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Introduzione in Italiano

Questa tesi si basa sull’utilizzo di nuove tecnologie per facilitare l’analisi

di articoli giornalistici e pone l’attenzione, in particolare, su algoritmi di

sentiment analysis e di semantic text classification.

Lo scopo finale di questo lavoro consisteva nell’aiutare i ricercatori sociali

automatizzando i processi di analisi di grandi quantità di documenti.

Nelle Scienze Sociali alcuni ricercatori usano la teoria dei frames per sve-

lare i significati nascosti nella realtà che viene descritta spesso in maniera

complessa e dettagliata dai quotidiani. Questo metodo consiste nell’analiz-

zare un set di documenti redigendo poi una mappa di classificazione che sarà

utilizzata in seguito per classificare i testi, e costituirà la base di partenza

dei ricercatori per la dimostrazione delle loro ipotesi.

Attualmente molti algoritmi sono in grado di classificare testi automati-

camente; nello specifico essi possono individuare la categoria di appartenenza

di un testo basandosi sulle informazioni contenute nei modelli di classifica-

zione. È importante specificare che un “modello di classificazione” descrive

delle categorie mediante delle parole chiave. Per esempio, se volessimo clas-

sificare una serie di articoli stabilendo se riguardano lo sport o la politica,

potremmo creare un modello di classificazione che descrive rispettivamente

le due categorie con le parole chiave ad esse correlate (ad esempio per la poli-

tica si potrebbe fare riferimento a parole quali: Partito Democratico e Forza

Italia, mentre per lo sport si potrebbero considerare le parole:pallacanestro e

pallavolo). Infatti l’idea fondamentale di questi algoritmi è quella di indicare

quali categorie appaiono in un testo facendo riferimento alle parole chiave in
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esso presenti.

Nel nostro caso una famiglia di algoritmi molto importante è quella rela-

tiva al topic modeling, il quale, analizzando un insieme di documenti testuali

riesce a classificarli automaticamente creando vari modelli di classificazio-

ne che possono essere utilizzati dai ricercatori per trarre nuovi spunti di

riflessioni per le loro ricerche.

Questi strumenti sono estremamente potenti perchè permettono ai ricer-

catori di trovare degli aspetti su cui non avevano mai ragionato, non sempre

però riflettono esattamente le loro idee. Non avere a disposizione uno stru-

mento che permetta loro di classificare dei documenti secondo le idee che

hanno già formulato, in certi casi, costituisce un limite.

A questo punto, confrontando il modo di classificare dei computer con

quello umano, possiamo capire che l’uomo abbina ad ogni parola un signi-

ficato in base al contesto ed alle conoscenze pregresse. In merito possiamo

citare Ausubel, il quale afferma che: “Il singolo fattore più importante che

influenza l’apprendimento sono le conoscenze che lo studente già possiede”.

Sono stati creati quindi degli algoritmi di classificazione cercando di uti-

lizzare la conoscenza umana per comprendere automaticamente il giusto si-

gnificato di ogni parola. In particolare è nato un filone di ricerca che utilizza

Wikipedia come fonte di conoscenza. Più precisamente ogni pagina in essa

contenuta viene considerata dal sistema come un concetto base (per esempio

può rappresentare una persona, un luogo, un evento o un oggetto) ed i col-

legamenti ipertestuali vengono interpretati per comprendere come i concetti

sono legati tra loro. Questi algoritmi, quindi, analizzando un testo sono in

grado di abbinare alle parole il giusto significato collegandole, dove possibile,

alla relativa pagina di Wikipedia. Tale sistema trae giovamento dal fatto che

Wikipedia viene sempre aggiornata da persone che vi riversano le proprie

conoscenze.

Possiamo cos̀ı affermare che alcuni algoritmi riescono a classificare il te-

sto utilizzando parte della conoscenza umana, tuttavia, in alcuni casi non

riescono ad evincere esattamente il significato di ogni parola. Se per esem-
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pio pensiamo a due articoli: uno tratto dal Manifesto e l’altro dal Sole 24

Ore, dobbiamo considerare che tali testi potrebbero parlare dello stesso ar-

gomento utilizzando toni totalmente diversi. In questo caso sarebbe utile far

riferimento agli algoritmi di sentiment analysis che sono in grado di capire

se una frase esprime un sentimento positivo, negativo o neutro. Utilizzando

questi algoritmi possiamo infatti contestualizzare meglio ogni frase in modo

da creare un modello di classificazione adatto e migliorare cos̀ı il risultato

finale.

In questa tesi è stata sviluppata un’applicazione web chiamata SAClet,

che permette ai ricercatori sociali di importare le analisi effettuate con la

suddetta teoria dei frame per poi riutilizzarle nella classificazione di nuovi

documenti.

Il sistema è in grado quindi di interpretare il lavoro dei ricercatori gene-

rando un modello di classificazione che potrà essere valutato e migliorato al

fine di classificare in maniera corretta nuovi documenti.

Per testare le funzionalità di SAClet, ho utilizzato una ricerca effettuata

dal professore Edoardo Mollona e dott. Luca Pareschi, riguardante la priva-

tizzazione delle acciaierie italiane negli anni ’80. Nello svolgimento di tale

ricerca sono stati analizzati seicento articoli creando un insieme di frames

che il sistema ha poi utilizzato per generare un modello di classificazione in

grado di analizzare altri documenti.

I risultati di classificazione cos̀ı ottenuti sono soddisfacenti, specialmente

se si considera il fatto che i modelli di classificazione utilizzati sono stati gene-

rati automaticamente dal sistema; chiaramente l’intervento umano potrebbe

migliorare notevolmente le prestazioni.

Un altro aspetto molto interessante, è stato il fatto che il sistema ha

rilevato dei problemi di sovrapposizione delle categorie del modello prima

ancora che se ne accorgessero i ricercatori. Questo fatto ci fa pensare che lo

strumento è un ottimo banco di prova anche per valutare il loro lavoro.

Le prestazioni del sistema sono state penalizzate anche dal fatto che gli

articoli presi in considerazione erano scritti in italiano e quindi gli algorit-
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mi di classificazione erano basati sulla Wikipedia italiana, che risulta essere

molto meno dettagliata rispetto a quella inglese. A tal proposito sarebbe

interessante provare il sistema su un insieme di documenti scritti in inglese.

