
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Informatica

INTEGRATION OF A SIMULATION

PLATFORM FOR ELECTRICAL

MOBILITY WITHIN THE

ARROWHEAD INTEROPERABILITY

FRAMEWORK

Tesi di Laurea in Laboratiorio di Applicazioni Mobili

Supervisor:
Chiar.mo Prof.
LUCIANO BONONI

Co-Supervisors:
Chiar.mo Prof.
TULLIO SALMON CINOTTI
Dott.
MARCO DI FELICE

Presented by:
FEDERICO MONTORI

Matr. 0000668997

Session 3
Academic Year 2013/2014

�Life begins at the end of your comfort zone�

2

Sommario

Questo documento di tesi riguarda lo sviluppo di un progetto, durante un pe-
riodo di più di due anni, portato a termine nell'ambito del Framework Arrowhead
e che porta il mio personale contributo in più sezioni. La parte terminale del pro-
getto è stata svolta durante un periodo di visita all'università di Luleå.

Il Progetto Arrowhead è un progetto europeo, appartenente all'associazione
ARTEMIS, che si propone di incoraggiare l'utilizzo di nuove tecnologie, quali il
fenomeno �Internet of Things�, Smart Houses, Electrical Mobility e la produzione
di energie rinnovabili, e uni�care l'accesso a tutte queste risorse in un unico Fra-
mework. Un'applicazione è considerata conforme a tale framework nel momento in
cui rispetta il paradigma Service Oriented Architecure ed è in grado di interagire
con un preciso insieme di componenti chiamati Arrowhead Core Services.

Il mio personale contributo a tale progetto è dato dallo sviluppo di una serie
di API user-friendly, pubblicate sul principale repository del progetto, e dall'inte-
grazione di un sistema legacy all'interno del Framework Arrowhead. L'implemen-
tazione di questo sistema legacy è stata iniziata da me nel 2012 e, dopo nume-
rose migliorie portate a termine da un insieme di sviluppatori in UniBO, è stato
nuovamente e signi�cativamente modi�cato quest'anno per poter raggiungere la
compatibilità.

Il sistema consiste in una simulazione di uno scenario urbano, ove un certo
numero di veicoli elettrici viaggiano lungo le loro rotte, consumano la batteria e,
perciò, necessitano di ricaricarsi alle stazioni di ricarica, le quali sono simulate a
loro volta. I veicoli elettrici hanno bisogno di utilizzare un meccanismo di pre-
notazione in modo da potersi ricaricare evitando code dovute alla lunghezza del
processo di ricarica.

L'integrazione con il suddetto framework consiste nella pubblicazione dei ser-
vizi che il sistema fornisce all'utente �nale attraverso l'istanziazione di numero-
si Arrowhead Service Provider, in aggiunta a un'applicazione client dimostrativa
Arrowhead-compliant in grado di consumare tali servizi.

Abstract

This dissertation document deals with the development of a project, over a span
of more than two years, carried out within the scope of the Arrowhead Framework
and which bears my personal contribution in several sections. The �nal part of
the project took place during a visiting period at the university of Luleå.

The Arrowhead Project is an European project, belonging to the ARTEMIS
association, which aims to foster new technologies and unify the access to them
into an unique framework. Such technologies include the Internet of Things phe-
nomenon, Smart Houses, Electrical Mobility and renewable energy production.
An application is considered compliant with such framework when it respects the
Service Oriented Architecture paradigm and it is able to interact with a set of
de�ned components called Arrowhead Core Services.

My personal contribution to this project is given by the development of several
user-friendly API, published in the project's main repository, and the integration
of a legacy system within the Arrowhead Framework. The implementation of this
legacy system was initiated by me in 2012 and, after many improvements carried
out by several developers in UniBO, it has been again signi�cantly modi�ed this
year in order to achieve compatibility.

The system consists of a simulation of an urban scenario where a certain amount
of electrical vehicles are traveling along their speci�ed routes. The vehicles are con-
suming their battery and, thus, need to recharge at the charging stations. The
electrical vehicles need to use a reservation mechanism to be able to recharge and
avoid waiting lines, due to the long recharge process.

The integration with the above mentioned framework consists in the publication
of the services that the system provides to the end users through the instantia-
tion of several Arrowhead Service Producers, together with a demo Arrowhead-
compliant client application able to consume such services.

2

Contents

1 Introduction 9

1.1 Service Oriented Architectures . 9
1.1.1 De�nitions . 9
1.1.2 Principles . 10
1.1.3 Design Concepts . 11
1.1.4 Technologies . 13

1.2 The Arrowhead Project . 15
1.2.1 Story and Relevance of the Call 15
1.2.2 Fundamental Concepts . 17
1.2.3 Work Plan . 20

2 The E-Mobility Simulator Platform 27

2.1 A System Developed by UniBO . 27
2.1.1 Overview . 27
2.1.2 Smart-M3 . 29
2.1.3 Simulation Platform . 33

2.2 Project Structure . 34
2.2.1 Internal Architecture . 34
2.2.2 The Recharging Reservation Process 39

2.3 Ontology . 40
2.3.1 Entity Classes . 41
2.3.2 Data Classes . 47

2.4 Interaction in the Scenario . 49
2.4.1 The Electrical Vehicle's Lifecycle 50
2.4.2 Parameters . 53

2.5 Some Results . 54
2.5.1 Vehicle Consumption . 54
2.5.2 EVSE Occupation . 54

3

3 The Arrowhead Paradigm 57
3.1 Arrowhead Core Entities . 57

3.1.1 Service Registry . 57
3.1.2 Authorisation . 59
3.1.3 Orchestration . 60

3.2 Glossary of the Terms . 61
3.2.1 Concepts . 61
3.2.2 Documentation Elements . 64

3.3 Reason in an �Arrowhead Way� . 64

4 Arrowhead REST User-Friendly Java API 67
4.1 Structure of the API . 67

4.1.1 Motivations and Requirements 67
4.1.2 Layer 1 (Common to all the Arrowhead Applications) 68
4.1.3 Layer 2 (Common to the Arrowhead Applications within a

Speci�c Domain) . 71
4.2 Using the API . 72

4.2.1 Developing a Publisher for a Legacy Provider 73
4.2.2 Developing a Discoverer for a Legacy Consumer 74
4.2.3 Developing a Compact Service Provider 75
4.2.4 Developing a Compact Service Consumer 77

5 Arrowhead Service-Oriented Integration 79
5.1 The Real World Arrowhead E-Mobility Scenario 79

5.1.1 Use Cases . 79
5.1.2 Systems and Services . 80
5.1.3 Structure . 81

5.2 The Simulated Arrowhead E-Mobility Scenario 83
5.2.1 Use Cases . 84
5.2.2 Systems and Services . 84
5.2.3 Retrievable Data . 85
5.2.4 Structure . 87

5.3 Service Producers in the Simulation 89
5.3.1 The EVSE Simulator Management System 89
5.3.2 The Vehicle Simulator Management System 90
5.3.3 The Booking System . 91

6 Arrowhead Service Test Consumer 93
6.1 Overview . 93
6.2 Functions . 94

6.2.1 Monitoring a Vehicle . 94

4

6.2.2 Monitoring a Charging Station 94
6.2.3 Performing Reservations . 95

7 Conclusions 101

Appendices 103
.1 Local Core Services . 105
.2 Environment Installation . 105
.3 Acknowledgements . 107

5

6

List of Figures

1.1 The skeleton of a SOA concept: a client discovers and consumes the
service o�ered by a provider [1]. 10

1.2 An example of how protocols and technologies can combine to create
di�erent services, from a simple web access to a complete RESTful
Webservice [1]. 13

1.3 An example of Smart Environment: a Smart House 16
1.4 Scheme of the improvements that the Arrowhead project is aiming

to bring through collaborative automation innovations [25]. 17
1.5 Scheme representing how services should interact in the Arrowhead

framework. 19
1.6 Arrowhead strategy against the state of the art [25]. 20
1.7 Arrowhead strategy against the state of the art [25]. 21

2.1 An overview . 31
2.2 Overview of the SUMO GUI (above) and the architecture of Veins

(below) . 35
2.3 Architecture of the whole legacy E-Mobility Simulator. In red are

identi�ed the operation no longer required, while in blue the interac-
tions with the outer world, still respecting the Smart-M3 architecture. 36

2.4 Legacy reservation process handled by the City Service, the City
SIB and a Client. 39

2.5 Vehicles in our system seen through the Sumo GUI. A green vehicle
is electrical, a red vehicle is fueled and a yellow vehicle is an electrical
vehicle either parked or recharging. 51

2.6 Overview of the vehicle activity �ow. 52
2.7 State of charge of a vehicle in a 28-hour simulation. 55
2.8 Vehicle consumption in relation with its weight [24]. 55
2.9 EVSE overall occupation with and without reservation (above) and

number of unsatis�ed requests (too long queues, options rejected...)
[24]. 56

3.1 Management Tool, portion of the Service Registry section. 59

7

3.2 Management Tool, portion of the Authorisation section. 60
3.3 Management Tool, portion of the Orchestration section. 62
3.4 Graphical representation of the maturity levels [26]. 63

4.1 Decoupled Service Provider: a publisher and an external server. . . 74
4.2 Simpli�ed Service Consumer: a discoverer and a legacy code. 75
4.3 Compact Service Provider. 77
4.4 Compact Service Consumer. 78

5.1 Arrowhead architecture scenarios for the real world. 82
5.2 Complete reservation process. 83
5.3 ESMS monitoring scenario. 88
5.4 Vehicle monitoring scenario. 88
5.5 BS monitoring scenario. 89

6.1 Vehicle Monitor tab. After performing a discovery (top), after mon-
itoring a vehicle (center), after monitoring a vehicle under recharge
(bottom) . 95

6.2 EVSE Monitor tab. After performing a discovery (top), after mon-
itoring a faulted EVSE (center), after monitoring an EVSE while
recharging (bottom) . 96

6.3 Booking System tab. After performing a request (top), after select-
ing an option (center), after retiring a reservation (bottom) 98

6.4 After injecting fault in a reserved EVSE (top), after injecting avail-
ability in a reserved EVSE (center). 99

8

Chapter 1

Introduction

1.1 Service Oriented Architectures

Nowadays, all the human-machine interactions and the machine-machine interac-
tions are based on services. There is an increasing need of informations and those
informations must rely on systems capable of providing them anytime. A system
providing this kind of informations to any other system or user who may need it,
provides indeed a service.

1.1.1 De�nitions

In computer science, a service is a self-contained unit of functionality which can
be combined with others to provide a wide range of operations constituting the
complete set of use cases of an application [10]. Service Oriented Architectures
(SOA) are based on this atomic concept.

SOA is a design pattern of common use and independent from the technologies
which aims to provide and organize di�erent and distributed capabilities that can
be under the control of di�erent domains and vendors. Moreover, it provides an
unique approach to discover, o�er and interact with these heterogeneous services
without any underlying technology constraint [29]. Often it can be seen as a Mid-
dleware performing communication mediation between the parts.

Services must be uniquely discoverable and should provide chunks of meta-
data which specify how to interact with them and how data are represented and
distributed. In particular, service metadata describe in su�cient detail in which
format the data is provided (generally programmers use to represent data in XML
[41] wrapped in exhaustive description containers), how is the service internally
de�ned within the framework (often WSDL [44] is used) and which communication
protocols are used and how (an example may be SOAP [45]). Using metadata,

9

application systems aiming to discover and use the service shall be able to con-
�gure dynamically to adapt their interface and maintain coherence and integrity.
Thus, any service consumer or aggregator would be aware of which services are
o�ered by discovery and can easily interface with them without any knowledge
of the service's implementation. The essential concept is the contrast between
the complexity of the implementation, which can be of any kind, and its simple
interface together with a good interface description [30].

Figure 1.1: The skeleton of a SOA concept: a client discovers and consumes the
service o�ered by a provider [1].

1.1.2 Principles

IBM developers state that the real integration killer is the multiplicity of the in-
terface. Given n di�erent cooperating systems with a di�erent access interface
each, we may face a complexity of n(n − 1) di�erent implemented interactions.
Furthermore, if a new system needs to be integrated, it requires other 2n access
interfaces to be built from scratch [30]. A SOA framework prevents these problems
and provides the application developers with an unique access interface.

The �rst and foremost concept that a SOA integration must follow is leverag-
ing existing assets. Starting over a new SOA compatible system requires a huge

10

amount of money and resources and, when the system already exists (i.e. a legacy
system), it cannot be thrown away but it has to be integrated using a component
often de�ned as adapter. The system, however, is supposed to acquire more and
more maturity over time by getting its parts incrementally replaced.

Moreover, there are many principles that a SOA architecture must follow:

� Services shall adhere to a communication agreement, speci�ed in the
proper documentation language.

� Services have to be loosely coupled, so they must not depend on each other
and have to be as atomic as possible.

� Services must maintain abstraction, so it should not be possible to get their
logic from outside. This also helps to accomplish the design principle known
as �Service Abstraction Design Principle� which states that services must not
develop any kind of mutual dependancy.

� Services must be �ne grained, to promote reusability and aggregation.

� Services have to be autonomous, so they have the complete control over
their logic.

� Services have to as more stateless as possible, so they minimize the resource
consumption.

� Services have to be discoverable from anywhere within the SOA network.

� Services have to be compliant and aware of each other in order to enable
their modularity.

1.1.3 Design Concepts

A SOA framework has been de�ned as a structure of �ve horizontal, abstraction-
based layers called Architecture Building Blocks (ABB), here listed starting from
the less abstract [31]:

1. Operational System Layer: the actual runtime environment where all the
back-end applications and the systems reside and run.

2. Component Layer: software components, libraries and tools that need to
be built to support the realization and implementation of the services.

3. Services Layer: single services needed to run the main application.

11

4. Business Process Layer: services aggregated to give shape to the main
functionalities required from the application.

5. Consumer Layer: Access for the end user to the functionalities provided
by the application which may consist of a GUI.

Furthermore, there are four transversal layers that should be present at all the
implementation levels in order to grant the e�ciency of the whole system:

� Integration Layer: the integration at every layer should be granted among
the parts, otherwise the interoperability will not be possible.

� Quality of Service: it is constituted by security, availability, con�guration,
performance, monitoring, management and many other capabilities which
are part of the Non-Functional Requirements.

� Information: it is the layer responsible of collecting all the business infor-
mation.

� Governance: it is a central point where all the documents regarding policies
and agreements are stored.

It is to be highlighted that a SOA, as it operates with a lot of di�erent ap-
plications from disparate domains, does not provide an interface to its services in
terms of API, but rather in terms of protocols and functionalities. An entry point
to one of these services is called endpoint.

Web services

There is a wide variety of Web services running SOA nowadays. Web services
are actually the most common and the easiest platforms where to make services
available. Commonly, it is possible to enable such services to be SOA-compliant
using some sort of wrappers or adapters. In particular, actors using Web services
in SOA can play one or both of the following roles (in subsection 3.2 those concept
will be de�ned in detail in the scope of the present project's domain)[15]:

� Service Provider: it creates a Web service and publishes it to the service
registry together with all the consistent metadata. It is its responsibility to
decide who has the right to access it, for which price to sell it, if present,
what category to assign to it, which brokers are enabled to be mediators.

� Service Consumer: it is part of an application that makes use of the
services. It is its responsibility to look up the broker's service registry for
the desired service or class of services and perform the actual consumption
when binded to it.

12

1.1.4 Technologies

SOA paradigm has been instituted by and introduced several various technologies
and protocols that enabled fast and organized development of compliant appli-
cations. Frequently, those technologies have become a standard in various SOA
domains. Some of the most important are listed below:

Figure 1.2: An example of how protocols and technologies can combine to create
di�erent services, from a simple web access to a complete RESTful Webservice [1].

� CoAP[46]: it is a specialized web transfer protocol (application level) for
constrained nodes and constrained networks in the Internet of Things. The
protocol is designed for machine-to-machine (M2M) applications such as
smart energy and building automation and is intended to be used by small
and simple entities such as wireless sensor network nodes.

� OPC-UA[47]: it is a platform independent service-oriented architecture
that integrates all the functionality of the individual OPC Classic speci�ca-
tions into one extensible framework.

� MQTT[48]: it is a M2M and IoT connectivity protocol (application level).
It was designed as an extremely lightweight publish/subscribe messaging
transport and now it is an OASIS standard.

� XMPP[49]: it is a XML-based communication protocol for message-based
middleware.

� DDS[50]: it is a M2M middleware standard designed to enable scalable,
real-time and high performance data exchange between embedded devices
such as mobile operating systems, vehicles built-in software and health care
dependant software.

13

� SOAP: it is a protocol speci�cation and an architectural style, directly de-
rived for the Remote Procedure Call (RPC) paradigm, that aims to de�ne
how data are exchanged in Web services networks. It is relying on XML
for the representation of data and uses application level protocols, such as
HTTP and SMTP, for the data transmission. The XML structure is con-
tained in a node called envelope, which may be divided for example in header
and body. Furthermore, a set of encoding rules for the application-speci�c
data, requests and responses has to be de�ned. Once these elements are
known among the parts, SOAP is independent from the programming model
and can run over almost every transport layer (or higher) network protocol.
Unfortunately, as XML is considered to be verbose, applications that need
good performances usually are leaded to use REST.

� REST: it is, just as SOAP, a protocol speci�cation and an architectural style
that aims to standardize the exchange of data in Web services by de�ning
a certain number of operations. It uses HTTP as transfer protocol and
speci�es the action that a client can perform in four operations: GET (to
get the list of a collection or an element's representation), PUT (to replace
an element with another given in input), POST (to add an element given
in input) and DELETE (to erase the selected value). In general, nowadays
the wide majority of the RESTful applications use to perform a POST in
order to perform a GET, a PUT or a DELETE, as they di�er just for the
server implementation, which is always decided by the developer, though this
behaviour is out of the protocol. In order to be RESTful, an application must
satisfy the following constraints: the model should be client-server, the server
must be stateless (though it can still store informations in external structures
such as databases), the responses must de�ne themselves as cacheable or not
in order to prevent the client from caching a resource that can change over
time, messages should be self-descriptive, the system must be layered and
the resources must not be tied to a speci�c representation.

