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Sommario
Lo scopo di questo lavoro è cercare un’evidenza quantitativa a supporto dell’idea idea che
la nonlinearità sia una risorsa per generare nonclassicità. Ci si concentrerà su sistemi uni-
dimensionali bosonici, cercando soprattutto di connettere la nonlinearità di un oscillatore
anarmonico, definito dalla forma del suo potenziale, alla nonclassicità del relativo ground
state.
Tra le numerose misure di nonclassicità esistenti, verranno impiegate il volume della parte

negativa della funzione di Wigner e l’entanglement potential, ovvero la misura dell’entan-
glement prodotto dallo stato dopo il passaggio attraverso un beam splitter bilanciato avente
come altro stato in ingresso il vuoto. La nonlinearità di un potenziale verrà invece carat-
terizzata studiando alcune proprietà del suo ground state, in particolare se ne misurerà la
non-Gaussianità e la distanza di Bures rispetto al ground state di un oscillatore armonico di
riferimento. Come principale misura di non-Gaussianità verrà utilizzata l’entropia relativa
fra lo stato e il corrispettivo stato di riferimento Gaussiano, avente la medesima matrice di
covarianza.
Il primo caso che considereremo sarà quello di un potenziale armonico con due termini

polinomiali aggiuntivi e il ground state ottenuto con la teoria perturbativa. Si analizzeranno
poi alcuni potenziali il cui ground state è ottenibile analiticamente: l’oscillatore armonico
modificato, il potenziale di Morse e il potenziale di Posch-Teller. Si andrà infine a studiare
l’effetto della nonlinearità in un contesto dinamico, considerando l’evoluzione unitaria di uno
stato in ingresso in un mezzo che presenta una nonlinearità di tipo Kerr.
Nell’insieme, i risultati ottenuti con tutti i potenziali analizzati forniscono una forte evi-

denza quantitativa a supporto dell’idea iniziale. Anche i risultati del caso dinamico, dove la
nonlinearità costituisce una risorsa utile per generare nonclassicità solo se lo stato iniziale è
classico, confermano la pittura complessiva.
Si sono inoltre studiate in dettaglio le differenze nel comportamento delle due misure di

nonclassicità.
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Abstract
The aim of the present work is to find a quantitative evidence to support the idea that nonlin-
earity is a resource to generate a nonclassicality. We will focus on unidimensional bosonic
systems, mainly trying make a connection between the nonlinearity of an anharmonic os-
cillator, defined by the functional form of its potential, and the nonclassicality of the corre-
sponding ground state.
Among the many nonclassicality measures in existence, we will use the volume of the

negative part of the Wigner function and the entanglement potential, that is the amount of
entanglement obtained after the state goes through a balanced beam splitter, with the vacuum
as the other input state. The nonlinearity of a potential is characterized by properties of the
ground state, in particular its non-Gaussianity and the Bures distance from the ground state
of a reference harmonic oscillator. To measure non-Gaussianity we will use the relative
entropy between the state and the corresponding reference Gaussian state, the one with the
same covariance matrix.
The first model under consideration will be a harmonic potential with two added poly-

nomial terms and the ground state obtained with perturbation theory. We will then analyse
three potentials with an analytical ground state: the modified harmonic oscillator, the Morse
potential and the Posch-Teller potential. We will also study the effect of nonlinearity in a
dynamical context, focusing the attention on the unitary evolution of an input state entering
in a medium with a Kerr nonlinearity.
The results obtained with all the potentials represent a strong quantitative evidence to

support the thesis. The results for the dynamical case, where nonlinearity is a useful resource
to generate nonclassicality only if the initial state is classical, confirm the general picture.
Moreover we studied in details the differences in the behaviour of the two nonclassicality

measures.
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Introduction
At the heart of the whole quantum technology research field lies the idea that quantum me-
chanical systems present features that have no counterpart in classical physics and that can
be employed as resources to perform specific tasks better or faster than in the classical case.
Coherence of quantum systems, together with its multipartite manifestation, entanglement,
has been indeed recognized as one of the most important resources for quantum information
processing.
The need of a proper definition of nonclassicality originated from quantum optics, in order

to identify which states would produce effects not obtainable with classical light. Indeed,
single-mode radiation fields and, more generally, single-mode bosonic systems are the natu-
ral playground to discuss, and test experimentally, the generation and the charaterization of
nonclassicality.
The aim of this work is to support the idea that a nonlinearity is a general resource to

generate nonclassicality. We will discuss some general features and work out some specific
examples, with a particular emphasis on a quantitative visualization of the phenomenon. In
order to do so, proper ways to quantify both nonlinearity and nonclassicality are reviewed
and critically discussed. Finding a way to measure these quantities has proved to be a chal-
lenging task in and of itself and there exist different parameters which capture different
aspects of the picture.
The idea to connect the nonlinear behaviour of a quantum system to the appearance of

nonclassicality has recently been tested, in the context of nano-mechanical resonators, to
the Duffing oscillator model [1]. Here we want to generalize that paper and check whether
and to what extent this generalization can be done.
This Thesis is structured as follows.

• Chapter 1 is intended as a brief survey about the concept of nonclassicality in quan-
tum optics, with particular emphasis on the methods developed to define and mea-
sure nonclassicality in a quantitative fashion. The first section is just a review about
quasiprobability distributions, because they are fundamental to describe nonclassical-
ity. Even though in the original part of this work only two measures of nonclassicality
will actually be used (namely the negative volume of the Wigner function and the en-
tanglement potential), more measures are presented, since it seems worth to recollect
all these ideas together for comparison and for future reference.

• Chapter 2 is a review of a measure recently introduced [2] to quantify the nonlinearity
of a quantum oscillator by analysing its ground state. This idea relies in turn on a
measure of the non-Gaussian character of a continuous variable quantum state, so this
concept is introduced and explored as well.
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• Chapter 3 is devoted to the simple model of a harmonic oscillator with two perturba-
tions, one proportional to 𝑥4 and one to 𝑥6. This model serves as a first example to
check the correlation between nonclassicality and nonlinearity. The analysis shows
that the intuition is correct and there is a quantitative connection between the two,
even though they are not one to one when two parameters are present.

• Chapter 4 is an extension of the same idea to different potentials. In particular we
choose potentials for which an exact solution is already known, in order to test the
validity of the intuition not just through a perturbative analysis, but by using the true
ground state. The main idea holds true, although we also highlight different behaviour
between the two measures of nonclassicality in use.

• Chapter 5 contains the analysis in the case of a nonlinear term which commutes with
the free Hamiltonian of the harmonic oscillator. The model under consideration is the
single photon Kerr nonlinearity. In this chapter we do not study the ground state,
but we examine the evolution of an input state under self-Kerr effect, looking at the
behaviour of its non-Gaussianity and its nonclassicality. The analysis is carried out
with two different input states.

2



1 Quantifying the Nonclassicality of a
Single-mode Bosonic State

In quantum optics the expression “nonclassical light” is ubiquitous and it is used to address a
wide range of phenomena that are considered truly quantistic in nature; this concept however
applies equally well to other bosonic systems. In particular we will deal with single-mode
bosonic systems, so that entanglement and other nonclassical correlations are kept out of
the picture.
In the most general terms a quantum state is said to be nonclassical if the methods of

classical statistics fail to describe its properties. To make this definition precise we need the
concept of quasiprobability distributions in phase space, so we start by introducing them
from scratch.

1.1 Characteristic Functions andQuasiprobability
Distributions

In classical physics the state of a physical systems and its evolution can be visualized by a
probability distribution in the phase space. In quantum mechanics however we have the
Heisenberg’s uncertainty relation that prevents a naive extension of this idea. It is nonethe-
less possible to visualize quantum mechanics in the phase space if we relax some of the
axioms of probability theory, thus dealing with quasiprobability distributions rather than
probability distributions.
In practical terms quasiprobability distributions are mainly used as a tool to calculate ex-

pectation values of functions of ̂𝑎 and ̂𝑎†, but they encode all the information on the quantum
state, since the full density matrix can be reconstructed from them. In this sense they are an
alternative representation of a quantum state.
Historically the first quasidistribution distribution introduced was the Wigner function

[3] in the context of statistical mechanics; in quantum optics there are other well known
examples: the Glauber-Sudarshan 𝑃 function [4, 5] and the Husimi 𝑄 function [6]. These
distributions can be derived in several different ways, but we will first introduce character-
istic functions and then quasiprobability distributions as their Fourier transforms, roughly
following Ref. [7]. This coherent visualization of quasiprobability distributions and ordering
of the operators was first put forward in 1968 by Cahill and Glauber [8], the most general
class of quasiprobability distributions was given by Agarwal and Wolf [9]. Moreover Ref.
[10] is an excellent review on the subject which we partly refer to.
Since we aim to make this Thesis as self-contained as possible we start with a brief review
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1 Quantifying the Nonclassicality of a Single-mode Bosonic State

of coherent states and displacement operators for single mode bosonic systems. It can be
useful to remark that all the concepts introduced in this chapter could be generalized to
multi-mode systems, but it is not needed for our purposes.

1.1.1 Displacement Operator and Coherent States
We take in consideration a bosonic system with one degree of freedom, which may be a
one dimensional harmonic oscillator or a single mode of the electromagnetic radiation. As
customary we will describe this systems using its annihilation and creation operators

̂𝑎 = (
1

2ℏ)(𝜆 ̂𝑞 + i
𝜆 ̂𝑝)

̂𝑎† = (
1

2ℏ)(𝜆 ̂𝑞 − i
𝜆 ̂𝑝)

(1.1)

which satisfy the relation
[ ̂𝑎, ̂𝑎†] = 1. (1.2)

These operators act on the particle number states, which are the basis vectors |𝑛⟩ and have
the following properties:

̂𝑎|𝑛⟩ = √𝑛|𝑛 − 1⟩
̂𝑎†|𝑛⟩ = √𝑛 + 1|𝑛 + 1⟩
̂𝑎† ̂𝑎|𝑛⟩ = 𝑛|𝑛⟩
̂𝑎|0⟩ = 0.

(1.3)

An additional and very useful property which can be easily demonstrated is the following

[ ̂𝑎, ̂𝑎†𝑛] = 𝑛 ̂𝑎†(𝑛−1) (1.4)

We note that the constant 𝜆 in (1.1) can become 𝜆 = (𝑚𝜔)1/2 for a mechanical oscillator with
mass 𝑚 and angular frequency 𝜔 or 𝜆 = (ℏ1/2𝜔/𝑐) for a mode of the electromagnetic field
with angular frequency 𝜔. However in the following we will mostly work with appropriately
rescaled units, so that 𝑚 = ℏ = 𝜔 = 1.
For every complex number 𝜉 we can define the displacement operator:

𝐷̂(𝜉) = exp(𝜉 ̂𝑎† − 𝜉∗ ̂𝑎). (1.5)

It is a unitary operator, since evidently 𝐷̂(𝜉)† = 𝐷̂(𝜉)−1 = 𝐷̂(−𝜉). It can also be written
with a different ordering of the operators ̂𝑎 and ̂𝑎†, such as normal ordering, when all the
creation operators come before the annihilation operators, or in antinormal ordering, which
means the opposite; the waywe have defined 𝐷̂ in (1.5) is therefore its symmetrically ordered
form. This task can be performed by disentangling the exponential operator, which means to
express the exponential of a sum of operators as the product of the exponentials of operators;
this topic is discussed more in depth in appendix A.1.
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1 Quantifying the Nonclassicality of a Single-mode Bosonic State

In this case however it is simply an application of the famous Backer-Campbell-Hausdorff
formula, which reduces to 𝑒𝑋𝑒𝑌 = 𝑒𝑋+𝑌 𝑒1/2[𝑋,𝑌 ] for the property (1.2). The normal ordered
form is the following

𝐷̂(𝜉) = exp(𝜉 ̂𝑎†) exp(−𝜉∗ ̂𝑎) exp(−|𝜉|2

2 ), (1.6)

while the antinormal ordered form reads

𝐷̂(𝜉) = exp(−𝜉∗ ̂𝑎) exp(𝜉 ̂𝑎†) exp(
|𝜉|2

2 ). (1.7)

The Baker-Campbell-Hausdorff formula can also be used to verify that
𝐷̂(𝛼)𝐷̂(𝛽) = 𝑒(𝛼𝛽∗−𝛼∗𝛽)/2𝐷̂(𝛼 + 𝛽). (1.8)

The action as unitary similarity transformation of the creation and destruction operators
yields this important property

𝐷̂†(𝛼) ̂𝑎𝐷̂(𝛼) = ̂𝑎 + 𝛼
𝐷̂(𝛼) ̂𝑎𝐷̂†(𝛼) = ̂𝑎 − 𝛼,

(1.9)

which can be easily proved using property (1.4).
The displacement operator can be used to define a important class of states, the coherent

states:

|𝛼⟩ = 𝐷̂(𝛼)|0⟩ = 𝑒− |𝛼|2
2

∞

∑
𝑛=0

̂𝑎†𝑛

𝑛! |0⟩ = 𝑒− |𝛼|2
2

∞

∑
𝑛=0

𝛼𝑛

√𝑛!
|𝑛⟩, (1.10)

they are eigenstates of the annihilation operator ̂𝑎|𝛼⟩ = 𝛼|𝛼⟩, as can be seen by direct inspec-
tion using again the property (1.4). This trivially implies that the real and imaginary parts of
the complex variable 𝛼 are proportional to 𝑞 = ⟨ ̂𝑞⟩ and 𝑝 = ⟨ ̂𝑝⟩ respectively.
These state have some important and well known properties which can all be proved by

using their explicit expression in term of the number states. They are not orthogonal:

⟨𝛽|𝛼⟩ = exp[−1
2(|𝛼|2 + |𝛽|2) + 𝛽∗𝛼] (1.11)

but it is possible to express the identity operator as

𝐼 = 1
𝜋 ∫d2𝛼|𝛼⟩⟨𝛼|, (1.12)

where the integration is performed all over the complex plane and d2𝛼 = d(Re 𝛼)d(Im 𝛼).
This means that the trace of any operator ̂𝐴 can be computed as follows

Tr( ̂𝐴) = 1
𝜋 ∫d2𝛼 ⟨𝛼| ̂𝐴|𝛼⟩. (1.13)

Another important property of the coherent states is that they are minimum uncertainty
states, having the same uncertainty associated with ̂𝑝 and 𝑥̂. Moreover, thanks to property
(1.8), the operator 𝐷̂(𝛽) applied on a coherent state just gives another coherent states with
displaced parameter, that is to say

𝐷̂(𝛽)|𝛼⟩ = |𝛼 + 𝛽⟩. (1.14)

5



1 Quantifying the Nonclassicality of a Single-mode Bosonic State

1.1.2 𝑝-ordered Characteristic Function
States of a quantum system are represented by normalized vectors |𝜓⟩ in a Hilbert space and
every vector corresponds to a projection operator 𝜌 = |𝜓⟩⟨𝜓|, called the density operator of
the state. The normalization of |𝜓⟩ is reflected in the property Tr[𝜌] = 1, while expectation
values of other operators are computed with trace operation: ⟨ ̂𝐴⟩ = Tr[𝜌 ̂𝐴].
More generally any operator which is self-adjoint, positive semi-definite and of trace one

represents a density operator even if it is not a projector, so that 𝜌 ≠ 𝜌2. In this case we
have a mixed state, which is a statistical mixture of pure states; in fact 𝜌 = ∑𝑛 𝑃𝑛|𝜓𝑛⟩⟨𝜓𝑛|,
where 𝑃𝑛 is a probability distribution. In the following chapters we will not use mixed states,
nonetheless it has to be remembered that the concepts we are about to introduce apply to all
kind of quantum states.
Given a generic quantum state 𝜌, the corresponding 𝑝-ordered characteristic function is

defined as follows

𝜒(𝜉, 𝑝) = Tr[𝜌𝐷̂(𝜉)] exp(𝑝|𝜉|2

2 )

= Tr[𝜌 exp(𝜉 ̂𝑎† − 𝜉∗ ̂𝑎)] exp(𝑝|𝜉|2

2 ).
(1.15)

It is important to underline again that the characteristic function is an alternative way to
represent a quantum state, in the sense that it encodes all the information contained in 𝜌. For
the particular values 𝑝 = 1, 0, −1 we get the normal, symmetrical and antinormal ordered
characteristic functions respectively; if we use (1.6) and (1.7) we get

𝜒(𝜉, 1) = Tr[exp(𝜉 ̂𝑎†) exp(−𝜉∗ ̂𝑎)]
𝜒(𝜉, 0) = Tr[exp(𝜉 ̂𝑎† − 𝜉∗ ̂𝑎)]

𝜒(𝜉, −1) = Tr[exp(−𝜉∗ ̂𝑎) exp(𝜉 ̂𝑎†)].
(1.16)

The characteristic function allows us to define the 𝑝-ordered expectation value of products
of ̂𝑎† and ̂𝑎, for a product of ̂𝑎†𝑚 and ̂𝑎𝑛 we get

⟨ ̂𝑎†𝑚 ̂𝑎𝑛⟩𝑝 = (
𝜕
𝜕𝜉 )

𝑚

(
𝜕

𝜕𝜉∗ )
𝑛
𝜒(𝜉, 𝑝)|𝜉=0

(1.17)

The absolute value of 𝑝-ordered characteristic function is bounded, since 𝐷̂(𝜉) is unitary
we have that |𝜒(𝜉, 0)| ≤ 1, this and definition (1.15) imply that in general |𝜒(𝜉, 𝑝)| ≤
exp(𝑝|𝜉|2/2).

1.1.3 𝑝-ordered Quasiprobability Distribution
To obtain the quasiprobability distribution from the characteristic function we need to per-
form a Fourier transform; a standard way to define the Fourier transform of a function of
two real variables (in this case the real and imaginary parts: 𝛼 = 𝛼1 + i𝛼2) is the following

̃𝑓 (𝛼1, 𝛼2) = 1
4𝜋2 ∫

∞

−∞
d𝑥 ∫

∞

−∞
d𝑦 𝑓(𝑥, 𝑦) exp[i(𝛼1𝑥 + 𝛼2𝑦)], (1.18)

6



1 Quantifying the Nonclassicality of a Single-mode Bosonic State

however if we perform the substitution 𝜉 = ±(𝑦 − i𝑥)/2 we can write it in a more convenient
form

̃𝑓 (𝛼) = 1
𝜋2 ∫d2𝜉 𝑓(𝜉) exp(𝛼𝜉∗ − 𝛼∗𝜉), (1.19)

where the integration is performed over the whole complex plane.
Applying this transform to the 𝑝-ordered characteristic function we get the 𝑝-ordered

quasiprobability distribution, which reads

𝑊 (𝛼, 𝑝) = 1
𝜋2 ∫d2𝜉 𝜒(𝜉, 𝑝) exp(𝛼𝜉∗ − 𝛼∗𝜉). (1.20)

This integral is not always well behaved, since for some specific states and for some values
of the ordering parameter 𝜒(𝜉, 𝑝) can diverge for |𝜉| → ∞.