Purtroppo nel sistema non è stato incluso nessun algoritmo di sentiment

analysis, che sicuramente lo avrebbe aiutato ad utilizzare dei modelli di

classificazione adatti al contesto di ogni frase.

Il lavoro effettuato fin’ora mette le basi per poter iniziare ad utilizzare

i piú moderni algoritmi di sentiment analysis per migliorare ulteriormente

l’analisi del contesto dei documenti.

Stiamo già lavorando per implementare nuove funzionalità. Infatti la

pagina che visualizza i risultati della classificazione di un corpus di articoli

attualmente permette una navigazione basata sulle categorie rilevate; siamo

già al lavoro per crearne una nuova incentrata sui concetti estratti dai te-

sti o sulle co-occorrenze con le categorie stesse. Allo stesso modo stiamo

progettando dei filtri di ricerca che sfruttano i collegamenti tra i concetti

permettendo, ad esempio, di trovare tutti i documenti in cui sono citati il

Presidente della Repubblica ed il suo predecessore.

Vogliamo integrare in SAClet qualche algoritmo di topic modeling, in mo-

do tale da permettere ai ricercatori di caricare dei set di articoli che non han-

no mai visto, per ottenere automaticamente nuovi modelli di classificazione

suscettibili di ulteriori miglioramenti.

Questo sistema renderebbe SAClet una sorta di lente di ingrandimento

per poter sondare i significati nascosti nei testi, leggendo attraverso le parole.
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Chapter 1

Introduction

In this thesis we are going to talk about technologies which allow us to

approach sentiment analysis on newspapers articles. The final goal of this

work is to help social scholars to do content analysis on big corpora of texts

in a faster way thanks to the support of automatic text classification.

In social sciences, some qualitative researchers use the frame analysis

methodology to discover obscure relationships hidden in large sets of docu-

ments. This methodology consists in analyzing a set of articles, creating a

coding sheet and using it to classify all documents; thanks to the classification

thus obtained, scholars can support their initial hypothesis.

There are many algorithms which can classify texts in an automated way.

In facts they are able to decide the category a text belongs to by using the

knowledge contained in classification models.

A classification model is basically composed of key concepts, called cat-

egories, which are represented by a set of relevant words. For instance, if

we want to classify some news, and we want to tell whether they concern

sports or politics we can create a classification model that describes the two

categories with their relevant words (like football and basketball for sports,

democrat and republican for politics). The basic idea of these kinds of algo-

rithms is to tell which categories appear in a text understanding which set

of relevant words is present.

2
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Another interesting family of algorithms is topic modeling, which can

classify sets of documents using auto generated classification models. This

gives scholars many new hints to understand and interpret documents. In

fact these tools are very efficient and innovative, but that does not necessarily

mean they reflect the work researchers had previously done.

If we compare the performance of these tools to human approach in text

classification, it is clear that humans are conditioned by their cultural back-

ground. Actually as Ausubel sais “The most important single factor influ-

encing learning is what the learner already knows.” [ANH+68].

In order to obtain a similar effect, several algorithms have been developed

which use human knowledge to interpret the meaning of every word present

in a text. In fact, a specific research branch started using Wikipedia as a

knowledge base, in which researchers developed algorithms which were able

to understand the meaning of any single word linking it to its respective

Wikipedia page. The identified word takes the name of the named entity,

which could refer to persons, places, events or material things. The links

between all Wikipedia pages help the algorithm to better understand the

context. Finally we can observe that this knowledge base is always evolving

because many people contribute to keep it up to date.

With this in mind some algorithms can classify texts implicitly using

parts of human knowledge. Again we can find some cases where software

fails to understand the right meaning of a word; let’s think about politically

oriented newspapers which can talk of the same topic yet give words different

meanings which can be positive, negative or neutral. To let software deal

with these nuances we can use sentiment analysis algorithms and in this way

we can help classification algorithms by giving them some hints to better

understand the context.

The main idea behind my work is to use semantic technologies supported

by other technologies like the sentiment analysis in order to better understand

and classify newspaper articles.

SAClet is a web application that has been developed to help researchers
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import the work they have previously done so that they can classify any new

sets of documents. The classification models automatically generated reflect

the results of scholars’ previous research.

Not only does the software provide researchers with tools able to evaluate

the efficiency of their classification model but it also gives them the possibility

to enhance it with their specific knowledge of the topic.

Furthermore researchers are given the chance to analyze any kind of texts,

even out of a set of documents, classifying each paragraph and explaining

which topics were involved in the choice of classification.

This system has been tested by some qualitative scholars who have an-

alyzed about 600 articles concerning the privatization of Italian public steel

industries. In this case the system created a classification model in an auto-

mated way by relaying on researchers’ work in order to enable them to try

this classification on a new set of articles.

The results obtained with the classification model generated by the sys-

tem without researchers’ improvements was good, yet the most interesting

outcome was the evaluation of this model. Actually SAClet found some prob-

lems concerning overlapping categories which in the meanwhile had also been

discovered also by researchers.

Nevertheless the classification performance was disadvantaged by the fact

that texts were written in Italian and Wikipedia’s Italian version is not as

rich in links as the English one. The usage of English texts would improve the

system’s overall performance, but out of the box it works also with French,

German and Portuguese texts.

The work we have done so far is a springboard to enhance text classifi-

cation using advanced sentiment analysis algorithm to improve the context

detection.

At the moment we are creating an innovative interface to explore any

sets of documents by the following criteria: text classification, extracted

named entities and their co-occurrences. Furthermore named entities permit

us to create smart filters based on Wikipedia knowledge; for instance, if we
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consider the visualization of all documents regarding a Prime minister and

his predecessor.

Furthermore we are developing a way to combine semantic classification

algorithms with the topic modeling ones. SAClet could then propose to

scholars the power of both instruments, letting them upload any set of doc-

uments and obtain some classification models which are ready to use. This

way SAClet could become a sort of magnifying glass for big corpora of texts.

The structure of the thesis is the following:

Chapter 2 is an overview of the qualitative researchers’ work and on text

classification technologies;

Chapter 3 is an overview of SAClet, the web application developed in this

thesis;

Chapter 4 gives a technical description of SAClet’s architecture and func-

tioning;

Chapter 5 contains an evaluation of the results obtained during the devel-

opment of SAClet;

Chapter 6 concludes this thesis and proposes some hints about future works.