� CORBA[51]: it is, like SOAP, an architectural style derived from RPC
which adds Object Oriented features to the information exchange. It aims
to enable the information transmission by accessing to remote objects as if
they were local. This communication is held per object by an Object Request
Broker (ORB) which knows the structure of the request to be performed
thanks to the interface, coded in an Interface Description Language (IDL)
and provided by the server.

It is important to distinguish between a Service Object-Oriented Architecture
(SOOA) and a Service Protocol-Oriented Architecture (SPOA)[16]. According
to the �rst one, services are following a call/response paradigm and are remote

14

objects that are accepting remote invocations and are documented using a code-
base annotation. SOOA is protocol neutral and does not require the requester to
bind to a certain proxy, because it already holds the object to be �lled. According
to the second one, services are following a read/write paradigm and are described
using some passive service description such as WSDL documents for Web services
or IDL documents for CORBA. With SPOA, the requester needs to generate a
proxy and bind it to the provider, forwarding to it all its calls.

1.2 The Arrowhead Project

The European Project Arrowhead [33], developed within the ARTEMIS associa-
tion [34], aims to maximize the e�ciency and the �exibility of the usage of energy
by leveraging the availability and the interoperability of smart energy resources. It
pushes cooperative automation through the centralization and the standardization
of these services using SOA core functionalities.

1.2.1 Story and Relevance of the Call

The project started in May 1st 2013 and has a duration of four years. It �nd its aim
on the fact that the society is facing both energy and competitiveness challenges.

These challenges can be found in multiple sides: the production side, which is
a�ected by raw material changes, to which it must adapt, and by environmental
impact, the city side, in which energy consumption must be reduced, and the en-
ergy itself side, for which enabling renewable production, grid safety and reduced
emissions has been a common issue over the years. The key concept is interaction
and interoperability, as all energy producers, energy consumers, involved system,
domains and so on has to be dynamically interoperable to cooperate. Thus, a
global system for communication and aggregation should be enabled, indeed the
state of the art suggests an orientation towards Service Oriented Architectures
and Internet of Things. The �rst one, as stated in section 1.1, grants an unique
interface and the automatic interaction among systems, while the second one, as
stated in section 1.1 of my previous work [17], is the key for the dialogue between
the physical world and the information world.

The concept of Smart Environments [6] takes place in a �context�, which is
de�ned [4] as any information that can be used to characterize any relevant en-
tity. An entity, in those cases, can be any object or subject capable of holding
relevant information: a person, a system, a sensor and so on so forth. The Smart
Environment itself constitutes a physical world which interweaves over time all its
entities using sensors, actuators, displays and other embedded computational ele-

15

ments and transforms their characteristics and their states in useful informations
reachable by any user of that same system [3].

Figure 1.3: An example of Smart Environment: a Smart House

Beyond these theoretical concept, the aim of Arrowhead is [25]:

� Provide a technical framework adapted in terms of functions and perfor-
mances.

� Propose solutions for migration.

� Implement and evaluate the cooperative automation through real experimen-
tations in applicative domains: electro-mobility, smart buildings, infrastruc-
tures and smart cities, industrial production, energy production and energy
virtual market.

� Point out the accessible innovations thanks to new services.

� Lead the way to further standardization work.

To reach these goals, all the Arrowhead partners put e�ort in the usage of the above
mentioned framework following the SOA paradigm, that is to say, the exchange
of service among loosely coupled actors in order to render as global as possible
the so-enabled network. This will bring certainly a numerous variety of bene�ts,
for instance the increase of �exibility, automation, man-machine interaction and
adaptation to marked demands.

16

Figure 1.4: Scheme of the improvements that the Arrowhead project is aiming to
bring through collaborative automation innovations [25].

1.2.2 Fundamental Concepts

The increasing involvement of billions of new devices producing and consuming
informations in various automation tasks is requiring more and more interopera-
tion. The �exibility that the Arrowhead framework aims to address makes this
interoperation not only easier, but possible even in the future, where the number
of entities involved is predicted to grow dramatically.

In particular, the Arrowhead project takes place in �ve energy related applica-
tion domains:

1. Production (manufacturing and process).

2. Smart buildings and infrastructures.

3. Electro-Mobility (or E-Mobility).

4. Energy production.

5. Virtual market of energy.

17

For those application domains, Arrowhead designs a collaborative automation
which is intra-domain at a �rst level, and cross-domain at a further level.

Therefore, we can state that the Arrowhead vision is, in general to enable
collaborative automation by networked embedded devices and thus their inter-
operability and integrability, inasmuch as a service oriented infrastructure must
assume those concepts as basis.

In a more practical vision, the systems running on the above mentioned em-
bedded network devices should interface with three common entities (sometimes
aggregated in an unique compound element) using a standard designed framework
which can reduce the developer's e�ort by the 75%. These common parts are
referred to, in the theory of service base frameworks, as:

� Information Infrastructure (II), the infrastructure capable of knowledge about
which services exist.

� System Management (SM), the infrastructure capable of knowledge about
which services are (or should be) connected to whom.

� Information Assurance (IA), the infrastructure capable of knowledge about
which services are allowed to exist and who is allowed to consume them.

The �gure 1.5 shows at a glance how the systems are expected to be integrated in
the Arrowhead service framework.

The current state of the art for production and energy automation is based on
the ISA'95 standard paradigm, which integrates service oriented technologies in
some parts and mainly inter-domain, especially through the support of OPC-UA
from major vendors. This is not true regarding smart buildings and E-Mobility,
due to the heterogeneity of vendors and standards. There have been few common
standards which are emerging proposed by few past projects such as �Internet of
Energy� [32], founded on the Internet of Things concept and mainly addressed for
the integration of the smart grid, the electrical grid capable of energy distribution
to every source and every destination due to the amount required. The addressing
of a common standard, also cross-domain, would reach also one of the ARTEMIS'
main targets and a crucial point where the technical barriers are removed. Thus,
a set of test beds and tools are also required to drive the application developers
(the Pilot Work Packages in the scope of Arrowhead) in a better understanding
and an easy integration.

The Arrowhead priority resides in the identi�cation of a number of gaps in the
common state of the art and address the Pilot Work Packages to �ll them. The
common gaps and solutions are listed below:

18

Figure 1.5: Scheme representing how services should interact in the Arrowhead
framework.

� Energy management for self su�cient smart devices, achieved by the devel-
opment of local monitoring device energy management systems.

� Communication from enclosed location, achieved by enabling transmission
of data to the outer world through industrial encapsulated systems.

� Methodology tools and technology for a cost e�ective development of the
core systems.

� Local communication and identi�cation technology.

Identifying the gaps in each technology is essential to enable the natural �ow from
an experimental and research technology to the market.

Each Pilot Work Package will develop a signi�cant demonstration showing the
�lling of that gap which is organized through a chain of tasks, each assigned to

19

Figure 1.6: Arrowhead strategy against the state of the art [25].

one or more Arrowhead partner. The methodology heart of the demonstration
is a production articulated in three phases, the output of each will be the input
of the technology R&D, which subsequently feeds the pilot for the creation of
the next generation demonstration. Furthermore, the Pilot Work Packages are
accompanied by four Technology Work Packages, which are designed to capture
the domain speci�c and the general application requirements to the core services.
Due to the size of the Arrowhead project itself, it is expected that a very structured
and intensive dissemination of both technologies and demonstrations will lead to
a market and society trust. A special Work Package has been instituted for these
purposes.

1.2.3 Work Plan

Based on the project organization, as stated before, the e�ort of providing demon-
strations belonging to di�erent working domains is assigned to �ve pilot Work
Packages (WP 1-5). These ones are expected to process the customers' needs and
the gaps existing in the current state of the art concerning their proper domains

20

and act as vehicle of technological progress for the overall project. The following
four Work Packages (WP 6-9) are devoted to the necessary common technology de-
velopment, support, documentation and analysis. Furthermore, the two following
Work Packages (WP 10-11) are designed to foster innovation based on the Arrow-
head technologies in the energy domain. Finally, there is one Work Package (WP
12) which is devoted to the project management and organizes the components to
produce their demonstration in three di�erent iterations, �rst at a simulation level,
then at a domain-speci�c interaction level, and at last at a cross-domain level.
Figure 1.7 shows how all the WPs should interact to produce their output in the
scope of their di�erent tasks.

Figure 1.7: Arrowhead strategy against the state of the art [25].

WP 1 - Pilot Domain: Production (Process and Manufacturing)

The production pilot must prove the e�ciency improvements enabled by collabora-
tive automation and service oriented frameworks. This spans over a wide number

21

of application areas concerning enterprises and granularities: from the sensor itself
to the enterprise application. It analyzes new business cases concerning inter-
operability, what are the impacts on people and what are the opportunities in
production and in processes. The WP leader is SE. Tasks:

� Task 1.1 - Engines Business

� Task 1.2 - Manufacturing of Electrical Enclosures

� Task 1.3 - Lift Machine E�ciency

� Task 1.4 - Water Distribution

� Task 1.5 - Aircraft Maintenance

� Task 1.6 - Mining Condition Monitoring

� Task 1.7 - Collaborative Engineering for Assembly Automation

� Task 1.8 - Self Condition Monitoring Mobile Machinery

� Task 1.9 - 3D Localization

� Task 1.10 - Condition Monitoring of Transportation Systems

� Task 1.11 - Manufacturing in the Cloud

WP 2 - Pilot Domain: Smart Buildings and Infrastructure

Using the technologies provided mainly by IoT, the infrastructure pilot must foster
the usage of smart sensors and actuators that can make users and customers able
to interact simply. This happens at di�erent granularities: Smart Houses, Smart
Districts, Smart Cities; all of them can make the user aware of energy consumption,
management and others. On one hand, the WP operates in the improvement of
public services, on the other hand it develops solutions for the deployment of
networked embedded systems in a domestic context. The WP leader is Acciona.
Tasks:

� Task 2.1 - Energy E�ciency in Buildings

� Task 2.2 - Eco-su�cient Home

� Task 2.3 - Intelligent Urban Lightning

� Task 2.4 - Virtual Control Rooms for Energy E�ciency

22

WP 3 - Pilot Domain: Electro Mobility

There has been many issues already addressed in past projects, such as IoE, re-
garding the charging infrastructure of electrical vehicles. Many of these problems
were about the energy balance and the vehicle-to-grid operations as well as the
lack of charging infrastructures in rural areas. Unfortunately, there has been a
lack of demonstrations and still users are unaware of the energy market, which
provides low energy costs during the o�-peak hours. The mobility pilot will focus
on the development of innovative services towards the smart grid and must be able
to provide physical demonstrations. The WP leader is CRF. Tasks:

� Task 3.1 - Slow Recharge Stations in Private Environments

� Task 3.2 - Longer Terms Technologies for the Recharging Infrastructures

� Task 3.3 - Device to Cloud Mapping for Electric Mobility

WP 4 - Pilot Domain: Energy Production and End-User Services

The energy pilot aims to open the real time information �ow between the energy
producer and the energy consumer, which is the end user. The goal is mainly
constituted by enabling a distribution network that works over cities and makes
possible the passage between a research topic and a real market innovation. The
WP leader is Abelko. Tasks:

� Task 4.1 - End User Service - Macro and Micro Perspective

� Task 4.2 - Optimization of Co-Regeneration Systems

WP 5 - Pilot Domain: Virtual Market of Energy

The aim of the market pilot takes place in the TotalFlex [38] energy market,
which o�ers �exible o�ers to the customers depending on the hour and other
various parameters through a service called FlexO�er. In particular, it has to be
determined if this paradigm �ts with the Arrowhead concepts, a common service
interface for di�erent domains, scalability of the infrastructure, aggregation for
multiple domains. The WP leader is AAU. Tasks:

� Task 5.1 - Architectural Design and Implementation of Interfaces

� Task 5.2 - Demonstrators of the Virtual Energy Market

� Task 5.3 - Integrated Energy Market

23

WP 6 - Technology Analysis, State of the Art and Requirements

The aim of this WP is to identify common technology base and interoperability
between applications. It is intended to look for, as much as possible, technologies
within former international and national funded projects. The WP leader is VTT.
Tasks:

� Task 6.1 - State of the Art

� Task 6.2 - Technology Property Requirements for Market Innovation

WP 7 - Interoperability and Integrability Framework

The aim of the WP is to provide an unique way to document every system within
the project, document the generic design guidelines and design patterns used and
produce templates which other WPs shall follow. Basically, it addresses which
features and which functions really need to be common in order to make two
system really interoperable. The WP leader is AITIA. Tasks:

� Task 7.1 - Technical Framework Design Pattern

� Task 7.2 - Basic Technology Compatibility Analysis

� Task 7.3 - System Framework Design

� Task 7.4 - Engineering and Operation Methodology

WP 8 - Interoperability and Integrability Service Speci�cation and
Common Components Design and Implementation

This WP takes its inputs from the two previous WPs: it chooses a set of di�erent
solutions for the low level communication protocols, especially through components
of the core systems, minimizing when possible the actual number of solutions and
developing interoperability between them. The WP Leader is CEA. Tasks:

� Task 8.1 - Common Arrowhead II, SM and IA Services

� Task 8.2 - Arrowhead II, SM and IA Black Box Design

� Task 8.3 - Implementation of Arrowhead II, SM and IA systems/components

� Task 8.4 - Innovation Critical Pilot Speci�c Communication Technology

� Task 8.5 - Innovation Critical Pilot Speci�c Technologies for Embedded Low-
Energy Low-Cost Systems

� Task 8.6 - Common Arrowhead Integration Component Design and Imple-
mentation

24

WP 9 - Interoperability and Integrability Test Framework

This WP is meant to provide support to the other WPs in terms of a set of tests
and demonstrations as well as tutorials and documentation on how to code and
how to implement Arrowhead systems. The WP leader is BNearIT. Tasks:

� Task 9.1 - Arrowhead Application Support and Framework Test and Gover-
nance

� Task 9.2 - De�nition of Compliance Classes to Arrowhead Speci�cation

� Task 9.3 - Test Bed

WP 10 - Innovation and Standardization

The aim of this WP is to analyze and review the current business models related
to SOA architecture in the current state of the art and thus provide the basic
business intelligence necessary to build future o�erings on the market. The WP
leader is SKF. Tasks:

� Task 10.1 - Service Business Models Overview

� Task 10.2 - Business, Technology and Requirement Trend Screening

� Task 10.3 - Innovation Implementation Methodology

� Task 10.4 - Standardization

WP 11 - Business and Technology Dissemination

The main aim of this WP is to support the exploitation of results and solutions
coming from any of the pilots in several domains such as industrial, societal and
academical. The WP leader is VTT. Tasks:

� Task 11.1 - Business and Technology Dissemination Plan

� Task 11.2 - Business and Technology Publicity and Publishing

� Task 11.3 - Web, Twitter, YouTube

25

WP 12 - Project Management

As the name suggests, the aim of this WP is to enable a working methodology
and a precisely scheduled interaction among the WPs, making them respecting
the milestones, tracking the costs, performing a procedure on how to revise the
plans. The WP leader is LTU. Tasks:

� Task 12.1 - Planning and Scheduling

� Task 12.2 - Progress and Cost Reporting

� Task 12.3 - Monitoring, Control and Quality Management

� Task 12.4 - Risk Management

The project presented in this dissertation is placed in Task 9.3, as it provides an
implementation of a useful demo for many purposes. As the main topic covered is
Electro Mobility, this project should have a parallelism with a real implementation
provided by WP3, with which our team has a consistent collaboration. WP8
provided the Core Services (described in detail in section 3.1) and the core libraries
used to implement the Arrowhead adapters, while Task 9.1 provided the necessary
documentation. All the Work Packages shared their documentations, productions,
demos and tests in a common SVN repository [35].

26

Chapter 2

The E-Mobility Simulator Platform

This section aims to describe the heart of the system presented in this disserta-
tion: the UniBO E-Mobility Simulator Platform, a project that concretely started
to gain shape in April 2012, when I started to write my Bachelor's degree disserta-
tion [17]. Since then, many improvements have been performed and many people
worked on the project, mainly Simone Rondelli [24], who reorganized the system
using an e�cient architecture design and implemented several new features.

2.1 A System Developed by UniBO

The system was initially a prototype which I personally developed as a contribution
to the European project Internet of Energy [32], with the support from the UniBO
team and the ARCES team, and leaded to the publication of an article [19] as their
main contribution.

2.1.1 Overview

One of the main issues that the E-Mobility and smart energy production in general
are, even nowadays, facing is given by the organization of the charging infrastruc-
ture. Internet of Energy initially proposed the concept of smart grid [18], which,
through its connection to the Internet, would enable the production of an enor-
mous set of informations. These informations would be used by end consumers to
grant the energy balance between di�erent zones, establish the price of energy in
real-time, manage the charging station network and o�er vehicle-to-grid services.
Hence, the smart grid it is considered as a macro smart environment.

Since the European projects leaded by ARTEMIS aim to push the customers
in the utilization of renewable energy sources and E-Mobility, the charging infras-
tructure shall constitute an e�cient response to the marked demand. As stated

27

and largely explained in my previous work [17], electrical vehicles can be recharged
currently in two ways:

� Domestic plugs, which can provide a signi�cantly limited power, thus a com-
plete battery recharge takes in average up to 8 hours.

� Public plugs, the so-called charging stations, which can provide up to 50 kW
in direct current and taking around 20 minutes to fully recharge an empty
battery.

Thus, the main problem of the recharging infrastructure is identi�ed in the du-
ration of the recharging process, fostering the introduction of a reservation system
in which users can book the charging station for a limited amount of time, avoiding
this way the danger of long waiting queues. With the increasing development of
the mobile industry, our project put a signi�cant amount of e�ort in enabling the
possibility to reserve the charging station directly from the user's mobile phone.
With this purpose, UniBO and ARCES developed a demo system, which consists
of a simulation of urban E-Mobility and recharging infrastructure, to give shape
to the above mentioned system.

