALE STRESS MODELS

FOR LES

�Logi
 will get you from A to B.

Imagination will take you everywhere. (A.Einstein)�

In this 
hapter two di�erent LES models are going to be analyzed; the �rst one is an improvement

of the 
lassi
 Smagorinsky model, the Dynami
 EVM.

The se
ond one is a parti
ular non-linear model using an expli
it algebrai
 formulation for the SGS

stress tensor.

In the following se
tion a de
omposition of the SGS stress tensor is given.

3.1 Tensorial polynomial formulation of the SGS stress tensor

A useful approa
h that leads to several non-linear models is based on a de
omposition of the

SGS stress tensor, through a polynomial expansion.
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3.1 Tensorial polynomial formulation of the SGS stress tensor3. Subgrid-s
ale stress models for LES

Similar to RANS approa
h for Reynolds stress 
losures, SGS stress tensor 
an be expressed in terms

of strain and rotation rate tensors.

Lund & Novikov [Lund and Novikov, 1993℄ expressed the deviatori
 part of the SGS stress tensor

τSGS,d
ij as a general tensorial fun
tion of the �ltered strain-rate S̃ij and rotation-rate Ω̃ij tensors,

the Krone
ker delta δij and the �lter size ∆̃ as

τSGS,d
ij = τSGS

ij − 1

3
τkkδij = f(S̃ij , Ω̃ij , δij , ∆̃) (3.1)

where

S̃ij =
1

2

(
∂ũi
∂xj

+
∂ũj
∂xi

)
, Ω̃ij =

1

2

(
∂ũi
∂xj

− ∂ũj
∂xi

)
. (3.2)

As Pope [Pope, 1975℄ showed the Reynolds stresses in RANS, τij 
an be formulated as a tensor

polynomial with ten elements of di�erents powers of S̃ij and Ω̃ij and their 
ombination.

Coe�
ients are fun
tions of S̃ij and Ω̃ij invariants or both, and they are derived using the Cayley-

Hamilton theorem:

τ
d =

10∑

k=1

βkT
(k), (3.3)

so that the ten polynomial tensors are:

T
(1) = S̃

T
(2) = S̃

2 − 1
3IISI

T
(3) = Ω̃

2 − 1
3IIΩI,

T
(4) = S̃Ω̃− Ω̃S̃

T
(5) = S̃

2
Ω̃− Ω̃S̃

2

T
(6) = S̃Ω̃

2 + Ω̃
2
S̃− 2

3IV I

T
(7) = S̃

2
Ω̃

2 + Ω̃
2
S̃
2 − 2

3V I

T
(8) = S̃Ω̃S̃

2 − S̃
2
Ω̃S̃

T
(9) = Ω̃S̃Ω̃

2 − Ω̃
2
S̃Ω̃

T
(10) = Ω̃S̃

2
Ω̃

2 − Ω̃
2
S̃
2
Ω̃

and βk are s
alar 
oe�
ients that are fun
tions of �ve tensorial invariants

IIS = tr(S̃2), IIΩ = tr(Ω̃2),

IIIS = tr(S̃3), IV = tr(S̃Ω̃2),
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3. Subgrid-s
ale stress models for LES 3.2 The dynami
 pro
edure for EVM (DEVM)

V = tr(S̃2
Ω̃

2).

Thus, equation 3.3 is the most generla formulation for τd in terms of S̃ij and Ω̃ij .

3.2 The dynami
 pro
edure for EVM (DEVM)

Regarding to the model 
oe�
ient Cs for the eddy-vis
osity model, it has been demonstrated

that a dynami
 
omputation of Cs (that is, during the simulation), 
an signi�
antly improve the

�ow predi
tion a

ura
y.

The 
omputation of Cs is done by taking into a

ount the resolved s
ales, a

ording to a s
ale

invarian
e assumption.

The 
ru
ial point of this dynami
 pro
edure is the so-
alled Germano identity. Let's now denote a

test �lter, ∆̂ = 2∆̃, ∆̃ = 3
√
Ω, where Ω is the volume of a 
omputational 
ell. The Germano identity

is de�ned as follows:

Lij = Tij − τ̂ij , (3.4)

where Tij is the SGS stress tensor �ltered at the test �lter level, and Lij = ̂̃uiũj − ̂̃uî̃uj Then

Lij is applied in this way:

Lij −
1

3
Lkkδij = −2CsMij (3.5)

where

Mij = ∆̂2|̂̃S|̂̃Sij − ∆̃2̂|S̃|S̃ij . (3.6)

The system of equations 3.5 is over-determined. In order to have a unique value of Cs Germano


ontra
ted it in:

Cs = −1

2

〈LijS̃ij〉
〈S̃ijMij〉

(3.7)

Moreover, to make Cs variations smoother, a spatial averaging 〈.〉 has been applied.

Together with a better performan
e of the EVM, the Germano identity gives a 
orre
t asymptoti


near-wall behaviour for νSGS .

It has also been shown that is possible to apply Germano identity for the dynami
 
omputation of

PrSGS in the EDM [Moin et al., 1991℄, improving performan
es in the s
alar predi
tion.
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3.3 Expli
it Algebrai
 SGS stress model 3. Subgrid-s
ale stress models for LES

3.3 Expli
it Algebrai
 SGS stress model

Anisotropi
 e�e
ts of turbulen
e are important in several 
onditions: examples are near-wall

�ow behaviour and boundary layes separation 
ases with 
urvature, swirl, rotation.

As it was dis
ussed before, the Dynami
 Smagorinsky model is an isotropi
 model, in the sense that

the SGS vis
osity νSGS is dire
tion-independent.

Therefore, in order to 
apture �ow anisotropy, DEVM is not suitable.

In the same spirit as Reynolds stress-based models are ne
essary for RANS, non-linear SGS models

are needed for LES.

A re
ent example of those is the nonlinear dynami
 SGS stress model by Wang & Bergstrom

[Wang and Bergstrom, 2005℄, whi
h 
onsists of three base tensors and three dynami
 
oe�
ients.

One of the terms in the model is similar to the DEVMmodel. Wang & Bergstrom [Wang and Bergstrom, 2005℄

showed that the dynami
 non-linear model predi
ts a more realisti
 tensorial alignment of the SGS

stress than eddy-vis
osity models and 
an provide for ba
ks
atter without 
lipping or averaging of

the dynami
 model parameters.

The model here dis
ussed is 
alled Expli
it Algebrai
 SGS stress model (EASSM), was devel-

oped by Marstorp [Marstorp et al., 2009℄ and is similar to the EARSM by Wallin & Johansson

[Wallin and Johansson, 2000℄, whi
h is based on a modelled transport equation of the Reynolds

stresses and on the assumption that the adve
tion and di�usion of the Reynolds stress anisotropy

are negligible.

Analogous to the Reynolds stress anisotropy tensor we de�ne the SGS stress anisotropy tensor as

aij =
τij

KSGS
− 2

3
δij (3.8)

For simpli
ity, we'll 
onsider τSGS
ij = τij . Moreover, KSGS = (ũiui − ũiũi)/2 is the SGS kineti


energy.

In a non-rotating frame the transport equation for aij reads

KSGS
Daij
Dt︸ ︷︷ ︸

advection

−
(
∂D

τij
ijk

∂xk
− τij
KSGS

∂DKSGS

k

∂xk

)

︸ ︷︷ ︸
diffusion

= − τij
KSGS

(P − ε) + Pij − εij +Πij , (3.9)

where −DKSGS

k = −Dτij
ijk/2 is the sum of the turbulent and mole
ular �uxes of the SGS stress

and SGS kineti
 energy, respe
tively.