Chapter 2

Content analysis: qualitative

and automated extraction of

meaning

2.1 Qualitative research in social sciences

Traditionally there are three different ways to approach qualitative re-

search in social sciences [DNB13]. The first one consists in reading texts

and interpreting them directly. Non replicability is the main drawback of

this method; in facts for other scholars it is impossible to apply the same

interpretation on other articles.

The second one uses a lively and important methodology called frame

analysis [Mat09]. Yet this method too is not “trouble free’, we can easily

detect three main problems in it. First of all it is very difficult to analyze

large sets of articles. Secondly if a scholar discovers too many frames the

final analysis can be hard to do. Thirdly, scholars must have an idea of what

they want to find before starting.

In the third one scholars use computers to discover whether a specific

set of words appears in a text or not. This method is mainly based on a

researcher intuition and it implies, as a drawback, the fact that some hidden

6
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meaning could be totally ignored.

The qualitative research that I used as a case study is the one made by

professor Edoardo Mollona and dr. Luca Pareschi who followed the method-

ology of frame analysis.

In their research they started studying the context of steel privatization

in Italy identifying a set of relevant keywords.

They used these keywords to extract a set of articles from the online

archives of two of the most important Italian newspapers: La Repubblica

and Il Sole 24 Ore; unfortunately they could not take articles from another

famous newspaper called Il Corriere della Sera because its archives were

not completely available online. Researchers chose articles coming from all

sections of newspapers covering the period from 1984 to 1995; the set was

composed by 537 articles, 246 coming from La Repubblica and 291 coming

from Il Sole 24 Ore.

At this point they started reading all articles to extract the most relevant

ones; they obtained 1902 statements that were then processed in order to cre-

ate nodes using a methodology which is well explained by Matthes [Mat09].

The resulting nodes are collections of statements concerning the same con-

cept.

Researchers used then these nodes and connected them into storyboards

called frames which are an interpretation schema of reality [Gof74]; thanks to

this process they obtained 12 frames which provided them a tool to classify

every original article and proof their hypothesis.

Meyer and Höllerer [MH10] have created a map of shareholder value in

Austria using the same methodology.

2.2 Can computer science help qualitative re-

searchers?

As you can imagine the some steps of frame analysis methodology are

really demanding since researchers have to read and analyze entire sets of
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documents; of course, their effort increases when they have to deal with

large sets of articles. The advantages of an automatized research would be

considerable because it would accelerate researchers’ work.

This topic has already been considered in a work by Di Maggio [DNB13]

in which he identifies four characteristics an ideal automated system must

have.

First of all it must be explicit in the sense that it must allow researcher to

test their interpretations and at the same time it must be available to other

researchers.

Secondly it must be automatic and handle a big amount of documents

with no need of human input.

Thirdly it must be inductive, which means it should let researchers dis-

cover the set’s structure before the bases of analysis are arranged; furthermore

it must allow other researchers to use the same set for further researches.

Fourthly it must be able to understand the text’s context in order to

deduce the right meaning of words and avoid issues related to polysemy.

2.3 Topic Modeling and Article Classification

Topic modeling algorithms are a bridge linking social sciences to computer

science; first they are able to analyze a set of documents in order to extract

relevant topics composed by a list of keywords. Finally these algorithms

classify the input documents referring to the topics they found [Ble12]. In

this way scholars only have to interpret the meaning of each topic and can

analyze large sets of documents.

These algorithms are really precious instruments for researcher because

they propose them various sets of topics to work with.

The University of Massachusetts-Amherst developed a tool called MAL-

LET [McC02] including the most powerful topic modeling algorithms like:

textitLatent Dirichlet Allocation (LDA) [BNJ03], Pachino Allocation [LM06]

and Hierarchical LDA [BGJT04]. In fact MALLET is the software thanks
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to which researchers can benefit of topic modeling algorithms, it is a sort of

magnifying glass that shows hidden meanings of big sets of documents.

Yet MALLET is not able to use any sets of frames previously discovered

by researchers. This can be a limit for scholars who have just applied the

frame analysis on a set of documents and want to convey the results on other

ones.

Furthermore on short texts with small context the software is likely to

be mistaken because its doesn’t use words’ semantics; this behavior has been

found in [DNB13] and it can introduce noise analyzing short newspaper’s

articles.

The system I imagine thus, should be able to take advantage of the results

of frame analysis done by scholars and manage to classify texts using named

entities instead of simple words.

To do this now a days there is a line of research using Wikipedia as

the main knowledge base. From this perspective Wikipedia is an incredible

source of knowledge for the machines [WD08] that allows to create classifi-

cation models very close to the human knowledge.

In these systems every Wikipedia page represents a named entity and

the links between pages are useful to understand the entities connections; in

this way, computers can compute the relatedness of the entities [WM08], an

essential concept to compare entities during the classification phase.

Dandelion DataTXT1 is a set of text analytics API that uses Wikipedia

as knowledge base. DataTXT-NEX lets users extract named entities [FS10]

from any texts, even the shortest ones. DataTXT-CL allows users to build

classification models using named entities and classify [VFS12] any kind of

texts using these models.

1https://dandelion.eu/datatxt



Chapter 3

SAClet: a tool for document

classification

This chapter contains an overview on SAClet which goes from a general

description of the entire workflow to the details of users interaction.

3.1 Main workflow

Traditionally, content analysis in social science research has been a very

time consuming activity. Researchers use to code their data manually, or

through the use of software, such as Nvivo, that helps them codifying texts,

but does not automatically extract meanings. This qualitative kind of re-

search provides scholar with meaningful results, but it is hard to replicate

and to conduct on big corpora of texts.

I started using a research done by professor Edoardo Mollona and dr.

Luca Pareschi in which they analyze the public debate to understand how

newspapers have reported the Italian steel industry privatization.

At the very beginning they have collected and analyzed a set of articles in

order to create a set of frames which are an interpretation schema of reality

[Gof74]. For instance in the Neo Liberalism frame (NL) privatizations is seen

as a positive cultural revolution that will improve the Italian economic system

10
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while in the Labour versus Capital frame (LSVC) privatization appears as

potentially dangerous for the occupation.