Properties

Some important properties of 𝑊 (𝛼, 𝑝) can be demonstrated from the definition (1.20). We
can see that 𝑊 (𝛼, 𝑝) is always real, if we compute its complex conjugate, given by

[𝑊 (𝛼, 𝑝)]∗ = 1
𝜋2 ∫d2𝜉 [𝜒(𝜉, 𝑝)]∗ exp(𝛼∗𝜉 − 𝛼𝜉∗)

= 1
𝜋2 ∫d2𝜉 Tr[𝜌 exp(𝜉∗ ̂𝑎 − 𝜉 ̂𝑎†)] exp(𝑝|𝜉|2

2 ) exp(𝛼∗𝜉 − 𝛼𝜉∗).
(1.21)

By substituting 𝜉 = −𝜂, we get

[𝑊 (𝛼, 𝑝)]∗ = 1
𝜋2 ∫d2𝜂 Tr[𝜌 exp(𝜂 ̂𝑎† − 𝜂∗ ̂𝑎)] exp(𝑝|𝜂|2

2 ) exp(𝛼𝜂 − 𝛼∗𝜂)

= 𝑊 (𝛼, 𝑝),
(1.22)

so the distribution is real for all 𝛼 and 𝑝. The function is also normalized, since

∫d2𝛼 𝑊 (𝛼, 𝑝) = 1
𝜋2 ∫d2𝛼 ∫d2𝜉 𝜒(𝜉, 𝑝) exp(𝛼𝜉∗ − 𝛼∗𝜉)

= ∫d2𝛼 𝜒(𝜉, 𝑝)𝛿(2)(𝜉) = 𝜒(0, 𝑝) = 1,
(1.23)

where the last passage follows from the normalisation of the state 𝜌, since from the definition
(1.15) we have 𝜒(0, 𝑝) = Tr[𝜌] = 1.
The function 𝑊 (𝛼, 𝑝) can be used to obtain moments of 𝑝-ordered products of ̂𝑎 and ̂𝑎†, by

integrating the appropriate powers of 𝛼 and 𝛼∗:

⟨ ̂𝑎†𝑚 ̂𝑎𝑛⟩𝑝 = ∫d2𝛼𝑊 (𝛼, 𝑝)𝛼∗𝑚𝛼𝑛. (1.24)
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1 Quantifying the Nonclassicality of a Single-mode Bosonic State

To prove that this is true we plug the definition (1.20) in the r.h.s. of the above formula, so
we get

1
𝜋2 ∫d2𝛼 ∫d2𝜉 𝜒(𝜉, 𝑝) 𝛼∗𝑚𝛼𝑛 exp(𝛼𝜉∗ − 𝛼∗𝜉)

= 1
𝜋2 ∫d2𝛼 ∫d2𝜉 𝜒(𝜉, 𝑝) (− 𝜕

𝜕𝜉 )
𝑚

(
𝜕

𝜕𝜉∗ )
𝑛

exp(𝛼𝜉∗ − 𝛼∗𝜉)

= ∫d2𝜉 𝜒(𝜉, 𝑝) (− 𝜕
𝜕𝜉 )

𝑚

(
𝜕

𝜕𝜉∗ )
𝑛
𝛿(2)(𝜉)

= (
𝜕
𝜕𝜉 )

𝑚

(− 𝜕
𝜕𝜉∗ )

𝑛
𝜒(𝜉, 𝑝)|𝜉=0

= ⟨ ̂𝑎†𝑚 ̂𝑎𝑛⟩𝑝,

(1.25)

where the derivatives of the Dirac 𝛿 are intended as distributional derivatives and the last
equality is due to the definition (1.17).
All these properties make 𝑊 (𝛼, 𝑝) similar to a probability distribution, because it can be

used to compute moments and it is real-valued and normalized. Anyhow it is not a true
probability distribution because it can in general attain negative values and for this reason
it is called a quasiprobability distribution.
Now we want to see that 𝑊 (𝛼, 𝑝) is just a Guassian convolution of 𝑊 (𝛼, 𝑝′), with 𝑝′ <

𝑝; from the definition (1.15) characteristic functions with different ordering parameters are
related by

𝜒(𝛼, 𝑝′) = 𝜒(𝜉, 𝑝) exp[−(𝑝 − 𝑝′)|𝜉|2/2]. (1.26)
Thus the corresponding distributions are related by

𝑊 (𝛼, 𝑝′) = 1
𝜋2 ∫d2𝜉 𝜒(𝜉, 𝑝) exp(−(𝑝 − 𝑝′)|𝜉|2/2) exp(𝛼𝜉∗ − 𝛼∗𝜉), (1.27)

which is the Fourier transform of the product of 𝜒(𝜉, 𝑝) and a Gaussian function. The convo-
lution theorem states that ℱ [𝑓 𝑔] = ℱ [𝑓] ∗ ℱ [𝑔], where ℱ denotes the Fourier transform
and ∗ the convolution operation, so we get the following expression

𝑊 (𝛼, 𝑝′) = 2
𝜋(𝑝 − 𝑝′) ∫d2𝛽 𝑊 (𝛽, 𝑝) exp[−2|𝛼 − 𝛽|2

(𝑝 − 𝑝′) ], (1.28)

which is the convolution of 𝑊 (𝛽, 𝑝) with a Gaussian distribution. The operational and in-
tuitive meaning of this definition is that as 𝑝′ decreases the distribution becomes smoother,
since the convolution with a Gaussian function can be thought as a smoothness increasing
operation which makes peaks of the function become broader.

1.1.4 𝑃 function and 𝑄 function
If we set 𝑝 = 1 we get the Glauber-Sudarshan 𝑃 function, which is the quasiprobability
distribution corresponding to normal ordering. The 𝑃 function is also used to express the
density operator 𝜌 as a diagonal sum over coherent states

𝜌 = ∫d2𝛼 𝑃 (𝛼)|𝛼⟩⟨𝛼|. (1.29)
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1 Quantifying the Nonclassicality of a Single-mode Bosonic State

It has to be noted that this expression is not trivial at all, since generally one would need a
double integration

𝜌 = 1
𝜋2 ∫d2𝛼 ∫d2𝛽 𝜌(𝛼, 𝛽)|𝛼⟩⟨𝛽|, (1.30)

it is possible to express states in diagonal form because coherent states are overcomplete,
which means that is possible to write a resolution of the identity, but the states are not or-
thogonal. However it is important to note that 𝑃 (𝛼) exists as a proper function only for some
states and it can fail to be interpreted even as a distribution. This is consistent with expres-
sion (1.28) since for 𝑝′ = 1 no Gaussian smoothing is present, therefore in general 𝑃 can
be highly singular. For a mathematically precise derivation of this diagonal representation
the reader should look at Ref. [11]. To explicitly see what we mean by “highly singular” we
report from Ref. [12] a formal way to write the 𝑃 -function of an arbitrary state:

𝑃 (𝛼) = ∑
𝑛,𝑚

𝜌𝑛𝑚(−1)𝑛+𝑚𝑒|𝛼|2 1
√𝑛! 𝑚!

𝜕𝑛+𝑚

𝜕𝛼𝑛𝜕𝛼∗𝑚 𝛿(𝛼), (1.31)

where 𝜌𝑛𝑚 = ⟨𝑛|𝜌|𝑚⟩; it is evident that (1.31) is in general an highly singular expression and
it is surprising that for some states, such as thermal states it can become a well behaved
function.
We have now to show that the two formulations of the 𝑃 function are equivalent, to do so

we write 𝑊 (𝛼, 1) inserting 𝜌 in the form (1.29), so we have

𝑊 (𝛼, 1) = 1
𝜋2 ∫d𝜉 Tr[∫d2𝛽 𝑃 (𝛽)|𝛽⟩⟨𝛽| exp(𝜉 ̂𝑎†) exp(−𝜉∗ ̂𝑎)] exp(𝛼𝜉∗ − 𝛼∗𝜉)

= 1
𝜋2 ∫ d2𝜉 ∫ d2𝛽𝑃 (𝛽) exp[𝜉(𝛽∗ − 𝛼∗) − 𝜉∗(𝛽 − 𝛼)] = 𝑃 (𝛼),

(1.32)

because the integration over 𝜉 on the last line gives 𝛿(2)(𝛽 − 𝛼).
In we choose the value 𝑝 = −1 we get the so called Husimi 𝑄-function, it will be the least

interesting for the aim of the present work so it will not be studied in detail. This function
has a simple representation in terms of the density matrix

𝑄(𝛼) = 𝑊 (𝛼, −1) = ⟨𝛼|𝜌|𝛼⟩; (1.33)

it is always positive semi-definite function because 𝜌 is a positive semi-definite operator.

1.1.5 Wigner Function
The Wigner function is the symmetrically ordered quasiprobability distribution 𝑊 (𝛼, 0) =
𝑊 (𝛼) and it is useful to get expectation values of operators in symmetric order. From defi-
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1 Quantifying the Nonclassicality of a Single-mode Bosonic State

nition (1.20) we have

𝑊 (𝛼) = 1
𝜋2 ∫d2𝜉 Tr[𝜌𝐷(𝜉)] exp(𝛼𝜉∗ − 𝛼∗𝜉)

= 1
𝜋2 ∫d2𝜉 Tr{𝜌 exp[𝜉( ̂𝑎† − 𝛼∗) − 𝜉∗( ̂𝑎 − 𝛼)]}

= 1
𝜋2 ∫d2𝜉 Tr[𝜌𝐷̂(𝛼)𝐷̂(𝜉)𝐷̂†(𝛼)]

= Tr[𝜌𝐷̂(𝛼) ̂𝑇 𝐷̂†(𝛼)]

(1.34)

where we used the property to pass from the second to the third line and we defined ̂𝑇 =
𝜋−2 ∫d2𝜉 𝐷̂(𝜉). To further simplify the form of theWigner function it is convenient to express

̂𝑇 as a function of ̂𝑎† ̂𝑎. Putting the displacement operator in normal ordering we get to the
following result

̂𝑇 = 1
𝜋2 ∫d2𝜉 exp(𝜉 ̂𝑎†) exp(−𝜉 ̂𝑎) exp(−|𝜉|2/2), (1.35)

if now we expand every exponential using the definition exp( ̂𝐴) = ∑∞
𝑛=0

̂𝐴𝑛/𝑛! and we per-
form the integration over the complex plane using polar coordinates we have the following
expression

̂𝑇 = 1
𝜋2

∞

∑
𝑛=0

∞

∑
𝑚=0

(−1)𝑚

𝑛! 𝑚! ̂𝑎†𝑛 ̂𝑎𝑚
∫

2𝜋

0
d𝜙 ∫

∞

0
d|𝜉| |𝜉|𝑛+𝑚+1 exp[i𝜙(𝑛 − 𝑚)] exp(−|𝜉|2/2)

= 2
𝜋

∞

∑
𝑛=0

̂𝑎†𝑛 ̂𝑎𝑛2𝑛

(1.36)

where we used the integral representation of the Kronecker delta 𝛿𝑚,𝑛 = 1
2𝜋 ∫2𝜋

0 d𝜙𝑒i(𝑛−𝑚)𝜙

and the Gaussian integral ∫∞
0 d𝑥𝑥2𝑛+1 = 𝑛! 2𝑛.

The general formula for the normally ordered exponential of ̂𝑎† ̂𝑎 is the following

exp[𝜃 ̂𝑎† ̂𝑎] =
∞

∑
𝑘=0

(𝑒𝜃 − 1)𝑘

𝑘! ̂𝑎†𝑘 ̂𝑎𝑘, (1.37)

(see appendix A.1 for more details), so we get to write ̂𝑇 as follows

̂𝑇 = 2
𝜋 exp(i𝜋 ̂𝑎† ̂𝑎) = 2

𝜋 (−1) ̂𝑎† ̂𝑎. (1.38)

The operator (−1) ̂𝑎† ̂𝑎 can be easily decomposed on the number basis, since |𝑛⟩ are its eigen-
vectors, and it reads

(−1) ̂𝑎† ̂𝑎 =
∞

∑
𝑛=0

(−1)𝑛|𝑛⟩⟨𝑛|. (1.39)
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Now we can finally rewrite (1.34) to get the to this expression

𝑊 (𝛼) = 2
𝜋 Tr[𝜌𝐷̂(𝛼)(−1) ̂𝑎† ̂𝑎𝐷̂†

], (1.40)

which can be in turn still manipulated to get

𝑊 (𝛼) = 2
𝜋 Tr[𝜌𝐷̂(2𝛼)(−1) ̂𝑎† ̂𝑎

]. (1.41)

This last derivation follows from the effect of exp(i𝜋 ̂𝑎† ̂𝑎) as a reflection operator which is
given by the following relations

exp(i𝜋 ̂𝑎† ̂𝑎) ̂𝑎 exp(−i𝜋 ̂𝑎† ̂𝑎) = − ̂𝑎
exp(i𝜋 ̂𝑎† ̂𝑎) ̂𝑎† exp(−i𝜋 ̂𝑎† ̂𝑎) = − ̂𝑎†,

(1.42)

they can be proved by explicit calculation, using properties (1.37) and (1.4). Equations (1.42)
in turn imply that

exp(i𝜋 ̂𝑎† ̂𝑎)𝐷̂(𝛼) exp(−i𝜋 ̂𝑎† ̂𝑎) = 𝐷(−𝛼). (1.43)
When we put (1.43) into the expression (1.40) we finally get the compact form (1.41).

One more property of the Wigner function is the fact that it is bounded. From (1.41) when
𝛼 = 0 we get

𝑊 (0) = 2
𝜋 ∑

𝑛
𝜌𝑛𝑚(−1)𝑛, (1.44)

this clearly shows that |𝑊 (0)| ≤ 2/𝜋, and from definition (1.34) we also see that |𝑊 (𝛼)| ≤
|𝑊 (0)| so we have the general bound

|𝑊 (𝛼)| ≤ |𝑊 (0)| ≤ 2
𝜋 . (1.45)

The Wigner function always exists, even when the 𝑃 function for the same state is singular,
but in general it fails to be positive.

Wigner Function FromWave Functions

At this point we have to remark that (1.34) is not the definition originally introduced by
Wigner in his paper. Writing 𝑊 as in Eq. (1.41) is very useful when we deal with modes of
the electromagnetic field (or a harmonic oscillator). On the other hand if we deal with other
bosonic systems with finite mass, which in practical terms means anharmonic oscillators, it
is more convenient to use the original expression written in term of the wave function in
coordinate space. This will be of great importance to us, since in chapter 4 we will work with
ground states of anharmonic quantum oscillators, for which the wave functions are found
by solving the Schrödinger equation.
To get to this form we start by rewriting (1.34) using position and momentum operators:

𝑊 (𝑢, 𝑣) = 1
2𝜋2 ∫

+∞

−∞
d𝜉 ∫

+∞

−∞
d𝜂 Tr[𝜌 exp(i𝑥̂𝜉 + i ̂𝑝𝜂) exp(−i𝑢𝜉 − i𝑣𝜂)], (1.46)
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then we express the density operator in coordinate-space representation as

𝜌 = ∬d𝑥d𝑥′ |𝑥⟩⟨𝑥 |⟨𝑥|𝜌|𝑥′⟩; (1.47)

using again the Baker-Campbell-Hausdorff identity for the exponential we have that exp(i𝑥̂𝜉+
i ̂𝑝𝜂) = exp(i𝑥̂𝜉) exp(i ̂𝑝𝜂) exp( 1

2 i𝜂𝜉), since [𝑥̂, ̂𝑝] = i, so we get to

𝑊 (𝑢, 𝑣) = 1
(2𝜋)2 ∫d𝜉 ∫d𝜂 ∫d𝑥 ∫d𝑥′⟨𝑥|𝜌|𝑥′⟩⟨𝑥′|𝑒i𝑥̂𝜉𝑒i ̂𝑝𝜂|𝑥⟩𝑒 1

2 i𝜉𝜂𝑒−i𝑢𝜉−i𝑣𝜂. (1.48)

If we remember that the operator exp(i ̂𝑝) is the generator of the translations we can write
that

⟨𝑥′|𝑒i𝑥̂𝜉𝑒i ̂𝑝𝜂|𝑥⟩ = 𝑒i𝑥′𝜉𝛿(𝑥′ − 𝑥 + 𝜂), (1.49)

moreover the 𝜉 integral in (1.48) gives 2𝜋𝛿(𝑥′ + 1
2𝜂 − 𝑢) so we can finally write

𝑊 (𝑢, 𝑣) = 1
2𝜋 ∫d𝜂 ⟨𝑢 + 1

2𝜂|𝜌|𝑢 − 1
2𝜂⟩𝑒−i𝑣𝜂, (1.50)

which is the form introduced by Wigner [3] and for pure states it reduces to

𝑊 (𝑢, 𝑣) = 1
2𝜋 ∫d𝜂 𝜓(𝑢 + 1

2𝜂)
∗
𝜓(𝑢 − 1

2𝜂)𝑒−i𝑣𝜂. (1.51)

1.2 Definition of Nonclassical States
According to the generally accepted definition formulated by Titulaer and Glauber [13, 14]
a quantum state is considered nonclassical when its 𝑃 function fails to be interpreted as a
probability distribution on the phase space. Using this definition, any correlation function
of a classical state can be modelled using classical electrodynamics. It has been recently
emphasized [15] that the 𝑃 function is the only quasiprobability distribution which can give
a description completely analogous to the classical case, therefore supporting again the idea
that to fully identify a classical state it is necessary to use the 𝑃 function.
This definition immediately creates a hierarchy of states: there are states which possess a

well-behaved and positive 𝑃 function, the most important example being the thermal state

𝜌𝑇 = exp(−𝛽ℏ𝜔 ̂𝑎† ̂𝑎)/ Tr[exp(−𝛽ℏ𝜔 ̂𝑎† ̂𝑎)], (1.52)

whose 𝑃 -function is a Gaussian:

𝑃 (𝛼) = 1
𝜋⟨ ̂𝑛⟩ exp[−|𝛼|2

⟨ ̂𝑛⟩ ], (1.53)

where the mean particle number is ⟨ ̂𝑛⟩ = 1/(exp[𝛽ℏ𝜔] − 1).
Then we find that coherent states lie on the border between classical and nonclassical since

their 𝑃 function is just a 𝛿, which can still be interpreted as a probability distribution even
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if it is a singular function. We have to highlight that they are the only pure states which are
classical according to this definition. Finally we have truly nonclassical states; for example
a Fock state 𝜌 = |𝑚⟩⟨𝑚|, for which (1.31) gives a very singular 𝑃 -function:

𝑃 (𝛼) = 1
𝑚!𝑒|𝛼|2

(
𝜕2

𝜕𝛼𝜕𝛼∗ )𝛿(𝛼). (1.54)

Therefore the signature of nonclassicality according to this definition is having a 𝑃 function
with negative values or more singular than a 𝛿.
Even if nonclassicality defined in this way has a clear intuitive interpretation, it is unfor-

tunately problematic to use practically because the 𝑃 function can be a very difficult object
to manipulate. For this reason a plethora of criteria to detect nonclassicality have been in-
troduced, some more fundamental while others more applicative and experimental friendly.
Our focus will not be on these criteria for nonclassicality, but on a quantitative characteriza-
tion of it. With the expression quantitative characterization we mean the ability to express
nonclassicality as a function of a paramater on which the state depends, in order to quantify
how nonclassical the state is, not just if it is classical or not. From this fundamental defini-
tion it is not straight-forward how to define such a quantitative measure unambiguously; an
overview of the different approaches introduced in the scientific literature will be presented
in section 1.3.

