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Abstract (italiano)

In questa tesi sono state applicate le tecniche del gruppo di rinormalizzazione fun-
zionale allo studio della teoria quantistica di campo scalare con simmetria O(N) sia
in uno spaziotempo piatto (Euclideo) che nel caso di accoppiamento ad un campo
gravitazionale nel paradigma dell’asymptotic safety.

Nel primo capitolo vengono esposti in breve alcuni concetti basilari della teoria
dei campi in uno spazio euclideo a dimensione arbitraria.

Nel secondo capitolo si discute estensivamente il metodo di rinormalizzazione
funzionale ideato da Wetterich e si fornisce un primo semplice esempio di appli-
cazione, il modello scalare.

Nel terzo capitolo è stato studiato in dettaglio il modelloO(N) in uno spaziotempo
piatto, ricavando analiticamente le equazioni di evoluzione delle quantità rilevanti
del modello. Quindi ci si è specializzati sul caso N →∞.

Nel quarto capitolo viene iniziata l’analisi delle equazioni di punto fisso nel limite
N → ∞, a partire dal caso di dimensione anomala nulla e rinormalizzazione della
funzione d’onda costante (approssimazione LPA), già studiato in letteratura. Viene
poi considerato il caso NLO nella derivative expansion.

Nel quinto capitolo si è introdotto l’accoppiamento non minimale con un campo
gravitazionale, la cui natura quantistica è considerata a livello di QFT secondo il
paradigma di rinormalizzabilità dell’asymptotic safety. Per questo modello si sono
ricavate le equazioni di punto fisso per le principali osservabili e se ne è studiato il
comportamento per diversi valori di N .
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Abstract (english)

In this thesis the techniques of the functional renormalization group have been ap-
plied to the study of a scalar quantum field theory with an internal O(N) symmetry
both in a flat spacetime and in the case of the coupling to a gravitational field, in
the paradigm of the asymptotic safety.

In the first chapter some basic aspects of the QFT in a flat spacetime with
arbitrary dimension have been briefly exposed.

In the second chapter the Wetterich approach to renormalization theory has
been extensively discussed and a first example of application, the scalar model, has
been shown.

In the third chapter the O(N) model in a flat spacetime has been extensively
studied and the expression for the flow equations of the relevant quantities have
been analytically derived. Then the special case N →∞ has been considered.

In the fourth chapter the analysis of the flow equation in the limit → ∞ has
been begun. I started exposing the case of a constant wavefunction renormalization
and an identically vanishing anomalous dimension (LPA), already studied in the
literature. Then the case NLO in the derivative expansion has been investigated.

In the fifth chapter the minimal coupling with a gravitational field has been
added, which quantum nature has been considered as a QFT in the paradigm of the
asymptotic safety. For this model the fixed point equations have been determined
and their behavior for different values of N has been studied.
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Introduction

The quantum field theory is one of the most successful frameworks for physical mathematical
modeling developed by the XX century physicists. Both quantum and statistical physics are
described in terms of fields in their present formulations and can be mostly studied with the
same mathematical tools. The Standard Model of fundamental interactions, which encodes all
our present knowledge about elementary particles and fundamental forces, is itself an interacting
quantum field theory. It is a common belief in the theoretical physicist community that every
kind of fundamental physical phenomenon will be reduced, in the future, to a field theory of
some kind, even if maybe not as local quantum field theories. Indeed also string theory is still
waiting to rise to a field theoretical description, being the attempts to formulate a string field
theory not yet very successful.

Renormalization is one of the central tools on which almost every field theory is built,
because it allows to coherently derive misurable quantity from the theory and relate phenomena
which appears at different scales of observation. Indeed this is the key observation at the
base of its modern formulation and comprehension, and in particular it helps in relating the
microscopic behavior of a system with its long distance behavior. The modern paradigm of
renormalization was developed by several people among whom K. Wilson gave the strongest
impulse in the seventies, leading to the so called Wilson’s renormalization (semi)group idea and
to the development of some tools which, in principle, can permit a nonperturbative analysis of
quantum and statistical systems.

Following Wilson’s philosophy of integrating the quantum (or thermal, in it’s statistical
physics application) fluctuations, for example momentum shell by momentum shell, several
formulations of the nonperturbative renormalization group have been developed since then,
among which the Wetterich’s formulation, based on the concept of a scale dependence of the
effective (average) action, is one of the most employed today, due to the simplicity of its
application with respect to other approaches.

One of the interesting features of this approach is that, in principle and in practice, one
can also find a systematic way to obtain the perturbative results which are most commonly
extracted using the standard perturbative approach. But at the same time it can go beyond
it. What is still missing is a way to gibe precise estimates of the errors associated to a give
“truncation” and renormalisation scheme.

At non perturbative level this approach is been currently used to study some of the difficult
problems in theoretical physics. One is the confinement phase of Quantum Chromodynamics
(QCD), and currently for several observables one can obtain results at least at the same order

7



8

of accuracy of the one derived in a lattice formulation. The other is the study of gravitational
interactions. It is well known that General Relativity can not admit within perturbation theory
a coherent quantum formulation in terms of a quantized field, because of the divergences that
arise in quantum computations which cannot be absorbed by a redefinition of the fields or
of the coupling constants. A simple power counting criterion already shows that the General
Relativity as a QFT is perturbatively non renormalizable at two loops, since the Newton
constant has mass dimension −2, while gravity interacting with matter is not renormalizable
already at one loop.

In view of that, it is clear that nonperturbative methods are the ideal candidates in order
to provide predictions of the UV behavior of this theory. Indeed in 1976 Weinberg proposed a
generalization of the concept of renormalizability, based on the non trivial fixed point structure
of the underlying renormalization group flow. That was called asymptotic safety.

The idea, quoting the words of Weinberg himself, is that: “A theory is said to be asymp-
totically safe if the essential coupling parameters approach a fixed point as the momentum
scale of their renormalization point goes to infinity”. The parameters, made dimensionless by
rescaling, should stay finite in this limit and reversing the flow from the ultraviolet (UV) to
the infrared (IR) regime, only a finite number of them should flow away from the UV limiting
value (relevant directions).

This thesis is devoted to the application of Wetterich’s nonperturbative functional renormal-
ization method to the physics of scalar quantum field theory with an internal O(N) symmetry,
both in a flat Euclidean spacetime and in the case of the coupling to a gravitational field. In
flat space, i.e. with no gravitational interactions, we shall address the formulation in the first
two order of the so called derivative expansion, and mostly derive and discuss some aspects of
the flow equations in the limit N → ∞, where some results have already ben derived in the
literature and other conjectured.

In the case of the coupling to a dynamical gravitational field, whose quantum nature has
been considered as a QFT in the paradigm of the asymptotic safety, we attempt to derive
with some approximation scheme the flow equations for a three dimensional euclidean space
time. Then the fixed point equations have been analysed in the quest of searching the scaling
solutions at criticality as a function of N.

This thesis is organized as follows:

1. In Chapter 1 I have exposed some basic concepts of the path integral formulation of a
quantum field theory and some useful notations have been introduced.

2. In Chapter 2 I have shown how the Wetterich approach to functional renormalization
theory allows a generalization of the concepts exposed in the first chapter in terms of
running (i.e. scale dependent) objects. I have also shown in detail how this renormaliza-
tion technique can be applied to a simple QFT model, the scalar field in D dimensions.

3. In Chapter 3 I have considered the scalar linear O(N) model in D dimensions, truncated
at the second order in the derivative expansion. I have derived analytically the flow
equations for the relevant quantities, considering then the special case N →∞.

4. In Chapter 4 the analysis of the fixed point structure of the theory has been begun. First
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the case of constant wavefunction renormalization and of a vanishing anomalous dimen-
sion, already known in the literature [47], has been exposed. Then we have considered
the NLO case, both for a vanishing and a non vanishing anomalous dimension.

5. In Chapter 5 I have introduced the minimal coupling to the gravitational fields (treated
at the quantum level with a QFT in the paradigm of the asymptotic safety) and I have
studied the fixed point structure of the model.



10



Contents

1 Basics of Euclidean QFT 15

1.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Proper Vertices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Effective potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Wilson’s approach to renormaliztion . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.1 Kadanoff’s block spin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4.2 Wilson Momentum shell integration . . . . . . . . . . . . . . . . . . . . 21

2 Wetterich’s non-perturbative FRG 25

2.1 Derivation of the flow equation for Γk(φc) . . . . . . . . . . . . . . . . . . . . . 25

2.2 Approximations schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.1 Vertex expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2.2 Derivative Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3 Regulator dependence and optimization . . . . . . . . . . . . . . . . . . . . . . 31

2.3.1 Example of regulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Application: the scalar model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.1 The effective potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.4.2 Anomalous dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 The O(N) model at O(∂2) of the derivative expansion 39

3.1 Exact evolution equation for the effective potential . . . . . . . . . . . . . . . . 40

3.2 The equations for Żk(ρ) and Ẏk(ρ) . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.1 Evolution of Γ
(2)
k . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2.2 Evolution of Zk(ρ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.3 Evolution of Yk(ρ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Dimensionless quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3.1 The flow equation for the dimensionless potential . . . . . . . . . . . . . 50

3.3.2 The flow equation for zk(ρ̃) . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.3 The flow equation for z̃k(ρ̃) . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4 Large N limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 The effective potential evolution in the N →∞ limit . . . . . . . . . . . 53

3.4.2 The flow equation for wk(ρ̃) : =u′k(ρ̃) in the large N limit . . . . . . . . 53

3.4.3 zk(ρ̃) flow equation in the N →∞ limit . . . . . . . . . . . . . . . . . . 53

11



12 CONTENTS

4 Some analysis of the fixed point equations 55

4.1 First case: ηk = 0 and z′k(ρ) = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.1 Asymptotic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.1.2 Fixed points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Second case: ηk 6= 0 and z′k(ρ) 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.1 Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.2 The exact equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2.3 Asymptotic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2.4 Equations in D = 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.2.5 Equations in D = 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Third case: ηk = 0 and z′k(ρ) 6= 0 . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.1 Asymptotic behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5 Coupling to the gravitational field 65

5.1 FRG for gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Derivation of the fixed point equations . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Scaling solutions for D=3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Analytical solution for arbitrary N . . . . . . . . . . . . . . . . . . . . . 70

5.3.2 Numerical search for non trivial fixed points . . . . . . . . . . . . . . . . 71

5.3.3 Polynomial Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A Proper Vertices 81

A.1 Derivatives of the potential Uk(ρ) . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.1.1 I order derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A.1.2 II order derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.1.3 III order derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.1.4 IV order derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.2 Derivatives of γZk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.2.1 I order derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.2.2 II order derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.2.3 III order derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2.4 IV order derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.3 Derivatives of γYk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.3.1 I order derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.3.2 II order derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

A.3.3 III order derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

A.3.4 IV order derivative . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B Proper vertices in momentum space 103

B.1 2-point proper vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.2 3-point proper vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B.3 4-point proper vertex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

C Threshold functions 105



CONTENTS 13

D Conventions and formulas for the gravitational coupling 107
D.1 York decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
D.2 Calculation of

√
g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

D.3 Hessian of a scalar O(N) field coupled to gravity . . . . . . . . . . . . . . . . . 108
D.4 Transformation properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

List of Figures 111

List of Tables 113

Bibliography 115



14 CONTENTS



Chapter 1

Basics of Euclidean QFT

The main success of the past century theoretical physics is the formulation of a class of
theories called field theories, which allow an elegant and beautiful description of both quantum
systems (quantum field theory) and statistical systems (statistical field theory) using the same
mathematical framework.

In this chapter I will expose a simple introduction to functional methods applied in field
theories and, at the end, I will also mention briefly the main ideas of the Wilson’s approach to
renormalization theory, without claiming to be too exhaustive.

For further details refer to one of the references in the bibliography, for example [42], [3] or
[4]

1.1 Basic definitions

In the following I will consider, for simplicity, the case of a neutral field φ, but everything can
be generalized to other fields with little modifications. In a field theory all physical information
is stored in correlation functions, objects which are defined as the expectation value of the
product of n fields operator, calculated at different spacetime points.

〈0|φ(x1) . . . φ(xn)|0〉 = N
∫
Dφφ(x1) . . . φ(xn) e−S(φ) (1.1)

The normalization constant N is fixed requiring that 〈1〉 = 1. The functional measure of
integration is defined as: ∫

Dφ :=
∏
x∈RD

∫ +∞

−∞
dφx (1.2)

According to this definition, the position x in the spacetime is treated as a discrete index, so
the functional integral can be imagined as a infinitely continuous generalization of a multiple
Lebesgue integral.

An elegant way to define the correlation functions is as functional derivatives of a generating
functional, defined in the following way:

Z[J ] =

∫
Dφ e−S[φ]+〈J |φ〉 (1.3)

15



16 CHAPTER 1. BASICS OF EUCLIDEAN QFT

here I have used the generalized dot product notation:

〈J |φ〉 =

∫
dDxJ(x)φ(y) =

∫
dDq

(2π)D
J(−q)φ(q)

So we have the following expression for the n-point correlation function:

〈φ(x1) . . . φ(xn)〉 =
1

Z[0]

(
δnZ[J ]

δJ(x1) . . . δJ(xn)

)∣∣∣∣
J=0

(1.4)

This formulation of field theories has the implication that if the partition function can be
computed exactly, every correlation function can be derived from it, so the theory can be
considered solved.

From the generating functional Z we can define the Schwinger functional that is, roughly
speaking, a more efficient way to store the physical information:

W [J ] = lnZ[J ]

Differentiating the Schwinger functional with respect to the external source, the connected
correlation functions are obtained:

δnW [J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

= 〈φ(x1) . . . φ(xn)〉c (1.5)

Differentiating twice, we obtain the 2-point connected correlation function, also called exact
propagator :

δ2W [J ]

δJ(x1)δJ(x2)

∣∣∣∣
J=0

= 〈φ(x1)φ(x2)〉 − 〈φ(x1)〉〈φ(x2)〉 = G(x1 − x2) (1.6)

From the Schwinger functional we can also define the so called classical field :

φc(x) := 〈φ(x)〉 =
δW [J ]

δJ(x)
(1.7)

that is the normalized vacuum expectation value of the field operator φ(x). Note that in the
limit of a vanishing external source we have:

φc(x)|J=0 =
〈0|φ(x)|0〉
〈0|0〉

= const (1.8)

(because of translational invariance). So if we exclude the possibility to have spontaneous
symmetry breaking in our model, that constant must be equal to zero. So φc(x) = 0 if
J(x) = 0 and vice versa. Now we can define the effective action Γ[φc] as the Legedre functional
transformation of the Schwinger functional:

Γ[φc] := sup
J

(
〈Jφc〉 −W [J ]

)
(1.9)

We note that the effective action, being a Legendre transform, has the property to be convex:

δ2Γ

δφδφ
≥ 0 (1.10)

that means, in the language of operators, that the second functional derivative of the effective
action has positive semidefinite eigenvalues.
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1.2 Proper Vertices

Differentiating the effective action with respect to the classical field and evaluating the
result for a vanishing classical field, we obtain the so called proper vertices of the theory:

Γ(n)(x1 . . . xn) =
δ(n)Γ[φc]

δφc(x1) . . . δφc(xn)
(1.11)

In this way, the effective action can be expressed as an expansion in powers of the classical
fields, the proper vertices being the coefficients of the expansion:

Γ[φc] =

∞∑
n=0

1

n!

n∏
j=1

∫
dDxφc(xj)Γ

(n)(x1, . . . , xn) (1.12)

These functions are translation invariant, so their expressions in momentum space read:

Γ(n)(x1, . . . , xn) =

∫
dDp1

(2π)D
e−ip1x1 . . .

∫
dDpn
(2π)D

e−ipnxn Γ(n)(p1, . . . , pn)(2π)Dδ(p1 + . . . pn)

Let’s perform the calculation of some of the firsts of them. The first term of the expansion
is :

Γ(0) ≡ Γ[0] = 0 (1.13)

In order to obtain Γ(1), we have to differentiate once equation (1.9) obtaining:

Γ(1)[φc] =

[
J(x) +

∫
dDy

δJ(y)

δφc(x)
φc(y)−

∫
dDy

δJ(y)

δφc(x)

δW [J ]

δJ(y)

]
φc=0

(1.14)

=
δΓ[φc]

δφc

∣∣∣∣
φc=0

= J(x) (1.15)

For the 2-point proper vertex we start from the definition:

Γ(2)(x− y) =
δ2Γ[φc]

δφc(x)δφc(y)

∣∣∣∣
φc=0

=

∫
dDp

(2π)D
Γ(2)(p) e−ip(x−y) (1.16)

Recalling the definition of the classical field φc (1.7), the following relations hold true:

δ2W [J ]

δJ(x)δJ(y)
=
δφc(x)

δJ(y)
=

[
δJ(y)

δφc(x)

]−1

=

[
δ2Γ[φc]

δφc(x)δφc(y)

]−1

(1.17)

From this we obtain the following important relation:∫
dDy

δ2W [J ]

δJ(x)δJ(y)

δ(2)Γ(φc)

δφc(y)δφc(z)
= δ(x− z) (1.18)

From eq.(1.18), after setting both the external source and the classical field equal to zero and
recalling the definition of the propagator (1.6) we obtain:∫

dDyG(x− y)Γ(2)(y − z) = δ(x− z) (1.19)



18 CHAPTER 1. BASICS OF EUCLIDEAN QFT

Or, in momentum space:
G(p)Γ(2)(p) = 1 (1.20)

To calculate the 3-points proper vertex, equation (1.18) has to be differentiated with respect
to the external source. The result is:

δ3W

δJxδJyδJv
∗ δ2Γ

δφycδφzc
+

δ2W

δJxδJy
∗ δ2W

δJvδJw
∗ δ3Γ

δφwc δφ
y
cδφzc

= 0 (1.21)

where I use the discrete index type notation, and the convolution product over repeated index
is understood. In order to obtain the second term of the previous expression, the following
relation has to be used:

δ

δJ(v)

(
Γ(2)[φc]

δφc(x)δφc(y)

)
=

∫
dw

δ3Γ[φc]

δφc(x)δφc(y)δφc(w)
· δφc(w)

δJ(v)
= (1.22)

=

∫
dw

δ3Γ[φc]

δφc(x)δφc(y)δφc(w)
· δ2W [J ]

δJ(v)δJ(w)

Setting the classical field equal to zero and recalling the fact that the n-point connected corre-
lation functions are defined as the nth order functional derivatives of the Schwinger functional
with respect to the source we can rewrite equation (1.21) in the following way:

G(3)
xyv ∗ Γ(2)

yz +G(2)
xy ∗G(2)

vw ∗ Γ(3)
wyz = 0 (1.23)

And:

Γ(3)
wyz = −G(3)

xyv ∗ Γ(2)
yz ∗ Γ(2)

xy ∗ Γ(2)
vw = −G(3)

xyv ∗
(
G(2)
yz

)−1
∗
(
G(2)
xy

)−1
∗
(
G(2)
vw

)−1
(1.24)

So, we come to the conclusion that the 3-point proper vertex is, exept for the minus sign,
nothing but the connected 3-point Green’s function in which all the external propagator have
been amputated.

So we have deduced that the 3-point proper vertex is, exept for the minus sign, the connected
3-point green function in which the external full propagators have been amputated.

A similar reasoning can be made, by induction, for the generic nth order derivative of Γ,
obtaining the result that the effective action is the generating functional of all the n-point
proper vertices.

1.3 Effective potential

The definition of the effective action Γ(φc) leads to the concept of the effective potential U ,
which reveals to be an useful tool in the study of the long range physics or in the understanding
of the phenomenon of the spontaneous symmetry breaking.

By definition, U(φ̄) is simply the effective action calculated in a constant classical field
configuration, φc = φ̄:

U(φ̄) =
∞∑
n=2

φ̄n

n!
Γ(n)(0, . . . , 0) (1.25)
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QFT quantity Symbol SM analogous
Generating functional Z Canonical partition function

Generator of the connected c.f. W −β· Helmoltz free energy
External source J generalized external parameter
Classical field φc generalized external force

Effective action Γ Gibbs free enthalpy
Classical action S dimensionless Hamiltonian (βH)

Table 1.1: The Euclidean QFT and the statistical mechanics share the same general mathe-
matical structure. That means that we can eventually obtain the one from the other simply
taking into account the correspondances illustrated in this table. I recall the definition of the
thermodynamic β as the reciprocal of the absolute temperature, β = (kBT )−1, where kB is the
Boltzmann constant.

Thus we have, in coordinate space:

Γ[φ̄] =

∞∑
n=2

φ̄n

n!

∫
dx1 . . .

∫
dxnΓ(n)(x1, . . . , xn) (1.26)

So, in momentum space:

Γ[φ] =
∞∑
n=2

φ̄n

n!

n∏
j=1

∫
dxj

∫
dDkj
(2π)D

e−ikjxj (2π)Dδ

(
n∑

i=m

km

)
Γ(n)(k1, . . . , kn) = (1.27)

=

∞∑
n=2

φ̄n

n!

∫
dDk1δ(k1) . . .

∫
dDknδ(kn)(2π)Dδ

(
n∑
i=1

ki

)
Γ(n)(k1, . . . , kn) =

=
∞∑
n=2

φ̄n

n!
(2π)Dδ (0) Γ(n)(0, . . . , 0) =

= (2π)Dδ (0)U(φ̄)

1.4 Wilson’s approach to renormaliztion

The Wilson’s renormalization group was formulated by Kenneth Wilson and coautors in
the 70s in a series of pioneering papers ([36][37][39]) and nowadays it is the essence of modern
renormalization theory.

Here I will recall the basic concepts of it, because it will be the basis for the nonperturbative
Wetterich’s formulation of the renormalization group, on which this work is based.

1.4.1 Kadanoff’s block spin

The basic idea of renormalization is due to Leo Kadanoff [43] who, before the Wilson’s formal
and mathematically rigorous formulation of the renormalization group techniques, proposed a
heuristic physical picture which provided the conceptual basis for the scaling behavior.
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That was the Kadanoff’s transformation, which allows to eliminate the small wavelength
degree of fredoomon from the physical description of a spin chain system dividing it into blocks
and doing a local average in order to obtain an “effective spin” for each block (this step is also
called decimation) and the system is rescaled.

In the following I will give a sketch of the procedure. The partition function reads:

Z =
∑
Si

e−βH[Si] (1.28)

Defining a the lattice size, we divide it into blocks of size αD, where D is the dimension of the
space (so, in our example, D = 2) and α is the spatial rescaling factor. Then one averages out
the spins in each block, obtaining an effective spin for each block. So we can compare the new
system with the previous one performing a rescaling αa → a. After this operation, we have a
rescaled system described by the effective partition function:

Z =
∑
SA

e−βHeff [SA] =
∑
Si

∑
SA

∏
A

δ

(
SA − α−D

∑
i∈A

Si

)
e−βH[Si] (1.29)

but, because of the relations: ∑
SA

∏
A

δ

(
SA − α−D

∑
i∈A

Si

)
= 1

we have that the partition function is left unchanged by the scaling transformation:

Z =
∑
SA

e−βHeff [SA] =
∑
Si

e−βH[Si] (1.30)

and the new effective Hamiltonian describes the same long range physics of the previous one.
The idea is to iterate this procedure an infinite number of times, obtaining after each step

a new effective Hamiltonian at larger scales:

H0 → H1 → H2 → H3 → H4 → · · · → HN → . . .

In an Ising model one of the central observable the correlation lenght ξ, that is defined in terms
of the two point correlation function of spins. If we choose two point x and y on the lattice,
one can write the correlation functions in the following way:

G(x− y) ≈ e
− |x−y|

ξ (1.31)

Obviously the correlation lenght change with the scale. After every step, it is reduced by a
factor α:

ξ → ξ

α
If this lenght (and all the other observable of the system) is left unchanged by the rescaling
transformation, we have what is called a fixed point. This can happen in two different situations:{

ξ →∞ critical fixed point
ξ → 0 trivial (or Gaussian) fixed point

(1.32)

So this technique is suitable to study the behavior of the system near a phase transition.
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Figure 1.1: An illustration of the Kadanoff procedure applied on a bidimensional (D = 2) Ising
system with size a. The initial lattice is divided into blocks of size 9 (so α = 3), an effective
spin for each block is computated and an effective spin SA is obtained. To recover the initial
lattice the rescaling 3a→ a is performed. [46]

1.4.2 Wilson Momentum shell integration

The idea of the Kadanoff s block spin can be extended to a system whose degree of freedom
are encoded in a field φ(x), which we assume to be a continuous function of space and time.

In order to obtain an effective description of the physics of the system in the low momentum
(i.e., long distance) regime, we have to separate the contribution of the modes with momentum
higher and lower of a given coarse graining scale k:

φ(q) = φ<(q) + φ>(q) (1.33)

The low momentum modes φ< and the high momentum ones φ> are defined in the following
way:

φ<(q) = θ(k − |q|)φ(q) (1.34)

φ>(q) = θ(k − |q|)φ(q) (1.35)

In view of that, and recalling the definition of the generating functional in presence of a given
ultraviolet cutoff Λ, (that is the analogous of the initial lattice space in Kadanoff’s model so,
in a certain sense, we can say Λ = a−1) we have:

Z =

∫ ∏
|q|≤Λ

dφq e−SΛ[φ] (1.36)
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we can write:

Z =

∫ ∏
|q|≤k

∏
k≤|q|≤Λ

dφq e−SΛ[φ] =

∫ ∏
|q|≤k

dφq e−Sk[φ] =

∫
Dφ< e−Sk[φ<] (1.37)

where the running action (also called the Wilsonian average action) is defined in the following
way:

e−Sk[φ<] =:

∫ ∏
k≤|q|≤Λ

dφq e−SΛ[φ] =

∫
Dφ> e−S[φ] (1.38)

In this way we have arrived to a complicated functional integral equation, describing the de-
pendence of the Wilsonian equation on the scale parameter k.

When k = Λ the running action reduces to the classical bare action, which describes the
the physics of the system in the ultraviolet limit, conversely when k → 0, all the fluctuations
are included in the description of the model, giving us the complete microscopic quantum field
theory.

In the intermediate region we may interpret Sk as an effective action describing under
certain approximation the physics at the scale k. A reason to believe that is the fact that, by
definition, only modes with |q| ≈ k are active on the scale ∼ k−1.

When this ideas are implemented, one obtains that the exact evolution equation for Sk
depends on a certain cutoff function Kk(q). The equation describing the evolution of Sk has
been derived for the first time in [37] for a smooth cutoff function and in [41] for a sharp cutoff.

The most used version of this evolution equation, with a non specified cutoff function, has
been derived by J. Polchinski in [44] and reads:

∂kSk =
1

2

∫
dDq

(2π)D
∂kKk(q)

(
δ2Sk

δφ<(q)δφ<(−q)
− δSk
δφ<(q)

δSk
δφ<(−q)

)
(1.39)

This equation encodes all the perturbative and nonperturbative effects of the model under con-
sideration, given the bare action SΛ. However some problematic aspects have to be considered
in order to use equation (1.39) for practical purpose. For example, if we want to compute any
observable out of the running action Sk, we still have to compute the partition function, and
that implies a functional integration over the low momenta modes φ<.

Another problem that arise is the non locality, because in eq.(1.39) modes of different
momenta are coupled together.

Because of those difficulties related to the Wilson procedure, alternative formulations seem
to be desirable.

An alternative approach to functional renormalization that has been developed in recent
years is due to Wetterich, and it is focalized on a scale dependent effective action Γ, rather
than on a scale dependent action.