This set of information is a precious starting point to create classification

models automatically; to the system this is the users’ knowledge base. This

process is represented in figure 3.1

Figure 3.1: How qualitative researchers analyze sets of documents

During the import phase the system enhances the knowledge base extract-

ing named entities. A named entity could be a person, a place, an event or a

material thing and the most important fact is that it is linked to a wikipedia

page.

At this point the system has got all the informations it needs to create

automatically a classification model starting from the users’ knowledge base.

Thus from each frame the system selects a set of references from which it

extracts a set of weighted named entities; then it filters them using a td-

idf method in order to keep only the most representative ones. The output

of the creation phase is a classification model composed by a set of frames

containing named entities whose weight represents their importance.

In order to use a more standard labelling the system calls this frames

categories and the named entities topics. In my opinion this is useful because

users can easily find the same labelling in other classifiers.

The classification model has a dedicated web page where the user can

view, edit and test it. Some categories can be poor in topics but users can
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add new ones with a smart autocomplete which is powerful because it is

based on wikipedia page relations. This feature enables users to find the

desired topic without any kind of knowledge on wikipedia labelling.

Users can evaluate the classification model on the references the system

has not used during the creation phase. In that case the output is com-

posed by the classical parameters to judge a classifier: recall, precision and

f-score. Recall is the ratio between the number of right matches retrieved

by a research and that of all correct existing documents. Precision is the

ratio between the number of right matches retrieved by a research and that

of all documents retrieved from the same research. F-score is a global mea-

sure defined as the harmonic mean between precision and recall. To better

understand the classifier performance, the system provides also a confusion

matrix. Each row of the matrix represents instances of predicted categories

while the column represents instances of found categories, this allows users

to get a more detailed analysis.

After this training phase the classification model is ready to be used on

a set of documents. Users can upload a zip file with all the documents and

classify it.

The system analyzes each document splitting it in paragraphs which are

classified using a threshold in order to exclude poor results; finally it combines

all outcomes creating a final document classification. In this way not only

can the system show all the categories present in each document but it can

also visualize their coverage.

The entire classification is available in a page that permits to filter doc-

uments that contain a specific category. Nevertheless the system gives the

users more information about the classification results of each page, so users

can see how the system classifies each paragraph.

Besides in this page users can classify the text using every classification

model available in the system and submit any other document just to try a

shot classification.
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3.2 The web application

Users can thus create classification models and classify sets of documents

using only a web application, without knowing what really happens under

the hood. First of all I am going to explain the user experience.

3.2.1 Handle classification model

The first step for the user is to create a new classification model; to do

this the system provides a form asking some basic information (like name and

description) and some more advanced ones (like the size of each category, and

a flag to use the most relevant name entities).

Figure 3.2: Modal form to create new classification models

The system then generates a classification model and shows it in a specific

web page. This page is very complex because we must observe two strict and

opposite constraints: on the one hand we must show a lot of information;

on the other hand it is very important to have an overview of it. The first

version of this page displayed a lot of information for each topic but lacked

an overview of all categories; for that reason it was difficult to understand

the right category each topic belonged to.
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The final solution exploits each page dimension so that: height displays

all topics and width displays all categories. I think this is the best compro-

mise for the page usability because we can give the users an overview of the

model and an easier way to do some bulk operation like delete. For auto

generated models this feature is very precious because users can see the sys-

tem’s mistakes and fix them in an efficient way. An example of this page is

showed in figure 3.3 where you can see:

• the classification model called Protezionismo KE,

• the categories created by the system from a user’s knowledge base such

as PR, NL, CC... ,

• lists of topics for each categories.

From this page users can see each topic’s details (description, Wikipedia

and DBpedia links, pictures and wikipedia categories), modify its weight or

remove it.

Figure 3.3: Classification model page

In order to improve the classification model users can add other topics to

each category enhancing its semantic coverage; the problem is that nobody



3.2 The web application 15

knows the title of each wikipedia page. For example if you want to add the

common Italian trade union called UIL, you cannot know that the related

page on wikipedia appears under the name Unione Italiana del Lavoro.

To solve this problem we use a dandelion API that tries to provide a smart

autocomplete. This is a powerful solution because it is based on wikipedia

page relations; to better explain to users each topic the system shows a

picture and a small description of it. This feature enables users to find the

desired topic without any kind of knowledge on wikipedia labelling.

Figure 3.4: Smart autocomplete to expand categories with more topics

For each classification model the system provides a way to judge the

performance of the classifier; any time users launch an evaluation the system

automatically saves a version for this model and provides a set of revisions to

easily revert. The evaluation process runs in a separate task to allow users

to keep on using the system and once it is complete all results are available
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in a dedicated page.

In this page (which is visible in figure 3.5) the system provides an overview

of all evaluations showing the score attributed to each one and allowing the

reloading of a specific version. This basic versions manager is transparent

to users but let them change a classification model in a safe way because

it is always possibile to go back to any previous version. The score of each

classification model is composed by: precision, recall and f-score; for them

the system provides a micro and a macro version. The macro version gives

to each category the same weight independently on its frequencies but it

is influenced by the classifier’s performance on rare categories. The micro

version instead gives equal weight to each document and it is dominated by

the classifier’s performance on common categories.

Another fundamental tool present in this page is the confusion matrix; it

is the only way to understand where a classifier fails. Each row of the matrix

represents instances of predicted categories while the column represents in-

stances of found categories, in each intersection users can find the percentage

of documents and have a view of the most influent topics.

Actually it lets users see which categories are too much generic and hide

more specific ones; users have two ways to solve this issue: remove too much

generic topics from a category or adjust their weight and add them to other

categories.

With some small changes the system allows users to create an arbitrary

model which is not based on a knowledge base. In this way without an initial

set of classified texts, the system cannot test the created model to create the

confusion matrix, this is anyway a very powerful method that lets experiment

a classification idea on any set of documents.

3.2.2 Documents classification

Once the user has created his classification model, the system permits

him to classify any set of text documents and explore the results.

To classify texts users have first of all to import them into the system;
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Figure 3.5: Classification model’s evaluation page

the real advantage of this kind of tools is that it makes it very easy to classify

large set of documents.