Although the produ
tion of the SGS stress Pij and SGS kineti
 energy P = Pii/2 are given in

terms of τij and �ltered gradients, the SGS pressure strain Πij and SGS dissipation rate tensor εij
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3. Subgrid-s
ale stress models for LES 3.3 Expli
it Algebrai
 SGS stress model

need to be modelled. Those terms are

Pij = −τik
∂ũj
∂xk

− τjk
∂ũi
∂xk

= KSGS

[
− 4

3
S̃ij − (aikS̃kj + S̃ikakj) + (aikΩ̃kj − Ω̃ikakj)

]
, (3.10)

Πij =
2

ρ
(S̃ijp− S̃ij p̃), (3.11)

εij = 2ν

(
˜∂ui
∂xk

∂uj
∂xk

− ∂ũi
∂xk

∂ũj
∂xk

)
(3.12)

and their modelling leads to [Launder et al., 1975℄

Πij = −εc1aij+KSGS

[
3

5
S̃ij+

9c2 + 6

11

(
aikS̃kj+S̃ikakj−

2

3
akmS̃mkδij

)
+
7c2 − 10

11
(aikΩ̃kj−Ω̃ikakj)

]
,

(3.13)

εij = ε
2

3
δij , (3.14)

where c1 is a relaxation 
oe�
ient and c2 = 5/9 is a parameter of the model for the rapid part

of Πij , whi
h depends dire
tly on 
hanges in the resolved velo
ity gradients, and ε = εii/2.

Like in Wallin & Johansson's [Wallin and Johansson, 2000℄ RANS model, the derivation of the

EASSM model involves the weak equilibrium assumption, whi
h implies that the adve
tion and

di�usion terms of the Reynolds stress anisotropy are negle
ted. In order to simplify the model,

together with the weak equilibrium assumption, we assume also that P = ε. This leads to

0 = Pij − εij +Πij . (3.15)

Using the modelling given by 3.13 and 3.14 in 3.15 we have

c1aij = τ∗

[
− 11

15
S̃ij +

4

9
(aikΩkj − Ωikakj)

]
(3.16)

note that τ∗ = KSGS/ε is the SGS time s
ale.

Finally, equation 3.16 has been solved using an ansatz

aij = β1τ
∗S̃ij + β4τ

∗
2

(S̃ikΩ̃kj − Ω̃ikS̃kj), (3.17)

where β1 and β4 are model parameters and fun
tions of the �ltered stress and strain-rate. Using

that ansatz, equation 3.16 be
omes
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3.3 Expli
it Algebrai
 SGS stress model 3. Subgrid-s
ale stress models for LES

τij = KSGS

[
2

3
δij + β1τ

∗S̃ij + β4τ
∗
2

(S̃ikΩ̃kj − Ω̃ikS̃kj)

]
, (3.18)

whi
h is the main EASSM model formulation. Using normalized strain and stress-rate tensors

it 
an be rewritten as

τij =
2

3
δijKSGS + β1KSGSS̃

∗

ij︸ ︷︷ ︸
eddy−viscosity

+ β4KSGS(S̃
∗

ikΩ̃
∗

kj − Ω̃∗

ikS̃
∗

kj)︸ ︷︷ ︸
anisotropy of
SGS stresses

. (3.19)

The se
ond term on the right-hand-side is an eddy vis
osity term responsible for SGS dissipation,

whereas the third term reprodu
es anisotropi
 e�e
ts of SGS stresses and gives a disalignment of

the SGS stress and resolved strain-rate tensors. β1 and β4 
oe�
ients have the form:

β1 = −33

20

9c1/4

[(9c1/4)2 + |Ω̃∗|2]
, β4 = −33

20

1

[(9c1/4)2 + |Ω̃∗|2]
(3.20)

where |Ω̃∗| =
√
2II∗Ω =

√
2τ∗2Ω̃ikΩ̃ki ≤ 0 is the SGS time s
ale-normalized se
ond invariant.

The unknown quantities KSGS and τ∗ 
an be dynami
ally or non-dynami
ally 
omputed.

The equation 3.19 
an also be related to the tensorial formulation of the SGS stress tensor, given

in the previous se
tion : the �rst term on the right-hand side reprodu
es the isotropi
 part of the

SGS stress, while the se
ond and third terms 
an be 
onsidered as two polynomial tensors, for the


ase k = 1 and k = 4.

The dynami
 version of the EASSM involves Germano's dynami
 pro
edure; here the SGS kineti


energy is modelled in terms of the squared Smagorinsky velo
ity s
ale ∆|S̃ij | [Yoshizawa, 1986℄:

KSGS = c∆2|S̃ij |, (3.21)

where ∆̃ is the �lter s
ale; |S̃ij | = (2S̃ij S̃ij)
1/2

, and c is a dynami
 parameter, 
omputed in the

following way:

̂̃uiũi − ̂̃ui ̂̃ui = c
̂̃
∆

2

2
̂̃
Sij
̂̃
Sij − c∆̃22

̂̃
SijS̃ij . (3.22)

The quantities with .̂ are test-�ltered quantities. In this 
ase the equation is not over-

determined, be
ause the number of �lter operations needed for the dynami
 
onstant 
omputation

is smaller than in DEVM.

On
e c is 
omputed, it is possible to obtain the 
oe�
ient c1 and the SGS time s
ale τ∗:
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ale stress models for LES 3.3 Expli
it Algebrai
 SGS stress model

c1 = c′1
√
c′3

c1.25

(2Cs)2.5
, τ∗ = c′3

1.5C1.5
k

√
c

2Cs
|S̃|−1

(3.23)

where c′1 = 3.12, c′3 = 0.91, Ck = 1.5 is the Kolmogorov 
onstant and Cs = 0.1.
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CHAPTER

4

IMPLEMENTATION IN A CFD CODE

�Patien
e is the 
ompanion of wisdom. (St.Augustine)�

In this 
hapter the implementation of the previous DEVM and EASSM models in a CFD 
ode

will be explained, together with a parti
ular fo
us on pseudospe
tral methods and their features.

4.1 The need for a

ura
y: spe
tral methods

The aim of this thesis is to prove the e�e
tiveness in predi
tion of the �ow properties, given a

spe
i�
 turbulen
e model. In order to measure the a

ura
y of it, �rst we have to ensure that the

only a

ura
y error that 
ould be generated is given by the model, i.e. the a

ura
y is independent

from the main 
ode and the numeri
al method used. To �t this requirement, we need our 
ode

to have a numeri
al s
heme whi
h is not a�e
ted by numeri
al errors (e.g. trun
ation errors),

therefore the use of the 
lassi
 �nite-di�eren
e (FD) method or �nite-elements method (FEM) is

not re
ommended for this purpose.

While �nite-elements methods 
hop the interval in x into a number of sub-intervals, and 
hoose the
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φn(x) to be lo
al fun
tions whi
h are polynomials of �xed degree, non-zero only over a 
ouple of

sub-intervals, spe
tral methods use global basis fun
tions in whi
h φn(x) is a polynomial of high

degree whi
h is non-zero over the entire 
omputational domain, ex
ept at isolated points.

On
e more, spe
tral methods, even if they generate algebrai
 equations with full matri
es ( in


ontrast with the FD, whi
h uses sparse ones), the high order of the basis fun
tions gives high

a

ura
y for a given number of degrees of freedom N .

Despite spe
tral methods are the most useful when the geometry of the problem is fairly smooth and

regular, when fast iterative matrix-solvers are used, spe
tral methods 
an be mu
h more e�
ient

than FEMs and FDs s
hemes. Therefore, for the 
ase of 
hannel �ow, where the geometry is simple,

they represents the best 
hoi
e in terms of a

ura
y.

4.1.1 A

ura
y and memory saving properties

Finite di�eren
e methods approximate the unknown u(x) by a sequen
e of overlapping polyno-

mials whi
h interpolate u(x) at a set of grid points. The derivative of the lo
al interpolant is used

to approximate the derivative of u(x). The result 
onsists of a weighted sum of the values of u(x)

at the interpolation points. The following pi
ture shows how the polynomials are in the di�erent

methods.

Figure 4.1 � Spe
tral methods and �nite di�eren
e s
hemes

To ensure a 
omputational ease, together with 
ompleteness and rapid 
onvergen
e of the solu-

tion, there are several alternatives for the 
hoi
e of the basis fun
tions.

One of the best 
ombinations used is to employ Fourier series in x and z dire
tions, where the

solution is assumed to be periodi
; along the y dire
tion, instead, the solution won't be periodi
,

and Cheby
hev polynomials represents the best disguise for a spe
tral method [Boyd, 2001℄ there.

For this reason, a 
ode with su
h 
ombination like this one is 
alled a Pseudo-Spe
tral method.
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Let's 
onsider now a 3-points FD method (like a se
ond-order one), and a N-point pseudo-spe
tral

method. It has been proved that, to equal the a

ura
y of the pseudospe
tral pro
edure for N = 10,

one would need a 10th order �nite di�eren
e or FEM with a O(h10) error.