In this thesis I have used this approach, that will be extensively discussed in the following
chapter.
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Fixed Points

The behavior of an interacting field theory is characterized by a set of scale dependent
couplings gi,k, that I will define in the following way:

Γk [φ] =
∑
i

gi,kOi [φ]

Where the Oi,k is an appropriate set of operator that span the space to which the scale depen-
dent effective action belongs to and that are compatible with the symmetries of the system.
For simplicity I have chosen a basis of operator that does not flows, so Oi is independent of k.
Taking the t-derivative of the effective action:

Γ̇k [φ] =
∑
i

βiOi [φ]

we can define the beta functions. By definition, the beta function βi associated to the coupling
gi is simply its t derivative and it depends on the scale and on the coupling itself.

A fixed point is defined as a point where all the beta functions vanishes:

βi(g
∗
i ) = 0 (1.40)

where g∗i is the ith coupling calculated at the fixed point.
Obviously the fixed points are scale invariant points, so if we take it as initial condition of

the flow, our theory will remain there at every scale. In general a given running theory will
have several fixed points or even a continuum of fixed points forming a manifold in the coupling
space.

Each fixed point has its own basin of attraction, which is the set of points in coupling
constant space which flow inside it when the effective average action flows, so we can see a
fixed point as a point where flow lines start or end.

The study of the behavior of the flow in the proximity of a given fixed point is usually done
defining the stability matrix in the following way:

Mij |g∗ =
∂βi
∂gj

(1.41)

This matrix can be diagonalized in order to obtain a set of eigenvalues:

Mij |g∗ = diag (ω1, ω2, . . . ) (1.42)

A negative eigenvalue means that the fixed point is attractive in the correspondig direction,
the converse is true if the eigenvalue is positive.

Critical exponents

If we are following the flow close to the fixed point along the direction vi (where I have
indicated with vi the eigenvector associated to the ith eigenvalue) the coupling constant can
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be expressed as the sum of its value at the fixed point g∗i plus a small fuctuation around this
value:

gi = g∗i + δgi (1.43)

thus we can linearize the flow equation obtaining:

δġi =
∂βi
∂gj

∣∣∣∣
g∗
δgj = Mij |g∗ δgj (1.44)

Now we should solve the eigenvalue problem:

Mij |g∗ v
(a)
j = ωav

(a)
j (1.45)

and expand the coupling constant vector in terms of the basis given by the eigenvector ofM:

δgi =
∑
a

cav
(a)
i (1.46)

where the ca are some constant to be found. Now, substituting equation (1.46) and (1.45) into
the equation (1.44), we come to the result:

ċa = λaca (1.47)

that has the solution:

ca(t) = ca(0) eλat = ca(0)

(
k

k0

)λa
(1.48)

The critical exponents of the model are defined as:

va = −λa (1.49)

and, depending on their sign, the corresponding direction in coupling space is said:

1. relevant, if va > 0;

2. marginal, if va = 0;

3. irrelevan, if va < 0;

In terms of dimensionless quantities (i.e. dimensionless couplings) if in the UV a fixed point
exist with finite values of the couplings g∗i and if there exists a finite number of relevant
directions, then the theory is said to be renormalizable, even if interacting (this is called
asymptotic safety [48]).

Yang Mills theories are special cases of asymptotic safety called asymptotic freedom, since
g∗i = 0 at the fixed point.



Chapter 2

Wetterich’s non-perturbative FRG

The functional renormalization group (FRG) is an approach to renormalization that combines
the functional formulation of QFT with Wilson’s ideas of renormalization. In the particular
approach used in this thesis, introduced by Christof Wetterich[20], one uses a scale dependent
effective action, called effective average action, usually indicated with Γk, where k represents
a coarse-graining scale, with physical dimension of a momentum.

The effective average action is a functional which interpolates between the classical bare
action to be quantized, S, and the full quantum effective action Γ. So, by definition, we have:{

Γk→0 = Γ
Γk→Λ = S

Where Λ is an ultraviolet cutoff, which represent the physical energy scale beyond which QFT
loses its validity.

If Λ can be sent to ∞, then the quantum field theory is said UV complete.

Physically, Γk is an effective action for average of fields, the average being taken over a
volume ≈ k−d, so the degree of freedom with momenta greater than the coarse-graining scale
k are effectively integrated out.

That renormalization procedure can be formulated directly for a continuum field theory,
without the needs of a lattice regularization.

In this chapters I will show how the exact evolution equation for the effective average
action can be derived (i.e. an equation for the derivative of Γk with respect to k), I will discuss
its proprieties and I will mention the two most common approximation schemes used in the
literature that make that equation resolvable.

2.1 Derivation of the flow equation for Γk(φc)

The starting point of our treatment is the definition of a non-local regulator term to be
added to the classical action:

Sk[φ] = S[φ] + ∆Sk[φ] (2.1)

25
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Figure 2.1: A graphical representation of the renormalization group flow in the space of theories.
Each axis labels a different operator upon which the effective action depends. The functional
renormalization group equation determines the evolution of the effective average action Γk, for
a given initial condition ΓΛ = S. A particular trajectory depends on the functional form of the
regulator chosen, but all trajectories end at the full quantum action Γ when k → 0.

This term is, by definition, quadratic in the fields, so it can be written in momentum space as:

∆Sk[φ] =
1

2

∫
dDq

(2π)D
φ(−q)Rk(q)φ(q) (2.2)

Physically, the functional Rk(q) can be interpreted as a momentum-dependent correction to the
mass term, and its definition is the core of all Wetterich’s method. According to that definition,
we can write the scale dependent generating functional of the Euclidean n-point correlation
functions Zk[J ]:

Zk[J ] : = exp

(
−∆Sk

[
δ

δJ

])
Zk[J ] =

∫
Λ
Dφ e−S[φ]−∆Sk[φ]+J ·φ (2.3)

where I have defined the dot product between the fields and the classical source in the following
way, in coordinate space:

J · φ =

∫
dDxJa(x)φa(x) (2.4)

or, equivalently:

J · φ =

∫
dDq

(2π)D
Ja(−q)φa(q) (2.5)

in momentum space. The scale dependent generating functional of the connected Green func-
tion is defined analogously to what we’ve seen in the previous chapter, as the logarithm of
Zk(φ):

Wk[J ] := ln(Zk(φ)) (2.6)
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The primary role of the regulator term is to suppress the contribution of lower modes (the
ones inferior to k), leaving untouched the contribution of the higher ones. The choice of it is
almost free. There are just three condition a function must satisfy in order to be coherently
taken as a regulator, conditions that ensure the evolution of Γk will be well defined in the range
0 ≤ k ≤ Λ.

As a function of k, the regulator function Rk(q) must satisfy the following asymptotic
conditions:

1.
lim

q2/k2→0
Rk(q) > 0 (2.7)

This condition implements the infrared regularization. It ensure that the exact propagator
Gk(q

2) doesn’t diverge when q2 → 0 at vanishing fields. This usually happens because
of the contribution of the massless modes, leading to infrared divergences problems. So,
that makes Rk(q) an infrared regulator.

2.
lim

k2/q2→0
Rk(q) = 0 (2.8)

This condition means that, as it must happens, Zk→0[J ] → Z[J ] (and, consequently,
Γk→0[J ]→ Γ[J ]), so in this limit the full quantum behavior is recovered.

3.
lim

k2→Λ2
Rk(q)→∞ (2.9)

When k approaches the ultraviolet cutoff Λ the regulator terms causes an exponential
suppression of the quantum corrections in the path integral (2.3), that becomes dominated
by the stationary points of the classical action S.

Now we have all we need to derive the Wetterich equation or, in other words, the flow equation
for the effective average action, which represent the central tool of the functional renormaliza-
tion group.

First of all, I will define the effective average action in a similar way to what I’ve done for
the effective action in the previous chapter:

Γk[φc] = sup
J

(∫
Jφc −Wk[J ]

)
−∆Sk[φ] (2.10)

where I have also defined the classical field :

φc = 〈φ〉 =
δWk[J ]

δJ
(2.11)

It’s important to note that, because of definition (2.11), if we define the source as fixed, the
field will depend on the scale k and viceversa. Since later we’ll want to study the effective
average action as a functional of a fixed classical field, necessarily the classical source J will
be a scale dependent quantity. Another observation I want to remark is that, because of the
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Figure 2.2: The typical form of a regulator function Rk as a function of p2 (lower curve) and
of its derivative ∂tRk. Due to its finite value for p2 → 0, the regulator provides for an IR
regularization, while its derivative, due to the peaked form we can see plotted in the graph,
implements the wilsonian idea of UV regularization by integrating out only fluctuations within
a momentum shell near p2 ≈ k2.

terms ∆Sk(φc), eq.(2.10) is not mathematically a Legendre transformation, so Γk (unlike Γ) is
not necessarily convex. The convexity is obviously recovered in the limit k → 0.

Differentiating eq.(2.10) with respect to k we obtain:

∂kΓk =

∫
dDx∂kJ(x)φc(x)− ∂kWk(J)−

∫
∂Wk[J ]

∂J(x)
∂kJ(x)− ∂k∆Sk[φc]

Because of definition (2.11), the first and the third terms cancel each other and we obtain:

∂kΓk = −∂kWk[J ]− ∂k∆Sk[φc] (2.12)

Here the derivative of W [J ] with respect to k appears. This can be calculated differentiating
eq.(2.6) and using eq.(2.3). The result is:

∂kWk[J ] = −1

2

∫
dDx

∫
dDy∂kRk(x, y)G

(2)
k (y, x)− ∂k∆Sk[φc] =

= −1

2
Tr(∂kRkG

(2)
k )− ∂k∆Sk[φc] (2.13)

where I used the definition of the scale dependent connected propagator Gk(q):

Gk =

(
δ2Wk

δJδJ

)
= 〈φφ〉 − 〈φ〉〈φ〉 (2.14)
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If we now substitute this result into eq.(2.12), we obtain:

∂kΓk[φc] =
1

2
Tr
(
∂kRkG

(2)
k

)
(2.15)

What remains to do, now, is to find an expression of the exact propagator in terms of Γk and
of the regulator Rk. First of all we notice that, because of eq.(2.12), the quantum equation of
motion receives a regulator modification:

J(x) =
δΓk[φc]

δφc(x)
+ (Rkφ)(x) (2.16)

From this we have:
δJ(x)

δφc(y)
=

δ2Γk[φc]

δφc(x)δφc(y)
+Rk(x, y) (2.17)

while, from eq.(2.11), we have:

δφc(y)

δJ(x′)
=

δ2Wk[J ]

δJ(x′)δJ(y)
= Gk(y − x′) (2.18)

So we have obtained the following important relation:

δJ(x)

δJ(x′)
= δ(x− x′) =

∫
dDy

δJ(x)

δφc(y)

δφc
δJ(x′)

=

∫
dDy

(
δ2Γk[φc]

δφc(x)δφc(y)
+Rk(x, y)

)
Gk(y − x′) (2.19)

Or, in other words:

Gk(x− y) =

(
δ2Γk[φc]

δφc(x)δφc(y)
+Rk(x, y)

)−1

(2.20)

Collecting everything, we can finally obtain the celebrated Wetterich’s equation, that describes
the flow of the effective average action:

Γ̇k[φc] ≡ ∂tΓk[φc] =
1

2
Tr

{
∂tRk

(
δ2Γk[φc]

δφc(x)δφc(y)
+Rk(x, y)

)−1
}

(2.21)

For the sake of convenience, I have defined the adimensional parameter t, sometimes called RG
time in the literature, in the following way:

t := ln

(
k

Λ

)
, ∂t := k

d

dk
(2.22)

The Wetterich’s equation is the starting point of all our future investigations. Here I will
spend some words on its proprieties:

1. This is a functional differential equation, so there are not functional integration to be
performed (in contrast with eq.(2.3)).
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Figure 2.3: A graphical representation of the Wetterich’s equation. The flow of Γk is given by
a one-loop form, which involves the full propagator, represented here by a double line, and the
operator ∂tRk, represented by afilled red box

2. The role of the regulator Rk is twofold: its presence in the denominator of eq.(2.21)
ensures the infrared regularization, while its derivative ∂tRk in the numerator ensures
UV regularization, because its support lies on a smeared momentum shell near p2 ≈ k2.
This peaked structure of ∂tR implements nothing but the wilsonian idea of integrating
momentum shell by momentum shell and implies that the flow is localized in momentum
space. A typical form of a regulator and of its t derivative is depicted in Fig.2.2

3. The Wetterich’s equation has a one-loop structure, but it is nevertheless an exact equa-
tion, due to the presence of the exact propagator. This structure is the direct consequence
of the fact that the regulator term we added to the classical action, ∆Sk, is quadratic in
the fields.

2.2 Approximations schemes

The Wetterich’s equation, despite its simple form, can’t be solved exactly for an arbitrary
Γk; that’s simply because it would be technically impossible to find an exact generic solution
for a system of infinite coupled integro-differential equations. So, some approximation on the
effective action must be made.

In the following I will discuss the two main approximation method used in the literature:
the vertex expansion and the derivative expansion. These approximations don’t rely on the
smallness of a coupling parameter, so the method is, in essence, still non perturbative. The
mathematical results of making such approximations is to transform the Wetterich equation
into a set of differential equations, sometimes much more easy to solve.

2.2.1 Vertex expansion

The vertex expansion approach was introduced and extensively investigated by Tim R.
Morris [11] and it is widely used in the condensed matter physics community and also in low
energy QCD studies. It is based upon a truncation of the effective average action in powers of
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the field:

Γk[φc] =
∞∑
n=0

=
1

n!

∫
dDx1 . . . d

DxnΓ
(n)
k (x1, . . . , xn)φc(x1) . . . φc(xn) (2.23)

where I have indicated with Γ
(n)
k the nth order functional derivative of Γk with respect to the

field. By inserting this into the Wetterich’s equation (2.21) we obtain the flow equations for the

vertex functions Γ
(n)
k , which can be viewed as a differential FRG form of the Schwinger-Dyson

equations.
It has been demonstrated that expanding the effective average action around the field

corresponding to the minimum of Γk improves the convergence proprieties when one is interested
in the behavior of the system near phase transitions [22].

2.2.2 Derivative Expansion

In order to obtain approximate solutions of the flow equations, the other main strategy
is the derivative expansion of the effective action. That consists in expanding the effective
average action in powers of the gradient of the field. This method is often applied to problems
where one is interested in low momenta (or, equivalently, long wavelength) behavior, or when
the local structure is known to dominate.

It is the most used approximation technique in the literature and its convergence proprieties
has been largely discussed (see, for example, [22]).

In this thesis this technique will be applied to the O(N) model, so it will be extensively
discussed in the following chapters. For this reason, I will not spend much words about it now.

2.3 Regulator dependence and optimization

As we have seen, any explicit application of Wetterich’s equations requires some approxi-
mation and every approximate solutions have a restricted domain of validity. In addition to
that, when approximations are made, the independence of physical observables from the choice
of the regulator functional is lost.

If we consider a family of regulators Rαk (q) parametrized by α, we are interested in find
the particular value of α which minimizes the dependence of the observables of interest from
α itself. This translates in the requirement:

dO(α)

dα

∣∣∣∣
α=αopt

= 0 (2.24)

where O is any physically interesting observable of the model (e.g. the effective potential, a
critical exponent, etc...). This idea is called principle of minimum sensitivity (PMS) [18].

2.3.1 Example of regulators

Various choice of the regulator functional have already been studied in great detail in the
literature. Here I will review the most common ones used and I will discuss the optimal
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parameter choice in the case of the evolution equation of the effective potential in the linear
O(N) model in the LPA (local potential approximation) of derivative expansion, which will be
studied in depth in the following chapter of this thesis. In general, because of issues due to
numerical calculation, it is preferable to work with the dimensionless rescaled regulator, defined
in the following way:

rk =
Rk(q)

Zkq2
(2.25)

where Zk is the wavefunction renormalization of the model, calculated in the configuration
that minimizes the effective potential. The dimensionless regulator results to be a function
only of q2/k2 : = y. For the sake of simplicity, I will discuss directly the rescaled regulators in
the following.

1. Exponential regulator[14]:

rexp(y) =
a

ecyb −1
b ≥ 1

In the linear O(N) model treated with the LPA, the optimal parameter choice is a = 1,
c = ln(2) and b = 1.44.

2. Power Law regulator[15]:

rpow(y) =
a

yb

with optimal choice a = 1 and b = 2.

3. Litim regulator[16]:

rLit(y) = a

(
1

yb
− 1

)
θ(1− y)

that is a continuous but not differentiable regulator with a compact support. It’s one of
the most widely used in the literature. The optimal choice for the parameters are a = 1
and b = 1.

4. CSS regulator[26]:

rCSS(y) =
exp[cyb0/(1− hyb0)]− 1

exp[cyb/(1− hyb)]− 1
θ(1− hyb)

It’s a very general regulator functional, that recovers all the other ones discussed here as
special limits:

• Litim

lim
c→0,h→0

rCSS =
yb0

1− yb0

(
1

yb
− 1

)
θ(1− y)

• Power Law

lim
c→0,h→1

rCSS =
yb0
yb

• Exponential

lim
c→0,h→1

rCSS =
exp[yb0]− 1

exp[yb]− 1
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2.4 Application: the scalar model

Now I will illustrate the capabilities of the functional renormalization group by a simple
but highly nontrivial example: the scalar model in D dimensions, described by the following
bare action:

S[φ] =

∫
dDx

[
Z

2
∂µφ∂µφ+ V (φ)

]
(2.26)

which now we are going to quantize.

2.4.1 The effective potential

The effective average action is:

Γk[φ] =

∫
dDx

(
Zk
2
∂µφ∂µφ+ Uk(ρ) +O(∂2)

)
(2.27)

where I have assumed that the effective potential is a function of the field modulus square
ρ = φ2/2. Note also that, here and in the following, for the sake of brevity, I will indicate the
classical field φc simply with φ.

I’ll use as approximation scheme the derivative expansion in the LPA’ which is, together
with LPA, one of the most widely used approximation in the literature. It consists in keeping
only a field independent (but scale dependent) coefficient in the kinetic term, unlike the simpler
LPA which consider that term identically equal to one:

1. Z = 1 =⇒ LPA

2. Z = Zk =⇒ LPA’

The running proper vertices and the Hessian will be calculated for a constant field φ0, the value
which minimizes the effective potential:

φ(x) ≈ φ0 ; Uk

(
φ2

0

2

)
= 0 (2.28)

This is enough if we want to have a first estimate of the functional form of the potential Uk(ρ).

We chose the regulator function to be the Litim regulator :

Rk(p
2) = Zk(k

2 − p2)θ(k2 − p2) (2.29)

Ṙk(p
2) = Zk[(2− ηk)k2 + ηkp

2]θ(k2 − p2) (2.30)

Where I have defined the running anomalous dimension η = −Żk/Zk. The Hessian of the
model, is given by the following expression:

Γ
(2)
k [φ, p2] = Zkp

2 + U
(2)
k (ρ) (2.31)
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So, substituting it in the Wetterich equation in momentum space we obtain:

∂tUk(ρ) =
Zk
2

∫
dDp

(2π)D
(2− ηk)k2 + ηkp

2

Zkk2 + U ′k(ρ) + 2ρU ′′k (ρ)
θ(k2 − p2) =

= ZkvD

∫ k2

0
dp2 (2− ηk)k2 − ηkp2

Zkk2 + U ′k(ρ) + 2ρU ′′k (ρ)
(p2)

D−2
2 (2.32)

where a spherical polar coordinate system was introduced and the spherical symmetry of the
integrand used in order to separate the integration in p to the one in the angular coordinates.

I have also defined, for the sake of brevity, the constant vD, in the following way:

v−1
D = 2D+1π

D
2 Γ

(
D

2

)
The result is easily obtined after some manipulation. It is:

∂tUk(φ) =
4vDZk(D − ηk + 2)kD+2

Zkk2 + U ′k(ρ) + 2ρU ′′k (ρ)
(2.33)

Now it’s useful to express the latter equation in terms of dimensionless quantities, so I will
define an adimensional potential and an adimensional field modulus square, in the following
way: {

ρ̃ = Zkk
2−Dρ

uk(ρ̃) = k−DUk(ρ̃)

So, after some trivial algebraic manipulation, we obtain:

u̇(ρ̃) = −Duk(ρ̃) + (D − 2 + η)ρ̃
∂uk(ρ̃)

∂ρ̃
+

π−
D
2 (D − ηk + 2)

2D−1Γ
(
D
2

)
(1 + u′k(ρ̃) + 2ρ̃u′′k(ρ̃))

(2.34)

Where the following relation has been used:

∂

∂t
Uk(ρ̃)

∣∣∣∣
ρ̃

=
∂

∂t
[kDuk(ρ̃)]

∣∣∣∣
ρ̃

= kDu̇(ρ̃) +DkDuk(ρ̃) (2.35)

2.4.2 Anomalous dimension

To close our set of equation we need also the flow equation for Zk or, in other words, an
explicit expression for the anomalous dimension ηk = −Żk/Zk. This can be easily obtained

from the evolution equation of Γ
(2)
k (φ) in momentum space. By definition, the expression of

Γ2
k(φ) is:

Γ
(2)
k (φ, p2) =

δ2

δφ(p)δφ∗(p)
Γk(φ) = Zkp

2 + U
(2)
k (φ) (2.36)

So we have:

Zk =
1

VD

∂2

∂p2
Γ

(2)
k (φ, p2)

∣∣∣∣
p2=0

(2.37)
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and, of course:

Żk =
1

VD

∂2

∂p2
Γ̇

(2)
k (φ, p2)

∣∣∣∣
p2=0

(2.38)

Where VD is the D- dimensional volume where the system under investigation is confined. So

the starting point of our calculation is the evolution equation for Γ
(2)
k , which can be obtined

differentiating twice the Wetterich’s with respect to the fields:

Γ̇
(2)
k (φ) =

1

2
Tr

{
Ṙk

δ2

δφaδφb

1

Γk
(2) +Rk

}
(2.39)

In order to calculate the second functional derivative of the exact propagator:

Gk =
1

Γk
(2) +Rk

(2.40)

we use the well known formula for the derivative of a martix knowing its inverse:

∂

∂x
M−1 = −M−1

(
∂

∂x
M

)
M−1 (2.41)

And, for the second order derivative:

∂2

∂x∂y
M−1 =

M−1

(
∂

∂x
M

)
M−1

(
∂

∂y
M

)
M−1+M−1

(
∂

∂y
M

)
M−1

(
∂

∂x
M

)
M−1−M−1

(
∂2

∂x∂y
M

)
M−1

So the second functional derivative of the exact propagator is, in coordinate space:

δ2Gk(x1, x2)

δφ(x)δφ(y)
= Gk(x1, x3)

[
2
δΓ(2)(x3, x4)

δφ(x)
Gk(x4, x5)

δΓ
(2)
k (x5, x6)

δφ(y)
−
δ2Γ

(2)
k (x3, x6)

δφ(x)δφ(y)

]
Gk(x6, x2)

So the trace in (2.39) becomes:

1

2
Tr

{
Ṙk

δ2

δφaδφb

1

Γk
(2) +Rk

}
= (2.42)

=

[
Gx1x3

k

(
δΓ(2)x3x4

k

δφ(x)
Gx4x5

k
δΓ(2)x5x6

k

δφ(y)
− 1

2

δ2Γ(2)x3x6
k

δφ(x)δφ(y)

)
Gx6x2

k

]
Ṙk

x2x1 ≡ A− 1

2
B (2.43)

Where I have used the generalized index notation: the xi are spacetime coordinate and the
integration over repeated index is understood. I will resolve the two integral separatly. The
first one is:∫ 6∏

j=1

dxjGk(x3 − x1)
δΓ(2)

k(x3, x4)

δφ(x)
Gk(x5 − x4)

δΓ(2)(x5, x6)k
δφ(y)

Gk(x2 − x6)Ṙk(x1 − x2) (2.44)
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We perform the calculation in momentum space so, we need the momentum-space expression
of the quantities in (??):

Gk(x3 − x1) =
∫ dDq1

(2π)D
G̃k(q1)ei(x3−x1)q1

Gk(x5 − x4) =
∫ dDq2

(2π)D
G̃k(q2)ei(x5−x4)q2

Gk(x2 − x6) =
∫ dDq3

(2π)D
G̃k(q3)ei(x2−x6)q3

Γ(3)(x, x3, x4) =
∫ dDp1

(2π)D

∫ dDp2

(2π)D

∫ dDp3

(2π)D
Γ̃(3)δ(p1 + p2 + p3)eip1xeip2x3eip3x4

Γ(3)(y, x5, x6) =
∫ dDp′1

(2π)D

∫ dDp′2
(2π)D

∫ dDp′3
(2π)D

Γ̃(3)δ(p′1 + p′2 + p′3)eip
′
1yeip

′
2x5eip

′
3x6

Ṙk = [2k2Zk + Żk(k
2 − q2)]θ(k2 − q2)

Performing the integrations, the following constraints on the momenta are found:

q1 = q p1 = p1

q3 = q p′1 + p1 + q
p2 = q p2 = q
q2 = −p3 p′2 = −q
p′1 = q2 p3 = −p1 − q
p′2 = −q p′3 = −p1

After performing a Fourier transform, in order to express the result in momentum space, the
following expression for the A integral is obtained:

A(p) = VD

∫
dDq

(2π)D

∫
dDp

(2π)D
Gk(q)Γ

(3)
k (p, q,−p− q)Gk(p+ q)Γ

(3)
k (−p,−q, p+ q)Gk(q)Ṙk(q)

(2.45)
In a similar way the integral B can be evaluated, here I will just state the result:

B(p) = VD

∫
dDq

(2π)D

∫
dDp

(2π)D
Gk(q)Γ

(4)
k (p,−p, q,−q)Gk(q)Ṙk(q) (2.46)

These two integrals have an immediate graphical interpretation in terms of two 1-loop Feyn-
mann diagrams, which I reported in Fig.2.4 and in Fig.2.5. Now I will neclet the momentum
dependence of the proper vertices, assuming:

Γ
(3)
k ≈ 6

√
ρU ′′k (ρ) + 2ρ3/2U ′′′k (ρ)

Γ
(4)
k ≈ 3

√
ρU ′′k (ρ) + 12ρU ′′′k (ρ) + 4ρ2U ′′′′k (ρ)



2.4. APPLICATION: THE SCALAR MODEL 37

Figure 2.4: Graphical representation of the A integral.

This approximation on the vertices implies the p independence of the B graph, so recalling
eq.(2.38), We come to the conclusion that this one has not influence on the flow equation for
Zk. So, putting all the elements together, we come to the expression:

Żk =
(

Γ
(3)
k

)2
∫

dDq

(2π)D
G2
k(q)Ṙk(q)

∂2

∂p2

[
Gk(p+ q)

]
p=0

(2.47)

In order to simplify the procedure, I will use the identity:

∂2

∂p2

[
Gk(p+ q)

]
p=0

=
∂2

∂q2

[
Gk(q)

]
(2.48)

Now all we have to do is to calculate explicitly the derivative of the exact propagator:

∂2

∂q2

(
Zkq

2 + U ′k(ρ) + 2ρU ′′k (ρ) + Zk(k
2 − q2)θ(k2 − q2)

)−1
(2.49)

The Heaviside θ function allows us to rewrite the preceding expression as a sum of two terms,
in the following way:

∂2

∂q2

(
θ(k2 − q2)

Zkk2 + U ′k(ρ) + 2ρU ′′k (ρ)
+

θ(q2 − k2)

Zkq2 + U ′k(ρ) + 2ρU ′′k (ρ)

)
(2.50)

Performing the first derivative:

∂

∂qµ

[
Gk(q)

]
− 2qµδ(k

2 − q2)

Zkk2 + U ′k(ρ) + 2ρU ′′k (ρ)
+

2qµδ(q
2 − k2)

Zkq2 + U ′k(ρ) + 2ρU ′′k (ρ)
+θ(q2−k2)

∂

∂qµ
1

Zkq2 + U ′k(ρ) + 2ρU ′′k (ρ)

The first and the second terms cancel each other, so we have:

∂

∂qµ
Gk(q) = − 2qµZkθ(q

2 − k2)(
Zkq2 + U ′k(ρ) + 2ρU ′′k (ρ)

)2 (2.51)
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Figure 2.5: Graphical representation of the B integral.

and, performing the second derivative, we obtain the result:

∂2

∂q2

[
Gk(q)

]
= 2Zk

[
4

Zkq
2θ(q2 − k2)

(Zkq2 + U ′k(ρ) + 2ρU ′′k (ρ))3
− θ(q2 − k2) + 2q2δ(q2 − k2)

(Zkq2 + U ′k(ρ) + 2ρU ′′k (ρ))2

]
(2.52)

If we now substitute what we have found in equation (2.47) we have, recalling the definition
of the Litim optimized regulator (2.29),(2.30), that the terms containing the theta functions
don’t contribute to the integral, because their support is disjoint from the support of the theta
function in the definition of Ṙk(q).