1.2.1 Reformulation in Terms of Characteristic Functions
Over the last few years Vogel and collaborators have derived a series of conditions based
on characteristic functions, which are equivalent to the 𝑃 function definition, but easier to
check because they do not involve singularities. For a complete treatment of the topic we
refer to Ref. [16] and here we just want to sketch the main idea.
This reformulation is based on the Bochner theorem, which provides conditions for a con-

tinuous function to be a true probability density. It states that a continuous function 𝜒(𝜉),
which obeys to 𝜒(0) = 1 and 𝜒(𝜉) = 𝜒∗(−𝜉) is the characteristic function of a probabil-
ity density iff 𝜒(𝜉) is non negative, which means that for two arbitrary vectors of complex
numbers 𝛼𝑖 and 𝜉𝑖 the following relation has to be satisfied

𝑛

∑
𝑖,𝑗=1

𝜒(𝜉𝑖 − 𝜉𝑗)𝛼∗
𝑗 𝛼𝑖 ≥ 0, (1.55)

for every 𝑛. According to definition (1.20) the 𝑃 function is the Fourier transform of the
characteristic function 𝜒(𝜉, 1), which in turn can be espressed as the (anti) Fourier transform
of 𝑃 (𝛼) = 𝑊 (𝛼, 1). This means that if the inequality (1.55) is violated for some 𝛼𝑖 and 𝜉𝑗 then
𝑃 fails to be a probability distribution and therefore the state is nonclassical.
This condition is still very hard to check, since it involves an infinite number of inequalities;

for 𝑛 = 1 it can never be violated since 𝜒(0) = 1 and |𝜉|2 ≥ 0, but in many cases it is enough
to check the condition for 𝑛 = 2. By determining the extreme values of the function in the
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inequality (1.55) for 𝑛 = 2, with respect to the phase difference and the ratio |𝛼1|/|𝛼2|, the
following condition is derived

|𝜒(𝜉)| > 1, (1.56)
if a state violates this condition is said to be nonclassical of first order. This is of course just
a sufficient condition for nonclassicality and more conditions can be expressed based on the
inequalities for growing 𝑛, thus defining nonclassicality of higher orders.
Even if the characteristic function itself cannot be measured it can be related to the charac-

teristic function of the quadrature distributions or to the measurable moments of an operator.
These quantities turn out to be very useful in experimental certification of nonclassicality and
a lot of work has been done about them, notwithstanding we are not interested in this oper-
ational aspect. These criteria of nonclassicality based on characteristic functions can also be
used to formulate ways to give a quantitative characterization [17]. This approach has not
has not been used in literature and it will not be used in this Thesis, so it was left behind
from the review in the following section.

1.3 Quantitive Characterization of Nonclassicality
As we said the problem of characterizing a nonclassical state in a quantitative manner con-
sists in finding a way to measure how nonclassical a certain state is by find an appropriate
nonclassicalitymeasurewhich shows the correct dependence on the relevant parameters. For
example a highly squeezed coherent state is generally considered more nonclassical than a
slightly squeezed coherent state, they have the same analytical form but a different value
of the squeezing parameter; a good measure should reflect this. Various ways to achieve
this task have been developed, but every approach has its weaknesses, so we want to collect
them all in this section, even if just two of them are actually used in the sequel, namely the
negative volume of the Wigner function and the entanglement potential.

1.3.1 Distance Based Measures
As an attempt to attack the problem of quantifying nonclassicality, Hillery introduced the
distance between two quantum states [18], an idea which has then been applied in many
other scenarios. The distance introduced by Hillery was the trace norm of an operator:

‖𝑂̂‖Tr = Tr[√𝑂̂†𝑂̂], (1.57)

so that the distance between two states reads

𝑑Tr(𝜌1, 𝜌2) = ‖𝜌1 − 𝜌2‖Tr . (1.58)

The definition of nonclassicality of a state that follows from here is then

𝐷(𝜌) = inf
𝜌cl

‖𝜌 − 𝜌cl‖Tr (1.59)

which represents the minimal distance of the state 𝜌 from the set of nonclassical states 𝜌cl.
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1 Quantifying the Nonclassicality of a Single-mode Bosonic State

This definition is appealing because in principle it allows us to quantify nonclassicality in
a continuous way, nonetheless in general the task of minimizing this distance for arbitrary
states it is very challenging at best. Hillery derived some upper and lower bounds for this
quantity, but not much more can be done.
The idea of measuring nonclassicality using a distance is however conceptually very ap-

pealing, therefore other definitions of nonclassicality based on distances were given: the
Hilbert-Schmidt norm has been used [19]

𝑑HS(𝜌1, 𝜌2) = √
1
2 Tr[(𝜌1 − 𝜌2)2], (1.60)

as well as the Bures measure [20]

𝑑B(𝜌1, 𝜌2) = √2 − 2 Tr{(√𝜌1𝜌2√𝜌1)2
}. (1.61)

Unfortunately none of these measures turned out to be particularly useful for practical pur-
poses, and their application is restricted to some class of states [21]. It has also been argued
that using topological distances to quantify nonclassicality can lead to ambiguous results,
since the property of the chosen distance can have a dominant influence on the amount of
nonclassicality obtained [22].

1.3.2 Nonclassical Depth
The way to quantify nonclassicality which has attracted more attention over the years is
perhaps the nonclassical depth introduced by Lee [23, 24]. When we introduced quasiproba-
bility distribution we noted that distributions for different values of 𝑝 (for different orderings)
could be related by Gaussian convolution through equation (1.28), if we write this relation
for 𝑝 = 1 we get

𝑊 (𝛼, 𝑝′) = 2
𝜋(1 − 𝑝′) ∫d2𝛽𝑃 (𝛽) exp(−2|𝛼 − 𝛽|2

1 − 𝑝′ ). (1.62)

Nonclassical depth measures how much a singular 𝑃 function has to be convoluted in order
to become a well behaved probability distribution.
If we define the parameter 𝜏 = 1−𝑝

2 then the previous equation becomes the 𝑅 function
introduced by Lee

𝑅(𝛼, 𝜏) = 1
𝜏

1
𝜋 ∫d2𝛽𝑃 (𝛽) exp(−1

𝜏 |𝛼 − 𝛽|2
), (1.63)

which corresponds to the 𝑃 function for 𝜏 = 0, to the Wigner function for 𝜏 = 1/2 and to
the 𝑄 function for 𝜏 = 1.
The nonclassical depth is thus defined as

𝜏m = inf
𝜏∈𝒞

(𝜏), (1.64)
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1 Quantifying the Nonclassicality of a Single-mode Bosonic State

where 𝒞 represents the set of all the 𝜏 which make the 𝑅 function a proper probability
distribution, thus completing the “smoothing” of the 𝑃 function.
There is also a more practical way to interpret the nonclassical depth, following from the

fact that the 𝑃 function of the superposition of two states can be expressed by the convolution
of the 𝑃 functions of the two states [4]. Thanks to the fact that the 𝑃 function of the thermal
state is a Gaussian

𝑃t(𝛼) = 1
⟨ ̂𝑛⟩ exp(−|𝛼|2

⟨ ̂𝑛⟩ ), (1.65)

we can get to the result that the nonclassical depth of a quantum state in superposition with
a thermal state, denoted by 𝜏 t

m, is reduced by the number of thermal photons. In formulas
becomes 𝜏 t

m = 𝜏m − ⟨ ̂𝑛⟩, where 𝜏m is the the nonclassical depth of the state without ther-
mal noise. This in turn implies that the nonclassical depth itself is the minimum number of
thermal photons needed to destroy the nonclassical properties of the state.
Despite being a very appealing quantity because of its interpretation, nonclassical depth

is quite hard to compute in general and has a defect which makes it sometimes unsuited for
practical purposes: it very often saturates to its maximum value 1. For example all number
state have 𝜏m = 1, despite of the number of photons. Actually if we restrict to pure states
there is a quite general rule: it has been demonstrated [25] that the only pure states which
have 𝜏m < 1 are states with a Gaussian 𝑄 function, which are only the squeezed coherent
states, defined as follows

|𝜉, 𝛽⟩ = 𝐷̂(𝛽) ̂𝑆(𝜉)|0⟩ = exp(𝛽 ̂𝑎† − 𝛽∗ ̂𝑎) exp[
1
2(𝜉 ̂𝑎†2 − 𝜉∗ ̂𝑎2)]|0⟩; (1.66)

where ̂𝑆 is the so called squeezing operator. This fact poses a great limitation for the aim of
the present work, since we will deal with pure states only and 𝜏m would just tell us that the
states are nonclassical, but not specify how much.

1.3.3 Negative Volume of the Wigner Function
Here we introduce a measure which will be very useful in the following chapters, which was
proposed by Kenfack and Życzkowski [26]. As we stated previously the Wigner function is
always a well behaved function, even if the 𝑃 function is singular, but it can attain negative
values. Checking for negativities of the Wigner function has long been a practical way to
witness nonclassicality in quantum optics, since it can be measured experimentally.
The intuitive idea is that measuring the volume of the negative part of this function can be

used as a way to quantify nonclassicality. The following quantity 𝛿 represents the double of
the volume of the negative part of the Wigner function

𝛿 = ∫d2𝛼 [|𝑊 (𝛼)| − 𝑊 (𝛼)] = (∫d2𝛼 |𝑊 (𝛼)|) − 1, (1.67)

where the equality follows from the normalization of theWigner function and the integration
is of course performed over the whole complex plane. A normalized version of this measure
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1 Quantifying the Nonclassicality of a Single-mode Bosonic State

can be defined in a straight-forward way:

𝜈 = 𝛿
1 + 𝛿 , (1.68)

though in the following we will use 𝛿 rather than the normalized version, since there is no
significant difference in their meaning. We can see that the calculation of this measure of
nonclassicality boils down to the integration of the absolute value of the Wigner function,
which is an achivable task (at least numerically) for a broader class of states than the previ-
ous measures. The main disadvantage of this way of characterizing nonclassicality is that
negativities in the Wigner function are just a sufficient condition of nonclassicality, since we
can have a positive Wigner functions even for singular 𝑃 functions.
We also want to report that negativities in the Wigner function have been linked to other

notions of nonclassicality, namely classical efficency in simulating a quantum system [27,
28].

A Remark About Nonclassicality of Pure States

If we concentrate just on pure stateswe have a theorem byHudson [29]which affirms that the
only states with a positive Wigner function are the squeezed coherent states (1.66). This is a
quite relevant remark, because for the same class of states we have that the nonclassical depth
is saturated to 𝜏m = 1. So the complete picture is that for pure states these two measures are
complementary, in the sense that when nonclassical depth becomes useless in distinguishing
the quantity of nonclassicality, at the same time the measure 𝛿 become useful. The fact
that 𝛿 ≠ 0 remains just a sufficient condition will still be a thing to keep in mind, because
squeezing effects which do not change the volume of the negative part of 𝑊 can occur and
not be captured by this measure.

1.3.4 Entanglement Potential
In quantum optics it has long been known that coherent states are the only states which
produce uncorrelated outputs when going through a linear optics device [30], in particular
nonclassicality has been identified as a prerequisite for having entangled states after a beam
splitter [31]. From these considerations the idea of quantifying nonclassicality of a single
mode state as the two mode entanglement at the output of a linear optic device was born,
introduced by Asbóth et al.[32]. This measure is suitably called entanglement potential (𝐸𝑃 )
and it will be used extensively in the following analysis.
At first it seems that 𝐸𝑃 could be quite arbitrary, since in principle for any nonclassical

state to be measured one would have to choose the auxiliary states and the optimal linear
optics transformation to create as much entanglement as possible. It was shown in [32] that
this is not the case and the optimal entangler is given just by a beam splitter with vacuum as
an auxiliary state. This can be explained briefly by simple arguments.
Any passive linear optics transformation can be modelled by a generic circuit of beam

splitters, see fig. 1.1. We have one nonclassical input mode 𝜎 and a number of auxiliary states
𝜌𝑛 (ancillas). At the output we have an observer A receiving one output mode, an observer
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1 Quantifying the Nonclassicality of a Single-mode Bosonic State

Figure 1.1: (top) The general optical circuit for creating entanglement between A and B, 𝜌𝑛 are auxiliary clas-
sical states. (bottom) The circuit can be simplified by choosing vacuum ancillas, the dashed box is
local to B. Figure taken from [32].

B who gets a second mode and all the others outputs are measured by ideals photodetectors.
The auxiliary input states must be coherent states, otherwise entanglement would not be
caused just by 𝜎. A coherent state is just a displaced vacuum and displacing the auxiliary
input states corresponds to the displacement of all the output states, in a way determined
by the particular form of the circuit. Mixing the input modes states results in local mixing
of the output states with additional classical communication. All these operations cannot
increase entanglement, therefore we can choose |0⟩ as ancillas. With this choice the circuit
can be recast in a simpler form, see fig. 1.1, which is a single beam splitter splitting the input
in two modes going to A and B, with the signal going to B split another arbitrary number of
times. All measurements can be carried out using the modes of B, but local operations cannot
increase entanglement, so there is no gain for B in splitting the beam and measuring just a
part. This proves that the optimal entangler is a single beam splitter. The transmissivity of
the beam splitter has yet to be choosen; even if there is no proof, it is argued in [32] that the
50:50 beam splitter is optimal independently of the input state.
As the last step we have to choose an appropriate measure for bipartite entanglement at

the output; this is clearly a downside because different entanglement measures could lead to
a different classification of nonclassical states. As long as we deal with a pure state 𝜌 in a
finite dimensional Hilbert space the Von Neumann entropy of the reduced density matrix is
a good measure of the entanglement of a generic state 𝜌 and it is defined as

𝐸[𝜌] = 𝑆[𝜌𝐵] = − Tr𝐵[𝜌𝐵 log 𝜌𝐵]
= 𝑆[𝜌𝐴] = − Tr𝐴[𝜌𝐴 log 𝜌𝐴], (1.69)

where 𝜌𝐴 = Tr𝐵 𝜌 and 𝜌𝐵 = Tr𝐴 𝜌 are the reduced density operators. In general they repre-
sent completely different states but they always possess the same amount of Von Neumann
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1 Quantifying the Nonclassicality of a Single-mode Bosonic State

entropy, which, for a generic state density operator 𝜎, is defined as 𝑆[𝜎] = − Tr[𝜎 log 𝜎]. In
the following we will deal with pure states so we choose to quantify entanglement with the
measure 𝐸(𝜌). This choice corresponds to the entropic entanglement potential defined in [32],
where entanglement is measured using the relative entropy of entanglement, which reduces
to the Von Neumann entropy for pure states.
The evolution operator of the beam splitter has the following form

𝑈̂ (𝜉) = exp{𝜉𝑎†𝑏 − 𝜉∗𝑎𝑏†} (1.70)

which can be disentangled using the Schwinger two-mode boson representation of SU(2) (see
for example Ref. [33]) in order to achieve the normal ordering in the mode ̂𝑏:

𝑈̂ (𝜉) = exp{−𝑒−i𝜃 tan 𝜙 ̂𝑎 ̂𝑏†}(cos 𝜙) ̂𝑎† ̂𝑎−𝑏̂† ̂𝑏 exp{𝑒i𝜃 tan 𝜙 ̂𝑎† ̂𝑏} (1.71)

where 𝜉 = 𝜙𝑒i𝜃 . In this case ̂𝑏 is the mode associated with the vacuum input, so that ̂𝑏|0⟩ = 0
and the operator exp{𝑒i𝜃 tan 𝜙 ̂𝑎† ̂𝑏} in (1.71) becomes the identity. To have a 50:50 beam
splitter means choosing 𝜙 = 𝜋

4 ; moreover we choose 𝜃 = 0 in order not to add a phase to the
output states. If we call 𝑈̂(𝜋

4 ) = ̂𝐵 then we can finally define the entanglement potential of
a generic state as

𝐸𝑃 [𝜌] = 𝐸[ ̂𝐵(𝜌 ⊗ |0⟩⟨0|) ̂𝐵†]. (1.72)

1.3.5 Algebraic Measure
In a recent paper [34] a completely different approach to the problem of quantifying nonclas-
sicality was proposed. This method is not related to quasiprobability distributions but it is
based on the superposition principle. This is a fundamental feature of quantum mechanics
and it is purely algebraic in nature, thus independent of geometrical features. For a pure sin-
gle mode state this measure is defined as the minimum number 𝑟 of coherent states necessary
to write it as follow

|𝛹⟩ =
𝑟

∑
𝑖=1

𝜅𝑖|𝛼𝑖⟩. (1.73)

Since coherent states are the only pure classical states, this definition tries to capture non-
classicality by counting how many classical states in superposition are needed to create the
nonclassical state in exam.
The main feature of this measure is the fact that it can be used to quantify bipartite en-

tanglement and nonclassicality in a unified way [35]. Exploiting the beam splitter duality
between nonclassicality of the input state and entanglement of the output it can be proved
that the minimum number of coherent states necessary to represent the input state is equal
to the Schmidt rank of the output state. This results can also be extended to multimode states
and multipartite entanglement.
This idea is conceptually very neat but it is in completely different from the other measures

introduced and it gives a completely different hierarchy of states. For example it is known
that the nonclassical depth of squeezed states is bounded from above by 𝜏m = 1/2, while
number states have 𝜏m = 1; using this algebraic measure we have a completely different
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result. It was shown in fact that 𝑟 = ∞ for squeezed states, while 𝑟 = 𝑛 + 1 for the Fock state
|𝑛⟩. Another example is the famous cat state |𝛼⟩ + | − 𝛼⟩, which has negative parts in the
Wigner function, therefore being more nonclassical than a squeezed state (with a Gaussian
Wigner function); on the other hand according to this new definition the cat state has 𝑟 = 2
so it is minimally nonclassical.
We will not use this measure because it seems to capture a different notion of nonclas-

sicality, giving such a different categorization. On a more practical level there is also an-
other problem, which lies in the fact that 𝑟 is an natural number, so even if it quantitatively
characterize some features correctly (number states with increasing 𝑛 are more and more
nonclassical) it is unsuited to express a proper dependence on a continuous real parameter.
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2 Quantifying the Nonlinearity of a
One-dimensional Potential

Oscillators are one of the most fundamental concepts in physics and they are used to repre-
sent and model a plethora of different physical situations, both in the classical and quantum
regime. The harmonic oscillator is the best known example and the easiest one to study, but
nonlinear oscillators have attracted a lot of interest, both from a mathematical point of view
and from a more applicative one.
In particular in the context of discrete variable quantum information nonlinear oscillators

could be useful because they produce unequally spaced energy levels so they allow us to
engineer two-level systems. On the other hand in continuous variable systems the concept
of Gaussian states is fundamental, they are simply quantum states with a Gaussian Wigner
function. Much of the efforts done so far in continuous variable quantum information in-
volve this kind of states, even though in recent years non-Gaussian states have increasingly
been recognized as an important resource for various quantum technology processes. In this
context nonlinear oscillators could play an important role since their ground states and their
equilibrium states are not Gaussian, as opposed to the ones of a quantum harmonic oscillator.
These arguments are an indication that finding a method to quantify the nonlinear charac-

ter of a quantum oscillator would be useful and interesting, since nonlinearity can represent
a resource in various applications. One idea to do so could be to define a distance between
potential functions and the reference harmonic potential, but this turns out to be not feasi-
ble in general, since potentials do not need to be integrable functions. In this chapter we
will present some ideas useful to quantify the the anharmonic character of a potential, by
studying its ground state.