In
reasing N , the pseudospe
tral method have two positive aspe
ts: the interval h between grid

point be
omes smaller, and the error rapidly de
reases even if the order of the method is �xed;

whi
h is not true, sin
e the order of the method is not �xed. The 
ombination of these two aspe
ts

makes this method extremely e�
ient: passing from N = 10 to N = 20, the error be
omes O(h20),

with also a new smaller h, sin
e h is O(1/N). Summarizing it holds that

Pseudospe
tral error ≈ O[(1/N)N ]

whi
h means that the error de
reases faster than any �nite power of N be
ause the power

in the error formula is always in
reasing, too. We 
an des
ribe this behaviour as in�nite order

or exponential 
onvergen
e. This feature makes the pseudospe
tral method the best 
hoi
e when

many de
imal pla
es of a

ura
y are needed.

This is not the only one bene�t of using spe
tral method, though. Pseudospe
tral methods are also

memory-minimizing, this means that the number of degrees of freedom required in ea
h dimension

by them are about half as the ones needed by a fourth-order FD method. This leads to the fa
t

that high-resolution problems 
ould be solved satisfa
torily by spe
tral methods, when a three-

dimensional se
ond order FD 
ode would fail be
ause of the need for eight or ten times as many

grid points would ex
eed the 
ore memory of the available 
omputer.

4.2 The SIMSON 
ode

To perform the LES, the SIMSON 
ode has been used. SIMSON is a pseudo-Spe
tral Solver for

In
oMpreSsible bOuNdary layer �ows, developed by Chevalier [Chevalier et al., 2007℄. In Simson


hannel and boundary layer solvers have been 
ombined together with many additional features

developed over the years. The 
ode 
an 
ompute either dire
t numeri
al simulations (DNSs) or

large-eddy simulations (LESs); in LES mode, di�erent subgrid-s
ale models are available, in
luding

the DEVM. The EASSM has been re
ently implemented.

The 
ode is 
ompletely written in Fortran 75/90 and 
an be run with distributed or with shared

memory parallelization using the Message Passing Interfa
e (MPI) or OpenMP.

The wall-parallel dire
tions are dis
retized using Fourier series and the wall-normal dire
tion using

Chebyshev series. Time integration is performed using a third order Runge-Kutta method for the

adve
tive and for
ing terms, and a Crank-Ni
olson method for the vis
ous terms.
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4.2.1 Theory

The SIMSON 
ode is an in
ompressible Navier-Stokes solver. In a rotating referen
e frame, N-S

equations are, written in tensor notation:

∂ui
∂t

= − ∂p

∂xi
+ ǫijkuj(ωk + 2Ωk)−

∂

∂xi

(
1

2
ujuj

)
+

1

Re
∇2ui + Fi,

∂ui
∂xi

= 0. (4.1)

where (ω1, ω2, ω3) = (χ, ω, ϑ) are the vorti
ities along streamwise, wall-normal and spanwise


oodinates. Ωk is the angular velo
ity of the 
oodinate frame around axis k. The body for
e

F = (F1, F2, F3) is used for numeri
al purposes and to introdu
e external disturban
es to the �ow.

Taking the divergen
e of the momentum equations we derive the Poisson equation for the pressure

∇2p =
∂

∂xi
[ǫijkuj(ωk + 2Ωk) + Fi︸ ︷︷ ︸

Hi

]−∇2

(
1

2
ujuj

)
(4.2)

Applying the Lapla
e operator to the momentum equations for the wall-normal velo
ity one

�nds

∂∇2v

∂t
=

(
∂2

∂x2
+

∂2

∂z2

)
H2 −

∂

∂y

(
∂H1

∂x
+
∂H3

∂z

)
+

1

Re
∇2v (4.3)

for numeri
al purposes, this equation 
an be rewritten as a system of equations:





∂φ
∂t = hv +

1
Re∇2φ

∇2v = φ,
(4.4)

where

hv =

(
∂2

∂x2
+

∂2

∂z2

)
H2 −

∂

∂y

(
∂H1

∂x
+
∂H3

∂z

)
(4.5)

Moreover, taking the 
url of the momentum equations, an equation for the normal vorti
ity 
an

be derived as well:





∂ω
∂t = hω + 1

Re∇2ω

hω = ∂H1

∂z − ∂H3

∂x

(4.6)

The system of equation above 
an be solved with the same numeri
al routine. On
e the normal

velo
ity v and vorti
ity ω have been 
al
ulated, the other velo
ity 
omponents 
an be 
omputed

from the in
ompressibility 
onstraint and the wall-normal vorti
ity de�nition.

42



4. Implementation in a CFD 
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4.2.2 Numeri
al method

Time dis
retization. The time dis
retization used by Simson 
an be explained using the

following equation:

∂ψ

∂t
= G+ Lψ (4.7)

ψ represents φ or ω. L is the linear di�usion and is impli
itly dis
retized by a Crank-Ni
olson

(CN) s
heme, while G is expli
itly dis
retized by a third order three or four stage Runge-Kutta

(RK3) s
heme. The overall time dis
retization 
an be shown in the following way

ψn+1 = ψn + anG
n + bnG

n−1 + (an + bn)

(
Lψn+1 + Lψn

2

)
, (4.8)

where an and bn are 
onstants 
hosen a

ording to the expli
it s
heme.

Using the s
heme 4.8 in 4.7, the previously written equations be
ome:





(
1− an+bn

2Re ∇2

)
φn+1 =

(
1 + an+bn

2Re ∇2

)
φn + anh

n
v + bnh

n−1
v ,

∇2vn+1 = φn+1,

(4.9)

and

(
1− an + bn

2Re
∇2

)
ωn+1 =

(
1 +

an + bn
2Re

∇2

)
ωn + anh

n
ω + bnh

n−1
ω . (4.10)

Horizontal dis
retization. The horizontal dis
retization has been made using a Fourier

expansion, assuming that the solution is periodi
. Ea
h variable is assumed to be spanwise and

streamwise-dependent, that is

u(x, z) =

Nx
2

−1∑

l=−(Nx
2

−1)

Nz
2

−1∑

m=−(Nz
2

−1)

û(αl, βm)ei(αlx+βmz)
(4.11)

where αl = 2πl/xL and βm = 2πm/zL and Nx and Nz are the number of Fourier modes in the

two dire
tions. Note that k2 = α2+β2
. Using this dis
retization the equations 4.9 
an be rewritten

as





(
1− an+bn

2Re (D2 − k2)

)
φ̂n+1 =

(
1 + an+bn

2Re (D2 − k2)

)
φ̂n + anĥ

n
v + bnĥ

n−1
v ,

(D2 − k2)v̂n+1 = φ̂n+1,

(4.12)
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where D stands for the derivative in wall-normal dire
tion.

Wall-normal dis
retization. The normal dis
retization has been done through Cheby
hev's

polynomials. Using an example of se
ond order 
onstant 
oe�
ient ordinary di�erential equation

(D2 − κ)ψ̂ = f̂ , ψ̂(0) = γ−1, ψ̂(yL) = γ1. (4.13)

This is solved expanding ψ, its se
ond derivative, f̂ and the boundary 
onditions in Cheby
hev

series:

ψ̂(y) =

Ny∑

j=0

ψ̃jTj(y), (4.14)

D2ψ̂(y) =

Ny∑

j=0

ψ̃
(2)
j Tj(y), (4.15)

f̂(y) =

Ny∑

j=0

f̃jTj(y), (4.16)

ψ̂(1) =

Ny∑

j=0

ψ̃j = γ1, (4.17)

ψ̂(−1) =

Ny∑

j=0

(−1)jψ̃j = γ−1, (4.18)

where Tj are the Cheby
hev polynomials of order j and Ny the highest order of polynomial

in
luded in the expansion.

Non-linear terms. Non-linear terms of LES equation, ũj
∂ũi

∂xj
, are known to be 
omputationally

expensive anyhow. Despite the 
omputation of the whole velo
ity �eld is performed in a Fourier

spa
e through Fast Fourier Trasforms (FFTs), i.e. in the 
omplex spa
e (C), the non-linear terms

are 
al
ulated 
oming ba
k to real spa
e, R . Then the following 
omputation will be �nished in

Fourier spa
e.
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4.2.3 MPI parallelization

An important pro
ess able to boost performan
es of the CFD 
ode and de
rease 
omputational

time is the parallelization of the 
ode.