So, substituting this result in eq.(2.47) and recalling that δ(k2 − q2)θ(k2 − q2) = 1/2δ(k2 −
q2), after some trivial algebrical manipulation, we come to the following expression for the
anomalous dimension:

ηk =
32vDZkk

D+2
[
9ρ
(
U ′′k (ρ)

)2
+ 6ρ2U ′′k (ρ)U ′′′k (ρ) + ρ3

(
U ′′′k (ρ)

)2]
(Zkk2 + U ′k(ρ) + 2ρU ′′k (ρ))4

∣∣∣∣∣∣
ρ=ρ0

(2.53)

Where I have named ρ0 the field modulus square at the potential minimun. Now we should
express the latter expression in terms of dimensionless quantities, so I recall the definitions of
the adimensional potential and of the adimensional field modulus square:{

ρ̃ = Zkk
2−Dρ

uk(ρ̃) = k−DUk(ρ̃)

So we obtain:

ηk =
24−Dπ−

D
2

(
3ρ̃u′′k(ρ̃) + ρ2u′′′k (ρ̃)

)2
ρΓ
(
D
2

)
(1 + 2ρ̃u′′k(ρ̃))4

(2.54)

where all the quantities are calculated at the potential minimum.



Chapter 3

The O(N) model at O(∂2) of the
derivative expansion

In this chapter I will apply the concepts illustrated in the previous one to a concrete model,
the O(N) model, which describes the behavior of an N -components real scalar field φa(x) with
an O(N) rotational invariance in vector representation.

Due to its simplicity and to the wide number of physical systems it’s able to describe,
the O(N) model is one of the most studied in modern theoretical physics. As an example, I
remember here just some of the systems described using that as theoretical framework:

1. polymers, for N = 0 [12];

2. the Ising model, for N = 1 [8];

3. the XY model, for N = 2 [9];

4. the Heisemberg model, for N = 3 [10];

5. chiral effective model for QCD, for N = 4[5];

6. theory of high Tc sperconductivity, for N = 5[19];

Moreover, also the Higgs field of the Standard Model is based on a linear complex O(N) model.

The approximation scheme I’ll use on the effective average action in order to solve the
Wetterich equation (2.21) is a derivative expansion up to order O(∂2) (naturally the derivative
expansion is consistent with the O(N) symmetry). So we have the following expression for Γk:

Γk(φ) =

∫
dDx

[
U(ρ) +

Zk(ρ)

2
∂µφa(x)∂µφ

a(x) +
Yk(ρ)

4
∂µρ(x)∂µρ(x) +O(∂4)

]
(3.1)

where I have defined ρ(x) = 1
2φ

a(x)φa(x). The effective potential Uk(ρ) is the observable that
permit us to study the ground state of a given theory as well as the basics interactions, while
the kinetic term involve two different renormalization functions, Zk(ρ) and Yk(ρ). For N > 1
the first one, Zk(ρ), is related to the renormalization of the Goldstone modes, whereas the

39
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renormalization of the radial mode involves both Zk(ρ) and Yk(ρ). To maximally simplify our
model we will allow Uk(ρ), Zk(ρ) and Yk(ρ) to depends just on ρ and not explicitly on the
spacetime position. In this framework, the evolution equation for Γk reduces to a system of
coupled nonlinear differential equations for the three functions Uk(ρ), Zk(ρ) and Yk(ρ). These
evolution equations will be derived in the following, also considering the special case N →∞,
to eventually study scaling solutions (fixed point configurations of the function space).

3.1 Exact evolution equation for the effective potential

In order to obtain the FRG flow equation for the effective potential, I will set constant field
couplings in the Hessian Γ(2).

So, the effective average action is:

Γk(φ) ≈
∫
Uk(ρ)dDx = VDUk(ρ) (3.2)

Where VD ≡
∫
dDx is the volume in the D−dimensional euclidean space where the physical

system under consideration is confined. Now we can trivially obtain the effective potential flow
equation:

U̇k(ρ) =
1

2VD
Tr

{
Ṙk

Γk
(2) +Rk

}
(3.3)

In momentum space:

U̇k(ρ) =
1

2VD

∑
ab

∫
dDx

∫
dDy

∫
dDp

(2π)D

∫
dDq

(2π)D
Gaa(p

2)Ṙk(q
2)ei(x−y)(p−q) (3.4)

In order to avoid excessive formalism, I will use the same notation for functions or operators
in coordinate space and for their Fourier transform. So, for example the momentum space
expression for the exact propagator and the dotted regulator function appearing in (3.3) read:

Gk
ab(x− y) =

∫ dDp
(2π)D

Gab(p)ei(x−y)p

Ṙbak (y − x) = δba
∫ dDq

(2π)D
Ṙk(q

2)ei(y−x)q

I also remark that, because our model involve real scalar fields in coordinate space, in momen-
tum space we have:

φa(q) = φ∗a(−q)
because of the definition of Fourier transorm:

φa(q) =

∫
φ(x) eiqx dDx

In the integral in (3.4) I’ll introduce the variable z = y−x and, after performing the z and the
x integrals, the result is:

U̇k(ρ) =
∑
a

∫
dDq

(2π)D
Gak a(q

2)Rk(q
2) (3.5)
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To perform the integration in q we will use the polar coordinate system in a D−dimensional
space: ∫

dDq

(2π)D
= 4vD

∫ ∞
0

qD−1dq (3.6)

I have already performed the integral over the D-dimensional solid angle, because of the angular
independence of the integrand (3.5) and I have also defined, for the sake of brevity, the numerical
factor vD:

vD =
1

2D+1Γ(D2 )(π)
D
2

So the (3.5) becomes:

U̇(ρ) =
∑
a

2vD

∫ ∞
0

qD−1Gak a(q)Ṙk(q
2)dq (3.7)

The trace of the exact propagator is:

Gaa(q
2) =

[
Γ

(2)
k (q2) +Rk(q

2)
]−1

=

δaa − φ̂aφ̂a
U ′k(ρ) + Zk(ρ)q2 +Rk(q2)

+
φ̂aφ̂a

U ′(ρ) + 2ρ̄U ′′k (ρ) + [Zk(ρ̄) + ρYk(ρ̄)]q2 +Rk(q2)
=

N − 1

U ′k(ρ) + Zk(ρ)q2 +Rk(q2)
+

1

U ′(ρ) + 2ρU ′′k (ρ) + [Zk(ρ) + ρYk(ρ)]q2 +Rk(q2)
(3.8)

where I have defined:

φ̂a =
φ̄a√
2ρ̄

(3.9)

So δab − φ̂aφ̂b and φ̂aφ̂b are the projectors on the longitudinal and on the transverse directions
respectively.

We can substitute equation (3.8) in (3.1), obtaining:

U̇(ρ) = 2vD

∫ ∞
0

qD−1Ṙk(q
2)
[
(N − 1)G⊥(q2) +G‖(q

2)
]
dq (3.10)

Where I have defined, for the sake of simplicity the transverse component of the propagator
and the longitudinal one, in the following way:

G⊥(q) =
1

U ′k(ρ) + Zk(ρ)q2 +Rk(q)

G‖(q) =
1

U ′(ρ) + 2ρ̄U ′′k (ρ) + (Zk(ρ) + ρ̄Yk(ρ̄))q2 +Rk(q)

So the propagator can be written in the following way:

Gab(q) = (δab − φ̂aφ̂b)G⊥(q) + φ̂aφ̂bG‖(q) (3.11)
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Figure 3.1: A Feynman-like graph representation for the exact evolution equation for the
effective potential Uk(ρ).

For ρ 6= 0 it’s easy to identify the first term as the contribution from the N−1 Goldstone bosons
and the first one as the contribution from the radial mode. The exact evolution equation for
the effective potential can be interpreted in a graphical way in terms of a 1-loop Feynman-like
diagrams, as shown in Fig.3.1.

In order to study the behavior of the effective potential, an approximation that is widely
used in the literature is the LPA (Local Potential Approximation). The LPA result consists in
setting Z = 1 and Y = 0.

Although it may seems a crude approximation, the LPA is widely used in many studies,
because it qualitatively reproduces most of the properties of the complete functional renor-
malization group description of the O(N) model in the large distance regime, like the stability
properties and number of fixed points.

3.2 The equations for Żk(ρ) and Ẏk(ρ)

To go beyond the simple LPA approximation, we need to add the exact evolution equations
for the non trivial Zk(ρ) and Yk(ρ). To derive these equations we need to know the exact
evolution equation for the second order functional derivative of the effective average action,
then setting ρ to a constant is sufficient to extract the flow equations. That is what will be
calculated in the following section.

3.2.1 Evolution of Γ
(2)
k

The procedure is very similar to what we’ve seen for the scalar model in the previous
chapter.

The starting point is the Wetterich equation (2.21). If we derive it twice with respect to
the fields we obtain:

Γ̇
(2)ab
k (x, y) =

1

2

δ2

δφa(x)δφb(y)
Tr
{
ṘkGk

}
(3.12)

Assuming the field-independence of the functional, our problem is to calculate the second
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functional derivative of the exact propagator:

Gk =
1

Γk
(2) +Rk

We apply the well-known formula for the derivative of a matrix, knowing the expression of its
inverse:

∂2

∂x∂y
M−1 =

M−1

(
∂

∂x
M

)
M−1

(
∂

∂y
M

)
M−1+M−1

(
∂

∂y
M

)
M−1

(
∂

∂x
M

)
M−1−M−1

(
∂2

∂x∂y
M

)
M−1

So the second functional derivative of the exact propagator is:

δ2Gx1x2
a1a2 k

δφa(x)δφb(y)
= Gx1x3

a1a3 k

[
2
δΓ

(2)x3x4
a3a4

δφa(x)
Gx4x5
a4a5 k

δΓ
(2)x5x6
a5a6 k

δφb(y)
− δ2Γ

(2)x3x6
a3a6 k

δφa(x)δφb(y)

]
Gx6x2
a6a2 k

(3.13)

So the trace in (3.12) becomes:

1

2
Tr

{
Ṙk

δ2

δφaδφb

1

Γk
(2) +Rk

}
= (3.14)

=

[
Gx1x3
a1a3 k

(
δΓ

(2)x3x4
a3a4 k

δφa(x)
Gx4x5
a4a5 k

δΓ
(2)x5x6
a5a6 k

δφb(y)
− 1

2

δ2Γ
(2)x3x6
a3a6 k

δφa(x)δφb(y)

)
Gx6x2
a6a2 k

]
Ṙk

x2x1

a2a1
≡ A− 1

2
B (3.15)

Note that the evolution equations for Γ(2) involves Γ(3) and Γ(4). That’s a general results, it’s
possible to demonstrate that the flow equation for Γ(n) always involves Γ(n+1) and Γ(n+2).

I’ll solve the two integrals A and B separately in the following subsections.

A evaluation

If we rewrite the generalized sums explicitly in terms of spacetime integrals the expression
of A is

∑
am

∫  6∏
j=1

dxj

Ga1a3k (x3−x1)
δΓ

(2)
a3a4k(x3, x4)

δφa(x)
Ga4a5k (x5 − x4)

δΓa5a6(2)(x5, x6)k
δφb(y)

Ga6a2k (x2−x6)Ṙk
a2a1

(x1−x2)

(3.16)
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First, I’ll solve the spacetime integral. It’s more convenient to work in momentum space. The expression
for the observable in (3.16) become:

Ga1a3k (x3 − x1) =
∫

dDq1
(2π)D

Ga1a3k (q1)ei(x3−x1)q1

Ga4a5k (x5 − x4) =
∫

dDq2
(2π)D

Ga4a5k (q2)ei(x5−x4)q2

Ga6a2k (x2 − x6) =
∫

dDq3
(2π)D

Ga6a2k (q3)ei(x2−x6)q3

Γ(3)aa3a4(x, x3, x4) =
∫

dDp1
(2π)D

∫
dDp2
(2π)D

∫
dDp3
(2π)D

Γ(3)axa3a4δ(p1 + p2 + p3)eip1xeip2x3eip3x4

Γ(3)ba5a6(y, x5, x6) =
∫ dDp′1

(2π)D

∫ dDp′2
(2π)D

∫ dDp′3
(2π)D

Γ(3)aya5a6δ(p′1 + p′2 + p′3)eip
′
1yeip

′
2x5eip

′
3x6

Ṙk
a2a1

(x1 − x2) = Ṙkδ
a1a2

Substituting these expressions in (3.16) and performing the spacetime integration we find the following
constraints on the moments:

q1 = q p1 = p1

q3 = q p′1 + p1 + q
p2 = q p2 = q
q2 = −p3 p′2 = −q
p′1 = q2 p3 = −p1 − q
p′2 = −q p′3 = −p1

So we can rewrite A in terms of just two momenta, for example p1 and q:

A(x−y) =
∑
am

∫
dDq

(2π)D

∫
dDp1

(2π)D
Ga1a3k (q)Γ

(3)aa3a4
(p,q,−p−q)G

a4a5
k (p1+q)Γ

(3)ba5a6
(−p,−q,p+q)G

a6a2
k (q)Ṙa2a1k (q)ei(x−y)p1

(3.17)
Now, in order to obtain the momentum-space expresion for A I’ll perform a Fourier transform of (3.17).
The result, after performing spacetime integrations in x and y, is:

A(p) =
V

(2π)D

∑
am

∫
dDq

(2π)D
Ga1a3k (q)Γ

(3)aa3a4
(p,q,−p−q)G

a4a5
k (p+ q)Γ

(3)ba5a6
(−p,−q,p+q)G

a6a2
k (q)Ṙa2a1k (q) (3.18)

B evaluation

The evaluation of B can be performed in the same way. In coordinate space it is:

B(x, y) =

∫
Ga1a3k (x1, x3)

δ2Γ
(2)
a3a6k(x3, x6)

δφa(x)δφb(y)
Ga6a2k (x6, x2)Ṙk

a2a1
(x1, x2)

∏
i

dDx (3.19)

In momentum space it becomes:

B(p) =

∫
dDq

(2π)D
Ga1a3k (q)

δ2Γ
(2)
a3a6(p,−p)

δφa(q)δφb(−q)
Ga6a2k (q)Ṙk

a2a1
(q) =
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Figure 3.2: A Feynman-like graph representation for Γ(2) = A− 1
2B

=
V

(2π)D

∑
ai

∫
dDq

(2π)D
Ga1a3k (q)Γ

(4)
aba3a6

(p,−p, q,−q)Ga6a2k (q)Ṙk
a2a1

(q) = (3.20)

The expression of Γ̇(2) in momentum space can trivially obtained by Fourier transform and it reads:

Γ̇
(2)
k (p, p′) = Γ̇

(2)
k (p, p′) =

∫
dDxdDyΓ̇

(2)
k (x, y) eipx eip

′y =
V

(2π)D
Γ̇

(2)
k (p)δ(p+ p′) (3.21)

So, putting all together, we obtain the expression of Γ̇(2):

Γ(2) = A− B

2
=

∫
dDq

(2π)D

[
− 1

2
Ga1a3k (q)Γ

(4)
aba3a6

(p,−p, q,−q)Ga6a2k (q)Ṙk
a2a1

(q)+ (3.22)

+Ga1a3k (q)Γ
(3)aa3a4
(p,q,−p−q)G

a4a5
k (p+ q)Γ

(3)ba5a6
(−p,−q,p+q)G

a6a2
k (q)Ṙa2a1k (q)

]
(3.23)

This equation, expressed as a sum of these two contributions, has an obvious graphical interpretation
in terms of the twoFeynman-like graph pictured in Fig.??.

3.2.2 Evolution of Zk(ρ)

Now, in order to perform the calculation of the exact evolution equation of Zk(ρ), let’s remember
the expression of the second functional derivative of the effective average action:

δ2Γk
δφa(p)δφb(−p) = δabU ′k(ρ) + φaφbU ′′k (ρ) + Zk(ρ)p2δab + ρYk(ρ)p2φ̂aφ̂b =

=
[
U ′k(ρ) + Zk(ρ)p2

]
(δab − φ̂aφ̂b) +

[
U ′k(ρ) + 2ρU ′′k (ρ) +

(
Zk(ρ) + ρYk(ρ)

)
p2
]
φ̂aφ̂b =

So, if we perform a derivative respect to p2 (the exact meaning of which will be defined in the following)
and take the longitudinal component of the previous expression, we obtain:

Zk(ρ) =
δab − φ̂aφ̂b
N − 1

∂

∂p2

δ2Γk
δφa(p)δφb(−p)

∣∣∣∣∣
p=0

(3.24)
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Deriving it with respect to t = ln
(
k
Λ

)
and using equation (3.2.2) we obtain the following expression for

Żk(ρ):

Żk(ρ) =
δab − φ̂aφ̂b
N − 1

∂

∂p2

(
A− B

2

)∣∣∣∣∣
p=0

: = ŻIk(ρ) + ŻIIk (ρ)

where I have defined ŻIk(ρ) as the first graph contribution to the evolution of Zk(ρ) and ŻIIk (ρ) as the
contribution due to the second graph.

I will start from the evaluation of ŻIIk (ρ):

ŻIIk (ρ) = −δab − φ̂aφ̂b
2(N − 1)

∂

∂p2

[∫
dDq

(2π)D
Ga1a3(q)Γ(4)aba3a6(p,−p, q,−q)Ga1a3(q)Ṙa2a1k (q)

]
p=0

=

= −δ
ab − φ̂aφ̂b

2(N − 1)

∫
dDq

(2π)D
Ṙk(q)

[
(δa3a6 − φ̂a3 φ̂a6)G2

⊥ + φ̂a3 φ̂a6G2
‖

]( ∂

∂p2
Γ(4)(p,−p, q,−q)

)
(3.25)

To go on with the evaluation it is now necessary to calculate the fourth functional derivative respect
to the fields of the effective average action (3.1). To simplify as much as possible the problem we will use
what is called the almost-constant fields approximation. That consists in considering a large constant
background field φ̄ and small space-dependent fluctuations around that:

φi(x) = φ̄i + δφi(x) (3.26)

Concretely, that is equivalent in evaluating the functional derivatives of the effective average action (or
the running proper vertices) putting all the field’s spacetime derivatives equal to zero at the end of the
calculation. That is done for every functional derivative of the effective average action up to order four
in appendix A. It is a very long and tedious calculation, so here I will just state the result for Γ(4):

Γ(4)(p,−p, q,−q) = (δabδa3a6 + δadδbc + δacδbd)U ′′k (ρ) + (2ρ)2φ̂aφ̂bφ̂a3 φ̂a6+

+2ρ(δabφ̂a3 φ̂a6 + δadφ̂bφ̂a3 + δacφ̂bφ̂a6 + δbcφ̂aφ̂a6 + δbdφ̂aφ̂a3 + δcdφ̂aφ̂b)U ′′′k (ρ)+

+Z ′k(ρ)
[
p2δabδcd + 2p · q(δadδbc − δacδbd) + q2δabδcd

]
+

+2ρZ ′′k (ρ)
[
p2δabφ̂a3 φ̂a6 + p · q(δadφ̂bφ̂a3 − δacφ̂bφ̂a6 + δbcφ̂aφ̂a6 − δbdφ̂aφ̂a3) + q2δcdφ̂aφ̂b

]
+

+
Yk(ρ)

2

[
p2(δacδbd + δacδbd) + q2(δbcδad + δacδbd) + 2p · q(δacδbd − δbcδad)

]
+

+2ρ2Y ′′k (ρ)(p2 + q2)φ̂aφ̂bφ̂a3 φ̂a6 + ρY ′k(ρ)
[
p2(δacφ̂bφ̂a6 + δbcφ̂aφ̂a6 + δadφ̂bφ̂a3 + δbdφ̂aφ̂a3 + δcdφ̂aφ̂b)+

p · q(δacφ̂bφ̂a6 + δbdφ̂aφ̂a3 − δba3 φ̂aφ̂a6 − δaa6 φ̂bφ̂a3)+

+q2(δadφ̂bφ̂a3 + δabφ̂a3 φ̂a6 + δacφ̂bφ̂a6 + δbcφ̂aφ̂a6 + δbdφ̂aφ̂a3)
]

The p · q terms do not contribute to ŻIIk (ρ) because of rotational invariance of the space of integration
and because the other functions in the integral depends just on q2:∫

dDq

(2π)D
(p · q)f(q2) = 0 (3.27)
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Therefore we can ignore the irrelevant p · q terms and perform the p2-derivative of Γ(4):

∂

∂p2
Γ(4)(p,−p, q,−q) = Z ′k(ρ)δabδa3a6 + 2ρZ ′′k (ρ)δabφ̂a3 φ̂a6+

+
Yk(ρ)

2
(δaa6δba3 + δaa3δba6) + 2ρ2Y ′′k (ρ)φ̂aφ̂bφ̂a3 φ̂a6+

+ρY ′k(ρ)(δaa3 φ̂bφ̂a6 + δba3 φ̂aφ̂a6 + δaa6 φ̂bφ̂a3 + δba6 φ̂aφ̂a3 + δa3a6 φ̂aφ̂b) (3.28)

Substituting this in equation (3.25) we obtain, after contracting the O(N) indices:

ŻIIk (ρ) = −1

2

∫
dDq

(2π)D
Ṙ(q)

[
((N − 1)Z ′k(ρ) + Yk(ρ))G2

⊥(q) + (Z ′k(ρ) + 2ρZ ′′k (ρ))G2
‖(q)

]
(3.29)

The evaluation of the other graph is quite similar. For the sake of brevity I will not rewrite the entire
calculation, but I will only give a sketch of the procedure. The starting point is obviously the expression
of ŻIk(ρ):

ŻIk(ρ) =
δab − φ̂aφ̂b
N − 1

∂

∂p2

[∫
dDq

(2π)D
Ga1a3k (q)Γ

(3)aa3a4
(p,q,−p−q)G

a4a5
k (p+ q)Γ

(3)ba5a6
(−p,−q,p+q)G

a6a2
k (q)Ṙa2a1k (q)

]
p=0

=

(3.30)
Making explicit all the terms in the integrand (the explicit expression of Γ(3) in the constant fields ap-
proximation and in momentum space can be found in the Appendix A) and performing the p2 derivative
the final result can be derived after a long but not difficult calculation. In performing the derivative
respect to p2 the following identities have been used:

1. ∫
dDq

(2π)D
(p · q)f(q2) = 0

2. ∫
dDq

(2π)D
(p · q)2f(q2) =

1

D

∫
dDq

(2π)D
p2q2f(q2)

and the following series expansion of the propagator:

Gij([p+ q]2) = Gij(p2 + 2p · q + q2) = Gij(q2) + (p2 + 2p · q)G′ij(q2)) + 2(p · q)2G′′ij(q2) +O(p3)

Here Gij is considered as a function of q2 and the primes denote derivatives with respect q2. The finale
result for ŻIIk (ρ) is:

ŻIIk (ρ) =
ρ

D

∫
dDq

(2π)D
Ṙk(q)

{
2G2
⊥(q)G‖(q)(D + 2)q2Y 2

k (ρ)− 8Z ′k(ρ)Yk(ρ)G2
⊥(q)G‖(q)q

2+ (3.31)

+4q2(Zk(ρ))2G2
⊥(q)G‖(q)+4DYk(ρ)U ′′k (ρ)G2

⊥(q)G‖(q)+Y
2
k (ρ)G2

⊥(q)G′‖(q)(D+8)q4−8Yk(ρ)Z ′k(ρ)G2
⊥(q)G′‖(q)q

4+

+2U ′′k (ρ)Yk(ρ)G2
⊥(q)G′‖(q)(D + 8)q2 − 16U ′′k (ρ)G2

⊥(q)G′‖(q)Z
′
k(ρ)q2 + 2q6Y 2

k (ρ)G2
⊥(q)G‖(q)+

+2Dq2G2
⊥(q)G′‖(q)Yk(ρ)U ′′k (ρ) + 4q4G2

⊥(q)G′′‖(q)U
′′
k (ρ)Yk(ρ) + 4DG2

⊥(q)G′‖(q)(U
′′
k (ρ))2+

+4DG′⊥(q)G2
‖(q)(U

′′
k ρ))2 + 8q2G′′⊥(q)G2

‖(q)(U
′′
k (ρ)2) + 4q2G⊥(q)G2

‖(q)(Z
′
k(ρ)2 + 8G2

‖(q)Z
′
k(ρ)(DG⊥(q)+

+Y 2
k (ρ)G2

‖(q)(DG
′
⊥(q) + 2q2G′⊥(q))U ′′k (ρ)) + 8q2(U ′′k (ρ))2G2

⊥(q)G′′‖(q) + 4q2Yk(ρ)G2
⊥(q)G′′‖(q)U

′′
k (ρ)+

+2q2G′′⊥(q))q4 + 4G2
‖(q)Yk(ρ)Z ′k(ρ)(DG⊥(q) + 2q2G′⊥(q)) + 4G2

‖(q)U
′′
k (ρ)Yk(ρ)(DG′⊥(q) + 2q2G′′⊥(q))q2
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3.2.3 Evolution of Yk(ρ)

Instead of deriving the evolution equation of Yk(ρ) we will calculate the evolution of an equivalent
quantity, defined in the following way:

Z̃k(ρ) = Zk(ρ) + ρYk(ρ) (3.32)

according to what is usually done in the literature. The evolution equation for Yk(ρ) can obviously be

deduced from the one for Z̃k(ρ) knowing the expression of Zk(ρ), derived in the previous section. From
equation (3.2.2) we obtain:

Z̃k(ρ) = φ̂aφ̂b
∂

∂p2

δ2Γk
δφa(q)δφb(−q)

∣∣∣∣
p=0

(3.33)

The procedure is exactly the same just seen for Żk(ρ), so I will only state the results:

˙̃
Zk(ρ) =

˙̃
Z
I

k(ρ) +
˙̃
Z
II

k (ρ) (3.34)

Where I have separated the two graph contributions:

˙̃
Z
I

k(ρ) =
1

D

∫
dDq

(2π)D
Ṙk(q)2ρ

{
(N − 1)G2

⊥(q)
[
G⊥
(
q2Z ′k(ρ)(DYk + Z ′k(ρ)) +DYk(ρ)U ′′k (ρ)

)
+

+(q2Z ′k(ρ) + U ′′k (ρ))
(
2q2G′′⊥(q)(q2Z ′k(ρ) + U ′′k (ρ)) +G′⊥(q2)((4 +D)q2Z ′k(ρ) +DU ′′k (ρ))

]
+

+G2
‖(q)

[
G‖(q)(Yk(ρ)+ρY ′k(ρ)+Z ′k(ρ))

(
q2
(
Z ′k(ρ)+(2D+1)(Y ′k(ρ)+ρY ′k(ρ)+2DZ ′k(ρ))

)
+2D(3U ′′k (ρ)+2ρU ′′′k (ρ))

)
+

+
(
q2(Yk(ρ)+ρY ′k(ρ)+2Z ′k(ρ)+3U ′′k (ρ)+2ρU ′′′k (ρ)

)[
G′‖(q)

(
(D+4)q2(ρY ′k(ρ)+Z ′k(ρ))+D(3U ′′k (ρ)+2ρU ′′′k (ρ))

)
+

+2q2
(Yk(ρ)

2
((4 +D)G′‖(q) + 2q2G′′‖(q)) +G′′‖(q

2(ρY ′k(ρ) + Z ′k(ρ)) + 3U ′′k (ρ) + 2ρU ′′′k (ρ))
)]}

and:

˙̃
Z
II

k (ρ) = −1

2

∫
dDq

(2π)D
Ṙk(q)

[(
Z ′k(ρ)+ρY ′k(ρ)

)
(N−1)G2

⊥(q)+
(
Z ′k(ρ)+2ρZ ′′k (ρ)+Yk(ρ)+5ρY ′kρ+2ρ2Y ′′k (ρ)

)
G2
‖(q)

]

3.3 Dimensionless quantities

A fixed point can be defined only in terms of dimensioless quantities, so I have defined the new di-
mensionless variables, following what is usually done in the literature. All the definitions are summarized
in table 3.1.