2.1 Quantifying Non-Gaussianity of a State
We now proceed to define a measure of the non-Gaussian character of a quantum state, as
introduced by Genoni and Paris [36, 37]. In doing so we will briefly review these ideas in a
classical context and also review some properties of Gaussian states.

2.1.1 Classical Probability Distributions
In classical probability theory the Gaussian distribution is of paramount importance, thanks
to the central limit theorem it is used to describe countless natural phenomena. Thus finding
a way to quantify deviations from a perfect Gaussian behaviour is an important problem and
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there are mainly two approaches. The former one is about evaluating the moments of the
distribution, while the latter makes use of Shannon entropy.
The 𝑘th central moments of random variable 𝑥 with a probability density 𝑝(𝑥) are defined

as
𝐸[(𝑥 − 𝜇)𝑘] = ∫

∞

−∞
d𝑥′ (𝑥′ − 𝜇)𝑘𝑝(𝑥′), (2.1)

where
𝜇 = ∫

∞

−∞
d𝑥′ 𝑥′𝑝(𝑥′). (2.2)

The variable 𝑥 is Gaussian distributed if

𝑝(𝑥) = 1
√2𝜋𝜎2

exp{−𝑥 − 𝜇
2𝜎2 }, (2.3)

where 𝜎2 = 𝐸[(𝑥 − 𝜇)2] is the variance.
The first way to quantify non-Gaussianity is the kurtosis, defined as follows

𝐾(𝑥) = 𝐸[(𝑥 − 𝜇)4] − 3𝜎2. (2.4)

This quantity is zero for Gaussian variables and different from zero for most non-Gaussian
variables, however it is not considered a robust measure since it may strongly depend on the
observed data.
A more robust way to quantify non-Gaussianity is using the so-called differential entropy,

which is the continuous version of the Shannon entropy and is defined as

𝐻(𝑥) = − ∫d𝑥′ 𝑝(𝑥′) ln 𝑝(𝑥′). (2.5)

It is widely known that Gaussian variables are the ones that maximize this entropy at fixed
variance, so this allows us to define a measure of non-Gaussianity called negentropy

𝑁(𝑥) = 𝐻(𝑔) − 𝐻(𝑥), (2.6)

where 𝑔 is a Gaussian variable with the same variance of 𝑥; negentropy is always non nega-
tive and equal to zero only for Gaussian variables.

2.1.2 Quantum Gaussian States
Gaussian states are 𝑛 modes bosonic states with a Gaussian Wigner function, a general treat-
ment of their properties is beyond our goals, but a complete review of the subject can be
found in Ref. [33]. We will deal only with the simple case of a single mode state, so we
just have a single pair of creation and destruction operators ̂𝑎 and ̂𝑎†, and a single pair of
canonical operators ̂𝑞 and ̂𝑝.
Introducing the vector 𝑹 = (𝑥̂, ̂𝑝)𝑇 we can define the covariance matrix of a single mode

states as follows
𝜎𝑗𝑘 = 1

2⟨{𝑅̂𝑗 , 𝑅̂𝑘}⟩ − ⟨𝑅𝑗⟩⟨𝑅𝑘⟩, (2.7)

22



2 Quantifying the Nonlinearity of a One-dimensional Potential

where { ̂𝐴, ̂𝐵} = ̂𝐴 ̂𝐵 + ̂𝐵 ̂𝐴 is the anticommutator. We also define the mean vector 𝑿̄, its
components are 𝑋𝑘 = ⟨𝑅𝑘⟩.
A state is said to be Gaussian if itsWigner function is Gaussian and therefore can bewritten

in the following manner

𝑊 (𝑿) = 1
2𝜋√det[𝜎]

exp[−1
2(𝑿 − 𝑿̄)𝑇 𝜎−1(𝑿 − 𝑿̄)], (2.8)

where 𝑿 = (Re 𝑧, Im 𝑧). This definition means that, even if Gaussian states are continuous
variable states, they are the simplest ones because they are fully determined by the knowl-
edge of 𝑿̄ and 𝝈. Gaussian states are in general generated by Hamiltonians at most bilinear
in the mode operators, in particular the most general one mode Gaussian state can be written
as

𝜌𝐺 = 𝐷̂(𝛼) ̂𝑆(𝜉)𝜈(𝑛) ̂𝑆†(𝜉)𝐷̂†(𝛼), (2.9)

with 𝜈 being the single mode thermal state: 𝜈(𝑛) = (1 + 𝑛)−1[𝑛/(1 + 𝑛)] ̂𝑎† ̂𝑎, where 𝑛 =
Tr[ ̂𝑎† ̂𝑎𝜈(𝑛)]. This statement is valid in general for states with more than one mode: every
Gaussian state can always be written as an unitary transformation generated by an Hamilto-
nian at most bilinear in the creation and destruction operators applied to a thermal state.

2.1.3 Distance From a Reference Gaussian State
Similarly to what has been shown in section 1.3.1 for nonclassicality one can quantify non-
Gaussianity by measuring the distance from a reference Gaussian state. The reference state
𝜏 is a Gaussian state having the same first and second moments of the state 𝜌 in examination,
that is to say

𝑿[𝜏] = 𝑿[𝜌]
𝜎[𝜏] = 𝜎[𝜌]. (2.10)

If we use theHilbert-Schmidt distance 𝑑HS in (1.60), we can define the degree of non-Gaussianity
of a state 𝜌 as

𝑁𝐺HS[𝜌] = 𝑑HS(𝜌, 𝜏)
𝜇[𝜌] , (2.11)

where 𝜇[𝜌] is the purity of the state defined as 𝜇[𝜌] = Tr[𝜌2]. This measure can be thought
as a quantum version of quantifying classical non-Gaussianity by using the moments of the
distribution. It enjoys some properties (see [37] for more details): 𝑁𝐺HS is equal to zero if
and only if 𝜌 is Gaussian and it is invariant for unitary evolutions derived by Hamiltonians
at most quadratical in the creation operators. Moreover this measure is proportional to the
𝐿2 distance of the Wigner functions (or analogously the characteristic functions) of 𝜌 and 𝜏 ,
this property can be written as

𝑁𝐺HS[𝜌] ∝ ∫d2𝛼 {𝑊 [𝜌](𝛼) − 𝑊 [𝜏](𝛼)}2

𝑁𝐺HS[𝜌] ∝ ∫d2𝜆{𝜒[𝜌](𝜆) − 𝜒[𝜏](𝜆)}2
(2.12)
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There is also a conjecture affirming that for single mode states the upper bound for 𝑁𝐺HS is
the value 1/2.

2.1.4 Entropic Measure
A different approach to measure non-Gaussianity is based on quantum relative entropy; for
two quantum states it is defined as

𝑆(𝜌1‖𝜌2) = Tr[𝜌1(ln 𝜌1 − ln 𝜌2)]. (2.13)

It can be proved that 0 ≤ 𝑆(𝜌1‖𝜌2) < ∞, when it is properly defined, which means that the
support of 𝜌1 is contained in the support of 𝜌2. It has the important property that 𝑆(𝜌1‖𝜌2) =
0 if and only if 𝜌1 = 𝜌2. While the relative entropy is not a proper metric, because it is not
symmetric in its arguments, it has been used widely to quantify the distinguishability of two
states. As a matter of fact the probability of confusing 𝜌1 with 𝜌2 after 𝑁 measurements for
𝑁 → ∞ becomes proportional to exp[−𝑁𝑆(𝜌1‖𝜌2)]
This leads to the definition of the entropic measure of non-Gaussianity

𝑁𝐺E(𝜌) = 𝑆(𝜌‖𝜏), (2.14)

that is to say the quantum relative entropy between a state and the corresponding reference
Gaussian state. This measure becomes

𝑁𝐺E(𝜌) = Tr[𝜌 ln 𝜌] − Tr[𝜌 ln 𝜏] = 𝑆(𝜏) − 𝑆(𝜌), (2.15)

where𝑆 denotes the standard vonNeumann entropy and the equality follows becauseTr[𝜏 ln 𝜏] =
Tr[𝜌 ln 𝜏] for the way 𝜏 is defined. This measure can be considered as the quantum version
of the negentropy (2.6) and it satisfies all the properties of the Hilbert-Schmidt measure plus
some additional ones that will not be needed in the present work. However it is worth to
mention that whereas the Bures measure is not additive under the tensor product operation,
the entropic measure satisfies this property.
The von Neumann entropy of a single mode Gaussian state assumes a simple form

𝑆(𝜌G) = ℎ(√det 𝝈), (2.16)

where ℎ(𝑥) is a function defined as follows

ℎ(𝑥) = (𝑥 + 1
2) ln(𝑥 + 1

2) − (𝑥 − 1
2) ln(𝑥 − 1

2). (2.17)

Thanks to this form the entropic non-Gaussianity becomes

𝑁𝐺E(𝜌) = ℎ(√det 𝝈) − 𝑆(𝜌), (2.18)

which is further simplified for pure states, since 𝑆(𝜌) = 0.
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2 Quantifying the Nonlinearity of a One-dimensional Potential

2.2 Nonlinearity of a Potential From Its Ground State
In order to measure the nonlinearity of a potential we are going to study its ground state
[2]. In principle also the state at thermal equilibrium could be a good state to examine, but
this makes computations more complex and it is yet to see if it is possible to work out such
a measure explicitly for interesting cases.
The quantum harmonic oscillator has been partly reviewed in section 1.1.1, in particular

we have that its ground state wave function is a Gaussian:

𝜓H(𝑥) = ⟨𝑥 ∣ 0⟩ = (
𝜔
𝜋 )

1
4 𝑒− 1

2 𝜔𝑥2 , (2.19)

where the mass 𝑚 and the Planck constant have been rescaled to unity. We see that a har-
monic oscillator is completely specified by the value of its frequency 𝜔.
On the other hand if we consider a generic potential 𝑉 (𝑥) which leads to an oscillatory

behaviour the wave function can be obtained by solving the Schrödinger equation

[−1
2

d2

d𝑥2 + 𝑉 (𝑥)]𝜙(𝑥) = 𝐸𝜙(𝑥), (2.20)

which in general is not a Gaussian function. We denote by |0⟩𝑉 the ground state of the
system with the potential 𝑉 (𝑥).

Distance From the Ground State

The first idea to quantify nonlinearity relies again on the concept of geometrical distances
between quantum states. In particular for this purpose the Bures metric (1.61) has been
employed. If we denote the ground state of the reference harmonic oscillator by |0⟩𝐻 , the
corresponding measure to quantify nonlinearity is defined as

𝜂B[𝑉 ] = 𝑑B(|0⟩𝑉 , |0⟩𝐻), (2.21)

since the ground states are pure states this just reduces to

𝜂B[𝑉 ] = √1 − |𝐻⟨0 ∣ 0⟩𝑉 |. (2.22)

To have a proper definition we still have to choose a value for the frequency 𝜔 of the ref-
erence harmonic oscillator, because the value of 𝜂B depends on it. The most natural choice
is expanding the potential near its minimum and finding 𝜔 as a function of the nonlinear pa-
rameters of the potential, however determining this frequency is not always straight-forward
and for some potentials it can even be misleading.

Nonlinearity Through Non-Gaussianity

We have stated that determining a reference harmonic potential might not always be possible
so it would be useful to have a measure not dependent on the choice of a reference potential.
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2 Quantifying the Nonlinearity of a One-dimensional Potential

This is achieved by employing the entropic non-Gaussianity 𝑁𝐺E, so that the measure of
nonlinearity is defined as

𝜂NG[𝑉 ] = 𝑁𝐺E(|0⟩𝑉 𝑉 ⟨0|) = ℎ(√det 𝝈), (2.23)

where the equality holds because the ground state is pure; 𝝈 represents the covariance matrix
of the ground state.
This definition is more appealing than 𝜂B because it does not require the determination of a

reference potential for 𝑉 (𝑥), but just a reference Gaussian state for the ground state of 𝑉 (𝑥).
This renders 𝜂NG independent of the specific features of the potential, since we do not need
to know the behaviour of 𝑉 (𝑥) near its minimum to computer the reference frequency.

26



3 Harmonic Oscillator With
Polynomial Perturbations

We want to study the behaviour of a physical system composed by a one dimensional har-
monic oscillator with two perturbations proportional to 𝑥4 and 𝑥6, we work with unitary
mass and units rescaled in such a way that 𝑚 = 1 and ℏ = 1. The classical Hamiltonian of
this system is

𝐻 = 1
2𝑝2 + 1

2𝜔2𝑥2 + 𝜖4𝑥4 + 𝜖6𝑥6 (3.1)

We will also be interested in the two limiting cases where only one of the perturbations is
present, that is to say 𝜖4 = 0 or 𝜖6 = 0; we will refer to quantities related to these two cases
with the subscript 4 (6) when there is only the term 𝜖4𝑥4 (𝜖6𝑥6). This system will be studied
using perturbation theory since it is not exactly solvable.
The aim of studying this simple system is to gather some evidence for the idea that non-

linearity is a resource for nonclassicality before moving to more interesting and realistic po-
tentials. For this purpose it is also very useful to work with first order perturbative ground
states, since it is relatively easy to compute all the relevant quantities for vectors with a small
number of components in the particle number basis (also called Fock basis).
Terms proportional to 𝑥 and to 𝑥2 could be treated in a perturbative way as well, but

they are exactly solvable and actually give rise to a harmonic oscillator with a different fre-
quency, so we do not consider this perturbations because they do not cause real anharmonic
behaviour. On the other hand a perturbation proportional to 𝑥3 can be indeed considered,
but this poses some problems for the convergence of the perturbative series, so it was not
considered in order to avoid technical difficulties that could influence the results and their
interpretation.
We note that part of the analytical calculations was carried out with the help of the Quan-

tum1 add-on for Mathematica, developed by José Luis Gómez-Muñoz and Francisco Delgado.

3.1 Perturbative states
In order to compute the ground states for these Hamiltonians we use time-independent per-
turbation theory (Rayleigh-Schrödinger perturbation theory), as found in standardQuantum
Mechanics textbooks [38]. We are going to need the matrix elements of the perturbation on
the basis of the energy eigenstates of the unperturbed system, which in this case are the

1The package can be found on-line at the address http://homepage.cem.itesm.mx/lgomez/quantum/.
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3 Harmonic Oscillator With Polynomial Perturbations

Fock states |𝑛⟩. This can be done in an explicit fashion using the wave functions of the har-
monic oscillator and performing integrals but it is more convenient to use the creation and
annihilation operators already introduced in section 1.1.1.
With our choices of units (𝑚 = ℏ = 1) these operator are defined this way

̂𝑎 = √
𝜔
2 (𝑥̂ + i

𝜔 ̂𝑝)

̂𝑎† = √
𝜔
2 (𝑥̂ − i

𝜔 ̂𝑝).
(3.2)

One can express the position and momentum operators in terms of ̂𝑎 and ̂𝑎†

𝑥̂ = √
1

2𝜔( ̂𝑎 + ̂𝑎†)

̂𝑝 = √
𝜔
2 ( ̂𝑎† − ̂𝑎).

(3.3)

We can now compute the matrix elements, expressing the perturbations in function of ̂𝑎
and ̂𝑎† and using the properties (1.3). For 𝑥4 the only elements that are not zero are

⟨𝑛|𝑥̂4|𝑛⟩ = 6𝑛2 + 6𝑛 + 3
4𝜔2

⟨𝑛|𝑥̂4|𝑛 + 4⟩ = ⟨𝑛 + 4|𝑥̂4|𝑛⟩ = √(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)
4𝜔2

⟨𝑛|𝑥̂4|𝑛 + 2⟩ = ⟨𝑛 + 2|𝑥̂4|𝑛⟩ =
(4𝑛 + 6)√𝑛(𝑛 − 1)

4𝜔2 ,

(3.4)

while for 𝑥6 we have

⟨𝑛|𝑥̂6|𝑛⟩ =
5(4𝑛3 + 6𝑛2 + 8𝑛 + 3)

8𝜔3

⟨𝑛|𝑥̂6|𝑛 + 6⟩ = ⟨𝑛 + 6|𝑥̂4|𝑛⟩ = √(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)(𝑛 + 5)(𝑛 + 6)
8𝜔3

⟨𝑛|𝑥̂6|𝑛 + 4⟩ = ⟨𝑛 + 4|𝑥̂4|𝑛⟩ =
3(2𝑛 + 5)√(𝑛 + 1)(𝑛 + 2)(𝑛 + 3)(𝑛 + 4)

8𝜔3

⟨𝑛|𝑥̂6|𝑛 + 2⟩ = ⟨𝑛 + 2|𝑥̂4|𝑛⟩ =
15(𝑛2 + 3𝑛 + 3)√(𝑛 + 1)(𝑛 + 2)

8𝜔3 .