In serial 
omputations the problem is broken into a dis
rete series of instru
tions, whi
h are exe
uted

sequentially one after another on a single pro
essor.

Figure 4.2 � Serial 
omputation s
heme

Di�erent from serial runnings, in parallel 
omputing:

� A problem is broken into dis
rete parts that 
an be solved 
on
urrently;

� Ea
h part is further splitted in to a series of instru
tions;

� Instru
tions from ea
h part exe
ute simultaneously on di�erent pro
essors;

� ea
h pro
essor send/re
eive information to/from the other ones through MPI 
ommuni
ation,

therefore

� An overall 
ontrol/
oordination me
hanism is employed.
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Figure 4.3 � Parallel 
omputation s
heme

For parallelization purposes, the 
omputational problem should be able to be broken apart into

dis
rete pie
es of work that 
an be solved simultaneously, and exe
ute multiple program instru
tions

at any moment in time. Of 
ourse, the problem is expe
ted to be solved in less time with multiple


ompute resour
es than with a single 
ompute resour
e. Typi
ally, 
ompute resour
es 
an be

either a single 
omputer with multiple pro
essors/
ores or an arbitrary number of su
h 
omputers


onne
ted by a network. There's also a way to quantify how mu
h 
omputational time 
an be saved

using parallel 
omputing. Amdahl's Law states that potential program speedup is de�ned by the

fra
tion of 
ode (P) that 
an be parallelized:

speedup =
1

1− P
(4.19)

If none of the 
ode 
an be parallelized, P = 0 and the speedup = 1 (no speedup), while if all of

the 
ode is parallelized, P = 1 and the speedup is in�nite (in theory).

If 50% of the 
ode 
an be parallelized, speedupmax = 2, meaning the 
ode will run twi
e as fast.

Introdu
ing the number of pro
essors performing the parallel fra
tion of work, the relationship 
an

be modeled by:

speedup =
1

P/N + S
(4.20)

where P is the parallel fra
tion, N the number of pro
essors and S the serial fra
tion.

The diagrams in the next page show how parallelization improves performan
es in terms of speedup.
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4.2.3.1 MPI 
ommuni
ation between pro
esses

On
e the problem has been splitted into several pro
essors, the ne
essity of 
oomuni
ation be-

tween pro
esses o

urs. In other words, we need pro
essors to send and re
eive data between them,

in order to run a distributed simulation.

Communi
ation o

urs when a portion of one pro
ess' address spa
e is 
opied into another pro
ess'

address spa
e. This operation is 
ooperative and o

urs only when the �rst pro
ess exe
utes a send

operation and the se
ond pro
ess exe
utes a re
eive operation. On the sender's side, the way to

des
ribe data is to spe
ify a starting address, a length of the message (in bytes), the destination

address, and a tag. The tag is needed for the mat
hing between messages, it is an information (an

integer) to let the pro
ess 
ontrol whi
h messages it re
eives.

On the other side, the re
eiver will need to re
eive the address and the length of the pla
e the data

has to be pla
ed, together with the tag, the sour
e and the length of the message re
eived. The

message interfa
e therefore will be:

send (address, length, destination, tag)

and

re
v (address, length, sour
e, tag, a
tlen).

Figure 4.4 � Parallel 
omputing performan
es diagrams [Laure, 2014℄

In SIMSON 
ode parallelization is made using Message-Passing Interfa
e proto
ol. In parti
-

ular, what MPI parallelization does is to split the 
omputational grid into several parts, equal to

the number of available pro
essors; then every CPU pro
essor (or 
ore) 
omputes its part at the

same time. There are several ways the 
omputational domain 
an be split to; however the most
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ommon ones are 1D parallelization and 2D parallelization. In the following simulations both of

the parallelization methods are used; in the �gure below both types of them are shown.

Figure 4.5 � Parallel 
omputing distributions [Gropp et al., 1999℄

In this work two versions of SIMSON 
ode have been used. The former one is 1D parallelized,

therefore the domain is splitted in re
tangular pro
essors, only in 1 dire
tion, whi
h is along the z

axis (
on�guration CYCLIC,*) .

The latter one is the 2D parallelization: in SIMSON 
ode it involves the domain splitting in x

(npro
x is the number of pro
essors in that dire
tion) and z (npro
z) and the total number of

pro
esses is then npro
 = npro
x * npro
z. Therefore the BLOCK,BLOCK 
on�guration has been

implemented.

To 
arry on simulations, several super
omputers that belong to the Swedish National Infrastru
ture

for Computing (SNIC) will be used. For the last and more time-
onsuming simulation, Lindgren

super
omputer will be employed. A photo of it is shown below.

Figure 4.6 � Lindgren super
omputer at PDC, KTH
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CHAPTER

5

POSTPROCESSING TOOLS FOR

TURBULENCE

�However di�
ult life may seem,

there is always something you 
an do and su

eed at. (S. Hawking)�

On
e the simulation has been run, the output generated is a turbulent velo
ity �eld, and has to

be postpro
essed using several tools; some of them 
ome from statisti
al analysis. The results are

the mean values, two-point time statisti
s, i.e. 
orrelations, and the so-
alled vorti
al stru
tures.

5.1 Mean Values

The simplest statisti
al property is the mean value, or �rst moment. The mean value of a random

variable at a parti
ular spatial lo
ation 
an be derived by averaging the long time measurement of

that variable. Considering the measurement period T we have:
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〈u〉 = lim
T→∞

1

T

t0+T∫

t0

u(t)dt. (5.1)

where 〈u〉 indi
ates the mean value of a random variable u (the �ow velo
ity in this 
ase), and

t0 is the measurement starting time. This time average only makes sense if 5.1 is independent of

t0 and T for large T ; in this 
ase we would say that the integral 
onverges and the �ow 
an be

assumed as statisti
ally steady and therefore is meant as a stationary pro
ess.

However, this integral doesn't 
onverge in some situations. In su
h 
ases the mean �ow behaviour


an be des
ribed by the ensemble average, whi
h is taken on a �nite volume V , and de�ned as:

〈u〉 = lim
V →∞

1

V

∫

V

u(x)dxdydz. (5.2)

The integration is therefore performed over a volume at one instant of time. Note that the

previous relation holds only if the �ow is spatially-independent. In a dis
rete volume domain we


an refer to a number of samples, N , and the equation 5.3 be
omes

〈u〉 = lim
N→∞

1

N

N∑

1

u(x). (5.3)

Sin
e we will 
onsider a fully-developed �ow, in our spe
i�
 
ase we will assume the mean value

as the quantity of the �ow whi
h is averaged both in time, and spa
e. Thus, the �ow will be

assumed to be statisti
ally stationary, i.e. mean velo
ities keep 
onstant along the x and z-axis.

5.2 Root-mean squared Values, rms

Turbulen
e has to be quanti�ed also in its strength. In turbulen
e, the root-mean squared oper-

ation 
onsists in the square root of the of the mean value of the squared of the velo
ity �u
tuations,

u′i:

ui,rms =
√

〈u′i(t)2〉 (5.4)

on a dis
rete domain

ui,rms =

√√√√ 1

N

N∑

i=1

(u′i)
2

(5.5)
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5.3 Vorti
al stru
tures

Up to now we have des
ribed turbulen
e in a statisti
al way. However, a useful method to

analyze vorti
al stru
tures is well appre
iated.

Between di�erent methods that have been developed during the past years, we 
an �nd several


riteria to identify vorti
es, but the most pre
ise and 
oherent one is the λ2 stru
tures method.

A

ording to the paper of Jeong & Hussain [Jeong and Hussain, 1995℄, the λ2 method uses the

strain and rotation-rate tensors to determine the existen
e of a lo
al pressure minimum due to

vorti
al motion; the vortex 
ore is de�ned as a 
onne
ted region with two negative eigenvalues of

S
2 +Ω

2
.

Sin
e S
2 +Ω

2
is a symmetri
 tensor, it has only real eigenvalues.