Now we can rewrite the flow equation in terms of the new variables. In the left hand side of all of the
flow equations we have a derivative of the observable under examination with respect to t, calculated
at fixed ρ. In order to obtain an equivalent expression for that flow equation we need to express that in
terms of a derivative calculated for a fixed value of ρ̃. We have:

∂

∂t

∣∣∣∣
ρ̃

=
∂

∂t

∣∣∣∣
ρ

+
∂ρ

∂t

∣∣∣∣
ρ̃

∂

∂ρ

∣∣∣∣
t

=

∂

∂t

∣∣∣∣
ρ

+
∂ ln ρ̃

∂ ln ρ

∣∣∣∣
t

∂ ln(ρ)

∂t

∣∣∣∣
ρ̃

ρ̃
∂

∂ρ̃

∣∣∣∣∣
t

=
∂

∂t

∣∣∣∣
ρ

+ (D − 2 + η)ρ̃
∂

∂ρ̃

∣∣∣∣∣
t
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Symbol Definition Description
Zk Zk(ρ0) wavefunction renormalization at the minimum of the potential
ρ0 U ′k(ρ0) = 0 field strength at potential minimum
ρ̃ Zkk

2−Dρ dimensionless field strength

r(y) Z−1
k q−2Rk(q) dimensionless regulator

vD [(2D+1πD/2Γ(D/2)]−1 vD factor
y q2/k2 dimensionless momentum

ηk −Żk/Zk anomalous dimension
uk(ρ̃) k−DUk(ρ̃) renormalized potential
zk(ρ) Zk(ρ)/Zk renormalized Zk(ρ)

Yk(ρ̃) Z−2
k kD−2Yk(ρ) renormalized Yk(ρ)

Table 3.1: Table of the dimensionless variable used in this thesis, with their definitions and
their physical descriptions.

It will be useful, in the following, also the expression:

Ṙk(q2)

Zkq2
=

1

Zk

∂

∂t

Rk(q2)

q2
=

∂

∂t
rk(q2) +

∂

∂t
(lnZk)r(y) = (∂t − η)r(y) = −(2y∂y + η)r(y) (3.35)

The last thing to do is to find a renormalized expression for the two projection of the propagator, G⊥(q2)
and G‖(q

2). In order to do this, we will calculated the renormalized expressions for each observable in
the definition of those projection.

1.

U ′k(ρ) =
∂ρ̃

∂ρ
∂ρ̃[k

Duk(ρ̃)] = Zkk
2u′k(ρ̃)

2.

Zk(ρ)q2 = Zkk
2zk(ρ̃)y

3.

Rk(q2) = Zkq
2rk(q2) = Zkk

2rk(y)y

4.

2ρU ′′k (ρ) = 2
ρ̃

Zkk2−D

(
∂ρ̃

∂ρ

)2

kDu′′k(ρ̃) = 2Zkk
2ρ̃u′′k(ρ̃)

5.

ρYk(ρ)q2 =
ρ̃

Zkk2−D q
2Z2

kk
2−DYk(ρ̃) = Zkk

2ρ̃yYk(ρ̃)

So, we have obtained the following expression for the renormalized projections of the exact propagator:

G⊥(q2) =
g⊥(y)

Zkk2
(3.36)

G‖(q
2) =

g‖(y)

Zkk2
(3.37)
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where the dimensionless quantities g⊥ and g‖ are defined in the following way:

g⊥(y) =
1

u′k(ρ̃) + [zk(ρ̃) + rk(y)]y

g‖(y) =
1

u′k(ρ̃) + 2ρ̃u′′k(ρ̃) + [zk(ρ̃) + ρ̃Yk(ρ̃) + rk(y)]y

3.3.1 The flow equation for the dimensionless potential

In order to obtain the flow equation for the dimensionless potential uk(ρ̃), first of all we have to
rewrite eq.(3.10) in terms of ρ̃. The result is:

∂

∂t
Uk(ρ̃)

∣∣∣∣
ρ̃

= (D − 2 + η)ρ̃
∂Uk(ρ̃)

∂ρ̃
+ vdk

−2

∫ ∞
0

(q2)
D
2
Ṙk(q2)

q2

[
(N − 1)G⊥(q2) +G‖(q

2)
]
d(q2) (3.38)

where I have already changed the integration variable to q2. Now, remembering the definitions of g⊥
and g‖, I multiply and divide for Zk in the integral:

∂

∂t
Uk(ρ̃)

∣∣∣∣
ρ̃

= (D − 2 + η)ρ̃
∂Uk(ρ̃)

∂ρ̃
+ vd

∫ ∞
0

(q2)
D
2
Ṙk(q2)

Zk(q2)

[
(N − 1)g⊥(q2) + g‖(q

2)
]
d(q2) (3.39)

Now we can substitute the dimensionless potential uk(ρ̃) = k−DUk(ρ̃). The left hand side becomes:

∂

∂t
Uk(ρ̃)

∣∣∣∣
ρ̃

=
∂

∂t
[kDuk(ρ̃)]

∣∣∣∣
ρ̃

= kDu̇(ρ̃) +DkDuk(ρ̃) (3.40)

So:

u̇(ρ̃) = −Duk(ρ̃) + (D − 2 + η)ρ̃
∂uk(ρ̃)

∂ρ̃
+ vd

∫ ∞
0

(q2)
D
2

kD
Ṙk(q2)

Zkq2

[
(N − 1)g⊥ + g‖

]
d(q2) (3.41)

By substituting the definition of y we obtain:

u̇(ρ̃) = −Duk(ρ̃) + (D − 2 + η)ρ̃
∂uk(ρ̃)

∂ρ̃
+ vd

∫ ∞
0

y
D
2 (∂t − η)rk(y)

[
(N − 1)g⊥ + g‖

]
dy (3.42)

Where I have used the fact that the dimensionless regulator function is function of y.
In terms of the threshold function, which I have defined in Appendix C, the flow equation just

derived is written in the following way:

u̇(ρ̃) = −Duk(ρ̃) + (D − 2 + η)ρ̃u′k(ρ̃) + vd
(
(N − 1)LD1,0 + LD0,1

)
(3.43)

3.3.2 The flow equation for zk(ρ̃)

We can now find the flow equation for the regularized wavefunction renormalization in terms of
adimensional quantities. Obviously, the derivative of Zk(ρ̃) becomes:

Żk(ρ̃) = Żk(ρ) + (D − 2 + η)ρ̃
∂

∂ρ̃
Zk(ρ̃)
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and, substituting the definition of zk(ρ̃) and remembering the definitions of the two graphs contributes:

żk(ρ̃) = (D − 2 + η)ρ̃
∂

∂ρ̃
zk(ρ̃) + ηzk(ρ̃) +

ŻIk(ρ̃)

Zk
+
ŻIIk (ρ̃)

Zk
(3.44)

Now we have to deduce the renormalized expressions for the two graph. Let’s start from ŻIIk (ρ̃)/Zk:

żIIk (ρ̃) =
ŻIIk (ρ̃)

Zk
= − 1

2Zk

∫
dDq

(2π)D
Ṙ(q)

[
((N − 1)Z ′k(ρ) + Yk(ρ))G2

⊥(q) + (Z ′k(ρ) + 2ρZ ′′k (ρ))G2
‖(q)

]
=

= −vD
∫ ∞

0

dxx
D
2
Ṙ(x)

Zkx

[(
(N − 1)

Z2
k

kD−2
z′k(ρ̃) +

Z2
k

kD−2
Yk(ρ̃)

)
g2
⊥(x)

Z2
kk

4
+

(
Z2
kz
′
k(ρ̃)

kD−2
+

2ρ̃z′′k (ρ̃)Z2
k

kD−2

)
g2
‖(x)

Z2
kk

4

]
=

= vD

∫ ∞
0

dyy
D
2 (2y∂y + η)rk(y)

[
((N − 1)z′k(ρ̃) + Yk(ρ̃)) g2

⊥(y) + (z′k(ρ̃) + 2ρ̃z′′k (ρ̃)) g2
‖(y)

]
(3.45)

In a quite similar way, we find the renormalized expression of the other graph:

żIk(ρ̃) =
ŻIk(ρ̃)

Zk
= (3.46)

−2ρ̃vD
D

∫ ∞
0

dy(2y∂y + ηk)rk(y)
{

2g2
⊥(y)g‖(y)(D + 2)yY2

k(ρ̃)− 8z′k(ρ̃)Yk(ρ̃)g2
⊥(y)g‖(y)y+

+4y(zk(ρ̃))2g2
⊥(y)g‖(y)+4DYk(ρ̃)u′′k(ρ̃)g2

⊥(y)g‖(y)+Y2
k(ρ̃)g2

⊥(y)g′‖(y)(D+8)y4−8Yk(ρ̃)z′k(ρ̃)g2
⊥(y)g′‖(y)y2+

+2u′′k(ρ̃)Yk(ρ̃)g2
⊥(y)g′‖(y)(D + 8)y − 16u′′k(ρ̃)g2

⊥(y)g′‖(y)z′k(ρ̃)y + 2y3Y2
k(ρ̃)g2

⊥(y)g‖(y)+

+2Dyg2
⊥(y)g′‖(y)Yk(ρ̃)u′′k(ρ̃) + 4y2g2

⊥(y)g′′‖ (y)u′′k(ρ̃)Yk(ρ̃) + 4Dg2
⊥(y)g′‖(y)(u′′k(ρ̃))2+

+4Dg′⊥(y)g2
‖(y)(u′′k ρ̃))2 + 8yg′′⊥(y)g2

‖(y)(u′′k(ρ̃)2) + 4yg⊥(y)g2
‖(y)(z′k(ρ̃)2 + 8g2

‖(y)z′k(ρ̃)(Dg⊥(y)+

+Y2
k(ρ̃)g2

‖(y)(Dg′⊥(y) + 2yg′⊥(y))u′′k(ρ̃)) + 8y(u′′k(ρ̃))2g2
⊥(y)g′′‖ (y) + 4yYk(ρ̃)g2

⊥(y)g′′‖ (y)u′′k(ρ̃)+

+2yg′′⊥(y))y2 + 4g2
‖(y)Yk(ρ̃)z′k(ρ̃)(Dg⊥(y) + 2yg′⊥(y)) + 4g2

‖(y)u′′k(ρ̃)Yk(ρ̃)(Dg′⊥(y) + 2yg′′⊥(y))y
}

In terms of the threshold functions the equation for żIk(ρ̃) and żIIk (ρ̃) are:

żIk(ρ̃) = 4vDρ̃u
′′
k(ρ̃)QD,02,1 + 4vDYku′′k(ρ̃)QD,12,1 + vDρ̃Y2

k(ρ̃)QD,22,1 − 8vDρ̃z
′
k(ρ̃)u′′k(ρ̃)LD1,1−

−4vD
D

(
z′k(ρ̃)

)2
ρ̃LD+2

1,1 − 4vDρ̃z
′
k(ρ̃)Yk(ρ̃)LD+2

1,1 +
16vD
D

ρ̃z′k(ρ̃)u′′k(ρ̃)ND
2,1 +

8vD
D

ρ̃z′k(ρ̃)Yk(ρ̃)ND+2
2,1

żIIk (ρ̃) = −vD
[
((N − 1)z′k(ρ̃) + Yk(ρ̃

]
LD1,0 − vD

[
z′k(ρ̃) + 2ρ̃z′′k (ρ̃

]
LD0,1
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3.3.3 The flow equation for z̃k(ρ̃)

The procedure is very similar to what we’ve just seen for żk(ρ̃) so here I will omit, for the sake of
brevity, the details of the calculation, exposing only the final results. For the first graph we have:

˙̃z
I

k(ρ̃) ≡
˙̃
Z
I

k(ρ)

Zk
= −4ρ̃vD

D

∫ ∞
0

y(2y∂y+ηk)rk(y)
{

(N−1)g2
⊥(y)

[
g⊥
(
yz′k(ρ̃)(DYk+z′k(ρ̃))+DYk(ρ̃)u′′k(ρ̃)

)
+

+(yz′k(ρ̃) + u′′k(ρ̃))
(
2yg′′⊥(y)(yz′k(ρ̃) + u′′k(ρ̃)) + g′⊥(y)((4 +D)yz′k(ρ̃) +Du′′k(ρ̃))

]
+

+g2
‖(y)

[
g‖(y)(Yk(ρ̃)+ρ̃Y ′k(ρ̃)+z′k(ρ̃))

(
y
(
z′k(ρ̃)+(2D+1)(Y ′k(ρ̃)+ρ̃Y ′k(ρ̃)+2Dz′k(ρ̃))

)
+2D(3u′′k(ρ̃)+2ρ̃u′′′k (ρ̃))

)
+

+
(
y(Yk(ρ̃)+ρ̃Y ′k(ρ̃)+2z′k(ρ̃)+3u′′k(ρ̃)+2ρ̃u′′′k (ρ̃)

)[
g′‖(y)

(
(D+4)y(ρ̃Y ′k(ρ̃)+z′k(ρ̃))+D(3u′′k(ρ̃)+2ρ̃u′′′k (ρ̃))

)
+

+2y
(Yk(ρ̃)

2
((4 +D)g′‖(y) + 2yg′′‖ (y)) + g′′‖ (y(ρ̃Y ′k(ρ̃) + z′k(ρ̃)) + 3u′′k(ρ̃) + 2ρ̃u′′′k (ρ̃))

)]}
while, for the other one:

˙̃z
II

k (ρ̃) ≡
˙̃
Z
II

k (ρ)

Zk
= (3.47)

=

∫ ∞
0

dy(2y∂y+ηk)rk(y)
[(
z′k(ρ̃)+ρ̃Y ′k(ρ̃)

)
(N−1)g2

⊥(y)+
(
z′k(ρ̃)+2ρ̃z′′k (ρ̃)+Yk(ρ̃)+5ρ̃Y ′k+2ρ̃2Y ′′k (ρ̃)

)
g2
‖(y)

]
In terms of the threshold functions:

˙̃z
I

k(ρ̃) = vD

[
(N − 1)(u′′k(ρ̃))2ρ̃QD,03,0 + 4(N − 1)ρ̃z′k(ρ̃)u′′k(ρ̃)QD,13,0 + (3.48)

+2(N − 1)ρ̃(z′k(ρ̃))2QD,23,0 + 2ρ̃(3u′′k(ρ̃)) + 2u′′′k (ρ̃)ρ̃)2Q̃D,03,0 +

+4vD(z′k(ρ̃) + Yk(ρ̃) + ρ̃Y ′k(ρ̃))(3u′′k(ρ̃) + 2u′′′k (ρ̃))Q̃D,13,0 +

+2vD(z′k(ρ̃) + Yk(ρ̃) + ρ̃Y ′k(ρ̃))2Q̃D,23,0 +
8(N − 1)

D
ρ̃z′k(ρ̃)u′′k(ρ̃)ND

3,0+

+
8(N − 1)

D
ρ̃z2
k(ρ̃)ND+2

3,0 +
8

D
(z′k(ρ̃) + Yk(ρ̃) + ρ̃Yk(ρ̃))(3u′′k(ρ̃) + 2ρ̃u′′′k (ρ̃))ρ̃ÑD

3,0+

−8ρ̃

D
(z′k(ρ̃) + Yk(ρ̃) + ρ̃Y ′k(ρ̃))2ÑD+2

3,0 − 2(N − 1)Yk(ρ̃)u′′k(ρ̃)ρ̃LD2,0−

−vD(N − 1)

(
z′k(ρ̃)Yk(ρ̃) +

1

D

(
z′k(ρ̃)

)2)
ρ̃LD+2

2,0 − 4ρ̃(z′k(ρ̃) + Yk(ρ̃) + ρ̃Y ′k(ρ̃))(3u′′k(ρ̃) + 2ρ̃u′′′k (ρ̃))LD0,2−

−2vD

(
2 +

1

D

)
ρ̃(z′k(ρ̃) + Yk(ρ̃) + ρ̃Y ′k(ρ̃))2LD+2

0,2

˙̃z
II

k (ρ̃) = vD

[(
z′k(ρ̃) + ρ̃Y ′k(ρ̃)

)
(N − 1)LD1,0 +

(
z′k(ρ̃) + 2ρ̃z′′k (ρ̃) + Yk(ρ̃) + 5ρ̃Y ′k + 2ρ̃2Y ′′k (ρ̃)

)
LD0,1

]
(3.49)



3.4. LARGE N LIMIT 53

3.4 Large N limit

We are interested now in studying the large N limit, when only transverse (or Goldstone) modes are
involved in the dynamic of the system. In this limit, as can be easily checked (see, for example, [23]),

the flow equation for Yk(ρ) is decoupled from the other two (or, equivalently, limN→∞
˙̃
Zk(ρ) = Żk(ρ))

and the problem simplify considerably.
Now I will derive the large N limits of the two flow equations for the dimensionless effective potential

uk(ρ) and the renormalized wavefunction renormalization zk(ρ). Then, these two will be object of a
numerical evaluation, which will be started in the following chapter of this thesis.

3.4.1 The effective potential evolution in the N →∞ limit

In the large N limit, we can keep only the terms of order N in the flow equations. In the case of u̇k
that means:

u̇(ρ̃) = −Duk(ρ̃) + (D − 2 + η)ρ̃
∂uk(ρ̃)

∂ρ̃
− vD

∫ ∞
0

y
D
2 (2y∂y + ηk)rk(y)(N − 1)g⊥(y)dy (3.50)

In order to perform the limit we need to rescale uk(ρ̃) and ρ:

u→ u

N
ρ̃→ ρ̃

N

And so we obtain the following expression:

u̇k(ρ̃) = −Duk(ρ̃) + (D − 2 + η)ρ̃
∂uk(ρ̃)

∂ρ̃
− vD

∫ ∞
0

y
D
2 (2y∂y + ηk)rk(y)

y[zk(ρ̃) + rk(y)] + u′k(ρ̃)
dy (3.51)

3.4.2 The flow equation for wk(ρ̃) : =u′k(ρ̃) in the large N limit

The study of the system in the large N limit can be afford more easily considering, instead of
the effective potential uk(ρ̃), its derivative u′k(ρ̃). Defining wk(ρ̃) := u′k(ρ̃) and deriving eq.(3.51) with
respect to ρ̃ one obtains:

ẇk(ρ̃) = (ηk − 2)wk(ρ̃) + (D− 2 + ηk)ρ̃
∂wk(ρ̃)

∂ρ̃
+ vD

∫ ∞
0

dy
y
D
2 (2y∂y + η)rk(y)(z′k(ρ̃)y + w′k(ρ̃))(

[zk(ρ̃) + rk(y)]y + wk(ρ̃)
)2 (3.52)

For the sake of completeness, I will state the latter expression also in terms of the threshold function:

ẇk(ρ̃) = (ηk − 2)wk(ρ̃) + (D − 2 + ηk)ρ̃w′k(ρ̃) + vDw
′
k(ρ̃)LD1,0 + z′kL

D+1
1,0 (3.53)

3.4.3 zk(ρ̃) flow equation in the N →∞ limit

In theN →∞ limit, the only non-vanishing term in the exact evolution equation for the renormalized
wavefunction renormalization zk(ρ̃) is:

żk(ρ̃) = ηzk(ρ̃) + (D − 2 + η)ρ̃
∂

∂ρ̃
zk(ρ̃) + vD

∫ ∞
0

dyy
D
2 (2y∂y + ηk)rk(x) ((N − 1)z′k(ρ̃)) g2

⊥(y) (3.54)

I will go on in analogy to what I’ve done for the effective potential equation, to perform the N → ∞
limit, I need to rescale u and ρ̃:

u→ u

N
ρ̃→ ρ̃

N
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The result is:

żk(ρ̃) = ηzk(ρ̃) + (D − 2 + η)ρ̃
∂

∂ρ̃
zk(ρ̃) + vD

∫ ∞
0

dy
y
D
2 (2y∂y + ηk)rk(y)z′k(ρ̃)(

[zk(ρ̃) + rk(y)]y + wk(ρ̃)
)2 (3.55)



Chapter 4

Some analysis of the fixed point
equations

The quest for fixed points is essential in any RG-based theory: in quantum field theory, the fixed points
structure determine also the nature of the continuum limit and as in statistical physics their nature let
control the large distance behavior at criticality.

In the large N limit of the O(N) model, the fixed points are defined as the solutions of the system:{
ẇk(ρ̃) = 0
żk(ρ̃) = 0

(4.1)

In this chapter I will start to study the fixed point structure of the O(N) model in the large N limit,
in D = 3 and D = 5, analyzing the behavior of the derivative of the dimensionless effective potential
wk(ρ) and of the wavefunction renormalization zk(ρ) in those points, using the flow equations (3.52) and
(3.55) derived in the previous chapter of this thesis. I will distinguish between three different situations:

1. ηk = 0 and z′k(ρ̃) = 0, already completely studied (see, for example, [47]).

2. ηk 6= 0 and z′k(ρ̃) 6= 0

3. ηk = 0 and z′k(ρ̃) 6= 0

As I will show, for the first of those cases, analytical exact solutions are available.
In the following I will choose as regulator the Litim optimized regulator, discussed in the second

chapter of this thesis:

Rk(q2) = Zk(k2 − q2)θ(k2 − q2) (4.2)

So, the renormalized one is:

rk(y) =

(
1

y
− 1

)
θ(1− y) (4.3)

With that choice, the system (4.1) becomes:
(ηk − 2)wk(ρ̃) + (D − 2 + ηk)ρ̃∂wk(ρ̃)

∂ρ̃ − vD
∫ 1

0
dy

y
D
2
−1(2−ηk+ηky)(z′k(ρ̃)y+w′k(ρ̃))(

[zk(ρ̃)−1]y+wk(ρ̃)+1
)2 = 0

ηzk(ρ̃) + (D − 2 + η)ρ̃∂zk(ρ̃)
∂ρ̃ − vD

∫ 1

0
dy

y
D
2
−1(2−ηk+ηky)z′k(ρ̃)(

[zk(ρ̃)−1]y+wk(ρ̃)+1
)2 = 0

(4.4)

55
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For the sake of completeness, I also report the large N limit of the flow equation of the dimensionless
effective potential, with our choice of the regulator:

u̇k(ρ̃) = −Duk(ρ̃) + (D − 2 + η)ρ̃
∂uk(ρ̃)

∂ρ̃
− vD

∫ ∞
0

y
D
2 −1(2− ηk + ηky)

y[zk(ρ̃) + rk(y)] + u′k(ρ̃)
dy (4.5)

4.1 First case: ηk = 0 and z′k(ρ) = 0

If zk(ρ̃) is a constant function both of the field strength and of k (the latter is equivalent to the
requirement of a vanishing anomalous dimension), the flow equation for the renormalized potential (3.51)
can be solved in an analytically closed form[24][25][26].

Because of the conditions żk(ρ̃) = 0 and z′k(ρ̃) = 0, we have zk(ρ̃) = 1, so the system (4.1) reduces
to the single equation:

−2wk(ρ̃) + (D − 2)ρ̃
∂wk(ρ̃)

∂ρ̃
− 2vD

∫ 1

0

dy
y
D
2 −1w′k(ρ̃)(

[zk(ρ̃)− 1]y + wk(ρ̃) + 1
)2 =

= −2wk(ρ̃) + (D − 2)ρ̃w′k(ρ̃)− 4vD
D

w′k(ρ̃)(
wk(ρ̃) + 1

)2 = 0 (4.6)

4.1.1 Asymptotic behavior

In this section I want to study the asymptotic behavior of our system or, in other words, its behavior
for ρ→∞.

It is easy to see that in this limit the nonlinear differential equation constraints usually the effective
potential uk(ρ̃) and its derivative wk(ρ̃) to go to infinity so that the last term in the eq.(4.6) is suppressed
with respect to the other ones. This happens, for example, for the Wilson-Fisher scaling solution for
D = 3. In general one can write a full asymptotical expansion for the solution.

In order to estract the leading behavior, we can rewrite the large fields limit of eq.(4.6) obtaining:

−2wk(ρ̃) + (D − 2)ρ̃w′k(ρ̃) = 0 (4.7)

This equation can be easily integrated giving the following result for the asymptotic behavior of wk(ρ̃):

wk(ρ̃) ≈ Aρ̃
2

D−2 (4.8)

At last, the asymptotic behavior of the effective potential is recovered integrating this equation with
respect to ρ̃:

uk(ρ̃) ≈ A′ρ̃
D
D−2 (4.9)

One can sistematically compute the subleading term of the asymptotic expansion in powers of ρ̃. For
example, in D = 3 the first terms have been calculated and they read:

1

15Aρ2
− 1

63A2ρ4
+

1

243A3ρ6
− 1

891A4ρ8
+

1

3159A5ρ10
+

4

91125A5ρ12
− 1

10935A6ρ12
+ . . . (4.10)
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Figure 4.1: A plot of the scaling dimensionless derivative of the potential for N →∞ in D = 3
(left) and D = 5 (right) for C = 0 and the optimised Litim regulator.

4.1.2 Fixed points

A first trivial solution of the fixed point equation (4.6) is the so called Gaussian fixed point, that is
the configuration of a constant potential:

uk(ρ̃) = const =⇒ u′k(ρ̃) = wk(ρ̃) = 0 (4.11)

The other, non trivial, solution is found integrating analytically equation (4.6) (see, for example,
ref. [33][47]).

Here I will just state the final result. The solution is expressed in an implicit form, as ρ̃(w) and it
reads:

ρ̃(w) = C ′w
D
2 −1 +

1

(d+ 2)(1 + w)2 2F1

(
1, 2, 2 +

D

2
,

1

1 + w

)
(4.12)

where C ′ is an integration constant. The special function appearing in the fixed point equation (4.12)
is the Gauss’s Hypergeometric function, defined by the series expansion [34][35]:

2F1 (a, b, c, z) =
Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
(4.13)

on the disc |z| < 1 and by analytic continuation elsewhere. In addition to that, the serie representation
(4.13) becomes meaningless for negative (or zero) values of the parameter c. For values of D different
from even integers, the fixed points equation (4.12) can be written in the most convenient way:

ρ̃(w) = Cw
D
2 −1 +

1

(d+ 2)
2F1

(
2, 1− D

2
, 2− D

2
,−w

)
(4.14)

where C ′ = C− Dπ
4 sin(Dπ/2) . The only real solution of equation (4.14) that can be extended continuously

through w = 0 is the one with C = 0, which represents what in the literature is called the Wilson-Fisher
fixed point. The plots of w(ρ̃) at the nontrivial fixed point for D = 3 and D = 5 are reported in Fig.4.1.

Note that in D = 5 the potential is not defined everywhere and there is no physical solution.
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4.2 Second case: ηk 6= 0 and z′k(ρ) 6= 0

The second case I am going to study is also the most general one, the case of a non constant
wavefunction renormalization and of a non vanishing anomalous dimension. First of all, in order to
simplify the notations, I will state some definitions and I will expose the results of some integrals that
will be useful in the following.