The need of a simulated E-Mobility environment derives from many questions
coming from di�erent domains: enterprises, vendors, researchers and end users.
Therefore, here are reported the motivations and the purposes for which the E-
Mobility Simulator Platform was developed and keeps being updated with many
features according to various domains:

� Study the impact of a certain number of electrical vehicles on the charging
infrastructure comprehending di�erent customizable scenarios.

� Study the behavior of the electrical vehicles in presence of certain environ-
ment conditions, from the number and the availability of the charging sta-
tions to the e�ective autonomy and the energy consumption over time.

� Develop the real mobile client application which is �plugged� to one of the
simulated vehicles to being able to test it. In this case the end user is really
personi�ed in one of the electrical vehicles in the simulation and can see
his own vehicle moving on the map with signi�cant accuracy, as well as
performing reservations against the real service.

� Test and benchmark the underlying candidate architecture, Smart-M3, which
is explained in detail further on in section 2.1.2.

� Provide the outer world with an unique interface, which would be the same as
the one relying on the real system implementation, thanks to the Arrowhead
adapters explained in chapters 5 and 6.

28

� Make possible to develop a pre-deployment �What If� mobile application,
which aims to monitor and simulate the user's real vehicle and give as an
output the parameters that it would produce if it was electric.

Those are just few motivations, many of which have already been developed and
demonstrated.

Entities

Most of the entities that characterize this system have been explained in detail in
[17] and [24], thus here are reported brie�y:

� Electrical Vehicle (EV): the main entity of the project. They are divided
into Fully Electrical Vehicles (FEV) and Plug-in Hybrid Electrical Vehicles
(PHEV), even though in this project all EVs are considered to be FEVs,
therefore their overall movement depends entirely on their battery capacity.
EVs are part of a smart environment, as they can provide several information
basically regarding their identi�cation (RFID, User ID and so on), their
position and their electrical parameters.

� Grid Connection Point (GCP): this entity can be assumed as the closest
to the meaning of charging station, as it represent geographically the con-
nection point between the smart grid and the outer world. Each of those
can host multiple charging structures, the EVSEs, described below, and, as
a part of the smart environment, provides informations such as the position
and the name.

� Electrical Vehicle Supply Equipment (EVSE): it represents the other
main entity of the whole project. It is de�ned as �The conductors, includ-
ing the ungrounded, grounded, and equipment grounding conductors, the
electric vehicle connectors, attachment plugs, and all other �ttings, devices,
power outlets or apparatuses installed speci�cally for the purpose of deliver-
ing energy from the premises wiring to the electric vehicle� [2]. Several types
of EVSE are currently existing and installed, they can provide a socket either
in alternative or in direct current, up to 50kW power and a current density
up to 125A. As a part of a smart environment, it can provide several infor-
mations mainly regarding its electrical recharge pro�le, its current energy
price and its availability over time.

2.1.2 Smart-M3

Within the project there has been an increasing need for an interoperability stan-
dard that grants its integrability and its scalability over time. In a system based

29

on smart spaces and smart environments it is essential that the di�erent domains
and applications can rely to a single communication and cooperation architecture.
The problem was raised [7] when the impossibility of coexistence among di�erent
protocols, such as UPnP for the home entertainment or the Apple ecosystem, as
the number and the complexity of devices started to exponentially grow.

The solution was proposed mainly by Nokia and took the name of Smart-M3
[11][36]. M3 is a middleware platform, which realizes the interoperability of in-
formations in a cross-domain, multi-vendor, multi-device, multi-platform way [20]
and Smart-M3 is its �rst implementation proposed within the scope of the SOFIA
project [37], one of the past ARTEMIS realizations for smart spaces. It has been
subsequently used in other projects, such as Internet of Energy, and has been im-
proved by ARCES over the years by adding more functionalities.

Smart-M3 operates through an architecture which promotes the loosely cou-
pling between any producer (the sensor) and any consumer (the actuator or the end
user) of the informations. The language chosen for the information exchange was
RDF [42], an XML-based markup language, which encapsulates every information
in triples 〈subject, predicate, object〉 and constitutes the basis for the Semantic
Web paradigm. Indeed, data structured this way, in order to be given a semantic
denotation, should follow rules dictated by an OWL [43] ontology, an RDF-based
language which aims to give standardization to data. Although each application
needs to be given its own ontology, several standard ontologies have been de�ned
in order to enable interoperability around common use data.

The main entities composing the Smart-M3 architecture are reported below:

� Semantic Information Broker (SIB): a SIB is a non structured database
able to store data encoded in RDF triples. In such sense, it can be allocated
in the set of graph databases, which are not designed to keep in memory a
historian, but rather to describe the reality in a determined moment. Each
single entity within the scope of the system shall use the SIB as a communi-
cation mediator, thus each message exchange happens through writing and
reading triples from the SIB itself. For these reasons, each SIB has been
provided with a set of several TCP/IP sockets which can be enabled in order
to support tens of connections.

Thanks to the hard work performed by the ARCES team in Bologna the SIB
changed signi�cantly over time, supporting currently the Redland Triple-
store, many operations in SPARQL language rather than the obsolete WQL
and high performances even while handling thousands of subscriptions at a
time (see further).

30

� Knowledge Processor (KP): a KP is any application or system able to
communicate with the SIB through one or more of the designed operations.
Often, it is necessary to write an adapter for a legacy existing system to sup-
port such feature. The communication occurs through a designed XML-RDF
based protocol called SSAP (Smart Space Access Protocol) for which several
libraries, commonly referred to as Knowledge Processor Interface (KPI), have
been developed for some of the most common languages: Python, Java, C
and so on so forth. As a previous additional contribution to the project I de-
veloped the integration for SPARQL queries in the C libraries denominated
KPI Low [39] in order to facilitate the reachability of multiple informations
[17].

Figure 2.1: An overview

The SSAP Protocol

A KP can interface with a SIB in several ways, denoted and established as a set of
precise operations encoded and encapsulated in a SSAP envelope. A KPI, by name,
shall implement all of these operations to be able to grant the interoperability.
Currently the following operations are available:

31

� JOIN: The operation without which no other operation can be performed.
Since the protocol is session based, a KP cannot perform any other operation
without initially join the smart space and providing its identity as well as
its credentials. This operation is encapsulated in a SSAP envelope and does
not use any other inner protocol.

� LEAVE: With this operation, a KP ceases the communication session with
the SIB. After this, a KP cannot perform any other SSAP operation. This
operation is encapsulated in a SSAP envelope and does not use any other
inner protocol.

� INSERT: With this operation, a KP inserts in the SIB a graph of determined
triples. This operation is currently supported in RDF-M3 and SPARQL
formats.

� DELETE: With this operation, a KP atomically speci�es a graph of triples
that has to be deleted from the Smart Space. This operation is currently
supported in RDF-M3 and SPARQL formats.

� UPDATE: With this operation, a KP atomically speci�es a graph of triple
that it intends to update and a graph of triples which are the replacement
to the others. The SIB indeed performs initially a DELETE operation and
subsequently an INSERT. This operation is currently supported in the format
RDF-M3.

� QUERY: With this operation, the KP atomically fetches a number of triples
that satisfy the parameters given. The operation is supported in RDF-M3,
with which a subset of subject, predicate or object can be speci�ed. As an
alternative, widely used within the scope of the project, the operation can
support SPARQL language. SPARQL is a language in some ways specu-
lar to SQL on non-relational databases, thus it support insert operations,
queries, updates and deletions. Although SPARQL operations are always
encapsulated in a SSAP QUERY envelope, they can all be performed.

� SUBSCRIBE: The subscription is one of the most important features of
the Smart-M3 architecture. A KP can subscribe to one or more triples
(one or more of its parts can be parametrized); with this operation the
SIB noti�es the KP whenever a triple belonging to the speci�ed pattern is
inserted, deleted or updated. Logically, on the other hand, the KP must
maintain an open socket listening for the noti�cations. Currently RDF-M3
and SPARQL languages are supported.

32

� UNSUBSCRIBE: With this operation, a KP atomically disables any sub-
scription with the given parameters.

2.1.3 Simulation Platform

As largely explained in Simone Rondelli's dissertation [24], many technologies have
been combined to obtain an e�cient basis for the development of the system.
In this case our choice was an interaction between diverse well-known simulator
platforms, allowing the developer to rely both on an e�cient and basic simulation
of urban mobility and on an e�cient simulation development environment. Below
are described in su�cient detail those systems.

SUMO - Simulation of Urban MObility

SUMO is an open-source, multi-platform simulator of urban mobility written
in C++ supported by the Institute of Transportation Systems at the German
Aerospace Center [12]. It simulates big tra�c networks in which every vehicle is
designed in a microscopic way, thus it has its own characteristics, its own itinerary
and its own behavior. Every input to the simulation is parametric and constituted
by an XML document, for instance the vehicle routes, the map, the buildings and
so on so forth. It supports, when needed, a powerful and interactive GUI and a
set of tools aiming to help the user generating the XML parametric �les. Those
tools are Netconvert (able to convert a map from a standard format such as Open-
StreetMap), Duarouter (able to generate the vehicle routes) and Polyconvert (able
to generate the polygons such as the buildings imported from other formats). The
interaction with SUMO is given by a module called TraCI (Tra�c Controller In-
terface), which provides several operations callable from the extern according to a
client/server protocol [8].

OMNeT++

OMNeT++ is an open source environment for developing discrete events simula-
tions, distributed together with an Eclipse-based IDE [5]. Despite such environ-
ment has been designed purely for network simulation, its �exible nature made
possible to use it for a wide variety of di�erent purposes. It is based principally
on the interaction among modules through message passing, which can occur to-
gether with any structured format. Such modules interact using gateways and can
be compound with other modules, each performing a di�erent task.

One of the most powerful tools provided by OMNeT++ is the data analysis.
The developer can ask to the system to register any of the vectorial or scalar

33

values of interest during the simulation and to automatically plot a histogram, a
Cartesian graph, a bar graph, a linear graph and so on.

Veins

Veins is an Open Source framework for the Inter-Vehicular Communication (IVC)
[13] based on OMNeT++ and MiXiM [9], a framework itself which simulates ad-
hoc networks, wireless sensors networks and vehicular networks [14]. Veins com-
municates continuously with SUMO using the TraCI module and establishes a
parallelism between the vehicles in SUMO and the modules in OMNeT++. For
our purposes, we removed from the modules the submodules regarding the net-
work protocols (802.11 and ARP) and added several other modules, explained in
section 2.4. Figure 2.2 shows the interaction between the modules.

2.2 Project Structure

This section shows how components are acting within the E-Mobility Simulator
Platform and how we reached and achieved the goal of simulating each interactions
among the modules.

2.2.1 Internal Architecture

According to the Smart-M3 paradigm, the architecture is composed by a set of
components that communicates with each other through the data written and
read from one or more SIB. As the relevant data coming from the smart space
formed by the simulated environment and the city service is regarding both ve-
hicles and charging stations, we decided to physically split the storage system in
two di�erent SIB. This choice refers primarily to the fact that some of this data
(generally the one regarding vehicles) should not be public in a real world imple-
mentation, while data regarding charging stations and reservations must de�nitely
be reachable by any user whatsoever.

Figure 2.3 shows the overall architecture. It is evident how active components
(here identi�ed by circles denoting single processes) are all acting in full as KPs, in
fact not a single direct communication among them is present. Although the ar-
chitecture here represented denotes only how the legacy system has been designed
before being integrated in the Arrowhead framework, it is important to point
out clearly that any add-on module or adapter subsequently integrated shoud re-
spect this architectural style. Therefore, it is expected that the Arrowhead service
provider presented in chapter 5 shall fetch the information needed only from the

34

Figure 2.2: Overview of the SUMO GUI (above) and the architecture of Veins
(below)

SIB.

Below are described more in detail the entities of the system.

City SIB

The City Service Information Broker is one of the main entities of the overall
project. It not only constitutes the bottleneck through which almost all the com-
munications take place, but indeed it acts also as a gateway to the outer world.

35

Figure 2.3: Architecture of the whole legacy E-Mobility Simulator. In red are
identi�ed the operation no longer required, while in blue the interactions with the
outer world, still respecting the Smart-M3 architecture.

36

It is meant to store all the data supposed to be available in a real implementation
(which would probably consist of a set of City SIBs or, more probably, an ad-hoc
cloud), starting from the collection of parameters coming from the whole set of
charging stations (EVSEs and GCPs). It is also the mediator between the vehicles,
the City Service and the EVSEs within the scope of the reservation process (as
stated later on). Furthermore it stores the ontology, described in detail in sec-
tion 2.3, which must be carefully followed in order to go standard and make the
whole system working properly.

Dash SIB

The Dash Service Information Broker is a secondary SIB, but essential to retrieve
informations about vehicles. It was necessary to split the storage in two separate
concepts, as the fact that vehicle informations (such as GPS position or State of
Charge) are public would probably not meet the requirements in a real imple-
mentation. Keeping the vehicle informations separated allows this system to be
�exible and as parallel as possible with the reality. In particular, all the informa-
tion stored in the Dash SIB consist merely of the whole set of parameters provided
by the electrical vehicles, together with a duplicate of the ontology.

Electrical Vehicle KP

The Electrical Vehicle Knowledge Processor is responsible for governing the whole
life cycle of the vehicle. Its functioning is explained in further detail in subsec-
tion 2.4.1. In general it manages the operations of driving, deciding the route based
on some sort of prede�ned behavior, calculating the battery consumption, moni-
toring the battery and its electrical parameters, reporting constantly its position,
requesting a reservation when the state of charge is low, choosing a reservation
spot among the ones o�ered, going to the designed charging station, calculating
the energy acquired during the charging process and unplugging the vehicle when
the battery is full. All its data during all these operations are reported for testing
and monitoring purposes on the Dash SIB, except for the reservation request and
con�rmations, which have to be public.

This KP was initially developed by me in 2012 [17], then refactored by Luca
Bedogni and Simone Rondelli [19][24] and again modi�ed by me in the scope of
the present project.

EVSE KP

The EVSE Knowledge Processor is responsible, specularly to the previous, for
governing the whole life cycle of the EVSE.

37

Basically it has a double purpose: it posts constantly on the City SIB any
variation in its electrical parameters to keep them monitored from the extern and
reads constantly from the SIB any inducted variation in those same parameters
for testing purposes and it keeps the recharging process monitored, even if, in our
implementation, the charging progress is published on the City SIB by the vehicle
KP.

This KP was developed by Simone Rondelli in 2014 [24], then modi�ed by me
in the scope of the project.

City Service KP

The City Service KP acts as an extern server against the simulator. In fact it runs
separately and it can be considered a prototype of the real implementation rather
than a simulation. The �rst and foremost task it performs is the handling of the
whole reservation process (described further in subsection 2.2.2). To achieve this
result it must exploit the subscription mechanism of the SIB, thus subscribing to
any variation, insertion or deletion of charging request and reservation con�rma-
tion. Moreover, in the scope of the simulation, it provides the SIB with the initial
and �xed informations about all the GCPs and EVSEs, retrieved from an XML
con�guration �le, indeed acting as an initializer.

A �rst prototype was developed by me in 2012 [17], then completely redesigned
by Simone Rondelli [24] to achieve a better scalability and usability, then again
modi�ed with some more features in the scope of this project.

Demo Mobile Monitor KP

The Mobile Monitor KP was developed in the �rst scope of the project and is
currently obsolete. Its purpose is to simulate the real application running on
the end user's mobile phone. With the aid of a third-party technology, such as
Blue&Me, relying on the Bluetooth protocol, the application must be in constant
communication with the EV's control unit and fed by its parameters [24]. In the
scope of the simulation, the data are fetched directly from the Dash SIB using
again the subscription method, therefore the application is updated every time
a pre-designated vehicle changes it parameters on the SIB. Basically, the mobile
application works exactly as if the user was driving one of the simulated vehicles;
it can see its position on the map, it can switch to a screen showing all its electrical
parameters (especially the State of Charge) and it can perform reservation requests
just as if it was driving the real vehicle.

A �rst prototype was developed as proof of concept by me in 2012 [17], then
completely rebuilt by Simone Rondelli [24] as his �rst contribution to the project.
Subsequently several people gave contribution to the project as well until July

38

2014, when it became obsolete.

2.2.2 The Recharging Reservation Process

The most powerful feature added to the simulation was the recharging process
and the reservation mechanism. Although this mechanism had to be rede�ned in
the scope of the Arrowhead integration, it is useful to report here brie�y how it
has been implemented before, as this implementation is meant to persist in the
standalone simulation as well as for the reservation performed automatically by
the non-monitored vehicles. The reservation process is due to the exchange of
particular sets of triples, described in subsection 2.3, and is here reported from a
rather abstract point of view. Further details can be found in [17] and [24].

Figure 2.4: Legacy reservation process handled by the City Service, the City SIB
and a Client.

The process is articulated in several phases, reported in the list below as well
as in �gure 2.4, and all of them are mediated by the City SIB:

1. Recharge Request: the vehicle's user places a reservation request, nomi-
nally ioe:ChargeRequest in subsection 2.3, providing its position, its state
of charge and its preferred time.

39

2. Recharge Response: the City Service responds with a response, nominally
ioe:ChargeResponse in subsection 2.3, providing, after analyzing the status
and the Reservation queue of each EVSE, a set of options, characterized by
a price and a time slice.

3. Con�rm by User: the vehicle's user updates one of the options mark-
ing as true the �ag ioe:ConfirmByUser, claiming that he wants to place a
reservation corresponding to that option.

4. Con�rm by System: the City Service checks if the spot is still available,
in such case marks as true the �ag ioe:ConfirmBySystem for that option.
On the other hand, if the spot is not available, the system provides another
response and goes back to phase 2.