(3.5)

3.1.1 First Order
We want now to calculate the ground states at the first order in the powers of 𝜖 (which is
supposed to be a small parameter). The standard formula for the 𝑛th perturbed level is

|𝑛⟩ = |𝑛(0)⟩ + 𝜖 ∑
𝑘≠𝑛

|𝑘(0)⟩ 𝑉𝑘0

𝐸(0)
𝑛 − 𝐸(0)

𝑘

(3.6)
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3 Harmonic Oscillator With Polynomial Perturbations

where 𝐻 = 𝐻0 + 𝜖𝑉 , 𝐻0|𝑛(0)⟩ = 𝐸(0)
𝑛 |𝑛(0)⟩ and 𝑉𝑛𝑘 = ⟨𝑛(0)|𝑉 |𝑘(0)⟩

Our notation will be slightly different, since we are just interested in the ground state we
are going to call |𝑛⟩ the eigenvectors of the unperturbed Hamiltonian (𝐻0|𝑛⟩ = 𝐸𝑛|𝑛⟩ =
𝜔( 1

2 + 𝑛)|𝑛⟩) and |𝜓⟩ the ground state obtained with first order perturbation theory. Thus
the above formula reduces to

|𝜓⟩ = |0⟩ + 𝜖 ∑
𝑘≠0

|𝑘⟩ 𝑉𝑘0
−𝜔𝑘 (3.7)

Using this formula and the matrix elements found in the last section we readily find the
normalized ground state 𝜓 , which reads

|𝜓⟩ = 1
𝐶

⎡
⎢
⎢
⎣
|0⟩ −

(
45𝜖6

4√2𝜔3
+ 3𝜖4

√2𝜔2 )
|2⟩ −

⎛
⎜
⎜
⎝

15√ 3
2𝜖6

2𝜔3 +
√3

2𝜖4

𝜔2

⎞
⎟
⎟
⎠
|4⟩ − √5𝜖6|6⟩

⎤
⎥
⎥
⎦
, (3.8)

where the normalization constant 𝐶 is

𝐶 =
√𝜔2(96𝜔6 + 117𝜖2

4) + 945𝜔𝜖4𝜖6 + 2055𝜖2
6

4√6𝜔4
. (3.9)

For the sake of brevity and order from now on the coefficents of the first order perturbed
ground state will be named 𝛾 , so that the state assumes the following form

|𝜓⟩ = 𝛾0|0⟩ + 𝛾2|2⟩ + 𝛾4|4⟩ + 𝛾6|6⟩. (3.10)

The two limiting states are called 𝜓4 and 𝜓6 respectively and they are written explicitly as
follows

|𝜓4⟩ = 1
𝐶4 (

|0⟩ − 3𝜖4

2√2𝜔3
|2⟩ −

√3𝜖4

4√2𝜔3
|4⟩

)
(3.11)

|𝜓6⟩ = 1
𝐶6 (

|0⟩ − 45𝜖6

8√2𝜔4
|2⟩ − 15√3𝜖6

8√2𝜔4
|4⟩ −

√5𝜖6
4𝜔4 |6⟩

)
, (3.12)

where the normalization constants are given by

𝐶4 = √1 + 39𝜖4
2

32𝜔6 𝐶6 = √1 + 2055𝜖6
2

96𝜔8 . (3.13)

3.1.2 Approximate Solution
A possible way to obtain a good approximation of the ground state of the harmonic oscillator
with polynomial perturbations is to work in a finite dimensional Fock space. In this setting
al the operators 𝑥̂, ̂𝑝, ̂𝑎, ̂𝑎† and 𝐻̂ are finite dimensional operators representable as matrices.
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3 Harmonic Oscillator With Polynomial Perturbations

If we choose the maximum number 𝑁 of dimensions of the Fock space, every pure state can
be represented as ∑𝑁

𝑛=0 𝑐𝑛|𝑛⟩. The matrix elements of the operator 𝑥̂ are

𝑥𝑖𝑗 =
√𝑗𝛿𝑖−𝑗+1 + √𝑗 + 1𝛿−𝑖+𝑗+1

√2𝜔
, (3.14)

where 𝑖 and 𝑗 go from 0 to 𝑁 ; the operators 𝑥̂4 and 𝑥̂6 can be easily obtained by standard
matrixmultiplication. In this basis thematrix representation of the unperturbedHamiltonian
operator 𝐻̂ (0) is diagonal and its elements are

𝐻 (0)
𝑗𝑗 = 𝜔(𝑗 + 1

2). (3.15)

The ground state of the system can thus be calculated by diagonalizing the matrix 𝐻 (0) +
𝜖4𝑥4 +𝜖6𝑥6, which can always be done, at least numerically. The resulting energy eigenstates
and eigenvalues will be of course dependent on the dimension 𝑁 of the Fock space, but they
should converge for 𝑁 big enough. This is indeed the case and we choose 𝑁 = 60 to obtain
a ground state 𝜙 to be confronted with the perturbative state 𝜓 using the fidelity |⟨𝜙|𝜓⟩|. In
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Figure 3.1: Plot of the overlap between the perturbative and the approximate ground states for 𝜔 = 1. In figure
(a) we have 𝜖6 = 0, while in figure (b) we have 𝜖4 = 0.

fig. 3.1 we can see the overlap decreasing as the perturbative parameters increases for the two
limiting states 𝜓4 and 𝜓6, while in fig. 3.2 we have a contour plot of the overlap as a function
of both parameters. This analysis gives us a range of values of the parameters 𝜖4 and 𝜖6 where
the first order perturbative state represents a good approximation for the real solution. We
chose to make 𝜖4 vary between 0 and 0.1, while 𝜖6 stays from 0 to 0.03, this choice leads to the
minimum overlap being ≈ 0.988 for the maximum value of both parameters (the top right
corner of the contour plot in fig. 3.2).

3.2 Nonlinearity
Now that we have the perturbed ground state (3.8) we want to use it to compute the nonlin-
earity of the perturbation. As discussed in chapter 2, this quantity can be measured by two
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Figure 3.2: Contour plot of the overlap between the perturbative and the approximate ground states for 𝜔 = 1.
In figure (a) we have 𝜖6 = 0, while in figure (b) we have 𝜖4 = 0.

different parameters 𝜂B and 𝜂NG, the former is usually easier to compute but dependent on a
reference harmonic oscillator, while the second can be more general. We are going to check
both these indices; the system under consideration is a a perturbed harmonic oscillator so
the reference harmonic frequency needed for 𝜂B is defined with no ambiguity.

3.2.1 Measure Based on Bures Distance
The measure 𝜂B is just the renormalized Bures distance between the ground state |0⟩𝐻 =
|𝜓⟩ of the reference quantum harmonic oscillator and the ground state |0⟩𝑉 = |0⟩ of the
perturbed oscillator obtained. For this system the definition (2.22) yields

𝜂B[𝜖4𝑥4 + 𝜖6𝑥6] = √1 − |⟨0|𝜓⟩| = √1 − |𝛾0| = √1 − 1
𝐶

=
√√√√
⎷

1 − 4√6𝜔4

√𝜔2(96𝜔6 + 117𝜖2
4) + 945𝜔𝜖4𝜖6 + 2055𝜖2

6

(3.16)

3.2.2 Measure Based On Non-Gaussianity
The covariance matrix (2.7) can be explicitly written out as follows

𝝈 = (
⟨𝑥̂2⟩ − ⟨𝑥̂⟩2 1

2⟨{𝑥̂, ̂𝑝}⟩ − ⟨𝑥̂⟩⟨ ̂𝑝⟩
1
2⟨{ ̂𝑝, 𝑥̂}⟩ − ⟨ ̂𝑝⟩⟨𝑥̂⟩ ⟨ ̂𝑝2⟩ − ⟨ ̂𝑝⟩2 ) (3.17)

and it can also be rewritten in terms of the expectation values of creation and destruction
operators. First we note that

{𝑥̂, ̂𝑝} = [𝑥̂, ̂𝑝] + 2 ̂𝑝𝑥̂ = i + 2 ̂𝑝𝑥̂ (3.18)
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3 Harmonic Oscillator With Polynomial Perturbations

and then we use the definitions (3.3) to get

̂𝑝𝑥̂ = i
2( ̂𝑎† ̂𝑎† − ̂𝑎 ̂𝑎 − 1), (3.19)

this in turn yields
⟨{𝑥̂, ̂𝑝}⟩ = i(⟨ ̂𝑎† ̂𝑎†⟩ − ⟨ ̂𝑎 ̂𝑎⟩). (3.20)

Since [ ̂𝑎, ̂𝑎†] = 1 we are going to keep just the terms ̂𝑎† ̂𝑎 expressing the others as ̂𝑎 ̂𝑎† = ̂𝑎† ̂𝑎+1.
In this fashion we get

⟨𝑥̂2⟩ = − 1
2𝜔(⟨ ̂𝑎† ̂𝑎†⟩ + 2⟨ ̂𝑎† ̂𝑎⟩ + 1 + ⟨ ̂𝑎 ̂𝑎⟩) (3.21)

and
⟨ ̂𝑝2⟩ = −𝜔

2 (⟨ ̂𝑎† ̂𝑎†⟩ − 2⟨ ̂𝑎† ̂𝑎⟩ − 1 + ⟨ ̂𝑎 ̂𝑎⟩). (3.22)

Substituting these values the covariance matrix becomes

(
1

2𝜔 (1 + ⟨ ̂𝑎2⟩ + ⟨( ̂𝑎†)2⟩ + 2⟨ ̂𝑎† ̂𝑎⟩ − 2⟨ ̂𝑎⟩⟨ ̂𝑎†⟩ − ⟨ ̂𝑎⟩2 − ⟨ ̂𝑎†⟩2) i
2 (⟨( ̂𝑎†)2⟩ − ⟨ ̂𝑎2⟩ − ⟨ ̂𝑎†⟩2 + ⟨ ̂𝑎⟩2)

i
2 (⟨( ̂𝑎†)2⟩ − ⟨ ̂𝑎2⟩ − ⟨ ̂𝑎†⟩2 + ⟨ ̂𝑎⟩2) 𝜔

2 (1 − ⟨ ̂𝑎2⟩ − ⟨( ̂𝑎†)2⟩⟩ + 2⟨ ̂𝑎† ̂𝑎⟩ − 2⟨ ̂𝑎⟩⟨ ̂𝑎†⟩ + ⟨ ̂𝑎⟩2 + ⟨ ̂𝑎†⟩2))
(3.23)

We can calculate the expectation values explicitly in terms of the coefficients (3.8).

⟨𝜓| ̂𝑎|𝜓⟩ = 0
⟨𝜓| ̂𝑎†|𝜓⟩ = ⟨𝜓| ̂𝑎|𝜓⟩∗ = 0

⟨𝜓| ̂𝑎†𝑎|𝜓⟩ = 2|𝛾2|2 + 4|𝛾4|2 + 6|𝛾4|2

⟨𝜓| ̂𝑎2|𝜓⟩ = √2𝛾2𝛾0
∗ + 2√3𝛾4𝛾2

∗ + √30𝛾6𝛾4
∗

⟨𝜓|( ̂𝑎†)2|𝜓⟩ = ⟨𝜓| ̂𝑎2|𝜓⟩∗ = √2𝛾0𝛾2
∗ + 2√3𝛾2𝛾4

∗ + √30𝛾4𝛾6
∗

(3.24)

These values turn out to be real, since the coefficients 𝛾𝑖 of the ground state are real. For this
reason we have that ⟨𝑎⟩ = ⟨𝑎†⟩ and ⟨𝑎2⟩ = ⟨(𝑎†)2⟩. This fact leads to a simplified correlation
matrix which is diagonal

(
1

2𝜔 (1 + 2⟨ ̂𝑎2⟩ + 2⟨ ̂𝑎†𝑎⟩ − 4⟨ ̂𝑎⟩2) 0
0 𝜔

2 (1 + 2⟨ ̂𝑎† ̂𝑎⟩ − 2⟨ ̂𝑎2⟩),) (3.25)

so that the determinant is easily computed

det 𝝈 = 1
4 − ⟨ ̂𝑎2⟩2 − ⟨ ̂𝑎⟩2 + ⟨ ̂𝑎† ̂𝑎⟩ + ⟨ ̂𝑎† ̂𝑎⟩2 + 2⟨ ̂𝑎⟩2⟨ ̂𝑎2⟩ − 2⟨ ̂𝑎⟩2⟨ ̂𝑎† ̂𝑎⟩, (3.26)

it can be made explicit as a function of the coefficients inserting the values (3.24)

det 𝝈 = (4𝛾4
2 − 2𝛾2

0 𝛾2
2 + 4𝛾2

4 𝛾2
2 + 24𝛾2

6 𝛾2
2 − 4√6𝛾0𝛾4𝛾2

2

+ 2𝛾2
2 − 12√10𝛾2

4 𝛾6𝛾2 − 4√15𝛾0𝛾4𝛾6𝛾2

+ 16𝛾4
4 + 36𝛾4

6 + 4𝛾2
4 + 18𝛾2

4 𝛾2
6 + 6𝛾2

6 + 1
4).

(3.27)
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We write explicitly the nonlinearity as a function of the perturbative parameters 𝜖4, 𝜖6 just
for the two limiting cases 𝜖4 = 0 and 𝜖6 = 0 , since the full expression is very involved.

𝜂NG(𝜖4) =ℎ(−
20736𝜔6𝜖2

4

(96𝜔6 + 117𝜖2
4)2

+
252𝜖2

4

96𝜔6 + 117𝜖2
4

+

+
51840𝜖4

4

(96𝜔6 + 117𝜖2
4)2

+
31104𝜔3𝜖3

4

(96𝜔6 + 117𝜖2
4)2

+ 1
4)

(3.28)

𝜂NG(𝜖6) =ℎ(−
291600𝜔8𝜖2

6

(96𝜔8 + 2055𝜖2
6)2

+
10485𝜖2

6

2(96𝜔8 + 2055𝜖2
6)

+

+
13701150𝜖4

6

(96𝜔8 + 2055𝜖2
6)2

+
4009500𝜔4𝜖3

6

(96𝜔8 + 2055𝜖2
6)2

+ 1
4)

(3.29)

The index 𝜂NG is plotted parametrically with the nonlinearity index 𝜂B and for both cases we
see a positive correlation as expected, an indication that the physical meaning of the two
measures is equivalent. In the following we will use both 𝜂NG and 𝜂B as it turns out they have
sometimes slightly different behaviours.
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Figure 3.3: Parametric plot of the two nonlinearity measures the paramater 𝜖4 and 𝜖6 going from 0 to 1
2 ; we

work with 𝜔 = 1.
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3.3 Nonclassicality
We are interested in quantifying the nonclassicality of the ground state (3.8) of the perturbed
system. As explained in chapter 1 there exists a plethora of ways to quantify hownonclassical
a quantum state is.
The first measure we will use is the negative volume of the Wigner function 𝛿, discussed

in section 1.3.3 and defined by equation (1.67). Then we will characterize the nonclassicality
using the entropic entanglement potential which was discussed in section 1.3.4.

3.3.1 Wigner Function
TheWigner function for the state |𝜓⟩ has to be calculated. Among the various ways one can
define the Wigner function, the most suitable for a linear combination of Fock states is the
definition (1.41). In this case the trace become just the expectation value on the state so we
have

𝑊 (𝑧) = 2
𝜋 ⟨𝜓|𝐷̂(2𝑧)(−1) ̂𝑎† ̂𝑎|𝜓⟩ =

2
𝜋 [𝛾0

2⟨0|𝐷̂(2𝑧)|0⟩ + 𝛾2
2⟨2|𝐷̂(2𝑧)|2⟩ + 𝛾4

2⟨4|𝐷̂(2𝑧)|4⟩ + 𝛾6
2⟨6|𝐷(2𝑧)|6⟩

+ 𝛾0𝛾2(⟨2|𝐷̂(2𝑧)|0⟩ + ⟨0|𝐷̂(2𝑧)|2⟩) + 𝛾0𝛾4(⟨4|𝐷̂(2𝑧)|0⟩ + ⟨0|𝐷̂(2𝑧)|4⟩)+
+ 𝛾0𝛾6(⟨6|𝐷̂(2𝑧)|0⟩ + ⟨0|𝐷̂(2𝑧)|6⟩) + 𝛾2𝛾4(⟨4|𝐷̂(2𝑧)|2⟩ + ⟨2|𝐷(2𝑧)|4⟩)+
+ 𝛾2𝛾6(⟨6|𝐷̂(2𝑧)|2⟩ + ⟨2|𝐷̂(2𝑧)|6⟩) + 𝛾4𝛾6(⟨6|𝐷̂(2𝑧)|4⟩ + ⟨4|𝐷̂(2𝑧)|6⟩)]

(3.30)

To have the explicit Wigner function we need the expectation value of the displacement
operator between number states; it turns out to be (see appendix A.2 for an explicit deriva-
tion):

⟨𝑛′|𝐷̂(𝑧)|𝑛⟩ =
⎧⎪
⎨
⎪⎩

√ 𝑛!
𝑛′!𝑒

− |𝑧|2
2 (−𝑧)𝑛′−𝑛𝐿(𝑛′−𝑛)

𝑛′ (|𝑧|2) if 𝑛′ > 𝑛

√ 𝑛′!
𝑛! 𝑒− |𝑧|2

2 (𝑧∗)𝑛−𝑛′𝐿(𝑛−𝑛′)
𝑛 (|𝑧|2) if 𝑛 > 𝑛′

(3.31)

where 𝐿(𝛼)
𝑛 (𝑥) = ∑𝑛

𝑘=0(−1)𝑘(𝑛+𝛼
𝑛−𝑘)𝑥𝑘

𝑘! are the associated Laguerre polynomials. TheWigner func-
tion then becomes

𝑊 (𝑧) = 2
𝜋 𝑒−2|𝑧|2

[𝛾0
2𝐿0(4|𝑧|2) + 𝛾2

2𝐿2(4|𝑧|2) + 𝛾4
2𝐿4(4|𝑧|2) + 𝛾6

2𝐿6(4|𝑧|2)+

+ 4√2𝛾0𝛾2 Re(𝑧2)𝐿2
2(4|𝑧|2) + 16

√3
𝛾0𝛾4 Re(𝑧4)𝐿4

4(4|𝑧|2) + 32
3√5

𝛾0𝛾6 Re(𝑧6)𝐿6
6(4|𝑧|2)

+ 4
√3

𝛾2𝛾4 Re(𝑧2)𝐿2
4(4|𝑧|2) + 16

3√10
𝛾2𝛾6 Re(𝑧4)𝐿4

6(4|𝑧|2) + 8
√30

𝛾4𝛾6 Re(𝑧2)𝐿2
6(4|𝑧|2)].

(3.32)

In order to have the measure of nonclassicality 𝛿 we need to integrate the absolute value
of (3.32). This integration cannot be carried out analytically so it was performed numerically
using the software Mathematica.
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3.3.2 Entanglement Potential
Determining the entanglement potential introduced in section 1.3.4 means quantifying the
entanglement of the output state when |𝜓⟩ interacts with the vacuum through a beam splitter.
The initial state is the following tensor product

|𝛹IN⟩⟩ = |0⟩ ⊗ |𝜓⟩ = 𝛾0|0, 0⟩ + 𝛾2|0, 2⟩ + 𝛾4|0, 4⟩ + 𝛾6|0, 6⟩, (3.33)

where |𝑛, 𝑚⟩ means the tensor product |𝑛⟩ ⊗ |𝑚⟩. We can get the output state applying the
unitary evolution operation ̂𝐵 introduced in section 1.3.4

|𝛹OUT⟩⟩ = ̂𝐵|𝛹IN⟩⟩. (3.34)

To get the output state we could work out all the calculations explicitly using expression
(1.71), however the effect of 𝑈̂ (𝜉) on a state of the form |𝑛⟩ ⊗ |𝑚⟩ is given by the following
general formula [39]:

𝑈̂ (𝜉)|𝑛⟩ ⊗ |𝑚⟩ =
𝑛

∑
𝑘=0

𝑚

∑
𝑙=0

𝐴𝑛𝑚
𝑘𝑙 |𝑘 + 𝑙⟩ ⊗ |𝑛 + 𝑚 − 𝑘 − 𝑙⟩, (3.35)

where 𝐴𝑛𝑚
𝑘𝑙 is the transfer matrix given by

𝐴𝑛𝑚
𝑘𝑙 = √

(𝑘 + 𝑙)! (𝑛 + 𝑚 − 𝑘 − 𝑙)!
𝑛! 𝑚! (−1)𝑙

(
𝑛
𝑘)(

𝑚
𝑙 ) sin 𝜙𝑛−𝑘+𝑙 cos 𝜙𝑚+𝑘−𝑙. (3.36)

Remembering that 𝑈̂(𝜋
4 ) = ̂𝐵, the formula we need for the entanglement potential is just

the following

̂𝐵|0, 𝑛⟩ =
(

1
√2)

𝑛 𝑛

∑
𝑘=0

(
𝑛
𝑘)

1
2 |𝑘, 𝑛 − 𝑘⟩, (3.37)

so that for the linearity of the operator ̂𝐵 we have

|𝛹OUT⟩⟩ = 𝛾0 ̂𝐵|0, 0⟩ + 𝛾2 ̂𝐵|0, 2⟩ + 𝛾4 ̂𝐵|0, 4⟩ + 𝛾6 ̂𝐵|0, 6⟩. (3.38)

Following definition (1.72) the entanglement of the state |𝛹OUT⟩⟩ is then quantified with the
Von-Neumann entropy of the partial trace2, so we have

𝐸𝑃 (𝜖4, 𝜖6) = 𝑆(Tr𝐵[|𝛹OUT⟩⟩⟨⟨𝛹OUT|]) = 𝑆(𝜌OUT), (3.39)

where we denoted 𝜌OUT as the reduced density matrix of the system after the interaction with
the beam splitter. In order to compute entropy in actual calculations it has to be rewritten
using the eigenvalues 𝑝𝑖 of the density matrix 𝜌OUT. So, if we choose to measure the entropy
in bits, it becomes

𝑆(𝜌OUT) = −
𝑛

∑
𝑖=0

𝑝𝑖 log2 𝑝𝑖. (3.40)

2The Mathematica code used to compute the partial trace was written by Mark Tame and can be found here
http://library.wolfram.com/infocenter/MathSource/8763/
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3 Harmonic Oscillator With Polynomial Perturbations

3.4 Nonclassicality Versus Nonlinearity
Now that we have investigated the two measures of nonlinearity 𝜂NG and 𝜂B and the two
measures of nonclassicality 𝛿 and 𝐸𝑃 for the perturbed ground state 𝜓 we are in the position
to compare these quantities. We want to check if increasing the nonlinearity of the potential
renders the ground state more nonclassical.
Thiswill be donemainly by using parametric plots or scatter plots of nonclassicality against

nonlinearity; in this plots nonlinearity plays the role of the independent variable represented
on the horizontal axis. The fact that there are two different measures for both quantities
makes possible to draw four possible graphs, however if the underlying idea is correct the
interpretation should not be too different. Nonetheless every measure has not the exact same
properties so some differences will indeed arise and they will be pointed out.
For nonclassicality both measures have to be used, because they capture nonclassicality

in different ways, as explained in chapter 1. Regarding nonlinearity we could just use 𝜂NG
since this measure has more desirable properties, in fact we have already pointed out in
section 3.2.2 that 𝜂NG and 𝜂B have a positive correlation for the system under consideration.
We will however check also 𝜂B, because a different behaviour arises when we deal with two
parameters.
All the calculations in this part are obtained for the choice 𝜔 = 1 because we want to

highlight the dependence on the pertubative parameters. The range of the parameters is the
one discussed in section 3.1.2, that is to say 0 < 𝜖4 < 0.1 and 0 < 𝜖6 < 0.03, in order to have
perturbed ground states that are a good approximation of the real solution.