4.2.1 Integrals

In order to study the flow equations in the most general case, we need to know the explicit expressions
of the integrals:

Int(α) =

∫ 1

0

dy
y
α
2(

[zk(ρ̃)− 1]y + wk(ρ̃) + 1
)2 (4.15)

Because we are interested in the behavior of the model in D = 3 and in D = 5, recalling the expressions
of the flow equations (4.20), we need to calculate the following integrals:

Int(1) = −
tanh−1

(√
1−z
w+1

)
(w + 1)1/2(1− z)3/2

+
1

(1− z)(w + z)
(4.16)

Int(3) =
3w + 2z + 1

(z − 1)2(w + z)
−

3
√
w + 1 tanh−1

(√
1−z
w+1

)
(1− z)5/2

(4.17)

Int(5) =
15w2 + 10w(z + 2)− 2(z − 7)z + 3

3(1− z)3(w + z)
−

5(w + 1)3/2 tanh−1
(√

1−z
w+1

)
(1− z)7/2

(4.18)

Int(7) =
105w3 + 35w2(2z + 7)− 7w

(
2z2 − 24z − 23

)
+ 6z3 − 32z2 + 116z + 15

15(z − 1)4(w + z)
− (4.19)

−
7(w + 1)5/2 tanh−1

(√
1−z
w+1

)
(1− z)9/2

Where all the previous solution have validity range w + z ≥ 0.

Here and in the following, in order to lighten the notations, I have indicated ρ̃, wk(ρ̃), zk(ρ̃) and ηk
simply with ρ, w, z and η respectively.

4.2.2 The exact equations

Now we have all the elements we need in order to write in an useful form the equations:{
(η − 2)w + (D − 2 + η)ρw′ − vD

[
(2− η)w′ Int(D − 2) +

(
(2− η)z′ + ηw′

)
Int(D) + ηz′ Int(D + 2)

]
= 0

ηz + (1 + η)ρz′ − vDz′ [(2− η) Int(D − 2) + η Int(D)] = 0
(4.20)
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4.2.3 Asymptotic behavior

Leading order

In the large field limit, ρ→∞, the second equation of the system (4.20) reduces to:

ηkz(ρ) + (D − 2 + η)ρz′(ρ) = 0 (4.21)

And, by integration, we come to the asymptotic behavior of zk:

z(ρ) ≈ Bρ
−η

D−2+η (4.22)

Where B is an integration constant. Now, knowing the behavior of z (and, consequently, of z′), we can
easily see that the integral in the first equation of the system (4.20) becomes negligible with respect to
the others, so the equation assumes the simplified form:

(η − 2)w(ρ) + (D − 2 + η)ρw′(ρ) = 0 (4.23)

at the end we come, after a trivial integration, to the following result:

w(ρ) ≈ Aρ
2−η

D−2+η (4.24)

where A is the integration constant. Integrating this with respect to ρ, we obtain the asymptotic
behavior of the effective potential:

u(ρ) ≈ AD − 2 + η

D
ρ

D
D−2+η (4.25)

In the limit of a vanishing anomalous dimension we note that the results found in the previous section
for uk and wk are recovered.

Next to leading order

In order to go beyond the leading order (classical) approximations (4.22) and (4.24), I had evaluated
the first non zero terms in the integrals we see in the system (4.20).

We know, assuming that 0 < η < 1, D > 3 and taking into account the classical solutions just
derived in the previous paragraph, that the integrands of the functions Int(α) defined in (4.15) can be
approximated, at the leading order, in a neighborhood of the infinity, as:

1

([z − 1] + 1 + w)2
≈ 1

w2

∣∣∣∣
w=Aρ

2−η
D−2+η

+O
(
ρ
D−2+η
2(2−η)

)
(4.26)

Now, considering that z′ is suppressed with respect to w′, the leading corection in the first equation of
the system (4.20) is:

vD

∫ 1

0

w′

w2
y
D
2 −1(2− η + ηy)dy (4.27)

so, substituting the leading order expression for w (4.24) and its derivative w′, we come to the result:

ρ(D − 2 + η)w′(ρ) + (η − 2)w(ρ) = −
vD

(
4(η − 2)(D − η + 2)ρ−

D
D+η−2

)
AD(D + 2)(D − 2 + η)

(4.28)
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and, finally, we come to the next-to-leading order term in w:

w(ρ) ≈ Aρ
D

D−2+η−1 +
(η − 2)ρ−

D
D−2+η

A2D+1π
D
2 (D − 2 + η)Γ

(
D
2 + 2

) (4.29)

The first correction to the fixed point equation for z can be derived in a very similar way. We have:

ηzk(ρ̃) + (D − 2 + η)ρ̃z′k(ρ̃)− vD
∫ 1

0

z′

w2
y
D
2 −1(2− η + ηy)dy = 0 (4.30)

Substituting the leading order expression of w and z′ in the integral and integrating in y we obtain:

ρ(D − 2 + η)z′(ρ) + ηz(ρ) = −
vD

(
4Bη(D − η + 2)ρ−

D+2
D−2+η

)
A2D(D + 2)(D − 2 + η)

(4.31)

this ordinary differential equation can be easily integrated, giving the result:

z(ρ) ≈ Bρ−
η

D+η−2

(
1 +

ηρ1− 2D
D+η−2

A22D+1π
D
2 (D − 2 + η)Γ

(
D
2 + 2

)) (4.32)

4.2.4 Equations in D = 3

In D = 3, recalling that v3 = (8π2)−1, the system (4.20) reduces to:{
(η − 2)w + (1 + η)ρw′ − 1

8π2

[
(2− η)w′ Int(1) +

(
(2− η)z′ + ηw′

)
Int(3) + ηz′ Int(5)

]
= 0

ηz + (1 + η)ρz′ − z′

8π2 [(2− η) Int(1) + η Int(3)] = 0
(4.33)

Using equations (4.16), (4.17) and (4.18) we obtain:

(η − 2)w + (1 + η)ρw′ − 1
8π2

[
(2− η)w′

(
−

tanh−1
(√

1−z
w+1

)
(w+1)1/2(1−z)3/2 + 1

(1−z)(w+z)

)
+

+
(
(2− η)z′ + ηw′

)(
3w+2z+1

(z−1)2(w+z) −
3
√
w+1 tanh−1

(√
1−z
w+1

)
(1−z)5/2

)
+

+ηz′
(

15w2+10w(z+2)−2(z−7)z+3
3(1−z)3(w+z) −

5(w+1)3/2 tanh−1
(√

1−z
w+1

)
(1−z)7/2

)]
= 0

ηz + (1 + η)ρz′ − z′

8π2

[
(2− η)

(
tanh−1

(√
1−z
w+1

)
(w+1)1/2(1−z)3/2 −

1
(1−z)(w+z)

)
+

+ η

(
3w+2z+1

(z−1)2(w+z) −
3
√
w+1 tanh−1

(√
1−z
w+1

)
(1−z)5/2

)]
= 0

if w + z ≥ 0 and 0 < z < 1.

4.2.5 Equations in D = 5

In D = 5, recalling that v5 = (48π3)−1, the system (4.20) becomes:{
(η − 2)w + (1 + η)ρw′ − 1

48π3

[
(2− η)w′ Int(3) +

(
(2− η)z′ + ηw′

)
Int(5) + ηz′ Int(7)

]
= 0

ηz + (3 + η)ρz′ − z′

48π3 [(2− η) Int(3) + η Int(5)] = 0
(4.34)
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Using equations (4.17), (4.18) and (4.19) we obtain:

(η − 2)w + (1 + η)ρw′ − 1
48π3

[
(2− η)w′

(
3w+2z+1

(z−1)2(w+z) −
3
√
w+1 tanh−1

(√
1−z
w+1

)
(1−z)5/2

)
+

+
(
(2− η)z′ + ηw′

)( 15w2+10w(z+2)−2(z−7)z+3
3(1−z)3(w+z) −

5(w+1)3/2 tanh−1
(√

1−z
w+1

)
(1−z)7/2

)
+

+ηz′

(
105w3+35w2(2z+7)−7w(2z2−24z−23)+6z3−32z2+116z+15

15(z−1)4(w+z) −
7(w+1)5/2 tanh−1

(√
1−z
w+1

)
(1−z)9/2

)]
= 0

ηz + (3 + η)ρz′ − z′

48π3

[
(2− η)

(
3w+2z+1

(z−1)2(w+z) −
3
√
w+1 tanh−1

(√
1−z
w+1

)
(1−z)5/2

)
+

+ η

(
15w2+10w(z+2)−2(z−7)z+3

3(1−z)3(w+z) −
5(w+1)3/2 tanh−1

(√
1−z
w+1

)
(1−z)7/2

)]
= 0

(4.35)

if w + z ≥ 0.

4.3 Third case: ηk = 0 and z′k(ρ) 6= 0

A great simplification arises if we consider the case of a vanishing anomalous dimension, η = 0.
In this approximation the fixed point equations (4.20) becomes:{

w +
(
1− D

2

)
ρw′ + 2vD

[
w′ Int(D − 2) + z′ Int(D)

]
= 0

ρz′ = 2z′vD
Int(D−2)
D−2

(4.36)

4.3.1 Asymptotic behavior

Leading order

The procedure for the calculation of the asymptotic behavior of this model is exactly identical to
what we have seen in the previous case, the one in which we considered η 6= 0.

In the large field limit the second equation of the system (4.36) reduces to:

(D − 2)ρz′(ρ) = 0 (4.37)

This equation leads, of course, to the conclusion that z(ρ) tends to behave as a constant (which I will
call B) when the field goes to infinity:

z(ρ) ≈ B (4.38)

Let’s now consider the other equation. We can easily see that the integrals becomes negligible with
respect to the other terms, so the equation assumes the simplified form:

−2w(ρ) + (D − 2)ρw′(ρ) = 0 (4.39)

So we come, after a trivial integration, to the following result:

w(ρ) ≈ Aρ
2

D−2 (4.40)

where A is the integration constant.
Integrating this with respect to ρ, we can also obtain the asymptotic behavior of the effective

potential:

u(ρ) ≈ AD − 2

D
ρ

D
D−2 (4.41)
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Beyond to leading order

In order to obtain an approximated solution at an order of approximation beyond the first one, I
have performed an expansion of w(ρ) and of z(ρ) in a neighborhood of ρ→∞:

w(ρ) ≈ Aρ2

(
1 +

nmax∑
n=1

anρ
−n

)
(4.42)

z(ρ) ≈ B

(
1 +

nmax∑
n=1

bnρ
−n

)
(4.43)

I have performed these expansions up to the tenth order, nmax = 10. Obviously the leading terms
are given by the equations (4.38) and (4.40), while the ais and the bis are coefficients to be determined.

It has been conjectured ([23]) by T.R. Morris and J.F. Turner that the hypothesis of N → ∞ and
η = 0 might imply z(ρ) to be constant everywhere.

In D = 3, substituting the expressions of v3, Int(3) and Int(1), the system of equations (4.36) reduces
to: 

w + z′

8π2

(
3w+2z+1

(z−1)2(w+z) −
3
√
w+1 tanh−1

(√
1−z
w+1

)
(1−z)5/2

)
= 0

ρz′ = z′

4π2

(
tanh−1

(√
1−z
w+1

)
(w+1)1/2(1−z)3/2 −

1
(1−z)(w+z)

)
if w + z ≥ 0 and 0 < z < 1.

while in D = 5, substituting the expressions of v5, Int(5) and Int(3), the system of equations (4.36)
reduces to: 

w + z′

48π3

(
15w2+10w(z+2)−2(z−7)z+3

3(1−z)3(w+z) −
5(w+1)3/2 tanh−1

(√
1−z
w+1

)
(1−z)7/2

)
= 0

ρz′ = z′

72π3

(
3w+2z+1

(z−1)2(w+z) −
3
√
w+1 tanh−1

(√
1−z
w+1

)
(1−z)5/2

) (4.44)

if w + z ≥ 0 and 0 < z < 1.
We want here to show with a simple argument that indeed this should be a correct guess. In order

to verify this statement, the expansion of z(ρ) defined in (4.43) has been substituted in the fixed point
equation for z(ρ), the second one of the system (4.36) evaluated for D = 3 and D = 5, solving for the
coefficients bis (the exact form of the flow equations used will be exposed in the following subsections).
Up to the order considered, the only possible solution is given by bi = 0 for any i > 0, so z(ρ) really
seems to behave like a constant up to the order considered.

Let us now make some comments about the strategy one should employ to solve the general problem
at NLO. It is a spectral problem for a system of two coupled differential equations for which one would
like to find for which values of η the system admits global solution in the full internal 0 ≤ ρ <∞.

One shooting method from the origin, which will be shall employ in the next section for a similar
problem may be useful. But in this case the complexity is increased by the presence of the spectral
parameter η.

Employing a more refined asymptotic expansion one can proceed to make a numerical evolution
from the asymptotic region toward the origin on varying both η and the initial conditions compatible
with the asymptotic behavior allowed by the differential equations.
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If a global solution is found for some values, the problem of finding one solution is solved. But one
can also impose a match between a polynomial form for the solutions, obtained expanding around the
ring or better around a non trivial minimum (since in such a case typically the radius of converge of
such expansions is larger).

In any case the problem is numerically hard.
Another, probably the most promising approach could be based on pseudo spectral method using

a base of global functions, like the Chebichev polynomials, for compact intervals, and the rational
Chebichev polynomials for treating unbounded rintervals which include the asymptotic region. This
method generally has fast converges properties.

This work goes beyond the scope of this thesis and will be let for future works. From the physical
point if view we expect in D = 3 to find a solution for the potential u(ρ) which is slightly deformed
with respect to the one found in the LPA.
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Chapter 5

Coupling to the gravitational field

In this chapter I will study the behavior of an O(N) model coupled to a gravitational field. For the
conventions and formulas used in this chapter, see the Appendix D.

This matter-gravity system as a QFT can be consistent at quantum level only if it is ultraviolet
complete and can be described by a finite number of physical parameters. In other words, if it is
renormalizable in the most broader sense. In is known that such models are typically non perturbatively
renormalizable, but they still could be asymptotically safe at the non perturbative level.

Therefore we shall investigate this model with functional renormalization group techiques.

5.1 FRG for gravity

In this section I will expose some basic concepts necessary in order to extend the formalism of the
functional renormalization group, developed in the previous chapters for a scalar field theory, to include
a coupling with a dynamical spacetime metric. For this section I will mainly follow [49] and [51].

In order to derive a functional integral formulation for a quantum theory of gravity, we need to give
a precise meaning to a functional of the form:∫

Dgµν e−S[gµν ]+source terms (5.1)

where the bare action S[gµν ] must be invariant under gauge tranformation, i.e. under the transformation
of the metric under an infinitesimal diffeomorphism, that is given by:

δεgµν = Lεgµν ≡ ερ∂ρgµν + gµρ∂νε
ρ + gνρ∂µε

ρ . (5.2)

where Lε is the Lie derivative with respect the infinitesimal vector field ε.
The most employed method in the literature is called the background field method.
Following this approach, the full metric have to be decomposed into a classical arbitrary (but fixed)

background and the quantum fluctuation.
Some different decompositions have been investigated in the literature, our choice is to use an

exponential parametrization:
gµν = ḡµρ(e

h)ρν (5.3)

where ḡµρ is a fixed but arbitrary background and h is a two index tensor which encodes the quantum
fluctuations [51]. We also assume the fluctuations to be small with respect to the background.

After this split, the functional integration measure Dgµν becomes Dhµν .

65
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If one uses the functional measure of a linear splitting (ḡµν = gµν + hµν), then one should take into
account a Jacobian [51] which for our purposes, in the formalism considered, will not contribute.

Being this a gauge theory described by a redundant number of degrees of freedom, the path integral
should be defined with care. Usually one employs a gauge fixing condition and the Faddeev-Popov
determinant, which depends on how the gauge fixing conditionchanges with a gauge transformation.
Such a determinant is usually written in terms of a functional integral over the ghost fields.

We shall define the “quantum” gauge transformation as a special gauge transformation that repro-
duces (5.2) when the background is kept fixed:

Lεgµν = ḡµρLε(eh)ρν (5.4)

So the gauge tranformation is given, for small h, by the following relation:

δ(Q)
ε hµν = ∇̄µεν + ∇̄νεµ + Lεhµν + [Lεḡ, h]µν +O(εh2) . (5.5)

Once fixed the gauge , we can define the running Schwinger functional by the following expression:

exp{Wk[Jµν , στ , σ̄ρ, ḡµρ]} =

∫
DhµνDCρDC̄τµGF exp

{
− S[gµν ]−

−Sgh[gµν , C
ρ, C̄τ ]− Ssource −∆kS

}
(5.6)

where I have indicated with Cρ and C̄τ the Faddeev-Popov ghosts, Jµν , στ , σ̄ρ are the sources
coupled to hµν , Cρ, C̄τ respectively and µGF is the measure related to the gauge fixing.

As we can see , the action is given by the sum of several terms:

1. the Einstein Hilbert action with a cosmological constant Λ:

S[gµν ] =
1

16πG

∫
dDx
√
g(2ΛC −R)

2. the ghosts action, Sgh[ḡµν , hµν , C
ρ, C̄τ ], which is related to the Faddeev-Popov determinant asso-

ciated to the gauge fixing condition;

3. the source term:

Ssource = −
∫
dDx
√
ḡ
(
Jµνhµν + Cρσ̄ρ + στ C̄τ

)
4. the regulator term, which encodes the scale dependence:

∆kS =
1

2

∫
dDx
√
ḡhαβ

(
Rgrk [ḡ]

)αβγδ
hγδ +

√
2

∫
dDx
√
ḡC̄µR

gh
k [ḡ]Cµ

From equation (5.6) we can define the classical fields:

h̄µν =
1√
ḡ

δWk

δJµν
, cµ =

1√
ḡ

δWk

δσ̄µ
, c̄µ =

1√
ḡ

δWk

δσµ
(5.7)

Now, in analogy to what I have exposed in chapter 2 (see eq.(2.10)), we can define the effective average
action as the modified Legendre transform of Wk:

Γk[h̄, c, c̄; ḡ] = Wk[J, σ, σ̄; ḡ]−
∫
dDx
√
ḡ
(
Jµν h̄µν + cµσ̄µ + c̄µσ

µ
)
−∆Sk (5.8)
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Now, repeating the same procedure exposed in chapter 2 with few differences, we come to the following
generalization of the Wetterich equation:

Γ̇k =
1

2
Tr

{[(
Γ

(2)
k

)
h̄h̄

+Rgrk

]−1

∂tR
gr
k

}
− Tr

{[(
Γ

(2)
k

)
cc̄

+Rghk

]−1

∂tR
gh
k

}
(5.9)

where I have used the shorthand notations:(
Γ

(2)
k

)
h̄h̄

=
1√
ḡ

δ

δhαβ

(
1√
ḡ

δΓk
δhµν

)
(5.10)

(
Γ

(2)
k

)
cc̄

=
1√
ḡ

δ

δcµ

(
1√
ḡ

δΓk
δc̄ν

)
(5.11)

Equation (5.9) can also be rewritten in the more compact notation:

Γ̇k =
1

2
STr

{[
Γ

(2)
k +Rk

]−1

∂tRk

}
(5.12)

where STr{. . . } indicates the supertrace operation.

5.2 Derivation of the fixed point equations

In the foollowing we shall apply this formalism in the presence of an interacting O(N) multiplet of
scalar fields.

I assume the effective average action of the model can be truncated in the following form:

Γk[φ, g] =

∫
dDx
√
g

(
U(ρ) +

1

2
ḡµν∂µφ

a∂νφa − F (ρ)R

)
(5.13)

Where I have indicated with SGF and Sgh the gauge fixing and the ghost terms respectively.
In the limit of a constant classical field φ we recover the usual Einstein-Hilbert action, while in the

limit of a vanishing gravitational field (that means, in an Euclidean spacetime, gµν = δµν) we recover
the well known linear O(N) model in the LPA.

I will employ the background-fluctuation split for the fields on the O(N) field, so we have:

φi(x) = φ̄i + δφi(x), ρ̄ =
φ̄iφ̄i

2
(5.14)

For what concerns the metric, I will use the following parametrization:

gµν = ḡµρ(e
h)ρν (5.15)

Defining hµν = ḡµρh
ρ
ν , we have:

gµν = ḡµν + hµν +
1

2
hµλh

λ
ν + . . . (5.16)

gµν = ḡµν − hµν +
1

2
hµλhλ

ν + . . . (5.17)

In order to obtain the Hessian of the model, I have expanded the effective average action (5.13) up
to the second order in the fluctuations.
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It results to be the sum of two pieces, one quadratic in the scalar field fluctuation:

1

2

∫
dDx
√
ḡ δφa

{ [
−∇2+U ′(ρ̄)−R̄F ′(ρ̄)

]
φ̂aφ̂b+ (5.18)

+
[
−∇2+U ′(ρ̄)+2ρ̄U ′′(ρ̄)−R̄ (F ′(ρ̄) + 2ρ̄F ′′(ρ̄))

]
(δab − φ̂aφ̂b)

}
δφb (5.19)

and another which mixes scalar field fluctuations with metric scalar fluctuations:∫
dDx
√
ḡ δφaφ̄b

[
h

2
U ′(ρ̄)− F ′(ρ̄)

(
∇̄µ∇̄νhµν − ∇̄2h− R̄µνhµν +

R̄

2
h

)]
φ̂aφ̂b

}
(5.20)

where I recall that φ̂i is defined as:

φ̂a =
φ̄a√
2ρ̄

so, (δab − φ̂aφ̂b) and φ̂aφ̂b are the projectors on the longitudinal (P abL , in the following) and on the
transverse (P abT ) directions respectively.

It’s easy to see, from equation (5.20), that only the longitudinal scalar fluctuations mix in the
Hessian with the scalar fluctuations of the metric.

This last term can be rewritten in a more useful way after the York decomposition of the traceless
part of hµν . Doing that and rescaling in terms of σ′ and h = 2dω we obtain:

−
∫
dDx
√
ḡ δφaP

ab
L φ̄b

{
F ′(ρ̄)

D − 1

D

[√
−∇̄2

(
−∇̄2 − R̄

D − 1

)
σ′ +

(
−∇̄2 +

(D − 2)R̄

2(D − 1)

)
h

]
− U ′(ρ̄)

2
h

}

Now we can use the gauge invariant variable s = h − ∇̄2σ. In terms of the rescaled field we have the
relations:

σ =
1√

(−∇̄2)
(
−∇̄2 − R

D−1

)σ′ , s = h+

√
−∇̄2√

−∇̄2 − R
D−1

σ′ , σ′ =

√
−∇̄2 − R

D−1√
−∇̄2

(s− h) (5.21)

The last term can be written as∫
dDx
√
ḡ δφaP abL φ̄b

[
−D − 1

D
F ′(ρ̄)

(
−∇̄2 − R̄

D − 1

)
s+

U ′(ρ̄)− F ′(ρ̄)R̄

2
h

]
(5.22)

The gravitational hessian can be transformed into:

1

2

∫
dDx
√
ḡF (ρ̄)

[
1

2
hTT µν

(
−∇̄2+

2R̄

D(D − 1)

)
hTT

µν− (D−1)(D−2)

2d2
s

(
−∇̄2− R̄

D − 1

)
s− D−2

4d
R̄ h2

]

At this point one can make a PLδφ dependent shift in the variable s to complete the s-PLδφ square
in the Hessian:

s′ = s+
2D

D − 2

F ′(ρ̄)

F (ρ̄)
φ̄a
(
−∇̄2 − R̄

D − 1

)
δφa . (5.23)
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Then the full hessian can be written as:

1

2

∫
dDx
√
ḡ

{
F (ρ̄)

[
1

2
hTT µν

(
−∇̄2+

2R̄

D(D − 1)

)
hTT

µν− (D−1)(D−2)

2D2
s′
(
−∇̄2− R̄

D − 1

)
s′

]

−D−2

4D
F (ρ̄)R̄ h2 + δφaφ̄a

[
U ′(ρ̄)− F ′(ρ̄)R̄

]
h+

+δφa
[
−∇2+U ′(ρ̄)+2ρ̄U ′′(ρ̄)−R̄ (F ′(ρ̄) + 2ρ̄F ′′(ρ̄)) +

+
4ρ̄(D − 1)

D − 2

(F ′(ρ̄))2

F (ρ̄)

(
−∇̄2 − R̄

D − 1

)]
+P abL δφb

+δφa
[
−∇2+U ′(ρ̄)−F ′(ρ̄)R̄

]
P ab⊥ δφ

b

}
(5.24)

We can now employ the gauge fixing ξ = 0 and h = 0 (unimodular gauge).

Regarding the regulator function, Rk, it is a matrix valued function as Γ(2). A convenient definition
for it is by the relation:

Γ
(2)
k (∇̄2) +Rk(−∇̄2) = Γ

(2)
k (Pk(−∇̄2)) (5.25)

where the function I have defined the function Pk(−∇̄2) in the following way:

Pk(−∇̄2) = −∇̄2 +Rk(−∇̄2)

and Rk is a single valued function that must satisfy the relations (2.7), (2.8) and (2.9), that we choose
to have the form of an optimized Litim regulator:

Rk(−∇̄2) = (k2 − (−∇̄2))θ(k2 − (−∇̄2)) (5.26)

The last step is to define a method to evaluate the trace in (5.12). In the literature this is usually done
using the heat kernel technique, whose details are not exposed in this thesis, for details see, for example,
[40].

Now we have all the elements to compute the traces and, consequently, to obtain the flow equations
for the dimensionless u and f .

At the fixed point, for D = 3, we obtain the following equations for the scaling solution:

0 = −3u(ρ) + ρu′(ρ) +
N − 1

6π2 (u′(ρ) + 1)
− 2ρf ′(ρ) + 3f(ρ)

30π2f(ρ)

+
f(ρ) (12ρu′′(ρ) + 6u′(ρ) + 11)− ρf ′(ρ) (16ρf ′′(ρ)− 80f ′(ρ) + 2ρu′′(ρ) + u′(ρ) + 1)

30π2 (8ρf ′(ρ)2 + f(ρ) (2ρu′′(ρ) + u′(ρ) + 1))
.

0 = −f(ρ) + ρf ′(ρ)− (N − 1)f ′(ρ)

6π2 (u′(ρ) + 1)
2 −

N − 1

24π2 (u′(ρ) + 1)
+

101

120π2
− 29ρf ′(ρ)

180π2f(ρ)

+
ρf ′(ρ) (16ρf ′′(ρ)− 48f ′(ρ) + 2ρu′′(ρ) + u′(ρ) + 1)− f(ρ) (8ρu′′(ρ) + 4u′(ρ) + 7)

72π2 (8ρf ′(ρ)2 + f(ρ) (2ρu′′(ρ) + u′(ρ) + 1))

−
(
8ρ2f ′(ρ)3 − 16ρf(ρ)f ′(ρ) (ρf ′′(ρ)− 2f ′(ρ)) + 5f(ρ)2

) (
4ρf ′(ρ)2 + f(ρ) (2ρf ′′(ρ) + f ′(ρ))

)
30π2f(ρ) (8ρf ′(ρ)2 + f(ρ) (2ρu′′(ρ) + u′(ρ) + 1))

2 .

(5.27)
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5.3 Scaling solutions for D=3

5.3.1 Analytical solution for arbitrary N

Two of the solutions of the system of the fixed point equations (5.27) can be found analitically,
making some ansatz on the functional form of u(ρ) and f(ρ).