To simplify the documents’ upload the system can import a zip file from

any public URL (a service like dropbox permits to upload a large set of

documents and share them). I have avoided the direct file upload from the

browsers because with big files it is easy to encounter several problems. In

the system this document sets are named document group and you can see

how they appear to the users in figure 3.6.

Users are able to launch classification on the document sets with a simple

form where they can specify which classification model they want to use;

they can also set a threshold to filter low scoring classification cases.

To classify an article the system splits it into paragraph, classify each
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Figure 3.6: The view of a document group

of them and compute the final scoring filtering the results under a specific

threshold.

When the classification ends a link appears on the document group page

to see the outcomes. The results’ visualization allows users to filter docu-

ments on the base of each category and drill down to each classification as

you can see in figure 3.7. The biggest advantage of this page is that users can

see how the system categorizes each paragraph and its relative named entity

extracted. Users can also categorize this page with the other classification

models present in the system and immediately see the results.
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Figure 3.7: The document classification view



Chapter 4

SAClet internals

4.1 Application structure and technlogies

SAClet is a modern web application1 which is immediately usable by users

because it doesn’t need to install anything. Designing the solution I chose

modern web development technologies.

In figure 4.1 you can see the architecture schema of the solution composed

by three main components:

• SAClet web application (front-end)

• SAClet core (back-end)

• SAClet task runner

I decided to split the project in three main modules that use a standard

way to work together; each one defines an interface to interoperate with the

others and in the future it would be possible to change every single part of

the system without any technical constraint.

1https://github.com/martino/saclet

20
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Figure 4.1: System architecture

The web application

The front-end is a modern single page application built using AngularJS

framework 2; I choose it because it permits to create complex pages in an

easy way; actually there are basically four reasons I am going to talk about

to explain my choice.

First of all I would like to underline that bi-directional binding feature

keeps always in sync user interfaces and data structures, thus saving a lot of

code and common bugs.

Secondly I used directive3, a feature that permits to write custom HTML

tag with a specific behavior; in my opinion, in the future this will be the

way to build web applications composing them with a set of small reusable

components (the same idea at the base of the LEGO).

2https://angularjs.org
3https://docs.angularjs.org/guide/directive
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Thirdly, the other amazing feature that came out of the box is the test-

ing framework; thanks to which you can write unit and functional tests to

coverage every line of code that you write in order to avoid introducing bugs

while developing new functionalities.

Last but not least there are already a lot of third part libraries that

simplify the development process.

For the presentation layer I decided to use Bootstrap4, a CSS framework

that provides out of the box a responsive grid and all common elements that

you need developing a web application. Some of these components work with

small javascript that are available as angular directives.

To build the application I choose Yeoman5 as scaffolding tool; this is a

“swiss knife” that allows to spare a lot of time to developing web applications.

Its main functionality consists in providing a mechanism to handle each phase

of the development, from the generation of the initial code skeleton to the

creation of a final optimized application deployable on any web server.

Yeoman is basically a set of tasks that help developers to handle a lot of

common problems, here below I will describe some of them.

First of all it provides a set of generators in order to scaffold the ini-

tial skeleton of any web application. For example there is a generator that

creates the base html page using all best practices to ensure the maximum

compatibility with all browsers while another generator initializes any kind

of angularJS components.

Furthermore it uses bower to give developers a smart mechanism to in-

clude third part libraries handling versions requirements and conflicts.

During the development process it runs a web server with a live reload

plugin that reloads the page in the browser when it detects any changes in

the source code.

The final advantage is that it creates an optimized version of the web ap-

plication minifying all resources (javascript, css, images), attaching a version

4http://getbootstrap.com
5http://yeoman.io
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to each file to avoid problems with browsers cache and fixing all references

in the source codes.

The deploy of the SAClet web application is trivial, you just need a web

server that serves static files. This kind of deploy that doesn’t need handling

any kind of dependency is very comfortable.

The back-end

The back-end structure is more complicated because it is built from var-

ious component that work together with the goal to provide data to the

front-end and then to the users.

The principal components are the SAClet core and the task runner, the

first one is a REST web service that talks with the front-end handling all

synchronous requests; all time consuming tasks run in a dedicated the task

runner.

The communication between the task runner and the web service uses

distribuite message passing; as messaging server I chose Redis6, a NOSQL

database that can handle messaging queue. It isn’t persistent but I think

that it is the most rational solution in terms of maintenance costs.

The heart of the system is the SAClet core that is written in Python using

Django web framework7. It saves all data into a relational database using a

powerful ORM. There is not any constraint on the choice of the database

server; on development machine it is very comfortable to use simpleDB,

but on production machine I rather prefer using PostgreSQL server. The

communication with the front-end uses restful API following the standard

the facto way to expose services.

Long tasks are executed inside an asynchronous task runner that uses the

same relational database with the SAClet core in order to share results with

it. An example of tasks we must run asynchronously is the classification of a

document set actually we cannot interrupt the site for a couple of minutes.

6http://redis.io
7https://www.djangoproject.com
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The task runner that I used is Celery8 which is written in python and works

very well with Django.

External servicies

The main external service that I used in SAClet is the Dandelion dataTXT

APIs9; these provided me all the semantic text analysis I needed.

The most important one is dataTXT-CL10, the classifier that allowed me

to store classifier models and to do the text classification returning a list of

percentage of categories’ coverage.

Each classification model is proxied by the SAClet core in order to provide

a simple version management; as side effect we avoid to do a request to

dataTXT for every changes users do in the classification model.

During the analysis of the users knowledge base I used dataTXT-NEX11

in order to extract named entities needed by the automatic generation of clas-

sification models. In this process I also used a modified version of dataTXT-

NEX that uses a page rank algorithm to extract only most significant named

entities. This version works better on long texts because page rank permits

to filter relevant entities dropping the ones which have no links with the

others.

I used Dandelion wikisearch API12 to help users to find the right topics

and add them in a classifier model’s category. It uses an index created

on all wikipedia labels used to link each page in order to provide a smart

autocomplete service.