Calling the eigenvalues λ1, λ2 and λ3, with λ1 ≥ λ2 ≥ λ3, the requirement for a pressure minimum

is that λ2 < 0 within the vortex 
ore. In parti
ular,

tr(S2 +Ω
2) = λ1 + λ2 + λ3. (5.6)

Considering a general velo
ity gradient for a planar �ow:

∇u =


 a b

c −a




(5.7)

whi
h 
an be rewritten in

S
2 +Ω

2 =


 a2 + bc 0

0 a2 + bc




(5.8)

λ2 is the se
ond eigenvalue of that tensor. The 
ondition previous 
ited requires that λ2 < 0,

therefore a2 + bc < 0.
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5.3 Vorti
al stru
tures 5. Postpro
essing tools for turbulen
e
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CHAPTER

6

RESULTS

�Continuous e�ort - not strength or intelligen
e - is the key to unlo
king our potential.

(W.Chur
hill)�

In this 
hapter results of several LES at di�erent Reτ will be analyzed. The substantial di�er-

en
es between DEVM and EASSM model will be 
ommented upon and spe
ial attention will be

paid to anisotropy e�e
ts of the latter model. In all the simulations, the �ow domain is a re
tan-

gular box. Streamwise and spanwise dimensions are varied with the fri
tion Reynolds number. A

sket
h of the �ow domain is shown in �gure 6.1
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6.1 LES at Reτ = 590 6. Results

Figure 6.1 � Sket
h of the �ow domain used for LESs.

The resolution of the LES is de�ned in terms of grid spa
ings; ∆+
x , ∆

+
y , ∆

+
z are the grid spa
ings

in physi
al spa
e in streamwise, wall-normal and spanwise dire
tions respe
tively, in wall units; in

x and z dire
tions they are de�ned as

∆+
x =

lx
Nx

Reτ , ∆+
z =

lz
Nz

Reτ (6.1)

where Nx and Nz are the number of Fourier modes, lx and lz the lengths of the 
omputational

box, in x and z dire
tions, and Reτ is the Reynolds number based on fri
tion velo
ity.

The following simulations were started using an initial �eld, generated with random �u
tuations.

Then they have been run for some time, in order to rea
h a statisti
ally stationary state. On
e the

simulations have been �nished, statisti
s of the �ow has been 
olle
ted for a 
ertain time period.

6.1 LES at Reτ = 590

In this se
tion LES results of turbulent 
hannel �ow at the bulk Reynolds number 
orresponding

to the DNSs of Moser & Kim at Reτ = 590, are presented. In order to show anisotropi
 e�e
ts of

the EASSM, the related results have been 
ompared with the isotropi
 DEVM model. Three 
ases,

with as
ending order of resolution, are presented. For these simulations,a 
omputational box with

a streamwise and spanwise size of 2πδ and πδ respe
tively, where δ is the 
hannel half width, has

been 
hosen. The bulk Reynolds number is Reb = uδ/ν = 10935 and the fri
tion Reynolds number

is Reτ = 593 in the DNS.

The parameters of the LES are given in table 6.1. Sin
e Reb in the LESs is the same as in the DNS,

Reτ 
an vary. The table shows that Reτ depends on the SGS model and the resolution.

54



6. Results 6.1 LES at Reτ = 590

Table 6.1 � Channel Flow simulations, for Reτ = 590. The �rst three 
ases have been


omputed with the Dynami
 Smagorinsky model (DEVM) while the latter ones refer to the

expli
it algebrai
 SGS model (EASSM). Nx, Ny, Nz are the numbers of Fourier modes in the

streamwise, wall-normal and spanwise dire
tions, respe
tively. ∆y+,min and ∆y+,max are

the minimum and maximum grid spa
ings in wall-normal dire
tion. τw/τw,DNS is the ratio

between the wall shear stress given by the LES and the one from DNS.

Case SGS model Nx ×Ny ×Nz ∆+
x ∆+

z
∆+

y

min∼max Reτ
τw

τw,DNS

DS0 DEVM 64× 65× 64 58 29 0.68 ∼ 27.69 564 0.92

DS1 DEVM 96× 97× 72 38 25 0.31 ∼ 18.91 578 0.97

DS2 DEVM 128× 97× 96 29 19 0.31 ∼ 18.91 583 0.99

EA0 EASSM 64× 65× 64 57 29 0.70 ∼ 28.65 584 0.99

EA1 EASSM 96× 97× 72 39 26 0.32 ∼ 19.47 595 1.03

EA2 EASSM 128× 97× 96 29 19 0.31 ∼ 19.20 587 1.00

Table 6.2 � Channel Flow simulations for Reτ = 590. MPI parallelization details. The �rst

three 
ases have been 
omputed with the Dynami
 Smagorinsky model (DEVM) while the

latter ones refer to the expli
it algebrai
 SGS model (EASSM)

Case SGS model n (no. pro
essors) N (no. nodes) Super
omputer

DS0 DEVM 16 2 Abisko

DS1 DEVM 16 2 Abisko

DS2 DEVM 12 1 Povel

EA0 EASSM 12 1 Povel

EA1 EASSM 16 1 Povel

EA2 EASSM 16 1 Povel
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6.1 LES at Reτ = 590 6. Results

Convergen
e 
riterion. In order to obtain reliable results, the 
onvergen
e of the solution

has been 
he
ked in two ways:

1. the stationarity of the turbulent kineti
 energy;

2. the approa
h to steady-state of the total shear stress.

After several time units, t = 2000, the diagram below ensures the steady-state of the solution,

sin
e the total shear stress assumes the shape of a perfe
tly-straight line.
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Figure 6.2 � Deviatori
 part of the Reynolds stress pro�le in wall units, together with the

total shear stress (in dashed line). −− : EA0 −− : DS0

Resolution study. Before investigating the main 
hara
teristi
s of the �ow, an important

aspe
t to look at is the e�e
t of the spatial resolution, whi
h 
an be 
he
ked by studying the ratio

between the fri
tion at the wall for the LES 
ase and the one for the DNS 
ase, i.e. τwall/τwall,DNS.

This ratio 
an be readily derived from the Reτ of ea
h 
ase,

τwall

τwall,DNS
=

ρu2τ
ρu2τ,DNS

=
Re2τ

Re2τ,DNS

(6.2)

This value should be one is the LES perfe
tly agrees with DNS.
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Figure 6.3 � Variation of averaged wall shear stress, normalized with the DNS value, with

resolution. −△− : EASSM 
ases, −©− : DEVM 
ases, − : DNS

From �gure 6.3 we 
an see the di�erent trends of the two models adopted. While the DEVM gives

a monotoni
 behaviour as the resolution in
reases, the EASSM 
onvergen
e of the τwall towards the

DNS pro�le is not monotoni
. Overall the EASSM gives the best predi
tions in 
omparison with

the DNS.

Pro�les. The mean velo
ity pro�les are shown in �gure 6.22. EASSM predi
tions are 
learly

more a

urate than DEVM at any resolution; the di�eren
e in results be
omes remarkable as soon

as we go further from the inner region and we approa
h the outer layer, towards the 
entreline.

The DEVM overpredi
ts the mean velo
ity pro�le at 
oarser resolutions, while EASSM approa
hes

fairly well the DNS velo
ity pro�le also at the 
oarsest resolution.
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Figure 6.4 � Mean velo
ity pro�les in wall units at in
reasing resolutions. − : EA0, − · − :

EA1, −− : EA2, − : DS0, − · − : DS1, −− : DS2. − : DNS

The 
omponents of Reynolds stress tensor are shown in �gure 6.5. The presen
e of the walls

and the shear for
es the �ow to be highly anisotropi
. Therefore, �u
tuations along streamwise

dire
tion are mu
h bigger than in the wall-normal and spanwise dire
tions. Here the DEVM shows

a good predi
tion of the u′ 
omponent, while the estimation of the other 
omponents v′ and w′

is quite ina

urate 
ompared to the EASSM. This is reasonable, sin
e the DEVM is an isotropi


model and doesn't properly model the SGS anisotropy.