The first one is a configuration in which the effective potential u(ρ) and f(ρ) are both constant,
which is also called Gaussian Matter fixed point [?]: u(ρ) = u0

f(ρ) = f0

(5.28)

Indeed, substituting this conditions in the (5.27) we find the solutions: u0 = 5N+3
90π2

f0 = 283−15N
360π2

(5.29)

in order to obtain a coherent physical picture of the gravity as an attractive interaction (i.e. a positive
Newton constant), both u0 and f0 must be positive. So the physical acceptability of this fixed point
solution leads to the following condition on N :

N <
283

15
≈ 18, 8667 (5.30)

The second one is a configuration of a nonminimal coupling with the gravitational feld, of the following
form:  u(ρ) = u0

f(ρ) = f1ρ
(5.31)

that admits the solutions: 
u0 = N

18π2

f1 = 80−9N±
√

9N2−264n+5296
48(N−1)

(5.32)

but only the one with the plus sign can be positive, leading to the following constraint on N :

1 < N <
46

3
≈ 15, 3333 (5.33)

Linearizing the flow equations in the neighborhood of a fixed point, one can evaluate the critical expo-
nents of the model. For example, the linearized flow equations near the solution (5.32) reads, for any of
the allowed values of N :

0 = 36

(
1

15N
− 1

283

)
ρδf ′(ρ) + λ

(
36

283
− 12

5N

)
δf(ρ)+

+
(283− 15N)2ρδu′′(ρ)

12735π2N
−

(283− 15N)2
(
6π2ρ− 1

)
δu′(ρ)

25470π2N
+

(λ+ 3)(283− 15N)2δu(ρ)

4245N

that is the δu(ρ) flow equation, and:

0 =
(283− 15N)2ρδf ′′(ρ)

12735π2N
+

(
1

15N −
1

283

) (
15N

(
6π2ρ− 1

)
− 1380π2ρ+ 283

)
δf ′(ρ)

6π2
+
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+

(
1

283
− 1

15N

)
δf(ρ)(−230λ+ 15(λ+ 1)N − 283)− (283− 15N)2ρδu′′(ρ)

50940π2N
− (283− 15N)2δu′(ρ)

101880π2N

for δf(ρ).

5.3.2 Numerical search for non trivial fixed points

The next step is to look for other non trivial fixed points, which can be seen as a gravitational
deformation of the Wilson Fisher fixed point of the Ising universality class when gravitational interactions
are turned off. The method used is numerical, based on a shooting method.

We find very useful to start with an investigation of the evolution of the system non linear differential
equations from the origin. Since the differential equations have a fixed singularity at ρ = 0 there is a
constraint for solutions to be defined at the origin which lowers the number of parameters from 4 to 2.
We shall write the Cauchy problem as a function of σ1 = u′(0) and σ2 = f ′(0) and study the outcome
of the numerical evolution on varying such parameters. We shall see that generically the numerical
evolution stops when a singularity is reached. This is due to the fact that for generic initial conditions
the non linear differential problem does not admit a global solution. But there is a finite set of values
for the parameters such that global solutions do exists. Two of such solutions have been already found
analytically. Our task is to see if there are other global solutions. In D = 3 for at least some values of N
we expect them to exist. If a global solution does exists, we expect that starting with initial conditions
close enough one sees that the alghoritm, which evolves the numerical solution from the origin, stops
at larger values of ρ = ρ̄, which can be increased tuning the parameters encoding the initial conditions.
Therefore in our case we study numerically the function ρ̄(σ1, σ2) and by plotting such a function we
should see a spike in correspondece of a possible global solution.

Numerically we shall study the numerical problem for ρ ≥ ε for ε → 0. The Cauchy problem is
defined as:

u′(ε) = σ1 u′(ε) = σ2

u(ε) = +
5n+ 3σ1 + 3

90π2(σ1 + 1)

+
ε
(
12σ2(σ1(5n+ 3σ1 + 6) + 3) + σ1(σ1 + 1)(15n− 283(σ1 + 1)) + 96(1− 4σ1)σ2

2

)
45n(σ1 + 4σ2 + 1)− 849(σ1 + 1)2

f(ε) =
283(σ1 + 1)2 − 15n(σ1 + 4σ2 + 1)

360π2(σ1 + 1)2
+ (5.34)

+
σ2ε

(
−20(σ1 + 1)σ2(3n+ 4σ1 + 10) + 5(σ1 + 1)2(46(σ1 + 1)− 3n) + 192(3− 2σ1)σ2

2

)
(σ1 + 1) (283(σ1 + 1)2 − 15n(σ1 + 4σ1 + 1))

(5.35)

where the condition on u(ε) and f(ε) have been determined to first order in ε by imposing that the
differential equations should be satisfied.

We have then analyzed numerically ρ̄(σ1, σ2) for some values of N . We report in Fig.5.2, 5.3, 5.1,
5.4 and 5.5 the cases for N = 1, 1.5, 2.
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Figure 5.1: The case N = 1. The peak is located at (−0.0585, 0.344).
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Figure 5.2: Plot of the function ρ̄(σ1, σ2) for N = 3/2. The peak results to be located at
(−0.0425, 0.385)
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Figure 5.3: Plot of the function ρ̄(σ1, σ2) for N = 2. It looks like there are two peaks, one close
to the other.

Figure 5.4: A top view of the two peaks in the case N = 2. The highest peak is located at
(-0.0029, 0.5260)
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Figure 5.5: A zoom of the region of the domain of ρ̄ where the peaks are located.

5.3.3 Polynomial Analysis

A valuable tool can be the analysis of the solutions expanded in power series around the origin
or around a non trivial vacuum. The expansion around the origin in case of a broken phase provides
typically a slightly worst description with respect to the second one, which is in general preferable.

In a neighborhood of the origin the polynomial expansions of u(ρ) and f(ρ) are:

u(ρ) =

Nu∑
n=2

λnρ
n

n!
+ λ0 (5.36)

f(ρ) =

Nf∑
n=0

fnρ
n

n!
(5.37)

and, in the neighborhood of the potential minimum:

u(ρ) =

Nu∑
n=2

λn(ρ− κ)n

n!
+ λ0 (5.38)

f(ρ) =

Nf∑
n=0

fn(ρ− κ)n

n!
(5.39)

Where I have defined κ as the value of the dimensionless field modulus square at the minimum of the
potential:

u′(κ) = 0 (5.40)
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Figure 5.6: Plot of the polynomial expansion around the nontrivial minimum of the dimension-
less effective potential u(ρ) for N=3/2.

Substituting these polynomial expansions of a given order into the fixed point equations and expand-
ing around zero or around the minimum, on obtains a set of algebraic equations whose solutions may give
an approximate polynomial solution to the differential equation within some bounded region. Typically
one finds many spurious solutions and it is a difficult task to search for a “good” one. Nevertheless, if
one succeed in this, very often one obtains locally a pretty good approximation of the solution.

We show here an exampe of a polynomial solution obtained with a expansion around a non trivial
vacuum for the case N = 1.5 in Tab.5.1.
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Results of the polynomial analysis for N = 3/2, Nu = 7 and Nf = 6
λ0 0.010174597
κ 0.057469286
λ2 1.9926498
λ3 34.887704
λ4 −236.78017
λ5 8412.4279
λ6 −257655.64
λ7 9.8750075 ∗ 106

f0 0.082295013
f1 0.31782706
f2 −0.76423349
f3 12.391789
f4 −203.83313
f5 3149.2212
f6 −74077.151

Table 5.1: Numerically evaluated coefficients λi and fi for Nu = 7 and Nf = 6 for the expansion
of the potential around the non trivial minimum, in the case N = 3/2.

Figure 5.7: Plot of the polynomial expansion of f(ρ) around the non trivial minimum of the
potential for N=3/2.
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Conclusion

In this thesis I have studied the nonperturbative renormalization group techniques applied to the
physics of a scalar linear sigma model, a quantum field theory whith an internal O(N) symmetry. I
have considered both the case of a QFT defined on an D dimensional Euclidean flat spacetime and, in
three dimensions, the case of a general non minimal coupling to a gravitational field, which has been
treated as a QFT within the paradigm of the asymptotic safety.

In the flat spacetime case I have studied the model using an effective average action truncated at
the second order in the derivative expansion and I have analytically derived the flow equation for the
relevant quantities of the model. Then the special case of N → ∞ has been investigated in order to
obtain simplified equations which can be used to investigate the fixed point structure of the model. We
distinguish three different cases:

1. Wavefunction renormalization identically constant and vanishing anomalous dimension

2. Non constant wavefunction renormalization and vanishing anomalous dimension

3. Non constant wavefunction renormalization and nonvanishing anomalous dimension

The first case has already been studied in the literature, while the other two are investigated for the first
time. In the case of a vanishing anomalous dimension I was able to give evidence to the conjecture of
Morris and Turner [23], while the study of the most general case revealed numerically too hard to solve
so I had let it for future works, having discussed some of the analytical/numerical tools which should
be used to attack and solve the problem in general.

Regarding the case of the scale O(N) model in integration with the gravitational field, I have
considered a theory defined on a 3 dimensional space in which the gravity is treated as a QFT in the
paradigm of the asymptotic safety. Within a specific formulation of the background field theory of
gravity, gauge fixing choice as well as a particular coarse-graining scheme of renormalization, previously
used in the literature, the flow equations for the effective average action, and in particular for the two
“potentials” is the LPA truncation, have bee derived. I stress that with this approach one is able to
study the RG flow of a theory with an infinite number of couplings, since an infinite number of them is
necessary to descrive the functions u(ρ) and f(ρ) in any base of the functional space, where ρ = φaφa/2.
Then I looked for the fixed point to the model, deriving analytically two of them as a function of the
parameter N . One of this fixed point action is an Einstein-Hilbert action with a cosmological constant
and a “free” scalar theory, in the sense that it interacts with gravity only through the kinetic term, but
as soon as one deviates from the fixed point the RG flow towards the IR generates in the effective average
action several operators. Essentially they correspond, close to the fixed point, to the ones associated to
the relevant directions. The second scaling solution corresponds to a scalar O(N) model with also a non
minimal coupling to gravity with the operator of the form ξρR. Considerations similar to the previous
case, when a bare action is located close to the fixed point and one studies the flow towards the IR, can
be made.
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Then I have written a numerical routine in order to find other non trivial fixed point. It is based on
a shooting method, that needs as input two parameters σ1 and σ2, that represents the initial values for
the first derivatives of u(ρ) and f(ρ), while u(ρ) and f(ρ) are found imposing the fixed point equations
to be satisfied.

Then the function ρ(σ1, σ2) has been plotted, looking for its peak, corresponding to physically
acceptable global solutions.

The values of σ1 and σ2 have then been found for N = 1, N = 3/2 and N = 2:

1. N = 1, (σ1, σ2) ' (−0.0585, 0.344);

2. N = 3/2, (σ1, σ2) ' (−0.0425, 0.385);

3. N = 2, (σ1, σ2) ' (−0.0029, 0.5260);

The full construction of the global solution is up to now not very accurate, having being match only to
local polynomial expansions but to asymtptotic expansions of global numerical solutions covering the
asymptotic region. Moreover pseudo spectral method, discussed in section 4 could reveal themselves to
be the best approach to solve globally such a kind of problems.

These solutions, having the first derivative of the potential in the origin u′(0) < 0, are in a broken
phase. They can be considered as a deformation of the Wilson-Fisher fixed point which in flat space are,
for example, for N = 1, associated to the Ising universality class, which is induced by the dynamical
gravitational interaction. Such a non trivial solution is not expected to survive in D = 4 as it is
already the case for a flat space-time. Similar results are being currently obtained in different number
of dimensions and in particular in D = 4 and may have interesting cosmological implications.

I have provided some first results for the scaling solutions, which should be completed by analysing
the general dependence in N , including that in the large N limit which can be probably carried on
analytically. Moreover the spectral analysis for the eigenperturbations of the linearized equations around
the fixed points is necessary to understand the dimension of the UV critical surface and the set of
operators which are relevant. This latter task requires in general a numerical approach. Of curse finally
one should also study the full global flow from the UV to the IR.

These results can be extended in several directions, and the approach should be repeated with other
coarse-graining schemes to verify the robustness against it.



Appendix A

Proper Vertices

In this appendix, I will derive the functional derivatives of Γk(φ) respect to the field φi up to the fourth
order. For the sake of convenience, I will work with the integrand of the effective action γ(φ), rather
than with the effective action itself. I will use the following notations:

Γk(φ) =

∫
γk(φ)dDx =

∫
[Uk(ρ) + γZk (φ) + γYk (φ)]dDx =

∫
γk(φ)dDx =

∫
Uk(ρ)dDx+ ΓZk (φ) + ΓYk (φ)

where:

• γZk (φ) = 1
2Zk(ρ)∂µφi∂µφ

i

• γYk = 1
4Yk(ρ)∂µρ∂µρ = 1

4Yk(ρ)φi∂
µφiφj∂µφ

j

In this thesis I have considered small fluctuation of the fields around a constant backgroung configuration
so, at the end of the computation, the value of every observable will be calculated for constant fields.

φi(x) = φ̄i + δφi(x)

and, analogously, in momentum space we have:

φi(p) = φ̄i + δφi(p)

So the effective average action in momentum space can be expressed as a series expansion of power of
δφi, the coefficients being the proper vertices:

Γk(φ) = Γk(φ̄) +
δΓk(φ)

δφi(p1)

∣∣∣∣
φ̄

δφi(p1) +
δ2Γk(φ)

δφi(p1)δφj(p2)

∣∣∣∣
φ̄

δφi(p1)δφj(p2)+

+
δ3Γk(φ)

δφi(p1)δφj(p2)δφk(p3)

∣∣∣∣
φ̄

δφi(p1)δφj(p2)δφk(p3)+
δ3Γk(φ)

δφi(p1)δφj(p2)δφk(p3)δφl(p4)

∣∣∣∣
φ̄

δφi(p1)δφj(p2)δφk(p3)δφl(p4)

In order to obtain the expressions of Γ
(n)
k in momentum space, I need to calculate the Fourier

transformation of the related direct-space expression. I will define four tetramomentum vectors p1, p2,
p3 and p4, so the proper vertex in momentum space will be defined by the expressions:

1.

Γ̃
(2)
k (p1, p2) =

∫
dDx

∫
dDy1

∫
dDy2

[
δ2Uk(ρ)

δφa(y1)δφb(y2)
+

δ2γZk
δφa(y1)δφb(y2)

+
δ2γYk

δφa(y1)δφb(y2)

]
e−ip1y1 e−ip2y2
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2.

Γ̃
(3)
k (p1, p2, p3) =

∫
dDx

∫
dDy1

∫
dDy2

∫
dDy3

[
δ3Uk(ρ)

δφa(y1)δφb(y2)δφc(y3)
+

+
δ3γZk

δφa(y1)δφb(y2)δφc(y3)
+

δ3γYk
δφa(y1)δφb(y2)φc(y3)

]
e−ip1y1 e−ip2y2 e−ip3y3

3.

Γ̃
(4)
k (p1, p2, p3, p4) =

=

∫
dDx

∫
dDy1

∫
dDy2

∫
dDy3

∫
dDy4

[ δ4Uk(ρ)

δφa(y1)δφb(y2)δφc(y3)φd(y4)
+

+
δ4γZk

δφa(y1)δφb(y2)δφc(y3)φd(y4)
+

δ4γYk
δφa(y1)δφb(y2)φc(y3)φd(y4)

]
e−ip1y1 e−ip2y2 e−ip1y3 e−ip4y4

In order to obtain the Fourier transforms it’s necessary to consider the integral representation of the
Dirac distribution:

δ(x) =
1

(2π)D

∫
eikx dDx

In the following calculations I will use the notations:

1. O(n), with n arabic numeral −→ nth functional derivative with respect to the field φ.

2. ON , with N roman numeral −→ N th functional derivative with respect to ρ = 1
2φ

iφi

A.1 Derivatives of the potential Uk(ρ)

A.1.1 I order derivative

I order derivative in direct space

δUk(ρ)

δφa(y1)
= U ′k(ρ)φaδ(x− y1) (A.1)

I order derivative in momentum space

∫
dDp1

(2π)D
U

(1)
k (ρ, p1) = U ′k(ρ)φaδ(p1) (A.2)



A.1. DERIVATIVES OF THE POTENTIAL UK(ρ) 83

A.1.2 II order derivative

II order derivative in direct space

δ2Uk(ρ)

δφa(y1)δφb(y2)
= U ′k(ρ)δabδ(x− y1)δ(y1 − y2) + U ′′k (ρ)δ(x− y1)δ(x− y2)φaφb (A.3)

II order derivative in momentum space

∫
dDp1

(2π)D
U

(2)
k (ρ, p1, p2) =

[
U ′k(ρ)δab + U ′′k (ρ)φaφb

]
δ

(
2∑
i=1

pi

)
(A.4)

A.1.3 III order derivative

III order derivative in direct space

δ3Uk(ρ)

δφa(y1)δφb(y2)δφc(y3)
= (A.5)

δ(x− y1)
{[
δ(x− y3)δ(y1 − y2)δabφc(y3) + δ(x− y2)δ(y1 − y3)δacφb(y2) +

+δ(x− y2)δ(y2 − y3)δbcφa(y1)
]
U ′′k (ρ) + δ(x− y3)δ(x− y2)φa(y1)φb(y2)φc(y3)U ′′′k (ρ)

}
III order derivative in momentum space

∫
dDp1

(2π)D
U

(3)
k (ρ, p1, p2, p3) =

[{
δabφc + δacφb + δbcφa

}
U ′′k (ρ) + φaφbφcU ′′′k (ρ)

]
δ

(
3∑
i=1

pi

)
(A.6)

A.1.4 IV order derivative

IV order derivative in direct space

δ4Uk(ρ)

δφa(y1)δφb(y2)δφc(y3)φd(y4)
= (A.7)

δ(x− y1)
{
δ(y1 − y2)δ(x− y3)δ(y3 − y4)δabδcdU ′′k (ρ) +

+ δ(y1 − y4)δ(x− y2)δ(y2 − y3)δadδbcU ′′k (ρ) +

+ δ(x− y2)δ(y1 − y3)δ(y2 − y4)δacδbdU ′′k (ρ) +

+δ(y1 − y2)δ(x− y3)δ(x− y4)δabφc(y3)φd(y4)U ′′′k (ρ) +

+δ(x− y2)δ(x− y3)δ(y1 − y4)δadφb(y2)φc(y3)U ′′′k (ρ) +

+δ(x− y2)δ(y1 − y3)δ(x− y4)δacφb(y3)φd(y4)U ′′′k (ρ) +

+ δ(x− y2)δ(y2 − y3)δ(x− y4)δbcφa(y1)φd(y4)U ′′′k (ρ) +
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+ δ(x− y2)δ(x− y3)δ(y2 − y4)δbdφa(y1)φc(y3)U ′′′k (ρ) +

+ δ(x− y2)δ(x− y3)δ(y3 − y4)δcdφa(y1)φb(y2)U ′′′k (ρ) +

+ δ(x− y2)δ(x− y3)δ(y3 − y4)φa(y1)φb(y2)φc(y3)φd(y4)U ′′′′k (ρ)
}

IV order derivative in momentum space

∫
dDp1

(2π)D
U

(4)
k (ρ, p1, p2, p3, p4) =

{[
δabδcd + δadδbc + δacδbd

]
U ′′k (ρ)+ (A.8)

[
δabφcφd + δadφbφc + δacφbφd + δbcφaφd + δbdφaφc + δcdφaφb

]
U ′′′k (ρ)+

+ φaφbφcφdU ′′′′k (ρ)

}
δ

(
4∑
i=1

pi

)

A.2 Derivatives of γZk

A.2.1 I order derivative

I order derivative in direct space

δγZk
δφa(y1)

∣∣∣∣
φ̄

=
Z ′k(ρ)φa

2
δ(x− y1)∂µφi∂µφ

i + Zk(ρ)∂µφa∂µδ(x− y1)

∣∣∣∣
φ̄

= 0 (A.9)

I order derivative in momentum space

Γ
(1)
Z = 0 (A.10)

A.2.2 II order derivative

II order derivative in direct space

δ2γZk
δφa(y1)δφb(y2)

∣∣∣∣
φ̄

= (A.11)

=
1

2
Z ′k(ρ)δabδ(x− y1)δ(y1 − y2)∂µφi∂µφ

i(x) +
1

2
Z ′′k (ρ)δ(x− y1)δ(x− y2)φaφb∂µφi∂µφ

i+

+Z ′k(ρ)φa∂µφbδ(x−y1)∂µδ(x−y2)+Zk(ρ)δab∂µδ(y1−y2)∂µδ(x−y1)+Z ′k(ρ)φb∂µφ
a∂µδ(x−y1)δ(x−y2) =

= Zk(ρ)δab∂µδ(x− y1)∂µδ(y1 − y2)

II order derivative in momentum space

Γ
(2)
Z = −Zk(ρ)δabp1p2δ

(
2∑
i=1

pi

)
(A.12)
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A.2.3 III order derivative

III order derivative in direct space

δ3γZk
δφa(y1)δφb(y2)δφc(y3)

∣∣∣∣
φ̄

= (A.13)

∂µ
(
δ(x− y2)

)
δ(x− y1)δ(y1 − y3)δac∂µφ

b(x)Z ′k(ρ) +

+ ∂µ
(
δ(x− y3)

)
δ(x− y1)δ(y1 − y2)δab∂µφ

c(x)Z ′k(ρ) +

+ ∂µ
(
δ(x− y1)

)
δ(x− y2)δ(y3 − y2)δbc∂µφ

a(x)Z ′k(ρ) +

+ ∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y3)

)
δ(x− y1)δbcφa(y1)Z ′k(ρ) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y3)

)
δ(x− y2)δacφb(y2)Z ′k(ρ) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)δabφc(y3)Z ′k(ρ) +

+ ∂µ
(
δ(x− y3)

)
δ(x− y1)δ(x− y2)φa(y1)φb(y2)∂µφ

c(y3)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y3)φa(y1)∂µφ

b(y2)φc(y3)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y3)∂µφ

a(y1)φb(y2)φc(y3)Z ′′k (ρ) +

+
1

2
δ(x− y1)δ(x− y2)δ(y2 − y3)δbcφa(y1)∂µφ

i(x)∂µφi(x)Z ′′k (ρ) +

+
1

2
δ(x− y1)δ(x− y2)δ(x− y3)δacφb(y2)∂µφ

i(x)∂µφi(x)Z ′′k (ρ) +

+
1

2
δ(x− y1)δ(y1 − y2)δ(x− y3)δabφc(y3)∂µφ

i(x)∂µφi(x)Z ′′k (ρ) +

+
1

2
δ(x− y1)δ(x− y2)δ(x− y3)φa(y1)φb(y2)φc(y3)∂µφ

i(x)∂µφi(x)Z ′′′k (ρ)

∣∣∣∣
φ̄

=

= ∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y3)

)
δ(x− y1)δbcφa(y1)Z ′k(ρ) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y3)

)
δ(x− y2)δacφb(y2)Z ′k(ρ) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)δabφc(y3)Z ′k(ρ)

III order derivative in momentum space

Γ
(3)
Z = −Z ′k(ρ)

[
p1p2δ

abφc + p2p3δ
bcφa + p3p1δ

acφb
]
δ

(
3∑
i=1

pi

)
(A.14)
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A.2.4 IV order derivative

IV order derivative in direct space

δ4γZk
δφa(y1)δφb(y2)δφc(y3)δφd(y4)

∣∣∣∣
φ̄

= (A.15)

∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)δ(y1 − y4)δabδcdZ ′k(ρ) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)δ(x− y4)δabφc(y3)φd(y4)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y4)

)
δ(y2 − y3)δ(x− y2)δadδbcZ ′k(ρ) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y4)

)
δ(x− y2)δ(x− y3)δadφb(y2)φc(y3)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y3)

)
δ(x− y2)δ(y2 − y4)δacδbdZ ′k(ρ) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y3)

)
δ(x− y2)δ(x− y4)δacφb(y2)φd(y4)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y4)δ(y2 − y3)δbc∂µφ

a(x)φd(y4)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y3)δ(y2 − y4)δbd∂µφ

a(x)φc(y3)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y3)δ(y3 − y4)δcd∂µφ

a(x)φb(y2)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y3)δ(x− y4)δcd∂µφ

a(x)φb(y2)φc(y3)φd(y4)Z ′′′k (ρ) +

+ ∂µ
(
δ(x− y4)

)
δ(x− y1)δ(x− y3)δ(y2 − y1)δcd∂µφ

a(x)φb(y2)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y4)

)
δ(x− y1)δ(x− y3)δ(y2 − y1)δab∂µφ

d(x)φc(y3)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y4)

)
δ(x− y1)δ(x− y2)δ(y3 − y1)δac∂µφ

d(x)φb(y2)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y4)

)
δ(x− y1)δ(x− y2)δ(y3 − y2)δbc∂µφ

d(x)φa(y1)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y4)

)
δ(x− y1)δ(x− y2)δ(x− y3)∂µφ

d(x)φa(y1)φb(y2)φc(y3)Z ′′′k (ρ) +

+∂µ
(
δ(x− y4)

)
∂µ
(
δ(x− y3)

)
δ(x− y1)δ(y1 − y2)δabδcdZ ′k(ρ) +

+ ∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y4)

)
δ(x− y1)δ(x− y2)δcdφa(y1)φb(y2)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y3)

)
δ(x− y1)δ(x− y4)δ(y1 − y2)δabφd(y4)∂µφ

c(x)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y3)

)
δ(x− y1)δ(y1 − y4)δ(x− y2)δadφb(y2)∂µφ

c(x)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y3)

)
δ(x− y1)δ(y2 − y4)δ(x− y2)δbdφa(y1)∂µφ

c(x)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y3)

)
δ(x− y1)δ(x− y2)δ(x− y4)∂µφ

c(x)φa(y1)φb(y2)φd(y4)Z ′′′k (ρ) +

∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y4)

)
δ(x− y1)δ(y3 − y1)δbdδacZ ′k(ρ) +

+ ∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y4)

)
δ(x− y3)δ(x− y1)δbdφc(y3)φa(y1)Z ′′k (ρ) +

+∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y3)

)
δ(x− y1)δ(y4 − y1)δbcδadZ ′k(ρ) +

+ ∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y3)

)
δ(x− y4)δ(x− y1)δbcφd(y4)φa(y1)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y2)

)
δ(x− y1)δ(y1 − y3)δ(x− y4)δacφd(y4)∂µφ

b(x)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y3)δ(x− y4)δadφc(y3)∂µφ

b(x)Z ′′k (ρ) +
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+ ∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y3)δ(y3 − y4)δcdφa(y1)∂µφ

b(x)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y3)δ(x− y4)∂µφ

b(x)φa(y1)φc(y3)φd(y4)Z ′′′k (ρ) +

+
1

2
δ(y1 − y2)δ(x− y1)δ(x− y3)δ(y3 − y4)δcdδab∂µφ

i(x)∂µφi(x)Z ′′k (ρ) +

+
1

2
δ(y1 − y2)δ(x− y1)δ(x− y3)δ(x− y4)δabφc(y3)φd(y4)∂µφ

i(x)∂µφi(x)Z ′′′k (ρ) +

+
1

2
δ(x− y2)δ(x− y1)δ(y2 − y3)δ(y1 − y4)δbcδad∂µφ

i(x)∂µφi(x)Z ′′k (ρ) +

+
1

2
δ(x− y1)δ(x− y2)δ(x− y3)δ(y1 − y4)δad∂µφ

i(x)∂µφi(x)φb(y2)φc(y3)Z ′′′k (ρ) +

+
1

2
δ(x− y1)δ(x− y2)δ(y1 − y3)δ(y1 − y4)δacδbd∂µφ

i(x)∂µφi(x)Z ′′k (ρ) +

+
1

2
δ(x− y1)δ(x− y2)δ(y1 − y3)δ(x− y4)δac∂µφ

i(x)∂µφi(x)φb(y2)φd(y4)Z ′′′k (ρ) +

+
1

2
δ(x− y1)δ(x− y2)δ(y2 − y3)δ(x− y4)δbc∂µφ

i(x)∂µφi(x)φa(y1)φd(y4)Z ′′′k (ρ) +

+
1

2
δ(x− y1)δ(x− y2)δ(x− y3)δ(y2 − y4)δbd∂µφ

i(x)∂µφi(x)φa(y1)φc(y3)Z ′′′k (ρ) +

+
1

2
δ(x− y1)δ(x− y2)δ(x− y3)δ(y3 − y4)δcd∂µφ

i(x)∂µφi(x)φa(y1)φb(y2)Z ′′′k (ρ) +

+
1

2
δ(x− y1)δ(x− y2)δ(x− y3)δ(x− y4)∂µφ

i(x)∂µφi(x)φa(y1)φb(y2)φc(y3)φd(y4)Z ′′′′k (ρ)
∣∣∣
φ̄

=

= ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)δ(y1 − y4)δabδcdZ ′k(ρ) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)δ(x− y4)δabφc(y3)φd(y4)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y4)