5. Acknowledgement by User: the vehicle's user marks as true the �ag
ioe:AckByUser of that same option. This often is done below the actual
control of the user, just to check if the client did not crash in the meantime.

6. Reservation Insertion: once received the acknowledgement, the City Ser-
vice �nally places a reservation for that vehicle on the SIB.

The process of deleting a reservation is rather simple, thus it will not be re-
ported here in detail. The user simply asks for a reservation retire and the City
Service executes it and subsequently noti�es the user with an acknowledgement.
The whole communication is again mediated by the City SIB, for further details
see [24].

2.3 Ontology

In a project that involves a consistent number of entities, interoperability is the key
for a clean interaction. In particular, since the present system encodes every data
in RDF triples, it is necessary to establish a standard which governs the format of
every communication, especially when the data to be represented is heterogeneous.
OWL is a global format, used within the scope of Semantic Web and Linked Data,
de�ning RDF/XML standard data structures and it has been chosen for the data
representation within the project. The vast majority of the information used is
not already present in any existing OWL ontology whatsoever, thus only few ref-
erences to external ontologies have been used.

The ontology has been widely modi�ed in the scope of the integration of the
legacy system within the Arrowhead framework, thus here is reported the updated
version, which is used currently: ioe-ontology_v1.7.2.owl. All the ontology triples,

40

encoded in RDF/XML format, are uploaded physically on each SIB during its
initialization as well as available in the same format as an OWL document on the
project repository on bitbucket: https://bitbucket.org/InternetOfEnergy/

internet-of-energy. Due to this shrewdness, the ontology will be available in
full to each developer willing to use our customized version of the Smart-M3 ar-
chitecture.

Each class, instance or property here represented is intended to be indicated
with the ontology's namespace as a pre�x every time is referenced anywhere in the
project. The complete pre�x is http://www.m3.com/2012/05/m3/ioe-ontology.
owl#.

2.3.1 Entity Classes

All the OWL classes reported here are subclass of owl:Thing (unless di�erently
speci�ed) and denote a physical entity of the system. Although the Object prop-
erties and Datatype properties are more numerous than the ones represented here,
we try to give all the elements necessary to understand how to use the ontology
entities.

� Vehicle: is the main entity of the project. It represents an electrical vehicle
(which can be fully or hybrid).

hasBatteryData BatteryData Link to the battery data.
hasGPSData GPSData Link to the position data.
hasIdenti�cation-
Data

Identi�cationData Link to the user identi�cation
data.

hasReservation Reservation Link to its active reservation.
hasManufacturer data:string Manufacturer's name.
hasModel data:string Model's name.

� GridConnectionPoint: one of the main entities of the project. It repre-
sents a charging station (which can include one or more charging spots, i.e.
EVSE).

hasConnectedEV Vehicle One or more links to the vehicles
connected.

41

hasGPSData GPSData Link to the position data.
hasIdenti�cation-
Data

Identi�cationData Link to the RFID identi�cation
data.

hasEVSE EVSE One or more links to the EVSEs
hosted.

hasMaxPower PowerData Link to the maximum output
power.

hasName data:string GCP's �endly name.
supportsV2G data:boolean If supports Vehicle-to-grid oper-

ations.

� EVSE: one of the main entities of the project. It represents an EVSE.

hasAvailability Availability Link to the EVSE's availability
status.

hasFaultCode FaultCode Link to the EVSE's fault code
status.

hasChargingStatus ChargingStatus Link to the EVSE's charging sta-
tus.

hasChargePro�le ChargePro�le Link to a set of electrical param-
eters.

hasChargeProgress Recharge Link to the pro�le of the ongoing
recharge.

hasLastCharged-
Energy

Recharge Link to the pro�le of the last
completed recharge.

hasConnector Connector Link to the connector's parame-
ters.

hasGridConnection-
Point

GridConnectionPoint Link to the GCP hosting the
EVSE.

hasMaxCurrent-
DensityIn

CurrentData Link to the max current density
in input.

hasMaxCurrent-
DensityOut

CurrentData Link to the max current density
in output.

hasMaxEnergy-
Capability

EnergyData Link to the maximum amount of
energy rechargeble at a time.

hasMaxPower PowerData Link to the maximum output
power.

42

hasMaxVoltage VoltageData Link to the voltage data.
hasReservationList ReservationList Link to the EVSE's list of reser-

vations.
hasName data:string EVSE's �endly name.
hasEvseIdenti�er data:string EVSE's �endly identi�er.

� Connector: it represents an EVSE's connector (which can rely on di�erent
standards).

hasConnectorType data:string Name of the connector's stan-
dard.

hasStatus data:string Status of the connector (not used
at the moment).

� ChargePro�le: abstract entity collecting electrical parameters belonging
to the EVSE.

hasCurrent-
DensityIn

CurrentData Link to the instant current den-
sity in input.

hasCurrent-
DensityOut

CurrentData Link to the instant current den-
sity in output.

hasPower PowerData Link to the current output
power.

hasVoltage VoltageData Link to the voltage data.
hasPrice PriceData Price of the energy per KWh

(conditioned by external agents
such as FlexO�er).

� EVSEStatus: identi�es the status of an EVSE. It comprehends the OWL
subclasses FaultCode, Availability and ChargingStatus. FaultCode can be
currently: Enabled, Fault, Abnormal, Veri�cation. Availability can be cur-
rently: Available, CheckFault, Plugged, Reserved. ChargingStatus can be
currently: Unplugged, Recharging, StartCharging, StopCharging. Both Charg-
ingStatus and FaultCode condition the Availability characteristic.

43

hasSignature data:string The status itself.

� Identi�cationType: identi�es a string that somehow describes data be-
longing to the caller.

hasSignature data:string The description itself.

� Person: identi�es a person involved in the system (a vehicle's driver).

hasName data:string The person's friendly name.
hasUserIdenti�er data:string The person's friendly username.

� Zone: identi�es a square zone, denoted by its south-east point and its nort-
west point.

hasSouthEastPoint GPSData Location of the south-east point.
hasNorthWestPoint GPSData Location of the north-west point.
hasIdenti�cation-
Data

Identi�cationData The zone's identi�cation.

� UnitOfMeasure: identi�es a string that denotes the unit of measure used
in a measurement.

hasSignature data:string The unit of measure signature.

� Currency: identi�es a string that denotes the currency used in a payment.

hasSignature data:string The currency signature.

44

� ChargeRequest: identi�es a charge request inserted by a user in the SIB,
waiting to be processed by the city service.

hasRequestingVehicle Vehicle Link to the requesting vehicle.
hasRequestingUser Person Link to the requesting user.
hasRequestedEnergy EnergyData Link to the amount of energy re-

quested.
hasSpatialRange SpatialRangeData Center and radius of the area in

which the request is intended to
be valid.

hasTimeInterval TimeIntervalData Span of time in which the request
is intended to be valid.

allowBidirectionality data:boolean Allow vehicle-to-grid operations.

� ChargeResponse: identi�es a charge response inserted by the city service
in the SIB.

hasRelatedRequest ChargeRequest Link to the request for which this
is the response.

hasChargeOption ChargeOption Link to the options presented in
this response to the user.

� ChargeOption: identi�es a charge option inserted by the city service as
part of a response.

hasRequestingVehicle Vehicle Link to the requesting vehicle.
hasGCPPosition GPSData Link to the position of the charg-

ing station.
optionHasEVSE EVSE Link to the designed EVSE.
hasTimeInterval TimeIntervalData Span of time in which the option

is intended to be o�ered.
hasTotalPrice PriceData Total price of the operation.
hasChargePro�le ChargePro�le Link to the EVSE's charge pro�le

o�ered.
allowBidirectionality data:boolean Allow vehicle-to-grid operations.

45

con�rmByUser data:boolean The user selected this option.
con�rmBySystem data:boolean The system inserted a reserva-

tion for this option.
ackByUser data:boolean The user knows about the reser-

vation he or she just performed.

� ReservationList: identi�es a reservation list belonging to a speci�c EVSE.

hasReservation Reservation Link to the reservations in this
list

� Reservation: identi�es a �nalized reservation, inserted by the city service.

reservedByVehicle Vehicle Link to the reserved vehicle.
reservationHasUser Person Link to the user who performed

the reservation.
hasEVSE EVSE Link to the EVSE for which the

reservation is valid.
hasPrice PriceData Total cost of the operation.
hasTimeInterval TimeIntervalData Span of time in which the reser-

vation is intended to be valid.
idBidirectional data:boolean True if the reservation allows

vehicle-to-grid operations.

� Recharge: identi�es a recharge process, inserted by the EVSE.

reservedByVehicle Vehicle Link to the recharging vehicle.
hasUser Person Link to the user who booked the

recharge.
rechargingOnEVSE EVSE Link to the EVSE which is

recharging the vehicle.
hasTimeInterval TimeIntervalData Span of time in which the

recharge is e�ectively taking
place.

46

hasEnergyData EnergyData Amount of energy recharged so
far.

� ReservationRetire: identi�es a reservation retire request, inserted by the
user.

retiredReservation Reservation Link to the retired reservation.
retiredByUser Person Link to the user who performed

the retire.

2.3.2 Data Classes

All the OWL classes reported here are intended to represent measured data within
the scope of the project. They are approximately all subclasses of http://www.
m3.com/2012/05/m3/ioe-ontology.owl#Data and, given their name, they can be
all monitored by any application connected directly so the SIB. Most of them are
monitored by the Arrowhead adapters as well.

In this �rst list we report all the data represented with the two properties
hasValue and hasUnitOfMeasure, respectively referring to an object of type
data:double and UnitOfMeasure, to avoid being too verbose. The scheme of
the following table is: class name, unit of measure and short description.

ChargeData kWh Capacity data used in recharge
processes.

CurrentData A Current density.
EnergyData kWh Energy data used in recharge and

discharge processes.
PowerData kW Electrical Power.
TemperatureData C° Temperature, used to monitor

the battery.
VoltageData V Electrical voltage.

There are several other data measurements which are represented in a slightly
di�erent structure; they are listed below:

� BatteryData: it is the most important data record of the project, which

47

stores all the electrical parameters (nominal and variable) of a vehicle bat-
tery.

hasCapacity ChargeData Capacity data used in recharge
processes.

hasCurrent-
DensityIn

CurrentData Current density in input.

hasCurrent-
DensityOut

CurrentData Current density in output.

hasMaxCurrent-
DensityIn

CurrentData Maximum current density in in-
put.

hasMaxCurrent-
DensityOut

CurrentData Maximum current density in out-
put.

hasNominal-
Temperature

TemperatureData Nominal temperature of the bat-
tery.

hasTemperature TemperatureData Current temperature of the bat-
tery.

hasPower PowerData Current power consumed by the
battery.

hasVoltage VoltageData Nominal Voltage of the Battery.
hasStateOfCharge ChargeData Important, the amount of charge

left in the battery.
hasStateOfHealth data:double The health of the battery, from 0

to 1.
hasManufacturer data:string Name of the battery's manufac-

turer.

� Identi�cationData: It represents the identi�cation of an entity, may vary
according to the entity involved.

hasIdenti�cation-
Type

Identi�cationType The type of identi�cation used
by the entity.

hasCode data:string Code representing the entity, fol-
lowing a certain standard.

� GPSData: It represents the position of an object in terms of GPS coordi-

48

nates. It is a subclass of LocationData.

hasGPSLatitude data:double Latitude of the object.
hasGPSLongitude data:double Longitude of the object.

� SpatialRangeData: It represents a circular area, often centered by GPS
coordinates.

hasRadiusKm data:double Length of the circle's radius in
Kilometers.

� TimenIntervalData: It represents a span of time, using as unit of measure
the absolute time, so the number of milliseconds since January 1st 1970.

hasStartingTime-
Millisec

data:double Beginning of the time span.

hasEndingTime-
Millisec

data:double Ending of the time span.

2.4 Interaction in the Scenario

In this section the main entities implemented in the simulator are presented. The
core functionalities of the whole simulation are developed within the OMNeT++
workstation, a powerful Eclipse-like IDE, in C++. The entities which take part
in the simulation process are the following (not all of them are physical NED
modules):

� The Car, the most important module, which is permanently tied to its coun-
terpart in the parallel SUMO simulation. It is compound by di�erent mod-
ules, each in charge for governing a particular set of actions that the driver
(or the car) can perform: CarLogic (the main module aiming to monitor
the car's status and its global decisions), DriverBehaviour (a module which
performs decisions based on a set of behavioral parameters), Battery (the
module which controls the battery parameters), CarMessage (the module

49

which represents the maintenance of volatile data during the transition from
an instant to another within the simulation).

� The GCP, which holds the static data regarding the Grid Connection Point.

� The EVSE, an active entity in the scenario, though not a NED module,
which keeps track of its status and of the vehicles recharging and queuing at
it.

� The CityService, which is not the external city service in charge of replying
to the reservation request, but it aims to slice the simulation in instants,
keep track of the number of vehicles and their status and instantiate some
global properties (explained in subsection 2.4.2).

� The Synchronizer, which is an unique entity aiming to synchronize the simu-
lation to any other concurrent simulation that can interact with it (services
for energy pricing, Smart Grid balancing and so on).

� The GcpController, which is an unique entity that acts as an bottleneck
to initialize GCPs and EVSEs �rst (which are pre-determined in an XML
con�guration �le) and access to any of them later.

� The SibController, an object present in every Car module, which manages
all its connection to both the SIBs.

2.4.1 The Electrical Vehicle's Lifecycle

The main point of interest of the simulator is how the electrical vehicles behave,
mostly because everything that change within the simulator is due to the ac-
tions performed by them. Vehicles are spawned in the simulator according to a
parametric frequency and they are considered electrical due to another paramet-
ric frequency. When this happens, if the vehicle is not considered electrical (red
vehicle in �gure 2.5), its OMNeT++ module is erased and it is not considered
(although it will still take part in the simulation as a part of the tra�c and it will
run along its pre-determined path). If, otherwise, the vehicle is electrical it will
load all its nominal and temporary data, as well as its battery parameters, in the
dash SIB and it will be assigned the status DRIVING. Due to the Sumo con-
�guration �le, the vehicle has a speci�c route assigned to it, although the process
of battery discharging is running in parallel. The process itself has been devel-
oped according to the battery speci�cations given by Siemens [17], followed by
many integrations that included the inertial auto-recharge and the slope data, as
well as a better refactoring of the equation [24]. Each car, to keep in memory

50

Figure 2.5: Vehicles in our system seen through the Sumo GUI. A green vehicle is
electrical, a red vehicle is fueled and a yellow vehicle is an electrical vehicle either
parked or recharging.

its volatile data, envelopes it in a �self message�, scheduled for the next discrete
event (normally those discrete events occur once in a second). When the param-
eter �State of Charge� (SoC), the most important and relevant parameter of the
battery, is perceived lower than a certain percentage (which is parametric) the
car's SibController sends a charge request to the City SIB and the car switches to
the state WAITING RESPONSE. At this point, the vehicle keeps polling the
City SIB for the charge response until it receives it. When the charge response
is fetched, the vehicle chooses randomly one of the options and switches to the

51

Figure 2.6: Overview of the vehicle activity �ow.

state WAITING CONFIRM. If the option is not con�rmed the car switches
back to the previous state and cycles the operation, while, if the option is con-
�rmed, the vehicle calculates exactly how much time would require to reach the
chosen charging station and compares it with the reservation starting time. If it
realizes that it would get there before the reservation is valid it assumes the status
PARKED, parks along the road, if possible, and schedules a �self wakeup mes-
sage� after (reservationT ime− (currentT ime+ timeToReachStation) and when
the message arrives it assumes the state GO TO RECHARGE. If the vehicle
realizes that there's no need to wait, then it switches immediately to the state GO
TO RECHARGE and, as soon as this is the vehicle state, it changes its route
with the position of the chosen charging station as a destination. When the vehicle
arrives at the charging station, it parks and, if there is no queue, it switches to
the state CHARGING, while, if all the EVSEs are occupied it performs a choice
based on the rules stated in the module DriverBehavior. This choice is determined
by a simulated mind status similar to the driver's anxiety or impatience and it is
based on the estimated waiting time in line for a free EVSE. If the driver decides
to wait, then the car switches to the status WAITING FOR EVSE and it will
be waken up by the EVSE itself when it will be free. If, on the other hand, the
driver decides not to wait it switches to the status DRIVING and tries another
charge request, so the process starts over again. Normally, due to the reservation
protocol (i.e. is not possible to reserve the same spot twice) the situation in which
the vehicle waits for a free EVSE should not happen, though several modi�ers
(decided previously in the con�guration) may interact deeply with the simulation
itself.

Main Changes

One of the main changes from the older version of the simulator is the presence of
status �ags about the EVSEs and the concept of fault, which has been introduced
as a requirement by WP3. Before these new features, the only status information
retrievable about the charging station was if the EVSE was recharging a vehicle
or not.
The new EVSE status is compound and hierarchical. It is compound by three main

52

objects: the availability, the charging status and the fault code, which interact
among themselves in the following way:

1. The availability (Available, CheckFault, Plugged, Reserved) may never be
set from the extern, it is only conditioned by other statuses.

2. The charging status (Unplugged, StartCharging, StopCharging, Recharging)
a�ects the availability, in particular, if is set on a value di�erent than Un-
plugged, the availability is set on Plugged.

3. The fault code (Enabled, Fault, Abnormal, Veri�cation) a�ects both the
availability and the charging status, in particular, if is set on a value di�erent
than Enabled, the charging status is set on Unplugged and the availability
on CheckFault.

Whenever an EVSE faults, it may involve vehicles as well. If the EVSE was
recharging, each vehicle in CHARGING or WAITING FOR EVSE status against
that EVSE will immediately assume the DRIVING status and try to �nd some
other EVSE by reservation. As each vehicle keeps monitoring the EVSE where
reserved the spot, if the faulted EVSE was reserved each vehicle reserving that
EVSE will generate a noti�cation which triggers the deletion of its reservation for
that EVSE and forces the vehicle to perform another request elsewhere.
Several other smaller improvements were performed on the simulator.