By 
ontrast, we 
an 
on
lude that the EASSM gives a good predi
tion of the anisotropy, whi
h is

well modelled through the SGS model. A 
lose-up of the deviatori
 
omponent of the Reynolds

stress pro�le is shown in �gure 6.6. Both models seem to give a good performan
e. The e�e
ts of

in
reasing resolution are highlighted in the �gure: the arrow points to as
ending resolution 
ases.
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6. Results 6.1 LES at Reτ = 590

a)
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Figure 6.5 � Reynolds stress 
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6.1 LES at Reτ = 590 6. Results

The following diagram shows that EASSM and DEVM have a similar predi
tion also of the ratio

turbulen
e produ
tion P and the turbulent dissipation ε, and they present results 
lose to DNS.

Regarding EASSM, an important aspe
t to remark is the P = ε assumption in the SGS model.

However, this assumption is not valid for the resolved s
ales.
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Figure 6.7 � Turbulent produ
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6. Results 6.1 LES at Reτ = 590

SGS Anisotropy e�e
ts. Let's perform now a deep analysis of the 
ontribution of the sub-grid

s
ale model to predi
tion performan
e. First of all, a distin
tion between the resolved quantities

and the SGS ones must be de�ned. In order to fo
us on anisotropy predi
tion, we will analyze

the deviatori
 part of the Reynolds stress. Let's 
all the resolved part of this quantity τr,+12 , and

the SGS 
ontribution (given by the spe
i�
 model), τSGS,+
12 . Therefore, the total predi
tion of the

quantity will be

τ+12 = τr,+12 + τSGS,+
12 (6.3)

a)
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Figure 6.8 � Deviatori
 part of the Reynolds stress pro�le in wall units, a) with DEVM

model b) with EA model. Bla
k arrows point at in
reasing resolutions. − : DNS

From the �gures above we 
an note an important aspe
t of the SGS models: at in
reasing

resolutions, the SGS predi
tion de
reases, while the resolved part in
reases. This is reasonable:

the �ner the resolution is, the larger the range of resolved s
ales will be. Therefore, the SGS


ontribution will be
ome smaller with in
reasing resolution. Vi
e versa, at the smallest resolution

we 
an analyze the performan
es of ea
h model: EASSM gives the best predi
tion, its 
ontribution

is larger than DEVM, and is a superior model for the quality of the �ow predi
tions given.
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6.1 LES at Reτ = 590 6. Results

Flow visualizations. Some �ow visualizations of the �u
tuating �ow �eld have been 
arried out

in order to 
apture the elongated stru
tures (streaks), whi
h have been generated by the in�uen
e

of the wall shear stress at a very small distan
e from the wall. LES results are 
ompared with DNS

(by a 
ourtesy of P.S
hlatter), at the same fri
tion Reynolds number.

Although the des
ription of the streaks is not that detailed, LES with the EASSM model is able to


apture some of this parti
ular stru
tures at the wall. On the other hand, DNS gives a 
omplete

des
ription and the �ow is perfe
tly des
ribed sin
e a wider range of s
ales have been 
omputed.

The streaks are only seen in the visualizations of the streamwise velo
ity �eld; in the visualizations

of the other two velo
ity 
omponents the streaks are absent.

a)

b)

Figure 6.9 � Horizontal 
ontour plots of streamwise �u
tuations u′+
at y+ ≈ 8, along the

xz plane, a) simulation EA2, b) DNS by P.S
hlatter.
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6. Results 6.1 LES at Reτ = 590

a)

b)

Figure 6.10 � Horizontal 
ontour plots of wall-normal �u
tuations v′+ at y+ ≈ 8, along the

xz plane, simulation EA2, b) DNS by P.S
hlatter.

a)

b)

Figure 6.11 � Horizontal 
ontour plots of spanwise �u
tuations w′+
at y+ ≈ 8, along the

xz plane, simulation EA2, b) DNS by P.S
hlatter.
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6.2 LES at Reτ = 2000 6. Results

6.2 LES at Reτ = 2000

Let's study now a higher Reτ 
ase. In this se
tion LES of a 
hannel �ow at the bulk Reynolds

number 
orresponding to the DNSs of Jiménez et al (2006) of Reτ = 2000, are presented.

For this 
ase two simulations have been 
arried out, one with the DEVM and the other with EASSM,

with a 
omputational box 5πδ long in streamwise dire
tion and 2πδ long in spanwise dire
tion. The

bulk Reynolds number is Reb = 43466 and the DNS fri
tion Reynolds number is Reτ = 2003.

Details of these simulations are shown in table 6.3.

Table 6.3 � Channel Flow simulations, for Reτ = 2000. The �rst 
ase has been 
omputed

with the Dynami
 Smagorinsky model (DEVM) while the latter one refers to the expli
it

algebrai
 SGS model (EASSM)

Case SGS model Nx ×Ny ×Nz ∆+
x ∆+

z
∆+

y

min∼max Reτ
τw

τw,DNS

DS DEVM 160× 193× 160 180 72 0.25 ∼ 30.04 1836 0.84

EA EASSM 160× 193× 160 198 79 0.27 ∼ 32.98 2016 1.01

Table 6.4 � Channel Flow simulations, for Reτ = 2000. MPI parallelization details. The

�rst 
ase has been 
omputed with the Dynami
 Smagorinsky model (DEVM) while the latter

one refer to the expli
it algebrai
 SGS model (EASSM)

Case SGS model n (no. pro
essors) N (no. nodes) Super
omputer

DS DEVM 40 5 Abisko

EA EASSM 40 2 Povel

From the τw/τw,DNS value we 
an note that the LES with DEVM strongly deviates from DNS;

on the other hand, EASSM ratio agrees with DNS. Despite the resolution of the LESs is 
oarse, we


an dedu
e that EASSM gives the best predi
tion of Reτ .

Pro�les. While in the previous simulations mean velo
ity pro�les have been well-predi
ted by

both EASSM and DEVM, here the di�eren
e between these two methods be
omes more notable.

Steady-state has been rea
hed after t = 800, and EASSM gives a good predi
tion of the entire pro�le,

while DEVM gives results that deviates strongly from DNS as the outer layer is approa
hed. The

good performan
e of EASSM is 
on�rmed when having a look at the root-mean-squared of the

streamwise, wall-normal and spanwise �u
tuations. Due to an additional des
ription of anisotropy,

the EASSM is able to 
apture well the values of the �u
tuations peaks, whi
h are visible 
lose to
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6. Results 6.2 LES at Reτ = 2000

the wall.

Like the previous Reτ = 590 
ase, the deviatori
 part of the Reynolds stress is well predi
ted by

both methods, however, the EASSM still gives the results 
losest to the DNS. The 
lose-up of the

Reynolds shear stress pi
ture in proximity of the peak shows an important feature of the EASSM.

EASSM is more su

essful in the peak predi
tion. This means that the DEVM would require a

substantially better resolution for a similar result, therefore using more 
omputational time.
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Figure 6.12 � Mean velo
ity pro�les in wall units. − : EA − : DS0 − : DNS
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Figure 6.13 � a,b,
)Root-mean squared �u
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 part of the Reynolds stress, with total shear stress in dashed line.
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6. Results 6.2 LES at Reτ = 2000

Regarding turbulent produ
tion vs dissipation ratio, we note that the DEVM underpredi
ts

it largely, most of all in the outer region, while the expli
it algebrai
 model shows a reasonable

agreement with DNS. Results are shown in �gure 6.15.
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Figure 6.15 � Turbulent produ
tion-dissipation ratio. − : EA − : DS0 − : DNS
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6.2 LES at Reτ = 2000 6. Results

SGS Anisotropy e�e
ts. In the following diagrams the di�erent 
ontributions from the

resolved s
ales and the SGS s
ales to the Reynolds shear stress are given, a

ording to the de�nition

6.3.

Looking at the peaks ( at −1 < y/δ < −0.9) we 
an see that both models give a higher 
ontribution

of the SGS stresses, with respe
t to the Reτ = 590 
ase. It 
ould be reasonable to expe
t that at

higher fri
tion Reynolds number, the bigger will be the anisotropy of the �ow, most of all near the

wall. For this reason the anisotropi
 EASSM gives the best estimation of the total Reynolds shear

stress; the 
ontribution of the SGS model is �ve times bigger than in the DEVM.
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Figure 6.16 � Deviatori
 part of the Reynolds stress pro�le in wall units, a) with DEVM

model b) with EA model. Bla
k arrows point at in
reasing resolutions. − : DNS
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6. Results 6.2 LES at Reτ = 2000

Flow visualizations. As in the previous se
tion, some snapshots of the �ow in LES, with the

Expli
it Algebrai
 (EA) and the Dynami
 Smagorinsky (DS) models are presented; the snapshots

have been generated at a very 
lose distan
e to the wall. From a physi
al point of view, in this 
ase

more elongated stru
tures are visible. This is reasonable, the higher the fri
tion Reynolds number,

the larger the total shear stress will be, with a strong 
ontribution given by the Reynolds stress.