)
δ(y2 − y3)δ(x− y2)δadδbcZ ′k(ρ) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y4)

)
δ(x− y2)δ(x− y3)δadφb(y2)φc(y3)Z ′′k (ρ) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y3)

)
δ(x− y2)δ(y2 − y4)δacδbdZ ′k(ρ) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y3)

)
δ(x− y2)δ(x− y4)δacφb(y2)φd(y4)Z ′′k (ρ) +

+∂µ
(
δ(x− y4)

)
∂µ
(
δ(x− y3)

)
δ(x− y1)δ(y1 − y2)δabδcdZ ′k(ρ) +

+ ∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y4)

)
δ(x− y1)δ(x− y2)δcdφa(y1)φb(y2)Z ′′k (ρ) +

∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y4)

)
δ(x− y1)δ(y3 − y1)δbdδacZ ′k(ρ) +

+ ∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y4)

)
δ(x− y3)δ(x− y1)δbdφc(y3)φa(y1)Z ′′k (ρ) +

+∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y3)

)
δ(x− y1)δ(y4 − y1)δbcδadZ ′k(ρ) +

+ ∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y3)

)
δ(x− y4)δ(x− y1)δbcφd(y4)φa(y1)Z ′′k (ρ)
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IV order derivative in momentum space

Γ
(4)
Z = −

{
Z ′k(ρ)

[
δabδcdp1 · p2 + δadδbcp1 · p4 + δacδbdp1 · p3 + δabδcdp3 · p4 + δbdδacp2 · p4 + δbcδadp2 · p3

]
+

(A.16)

+Z ′′k (ρ)
[
δabφcφdp1·p2+δadφbφcp1·p4+δacφbφdp1·p3+δcdφaφbp3·p4+δbdφaφcp2·p4+δbcφaφdp2·p3

]}
δ

(
4∑
i=1

pi

)

A.3 Derivatives of γYk

A.3.1 I order derivative

I order derivative in direct space

δγYk
δφa(y1)

∣∣∣∣
φ̄

=
Y ′k(ρ)φa

4
δ(x− y1)∂µρ∂µρ+

Yk(ρ)

2
∂µρ

[
δ(x− y1)∂µφ

a(x) + φa(x)∂µδ(x− y1)
]∣∣∣∣∣
φ̄

= 0

(A.17)

I order derivative in momentum space

Γ
(1)
Y = 0 (A.18)

A.3.2 II order derivative

II order derivative in direct space

δ2γYk
δφa(y1)δφb(y2)

∣∣∣∣
φ̄

= (A.19)

1

4

(
Y ′k(ρ)δabδ(x− y1)δ(y1 − y2) + 2ρY ′′k (ρ)φ̂aφ̂bδ(x− y1)δ(x− y2)

)
∂µρ∂µρ +

+
Y ′k(ρ)φb

2
δ(x− y2)∂µρ

(
δ(x− y1)∂µφ

a + φa∂µδ(x− y1)
)

+

+
Yk(ρ)

2
∂µρ

(
δ(x− y1)δab∂µδ(y1 − y2) + δabδ(y1 − y2)∂µδ(x− y2)

)
+

+
Yk(ρ)

2

(
δ(x− y1)∂µφa(x) + φa∂µδ(x− y1)

)(
δ(x− y2)∂µφ

b + φb∂µδ(x− y2)
)∣∣∣∣
φ=cost

=

Yk(ρ)

2
φaφb∂µδ(x− y1)∂µδ(x− y2)
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II order derivative in momentum space

Γ
(2)
Y = −Yk(ρ)

2
φaφbp1p2δ

(
2∑
i=1

pi

)
(A.20)

A.3.3 III order derivative

III order derivative in direct space

δ3γYk
δφa(y1)δφb(y2)δφc(y3)

∣∣∣∣
φ̄

= (A.21)

Yk(ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y1)δ(x− y2)δac∂µφ

b(x) +

+
Yk(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y3)δ(x− y2)δac∂µφ

b(x) +

+
Yk(ρ)

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y2)

)
δ(x− y1)δacφb(x) +

+
Yk(ρ)

2
∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)δacφb(x) +

+
Yk(ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y3)δab∂µφ

c(x) +

+
Yk(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y3)δab∂µφ

c(x) +

+
Y ′k(ρ)

2
δ(x− y1)δ(x− y2)δ(x− y3)∂µφa(x)φb(x)∂µφ

c(x) +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y3)φa(x)φb(y2)∂µφ

c(x) +

+
Yk(ρ)

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)δabφc(x) +

+
Yk(ρ)

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y2)δabφc(x) +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y2)δ(x− y1)∂µφ

a(x)φb(y2)φc(x) +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y3)

)
δ(x− y2)φa(x)φb(y2)φc(x) +

+
Yk(ρ)

2
δ(x− y2)∂µ

(
δ(x− y3)

)
δ(x− y1)δbc∂µφ

a(x) +

+
Yk(ρ)

2
∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y3)

)
δ(x− y2)δbcφa(x) +

+
Yk(ρ)

2
δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)δbc∂µφ

a(x) +

+
Yk(ρ)

2
∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y1)

)
δ(x− y3)δbcφa(x) +
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+
Y ′k(ρ)

2
δ(x− y1)δ(x− y2)δ(x− y3)∂µφ

a(x)∂µφb(x)φc(y3) +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y3)φa(x)∂µφb(x)φc(y3) +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y3)∂µφa(x)φb(x)φc(y3) +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)φa(x)φb(x)φc(y3) +

+
Y ′k(ρ)

2
∂µρδ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)δabφc(y3) +

+
Y ′k(ρ)

2
∂µρδ(x− y2)∂µ

(
δ(x− y1)

)
δ(x− y3)δabφc(y3) +

+
Y ′k(ρ)

2
∂µρδ(x− y2)∂µ

(
δ(x− y3)

)
δ(x− y1)δacφb(y2) +

+
Y ′k(ρ)

2
∂µρδ(x− y2)∂µ

(
δ(x− y1)

)
δ(x− y3)δacφb(y2) +

+
Y ′k(ρ)

2
∂µρδ(x− y2)δ(x− y1)δ(x− y3)δbc∂µφa(x) +

+
Y ′′k (ρ)

2
∂µρδ(x− y2)δ(x− y1)δ(x− y3)∂µφa(x)φb(y2)φc(y3) +

+
Y ′k(ρ)

2
∂µρδ(x− y2)∂µ

(
δ(x− y1)

)
δ(y2 − y3)δbcφa(x) +

+
Y ′′k (ρ)

2
∂µρδ(x− y2)∂µ

(
δ(x− y1)

)
δ(x− y3)φa(x)φb(y2)φc(y3) +

+
Y ′k(ρ)

2
∂µρδ(x− y2)δ(x− y1)δ(y2 − y3)δab∂µφc(x) +

+
Y ′k(ρ)

2
∂µρδ(x− y1)∂µ

(
δ(x− y3)

)
δ(y1 − y2)δabφc(x) +

+
Y ′′k (ρ)

2
∂µρδ(x− y1)δ(x− y3)δ(x− y2)φa(y1)φb(y2)∂µφc(x) +

+
Y ′′k (ρ)

2
∂µρδ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y2)φa(y1)φb(y2)φc(x) +

+
Y ′k(ρ)

2
δ(x− y1)δ(x− y3)∂µ

(
δ(x− y2)

)
φa(y1)φb(x)∂µφ

c(x) +

+
Y ′k(ρ)

2
δ(x− y1)δ(x− y2)∂µ

(
δ(x− y3)

)
φa(y1)∂µφ

b(x)φc(x) +

+
Y ′k(ρ)

2
δ(x− y1)∂µ

(
δ(x− y2)

)
∂µ
(
δ(x− y3)

)
φa(y1)φb(x)φc(x) +

+
Y ′k(ρ)

2
∂µρδ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y2)δbcφa(x) +

+
Y ′k(ρ)

2
∂µρδ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)δbcφa(x) +
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+
Y ′k(ρ)

2
∂µρδ(x− y1)δ(x− y2)δ(x− y3)δac∂µφb(x) +

+
Y ′k(ρ)

2
∂µρδ(x− y1)∂µ

(
δ(x− y2)

)
δ(y1 − y3)δacφb(x) +

+
Y ′′k (ρ)

2
∂µρδ(x− y1)δ(x− y2)δ(x− y3)φa(y1)∂µφb(x)φc(y3) +

+
Y ′′k (ρ)

2
∂µρδ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)φa(y1)φb(x)φc(y3) +

+
Y ′′k (ρ)

4
∂µρ∂

µρδ(x− y1)δ(y1 − y2)δ(x− y3)δabφc(y3) +

+
Y ′′k (ρ)

4
∂µρ∂

µρδ(x− y1)δ(x− y2)δ(y1 − y3)δacφb(y2) +

+
Y ′′k (ρ)

4
∂µρ∂

µρδ(x− y1)δ(x− y2)δ(y2 − y3)δbcφa(y1) +

+
Y ′′′k (ρ)

4
∂µρ∂

µρδ(x− y1)δ(x− y2)δ(x− y3)φa(y1)φb(y2)φc(y3)

∣∣∣∣
φ̄

=

Yk(ρ)

2

[
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y2)

)
δ(x− y1)δacφb(x) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)δacφb(x) +

+ ∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)δabφc(x) +

+ ∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y2)δabφc(x) +

+ ∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y1)

)
δ(x− y3)δbcφa(x) +

+ ∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y1)

)
δ(x− y3)δbcφa(x)

]
+

+
Y ′k(ρ)

2

[
∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)φa(x)φb(x)φc(y3) +

+ ∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y3)

)
δ(x− y2)φa(x)φb(y2)φc(x) +

+ ∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y3)

)
δ(x− y1)φa(y1)φb(x)φc(x)

]
III order derivative in momentum space

ΓY
(3)(p1, p2, p3) = (A.22)

−
{
Yk(ρ)

[
p1p2φ

cδab + p2p3φ
aδbc + p3p1φ

bδca
]

+
Y ′k(ρ)

2

[
p1p2 + p2p3 + p3p1

]
φaφbφc

}
δ

(
3∑
i=1

pi

)
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A.3.4 IV order derivative

IV order derivative in direct space

δ4γY
δφa(y1)δφb(y2)δφc(y3)δφ(y4)

∣∣∣∣
φ̄

= (A.23)

Yk(ρ)

2
∂µ
(
δ(x− y4)

)
∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y3)δabδcd +

+
Yk(ρ)

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y4)δabδcd +

+
Yk(ρ)

2
∂µ
(
δ(x− y4)

)
∂µ
(
δ(x− y1)

)
δ(x− y3)δ(x− y2)δabδcd +

+
Yk(ρ)

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y4)δ(x− y2)δabδcd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y3)δ(x− y1)δ(x− y2)∂µφ

a(x)φb(y2)δcd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y1)δ(x− y4)δ(x− y2)∂µφ

a(x)φb(y2)δcd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y3)∂µ

(
δ(x− y1)

)
δ(x− y2)φa(x)φb(y2)δcd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y4)∂µ

(
δ(x− y1)

)
δ(x− y2)φa(x)φb(y2)δcd +

+
Yk(ρ)

2
∂µ
(
δ(x− y4)

)
∂µ
(
δ(x− y3)

)
δ(x− y2)δ(x− y1)δadδbc +

+
Yk(ρ)

2
∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y3)

)
δ(x− y2)δ(x− y4)δadδbc +

+
Yk(ρ)

2
∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y4)

)
δ(x− y1)δ(x− y3)δadδbc +

+
Yk(ρ)

2
∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)δ(x− y4)δadδbc +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y3)δ(x− y1)δ(x− y2)∂µφ

b(x)φc(y3)δad +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y3)δ(x− y4)δ(x− y2)∂µφ

b(x)φc(y3)δad +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)φb(x)φc(y3)δad +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y4)∂µ

(
δ(x− y2)

)
δ(x− y3)φb(x)φc(y3)δad +

+
Yk(ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y1)∂µ

(
δ(x− y4)

)
δ(x− y2)δacδbd +

+
Yk(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y3)∂µ

(
δ(x− y4)

)
δ(x− y2)δacδbd +
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+
Yk(ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y4)δacδbd +

+
Yk(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y3)∂µ

(
δ(x− y2)

)
δ(x− y4)δacδbd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y1)δ(x− y4)δ(x− y2)∂µφ

b(x)φd(y4)δac +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y3)δ(x− y4)δ(x− y2)∂µφ

b(x)φd(y4)δac +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y4)φb(x)φd(y4)δac +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y3)∂µ

(
δ(x− y2)

)
δ(x− y4)φb(x)φd(y4)δac +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y3)δ(x− y1)δ(x− y4)∂µφ

d(x)φc(y3)δab +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y3)∂µ

(
δ(x− y2)

)
δ(x− y1)φc(y3)φd(x)δab +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y3)δ(x− y2)δ(x− y4)∂µφ

d(x)φc(y3)δab +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y3)∂µ

(
δ(x− y1)

)
δ(x− y2)φc(y3)φd(x)δab +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y1)δ(x− y2)δ(x− y4)∂µφ

d(x)φb(y2)δac +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y2)φb(y2)φd(x)δac +

+
Y ′k(ρ)

2
δ(x− y4)δ(x− y3)∂µ

(
δ(x− y1)

)
δ(x− y2)φb(y2)∂µφd(x)δac +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y3)∂µ

(
δ(x− y1)

)
δ(x− y2)φb(y2)φd(x)δac +

+
Y ′k(ρ)

2
δ(x− y4)δ(y2 − y3)δ(x− y1)δ(x− y2)∂µφ

a(x)∂µφd(x)δbc +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(y2 − y3)δ(x− y1)δ(x− y2)∂µφ

a(x)φd(x)δbc +

+
Y ′′k (ρ)

2
δ(x− y4)δ(y2 − y3)δ(x− y1)δ(x− y2)∂µφ

a(x)∂µφd(x)φb(y2)φc(y3) +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y3)δ(x− y1)δ(x− y2)∂µφ

a(x)φd(x)φb(y2)φc(y3) +

+
Y ′k(ρ)

2
δ(x− y4)δ(y2 − y3)∂µ

(
δ(x− y1)

)
δ(x− y2)φa(x)∂µφd(x)δbc +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(y2 − y3)∂µ

(
δ(x− y1)

)
δ(x− y2)φa(x)φd(x)δbc +

+
Y ′′k (ρ)

2
δ(x− y4)δ(x− y3)∂µ

(
δ(x− y1)

)
δ(x− y2)φa(x)∂µφd(x)φb(y2)φc(y3) +
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+
Y ′′k (ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y3)∂µ

(
δ(x− y1)

)
δ(x− y2)φa(x)φd(x)φb(y2)φc(y3) +

+
Y ′k(ρ)

2
δ(x− y3)δ(x− y4)∂µ

(
δ(x− y2)

)
δ(x− y1)δab∂µφc(x)φd(y4) +

+
Y ′k(ρ)

2
δ(x− y3)δ(x− y4)∂µ

(
δ(x− y2)

)
δ(x− y1)δab∂µφc(x)φd(y4) +

+
1

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y4)δabφc(x)φd(y4)Y ′k(ρ)+

+
1

2
δ(x− y3)∂µ

(
δ(x− y1)

)
δ(x− y2)δ(x− y4)δab∂µφc(x)φd(y4)Y ′k(ρ)+

+
1

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y4)δabφc(x)φd(y4)Y ′k(ρ)+

+
1

2
δ(x− y3)∂µ

(
δ(x− y4)

)
δ(x− y2)δ(x− y1)δad∂µφc(x)φb(y2)Y ′k(ρ)+

+
1

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y4)

)
δ(x− y2)δ(x− y1)δadφc(x)φb(y2)Y ′k(ρ)+

+
1

2
δ(x− y3)∂µ

(
δ(x− y1)

)
δ(x− y2)δ(x− y4)δad∂µφc(x)φb(y2)Y ′k(ρ)+

+
1

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y4)δadφc(x)φb(y2)Y ′k(ρ)+

+
1

2
δ(x− y3)δ(x− y1)δ(x− y2)δ(y2 − y4)δbd∂µφc(x)∂µφ

a(x)Y ′k(ρ)+

+
1

2
∂µ
(
δ(x− y3)

)
δ(x− y1)δ(x− y2)δ(y2 − y4)δbdφc(x)∂µφ

a(x)Y ′k(ρ)+

+
1

2
δ(x− y3)δ(x− y1)δ(x− y2)δ(x− y4)δbdφb(y2)φd(y4)∂µφc(x)∂µφ

a(x)Y ′′k (ρ)+

+
1

2
∂µ
(
δ(x− y3)

)
δ(x− y1)δ(x− y2)δ(x− y4)φb(y2)φd(y4)φc(x)∂µφ

a(x)Y ′′k (ρ)+

+
1

2
δ(x− y3)∂µ

(
δ(x− y1)

)
δ(x− y2)δ(y2 − y4)δbd∂µφc(x)φa(x)Y ′k(ρ)+

+
1

2
∂µ
(
δ(x− y3)

)
δ(x− y1)δ(x− y2)δ(x− y4)φb(y2)φd(y4)φc(x)∂µφ

a(x)Y ′k(ρ)+

+
1

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(y2 − y4)δbdφc(x)φa(x)Y ′k(ρ)+

+
Y ′′k (ρ)

2
δ(x− y3)∂µ

(
δ(x− y1)

)
δ(x− y2)δ(x− y4)φa(x)∂µφ

c(x)φb(y2)φd(y4) +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y4)φa(x)φc(x)φb(y2)φd(y4) +

+
Y ′k(ρ)

2
δ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y2)δ(x− y4)∂µφ

a(x)φd(y4)δbc +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y4)φa(x)φd(y4)δbc +

+
Y ′k(ρ)

2
δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)δ(x− y4)∂µφ

a(x)φd(y4)δbc +
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+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y1)

)
δ(x− y3)δ(x− y4)φa(x)φd(y4)δbc +

+
Y ′k(ρ)

2
δ(x− y1)∂µ

(
δ(x− y4)

)
δ(x− y3)δ(x− y2)∂µφ

a(x)φc(y3)δbd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y4)

)
δ(x− y3)δ(x− y2)φa(x)φc(y3)δbd +

+
Y ′k(ρ)

2
δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)δ(x− y4)∂µφ

a(x)φc(y3)δbd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)δ(x− y4)φa(x)φc(y3)δbd +

+
Y ′k(ρ)

2
δ(x− y1)δ(x− y2)δ(x− y3)δ(y3 − y4)∂µφ

a(x)∂µφb(x)δcd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y3)δ(y3 − y4)φa(x)∂µφb(x)δcd +

+
Y ′′k (ρ)

2
δ(x− y1)δ(x− y2)δ(x− y3)δ(x− y4)∂µφ

a(x)∂µφb(x)φc(y3)φd(y4) +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y1)δ(x− y2)δ(x− y3)δ(x− y4)φa(x)∂µφb(x)φc(y3)φd(y4) +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y3)δ(y3 − y4)φb(x)∂µφa(x)δcd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y1)

)
δ(x− y3)δ(y3 − y4)φb(x)φa(x)δcd +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y3)δ(x− y4)∂µφa(x)φb(x)φc(y3)φd(y4) +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y1)

)
δ(x− y3)δ(x− y4)φa(x)φb(x)φc(y3)φd(y4) +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y3)δ(y3 − y4)∂µρδabδcd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y3)δ(y3 − y4)∂µρδabδcd +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y3)δ(x− y4)∂µρδabφc(y3)φd(y4) +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y3)δ(x− y4)∂µρδabφc(y3)φd(y4) +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y1)δ(x− y2)δ(y2 − y3)∂µρδadδbc +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y4)δ(x− y2)δ(y2 − y3)∂µρδadδbc +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y2)δ(x− y3)δ(x− y1)∂µρδadφb(y2)φc(y3) +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y3)δ(x− y4)∂µρδadφb(y2)φc(y3) +
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+
Y ′k(ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y1)δ(x− y2)δ(y2 − y4)∂µρδacδbd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y3)δ(x− y2)δ(y2 − y4)∂µρδacδbd +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y2)δ(x− y1)δ(x− y4)∂µρδacφb(y2)φd(y4) +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y3)δ(x− y4)∂µρδacφb(y2)φd(y4) +

+
Y ′′k (ρ)

2
δ(x− y1)δ(x− y2)δ(y2 − y3)δ(x− y4)∂µρδbc∂µφ

a(x)φd(y4) +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(y2 − y3)δ(x− y4)∂µρδbcφa(x)φd(y4) +

+
Y ′′k (ρ)

2
δ(x− y1)δ(x− y2)δ(x− y3)δ(y2 − y4)∂µρδbd∂µφ

a(x)φc(y3) +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y3)δ(y2 − y4)∂µρδbdφa(x)φc(y3) +

+
Y ′′k (ρ)

2
δ(x− y1)δ(x− y2)δ(x− y3)δ(y3 − y4)∂µρδcd∂µφ

a(x)φb(y2) +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y3)δ(y3 − y4)∂µρδcdφa(x)φb(y2) +

+
Y ′′′k (ρ)

2
∂µρδ(x− y2)δ(x− y1)δ(x− y3)δ(x− y4)∂µφa(x)φb(y2)φc(y3)φd(y4) +

+
Y ′′′k (ρ)

2
∂µρδ(x− y2)∂µ

(
δ(x− y1)

)
δ(x− y3)δ(x− y4)φa(x)φb(y2)φc(y3)φd(y4) +

+
Y ′′k (ρ)

2
∂µρδ(y1 − y2)δ(x− y1)δ(x− y3)δ(x− y4)∂µφd(x)φc(y3)δab +

+
Y ′′k (ρ)

2
∂µρδ(x− y2)δ(x− y1)δ(x− y3)δ(x− y4)∂µφd(x)φb(y2)δac +

+
Y ′′′k (ρ)

2
∂µρδ(x− y2)δ(x− y1)δ(x− y3)δ(x− y4)∂µφd(x)φa(y1)φb(y2)φc(y3) +

+
Y ′′k (ρ)

2
∂µρδ(y1 − y2)δ(x− y1)δ(x− y3)∂µ

(
δ(x− y4)

)
φd(x)δabφc(y3) +

+
Y ′′k (ρ)

2
∂µρδ(x− y2)δ(x− y1)δ(x− y3)∂µ

(
δ(x− y4)

)
φd(x)δacφb(y2) +

+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)δ(x− y3)δ(x− y4)∂µφc(x)∂µφ

d(x)δab +

+
Y ′′k (ρ)

2
δ(x− y2)δ(x− y1)δ(x− y3)δ(x− y4)φa(y1)φb(y2)∂µφc(x)∂µφ

d(x) +

+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)δ(x− y3)∂µ

(
δ(x− y4)

)
∂µφc(x)φd(x)δab +

+
Y ′′k (ρ)

2
δ(x− y2)δ(x− y1)δ(x− y3)∂µ

(
δ(x− y4)

)
φa(y1)φb(y2)∂µφc(x)φd(x) +
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+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y4)φc(x)∂µφ

d(x)δab +

+
Y ′′k (ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y4)φc(x)∂µφ

d(x)φa(y1)φb(y2) +

+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y3)

)
∂µ
(
δ(x− y4)

)
φc(x)φd(x)δab +

+
Y ′′k (ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y3)

)
∂µ
(
δ(x− y4)

)
φa(y1)φb(y2)φc(x)φd(x) +

+
Y ′k(ρ)

2
∂µρδ(y1 − y2)δ(x− y1)δ(x− y3)∂µ

(
δ(x− y4)

)
δabδcd +

+
Y ′′k (ρ)

2
∂µρδ(y1 − y2)δ(x− y1)δ(x− y3)∂µ

(
δ(x− y4)

)
φa(y1)φb(y2)δcd +

+
Y ′k(ρ)

2
∂µρδ(y1 − y2)δ(x− y1)δ(x− y4)∂µ

(
δ(x− y3)

)
δabδcd +

+
Y ′′k (ρ)

2
∂µρδ(x− y2)δ(x− y1)δ(x− y4)∂µ

(
δ(x− y3)

)
φa(y1)φb(y2)δcd +

+
Y ′′k (ρ)

2
∂µρδ(y1 − y2)δ(x− y1)δ(x− y4)δ(x− y3)∂µφ

c(x)φd(y4)δab +

+
Y ′′k (ρ)

2
∂µρδ(y1 − y2)δ(x− y1)δ(x− y4)∂µ

(
δ(x− y3)

)
φc(x)φd(y4)δab +

+
Y ′′k (ρ)

2
∂µρδ(x− y2)δ(x− y1)δ(y1 − y4)δ(x− y3)∂µφ

c(x)φb(y2)δad +

+
Y ′′k (ρ)

2
∂µρδ(x− y2)δ(x− y1)δ(y1 − y4)∂µ

(
δ(x− y3)

)
φc(x)φb(y2)δad +

+
Y ′′k (ρ)

2
∂µρδ(x− y2)δ(x− y1)δ(y2 − y4)δ(x− y3)∂µφ

c(x)φa(y1)δbd +

+
Y ′′k (ρ)

2
∂µρδ(x− y2)δ(x− y1)δ(y2 − y4)∂µ

(
δ(x− y3)

)
φc(x)φa(y1)δbd +

+
Y ′′′k (ρ)

2
∂µρδ(x− y2)δ(x− y1)δ(x− y4)∂µ

(
δ(x− y3)

)
φa(x)φc(x)φb(y2)φd(y4) +

+
Y ′′′k (ρ)

2
∂µρδ(x− y2)δ(x− y1)δ(x− y4)δ(x− y3)φa(x)∂µφ

c(x)φb(y2)φd(y4) +

+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y4)

)
δ(x− y3)∂µφ

c(x)φa(y1)δbd +

+
Y ′k(ρ)

2
δ(x− y4)δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)∂µφ

c(x)φa(y1)δbd +

+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y4)

)
∂µ
(
δ(x− y3)

)
φc(x)φa(y1)δbd +

+
Y ′k(ρ)

2
δ(x− y4)δ(x− y1)∂µ

(
δ(x− y2)

)
∂µ
(
δ(x− y3)

)
φc(x)φa(y1)δbd +

+
Y ′k(ρ)

2
δ(x− y4)δ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y2)∂µφ

d(x)φa(y1)δbc +
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+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y4)

)
∂µ
(
δ(x− y3)

)
φd(x)φa(y1)δbc +

+
Y ′k(ρ)

2
δ(x− y4)δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)∂µφ

d(x)φa(y1)δbc +

+
Y ′k(ρ)

2
δ(x− y3)δ(x− y1)∂µ

(
δ(x− y4)

)
∂µ
(
δ(x− y2)

)
φd(x)φa(y1)δbc +

+
Y ′k(ρ)

2
δ(x− y4)δ(x− y1)δ(x− y2)δ(x− y3)∂µφ

d(x)∂µφ
b(x)δac +

+
Y ′′k (ρ)

2
δ(x− y4)δ(x− y1)δ(x− y2)δ(x− y3)∂µφ

d(x)∂µφ
b(x)φa(y1)φc(y3) +

+
Y ′k(ρ)