8http://www.celeryproject.org
9https://dandelion.eu/products/datatxt/

10https://dandelion.eu/products/datatxt/cl/demo/, which at the moment is ava-

iable only with an invitation because it is in beta
11https://dandelion.eu/products/datatxt/nex/demo/
12https://dandelion.eu/docs/api/datagraph/wikisearch/getting-started/
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4.1.1 Deploy

SAClet doesn’t have any particular server requirement to be executed;

you only need a machine with a web server, a python environment, Redis

and an installation of PostgreSQL.

I chose Digital Ocean droplet13 as the host machine where to install

SAClet in order to save time in the machine basic configuration; also Amazon

EC2 would be a valid solution but it is more expensive, the only reason to

choose it would be scalability. In facts, the server that hosts the entire solu-

tion has 1 core processor, 1GB of memory and 30GB of SSD disk, nothing

special.

On this machine runs an Ubuntu 14.10 but I’ve installed also an instance

of PostgreSQL 14 (an object-relational database used as a store for the back-

end), and an instance of Redis (a key-value store, used as a broker for the

asynchronous task runner). The Django application runs into a Gunicorn

WSGI server15 and long tasks are handled by a Celery worker. To keep this

asynchronous tasks under control I installed a web based tool named Flower

which is very useful to understand the system performance.

To automatize the deploy process I used dploy.io16, a continuous deploy-

ment system that gets the source code from Github17, pushes it on the pro-

duction server and restarts the updated services. I found it less powerful

than other tools like Fabric18, Ansible19 or Puppet20 but I choose it because

it does not need any kind of setup on the developer machine.

13https://www.digitalocean.com/features/technology/
14http://www.postgresql.org
15http://gunicorn.org
16http://dploy.io
17https://github.com
18http://www.fabfile.org
19http://www.ansible.com/home
20https://puppetlabs.com
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4.1.2 Scalability

The system is designed to be scalable, it can handle the classification of

large sets of documents without any problems. The key factor that ensures

this scalability is that all heavy tasks run with celery workers designed to run

on multiple machines. That way adding a new elaboration node is a simple

operation; you just let this node to comunicate with broker and database.

Figure 4.2 shows how the scaled system works.

Figure 4.2: Scaled system architecture
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4.2 Algorithms

The main goal in developing SAClet was the creation of a web application

for users who do not want to know how modern classification technologies

work but just need to use them to classify a lot of documents and discover

hidden meanings.

The more demanding task was then to design and implement the entire

process starting from the creation of a classification model to finally use it

in the classification of document sets.

The most relevant algorithms that powered all the platform were devel-

oped into dataTXT API including the classification algorithm and the named

entity extraction.

4.2.1 Classification models generation

The only interesting algorithm present into the project is the one which

generates classification models from the users knowledge base.

The system is able to read and import as knowledge base the output

results exported from nVivo; this is the most popular software that helps

qualitative researchers to do qualitative data analysis. Actually I noticed

that our users use this software to classify a large set of documents and

produce a set of frames composed by a lot of nodes. For that reason I

thought the system should be able to transform these frames into categories

and for each one extract the most representative named entities. A graphical

representation of this task is showed in figure 4.3.

So at the beginning the algorithm tries to extract named entities from

the frames (I used dataTXT-NEX to accomplish this task without using

any kind of NLP technologies); in this way I got a powerful tool able to

contextualize short text fragments very well. For example, analyzing the

phrase: “Maradona scored a goal to Mexico” using a plain NLP tool it is

impossible to understand that Mexico stands for the football team rather

than for the Country.
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Figure 4.3: How system generates classification models

Using the semantic graph provided by Wikipedia, dataTXT can extract

“Maradona”, “Goal” and “Mexico” as named entities 21.

Another typical problem in this kind of tasks is polysemy, but again with

a connected graph under the hood dataTXT can solve this problem in an easy

way. Let us think about these two phrases: “the astronomer photographed

the star” and “the paparazzi photographed the star”, it is impossible to

distinguish the meaning of star using only the word context.

I that case DataTXT provides a powerful tool to extract this named

entities; it works very well on short text yet on longer ones we can encounter

problems if the texts switch context many times. In order to overcome this

problem, I equipped the algorithm with an option that enables users to use

a modified version of dataTXT-NEX using an algorithm inspired from the

page rank to filter out only relevant entities.

At this point, for each nodes, that we call categories the system has

collected a set of named entities (that we call topics). Now it has to select

only the most representative ones; the length of selected sets is variable but

we see in [VFS12] the best size is in a range between 15 and 30 and the

algorithm lets users choose.

The results of the selection of topics that recur most frequently shows

that some of them appear in many categories; this fact can be a confusion

21This analysis is here avaiable: http://bit.ly/17DUk6q
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factor in the classification phases.

To solve this problem I implemented a sort of tf-idf schema [RU11] to

keep the most representative topics in each category using the formula 4.1

where freq(t, c) is the frequency of the topic t in the category c; C is the

number of all categories and C(t) is the number of categories containing t

rankc(t) = freq(t, c) ∗ log
|C|
C(t)

(4.1)

The first part of the formula considers the relevance of the topic in each

category and the second one is useful to reduce the relevance in ratio with

the number of categories in which it appears.

The output of the algorithm is a set of categories that are mapped one

to one with input frames that contain a variable number of representative

topics; this is the classification model used by dataTXT-CL to classify any

texts.
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Evaluation

5.1 Classification models

I started the whole process with qualitative research results and a power-

ful semantic text classifier; in order to create a new powerful system I wanted

to combine them.

The qualitative research was based on the work of some researchers who

had found about 600 articles written from 1/1/1984 to 31/12/1995 and pub-

lished on La Repubblica and Il Sole 24 Ore concerning the privatization of

Italian public steel industries. Once they had read them several times they

extracted about 2000 relevant pieces of texts called references. Then they

grouped references into nodes that represented key concepts (for example:

privatization leads to unemployment). These nodes were then grouped into

sets called frames that became the categories of our classification model.

The development process started with some experiments on this classi-

fication; the main goal was to create a classifier model that could be used

both as a tool to test the work researchers did by hand and to classify any

set of documents.

At the very beginning I started playing with input data just to experiment

how to train a classifier system; I did not use any scientific methods to judge

the results.

30
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Researchers gave me different sets of frames but to better understand

the results of my work I choose to use the one you can see in table 5.1 as

reference.