Therefore, longer and more energeti
 stru
tures will appear, than in other lower Reτ 
ases.

Experimental (with parti
le-image velo
imetry, PIV) and DNS studies have given a deeper insight

of these spatially 
oherent, stress-bearing stru
tures and shown that they play an important role

in transport problems, parti
ularly in the near-wall region [Marusi
 et al., 2010℄. Therefore, in this


ase the a

ura
y of the model is investigated regarding the 
apability of the model to 
apture these

elongated stru
tures.

The EA is seen to be more able to predi
t these. In parti
ular, it 
aptures a wider range of

�u
tuating amplitudes, with respe
t to the DS model.

a)

b)

Figure 6.17 � Horizontal 
ontour plots of streamwise �u
tuations u′+
at y+ ≈ 8, along the

xz plane, a) simulation EA2, b) simulation DS2.
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6.2 LES at Reτ = 2000 6. Results

a)

b)

Figure 6.18 � Horizontal 
ontour plots of wall-normal �u
tuations v′+ at y+ ≈ 8, along the

xz plane, simulation EA2, b) simulation DS2.

a)

b)

Figure 6.19 � Horizontal 
ontour plots of spanwise �u
tuations w′+
at y+ ≈ 8, along the

xz plane, simulation EA2, b) simulation DS2.
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6. Results 6.2 LES at Reτ = 2000

λ2 stru
tures. The a

ura
y of the model have also been studied by looking at the ability

to predi
t the vorti
ity. Here vorti
al stru
tures, 
omputed by the lambda method are shown.

The most signi�
ant di�eren
e between the two models 
on
erns here the generation of vorti
al

stru
tures in the 
enterline; here the DEVM presents fewer vorti
al stru
tures than the EASSM.

This is a 
onsequen
e given by the anisotropy estimation, sin
e anisotropy strongly in�uen
es the

�ow vorti
ity.

0.2 0.4 0.6 0.8
vel_u

0.00409 0.827

Figure 6.20 � Vorti
al stru
tures in turbulent 
hannel �ow at Reτ = 2000, visualized by

isosurfa
es of λ2, 
olored by the velo
ity magnitude, from EA simulation.

0.2 0.4 0.6 0.8
vel_u

0.00409 0.827

Figure 6.21 � Vorti
al stru
tures in turbulent 
hannel �ow at Reτ = 2000, visualized by

isosurfa
es of λ2, 
olored by the velo
ity magnitude, from DS simulation.
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6.3 LES at Reτ = 5200 6. Results

6.3 LES at Reτ = 5200

For this �nal 
ase, we will show some results of LES, 
omputed for the fri
tion Reynolds number

Reτ = 5200. All the results will be 
ompared with the DNS performed by Lee & Moser (2014).

Di�erently from the other two simulations, in the Reτ = 5200 LES with the EASSM an important

issue has been fa
ed: the previous 1D-parallelized 
ode wasn't able to 
arry out simulations, be
ause

of the limited amount of pro
essors that 
ould be used. This problem has been solved implementing

the EASSM in the SIMSON 2D parallelized 
ode, where the work of this thesis has been fo
used

on. Thus, it has been possible to largely extend the number of pro
essors and, with the help of

larger super
omputers, the 
omputation has been 
arried out in roughly half a month.

The simulation has been 
arried out with a 
omputational box 5πδ long in streamwise dire
tion and

2πδ long in spanwise dire
tion. The bulk Reynolds number is Reb = 128127 and the DNS fri
tion

Reynolds number is Reτ = 5186.

Details of these simulations are shown in table 6.5.

Table 6.5 � Channel Flow LES simulation with the expli
it algebrai
 SGS model (EASSM),

at Reτ = 5200

Case SGS model Nx ×Ny ×Nz ∆+
x ∆+

z
∆+

y

min∼max Reτ
τw

τw,DNS

EA EASSM 512× 385× 512 162 65 0.17 ∼ 42.54 5293 1.04

Table 6.6 � Channel Flow simulations, for Reτ = 5200 LES with the expli
it algebrai
 SGS

model (EASSM). MPI parallelization details.

Case SGS model n (no. pro
essors) N (no. nodes) Super
omputer

EA EASSM 16/32× 16/32 11/43/64 Lindgren/Triolith

Despite the resolution is still 
oarse, the τw/τw,DNS value shows that the Reτ predi
tion with

the EASSM model is very 
lose to DNS.
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6. Results 6.3 LES at Reτ = 5200

Pro�les. Here the good predi
tion of the mean velo
ity pro�le given by EASSM is even more

visible in �gure 6.22.The EASSM gives results that are very 
lose to the DNS, but they begin to

di�er as we approa
h the outer layer. The underpredi
tion by the EASSM of the outer layer 
an

be due to 
onvergen
e problems due to the limited time of the entire simulation, whi
h is slightly

small a

ording to the previous experien
es. In fa
t, the maximum time units rea
hed are t = 210.

This 
ould indi
ate that the LES is not fully 
onverged yet.

The Reynolds stress 
omponents are however well-estimated by the EASSM, apart from the fa
t

that the u′ and w′
�u
tuations peaks are shifted a bit in the wall-normal dire
tion.

Reynolds stress pro�les are well 
omputed, the only ex
eption stays in the R+
vv inner layer pro�le

1

. Anisotropy is 
aptured in a good way: Reynolds shear stress predi
tion gives only very small

dis
repan
ies, be
ause of the limited simulation time and the not 
omplete apparoa
h to the steady-

state. On
e more, the resolution used for the LES seems quite suitable for this fri
tion Reynolds

number.
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Figure 6.22 � Mean velo
ity pro�les in wall units. − : EA − : DNS

1

However, the mispredi
tion of this quantity in the inner layer is due by the SGS model, and it has been proved

that it doesn't in�uen
e the other results at all.
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6.3 LES at Reτ = 5200 6. Results
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Figure 6.23 � Reynolds stress 
omponents pro�les in wall units, on a semilogarithmi
 plot.

d) Reynolds shear stress, with total shear stress in dashed line. − : EA, − : DNS
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 part of the Reynolds stress pro�le in wall units. − : EA − : DNS
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6. Results 6.3 LES at Reτ = 5200

SGS Anisotropy e�e
ts. Let's 
onsider only LES with EASSM. In the Reτ = 590 LES a fair

and high resolution of the �ow has been used so that the SGS 
ontribution revealed to be relatively

small 
ompared to the resolved s
ale one. In 
ontrast, Reτ = 2000 LES has been performed using

a relatively low resolution in terms of grid spa
ings. As a 
onsequen
e, the SGS 
ontribution

be
omes signi�
ant with respe
t to the resolved s
ales. In terms of resolution, the Reτ = 5200 is

an intermediate 
ase, with grid spa
ings that are bigger than in the Reτ = 590 
ase and smaller

than in the Reτ = 2000 
ase.

For simpli
ity, a reminding table with the respe
tive grid spa
ings for ea
h EASSM 
ase is shown

below.

Table 6.7 � Channel Flow simulations, for di�erent Reτ .

Case SGS model ∆+
x ∆+

z
∆+

y

min∼max Reτ

EA2 EASSM 58 29 0.31 ∼ 19.20 587

EA EASSM 198 79 0.27 ∼ 32.98 2016

EA EASSM 162 65 0.17 ∼ 42.54 5293

As a result, the SGS 
ontribution is anyway notable and pushed most of all towards the wall,

where it helps in the overall predi
tion.
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Figure 6.25 � Deviatori
 part of the Reynolds stress pro�le in wall units, with EA model.