2
δ(x− y4)δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)∂µφ

d(x)φb(x)δac +

+
Y ′′k (ρ)

2
δ(x− y4)δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)∂µφ

d(x)φb(x)φa(y1)φc(y3) +

+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y4)

)
δ(x− y3)∂µφ

b(x)φd(x)δac +

+
Y ′′k (ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y4)

)
δ(x− y3)∂µφ

b(x)φd(x)φa(y1)φc(y3) +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)∂µ

(
δ(x− y4)

)
δ(x− y3)φb(x)φd(x)δac +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)∂µ

(
δ(x− y4)

)
δ(x− y3)φb(x)φd(x)φa(y1)φc(y3) +

+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y4)

)
δ(x− y3)∂µφ

b(x)φa(y1)δcd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)∂µ

(
δ(x− y4)

)
δ(x− y3)φb(x)φa(y1)δcd +

+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y4)∂µφ

b(x)φa(y1)δcd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y4)φb(x)φa(y1)δcd +

+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)δ(x− y3)δ(y1 − y4)∂µφ

b(x)∂µφ
c(x)δad +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y3)δ(y1 − y4)φb(x)∂µφ

c(x)δad +

+
Y ′′k (ρ)

2
δ(x− y2)δ(x− y1)δ(x− y3)δ(y1 − y4)∂µφ

b(x)∂µφ
c(x)φa(y1)φd(y4) +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y3)δ(y1 − y4)φb(x)∂µφ

c(x)φa(y1)φd(y4) +

+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y3)

)
δ(y1 − y4)∂µφ

b(x)φc(y3)δad +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)∂µ

(
δ(x− y3)

)
δ(y1 − y4)φb(x)φc(y3)δad +
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+
Y ′′k (ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y3)

)
δ(y1 − y4)∂µφ

b(x)φc(y3)φa(y1)φd(y4) +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y4)φb(x)φc(y3)φa(y1)φd(y4) +

+
Y ′k(ρ)

2
∂µρδ(x− y2)δ(x− y1)∂µ

(
δ(x− y4)

)
δ(y1 − y3)δacδbd +

+
Y ′k(ρ)

2
∂µρδ(x− y4)δ(x− y1)∂µ

(
δ(x− y2)

)
δ(y1 − y3)δacδbd +

+
Y ′′k (ρ)

2
∂µρδ(x− y2)δ(x− y1)∂µ

(
δ(x− y4)

)
δ(x− y3)φa(y1)φc(y3)δbd +

+
Y ′′k (ρ)

2
∂µρδ(x− y4)δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)φa(y1)φc(y3)δbd +

+
Y ′k(ρ)

2
∂µρδ(x− y4)δ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y2)δadδbc +

+
Y ′′k (ρ)

2
∂µρδ(x− y4)δ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y2)φa(y1)φd(y4)δbc +

+
Y ′k(ρ)

2
∂µρδ(y1 − y4)δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)δadδbc +

+
Y ′′k (ρ)

2
∂µρδ(x− y4)δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)φa(y1)φd(y4)δbc +

+
Y ′′k (ρ)

2
∂µρδ(x− y4)δ(x− y1)δ(x− y2)δ(x− y3)∂µφ

b(x)φd(y4)δad +

+
Y ′′k (ρ)

2
∂µρδ(x− y4)δ(x− y1)δ(x− y2)δ(x− y3)∂µφ

b(x)φc(y3)δad +

+
Y ′′k (ρ)

2
∂µρδ(x− y4)δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)φb(x)φd(y4)δac +

+
Y ′′k (ρ)

2
∂µρδ(x− y4)δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)φb(x)φc(y3)δad +

+
Y ′′k (ρ)

2
∂µρδ(y3 − y4)δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)φb(x)φa(y1)δcd +

+
Y ′′′k (ρ)

2
∂µρδ(x− y4)δ(x− y1)δ(x− y2)δ(x− y3)∂µφ

b(x)φa(y1)φc(y3)φd(y4) +

+
Y ′′k (ρ)

4
∂µρ∂µρδ(y3 − y4)δ(x− y1)δ(x− y2)δ(x− y3)δabδcd +

+
Y ′′′k (ρ)

4
∂µρ∂µρδ(x− y4)δ(x− y1)δ(x− y2)δ(x− y3)δabφc(y3)φd(y4) +

+
Y ′′k (ρ)

4
∂µρ∂µρδ(x− y4)δ(x− y1)δ(x− y2)δ(y2 − y3)δadδbc +

+
Y ′′′k (ρ)

4
∂µρ∂µρδ(y1 − y4)δ(x− y1)δ(x− y2)δ(x− y3)δadφb(y2)φc(y3) +

+
Y ′′k (ρ)

4
∂µρ∂µρδ(y2 − y4)δ(x− y1)δ(x− y2)δ(y1 − y3)δacδbd +
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+
Y ′′′k (ρ)

4
∂µρ∂µρδ(x− y4)δ(x− y1)δ(x− y2)δ(y1 − y3)φb(y2)φd(y4)δac +

+
Y ′′′k (ρ)

4
∂µρ∂µρδ(x− y4)δ(x− y1)δ(x− y2)δ(y2 − y3)φa(y1)φd(y4)δbc +

+
Y ′′′k (ρ)

4
∂µρ∂µρδ(y2 − y4)δ(x− y1)δ(x− y2)δ(x− y3)φa(y1)φc(y3)δbd +

+
Y ′′′k (ρ)

4
∂µρ∂µρδ(y3 − y4)δ(x− y1)δ(x− y2)δ(x− y3)φa(y1)φb(y2)δcd +

+
Y ′′′′k (ρ)

4
∂µρ∂

µρδ(x− y1)δ(x− y2)δ(x− y3)δ(x− y4)φa(y1)φb(y2)φc(y3)φd(y4)

∣∣∣∣
φ̄

=

Yk(ρ)

2
∂µ
(
δ(x− y4)

)
∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y3)δabδcd +

+
Yk(ρ)

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y4)δabδcd +

+
Yk(ρ)

2
∂µ
(
δ(x− y4)

)
∂µ
(
δ(x− y1)

)
δ(x− y3)δ(x− y2)δabδcd +

+
Yk(ρ)

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y4)δ(x− y2)δabδcd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y3)∂µ

(
δ(x− y1)

)
δ(x− y2)φa(x)φb(y2)δcd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y4)∂µ

(
δ(x− y1)

)
δ(x− y2)φa(x)φb(y2)δcd +

+
Yk(ρ)

2
∂µ
(
δ(x− y4)

)
∂µ
(
δ(x− y3)

)
δ(x− y2)δ(x− y1)δadδbc +

+
Yk(ρ)

2
∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y3)

)
δ(x− y2)δ(x− y4)δadδbc +

+
Yk(ρ)

2
∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y4)

)
δ(x− y1)δ(x− y3)δadδbc +

+
Yk(ρ)

2
∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)δ(x− y4)δadδbc +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y3)φb(x)φc(y3)δad +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y4)∂µ

(
δ(x− y2)

)
δ(x− y3)φb(x)φc(y3)δad +

+
Yk(ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y1)∂µ

(
δ(x− y4)

)
δ(x− y2)δacδbd +

+
Yk(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y3)∂µ

(
δ(x− y4)

)
δ(x− y2)δacδbd +

+
Yk(ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y4)δacδbd +

+
Yk(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y3)∂µ

(
δ(x− y2)

)
δ(x− y4)δacδbd +
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+
Y ′k(ρ)

2
∂µ
(
δ(x− y3)

)
δ(x− y1)∂µ

(
δ(x− y2)

)
δ(x− y4)φb(x)φd(y4)δac +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
δ(x− y3)∂µ

(
δ(x− y2)

)
δ(x− y4)φb(x)φd(y4)δac +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y3)∂µ

(
δ(x− y2)

)
δ(x− y1)φc(y3)φd(x)δab +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y3)∂µ

(
δ(x− y1)

)
δ(x− y2)φc(y3)φd(x)δab +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y2)φb(y2)φd(x)δac +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y3)∂µ

(
δ(x− y1)

)
δ(x− y2)φb(y2)φd(x)δac +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y4)

)
δ(x− y3)∂µ

(
δ(x− y1)

)
δ(x− y2)φa(x)φd(x)φb(y2)φc(y3) +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y4)

)
δ(y2 − y3)∂µ

(
δ(x− y1)

)
δ(x− y2)φa(x)φd(x)δbc +

+
1

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y2)

)
δ(x− y1)δ(x− y4)δabφc(x)φd(y4)Y ′k(ρ)+

+
1

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y4)δabφc(x)φd(y4)Y ′k(ρ)+

+
1

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y4)δadφc(x)φb(y2)Y ′k(ρ)+

+
1

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y4)δadφc(x)φb(y2)Y ′k(ρ)+

+
1

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(y2 − y4)δbdφc(x)φa(x)Y ′k(ρ)+

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y4)φa(x)φc(x)φb(y2)φd(y4) +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y3)

)
∂µ
(
δ(x− y1)

)
δ(x− y2)δ(x− y4)φa(x)φd(y4)δbc +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y1)

)
δ(x− y3)δ(x− y4)φa(x)φd(y4)δbc +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y4)

)
δ(x− y3)δ(x− y2)φa(x)φc(y3)δbd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y1)

)
∂µ
(
δ(x− y2)

)
δ(x− y3)δ(x− y4)φa(x)φc(y3)δbd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y1)

)
δ(x− y3)δ(y3 − y4)φb(x)φa(x)δcd +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y2)

)
∂µ
(
δ(x− y1)

)
δ(x− y3)δ(x− y4)φa(x)φb(x)φc(y3)φd(y4) +

+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y3)

)
∂µ
(
δ(x− y4)

)
φc(x)φd(x)δab +

+
Y ′′k (ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y3)

)
∂µ
(
δ(x− y4)

)
φa(y1)φb(y2)φc(x)φd(x) +
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+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y4)

)
∂µ
(
δ(x− y3)

)
φc(x)φa(y1)δbd +

+
Y ′k(ρ)

2
δ(x− y2)δ(x− y1)∂µ

(
δ(x− y4)

)
∂µ
(
δ(x− y3)

)
φd(x)φa(y1)δbc +

+
Y ′k(ρ)

2
δ(x− y3)δ(x− y1)∂µ

(
δ(x− y4)

)
∂µ
(
δ(x− y2)

)
φd(x)φa(y1)δbc +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)∂µ

(
δ(x− y4)

)
δ(x− y3)φb(x)φd(x)δac +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y4)φb(x)φa(y1)δcd +

+
Y ′k(ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)∂µ

(
δ(x− y3)

)
δ(y1 − y4)φb(x)φc(y3)δad +

+
Y ′′k (ρ)

2
∂µ
(
δ(x− y2)

)
δ(x− y1)∂µ

(
δ(x− y3)

)
δ(x− y4)φb(x)φc(y3)φa(y1)φd(y4) +

+
Y ′′k (ρ)

2
δ(x− y3)δ(x− y1)∂µ

(
δ(x− y2)

)
∂µ
(
δ(x− y4)

)
φc(y3)φd(x)φa(y1)φb(x)

IV order derivative in momentum space

Γ
(4)
k (p1, p2, p3, p4) = (A.24)

= −
{Yk(ρ)

2

[
p2 · p4(δabδcd + δadδbc) + p2 · p3(δabδcd + δacδbd)+

+p1 · p3(δabδcd + δadδbc) + p4 · p1(δabδcd + δacδbd)+

+p2 · p1(δadδbc + δacδbd) + p3 · p4(δadδbc + δacδbd)
]
+

+
Y ′k(ρ)

2

[
p1 · p4(φaφbδcd + φaφcδbd + φbφdδac + φcφdδab + φaφdδbc)+

+p3 · p1(φcφdδab + φaφbδcd + φcφaδbd + φcφbδad + φaφdδbc)+

+p1 · p2(φaφdδbc + φaφcδbd + φbφaδcd + φbφdδac + φbφcδad)+

+p2 · p4(φcφdδab + φbφcδad + φdφaδbc + φbφdδac + φbφaδcd)+

+p3 · p4(φcφdδab + φcφaδbd + φdφaδbc + φbφdδac + φcφdδab)+

+p2 · p3(φcφdδab + φbφdδac + φbφaδcd + φbφcδad + φaφcδdb)
]
+

+
Y ′′k (ρ)

2

[
p1 · p2 + p2 · p3 + p3 · p4 + p4 · p1 + p1 · p3 + p4 · p2

]
φaφbφcφd

}
δ

(
4∑
i=1

pi

)



Appendix B

Proper vertices in momentum space

Thanks to the results obtained in Appendix A, we finally have all the elements we need to define
the 2-points, the 3-points and the 4-points proper vertices in momentum space.

B.1 2-point proper vertex

Putting togheter equations (A.4), (A.12) and (A.20) we obtain Γ
(2)
k , the inverse of the exact propa-

gator:

δ2Γk(φ)

δφa(p1)δφb(p2)
=

{[
U ′k(ρ)δab + U ′′k (ρ)φaφb

]
−
[Yk(ρ)

2
φaφb + Zk(ρ)δab

]
p1p2

}
δ

(
2∑
i=1

pi

)
(B.1)

B.2 3-point proper vertex

Putting togheter equations (A.6), (A.14) and (A.22) we obtain the three points proper vertex:

δ3Γk(φ)

δφa(p1)δφb(p2)δφc(p3)
= (B.2)

{[(
δabφc + δacφb + δbcφa

)
U ′′k (ρ) + φaφbφcU ′′′k (ρ)

]
− Z ′k(ρ)

[
p1 · p2δ

abφc + p2 · p3δ
bcφa + p3 · p1δ

acφb
]
−

−Yk(ρ)
[
p1 · p2φ

cδab + p2 · p3φ
aδbc + p3 · p1φ

bδca
]
− Y ′k(ρ)

2

[
p1 · p2 + p2 · p3 + p3 · p1

]
φaφbφc

}
δ

(
3∑
i=1

pi

)

B.3 4-point proper vertex

Finally, putting togheter equations (A.8), (A.16) and (A.24) we obtain the three points proper
vertex:

δ4Γk(φ)

δφa(p1)δφb(p2)δφc(p3)δφd(p4)
=
[
δabδcd + δadδbc + δacδbd

]
U ′′k (ρ) + φaφbφcφdU ′′′′k (ρ) (B.3)

[
δabφcφd + δadφbφc + δacφbφd + δbcφaφd + δbdφaφc + δcdφaφb

]
U ′′′k (ρ)+
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−

{
Z ′k(ρ)

[
δabδcdp1 · p2 + δadδbcp1 · p4 + δacδbdp1 · p3 + δabδcdp3 · p4 + δbdδacp2 · p4 + δbcδadp2 · p3

]
+

+Z ′′k (ρ)
[
δabφcφdp1 ·p2 +δadφbφcp1 ·p4 +δacφbφdp1 ·p3 +δcdφaφbp3 ·p4 +δbdφaφcp2 ·p4 +δbcφaφdp2 ·p3

]
+

+
Yk(ρ)

2

[
p2 · p4(δabδcd + δadδbc) + p2 · p3(δabδcd + δacδbd)+

+p1 · p3(δabδcd + δadδbc) + p4 · p1(δabδcd + δacδbd)+

+p2 · p1(δadδbc + δacδbd) + p3 · p4(δadδbc + δacδbd)
]
+

+
Y ′k(ρ)

2

[
p1 · p4(φaφbδcd + φaφcδbd + φbφdδac + φcφdδab + φaφdδbc)+

+p3 · p1(φcφdδab + φaφbδcd + φcφaδbd + φcφbδad + φaφdδbc)+

+p1 · p2(φaφdδbc + φaφcδbd + φbφaδcd + φbφdδac + φbφcδad)+

+p2 · p4(φcφdδab + φbφcδad + φdφaδbc + φbφdδac + φbφaδcd)+

+p3 · p4(φcφdδab + φcφaδbd + φdφaδbc + φbφdδac + φcφdδab)+

+p2 · p3(φcφdδab + φbφdδac + φbφaδcd + φbφcδad + φaφcδdb)
]
+

+
Y ′′k (ρ)

2

[
p1 · p2 + p2 · p3 + p3 · p4 + p4 · p1 + p1 · p3 + p4 · p2

]
φaφbφcφd

}
δ

(
4∑
i=1

pi

)



Appendix C

Threshold functions

In this appendix I will define the objects known in the literature as threshold functions, which will
allow us to express in a more compact and elegant way the flow equations for the relevant observable of
the O(N) model, Uk(ρ), Zk(ρ) and Yk(ρ).

For our model three different types of threshold functions are defined:

1.

 LDmn = −
∫ ∞

0

dy∂̃y

[
y
D
2 −1(g⊥(y))m(g‖(y))n

]
2.

MD
mn = −

∫ ∞
0

dy∂̃y

[
y
D
2 (g′⊥(y))2)(g⊥(y))m−4(g‖(y))n

]
3.

M̃
D

mn = −
∫ ∞

0

dy∂̃y

[
y
D
2 (g′‖(y))2)(g⊥(y))m(g‖(y))n−4

]
4.

ND
mn =

∫ ∞
0

dy∂̃y

[
y
D
2 g′⊥(y)(g⊥(y))m−2(g‖(y))n

]
5.

Ñ
D

mn =

∫ ∞
0

dy∂̃y

[
y
D
2 g′‖(y)(g‖(y))m−2(g⊥(y))n

]
6.

Qd,αn,m =
n− 2

2D
MD+2α
n+1,m +

2m

D

(
MD+2α
n,m+1 +ND+2α

n,m+1

)
− 2α

D
ND+2α−2
n,m

7.

Q̃d,αn,m =
n− 2

2D
M̃D+2α
n+1,m +

2m

D

(
M̃D+2α
n,m+1 + ÑD+2α

n,m+1

)
− 2α

D
ÑD+2α−2
n,m

Where I used the definitions of the longitudinal and trasversal projections of the dimensionless exact
propagators, that I recall here:

g⊥(y) =
1

u′k(ρ̃) + [zk(ρ̃) + rk(y)]y

g‖(y) =
1

u′k(ρ̃) + 2ρ̃u′′k(ρ̃) + [zk(ρ̃) + ρ̃Yk(ρ̃) + rk(y)]y
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The derivative ∂̃y is an object, sometimes used in literature (see, for example, [28] or [32]) that acts as
a “derivative” on the renormalized cutoff function rk(y), giving the result:

∂̃yr(y) = −(2y∂y + ηk)r(y)

and leave invariant the other y-dependent observables in the integrand of the threshold functions.
The definitions of the threshold functions, despite its advantages, presents some difficulty when

the integrands of these functions has to be explicitly calculated using a numerical routine, due to the
definition of ∂̃y. In order to circumvent it, a wide used trick is to give two different names to y, so it
will be either called y or ỹ. We then define a function r(y, ỹ) such that:

1.
r(y, ỹ)|ỹ=y = r(y)

2.
∂ỹr(y, ỹ) = ∂̃yr(y) = −(2y∂y + ηk)r(y)

3.
∂yr(y, ỹ) = ∂yr(y)



Appendix D

Conventions and formulas for the
gravitational coupling

In this appendix I will expose some definition and I will derive some formulas useful in order to fully
understand the calculations done in the fifth chapter of this thesis.

D.1 York decomposition

The York decomposition is an useful way to decompose symmetric traceless two index tensor h̃µν :

h̃µν = hTT µν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄νσ −
1

d
ḡµν∇̄2σ +

h

d
ḡµν , (D.1)

where hTT µν is a two index tensor which satisfies:

∇̄µhTT µν = 0 (D.2)

D.2 Calculation of
√
g

In order to slit the full spacetime metric gµρ in a fixed background ḡµρ and a quantum fluctuation,
I have used the following exponential parametrization:

gµν = ḡµρ(e
h)ρν (D.3)

following what has been done in some recent papers (see, for example, [?], [?] and [?]). The background
metric ḡ is the one that will be used to raise and lower indices, so we can define:

hµν = ḡµρh
ρ
ν

that reveals to be a symmetric tensor.
The full metric is thus expressed ad a power series of the quantum fluctuation tensor hµν , in the

following way:

gµν = ḡµν + hµν +
1

2
hµλh

λ
ν + . . . (D.4)

gµν = ḡµν − hµν +
1

2
hµλhλ

ν + . . . (D.5)
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We note that here both the covariant and the contravariant metrics are nonpolynomial in the quantum
fluctuation, in contrast to what happens using the usual linear split:

gµν = ḡµν + hµν

The linear terms are the same as in the linear parametrization, some differences appears at the second
order of the expansion.

Another significant difference is that, due to the formula:

det eh = etrh (D.6)

only the traceless part of h enters in the definition of the determinant of the full metric, at all orders.
For which it’s convenient to split the fluctuation tensor hµν into a traceless part h̃ and a pure trace

part:

hµν = h̃µν +
h

d
δµν (D.7)

where I have used the notation Trh ≡ h. Then the determinant of the full metric can be expressed as
a power series of the trace of the fluctuation:

√
g = e

h
2
√
ḡ =
√
ḡ

(
1 +

h

2
+
h2

8
+ . . .

)
. (D.8)

where I have indicated with ḡ the determinant of the background metric.

D.3 Hessian of a scalar O(N) field coupled to gravity

In this section I will show explicitly the procedure that leads to the expandsion of the effective
average action up to the second order in the fluctuations I used in order to find the Hessian of the
model.

I recall the form we have hypothesized for the effective action (D.9):

Γk[φ, g] =

∫
ddx
√
g

(
U(ρ) +

1

2
ḡµν∂µφ

a∂νφa − F (ρ)R

)
(D.9)

First of all I will obtain the expansion of the Ricci scalar R. For the Christoffel symbols we have:

Γ̂αµν = Γ̄αµν + Γ̂α(1)
µν + Γ̂α(2)

µν , (D.10)

where

Γ̂α(1)
µν =

1

2

(
∇̄νhαµ + ∇̄µhαν − ∇̄αhµν

)
, (D.11)

Γ̂α(2)
µν = −1

2
hαβ(∇̄νhµβ + ∇̄µhνβ − ∇̄βhµν) (D.12)

+
1

4

(
∇̄µ(hαλhλν) + ∇̄ν(hαλhλµ)− ∇̄α(hµ

λhλν)
)

The Ricci curvature tensor is given by:

Rµνµσ = ∂µΓµσν − ∂σΓµµν + ΓµµλΓλσν − ΓµσλΓλµν (D.13)
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so, substituting the equations (D.13),(D.11) and (D.10) into (D.13), the expression of the Ricci tensor
at the second order in hµν reads:

R̂νσ = R̂µν
µ
σ = R̄µν

µ
σ + R̂(1)

µν
µ
σ + R̂(2)

µν
µ
σ, (D.14)

where
R̂(1)
µν

µ
σ = ∇̄µΓ̂(1)µ

νσ − ∇̄ν Γ̂(1)µ
µσ (D.15)

R̂(2)
µν

µ
σ = ∇̄µΓ̂(2)µ

νσ − ∇̄ν Γ̂(2)µ
µσ + [Γ̂(1)

µ , Γ̂(1)
ν ]µσ . (D.16)

Finally one can combine the expansion of
√
g with that of R and integrate over spacetime.

We can then rewrite, up to an inifluent total derivative term, the second order terms in the expansion
of the Hilbert action in the following way:∫

dDx
√
ḡ
[ 1

4
hµν∇̄2hµν − 1

2
hµν∇̄µ∇̄ρhρν +

1

2
h∇̄µ∇̄νhµν −

1

4
h∇̄2h+

+
1

2
R̄µρνσh

µνhρσ − 1

2
R̄µνh

µνh+
1

8
R̄h2

]
(D.17)

Now, using the York decomposition on the metric and using the following relations, which hold on the
sphere Sd:∫

dx
√
ḡ hµν∇̄2hµν =

∫
dx
√
ḡ
[
hTT µν∇̄2hTT

µν − 2ξµ

(
∇̄2 +

R̄

d

)(
∇̄2 +

D + 1

D(D − 1)
R̄

)
ξµ +

+
D − 1

D
σ∇̄2

(
∇̄2 +

2R̄

D − 1

)(
∇̄2 +

R̄

D − 1

)
σ +

1

D
h∇̄2h

]
,∫

dx
√
ḡ hµν∇µ∇ρhρν =

∫
dx
√
ḡ
[
− ξµ

(
∇̄2 +

R̄

D

)2

ξµ +
(D − 1)2

D2
σ∇̄2

(
∇̄2 +

R̄

D − 1

)2

σ +

+
2(D − 1)

D2
h∇̄2

(
∇̄2 +

R̄

D − 1

)
σ +

1

D2
(h)∇̄2h

]
,∫

dx
√
ḡ hµνh

µν =

∫
dx
√
ḡ
[
hTT µνh

TT µν + 2ξµ

(
−∇̄2 − R̄

D

)
ξµ +

+
D − 1

D
σ∇̄2

(
∇̄2 +

R̄

D − 1

)
σ +

1

D
h2
]
. (D.18)

Collecting all terms we can rewrite the quadratic effective action in terms of the independent fields
hTT , ξ, σ, h and δφ:∫

dx
√
ḡ

[
F (φ̄)

(
1

4
hTT µν

(
−∇̄2 +

2R̄

D(D − 1)

)
hTT

µν − (D − 1)(D − 2)

4D2
σ′
(
−∇̄2

)
σ′

− (D − 1)(D − 2)

2D2
h

√
(−∇̄2)

(
−∇̄2 − R̄

D − 1

)
σ′ − (D − 1)(D − 2)

h

2D

(
−∇̄2 +

(D − 2)R̄

2(D − 1)

)
h

2D

)

−F ′(φ̄)
D − 1

D
δφ

(√
(−∇̄2)

(
−∇̄2 − R̄

D − 1

)
σ′ + 2D

(
−∇̄2 +

(D − 2)R̄

2(D − 1)

)
h

2D

)

+
1

2
δφ(−∇̄2 + V ′′(φ̄)− F ′′(φ̄)R̄)δφ+

1

2
V ′(φ̄)hδφ+

1

8
V (φ̄)h

]
(D.19)

We note that the kinetic operator of the h field is the conformal scalar operator.
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D.4 Transformation properties

In this section I will discute the behavior of the metric under gauge transformation. Under an
infinitesimal diffeomorphism ε, the metric transformation is given by the Lie derivative:

δεgµν = Lεgµν ≡ ερ∂ρgµν + gµρ∂νε
ρ + gνρ∂µε

ρ . (D.20)

Now we have to define the transformations of ḡ and h in such a way that the full metric defined in (D.3)
transforms according to (D.20). The simplest one is the background transformation. If we treat ḡ and
h as tensors under δε:

δ(B)
ε ḡµν = Lεḡµν ; δ(B)

ε hµν = Lεhµν . (D.21)

then we have also:
δ(B)
ε (eh)µν = Lε(eh)µν (D.22)

and (D.20) follows.
The “quantum” gauge transformation of h is defined so as to reproduce (D.20) when the background

metric ḡ is fixed:
δ(Q)
ε ḡµν = 0 ; ḡµρδ

(Q)
ε (eh)ρν = Lεgµν . (D.23)

From the properties of the Lie derivative we obtain:

Lεgµν = Lεḡµρ(eh)ρν + ḡµρLε(eh)ρν = (∇̄ρεµ + ∇̄µερ)(eh)ρν + gµλ(e−h)λρLε(eh)ρν (D.24)

and we find:
(e−hδ(Q)

ε eh)µν = (e−hLεeh)µν + (e−h)µρ(∇̄ρεσ + ∇̄σερ)(eh)σν (D.25)

Expanding the latter expression for small values of the quantum fluctuation h the result we obtain is:

δ(Q)
ε hµν = ∇̄µεν + ∇̄νεµ + Lεhµν + [Lεḡ, h]µν +O(εh2) . (D.26)
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