3.4.1 Parametric Plots
If we deal with the ground states 𝜓4 or 𝜓6 we have just one parameter on which nonlinearity
and nonclassicality depend. In this case there is notmuch difference in comparing the various
measures: it turns out they are all monotonous to each other for increasing values of the
perturbation parameters.
The parametric plots are actually made of discrete points since both the nonclassicality

measures need to be computed numerically and are not known as functions of the parameters
𝜖4 and 𝜖6. Themeasure 𝛿 requires a time consuming numerical integration for every different
value of the parameter just 100 discrete points are considered, whereas to compute 𝐸𝑃 the
eigenvalues of the density matrix need to be computed numerically; this is a faster process
so 1000 points are considered.
The plot of nonclassicality 𝛿 against the entropic nonlinearity 𝜂NG is shown in fig. 3.4, the

curve can be fitted approximatively as 𝛿 = 𝑏√𝜂NG, with 𝑏 = 3.72955 for 𝑥4 and 𝑏 = 6.22686
for 𝑥6. If instead we use the entanglement potential, as shown in fig. 3.5, the correlation is
approximatively linear, in the form 𝐸𝑃 = 𝑐𝜂NG, with 𝑐 = 1.40685 for 𝑥4 and 𝑐 = 0.718866 for
𝑥6. We see that the form of the curve is not the exactly the same, nevertheless the important
thing is that a positive correlation is present in both cases.
As we already pointed out the two measures of nonlinearity are monotonous so we do not

expect different results when using 𝜂B, this is indeed the case as shown in fig. 3.6. Even in
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this case the curves are not the same, but we always see a positive correlation that makes
possible to interpret nonlinearity as a resource to generate nonclassicality.
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Figure 3.4: Parametric scatter plot of the negative volume of the Wigner function 𝛿 versus the entropic nonlin-
earity 𝜂NG for the 𝑥4 perturbation (a) and for the 𝑥6 perturbation (b), the fitted function is shown
as a orange dashed line.
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Figure 3.5: Parametric plot of the entanglement potential 𝐸𝑃 versus the entropic nonlinearity 𝜂NG for the 𝑥4

perturbation (a) and for the 𝑥6 perturbation (b), , the fitted function is shown as a orange dashed
line.
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Figure 3.6: Parametric plots using the Bures nonlinearity 𝜂B, with 𝛿 in (a) and (b) and with 𝐸𝑃 in (c) and (d).
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3.4.2 Random Scatter Plots
The full ground state 𝜓 depends on two perturbative parameters, it is then interesting to see
how nonclassicality and nonlinearity behave when treated as functions of both parameters.
This goal is achieved by generating random couple of parameters (𝜖4, 𝜖6) in the appropriate
range and then computing nonclassicality and nonlinearity for that values.
This highlights that nonclassicality and nonlinearity are dependent on the details of the

system under consideration. If these two quantities were intrinsically the same regardless
of the potential we would expect a one-to-one relationship, but this is not the case. As a
matter of fact the scatter plot of nonclassicality versus nonlinearity does not form a line but
a whole region. This means that the different combinations of the parameters which give a
fixed value of nonlinearity instead produce different nonclassicality values.
The region spanned by the random points in the nonlinearity against nonlinearity plot is

limited by four curves. The first two are the ones already obtained in the previous section,
the curve for 𝜖6 = 0 is represented in blue, while the curve for 𝜖4 = 0 is represented in yellow.
The curve where 𝜖4 varies but 𝜖6 is fixed to its maximum value 0.03 is the orange one while
the curve for varying 𝜖6 and 𝜖4 = 0.1 is the green one.
If we consider 𝛿 to quantify nonclassicality the situation is the following: if we choose the

perturbative parameters to get the same amount of nonlinearity then the 𝑥6 potential yields
a more nonclassical ground state for the corresponding value of 𝜖6. As a matter of fact the
two graphs in fig. 3.7 have the same structure, the yellow and the orange curves are always
above the blue and the green ones, with all the random points confined inside the region
delimited by them.
The situation is different if we look at the entanglement potential in fig. 3.8. The random

points are always delimited by the four curves, but the two graphs have a different structure,
as illustrated in fig. 3.9. We see that in the 𝐸𝑃 against 𝜂NG plot the blue and green curves are
above, while in the 𝐸𝑃 versus 𝜂B plot the situation is the opposite (and the same as the graphs
with 𝛿). If we consider just the states 𝜓4 and 𝜓4 this means that, after choosing the parameters
𝜖4 and 𝜖6 in such a way that the entropic linearity is fixed, the state 𝜓4 generates more
entanglement than 𝜓6 for the chosen values of the parameters. A possible interpretation of
this results is that the “right” nonlinearity measure to be associated to 𝐸𝑃 is 𝜂B, while the
one for 𝛿 is 𝜂NG since they both depend on the form of the Wigner function.
From the analysis of the harmonic oscillatorwith perturbationswe can conclude that in this

case the nonlinearity of the potential is a resource to generate nonclassicality in its ground
state. Though we have to specify that these quantities have one-to-one correspondence only
if we consider the potential and the ground state as function of just one parameter.
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Figure 3.7: Random scatter plot of 𝛿 versus nonlinearitywhen both parameters are present, 1000 randompoints
were generated.
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Figure 3.8: Random scatter plot of 𝐸𝑃 versus nonlinearity when both parameters are present, 10000 random
points were generated.
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Figure 3.9: The limiting curves of fig. 3.8a in (a) and of fig. 3.8b in (b).
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4 Exactly Solvable Non Linear
Oscillators

Theperturbed harmonic oscillator confirmed the intuition that nonlinearity can be a resource
for nonclassicality. We now propose to stress this idea using more realistic potentials for
which the ground state can be found analytically.

4.1 Modified Harmonic Oscillator
The Modified Harmonic Oscillator (MHO) potential (choosing units appropriately to get ℏ =
1 = 𝑚 as usual) is defined as

𝑉MHO(𝑥) = 𝛼2𝑥2

2 − 2𝛽𝑥 tanh(𝛽𝑥), (4.1)

and it depends on two parameters: 𝛼, which correspond to the frequency of the unmodified
harmonic oscillator, and 𝛽.
The normalizedwave function of the ground state of this potential can be found analytically

[40] and it is the following one

𝜙MHO(𝑥) = √2𝑒− 1
2 (𝛼𝑥2) cosh(𝛽𝑥)

4√𝜋√√ 1
𝛼 (𝑒 𝛽2

𝛼 + 1)

. (4.2)

To get an idea the MHO potential and its ground state are represented in fig. 4.1 for a par-
ticular choice of the parameters, the reference harmonic oscillator and its wave function are
also represented for comparison.

4.1.1 Nonlinearity
Entropic Nonlinearity

The expectation values of the operators can be carried out analytically by integrating the
wave function (4.2) and they are:

⟨𝑥̂⟩ = 0 ⟨ ̂𝑝⟩ = 0 ⟨𝑥̂2⟩ =
2𝛽2

(1 − 1

𝑒
𝛽2
𝛼 +1) + 𝛼

2𝛼2 ⟨ ̂𝑝2⟩ = 𝛼
2 − 𝛽2

𝑒 𝛽2
𝛼 + 1

⟨ ̂𝑝𝑥̂⟩ = 0,

(4.3)
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Figure 4.1: The MHO potential and its ground state wave function for 𝛼 = 1 and 𝛽 = 2 are represented in
blue, the harmonic potential with unitary frequency and mass and its ground state wave function
in orange.

so we get the full correlation matrix (diagonal, because the coefficients of the wave function
are real)

𝝈MHO =
⎛
⎜
⎜
⎜
⎝

2
(

1− 1

1+𝑒
𝛽2
𝛼 )

𝛽2+𝛼

2𝛼2 0
0 𝛼

2 − 𝛽2

1+𝑒
𝛽2
𝛼

⎞
⎟
⎟
⎟
⎠

(4.4)

Thenonlinearity based on the entropicmeasure of non-Gaussianity is as usual 𝜂NG = ℎ(√det 𝝈MHO),
where the determinant of the correlation matrix is the following

det 𝝈MHO = − 𝛽4

𝛼2(𝑒 𝛽2
𝛼 + 1)

+ 𝛽4

𝛼2(𝑒 𝛽2
𝛼 + 1)

2 + 𝛽2

2𝛼 − 𝛽2

𝛼(𝑒 𝛽2
𝛼 + 1)

+ 1
4. (4.5)

We can see from this expression that the determinant (and thus the nonlinearity) depends
only on the parameter 𝛽2

𝛼 and not upon the two parameters independently, so we can choose
𝛼 = 1 and just make 𝛽 change to get all the values of 𝛽2

𝛼 .

Bures nonlinearity

To get the Bures nonlinearity we have to compute the scalar product between the wave
function (4.2) and the wave function of the reference harmonic oscillator. We choose the
frequency 𝜔 of the reference harmonic oscillator equal to 𝛼. Performing the integration we
eventually get

𝜂B = √1 − |⟨𝜙MHO|0⟩| =
√√√√
⎷

1 − √2𝑒 𝛽2
4𝛼

√𝑒 𝛽2
𝛼 + 1

. (4.6)

42



4 Exactly Solvable Non Linear Oscillators

20 40 60 80 100
β

1

2

3

4

5

ηNG

(a) Entropic nonlinearity
2 4 6 8 10

β

0.2

0.4

0.6

0.8

1.0

ηB

(b) Bures nonlinearity

Figure 4.2: The two measure of nonlinearity as a function of the parameter 𝛽2
𝛼 . The computation is actually

performed by fixing 𝛼 = 1 and varying 𝛽 from 0 to 100 in (a) and from 0 to 10 in (b).

Again we can note that the only parameter that comes into play is 𝛽2

𝛼 . In fig. 4.2 we can see
that as 𝛽 increases the measure 𝜂B saturates to one, which means that the ground state of the
MHO becomes perpendicular to the ground state of the harmonic oscillator. On the other
hand 𝜂NG continues to grow even when 𝜂B saturates to one, since lim𝛽→∞ 𝜂NG(𝛽) = ∞, for this
reason the parametric plot in fig. 4.3 turns flat after the parameter passes the value 𝛽2

𝛼 ≈ 25.
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Figure 4.3: Parametric plot of the entropic nonlinearity versus the Bures nonlinearity for 0 < 𝛽2
𝛼 < 100.

4.1.2 Wigner Function Nonclassicality
TheWigner function for the ground state (4.2) can be found analytically by explicitly integrat-
ing the wave function using the original definition given by Wigner (1.51). This integration
was carried out in Ref. [40], the Wigner function is the following

𝑊MHO(𝑥, 𝑦) =
𝑒−𝛼𝑥2− 𝑦2

𝛼
(𝑒− 𝛽2

𝛼 cosh(2𝛽𝑥) + cos(2𝛽𝑦
𝛼 ))

𝜋(𝑒− 𝛽2
𝛼 + 1)

. (4.7)
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In order to get the measure 𝛿 (1.67) we have to integrate the absolute value of (4.7):

∬d𝑥d𝑦

|
|
|
|
||

𝑒−𝛼𝑥2− 𝑦2
𝛼

(𝑒− 𝛽2
𝛼 cosh(2𝛽𝑥) + cos( 2𝛽𝑦

𝛼 ))

𝜋(𝑒− 𝛽2
𝛼 + 1)

|
|
|
|
||

changing the variables as 𝑞 = 𝛽𝑥 and 𝑝 = 𝛽
𝛼 𝑦 the previous integral becomes

𝛼
𝛽2 𝑒− 𝛼

𝛽2

𝜋(1 + 𝑒− 𝛼
𝛽2 )

∬d𝑞d𝑝 |𝑒
𝑞2+𝑝2

[𝑒− 𝛽2
𝛼 cosh(2𝑞) + cos(2𝑝)]|. (4.8)

It is again evident that this expression depends only on the combination 𝛼
𝛽2 , which comes to

be the only real paremeter governing this measure of nonclassicality.

4.1.3 Entanglement Potential
For the perturbed harmonic oscillator obtaining the entanglement potential was straight-
forward, since the perturbed ground states were restricted to a finite-dimensional subspace
of the Hilbert space in the Fock basis. In the case of the MHO, and for other potentials for
which we have just a ground state wave function 𝜙(𝑥), visualising the effect of the beam
splitter and quantifying the entanglement requires more thought.
One possible approach to the problem of sending the ground state (4.2) into a beam splitter

is to restrict the analysis to a finite dimensional subspace in the Fock basis. As a matter of
fact, since the wave functions 𝑢𝑛(𝑥) of the harmonic oscillator form a basis for the functional
vector space 𝐿2 we can write

𝜙(𝑥) =
∞

∑
𝑖=0

𝜙𝑛𝑢𝑛(𝑥) (4.9)

where
𝜙𝑛 = ∫

∞

−∞
d𝑥𝜙(𝑥)𝑢𝑛(𝑥). (4.10)

In bra-ket notation this corresponds to

|𝜙⟩ =
∞

∑
𝑛=0

𝜙𝑛|𝑛⟩. (4.11)

The approximation which has to be used is truncating this series to a finite number 𝑁 of
terms that will determine the dimension of the subspace of the Fock space. As a control for
the approximation we have to make sure that the norm (squared) of the vector (4.11), that is
to say the sum ∑𝑁

𝑛=0 𝜙2
𝑛, is sufficently close to unity. This means that we have enough terms

and we are just neglecting parts of the Fock space whose vectors have a very small norm.
In case of the ground state 𝜙MHO of the modified harmonic oscillator we choose to set

𝑁 = 35, which leads to a norm which is good up to the fourth decimal digit (it is greater
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than 0.9999), as long as 𝛽 stays in the range [0, 6] (for fixed 𝛼). The choice of this range is
imposed by the fact that the coefficients (4.10) are computed through numerical integrations
for every value of 𝛽. As the value of 𝛽 increases the number of terms needed to write the
ground state in the Fock basis grows and the integrals needed to compute the coefficients
are increasingly hard to estimate numerically with precision.
Once we have a state which is a finite linear combination of Fock states we can proceed

exactly as in section 3.3.2 by using equation (3.37) to get the state after the beam splitter and
then computing the entropy of the reduced density matrix.

4.1.4 Nonclassicality Versus Nonlinearity
To check how nonclassicality and nonlinearity are related we proceed to create parametric
plots. Both the nonlinearity measures depend on the combination of parameters 𝛽2

𝛼 as well as
𝛿 and just the entanglement truly depends on both parameters. In fig. 4.4 and fig. 4.5 we see
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Figure 4.4: Parametric plot of the nonclassicality 𝛿 versus nonlinearity for the parameter 𝛽2
𝛼 going from 0 to

100.
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Figure 4.5: Parametric plot of the entanglement potential versus nonlinearity for 𝛼 = 1 and 0 ≤ 𝛽 ≤ 6.
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that all the plots enjoy the same behaviour for the first part of the graphs, which shows the
expected correlation between nonclassicality and nonlinearity. As the value of 𝛽 increases
we see that the two nonclassicality measures saturate, with 𝐸𝑃 saturating before 𝛿. When
they are plotted against 𝜂NG the curve becomes flat, while when plotted against 𝜂B the points
accumulate since both quantities do not grow any more even if we increase 𝛽.

Dependence on squeezing

So far we have outlined a similar behaviour for all the quantities computed, that is to say
both the nonlinearity measures and both the ways to quantify nonclassicality grow as the
parameter 𝛽2

𝛼 assumes greater values. This is what we expected and it fits nicely in our idea of
nonlinearity as a way to generate nonclassicality. Nonetheless there are some more remarks
to make, mainly due to the different ways to define nonclassicality in quantitative way.
We already stated that 𝐸𝑃 is the only quantity which depends on 𝛼 and 𝛽 separately. If we

choose 𝛽2 = 𝛼 and we make 𝛽 change we can see in fig. 4.6 that 𝐸𝑃 is not constant. But this
choice means fixing 𝛽2

𝛼 = 1 and therefore the other quantities do not change. This feature of
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Figure 4.6: Entanglement potential in the case 𝛼 = 𝛽2 for 0.5 < 𝛽 < 2.

the entanglement potential is due to the fact that it detects also nonclassicality derived from
sub-vacuum squeezing, a feature which is not captured by the volume of negative part of the
Wigner function.