− : DNS
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6.3 LES at Reτ = 5200 6. Results

Flow visualizations. A rough resolution 
he
k 
an also be done by having a look at some

snapshots of the �ow at a very 
lose distan
e from the wall. Here we 
an say that the resolution


hosen for the streamwise and spanwise dire
tion is right for the purpose of this simulation. On
e

more, some elongated stru
tures are visible, and their length appears to be longer than in the

previous 
ases. A

ording to Hut
hins [Hut
hins and Marusi
, 2007℄ in the near-wall region there

are large-s
ale high-speed events, where the lo
al istantaneous Reynolds stresses (all 
omponents:

u2,v2,w2
and uw) are ampli�ed, and large low-speed events, where they are damped. This is due

to the lo
al shear rate near the wall, whi
h is higher under high-speed events.

Regarding the resolution adopted, one may say that for the predi
tions of the spanwise �u
tuations

are a

urate with a wide range of values shown.

Figure 6.26 � Horizontal 
ontour plots of streamwise u′+
�u
tuations at y ≈ −δ, along the

xz plane, simulations EA at Reτ = 5200. The abs
issa is divided by a fa
tor of 10−4.
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6. Results 6.3 LES at Reτ = 5200

a)

b)

Figure 6.27 � Horizontal 
ontour plots of wall-normal v′+ and spanwise �u
tuations w′+
at

y ≈ −δ, along the xz plane, simulations EA at Reτ = 5200. The abs
issa is divided by a

fa
tor of 10−4.
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6.3 LES at Reτ = 5200 6. Results

λ2 stru
tures. For resolution reasons, this 
ase is hard to postpro
ess in terms of volume

renderings. Therefore, λ2 stru
tures for this last 
ase are visualized only for a part of the main �ow

domain. In order to see how the model behaves at the wall, we have de
ided to redu
e the domain

in the following way:

Nx ×Ny ×Nz = 512× 385× 512 −→ 256× 195× 256

Vorti
al stru
tures are 
oloured by the the velo
ity magnitude. The more we approa
h the


entreline, the weaker the vorti
al stru
tures will be. A possible reason to that lies in the fa
t that

this simulation is a LES, so that the resolution adopted is not enough to 
ompletely des
ribe the

smallest s
ales that appears on the 
entreline. Therefore, LES is not able to 
ompletely 
apture

vorti
al stru
tures that are generated along the 
entreline.

0 0.2 0.4 0.6 0.8
vel_u

-6.6e-06 0.842

Figure 6.28 � Vorti
al stru
tures in turbulent 
hannel �ow at Reτ = 5200, visualized by

isosurfa
es of λ2, and 
oloured by the velo
ity magnitude, from EA simulation.
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6. Results 6.3 LES at Reτ = 5200

LES vs DNS: a volume perspe
tive. To 
omplete the analysis of the LES and the impa
t

of EASSM on anisotropy predi
tion let's have an overall look to the results in terms of volume

renderings of the �ow. In the �gures below the volume rendering of the LES with the EASSM

together with the volume rendering from the DNS simulation of Lee & Moser are shown; both of

them have been 
omputed at Reτ = 5200. The resolution of the LES is high enough so that it 
an

be 
ompared with the DNS.

The LES is able to predi
t a wide range of s
ales, in
luding small s
ales that are visible by the

human eye. Apart from the smallest stru
tures, the LES volume rendering seems of a reasonable

quality and stru
tures near the wall seem to be well-predi
ted.

0 0.2 0.4 0.6 0.8
vel_u

-0.000861 0.854

Figure 6.29 � Volume rendering of the u velo
ity in a turbulent 
hannel �ow at Reτ = 5200,

from LES with the EASSM .

Figure 6.30 � Volume rendering of the u velo
ity in a turbulent 
hannel �ow at Reτ = 5200,

from a DNS of Lee & Moser (2014).
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6.3 LES at Reτ = 5200 6. Results

High-Reynolds number reliability of the EASSM. As it was written before, EASSM is a

LES model that solves an additional equation for anisotropy in order to model the SGS stress ten-

sor. By 
ontrast, DEVM is an eddy-vis
osity based model that doesn't take into a

ount anisotropy

at all.

If we in
rease the fri
tion Reynolds number anisotropi
 e�e
ts will be
ome larger and larger, espe-


ially near the wall. Therefore, in
reasing the LES fri
tion Reynolds number, we would expe
t the

Expli
it Algebrai
 model to improve the �ow predi
tion, and the Dynami
 Smagorinsky model to

degrade. In order to investigate this aspe
t, a 
olle
tion of the LES at the best resolution has been

done, and a parti
ular fo
us on the Reynolds shear stress has been given in �gure 6.31.

For 
omputational reasons, LES with DEVM are given only for the �rst two fri
tion Reynolds

numbers. The results are satisfa
tory and 
onsistent with the expe
tations: Dynami
 Smagorinsky

performan
es be
ome worse and worse as soon as we push the Reynolds number up to Reτ = 5200,

while the EASSM get 
loser and 
loser to DNS results.

Thus, we think that with in
reasingRe LES with the EASSM shows better and better agreement

with DNS.
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Figure 6.31 � A 
lose-up of the Reynolds shear stress peaks very 
lose to the wall, for three

di�erent Reynolds numbers.−△− : EA 
ases, − ∗ − : DEVM 
ases, − : DNS
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CHAPTER

7

CONCLUSIONS & FUTURE WORK

�Towards In�nite and Beyond! (B.Lightyear)�

Large-eddy simulations of a fully developed 
hannel �ow have been performed at three di�erent

fri
tion Reynolds numbers: Reτ = 590, Reτ = 2000 and Reτ = 5200. The �rst simulations, 
arried

out for Reτ = 590, proved the 
apa
ity of the EASSM model to 
apture anisotropy e�e
ts of the

�ow. SGS 
ontribution to the overall estimation of the �ow, and in parti
ular to the Reynolds shear

stress, de
reases with in
reasing resolutions. In 
ontrast to the Dynami
 Smagorinsky model, the

averaged wall shear stress ratio of LES with the EASSM has a non-monotoni
 behaviour. Thus the

EASSM overpredi
ts as well as underpredi
ts the wall shear stress.

EASSM has also revealed to be more a

urate and suitable for high fri
tion Reynolds number �ows.

The LES at Reτ = 2000 shows that the EASSM predi
tion of the mean �ow velo
ity pro�le is mu
h


loser to the DNS results than LES with DEVM. This is a remarkable aspe
t most of all in the

outer layer, where a big gap between DNS and LES with DEVM is noti
ed. A deeper study of the

root-mean-squared �u
tuations in x, y and z dire
tion proves the ability of the anisotropi
 model

to 
apture in a better way the peaks found 
lose to the wall. Similar results have been obtained
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7. Con
lusions & future work

for the LES with the EASSM of the last 
ase at Reτ = 5200; EASSM behaved fairly well regarding

the 
omputation of the Reynolds stress 
omponents, espe
ially for the Reynolds shear stress.

We have found that the gap in terms of a

ura
y between DEVM and EASSM be
omes larger and

larger at in
reasing fri
tion Reynolds numbers. This is reasonable, the higher the fri
tion Reynolds

number, the more the e�e
ts of �ow anisotropy are important, most of all near the wall. Therefore,

EASSM is able to give a satisfa
tory performan
e also at high Reτ , while the DEVM gives get

worse and worse predi
tions.

Another important aspe
t is that a 
onsiderable redu
tion of 
omputational resour
es is possible

using the EASSM. The a

ura
y a
hieved with a 
oarser mesh is 
omparable only to a DEVM


ase with a �ne mesh. The 
oarser the mesh, the lower the 
omputational time needed to run the

simulation.

In this thesis work, only non-rotating �ows, are investigated. However, the EASSM is also very

suitable for LES of rotating �ows, e.g. rotating 
hannel �ows. A possible 
ontinuation of this

work would be a 
omplete study of LES of rotating 
hannel �ows with separation 
ases and the

investigation of the behaviour of the Expli
it Algebrai
 SGS S
alar Flux (EASFM), for the 
ase at

Reτ = 5200 and beyond. Complex geometries will also be taken into a

ount in further studies.

The work will be 
ontinued with a PhD work in LES modelling at KTH, in order to present the

results at the European Turbulen
e Conferen
e 15 (ETC15) where the simulation results with the

Expli
it Algebrai
 SGS model at Reτ = 5200 will be 
ompared with the performan
es of the

Dynami
 Smagorinsky model, together with DNS data as referen
e.

The simulation time will be in
reased using a more powerful super
omputer, in order to rea
h a

fully developed steady state of the �ow.
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