2.4.2 Parameters

Whenever a new launch con�guration is decided, several parameters may be in-
stantiated, making possible di�erent case studies. Those con�guration are stated
in the omnetpp.ini �le in the root directory of the simulator. Some of the most
relevant parameters are stated below:

� electricalVehicleFreq: this parameter indicates (in percentage) the fre-
quency for which any spawned vehicle would be electrical.

� maxElectricalVeh: this parameter indicates what is the maximum number
of electrical vehicles at a time (when the maximum amount is reached all the
generated vehicles are fueled).

� reservationEnabled: one of the most important parameters of the project.
If false, the reservation mechanism would no be used at all and the vehi-
cles would start to go to recharge to the closest charging station eventually
generating waiting lines (used mainly in user behavior case studies).

53

� EVSEFaultProb: this parameter expresses, in percentage, how likely is an
EVSE to be spawned in a faulty condition.

� writeCarStatusOnSib: this parameter, if set to true, enables the vehicle
to update the Dash SIB with its status. It is clearly just for monitoring
and testing purposes and it does not have any real counterpart in a real
scenario, as the vehicle's status should not be publicly reachable. Further-
more, it considerably slows down the simulator's performances as it requires
two operations (insertion and deletion) against a single SIB each time slice
multiplied by the number of active electrical vehicles.

� threshold: this parameter indicates (with a �oat normalized value from 0
to 1) the state of charge threshold below which a vehicle will automatically
perform a charge request.

There are several other parameters in the Battery module as well as in the Driver-
Behavior module to customize some battery and behavioral parameters.

2.5 Some Results

In this section we report brie�y some past results obtained by this project. Those
are important to be described as they clearly state that we reached some of the
goals stated in section 2.1.1, in particular how a certain number of electrical vehi-
cles impacts on a charging infrastructure with or without the reservation mecha-
nism. The complete description can be found in [24].

2.5.1 Vehicle Consumption

The �gure 2.7 shows the state of charge of an electrical vehicle over the whole
simulation. Time is displayed on the x axis and state of charge on the y axis. It
can be noticed how the vehicle can reach almost every time a free EVSE before
the battery runs out of energy. The threshold is set di�erently for each vehicle; it
can be from 8% up to 32% due to a di�erent driver's �anxiety�.

2.5.2 EVSE Occupation

The �gure 2.9 shows two histograms representing how much the charging stations
are occupied in percentage (over time). It compares di�erent results according to
the number of electrical vehicles involved in the simulation and it shows in parallel
how many requests were not satis�ed with reservation enabled (in red) and without
reservation enabled (in green). A request is considered not satis�ed when either

54

Figure 2.7: State of charge of a vehicle in a 28-hour simulation.

Figure 2.8: Vehicle consumption in relation with its weight [24].

the driver drives away from a charging station due to the length of the waiting
line, or the selected option is rejected (in case of reservation enabled), or even it
runs out of battery before managing to recharge it. It is obvious how a reservation
mechanism is necessary for such an infrastructure to avoid huge waiting lines.

55

Figure 2.9: EVSE overall occupation with and without reservation (above) and
number of unsatis�ed requests (too long queues, options rejected...) [24].

56

Chapter 3

The Arrowhead Paradigm

3.1 Arrowhead Core Entities

In this section we will focus on the Arrowhead main entities, which are the gravita-
tional center for all the interactions among any number of Arrowhead systems. As
stated in section 1.1.1, any SOA-based infrastructure (called System -of-Systems)
needs service consumers, service providers and one or more third-party service
brokers. Those brokers are services themselves and are called Arrowhead Core
Services (ACS) and are supposed to be hosted in the same machine that runs the
service broker daemon (or the same subnet). The ACS are highly responsible for
the interaction among any other system in the Arrowhead framework. So far, pre-
cisely at the beginning of Arrowhead Generation II [25], the ACS are unique and
centralized, but there are future expectations on enabling their scalability, both
in horizontal direction (more ACS of the same type in a cloud or a cluster) and
in vertical direction (hierarchy of di�erent types of ACS for di�erent domains).
As stated in paragraph 1.2.2, the ACS should implement the Information Infras-
tructure, the System Management and the Information Assurance. This stage has
already been reached during the Arrowhead Generation I [26] and plenty of docu-
mentation is provided about those systems. Here we report a brief description of
the ACS so far implemented.

3.1.1 Service Registry

The Service Registry is the main service present in the ACS. Its purpose is acting
as the service broker itself and implements the Information Infrastructure. It
keeps track in a table which services are registered and published to make them
reachable for every service consumer whatsoever. The connection to the Service
Registry and the operations of service discovery are modeled using the standard
RFC 6763: DNS-SD [52], a protocol based on DNS lookups. Each record published

57

by a service provider on the Service Registry must be composed by the following
�elds:

� Service Name, an unique name to identify the service.

� Service Type, a DNS-SD standard notation for the service type: _servicetype.
_transportprotocol. It is a good practice to split the above mentioned
_servicetype in _servicetype_applicationprotocol. All in all, the Ser-
vice Type cannot be more of 14 characters long; an example could be _temp_
rest-ws._tcp for a service providing temperature data, using a REST Web
service and TCP as a transport protocol.

� Service Instance, an unique name which is compound by ServiceName.

ServiceType.BrowsingDomain and is o�cially designed as the service unique
identi�er. An example could be temp001._temp_rest-ws._tcp.srv.arrowhead.
eu.

� The Service Endpoint, the complete host identi�er in which the system host-
ing the service is running, followed by port and path by which the service
is reachable. As is a DNS-based interaction, the host should consist of a
hostname, not a plain IP address.

� The Service Metadata, a chunk of properties mapped as �[name]=[value]�
which denote additional information about the service (such as the version).

Any system willing to consume one of the services published in the Service
Registry performs �rst of all the operation of Discovery, which consists in reading
the records stored in the registry to �nd the service needed. Once such a service is
found, the consumer stores the whole service record, in particular the endpoint in
which the service is running. The action of consuming a service is then a simple
client-server interaction in which the consumer connects directly to the endpoint
previously discovered.

At the same time, any provider may perform the actions of Publish and Un-
publish against the Service Registry. These operation respectively add and delete
a record to the Service Registry to make the Service provider reachable from any
Arrowhead-compliant consumer.

In terms of design, the Service Registry system consists of the following service
interfaces [21]:

� Service Discovery (provided): it is the service consumed by all the Ar-
rowhead systems willing to perform Publish, Unpublish and Discovery oper-
ations (basically any Arrowhead system must perform at least one of these
operations).

58

Figure 3.1 shows the graphical web interface, called Management Tool (which
itself consumes the Service Discovery DNS-SD), showing all the service records
published at the moment.

Figure 3.1: Management Tool, portion of the Service Registry section.

3.1.2 Authorisation

The Authorisation system is the system implementing Information Assurance ca-
pabilities within the ACS. In particular, it keeps in memory a chunk of records
which state who is allowed to consume certain services. Furthermore, a service
provider may or may not require authentication control, as it may be a global
provider not requiring any kind of authentication. Anyhow, the possibility of inter-
action with the Authorisation services is mandatory for any Arrowhead-compliant
system whatsoever. As a common use case, a service provider, after receiving a
service request by a consumer, it checks by connecting to the Authorisation system
whether the consumer is e�ectively allowed to use the service before providing it.

The records stored in the Authorisation system are based on X.509 certi�cates
(standard RFC2459) [53]. Any consumer of a secure service must therefore have
a trusted certi�cate and, furthermore, obey to the authorisation records. An
authorisation record is composed by the following �elds:

� Service Type, which is the DNS-SD Service Type of the service reachable
(i.e. service that can be consumed) by this rule. A * means all types.

� Service Instance, which is the DNS-SD Service instance of the service reach-
able by this rule. A * means all instances.

� Authorisation Rule, which is a set of association �[attribute]=[value]� where
the attribute is one of the common RDNs of a X.509 certi�cate: CN (Com-
mon Name), OU (Organizational Unit), O (Organization), L (Locality), S
(State), C (Country). An example may be �O=BnearIT;C=S�, which means

59

that only who has a certi�cate validated by the company BnearIT in Sweden
may consume the service speci�ed by the other two �elds.

In terms of design, the Authorisation system consists of the following service
interfaces [22]:

� Authorisation Control (provided): it is the service which provides read
access to the authorisation rules. Any secure service provider needs to access
it.

� Authorisation Management (provided): it is the service which provides
write access to the authorisation rules in order to insert, modify or delete
rules.

� Service Discovery (consumed): the Authorisation system needs to con-
sume this service in order to be published.

Figure 3.2 shows the Management Tool, which consumes both Authorisation
Control and Authorisation Management, showing all the authorisation rules valid
at the moment.

Figure 3.2: Management Tool, portion of the Authorisation section.

3.1.3 Orchestration

The Orchestration system is the system implementing System Management ca-
pabilities within the ACS. In particular, it keeps in memory a chunk of records
called orchestration con�gurations. Those con�guration are used when multiple
instances of a certain service are published, to redirect dynamically a consumer to
one of those. A consumer which needs a service of a particular type may not be
interested in getting it manually but rather relying on which instance the Orches-
tration system redirects the consumer to.

The interaction with the Orchestration system is currently avoidable (i.e. a
consumer may just retrieve the service roughly from the Service Registry), but
interoperability with the Orchestration store is one Arrowhead requirement and

60

thus it must be implemented by each Arrowhead system.

The most common use case is given by a service running in several instances.
The service provider(s) are run by a company which own a third entity, an Ar-
rowhead �monitor� capable of interaction with the Orchestration management. A
consumer is connecting to one of the services and thus the Orchestration store
stores a new record which associates the consumer with the service instance. If
the provider producing such instance faults, the �monitor� entity may change the
orchestration record associating a second instance to the consumer. The consumer
itself must periodically monitor the orchestration store and, when perceives a new
association, must switch the service instance to consume.

In terms of design, the Orchestration system consists of the following service
interfaces [23]:

� Orchestration Store (provided): it is the service which provides read
access to the orchestration records.

� Orchestration Management (provided): it is the service which provides
write access to the orchestration records.

� Authorisation Control (consumed): as the Orchestration system is meant
to be secure, it must check whether a system is authorized to access it.

� Service Discovery (consumed): the Orchestration system needs to con-
sume this service in order to be published.

Figure 3.3 shows the Management Tool, which consumes both Orchestration
Store and Orchestration Management, showing all the orchestration con�gurations
valid at the moment.

3.2 Glossary of the Terms

As the Arrowhead project is shared among several partners, a common and clear
glossary to de�ne all the single entities is required [27].

3.2.1 Concepts

This subsection states clearly what we mean with a certain term in a unique way,
to avoid ambiguities. To have a broader explanation [27] is needed.

61

Figure 3.3: Management Tool, portion of the Orchestration section.

� System: a System is what is providing or consuming services (it must be a
Service Provider or a Service Consumer or both) and it is normally executing
a program on a hardware (it may be a personal computer or a small sensor).

� System-of-Systems: a System-of-Systems is a set of Systems which are
communicating with each other strictly using the Arrowhead Framework. It
includes thus the ACS.

� Service: the de�nition of Service has been given in section 1.1.1. In the
Arrowhead Framework it has to be de�ned using a precise documentation
pro�le, it may be compound and is produced by a Service Provider, consumed
by a Service Consumer and follows all the paradigms in a common SOA.

� Service Interface: it is the output or input interface for a service, described
independently from the technology using a standard format. In each diagram
a service interface is denoted with the �lollipop notation�, thus an inbound
service interface (the interface provided by the Service Provider) is repre-
sented by a full lollipop, while an outbound service interface (the interface
instantiated remotely by a Service Consumer) is represented by an empty
half lollipop.

� Service Provider: it is a system which produces services and makes them
available to a set of Service Consumers through publishing.

� Service Consumer: it is a system which discovers and consumes services
made accessible by Service Providers.

62

� Black Box: it is a description of a system in terms of its outer interfaces,
interface descriptions and communication protocols without any knowledge
about the internal implementation.

� White Box: it is the complete description of a system; it may be seen as
the implementation of a Black Box.

� Legacy System: it is a system which is not compliant with the Arrowhead
Framework.

� Legacy Adapter: it is a piece of software which allows a legacy system to
be Arrowhead-compliant.

� Maturity Level: it is, on a scale from 0 to 5, a measurement of how a
system is compliant with the Arrowhead Framework. In particular, they
are shown in �gure 3.4 and are: Legacy system, Thin Client, Legacy In-
terface, Arrowhead/Legacy Interface, Arrowhead Interface and Arrowhead
Compliance.

Figure 3.4: Graphical representation of the maturity levels [26].

63

3.2.2 Documentation Elements

This section states clearly which documentation should be produced to de�ne
any newly deployed Service, System or System-of-Systems. To have a broader
explanation [27] is needed.

� System-of-Systems Description (SoSD): is a high-level view of a System-
of-Systems seen as a Black Box, thus describes functionalities and architec-
ture. It refers to a number of SysDs.

� System-of-Systems Design Description (SoSDD): is a high-level view
of a System-of-Systems seen as a White Box, thus describes the implemen-
tation of the functionalities. It refers to a number of SysDDs.

� System Description (SysD): is a description of a System as a Black Box,
thus describes its service interfaces and purposes. It refers to a number of
IDDs and SDs.

� System Design Description (SysDD): is a description of a System as a
White Box, thus describes how the system was designed and implemented.

� Service Description (SD): is an abstract description of a Service, stating
its interfaces, purposes and information type.

� Interface Design Description (IDD): is a speci�c description of a Service.
It can be seen as the instantiation of an SD with a speci�c technology.

� Semantic Pro�le (SP): it is the description of the data format exchanged
within the scope of a certain service (i.e. the encoding). It is referred to by
an IDD.

� Communication Pro�le (SP): it is the description of the di�erent proto-
cols used by a service in its connection. It comprehends the transfer protocol,
the security mechanism and the data format (speci�ed also in the SP). It is
referred to by an IDD.

3.3 Reason in an �Arrowhead Way�

Whenever an agent, from a single developer to a whole company, wants to create
an Arrowhead-compliant application, which can act as both a Service Provider
and a Service Consumer, should start planning smartly how to represent data and
how to be interoperable with other agents. Enabling de facto standardization is
very important within the scope of such a big project and often partners, if the

64

dissemination is not done properly, may run into small clusters among which the
data exchanged is not in the same format and does not respect the same paradigm.
To avoid this situation an �Interoperability Matrix� has recently been presented in
the last Arrowhead meetings [28]. The matrix shows currently that partners are
roughly not using the same encoding for service types, thus the next step for the
project is fostering new awareness of the global picture.

Designing a new service producer requires that the developer must encode the
information that is meant to be provided in a service oriented paradigm. This
means:

� Produce each information in terms of service.

� Encapsulate all the informations a consumer must know in order to interact
with the service in a clear and standardized document (the IDD).

� Look up (using the interoperability matrix) who else among the partners
used the same type of information and try to use the same encoding (or
agree on a standard).

� Ponder which granularity must be assigned to the service provided; in some
cases may be useful splitting the service in several �service atoms� which can
be aggregated to produce compound functionalities. A too coarse granu-
larity may lead to some missing functions and may lack loose coupling and
customizability. On the other hand, a too �ne granularity may lead to �ood-
ing the Service Registry with several pointless records that would unlikely
be singularly consumed and would require more e�ort from the consumer's
developer in order to aggregate them.

Designing a new Service Consumer, on the other hand, means being aware that
the interactions among systems are all mediated by the Arrowhead Framework and,
to achieve interoperability among the parts, a consumer must develop an interface
following the standards and the design stated in the producer's IDD and SD.

65

66

Chapter 4

Arrowhead REST User-Friendly

Java API

4.1 Structure of the API

One of my personal main contribution to the project consist of user-friendly API
for Arrowhead applications written in Java and compliant with the REST archi-
tecture and underlying protocols. It is usable even with other communication
protocols, but, in those cases, the API o�ers less support and forces the developer
to implement some parts of the underlying layers.

4.1.1 Motivations and Requirements

Whenever interacting with a common framework needs standardization it is neces-
sary to guide a developer through a certain amount of steps both to simplify his or
her implementation against that framework and to avoid misuse of some functions.
The company BnearIT, as a part of WP8, developed two packages which encap-
sulate the functions to interact with the ACS: core-utils-1.4, used to interact
with basic publish, unpublish and discovery functions, and dnssdjava-1.0-beta7,
used to interact with the ACS through the DNS-SD protocol. Those libraries are
not open-source (neither among the Arrowhead partners).

Hence, building the APIs discussed in this chapter has been found to be nec-
essary due to several reasons:

� There is either little or sparse documentation on how to build up an Arrowhead-
compliant application; it is really tricky especially for those who never at-
tended any of the workshops organized.

67

� The code of the above mentioned libraries is not visible, thus it is important
to wrap them with good APIs in order to help the developer in understanding
what is e�ectively happening at lower layers.

� Provide an unique working interface to all the Arrowhead partners, which
should be as less protocol-dependent as possible.

� Organize the code into a layered paradigm, to let the end developer dealing
with only the highest layers.

� Make possible for the developer to get a �hello world� application with really
few lines of code.

According to these motivations and their goals, the APIs have been organized
in three di�erent conceptual layers, which allow the developer to interact the less
necessary with them.

1. The �rst layer is supposed to be common to all the Arrowhead applications.
It has built-in support for REST applications using Jetty [54] as an HTTP
server together with Jersey as an API for RESTful Web services, but it can
be used with every protocol whatsoever.

2. The second layer is not released as usable, because it is supposed to be
common to all the Arrowhead applications within the same domain (i.e.
Arrowhead Applications which use the same language, the same protocol,
the same data format and nearly the same producing/consuming processes).
It is released as a �hello world� example and it is REST-compliant.

3. The third layer is the end application, which is normally supposed to consist
of few line of Java code.

The APIs are released under GPL license among the Arrowhead partners.