By inspecting the expressions (4.3) and (4.4), we note that since ⟨ ̂𝑝⟩ = 0 = ⟨𝑥̂⟩ the deter-
minant of the correlation matrix is equal to the product of the square of the two variances
(𝛥 ̂𝑝)2 = ⟨ ̂𝑝2⟩ and (𝛥𝑥̂)2 = ⟨𝑥̂2⟩. This means that when we fix 𝛼 = 𝛽2 we also fix this product
to have the value 𝛥 ̂𝑝𝛥𝑥̂ ≈ 0.284. On the other hand 𝛥𝑥̂ and 𝛥 ̂𝑝 depend on 𝛼 and 𝛽 separately,
not on the combination 𝛽2

𝛼 . All of this can be seen in fig. 4.7, where the ratio between the
variances and the variances of the vacuum state (which are equal to 1

2 ) is shown, when this
ratio is less than one it means that we have sub-vacuum squeezing. The interpretation of this
situation is that the increase in the entanglement potential for small values of 𝛽 is due to the
squeezing in 𝑝.
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Figure 4.7: This graph shows (𝛥𝑥)2
0.5 in blue, (𝛥𝑝)2

0.5 in orange, the green line is the constant 1; when one of the
curves assumes values below 1 it means we have sub-vacuum squeezing. The points are the ones
of fig. 4.6 and represent the entanglement potential as a function of 𝛽. Everything is carried out
choosing 𝛼 = 𝛽2 with 0.5 < 𝛽 < 2.5.
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4.2 Morse potential
TheMorse potential was introduced byMorse [41]; it is a good approximation to the potential
energy of diatomic molecules and it provides a better description of the vibrational structure
than the (quantum) harmonic oscillator. The potential is not symmetrical and its expression
is the following:

𝑉M = 𝐷(𝑒−2𝛼𝑥 − 2𝑒−𝛼𝑥), (4.12)
the coordinate 𝑥 represents the distance from the minimum of the potential, the parameter
𝐷 > 0 controls the depth of the well, while 𝛼 controls its width. Expanding the two exponen-
tials for 𝛼 → 0 at fixed 𝐷 we get the harmonic limit, which is an oscillator with a frequency
equal to 𝜔M = √2𝐷𝛼. The potential is plotted in fig. 4.8 with the parameters set to unity.
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(a) 𝐷 = 1,𝛼 = 1 and 𝜔M = √2
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Figure 4.8: In (a) we have a representation of the Morse Potential for 𝐷 = 1 = 𝛼 (solid blue), together with its
reference harmonic potential for comparison (dashed orange). In (b) the potential for 𝐷 = 1 and
𝛼 = 1 (solid blue), 𝛼 = 2 (dashed orange), 𝛼 = 3 (dotted green).

The unidimensional Schrödinger equation associated with this potential can be solved ana-
lytically, the energy eigenvectors are labelled by two parameters 𝑁, 𝜈, connected to the su(2)
algebra. The quantum number 𝑁 is connected to the parameters of the potential, we have
that

𝑁 = −1
2 + √2𝐷

𝛼 , (4.13)

while 𝜈 counts the anharmonic excitations and it can be 𝜈 = 0, 1, ..., ⌊𝑁⌋ (where ⌊𝑁⌋ means
the largest integer not greater than 𝑁 ) and the number of bound states is 𝑁 + 1. Since we
want at least one bound state we need 𝑁 > 0 so we have the constraint 𝛼 < 2√2𝐷; the
limiting case where we have just one bound state (the ground state) is achieved for 𝐷 → 0
or 𝛼 → 2√2𝐷.
In the following we will need only the wave function of the ground state, which is given

by

𝜙M(𝑥) = (2𝑁 + 1)𝑁
√

𝑁𝛼
𝑁! 𝑒−𝛼𝑥𝑁−(𝑁+ 1

2 )𝑒−𝛼𝑥 , (4.14)
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and describes a bound state with energy 𝐸 = − 1
2𝛼𝑁2. Since 𝑁 can be real valued actually

𝑁! is interpreted as 𝛤 (𝑁 + 1), where 𝛤 (𝑧) is the gamma function.

4.2.1 Nonlinearity
The behaviour of the nonlinearity of the Morse potential (already analysed in Ref. [2]) can be
partially explained by looking at the form of the potential in fig. 4.8b. For any fixed value of
𝐷 wewould expect a more anharmonic behaviour for increasing 𝛼 and a harmonic behaviour
for vanishing 𝛼.

Entropic nonlineraity

The correlation matrix calculated with the state (4.14) is the following

𝝈M =
(

𝜓 (1)(2𝑁)+(log(2𝑁+1)−𝜓 (0)(2𝑁))2

𝛼2 − (log(2𝑁+1)−𝜓 (0)(2𝑁))2

𝛼2 0
0 𝛼2𝑁

2 )
. (4.15)

Where 𝜓 (𝑛)(𝑧) is the polygamma function, defined as the 𝑛th derivative of the digamma
function, which in turn is just the logarithmic derivative of the gamma function: 𝜓 (𝑛)(𝑧) =
d𝑛+1

d𝑧𝑛+1 log 𝛤 (𝑧).
The determinant of this correlation matrix is det 𝝈M = 1

2𝑁𝜓 (1)(2𝑁), so the entropic non-
linearity 𝜂NG = ℎ(√det 𝝈M) will depend just on the parameter 𝑁 , or equivalently on the

combination √𝐷
𝛼 = 𝑁 + 1

2 .

Bures nonlinearity

The scalar product between the ground state (4.14) and the ground state |0⟩ of the harmonic
oscillator with the reference frequency 𝜔 = √2𝐷𝛼 is needed to computer the Bures non-
linearity (2.22). This scalar product is carried out in the position representation and thus
becomes the following integral

∫d𝑥 (2𝑁 + 1)𝑁
√

𝛼𝑁
𝑁! 𝑒−𝛼𝑥𝑁−(𝑁+ 1

2 )𝑒−𝛼𝑥

(
√2𝐷𝛼

𝜋 )

1
4

𝑒− √𝐷𝑥2𝛼
√2 ; (4.16)

if we change the integration variable to 𝑦 = 𝛼𝑥 we get

√2(2𝑁 + 1)𝑁
√

𝑁
𝑁!(

√2𝐷
𝜋𝛼 )

1
4

∫d𝑦 𝑒−𝑦𝑁−(𝑁+ 1
2 )𝑒−𝑦− √𝐷𝑦2

√2𝛼 , (4.17)

which again depends solely on 𝑁 , since √𝐷
𝛼 = 1

2 + 𝑁 . The actual integration in (4.17) has to
be carried out numerically for each different value of the parameter 𝑁 .
We see from fig. 4.9a that both 𝜂NG and 𝜂B capture the intuitive ideas we got from looking

at the shape of the potential: they grow for increasing 𝛼 and decrease for increasing 𝐷, this
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is due to the fact that they both are monotonically decreasing function of 𝑁 , as shown in
fig. 4.9b. The difference between the two measures lies in the fact that while 𝜂B is bounded
and saturates to 1, 𝜂NG diverges for 𝑁 → 0. In fig. 4.10 a parametric plot between the two
measures is shown, we get the maximum anharmonicity for 𝑁 → 0 and the minimum for
𝑁 → ∞.
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Figure 4.9: Figure (a): the two nonlinearity measures as a function of 𝛼 for 𝐷 = 0.25 (solid blue), 𝐷 = 0.5
(dashed red) and 𝐷 = 1 (dotted green). 𝜂B is the curve that ends at 1, while 𝜂NG is the unbounded
one; the vertical lines represent the limit 𝑁 = 0 (or 𝛼 = 2√2𝐷). Figure (b): 𝜂NG (solid green) and
𝜂B (dotted orange) as a function of 𝑁 .

0.5 1.0 1.5 2.0
ηNG

0.2

0.4

0.6

0.8

1.0
ηB

Figure 4.10: Parametric plot of the two nonlinearity measures for 0 < 𝑁 < ∞.

4.2.2 Nonclassicality
The Wigner function for the ground state of the Morse potential, as reported in Ref. [42],
reads as follow

𝑊M(𝑥, 𝑦) = 2
𝜋𝛤 (2𝑁)(2𝑁 + 1)2𝑁𝑒−2𝑁𝛼𝑥𝐾−2i𝑦/𝛼((2𝑁 + 1)𝑒−𝛼𝑥), (4.18)

where 𝐾𝛼(𝑧) is the Bessel 𝐾 function.
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In order to calculate 𝛿, as defined in (1.67), we need to computer the following integration

∬d𝑥d𝑦 |𝑊M(𝑥, 𝑦)| = ∬d𝑞d𝑝|
2

𝜋𝛤 (2𝑁)(2𝑁 + 1)2𝑁𝑒−2𝑁𝑞𝐾−2i𝑝((2𝑁 + 1)𝑒−𝑞)|, (4.19)

where we changed variables to 𝑞 = 𝛼𝑥 and 𝑝 = 𝑦
𝛼 . Once again we see that the only relevant

parameter is 𝑁 and there is no dependence on 𝛼 alone.
Due to the behaviour of the 𝐾 functions the numerical integration of (4.19) is particularly

difficult and it was carried out with the aid of the CUBA libraries [43], in particular we used
the integration function Cuhre.
For the entanglement potential we proceeded exactly as in section 4.1.3 by expanding the

ground state on the Fock basis. In this case however far more terms are needed to keep
the normalization of the state close to unity, we had to keep 65 terms in the series for the
parameters 𝐷 = 1 and 0.1 < 𝛼 < 2.4, depicted in fig. 4.12.

4.2.3 Nonclassicality Versus Nonlinearity
As we did for the MHO we can examine the correlation between nonclassicality and nonlin-
earity by first looking at the parametric plots of 𝛿 versus the two measures of nonlinearity,
both shown in fig. 4.11. In this case all the quantities depends on the parameter 𝑁 , but if we
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Figure 4.11: Parametric plot of the nonclassicality 𝛿 versus nonlinearity for 𝐷 = 1 and 0.15 < 𝛼 < 2.7, which
in terms of 𝑁 means 0.0238 < 𝑁 < 8.928.

use the entanglement potential we have a different behaviour. In fig. 4.12 we represent the
entanglement potential versus the two nonlinearity measures as a function of 𝛼 for a fixed
value of 𝐷. This time we have a different behaviour and 𝐸𝑃 is not a monotonous function
of the nonlinearity.
By studying the MHO we highlighted that the entanglement potential depends also on the

squeezing of the state. In fig. 4.13 we represent the ratio between the variances 𝛥𝑥, 𝛥𝑝 and
the variances of the vacuum, so that when the curves assume values below 1 the state has
sub-vacuum squeezing. Even in this case we have that the entanglement potential for small
values of 𝛼 is due to the squeezing in 𝑝. This figure is slightly different because in this case
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Figure 4.12: Parametric plot of the entanglement potential 𝐸𝑃 versus nonlinearity for 𝐷 = 1 and 0.1 < 𝛼 <
2.4.

the product between the two uncertainties is not fixed, so that value (𝛥𝑥)2(𝛥𝑝)2 as a function
of 𝛼 is reported together with the minimum value allowed by the the uncertainty principle,
which is reached for 𝛼 → 0.
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Figure 4.13: This graph shows (𝛥𝑥)2
0.5 in blue, (𝛥𝑝)2

0.5 in yellow, the orange line is the constant 1. When the blue
or the yellow curve assumes values below 1 it means we have sub-vacuum squeezing. The green
curve represent the product of the two variances (𝛥𝑥)2(𝛥𝑝)2, while the purple line has the value
1
4 which is the minimal value of (𝛥𝑥)2(𝛥𝑝)2 allowed by the uncertainty principle. The range of the
parameter is 0.5 < 𝛼 < 3, while 𝐷 = 1 is fixed. The points represent the entanglement potential
as a function of 𝛼.
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4.3 Posch-Teller
We devote just a small section to the Posch-Teller potential, because it happens to confirm
some of the ideas we gathered so far, but a complete treatment is not possible since the
Wigner function of the ground state is just known for a special case.

This potential is defined in general as

𝑉PT(𝑥) = − 𝐷
cosh2(𝛼𝑥) , (4.20)

where 𝐷 > 0 represents the depth of the potential and 𝛼 is connected to its range. The har-
monic limit is obtained at fixed 𝐷 for 𝛼 → 0 and the frequency of the reference harmonic
oscillator is then 𝜔 = √2𝐷𝛼. The nonlinearity of this potential was studied in Ref. [2], how-
ever an explicit form of the Wigner function was found only for the choice of the parameters
𝐷 = 𝛼2, so the potential we will be working with is the following

𝑉PT(𝑥) = − 𝛼2

cosh2(𝛼𝑥) . (4.21)

With this choice the reference harmonic oscillator has a frequency 𝜔 = √2𝛼2; the potential
(4.21) and its reference harmonic oscillator are shown in fig. 4.14 for the value 𝛼 = 1. The
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Figure 4.14: The Posh-Teller potential with 𝐷 = 𝛼2 and 𝛼 = 1 (solid blue) and its reference harmonic potential
(dashed orange) with 𝜔 = √2𝛼2 = √2.

ground state of potential (4.21) reads

𝜙PT(𝑥) = √𝛼 sech(𝛼𝑥)
√2

. (4.22)

The correlation matrix of this state is diagonal

𝝈PT = (
𝜋2

12𝛼2 0
0 𝛼2

3 ), (4.23)
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this shows immediately that while 𝛥𝑥̂ = ⟨𝑥̂2⟩ and 𝛥 ̂𝑝 = ⟨ ̂𝑝2⟩ depend on 𝛼, the product of the
variances is the fixed constant 𝜋

36 , so the determinant of 𝝈PT and 𝜂NG are independent on the
parameter as well.
The nonlinearity 𝜂B is obtained by the following integration

⟨𝜙|0⟩ = ∫
+∞

−∞
d𝑥𝛼 sech(𝛼𝑥) exp

(
−𝑥2𝛼2

√2 )

= ∫
+∞

−∞
d𝑡 sech(𝑡) exp

(
− 𝑡2

√2)
,

(4.24)

where the last step follows by changing the integration variable to 𝑡 = 𝛼𝑥. The result does
not depend on 𝛼 so neither 𝜂B will depend on it.
The Wigner function of the state (4.22) is taken from Ref. [40] and it reads

𝑊PT(𝑥, 𝑝) = sin(2𝑝𝑥)
sinh(𝜋𝑝

𝛼 ) sinh(2𝛼𝑥)
(4.25)

and again we can see that if we try to integrate the absolute value of this function it does not
depend on 𝛼, in fact

∬ d𝑥d𝑝
|

sin(2𝑝𝑥)
sinh(𝜋𝑝

𝛼 ) sinh(2𝛼𝑥)|
= ∬ d𝑡d𝑞 |

sin(2𝑞𝑡)
sinh(𝜋𝑞) sinh(2𝑡)|, (4.26)

where the last equality follows by changing variables to 𝑡 = 𝛼𝑥 and 𝑞 = 𝑝
𝛼 .

The entanglement potential is computed exactly as it was done for the Morse potential
and for the MHO ground states. So we have that 𝛿 and the two nonlinearity measures are
constant while 𝐸𝑃 depends on 𝛼. Everything is the same as for the case of the MHO and a
graph analogous to fig. 4.7 can be drawn to show that the entanglement potential for small
values of 𝛼 depends on the amount of squeezing in 𝑝, this is shown in fig. 4.15. To compute
the entanglement we kept 40 terms in the expansion on the Fock basis, in order to have the
state with a normalization equal to unity up to the fourth decimal digit.
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4 Exactly Solvable Non Linear Oscillators
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Figure 4.15: This graph shows (𝛥𝑥)2
0.5 in blue, (𝛥𝑝)2

0.5 in orange, the green line is the constant 1; when one of
the curves assumes values below 1 it means we have sub-vacuum squeezing. The range of the
parameter is 0.5 < 𝛼 < 3. The points represent the entanglement potential as a function of 𝛼.
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5 Evolution in the Presence of
Self-Kerr Interaction

So far we have examined systems with a static potential and in particular we have been
interested in their ground state. We can say that the idea we have explored in the previous
chapters was related to mechanical systems and the variable 𝑥 of the potential 𝑉 (𝑥) could
represent an actual spatial position (albeit rescaled to be dimensionless). The very fact that
the ground state is different from the vacuum of the harmonic oscillator is a consequence of
𝑉 (𝑥̂) being an operator which does not commute with the number operator ̂𝑎† ̂𝑎.
Now we want to extend our main idea to a different domain, namely to the framework of

quantum optics. In quantum optics we usually have a given initial state of light interacting
with a particular medium for a finite amount of time and then one or more output states
after the interaction. This is conceptually very different from dealing with potentials and
their ground states obtained by solving the Schrödinger equation.
The idea we want to test is that an interaction (rather than a potential) which is more non-

linear gives rise to a more nonclassical output state. To perform this analysis wewill examine
the simplemodel of a bosonic field going through a third-order nonlinear 𝜒 (3) medium, which
is one of the simplest and most interesting examples of non-linear interaction in quantum
optics and gives rise to the so-called self-Kerr effect. The Hamiltonian which describes the
self-Kerr interaction is the following

𝐻Kerr = 𝛤 ( ̂𝑎† ̂𝑎)2. (5.1)

The corresponding evolution operator in interaction picture is 𝑈 = exp{−i𝛾(𝑎†𝑎)2}, where
𝛾 = 𝛤 𝑡 is a dimensionless coupling constant that encodes both the interaction time and
strength. The evolution corresponding to this Hamiltonian gives rise to non-Gaussian states
because 𝐻Kerr is more than quadratic in the destruction and creator operators. Moreover the
evolution is periodical with period 2𝜋 as for 𝛾 = 2𝜋 we get the initial state. It is worth noting
that this kind of nonlinearity was studied in Ref. [44] both classically and on the quantum
level as an exactly solvable anharmonic oscillator. We emphasize that this Hamiltonian com-
mutes with the Hamiltonian of the harmonic oscillator, this is the reason why the model is
solvable, but it also implies that the ground state of the system remains |0⟩, so it would be
useless to treat this interaction as we did for the other anharmonic oscillators in the previous
chapters.
The figures of merit that we will study are the nonclassicality and non-Gaussianity of the

output state, forgetting completely the ground state. In particular non-Gaussianity will be
used to quantify the nonlinearity of the interaction at different values of 𝛾 , but in order to do
so the input state has to be Gaussian. For this reason a coherent state is used as the initial
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5 Evolution in the Presence of Self-Kerr Interaction

state; this choice makes sense even from a physical point of view since it can be thought as
a very simplified model of a monochromatic laser going trough an optical fibre. Two ways
to quantify non-Gaussianity were already introduced in section 2.1.
One might also ask if non-Gaussianity is in general related to nonclassicality, regardless

of the input state. For this reason we analyse also an input state which is already highly
nonclassical and non-Gaussian.

5.1 Coherent State Input

5.1.1 Generation of Cat and Kitten States
Cat states are usually intended as a superposition of two macroscopically distinguishable
states, while kitten states are superpositions of more than two of those states. In quantum
optics these macroscopically distinguishable states are coherent states |𝛼⟩ with a large mean
photon number |𝛼|2. Kerr interaction has long been proposed as a method to generate optical
cat states [45], an experimental goal which has been achieved only recently by engineering
an artificial Kerr medium [46].
The evolution of a coherent state in a Kerr medium has been studied extensively in the

quantum optics literature [47–49]. If we write the initial coherent state in the Fock basis
(1.10) the evolved state is obtained easily by applying the evolution operator:

|𝛼𝛾⟩ = exp{−i𝛾( ̂𝑎† ̂𝑎)2}
(

𝑒−|𝛼|2
∞

∑
𝑛=0

𝛼𝑛

√𝑛!
|𝑛⟩

)
= 𝑒−|𝛼|2

∞

∑
𝑛=0

𝛼𝑛

√𝑛!
𝑒−i𝛾𝑛2|𝑛⟩. (5.2)

This state is sometimes called Kerr state and it is a particular example of the so-called general-
ized coherent states [13], which are the most general states which exhibit full coherence and
differ from ordinary coherent states because of additional phase factors in their Fock decom-
position. It was recognized early that under certain conditions these state can be expressed
as linear combinations of coherent states [50, 51].
The first and easiest simmetry to note is that for 𝛾 = 𝜋 the coefficients in (5.2) become just

(−1)𝑛2 thus we have |𝛼𝜋⟩ = | − 𝛼⟩. In general at a time 𝛾 = 2𝜋𝑚/𝑁 , with 𝑚 and 𝑁 coprimes,
the state will be given by a superposition of 𝑁 coherent states if 𝑁 is odd, or 𝑁/2 states if
𝑁 is even (details are left in Ref. [47]). The states for different values of 𝑚 will have however
different coefficients and the coefficients of the state obtained for 𝛾 = 2𝜋(𝑁 − 𝑘)/𝑁 are the
complex conjugates of the ones obtained for 𝛾 = 2𝜋𝑘/𝑁 .