Frame

Neo Liberalism (NL)

Technical Pragmatic View (TPV)

European Forces (EF)

Stigma Inertia “Boiardi” (SI)

Stigma Lottizzazione (SL)

Captious View Privatization (CSVP)

Continental Capitalism (CC)

Developmental State (DS)

Protecting Rents (PR)

Labour versus Capital (LVSC)

Taken for Granted (TFG)

Capture View Privatization (CVP)

Table 5.1: First set of frame

The first experimented idea was to start from the entire documents from

which references were extracted. For each frame I analyzed all articles ex-

tracting named entities with dataTXT from which I was also returned the

confidence score accorded to each match.

I created topics grouping the matches of the same entity so that the

relative confidence was the sum of the related entities’ confidence. In order

to retain a subset containing only the most relevant topics I chose to keep

the ones with the highest confidence.

The idea was that for each category the system should identify the most

relevant topics according to their confidence; in every category the weight of

topics was normalized in a scale from 1 to 10.

The result was a little bit crappy because, when I tried to classify the
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entire document set I noticed that only few documents were classified in the

right way furthermore all documents were classified in the same way.

Looking at the classifier model I found that some topics appeared in many

categories, for example privatizzazioni appears in all frames, nevertheless it

is interesting to underline that most important thing is not the fact that it

has been used but the way it has been used in the analyzed texts. For that

reason I decided to proceed removing these topics. Unluckily the results were

unsatisfactory because the classifier was not able to classify a big amount of

documents.

I thought that each category had a too much restricted set of topics

representing it so I tried to enlarge the category coverage in an automatic

way. To do this I used dataTXT-REL that uses the WLM measure [WM08] to

extract the ten most relevant related entities for each topic; these new topics

were inserted into each category whose weight was calculated multiplying

the the weight of the original topic with the measure of relatedness. Then I

filtered again the topics using their weight to drop the less relevant ones in

each category, nevertheless results were poor. Even in qualitative research it

is not bad to proceed by trial and error.

Then I realized that using the confidence that dataTXT returns as way

to prioritize each topic was a mistake because the importance cannot be

defined using the estimation of the quality of the annotation; so I decided

to use the occurrence number of every entity as weight for each topic. The

classification model built with this method seemed to be better but I noticed

that I had removed a lot of significant topics only because they appeared in

many categories.

Before I changed again the algorithm to generate the classification model

I needed a pragmatic way to understand if every new implementation pro-

duced a better result. I stared to build up a system to this evaluation using

recall, precision and f-score as parameters to judge every model and to better

understand the results I computed a macro and a micro version of each one.

Finally I did not need to understand in an empirical way how each new
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model performed nevertheless the first evaluation results were unacceptable,

my classification model had been judged with an f-score of 0.1.

So I decided to modify the algorithm to use a method inspired from td-idf

schema to avoid the deleting of common topics in each category giving them

an appropriated weight. The intuition was right, the new classification model

scored a 0.33 f-score, better than previous one but it was poor too.

Then I started to review the entire process, and I decided to start from

the frames rather than from full articles. That way I used the researchers’

work to extract topics from the frames; some of them were very short but

with dataTXT-NEX this was not a problem because it performs very well

also with small context.

Another problem that I had to face was the use of dataTXT-REL actually

all the new topics added in this way did not help in any way the classifier

because during the classification process each category is expanded in the

same way.

I also decided to use a more scientific method to test my classification

model, using different sets of nodes to create the classification model and

test it.

I started using the same set mainly for two reasons: on the one hand

first results were very bad and I wanted to use all knowledge to build better

models, on the other hand some sets of frames were composed by few nodes

as you can see in table 5.1.

For each frame I selected the same number of nodes to extract the set of

relevant topics.

The resulting classification models scored an f-score of 0.49 which was

better but not amazing.

Actually the output of every test were only composed by numeric values

so that it was impossible to understand the performance of each category and

it was really hard to create better models. I improved my testing platform

introducing confusion matrix, a tool that visually let users understand how

each category performed. An example is visible in figure 5.1, you can see



5.1 Classification models 34

Frames Number of references

Neo Liberalism — NL 498

Technical Pragmatic View — TPV 381

Continental Capitalism — CC 253

Stigma Inertia “Boiardi” — SI 166

Stigma Lottizzazione — SL 121

Developmental State — DS 89

European Forces — EF 89

Protecting Rents — PR 78

Labour versus Capital — LVSC 60

Taken for Granted — TFG 58

Capture View Privatization — CVP 46

Captious View Privatization — CSVP 28

Table 5.2: Size of each frame

that NL and LVSC hide all the other categories.

These results were very encouraging because in the meanwhile researchers

found the same problem with the frame set (some categories were too much

weak). It was the first proof that the overall system worked in the right way.

The knowledge base was stored into a relational database and thanks to

this changing the frame set grouping was really trivial, you can find the new

frame set described in table 5.1.

The new classification model performed better scoring an f-score of 0.53;

the main problem, as we can see from the confusion matrix, was that some

categories couldn’t be discovered from the classifier. This was because they

had a too much small amount of nodes in the frame and the system wasn’t

able to extract a good set of relevant topics to represent it.

I changed the way to select the set of nodes used to extract the most

relevant topics, choosing for each frame half the nodes. It improved again

the classification model so that the final one got an f-score of 0.59 without
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Figure 5.1: Confusion matrix

any kind of human action.

I really appreciated the fact that to improve the generation of classi-

fication model I used the tools developed to test it with profit. I found

them very useful to understand how each classification model category per-

forms and how each topic influences the overall performance. These results

give users a lot of hints on how to change the classification models avoiding

wrong choices. Also the minimal version control for the models was very

precious because it let users change categories without any problems; if they

did wrong changes they could easily rollback on the last good version.

Only a researcher that knows the overall context can understand what im-

portant topics are missing in every category and can refine the classification

model.
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Frame

Neo Liberalism (NL)

Technical Pragmatic View (TPV)

European Forces (EF)

Taken for Granted (TFG)

Stigma Inertia “Boiardi” (SI)

Stigma Lottizzazione (SL)

Captious View Privatization (CSVP)

Continental Capitalism (CC)

Developmental State (DS)

Protecting Rents (PR)

Labour versus Capital (LVSC)

Capture View Privatization (CVP)

Table 5.3: Second set of frame

5.2 Documents classification

The final step of SAClet’s evaluation is the analysis of the outcomes of

automatic text classification.