4.1.2 Layer 1 (Common to all the Arrowhead Applications)

The �rst layer of the API, together with the �hello world� sample second layer, is
retrievable from the Arrowhead SVN repository at the address https://forge.
soa4d.org/svn/arrowhead/WP9/Task9.3/Working/UniBO/. It depends on sev-
eral libraries (included in the project as well), here we report brie�y some of them
to give an idea:

� Java REST Webservice (java-ws-rs).

� Jetty Web server.

68

� Jersey REST API.

� Log4J, a Java-based logging utility.

� BnearIT Core Utils.

� BnearIT DNS-SD utilities.

The main concept on which the whole API is based is the design pattern
�Abstract Factory�. Using this pattern, a single object, called factory, is able to
produce di�erent objects given di�erent parameters in input. In this case each
service is published and managed (and run in some cases) by a single Service Pro-
ducer, which is an object created by an abstract factory. Di�erent types of services
are managed by di�erent types of Services Producers, for this reason an interface
called AppServiceProducer has been implemented as a basis for each di�erent Ser-
vice Producer. Specularly, each service is consumed by a di�erent object, called
Service Consumer, which implements in turn the common interface AppService-
Consumer and is generated by another abstract factory. Each time a service needs
to be published a producer object will be instantiated to manage the whole ser-
vice's life cycle. Each time a resource needs to be consumed a new consumer object
will be instantiated to manage he whole life cycle of that particular consumption.
To avoid an excessive creation and deletion of object, a recycle mechanism has
been introduced by which objects are never deleted, but rather saved in a pool
and ready to be reused whether a new object needs to be instantiated.

This solution has been adopted to avoid that the end developer interacts un-
controlled directly with the service or the endpoint, therefore the access to those
structures would be guided by intermediary objects. Logically, each domain re-
quires to instantiate objects from di�erent producer classes as well as consumer
classes. The layer 1 API provides only a general Service Producer class and no
Service Consumer class, while the interfaces are provided. Layer 2 is where the
Service Producer and Service Consumer classes are implemented for each speci�c
domain.

The main entities in these APIs are two important objects, which act as a
bottleneck for almost any Arrowhead-related function call. The �rst one is called
ArrowheadController and has to be instantiated before anything else. By calling
this object, with the name of the system as an input for the constructor, the
developer is supposed to have in the project main directory the following �les:

� A property �le which must have the same name as the system followed by
a .properties. This �le collects almost all the parameters necessary to
instantiate the interaction with the ACS.

69

� A JKS �le, a keystore (pointed by the properties �le) which is generated
by the Java Keytool from a set of X.509 certi�cates. It is used to perform
secure connections to the services and the certi�cates have to be released by
trustworthy authorities according to the ones registered in the ACS.

� A Transaction Signature �le, called TSIG (pointed by the properties �le as
well), which is needed by any provider to being able to publish a service on
the ACS. It is a plain text �le containing both the key name and the full key
and it has to match the couple registered on the con�gurations of the DNS
server hosting the ACS.

If these requirements are satis�ed, the ArrowheadController parses the prop-
erty �le, keeps in memory the pointers to the ACS (IP address and domain name)
and to the local hostname, stores the necessary security �les and con�gures a LOG
�le (which, by default, has the same name as the system). Subsequently, the de-
veloper has to specify which types of data need to be produced or consumed and
which type of Service Producer or Service Consumer class is in charge for that
particular type. By this call, the ArrowheadController keeps a list of Producer
and Consumer factories, each of them associated with a set of service types and a
Service Producer or Service Consumer class type.

The other main object is the ArrowheadSystem, which needs to be instantiated
after the above mentioned operations are performed. During the instantiation
it connects to the ACS using the parameters speci�ed in the properties �le and
provides the developer with a large set of function calls. Using those functions,
the developer will be able to:

� Create a new producer object: by specifying the service type, the system
checks which of the factories is in charge for that particular type and calls
the factory's creation function.

� Create a new consumer object: by specifying the service type, the system
checks which of the factories is in charge for that particular type and calls
the factory's creation function, or gets one of the unused Service Consumer
objects from the pool.

� Perform a service discovery, which can retrieve all the published services or
get them �ltered by name or type.

� Getting any service property: name, type, endpoint, metadata and instance.

� Getting a raw resource endpoint, used both for highly customized interac-
tions as well as legacy client integrations.

70

� Getting or destroying any Service Producer or Service Consumer object by
name.

� Erasing a service record from the Service Registry given the name.

Furthermore, a Service Producer object is used for publishing the handled
service, unpublishing it, running and stopping the server hosting the service (if
the system is not used just as a publisher). A Service Consumer object, in turn, is
instantiated after a discovery against a single service and is used for consuming that
service using either no parameter, parameters encoded in a string or parameters
encoded in a Form object.

4.1.3 Layer 2 (Common to the Arrowhead Applications within
a Speci�c Domain)

The second layer of the API is dedicated to the domain-speci�c developing area.
This means that the layer 2 API provided (available in the repository together
with the layer 1 APIs) are just a �hello world� example, useful as a tutorial on
how to actually develop it. A fully compliant layer 2 API has to implement the
following classes:

� A certain number of Service Producer classes, depending on how many ser-
vice types the system is meant to produce. Those classes have to imple-
ment the interface AppServiceProducer, or, for better compliance and trans-
parency, extend the class GeneralPublisher (provided in layer 1 and imple-
menting AppServiceProducer plus other useful functions). Furthermore, If
the Service Producer is meant to be a Java RESTful Web service, may be
useful to implement the producer's �resource� �eld (the only di�erence with
the general Service Producer class, which instantiates it to null), which has to
be instantiated and implemented (in a separate class) according to the Java
WS RS paradigm. In any other case it is possible to override the start() and
stop() functions to implement the server's behavior.

� A certain number of Service Consumer classes, depending on how many
service types the system is meant to consume. Those classes have to im-
plement the interface AppServiceConsumer, or, for better compliance and
transparency, extend the abstract class ArrowheadServiceConsumer (pro-
vided in layer 1 and implementing AppServiceConsumer plus other useful
functions).

� The above mentioned resource class (a detailed example can be found in the
sample provided).

71

� Optionally, a certain number of customized factories, one for each service
type, if the implementation needed is di�erent from the default implementa-
tion present in layer 1.

Once these classes are implemented, the developer may start to write the layer
3, which is the application itself (explained in the following section).

4.2 Using the API

This section is about how an end developer should interact with the APIs, thus
how to implement the layer 3 application.

All those di�erent use cases require a well formed properties �le to get the
informations from. It should have the typical Java Properties format and the
following �elds are mandatory:

� core.server: the IP address of the ACS (e.g. 10.200.0.10).

� core.domain: the Domain Name of the ACS (e.g. test.bnearit.arrowhead.
eu).

� core.hostname: the valid hostname of the system (in case the publisher and
the provider are running in di�erent locations, the hostname of the provider
should be given) (e.g. rh105.test.bnearit.arrowhead.eu).

� core.tsig: the name of the TSIG �le (e.g. tsig).

� truststore.�le: the path to the truststore �le.

� truststore.password: the password for the truststore �le.

� keystore.�le: the path to the keystore �le.

� keystore.password: the password for the keystore �le.

� authorisation.url: the URL to the authorisation control service in case it
was not found on the ACS (e.g. https://10.200.0.10:8181/authorisation-control)

� orchestration.url: the URL to the orchestration store service in case it was
not found on the ACS (e.g. https://10.200.0.10:8181/orchestration/

store)

� orchestration.monitor.interval: amount of time passing between each
orchestration check in seconds.

72

� service.consume.support: service types that the system is allowed to con-
sume, separated by a pipe (e.g. _hello-ws-http._tcp|_hello-ws-https.
_tcp).

4.2.1 Developing a Publisher for a Legacy Provider

When a company or a team needs to integrate a legacy system with the Arrowhead
Framework, in order to make it reachable without the need for complete compli-
ance, it is required an adapter, which, in this case, is a small program using the
proposed APIs. The programs gets the data related to the service(s) to publish
and simply connects to the ACS and performs a publish operation. For this pur-
pose, as can be seen in �gure 4.1, only layer 1 is needed.

First of all instantiating the ArrowheadController is needed.

static ArrowheadController arrowheadController = new

ArrowheadController(systemName);

Since this program does not require any special Service Producer object (it
uses the default one provided in L1), we need to perform the connection to the
ACS by instantiating the ArrowheadSystem.

static ArrowheadSystem arrowheadSystem = new ArrowheadSystem();

After done this, recall that our service is running on the host denoted by the
�core.hostname� property, we need to instantiate a Service Producer object and
publish the service. The function createPublisher tries to create a Service Producer
object using the factories available and, if no factory is available for that type, it
creates a factory for the default Producer and associates it with the service type
passed.

AppServiceProducer producer = arrowheadSystem.createPublisher(

"hello-world", // service name

"_hello-ws-http._tcp", // service type

"80|root/path", // port | path

"version=1.0"); // metadata, currently not in use

producer.publish();

The published service is supposed to run on hostname:80/root/path. When
the record is no longer needed it can be unpublished:

producer.unpublish();

73

Figure 4.1: Decoupled Service Provider: a publisher and an external server.

Furthermore, it is possible to erase a service from the Service Registry if the
name is known:

arrowheadSystem.eraseService(serviceName);

4.2.2 Developing a Discoverer for a Legacy Consumer

As stated above, there may be a need to integrate a legacy system in the Arrow-
head Framework. The integration may happen as well for a client, which needs to
act as a Service Consumer. This subsection is a short tutorial on how to build an
adapter for a client, which merely needs to fetch the complete URL of a determined
resource.

After instantiating the ArrowheadController, the Consumer does not have a
default Service Consumer class, but this approach may completely avoid to use
the factories directly approaching to the discovery operation. Indeed, as stated in
�gure 4.2, the layer 2 APIs are again not needed.

static ArrowheadController arrowheadController = new

ArrowheadController(systemName);

static ArrowheadSystem arrowheadSystem = new ArrowheadSystem();

After the initialization step, we need to discover the service to consume. This
operation may be performed in one of the following three ways:

74

ServiceIdentity identity = arrowheadSystem.getServiceByName(serviceName);

List<ServiceIdentity> identities =

arrowheadSystem.getServicesByType(serviceType);

List<ServiceIdentity> identities = arrowheadSystem.getAllServices();

Clearly, if getting a list of services is decided, we need to scroll among them to
�nd the designed one. We may get informations about a service identity though
the following operations:

String instance = identity.getId();

String type = identity.getType();

ServiceEndpoint endpoint = arrowheadSystem.serviceGetEndpoint(identity);

ServiceMetadata metadata = arrowheadSystem.serviceGetMetadata(identity);

Once we �nd the designed service we may get the URL of a certain resource we are
interested in consuming. The URL may be sent to our legacy client application
afterwards.

URL url = arrowheadSystem.serviceGetCompleteUrlForResource(identity,

"someresource.php");

Figure 4.2: Simpli�ed Service Consumer: a discoverer and a legacy code.

4.2.3 Developing a Compact Service Provider

This subsection is about developing a Service Provider from scratch. Clearly, we
need to be as compliant as possible, thus the Service Provider must have the max-

75

imum maturity level. Before starting to develop it we need to have a layer 2 API
which implements the interface AppServiceProducer. For full compliance the class
GeneralPublisher may be extended and an additional class must be developed as
a REST Web service resource, as stated before. Alternatively the AppServicePro-
ducer may be implemented completely overriding the methods for starting and
stopping the server to achieve full customizability.

For the following example we assume that our Service Producer class is called
HelloProducerREST_WS. After instantiating the ArrowheadController, we need
to generate a factory for the service type(s) that we mean to produce and associate
it with the Service Producer class in charge for producing them.

static ArrowheadController arrowheadController = new

ArrowheadController(systemName);

arrowheadController.addNewProducerBinding(

Arrays.asList("_hello-ws-http._tcp", "_hello-ws-https._tcp"),

HelloProducerREST_WS.class);

static ArrowheadSystem arrowheadSystem = new ArrowheadSystem();

After this initial settings we can now create our Service Producer object, pub-
lish it and start it (that is, start the server producing the service).

AppServiceProducer producer = arrowheadSystem.createProducer(

"hello-world", // service name

"_hello-ws-http._tcp", // service type

"80|root/path", // port | path

"version=1.0"); // metadata, currently not in use

producer.start();

producer.publish();

This function creates indeed a HelloProducerREST_WS instance, because we de-
clared that this class is in charge for the service type selected. It is slightly di�erent
from the function createPublisher, as in this present case, if no proper factory is
found, an error is returned. When the service is no longer needed it is simply
unpublished and stopped:

producer.unpublish();

producer.stop();

76

Figure 4.3: Compact Service Provider.

4.2.4 Developing a Compact Service Consumer

This subsection is about developing a Service Consumer from scratch. It ad-
dresses full Arrowhead-compliance and needs clearly a layer 2 implementation. In
particular, it needs to implement the Service Consumer class either extending the
abstract class ArrowheadServiceConsumer or directly implementing the interface
AppServiceConsumer. In the �rst case, the class is more compliant, even if REST
architecture is not required in this case, and just needs to implement the following
methods:

//consume a resource with no parameters

abstract public String consumeResource(String resource);

//consume a resource with parameters encoded in a string

abstract public String consumeResource(String resource, String params);

//consume resource with parameters encoded in a form

abstract public String consumeResource(String resource, Form form);

Once the Service Consumer class is ready (in our example it will be called Hel-
loConsumerREST_WS) the layer 3 can be implemented. As above, after instan-
tiating the ArrowheadController, we need to specify which types our application
will consume and which Service Consumer object will handle that operation.

static ArrowheadController arrowheadController = new

ArrowheadController(systemName);

arrowheadController.addNewConsumerBinding(

77

Arrays.asList("_hello-ws-http._tcp", "_hello-ws-https._tcp"),

HelloConsumerREST_WS.class);

static ArrowheadSystem arrowheadSystem = new ArrowheadSystem();

The discovery process is the same as the one presented in 4.2.2. After we got
the service identity we aim to consume, we need to create a Service Consumer
object and lock it to avoid that some other concurrent process uses it (i.e. to mark
it as �in use�).

AppServiceConsumer consumer =

arrowheadSystem.createConsumer("hello-world");

consumer.lock();

Indeed, in this case the consumer returned will be an instance of HelloCon-
sumerREST_WS due to the association speci�ed at the beginning. Once the
consumer is correctly pointing to the resource we need to physically consume it
(as implemented in our class).

String result = consumer.consumeResource("someresource.php");

When the consuming process is over we can release the Service Consumer
object.

consumer.unlock();

Figure 4.4: Compact Service Consumer.

78

Chapter 5

Arrowhead Service-Oriented

Integration

In this chapter it is pointed out how the integration of the simulator within the
Arrowhead Framework took place. We aim to describe both the real scenario and
the simulated scenario and, subsequently, how the Arrowhead adapters work.

This system, developed in the scope of WP9, Task 9.3, has been carried out
following the directions about how the same scenario would be organized in the
real world. The following subsections are about how WP3 designed the scenario,
the use cases and the interactions and how the present project simulated them in
parallel.

5.1 The Real World Arrowhead E-Mobility Sce-

nario

The work planning performed by WP3 is nowadays ongoing, thus the references
pointed out in this report are referring only to the current state of the art. The
main scenario is considered as the same scenario presented in the E-Mobility Sim-
ulator: an urban scenario with a certain number of electrical vehicles and charging
stations, a booking service and, mainly, users, which can interact with their ve-
hicles (and other services as well) using a mobile application in their mobile devices.

5.1.1 Use Cases

The scenario is presented under various views, depending on the use cases we are
interested in. The following use cases have been de�ned by WP3:

79

1. The most important use case is given by the reservation facilities. An user
must be able to interface with a booking system and perform a reservation
submitting a preferred time and place and shall be able to choose among the
o�ered possibilities which are given according to which charging station is
not busy, reserved or faulted.

2. The charging stations must be able to consume an external weather forecast-
ing service to manage their solar panels as an alternative source of energy.

3. The private charging stations must be able to consumer external pricing
services such as FlexO�er.

4. An user must be able to monitor the recharging process parameters while
his or her vehicle is recharging at a public charging station.

5. The charging stations must provide information about their statuses and
electrical parameters (those informations may be used, for example, by the
reservation infrastructure).

6. A charging station must be able to verify if an user is correctly reserved to
start the recharging process.

5.1.2 Systems and Services

The above mentioned use cases leaded to the development of two main system
concepts: the Booking System and the Management System.

The Booking System is an Arrowhead-compliant system which aims to receive
charge requests from the users and o�ers a set of options based on the input
parameters. This is o�ered by its Booking Service, an unique service provided to
the users, thus it is a Service Provider. Furthermore, it needs to fetch continuously
informations about the charging stations as well, so it acts as a Service Consumer
too, since the charging stations are o�ering the Monitoring Service. The Booking
Service is thus o�ering the following functions:

� Insert a charge request to the system.

� Con�rm a charge option to the system.

� Verify a reservation.

� Retire a reservation.

80

The Management System is an Arrowhead-compliant system which aims to
instantiate a single Monitoring Service for each charging station. This service
provides a set of informations about the charging station itself, especially regard-
ing status, electrical parameters and price. These information are useful to the
Booking System in the �rst place, and to any actor interested in being updated.
Furthermore, the Management System needs to consume the Booking System, as
it may need to verify if a user is correctly reserved or not, plus it consumes the ex-
ternal services FlexO�er and Weather Forecasts, thus it is both a Service Provider
and a Service Consumer. The Monitoring Service is thus o�ering the following
functions:

� Get status data about the charging station.

� Get the current charging process parameters.

� Get the position of the charging station.

5.1.3 Structure

As a big picture design, we can distinguish among three di�erent main scenarios:
the EVSE monitoring scenario, the booking scenario and the recharge scenario. In
this section all these scenarios are presented in one unique big picture, to show in
su�cient detail how the entities interact. The System-of-Systems is given by the
union of all the elements and the interactions involved, shown in �gure 5.1.

The common entities to all the scenarios are:

� The ACS.

� The set of all the real charging stations and vehicles.

� A cloud, which is responsible for the storage of every single information about
the public charging stations, connected to it by a custom framework called
KURA. It hosts also the Management Systems.

� A separate Booking System, which is composed by a central storage system,
probably a SIB, a logical unit (which processes all the input from the extern)
and an Arrowhead adapter which exposes the Booking Service.

EVSE Monitoring Scenario

This scenario involves the Arrowhead Service Producer referred to as Manage-
ment System, already de�ned. The scenario shows a custom arrowhead consumer,
which may be represented by a real mobile application, consuming the Monitoring

81

Figure 5.1: Arrowhead architecture scenarios for the real world.

Service. It instantiates a Management System for each EVSE, which consumes in
turn the Booking System periodically to get informations about the existing reser-
vations for the respective charging station. Furthermore, the system consumes the
external services FlexO�er and weather forecast.

Booking Scenario

This scenario involves the Arrowhead Service Producer referred to as Booking
System (BS), already de�ned. The scenario shows a custom arrowhead consumer,
which may be represented by a real mobile application connected to a physical
electrical vehicle, consuming the Booking Service. The scenario instantiates an
unique BS which consumes in turn the Monitoring Service to be always updated
about the condition and the status of the EVSEs.

82

Figure 5.2: Complete reservation process.

Recharge Scenario

This scenario occurs when a vehicle arrives at a charging station and needs to
recharge, hence consumes the Monitoring Service. The Management System re-
sponsible for that charging station, once called through the service, consumes in
turn the Booking Service to know if that vehicle is reserved correctly for that mo-
ment. If so, the recharging process is possible, while the user may monitor the
charge progress by consuming the Monitoring Service.

5.2 The Simulated Arrowhead E-Mobility Scenario

In this section is presented how WP9, within Task 9.3, designed a simulated sce-
nario, the System-of-Systems developed for this thesis work, aiming to be parallel
to the real scenario in section 5.1. As the real scenario design in WP3 is, as stated
before, still ongoing, there are some discrepancies with the internal structure, al-

83

though the Arrowhead-compliant part of the System-of-Systems should o�er the
same service interfaces to the extern.

5.2.1 Use Cases

The use cases designed for the simulated version of the scenario are, obviously,
slightly di�erent from the ones designed in the real world. At the moment, the sys-
tem is not interfacing with any external pricing system (like FlexO�er) or weather
forecasting service, however it needs to o�er a vehicle monitoring service as well,
because the simulated vehicles are not clearly monitorable directly form the end
user through some kind of custom, short distance protocol (like Bluetooth). The
use case extracted from this di�erent scenario are the following:

1. The most important use case is given by the reservation facilities. An user
must be able to interface with a booking system and perform a reservation
submitting a preferred time and place and shall be able to choose among the
o�ered possibilities which are given according to which charging station is
not busy, reserved or faulted.

2. The end user must be able to monitor one of the simulated vehicles, get its
data and perform booking requests impersonating it.

3. An user must be able to monitor the recharging process parameters while
his or her vehicle is recharging at a public charging station.

4. The charging stations must provide information about their statuses and
electrical parameters (those informations are used, within the simulation, by
the tester to keep track of the charging station).

5. A charging station must be able to verify if an user is correctly reserved to
start the recharging process.

5.2.2 Systems and Services

The above mentioned use cases leaded to the development of three main system
concepts: the Booking System, the EVSE Simulator Management System and the
Vehicle Simulator Management System.

The Booking System is developed as an exact parallel of the one presented
in the real scenario, however it presents a completely di�erent internal structure
because, of course, it has to interact with simulated entities. In the scope of the
legacy simulation system presented, the Booking System is an Arrowhead adapter
combined with the City Service as a logical part. From an external point of view it

84

provides the Booking Service (BS) as it does in the real world, exposing the same
service interface to the extern, however it does not consume any Arrowhead service
as the informations about the charging stations are obtainable directly from the
City SIB. Hence it is a Service Producer.

The EVSE Simulator Management System is developed as an exact parallel
of the Management System presented in the real world scenario. In the scope of
the legacy simulation system presented, the EVSE Simulator Management System
is an Arrowhead Adapter combined with the EVSEs running on the simulator.
From an external point of view it provides the EVSE Simulator Monitoring Ser-
vice (Esms), which is exactly the same as the Monitoring Service in the real world,
however it does not consume any Arrowhead service as the informations about the
reservations (to verify if a vehicle is reserved) are obtainable directly from the City
SIB. Hence it is a Service Producer.

The Vehicle Simulator Management System is developed as a Management
System for the vehicles, to provide all the parameters about the vehicle itself
obtainable by its driver. In the scope of the legacy simulation system presented,
the Vehicle Simulator Management System is an Arrowhead Adapter combined
with the vehicles running on the simulator. From an external point of view, it
provides the Vehicle Simulator Monitoring Service (Vsms), which is a Monitoring
Service performing on vehicles. It does not consume any Arrowhead service, thus
it is a Service Provider.

5.2.3 Retrievable Data

In this section is explained which data has been considered necessary to be re-
trievable by an Arrowhead client. Each data type and detail has been agreed
with Centro Ricerche Fiat, the WP3 leader. The following table shows each data
retrievable through the service provided, the actual service containing the informa-
tion, the inputs to be passed, the data type received in output and the respective
�eld in the ontology representing it. It has to be pointed out that the SOA pro-
tocol used, in the scope of the simulation, has been REST for all the services and
that the Service Consumer aiming to consume the services described is the end
user (or a simulation of it).

Data Provider Input Format Ontology
evseUri Esms - string EVSE

85

availability Esms - string EVSE-> hasAvail-
ability

faultCode Esms - string EVSE-> hasFault-
Code

chargingStatus Esms - string EVSE-> hasCharg-
ingStatus

maxEnergy-
Capability

Esms - double EVSE-> hasMax-
EnergyCapability

maxPower-
Capability

Esms - double EVSE-> hasMax-
Power

priceData Esms - double ChargePro�le->
hasPrice

GPSposition Esms - [double, double] GCP-> hasGPS-
Data

chargeProgress Esms - struct: [start-
ing time, energy
recharged]

EVSE-> hasCharge-
Progress

chargeReport Esms - struct: [start-
ing time, energy
recharged, ending
time]

EVSE->
hasLastCharge-
dEnergy

vehicleUri Vsms - string Vehicle
vehicleUsername Vsms - string Vehicle-> hasUser-

> hasUserIdenti�er
maxEnergy-
Capability

Vsms - double BatteryData-> has-
Capacity

maxPower-
Capability

Vsms - double BatteryData->
hasPower

stateOfCharge Vsms - double BatteryData-> has-
StateOfCharge

GPSposition Vsms - [double, double] Vehicle-> hasGPS-
Data

chargeProgress Vsms - struct: [start-
ing time, energy
recharged]

EVSE-> hasCharge-
Progress

chargeReport Vsms - struct: [start-
ing time, energy
recharged, ending
time]

EVSE->
hasLastCharge-
dEnergy

chargeRequest BS charge-
Request

chargeResponse ChargeResponse->
hasRelatedRequest

86

reservationFind BS user-
URI

reservation Reservation

checkCon�rm BS charge-
Option

boolean ChargeOption->
con�rmBySystem

acknowledge BS charge-
Option

boolean ChargeOption->
ackByUser

reservationRetire BS res. ID boolean Reservation

5.2.4 Structure

As a big picture design, we can distinguish among three di�erent main scenarios:
the EVSE monitoring scenario, the vehicle monitoring scenario and the booking
scenario. In this section all these scenarios are presented with a focus on how
they are parallel to the ones presented in section 5.1.3. They can be considered
separately as System-of-Systems, however, when they are in execution at the same
time (as it would be in the real world), the System-of-Systems is given by the
union of all the elements and the interactions involved.

The common entities to all of them are:

� The ACS, hosted, in our example, by the BnearIT VPN.

� The E-Mobility legacy simulator, which can be considered as a black box
and simulates all the charging station and vehicles in the real world. The
interactions from and to the extern are always mediated by the City SIB and
the Dash SIB, so these elements are the only (legacy) connectors the system
exposes. The City SIB acts both as the Cloud and the SIB hosted by the
Booking System in the real scenario.

� An event injector, a common Knowledge Processor that can inject events
(such as the charging station fault) in the SIB for testing purposes.

EVSE Monitoring Scenario

This scenario involves the Arrowhead Service Producer referred to as EVSE Sim-
ulator Management System (ESMS), already de�ned and explained in detail in
section 5.3.1. The scenario shows a custom arrowhead consumer, which may be
represented by a test desktop client application or the real mobile application,
consuming the EVSE Simulator Monitoring Service. It instantiates a ESMS for
each EVSE in the simulator, as shown in �gure 5.3.

87

Figure 5.3: ESMS monitoring scenario.

Vehicle Monitoring Scenario

This scenario involves the Arrowhead Service Producer referred to as Vehicle Sim-
ulator Management System (VSMS), already de�ned and explained in detail in
section 5.3.2. The scenario shows a custom arrowhead consumer, which may be
represented by a test desktop client application or the real mobile application,
consuming the Vehicle Simulator Monitoring Service. It instantiates a VSMS for
each electrical vehicle in the simulator, as shown in �gure 5.4.

Figure 5.4: Vehicle monitoring scenario.

Booking Scenario

This scenario involves the Arrowhead Service Producer referred to as Booking
System (BS), already de�ned and explained in detail in section 5.3.3. The scenario

88

shows a custom arrowhead consumer, which may be represented by a test desktop
client application or the real mobile application, consuming the Booking Service.
To be able to consume the Booking Service, a consumer must monitor one of the
vehicles, thus it is necessary (even if it is not shown in the �gure) that the consumer
itself is consuming the Vehicle Simulator Monitoring Service as well. The scenario
instantiates an unique BS, as shown in �gure 5.5.

Figure 5.5: BS monitoring scenario.

5.3 Service Producers in the Simulation

This section details the Service Producers that were developed in the scope of this
project as White Box, thus explaining the internal implementation. All of them
were implemented as Compact Service producers using the APIs described in 4.

5.3.1 The EVSE Simulator Management System

This Service Producer is deployed in a unique program which instantiates a REST
server for each charging station in the system. Once started, it searches the City
SIB for each instance of an EVSE records and, after fetching the EVSE id, it
publishes a di�erent service for each of them, instantiating respectively a REST
server to handle the requests from the extern. Each service is represented by
the following record format: evseID._evse-ws-http._tcp.srv.test.bnearit.

arrowhead.eu:progressivePort/monitor, where evseID stands for the actual
EVSE Id fetched from the City SIB, while progressivePort stands for a port gener-
ated progressively starting from 20010 (in our particular example). The endpoint
where the service is retrievable will then be serverHostname:progressivePort/
monitoring. Data are physically retrievable adding a sub-path at the end of the

89

endpoint:

/evseUri HTTP GET
/availability HTTP GET
/faultCode HTTP GET
/chargingStatus HTTP GET
/maxEnergyCapability HTTP GET
/maxPowerCapability HTTP GET
/priceData HTTP GET
/GPSposition HTTP GET
/chargeProgress HTTP GET
/chargeReport HTTP GET

5.3.2 The Vehicle Simulator Management System

This Service Producer is deployed in a unique program which instantiates a REST
server for each vehicle in the system. Once started, it searches the Dash SIB for
each instance of an Vehicle records and, after fetching the vehicle id, it publishes
a di�erent service for each of them, instantiating respectively a REST server to
handle the requests from the extern. During the process' life cycle, the Dash
SIB is being monitored constantly to get whether any new vehicle is created or
any vehicle is deleted through a subscription. When any of those events hap-
pen, the program automatically creates a new service for the newly spawned
vehicle or erases the service for the deleted vehicle respectively. Each service
is represented by the following record format: vehicleID._vehicle-ws-http.

_tcp.srv.test.bnearit.arrowhead.eu:progressivePort/monitor, where ve-
hicleID stands for the actual vehicle Id fetched from the Dash SIB, while pro-
gressivePort stands for a port generated progressively starting from 21010 (in our
particular example). The endpoint where the service is retrievable will then be
serverHostname:progressivePort/monitoring. Data are physically retrievable
adding a sub-path at the end of the endpoint:

/vehicleUri HTTP GET
/vehicleUsername HTTP GET
/maxEnergyCapability HTTP GET
/maxPowerCapability HTTP GET
/stateOfCharge HTTP GET

90

/GPSposition HTTP GET
/chargeProgress HTTP GET
/chargeReport HTTP GET

5.3.3 The Booking System

This Service Producer is deployed in a unique program which instantiates a unique
REST server for the whole system. Once started, it instantiates the connection to
the City SIB, as well as a single service, denoted by the record BookingSystem.

_reservation-ws-http._tcp.srv.test.bnearit.arrowhead.eu:40010/bridge,
where the port 40010 is hard coded in our particular example. The endpoint where
the service is retrievable will then be serverHostname:40010/bridge. Data are
physically retrievable adding a sub-path at the end of the endpoint:

/chargeRequest HTTP POST requires a chargeRequest as a Form in input.
/reservationFind HTTP POST requires a user URI in input.
/checkConfirm HTTP POST requires a chargeOption URI in input.
/acknowledge HTTP POST requires a chargeOption URI in input.
/reservationRetire HTTP POST requres a reservation URI in input.

91

92

Chapter 6

Arrowhead Service Test Consumer

6.1 Overview

The Test consumer, developed to test the di�erent functions o�ered by the global
E-Mobility simulated scenario, has been implemented in parallel with the devel-
opment of the Service Providers presented in section 5.3. Hence, it uses the exact
same version of the layer 1 API and implements a di�erent Service Consumer class
for each of the Service Providers that it is interfacing to. In particular, it imple-
ments a layer 2 API consisting of the following classes, all of them extending the
class ArrowheadServiceConsumer :

� EmobilityEvseConsumerREST_WS : this class implements a consumer for
the EVSE Simulator Management Service, thus it focuses on the function
consumeResource(String path), leaving the other two versions empty. The
reason for this is that every single call to the above mentioned service is an
HTTP GET without parameters.

� EmobilityVehicleConsumerREST_WS : this class is specular to the previ-
ous one. It implements a consumer for the Vehicle Simulator Management
Service and, for the same reason as above, it implements only the function
consumeResource(String path) for HTTP GET requests.

� EmobilityReservationConsumerREST_WS : this class implements a consumer
for the Booking Service. Since nearly all the calls to such service are HTTP
POST requests including parameters (as speci�ed in subsection 5.3.3), this
consumer focuses on the implementation of the function consumeResource(String
path, Form form), using Java built-in Form classes to encapsulate the pa-
rameters.

The data exchanged with the servers are encapsulated in XML envelopes, how-
ever the developer shall never interact with the XML facilities because the Java

93

REST Webservice API includes a mapping XML-to-class. In this way, the Service
Provider needs to pass the whole object as a response, the Java REST Webser-
vice library maps it to an XML envelope and maps it back to an object on the
client's side. For this reasons it is clear that both the client and the server were
more likely to be implemented in the same language, in order to use these facilities.

The GUI interface has been built using the Java Swing libraries together with
Eclipse's WindowBuilder tool.

6.2 Functions

The GUI o�ers to the end user a tab-based view in which he or she can perform dif-
ferent Arrowhead-compliant actions against the three respective Service Providers.
In this section we show the main functions callable from the three tab panels.

6.2.1 Monitoring a Vehicle

The central tab, called �Vehicle Monitor�, handles all the communications with
the Vehicle Simulator Management System. The main functionalities are shown
in �gure 6.1. Pushing the �Discovery� button will display a list of the vehicle
services published on the Service Registry. This operation is performed by calling a
discovery function which �lters services by type. After selecting one of the vehicles
it is possible to monitor it by pushing the �Start Monitoring� button, which will
change in �Stop Monitoring� once pressed. This will trigger the instantiation of
a new thread aiming to cycling over a set of consuming calls. In particular, the
thread will call every single consuming function against the VSMS in order to �ll
the �elds shown in �gure 6.1 one by one and it stops when the �Stop Monitoring�
button is pushed.

6.2.2 Monitoring a Charging Station

The left tab, called �EVSE Monitor�, handles almost all the communications with
the EVSE Simulator Management System. The main functionalities are shown in
�gure 6.2 and it is noticeable how this tab shows parallelism with the previous
one. Indeed it provides nearly the same functionalities: pushing the �Discovery�
button gets all the EVSE services from the Service Registry, pushing the �Start
Monitoring� button starts a thread which performs a sequence of consuming calls
and �lls the respective �elds and the �Stop Monitoring� button stops the thread.
It is noticeable how the GUI grouped the availbility, faultCode and chargingStatus
(in this order) in the same �eld, even though the calls are performed separately.

94

Figure 6.1: Vehicle Monitor tab. After performing a discovery (top), after moni-
toring a vehicle (center), after monitoring a vehicle under recharge (bottom)

6.2.3 Performing Reservations

The right tab, called �Reservation Bridge�, is responsible for the reservation process
and it handles all the communications with the Booking System. The charge

95

Figure 6.2: EVSE Monitor tab. After performing a discovery (top), after monitor-
ing a faulted EVSE (center), after monitoring an EVSE while recharging (bottom)

request is performed after the end user selected the parameters to �t his or her
needs, as can be seen in �gure 6.3. Once the �Send Request� button is pushed,
the systems sends a charge request to the Booking System and gets a set of charge

96

options back, displayed in the list on the left. Charge options have been chosen
to be displayed including EVSE ID, starting time, ending time and price, but this
is highly customizable. The next step is choosing a charge option and clicking on
�Con�rm Option�. This action performs two steps, �rstly it sets the con�rm by user
and checks the con�rm by system and then it sends an acknowledgement by user.
Normally the acknowledgement is always con�rmed, unless connection problems
come up. If the con�rm by system is negative, then the user is forced to start over
the process. Once the acknowledgement has been sent, the actual reservation is
displayed as shown. At this point the user can either push �Refresh Reservation�,
with which it gets the reservation (useful after an application reboot), or perform
a reservation retire with the proper button.