To classify each document the system splits it into paragraphs, then it

classifies them and combines the results in order to create an overall score.

In this way it is able to find all categories contained in each text.

Afterwards, to compare the automated classification results, I used the

manual classification researchers exported from nVivo as goal standard. Re-

sults are visible in table 5.2 and reflect the evaluation of the classification

models clearly showing the fact that some categories are completely hidden

by others. Some other categories like Protecting Rents (PR) and Develop-

mental State (DS) were not very well recognized because they are a sort of

shade categories.

The performance of the classification is influenced by two factors:
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• the knowledge base used by the system to generate the classification

model is too small and for some frames it hasn’t got enough references

to extract a significant list of topics. The only solution could be using

human knowledge to add the missing topics to every scarcely covered

category;

• all texts were written in Italian, so dataTXT used had to use a knowl-

edge base built on the Italian Wikipedia as reference even though it is

not as rich as the English one.

In the meanwhile I tried to use MALLET on the same article set con-

cerning the Italian steel privatization. I have found a lot of alternative clas-

sifications that researchers consider interesting, but none of them really rep-

resented their original ideas. For this reason it was impossible for me to

compare the two classification systems.

run PR NL CC LVSC CVP SI SL CVSP TFG EF TPV DS

1 0 27 0 22 12 38 0

2 0 29 0 30 17 44 0

3 0 37 0 46 34 60 1

4 0 49 0 57 50 71 7

5 0 56 0 57 52 70 1

6 0 60 1 61 60 75 2

7 4 63 3 38 18 80 0

Table 5.4: Right percentage of document classification
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Conclusions

The output of my thesis is a web application called SAClet enabling users

to take advantage of the most recent text classification technologies based on

text semantics to analyze large sets of documents.

The aim of my work is to enhance the workflow of scholars using frame

analysis as a tool for their researches. In facts, the system is able to create a

classification model based on the work researchers had previously done. That

way users can upload any set of documents, analyze it with the classification

model previously created and check the validity of their hypothesis on a new

corpus of documents. This process permits scholars to avoid the manual

classifications of every new set of documents; as a result they are able to

process even the largest ones in an efficient, quick automated way.

Furthermore the system allows them to modify their classification model

in order to improve it or experiment with new ideas. Without an evalu-

ation system it is very hard to understand how model changes impact on

the documents classification; SAClet provides tools which are able to judge

classification models and enable users to become aware of their performance.

The most precious one is the confusion matrix, an instrument that pro-

vides a magnifying glass to better understand the behavior of each class. In

this way users can visually see whether there are wide classes masking the

others or too small ones. During my work this tool has been able to find

38
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some issues in the classification models that in the meanwhile, researchers

had manually detected.

The system permits also users to create a classification model starting

from a simple intuition with no further input; this way SAClet does not

provide any evaluating tools.

Nevertheless the fact that Italian Wikipedia is not as complete as the

English one influenced the performance of system. Actually the English

version of Wikipedia is richer in both contents and the links between them,

and for that reason it is closer to the human knowledge. This has a great

impact both on the construction of the classification model and on the final

text classification.

Compared to MALLET, SAClet allowed both professor Edoardo Mollona

and dr. Luca Pareschi to import their research about steel privatization

in Italy into the system; then they could improve it by grouping similar

categories, and finally apply it on new big corpora of texts.

I think that this tool represents an improvement for the workflow of qual-

itative researchers; in facts thanks to this, they have a platform to evaluate

their manual work and to explore new sets of documents. With some extra

work we are leverageing this platform to the next level.

Now I am going to discuss current ideas that concern the evolution of this

product.

First of all I would like to highlight that, on the generated classifier model,

I have seen that some topics could belong to many categories and the dis-

criminating factor is the polarity of the context phrase. With this in mind I

though that users could set rules for each topic. So doing, during the clas-

sification phase, the system will discover the polarity of a text and, as a

consequence, it will build the right classification model with the right topics.

The sentiment analysis for each phrase could well be done with some ser-

vices like Alchemy1 that provides an API to fill in the classification pipeline

without too much work. I am sure that this feature can significantly improve

1http://www.alchemyapi.com/products/alchemylanguage/sentiment-analysis
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classification performances.

Referring to the intuition that each topic could have some rules, we will

add a temporal validity for each one. In this way the system would try to

classify a text by inserting it into a temporal frame and building a suitable

classification method. If the system is not able to frame a text it could obtain

the information it needs from the metadata of the document itself.

Another feature we are developing is the visualization of classification

results [Ble12], which enhances the current navigation by category. Since

the system extracts named entities to classify documents, we will reuse them

to create new navigation patterns based on co-occurrences of entities (like

persons and places) and of categories. We will also consider categorizing a

set of documents using multiple classification models and use all the results

as powerful facets filters.

A further interesting filter that we are implementing is based on links

between named entities. For instance starting from the entity of an Italian

prime minister, the system will let users filter out any documents concerning

all his predecessors. We are developing it using the interesting project of

Linked Data Fragments [VHDM+14] on DBpedia2.

In addiction to this, we will propose for users a set of classification models

from any kind of documents sets in order to give researchers some hints on

the documents’ hidden meanings. As a matter of fact, we will use the power

of MALLET to do this and find a way to import its classification models into

SAClet. However to make this possible are searching for a way to connect

the words contained in each category to Wikipedia topics.

Moreover we can state that dataTXT is able to classify any web page,

thus we will create streams of URL from any sources like a twitter stream or

a newspaper RSS and classify them in real time. In this way scholars could

analyze events at the very moment they occur.

Furthermore SAClet could increase its power by using an improved ver-

sion of dataTXT. This should be able to use all Wikipedia versions to build a

2http://fragments.dbpedia.org



Conclusions 41

single knowledge base containing pages and links in any languages. With this

enhancement SAClet could be able to analyze the Italian documents using

classification models built on an English knowledge base.

In conclusion I can thus summarize the main goals I have achieved with

SAClet: first of all it allows scholars to enhance their research based on

frame analysis; secondly it permits to evaluate and improve any classification

models in a smart way and thirdly it enables researchers to classify any set

of documents using their previous research again.
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