The Fault Detector

Getting a reservation con�rmed, in our test application, triggers a side-e�ect. Once
got the reservation con�rmation, the application immediately starts a thread in
background which checks the status of the reserved EVSE. If this status changes
to a kind of fault, the application pops up an alert, as can be seen in �gure 6.4,
as well as when the charging station changes its status from faulted to enabled.
The test application provides a non-Arrowhead-compliant event injector which can
mutate an EVSE fault code from the EVSE Monitor tab. This is an exception to
the normal interaction, in fact, in this case, the test application directly connects
to the City SIB.

In the scenario architectures presented in section 5.2.4, this tool may be seen
as the �Event Injector�.

97

Figure 6.3: Booking System tab. After performing a request (top), after selecting
an option (center), after retiring a reservation (bottom)

98

Figure 6.4: After injecting fault in a reserved EVSE (top), after injecting avail-
ability in a reserved EVSE (center).

99

100

Chapter 7

Conclusions

At the end of this experience, which took place over a span of more than two years,
the whole UniBO team and I brought a consistent contribution to the Arrowhead
project in terms of demonstration platforms. We demonstrated how a charging in-
frastructure within a single city can tolerate a certain amount of electrical vehicles
to satisfy the users' demand for recharge. We demonstrated how the Arrowhead
Framework can constitute an e�cient bottleneck for the communication between
heterogeneous systems within the scope of di�erent scenarios and use cases. We
demonstrated how a client application should be developed in order to provide the
end user with an e�cient set of functionalities. Hence, we can say that most of the
goals we speci�ed have been reached in a su�cient measure. Clearly there is still
a lot of work to do, both in the scope of the simulator itself and in the scope of
the Arrowhead Project, indeed such project is still ongoing and it recently entered
in its second generation (the project partners expect at least a third generation).

Future Work

As speci�ed, a lot of di�erent features have been implemented, but we found a
lot of improvements (which are demonstrated to be possible with signi�cantly low
e�ort) that we are planning to carry out in the future:

� Port the client demo application on a mobile device to simulate the true user
experience.

� Re�ne the ontology deleting all the obsolete references.

� Implement support for di�erent SOA protocols in the Arrowhead API.

� Re�ne the interaction with Orchestration and Authorisation core services.

� Deploy customized ACS within a local network.

101

� Re-implement the �vehicle control�, for which the vehicles in the simulation
are not following their normal activity �ow while controlled from an external
device. After the Remote Monitoring Mobile Application has been consid-
ered obsolete, the function has been disposed.

� Standardize the service name within the Arrowhead Service Matrix.

� Implement both the publishing and the usage of metadata in the service
records.

102

Appendices

103

.1 Local Core Services

The developers of the ACS provided all the Arrowhead Partners with an operating
system image (an ad-hoc CentOS .iso �le) which is able to host by default the ACS
and a DNS server. The download instruction and the installation manual are avail-
able at https://forge.soa4d.org/svn/arrowhead/CommonDesignRepository/

03.APPROVED/05.Prototypes/CoreSystems1.0/. The installation manual lacks
some description about common errors, one of which regards the secure consump-
tion of the services, which requires basic knowledges about certi�cates. This prob-
lem has not been solved at the moment, it is possible, however, to consume non-
secure services, provided that the DNS created within the CentOS system is reach-
able through the /etc/hosts �le (not speci�ed in the guide) and such a system
must be able to reach all the hosts providing and consuming services through DNS
lookup and vice versa.

Alternatively, it is possible to use the ACS installed in the BnearIT servers,
which are fully up and running without certi�cate issues. In order to connect to
them, it is necessary to connect to BnearIT's VPN through the software Soft-
Ether [56] and follow the instructions available at https://forge.soa4d.org/

svn/arrowhead/CommonDesignRepository/03.APPROVED/06.Governance/Testbed/

ATFG1TestLab/.
To test if the ACS are e�ectively reachable it is possible to download a Hello

World application, written using the API introduced in this project, at https:

//forge.soa4d.org/svn/arrowhead/WP9/Task9.3/Working/UniBO/.

.2 Environment Installation

After being sure that the ACS are up and running, we can proceed with the
installation of the whole environment (this installation has been tested on Debian
and Ubuntu operating systems, in particular, Debian 7 and Ubuntu 12.04 and
14.04). This environment installation brief manual has only slightly being updated
from the one in [24].

Preliminary Libraries

Run the following command to install the necessary libraries:

sudo apt-get install bison flex build-essential zlib1g-dev tk8.4-dev

blt-dev libxml2-dev libpcap0.8-dev autoconf automake libtool

libxerces-c2-dev libproj-dev libproj0 libfox-1.6-dev libgdal1h

libboost-dev

105

IDEs, Tools and Systems

It is necessary to install the OMNeT++ IDE (the version used for this project is
4.5) from http://www.omnetpp.org/omnetpp/cat_view/17-downloads/1-omnet-releases.
Follow the instructions on the manual for the installation.

It is necessary to download, compile and install the Sumo simulator directly
from the dedicated Sourceforge page (the version used in this demonstration is
0.21.0, older and newer versions may not work properly). It is retrievable at
http://sourceforge.net/projects/sumo/files/sumo/version0.21.0/ and it
is provided with an installation manual.

It is necessary to download, compile and install the UniBO modi�ed version
of the Smart-M3 environment, in this case RedSIB version 0.9 (probably subse-
quent version may work as well). It is retrievable at http://sourceforge.net/
projects/smart-m3/files/Smart-M3-RedSIB_0.9/ and it is provided with an
installation manual.

The simulator uses a third-party C library to implement the SSAP opera-
tions against the SIB: the KPI Low. They use in turn a third-party library for
the XML parsing called Scew and retrievable at http://nongnu.askapache.com/
scew/scew-1.1.3.tar.gz. Those libraries have been modi�ed over time by me
and Simone Rondelli to add SPARQL support, so they are retrievable in the project
root.

The Main System-of-Systems

The legacy simulator is obtainable from the BitBucket repository https://bitbucket.
org/InternetOfEnergy/internet-of-energy (branch �simulator-arrowhead�) un-
der clearance, as it is not open. From the project root (de�ned ROOT/) the KPI
Low modi�ed libraries are retrievable at ROOT/kpi_low_mod together with in in-
stallation manual.

From here, we can then import the simulation in the OMNeT++ IDE, setting
as the workspace root folder the directory ROOT/simulator and importing the
project �veins-2.1� from that same directory. It will be possible then building the
simulation with a simple click, while the source code will be available at ROOT/

simulator/veins-2.1/examples/veins/. In that folder there is a ready script,
called totalScript, which starts all the components at a time: two SIBs, all the
SIB's TCP listeners, the Java City Service and the simulation (you can ann the
option �gui inside the script in the line starting with �./start-ioe� to have the
Sumo GUI). It requires four parameters: the OMNeT++ con�guration name, the
current iteration, the number of total iterations and the Sumo Tools root folder;
an example could be:

./totalScript.sh arrowhead 0 1 ~/Programs/sumo-0.21.0/tools/

106

IMPORTANT: it is required lo launch the script ROOT/sync/synchronizer.py in
parallel as other simulations may occur at the same time.

After the simulation loaded all the EVSEs, it is possible to launch the three
Service Providers:

java -jar ROOT/arrowhead/EVSESimulatorMonitoringSystem.jar

java -jar ROOT/arrowhead/VehicleSimulatorMonitoringSystem.jar

java -jar ROOT/arrowhead/BookingSystem.jar

If any service has been left published after closing all the providers, it is possible
to launch our �vacuum cleaner� to erase them:

java -jar ROOT/arrowhead/EMVacuum.jar

.3 Acknowledgements

My part in the development of this project was long, with some interruptions I
worked on it for its whole duration and it would never have been possible without
a lot of help from many people. I spent the last two months of work as a guest
in Luleå Tekniska Universitet and it has been one of the best experiences in my
whole life.

I have to thank especially who, in Luleå, followed my project and helped me.
First of all my supervisor, prof. Jerker Delsing, who, even if his agenda was
incredibly packed, he always found time to follow my progress. Together with
him my special thanks go to the other people in the department working in the
Arrowhead project: Jens, Arash, Denis, Hasan and Pablo. Furthermore, thanks
to the people from BnearIT, who came multiple times at my o�ce to help me:
Fredrik, Per and Thorsten.

Finally, here in Sweden, I had the possibility to meet awesome people, who,
in a way, changed a little part of my life. Carsten, Linus, Paul, Charles, Daniel,
Peter, Mitch, David, Norbert, Maria Isabelle, Laura, Marta, Stefan, Kerr, Riley,
Chris, Bettina, Florian, Ariane, Michela, Nicoletta, Maria, Lara, Miguel, Hann,
Sergio, Marcus, Andreas, Niklas and Maria: thanks to you all for having been a
part of my life.

Non posso non ringraziare i miei professori, Tullio e Luciano. Hanno creduto
in me e si sono a�dati a me per questo progetto e senza di loro non avrei mai

107

potuto fare questa esperienza che ha cambiato la mia vita. Assieme a loro non
posso mancare di ringraziare Luca, Marco, Fabio, Riccardo e soprattutto Alfredo,
che è stato il mio tramite per tutto questo periodo e ha lavorato con me e sul mio
materiale una grande quantità di tempo.

Credo che il ringraziamento più profondo vada ai miei genitori, a mio fratello
e a Mandi. È solo grazie a queste persone che ho potuto a�rontare questa espe-
rienza, al sostegno che mi hanno dato in tutti questi anni e che mi continuano a
dare anche se sono lontano da casa. In un certo senso, sono la parte migliore di me.

Thank you. Grazie. Tack. Te³ekkürler.

108

Bibliography

[1] Ciancarini, P., Architectural Styles for Clouds and Services, Univer-
sity of Bologna, lectures.

[2] Rawson, M., Kateley, S. Electric Vehicle Charging Equipment Design
and Health and Safety Codes, California Energy Commission, August
1998

[3] M. Weiser, The Origins of Ubiquitous Computing Research at PARC
in the late 1980s , IBM, 1999

[4] Dey, A. K., Abowd, A. K., Towards, G. D., A Better Understanding
of Context and Context-Awareness, CHI 2000 Workshop on the What,
Who, Where, When, and How of Context-Awareness, 2000

[5] Varga, A., The OMNeT++ Discrete Event Simulation System,
http://www.omnetpp.org, European Simulation Multiconference
(ESM'2001), Prague, Czech Republic. 2001.

[6] Cook, D., Das, S., Smart Environments: Technology, Protocols and
Applications , Wiley Interscience, November 2004.

[7] Honkola, J., Laine, H., Brown, R., Trykkö, O. Smart-M3 Interoper-
ability Platform, Nokia Research Center, Helsinki, Finland

[8] Wegener, A., et al. TraCI: an Interface for Coupling Road Tra�c
and Network Simulators, Proceedings of the 11th Communications
and Networking Simulation Symposium. ACM. 2008, pp. 155�163.

[9] Köpke, A. et al. Simulating Wireless and Mobile Networks in OM-
NeT++: the MiXiM vision, Proceedings of the 1st International
Conference on Simulation Tools and Techniques for Communica-
tions, Networks and Systems & Workshops. ICST (Institute for Com-
puter Sciences, Social-Informatics e Telecommunications Engineer-
ing), 2008, p. 71.

109

[10] Velte, A. T., Cloud Computing: A Practical Approach, 2010 McGraw
Hill. ISBN 978-0-07-162694-1.

[11] Ovaska, E., Toninelli, A., Salmon Cinotti, T., The Design Princi-
ples and Practices of Interoperable Smart Spaces, Advanced Design
Approaches to Emerging Software Systems, 2011

[12] Behrisch, M. et al. Sumo-simulation of urban mobility-an Overview,
SIMUL 2011, The Third International Conference on Advances in
System Simulation. 2011, pp. 55�60.

[13] Sommer, C., German, R., Dressler, F., Bidirectionally Coupled
Network and Road Tra�c Simulation for Improved IVC Analy-
sis, IEEE Transactions on Mobile Computing 10.1, pp. 3�15. doi:
10.1109/TMC.2010.133. January 2011.

[14] Bedogni, L., Bononi, L., Di Felice, M., Dynamic Backbone for Fast
Information Delivery in Vehicular ad-hoc Networks: an Evaluation
Study, Proceedings of the 8th ACM Symposium on Performance Eval-
uation of Wireless ad hoc, Sensor, and Ubiquitous Networks. ACM.
2011, pp. 1�8.

[15] Oliveros, E. et al., Web service Speci�cations Relevant for Ser-
vice Oriented Infrastructures, Achieving Real-Time in Distributed
Computing: From Grids to Clouds, 2012 IGI Global, pp. 174�198,
doi:10.4018/978-1-60960-827-9.ch010

[16] Ivanov, I., Van Sinderen, M., Shishkov, B., Cloud Computing and
Services Science, Springer Science, 2012.

[17] Montori, F., Project and Evaluation of an Experimental Platform
about Internet of Energy for Electrical Vehicles, Computer Science
Bachelor Dissertation, http://amslaurea.unibo.it/3900/, July
2012.

[18] Bedogni L. et al., Machine-to-Machine Communication over TV
White Spaces for Smart Metering Applications, Computer Communi-
cations and Networks (ICCCN), 2013 22nd International Conference
on. IEEE. 2013, pp. 1�7.

[19] Bedogni, L., Bononi, L., Di Felice, M., D'Elia, A., Mock, R., Mon-
tori, F., Morandi, F., Ro�a, L., Rondelli, S., Salmon Cinotti, T.,
Vergari, F., An Interoperable Architecture for Mobile Smart Services
over the Internet of Energy, IEEE 14th International Symposium and

110

Workshops on a World of Wireless, Mobile and Multimedia Networks
(WoWMoM 2013), Piscataway NJ, IEEE Press, 2013, pp. 1 - 6 (acts
of: IEEE WoWMoM Workshop on Smart City and Ubiquitous Com-
puting Applications (IEEE SCUCA 2013), Madrid, Spain, 2013.

[20] D'Elia, A. et al. A Semantic Event Processing Engine Supporting
Information Level Interoperability in Ambient Intelligence, online
http://amsacta.unibo.it/3877/, 2013

[21] Klisics, M., Arrowhead SysD Service Registry DNS-SD, version 1.0,
Arrowhead Documentation, 2013.

[22] Klisics, M., Arrowhead SysD Authorisation DNS-SD, version 1.0, Ar-
rowhead Documentation, 2013.

[23] Klisics, M., Arrowhead SysD Orchestration DNS-SD, version 1.0, Ar-
rowhead Documentation, 2013.

[24] Rondelli, S., A Framework of Analysis and Innovative Services for the
Electrical Vehicles Mobility, Computer Science Bachelor Dissertation,
http://amslaurea.unibo.it/6750/, March 2014.

[25] Arrowhead TA, Contract shared among Arrowhead Partners, version
0.40, 2014.

[26] Blomstedt, F., Arrowhead Cookbook, version 1.1, Arrowhead Docu-
mentation, 2014.

[27] Ferreira, L. L., Zubia, M. C., Johansson, M., Arrowhead Framework
De�nitions, Arrowhead Documentation, 2014.

[28] Johansson, M., Mousavi, A., Kleyko, D., Arrowhead interoperability
Matrix, Arrowhead Documentation, 2015.

[29] OASIS Group, SOA Reference Model De�nition, https://www.

oasis-open.org/committees/tc_home.php?wg_abbrev=soa-rm

[30] Channabasavaiah, K., Holley, K., Tuggle, E. Migrating to a service-
oriented architecture, IBM Developer Works Library, http://www.
ibm.com/developerworks/library/ws-migratesoa/

[31] The open Group, SOA Reference Architecture Technical Standard
: Basic Concepts, http://www.opengroup.org/soa/source-book/
soa_refarch/concepts.htm

111

[32] Internet of Energy, http://www.artemis-ioe.eu/

[33] Arrowhead Partners, The Arrowhead Project, http://www.

arrowhead.eu/about/

[34] Advanced Research & Technology for EMbedded Intelligence and Sys-
tems, http://www.artemis.eu/

[35] Common Shared Arrowhead Repository, https://forge.soa4d.org/
svn/arrowhead/

[36] Smart-M3 O�cial Website, http://smart-m3.sourceforge.net/

[37] SOFIA/ARTEMIS Project Page, http://www.sofia-project.eu/

[38] TotalFlex Project, http://www.totalflex.dk/InEnglish/

[39] KPI Low Libraries, http://sourceforge.net/projects/kpilow/

[40] Blue&Me, http://www.blueandme.net/blueandme/index.aspx/

[41] Extensible Markup language, http://www.w3.org/XML/, referenced
January 12th 2015.

[42] Resource Description Framework, http://www.w3.org/RDF/

[43] Ontology Web Language, http://www.w3.org/OWL/

[44] Web services Description Language 1.1, http://www.w3.org/TR/

wsdl, referenced January 12th 2015.

[45] Simple Object Access Protocol 1.2, http://www.w3.org/TR/soap/,
referenced January 12th 2015.

[46] Constrained Application Protocol RFC7252, http://coap.

technology/

[47] OPC Uni�ed Architecture, https://opcfoundation.org/about/

opc-technologies/opc-ua/

[48] Message Queue Telemetry Transport, http://mqtt.org/

[49] Extensive Message and Presence Protocol, http://xmpp.org/

[50] Data Distribution Services 1.2, http://www.omg.org/spec/DDS/1.
2/

112

[51] Common Object Request Broker Architecture, http://www.corba.
org/

[52] DNS Service Discovery, http://www.dns-sd.org/

[53] X.509 Certi�cates Standard, https://www.ietf.org/rfc/rfc2459.
txt

[54] Jetty, http://eclipse.org/jetty/

[55] Jersey, https://jersey.java.net/

[56] SoftEther, http://www.softether.org/

113