5.1.2 Non-Gaussianity
For this analysis only the entropic non-Gaussianity (2.18) is computed, since to compute the
Hilbert-Schmdit distance (2.18) we would need to integrate the Wigner function as shown
in (2.12). It can be done numerically, but it is computationally hard and we believe that not
much insight is gained by studying this measure as well.
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5 Evolution in the Presence of Self-Kerr Interaction

Entropic non-Gaussianity

To compute the entropic non-Gaussianity 𝑁𝐺E we need the correlation matrix. If we use the
form (3.23) written in terms of the creation and destruction operators, then we just need to
compute the expectation values for the state (5.2).
We have that ⟨ ̂𝑎† ̂𝑎⟩ = |𝛼|2 because the interaction Hamiltonian (5.1) commutes with the

number operator, so the expectation value is the same of a coherent state. On the other hand
⟨ ̂𝑎2⟩ and ⟨ ̂𝑎⟩ have to be carried out explicitly, while ⟨( ̂𝑎†)2⟩ and ⟨ ̂𝑎†⟩ are of course just their
complex conjugates. We get the following results

⟨𝛼𝛾| ̂𝑎2|𝛼𝛾⟩ = 𝑒−|𝛼|2
∞

∑
𝑛,𝑚=0

𝛼∗𝑚𝛼𝑛

√𝑛! 𝑚!
𝑒−i𝛾(𝑛2−𝑚2)√𝑛√𝑛 − 1⟨𝑚|𝑛 − 2⟩

= 𝑒−|𝛼|2
∞

∑
𝑚=0

𝛼∗𝑚𝛼𝑚+2

𝑚! 𝑒−i𝛾(4𝑚+4)

= 𝛼2𝑒−|𝛼|2(1−𝑒−4i𝛾 )−4i𝛾

(5.3)

⟨𝛼𝛾| ̂𝑎|𝛼𝛾⟩ = 𝑒−|𝛼|2
∞

∑
𝑛,𝑚=0

𝛼∗𝑚𝛼𝑛

√𝑛! 𝑚!
𝑒−i𝛾(𝑛2−𝑚2)√𝑛⟨𝑚|𝑛 − 1⟩

= 𝑒−|𝛼|2
∞

∑
𝑚=0

𝛼∗𝑚𝛼𝑚+1

𝑚! 𝑒−i𝛾(2𝑚+1)

= 𝛼𝑒−|𝛼|2(1−𝑒−2i𝛾 )−i𝛾 .

(5.4)

With this results the non-Gaussianity can be computed as usual 𝑁𝐺E = ℎ(√det 𝜎) and
it is depicted in fig. 5.1 for some different values of 𝛼. As the mean photon number gets
bigger the non-Gaussianity tends to have larger and larger plateaus, even though the absolute
minima for 𝛾 = 0, 𝜋, 2𝜋 and the relative minima for 𝛾 = 𝜋

2 , 3𝜋
2 are always present. The

absolute minima correspond to times at which only one coherent state is present, while the
relative minima are at the times when cat states appear. The symmetry present in fig. 5.1
can be explained by noting that the evolution from 0 to 𝜋 and from 𝜋 to 2𝜋 involves Wigner
functions with the same form, even if they are centred in different points of the phase space.
For this reason we expect the relevant properties to have the same behaviour in the two
halves of the period.
We also notice that as |𝛼| (and thus the mean photon number) increases the maximum

value of non-Gaussianity becomes bigger and it is reached for smaller values of 𝛾 .

5.1.3 Nonclassicality
In this case the only measure of nonclassicality we actually use is the entanglement potential,
because of technical difficulties in the integration of the Wigner function.

58



5 Evolution in the Presence of Self-Kerr Interaction

1 2 3 4 5 6
γ

0.00005

0.00010

0.00015

NGE (γ )

(a) 𝛼 = 0.1
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Figure 5.1: The entropic non-Gaussianity over a whole period, for different values of 𝛼. In figure (b) we have
𝛼 = 1 in blue, 𝛼 = 2 in yellow, 𝛼 = 3 in green and 𝛼 = 5 in orange. The case 𝛼 = 0.1 is plotted
separately because it has a much smaller scale. The vertical lines correspond the values 𝜋

2 , 𝜋, 3𝜋
2 .

Entanglement Potential

The entanglement potential was obtained exactly like we did for the ground states of the po-
tentials, that is by expanding the state on the Fock basis and applying the evolution operator
of the beam-splitter. In this case we already have the expansion on the Fock basis (5.2), but
finding the eigenvalues of the density matrix to compute the entropy still has to be done
numerically.
The entanglement potential is depicted in fig. 5.2 and we choose to represent just a quarter

of the period. The part of the graph between 𝜋
2 and 𝜋 is symmetrical to the first quarter

while from 𝜋 to 2𝜋 it is exactly the same as the first half: this is the same periodicity of the
non-Gaussianity in fig. 5.1. This is the expected behaviour, according to the considerations
of the previous section.
Like for the non-Gaussianity we can observe a trend for growingmean photon number, but

this time it is partly different. Similarly to the non-Gaussianity, we see that the maximum
entanglement potential obtained during the evolution is bigger and it is reached sooner if we
increase 𝛼. But we can see that the graph also becomes more and more oscillating, it always
retains the absolute minima for 𝛾 = 0, 𝜋, while the situation for the relative minima is more
complex and their number grows with |𝛼|. The relative minima actually happen when 𝛾 =
2𝜋𝑚/𝑁 , that is when the state becomes a kitten state. This means that for growing photon
number the number of distinguishable superposed coherent states increases, coherently with
the phase space analysis in Ref. [47].
The entanglement potential was obtained by keeping enough terms in the series (5.2) to

have the norm of the state greater than 0.99999; for 𝛼 = 0.1, 1 we kept the first ten terms,
for 𝛼 = 3 the first twenty-five terms and for 𝛼 = 5 the first fifty terms.
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Figure 5.2: The entropic non-Gaussianity for 0 ≤ 𝛾 ≤ 𝜋
2 and different values of 𝛼. In figure (b) we have 𝛼 = 1

in blue, 𝛼 = 2 in yellow, 𝛼 = 3 in green and 𝛼 = 5 in orange. The vertical lines have the following
values of 𝛾 : 2𝜋

5 (blue), 𝜋
6 (yellow), 𝜋

10 (green) and 𝜋
16 (orange). The case 𝛼 = 0.1 is plotted separately

in figure (a) because it has a much smaller scale.

Nonclassicality Versus Non-Gaussianity

The behaviour of these two quantities is somewhat similar, but not completely the same;
in fig. 5.3 we have the nonclassicality versus non-Gaussianity parametric plot. The value
of the parameters is bounded by choosing the values of the vertical lines in (5.2b) as maxi-
mums. Non-Gaussianity and nonclassicality are positively correlated for the initial part of
the evolution, but the same behaviour does not hold for the whole period as they cease to be
monotonous with respect to each other. This behaviour suggests the idea that adding some
kind of nonlinearity (and thus non-Gaussianity of the corresponding output state) let a clas-
sical state become nonclassical, but after it reaches its maximum nonclassicality the relation
is not one to one any more.
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Figure 5.3: Parametric plots of the entanglement entropic versus the non-Gaussianity for different values of
𝛼. In figure (b) we have 𝛼 = 1 in blue, 𝛼 = 2 in yellow, 𝛼 = 3 in green and 𝛼 = 5 in orange. The
parameter 𝛾 goes from 0 to 2𝜋

5 ,𝜋6 ,
𝜋
10 and 𝜋

16 respectively. The case 𝛼 = 0.1 is plotted separately in
figure (a) because it has a much smaller scale with 0 < 𝛾 < 𝜋

2 .
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5 Evolution in the Presence of Self-Kerr Interaction

5.2 Finite Superposition of Fock States
To conclude our analysis we want to check an unrealistic (nonetheless conceptually inter-
esting) scenario, obtained by choosing a simple and already non-Gaussian and nonclassical
state as the input state of the unitary evolution given by the self-Kerr interaction. The sim-
plest state to use would be a single Fock state, but of course it would be unaffected, since it
would just gain a phase factor 𝑒−i𝛾𝑛2 , we thus have to choose a finite superposition of Fock
states. The state we have chosen is |𝛹⟩ = |0⟩+|1⟩+2⟩

√3
, in this way the effects of the term 𝑛2 are

relevant, because of the presence of |2⟩. The evolved state is the following

|𝛹𝛾⟩ = |0⟩ + 𝑒−i𝛾|1⟩ + 𝑒−4i𝛾|2⟩
√3

. (5.5)

This state is clearly not classical and not Gaussian, so we want to check if the relationship
between non-Gaussianity and nonclassicality holds true in this case as well.

5.2.1 Non-Gaussianity
Entropic Non-Gaussianity

Using again the covariance matrix in the form (3.23), with these expectation values

⟨𝛹𝛾| ̂𝑎† ̂𝑎|𝛹𝛾⟩ = 1 ⟨𝛹𝛾| ̂𝑎2|𝛹𝛾⟩ = √2𝑒−4i𝛾

3 ⟨𝛹𝛾| ̂𝑎|𝛹𝛾⟩ = 𝑒−i𝛾 + √2𝑒−3i𝛾

3 (5.6)

we obtain the result represented in fig. 5.4 for the non-Gaussianity. As one would expect this
state is highly non Gaussian even before the self-Kerr interaction (for 𝛾 = 0), but it becomes
even more non-Gaussian thanks to the self-Kerr effect.
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Figure 5.4: The entropic non-Gaussianity over a whole period.

Hilbert-Schmidt Non-Gaussianity

The Hilbert-Schmidt distance from a reference Gaussian state can be obtained by comput-
ing the 𝐿2 distance between the Wigner function of the state under examination and the
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5 Evolution in the Presence of Self-Kerr Interaction

reference Gaussian state, as reported in (2.11). Since this state is quite simple 𝑁𝐺HS could
be computed without too much effort. The two measures of non-Gaussianity have a very
similar behaviour, as can be seen in fig. 5.5. The scale of the values assumed by the two mea-
sures is different but they can be used interchangeably in this case, since they are perfectly
correlated.
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(b) Parametric plot of non-Gaussianities

Figure 5.5: Hilbert-Schmidt non-Gaussianity as a function of 𝛾 for a whole period and parametric plot of 𝑁𝐺E
and 𝑁𝐺HS.

5.2.2 Nonclassicality
For this simple input state we can calculate the nonclassicality both via entanglement poten-
tial and via negative volume of the Wigner function, without any kind of approximations.
The entanglement potential is computed exactly like we did in chapter 3 for the perturba-

tive states, with the little difference that now the coefficients are complex numbers. The result
is in fig. 5.6a and it shows perfect agreement with the behaviour of the non-Gaussianity: state
begins as already nonclassical and becomes even more so due to the self-Kerr interaction.
The Wigner function is computed exactly in the same manner used for the perturbative

states in chapter 3 and it is a linear combination of Legendre polynomials. The nonclassicality
index 𝛿 (twice the volume of the negative part of the Wigner function), is obtained by a
numerical integration of the absolute value of the Wigner function over the whole complex
plane.
This time the result is quite peculiar: every quantity has the same periodicity, but 𝛿 has an

opposite phase. We can see in fig. 5.6b that 𝛿 has its greatest value before interacting, and
the interaction makes the negative volume of the Wigner become smaller.

Nonclassicality and Non-Gaussianity

Differently than in the previous caseswe observe that the relationship between non-Gaussianity
and nonclassicality is completely dependent on the definition of nonclassicality that we
choose. This was already evident by looking at fig. 5.7b, but nonetheless we can see in a
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Figure 5.6: Plot of both the nonclassicality measures for a whole period.

parametric plot in fig. 5.7 that depending on the nonclassicality measure we get a positive
correlation or a negative correlation.
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Figure 5.7: Parametric plot of nonclassicality versus nonlinearity.
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Conclusions and Outlook
In this work we have addressed the possible connection between the nonclassical features
of a quantum oscillator and its nonlinearity, either due to its static potential or encountered
during its dynamical evolution. In particular, we have analysed in detail how andwhether the
nonlinearity of a confining potential is linked to the nonclassicality of its oscillatory ground
state. Our results provide strong evidence to support the idea that nonlinearity is indeed a
resource to generate nonclassicality and that this relationship is present either using entropic
or metric quantifiers for both the quantities.
At first we have considered a harmonic oscillator with polynomial perturbations and found

that the nonclassicality of the (perturbative) ground state is quantitatively related to the
nonlinearity of the potential. The link is present using the Bures based measure of the non
linearity of the potential as well as the entropic one and using both both the negative volume
of the Wigner function and the entanglement potential to quantify nonclassicality of the
ground state.
This model also highlighted that when more than one parameter is present the relation-

ship between the quantities is not in general one to one. We also found that using different
measures of nonclassicality we can have different hierarchies. In fact, at a fixed nonlinearity,
the ground state of the potential with the perturbative term 𝑥4 is more nonclassical in the
sense of the Wigner function than the one with the term 𝑥6. On the other hand we have the
opposite situation if we look at the entanglement potential. This behaviour however does
not change the validity of the main statement, because if we change just one parameter at a
time nonlinearity and nonclassicality increase or decrease together.
We then considered potentials that are analytically solvable and again we confirmed our

main idea also finding an additional scaling property: even if the potentials and the ground
states do depend on two different parameters both the measures of nonlinearity and the
nonclassicality turned out to depend on a single parameter.
The entanglement potential does not enjoy this property and therefore, in this case, it is not

a monotonous function of nonlinearity. In turn, this behaviour corresponds to the fact that
the state becomes highly squeezed for values of the parameter that correspond instead to a
small nonlinearity. We note that the Wigner function remains Gaussian for squeezed states,
but purely squeezed states are generated by Hamiltonians which are quadratical in the cre-
ation and destruction operators, therefore they do not correspond to proper nonlinearities. If
we deal only with the squeezed vacuum this fact is trivial, but in the more realistic case of the
ground state of an anharmonic potential the squeezing is mixed with all the other nonlinear
effects. By showing the scaling property we thus highlight that measuring nonclassicality
via the Wigner function negative volume actually addresses what we might call “nonlinear
nonclassicality”, that is to say nonlinearity generated by nonlinear effects rather than linear
ones like squeezing. The validity of this statement is not yet general, but rooted in these
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particular examples, the issue will be subject to further investigations. For the moment no
general underlying rule has been found to explain the existence of the scaling property for
all the potentials; it remains an open question and paves the way for further developments.
As the last step we found that the connection is present also in a dynamical context. This

was done by slightly changing our framework and studying the evolution of an input state
under self-Kerr interaction rather than the ground state of the Hamiltonian. As an additional
result we found that the connection between nonclassicality and nonlinearity basically disap-
pears if the input state is already nonclassical and non-Gaussian. This fact actually fits nicely
with the idea that nonlinearity is a resource to generate nonclassicality, and underlines that
it is a different concept than having a general connection between non-Gaussianity and non-
classicality of a quantum state.
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A Appendices

A.1 Disentangling the Exponential Operator
To disentangle the exponential operator means to express the exponential of a sum of op-
erators as the product of the exponentials of operators, this appendix follows the methods
of Ref. [52]. This problem, given the operators ̂𝐴 and ̂𝐵, means to find operators ̂𝐶1, ̂𝐶2, …
which satisfy this relationship

exp[ ̂𝐴 + ̂𝐵] = exp( ̂𝐶1) exp( ̂𝐶2) … (A.1)

In general we need an infinite number of ̂𝐶𝑛 operators which are combinations of repeated
commutators of ̂𝐴 and ̂𝐵, and finding an analytical expression might not be possible in gen-
eral. The situation is much simpler if we restrict to the case where ̂𝐴 and ̂𝐵 are elements of
a finite-dimensional Lie algebra.
A Lie algebra is a linear vector space of operators which is also closed under the operation

of commutation (the commutator of two operators is still a vector of the space). If we have
a vector space spanned by the complete set of operators 𝑋̂1, 𝑋̂2, … , 𝑋̂𝑛, which are called the
generators of the algebra, then

[𝑋̂𝑖, 𝑋̂𝑗] =
𝑛

∑
𝑘=1

𝑐𝑖𝑗𝑘𝑋̂𝑘, (A.2)

where the 𝑐𝑖𝑗𝑘 are in general complex numbers and are called the structure constants of the
algebra.
In this case we can reduce the problem (A.1) to the following situation

exp
[

𝜃
𝑛

∑
𝑖=1

𝛼𝑖𝑋̂𝑖]
= exp[𝑓1(𝜃)𝑋̂1] … exp[𝑓𝑛(𝜃)𝑋̂𝑛], (A.3)

where we have the condition 𝑓𝑖(0) = 0 and the solution is found by obtaining expressions
for the 𝑓𝑖. We remind that a differential operator enjoys the property exp( ̂𝐴)−1 = exp(− ̂𝐴)
and this extends also to a product of exponentials in the following way

[exp( ̂𝐴1) … exp( ̂𝐴𝑚)]−1 = exp(− ̂𝐴𝑚) … exp(− ̂𝐴1). (A.4)

If we differentiate equation (A.3) with respect to 𝜃 and then we then multiply the resulting

67



A Appendices

expression for the inverse of (A.3) (where the inverse is defined by (A.4)) we get
𝑛

∑
𝑖=1

𝛼𝑖𝑋̂𝑖 = ̇𝑓1(𝜃)𝑋̂1 + ̇𝑓2(𝜃) exp[𝑓1(𝜃)]𝑋̂2 exp[−𝑓1(𝜃)𝑋̂1] + …

+ ̇𝑓𝑛(𝜃){exp[𝑓1(𝜃)𝑋̂1] … exp[𝑓𝑛−1(𝜃)𝑋̂𝑛−1]𝑋̂𝑛

× exp[−𝑓𝑛−1(𝜃)𝑋̂𝑛−1] … exp[−𝑓1(𝜃)𝑋̂1]}.

(A.5)

In (A.5) transformations of the following kind are present

𝑋̂𝑖(𝜃) = exp(−𝜃𝑍̂)𝑋̂𝑖 exp(𝜃𝑍̂), (A.6)

they are called similarity transformations. If 𝑍̂ = ∑𝑛
𝑖=1 𝛽𝑖𝑋̂𝑖 (it is an element of the alge-

bra), we can differentiate (A.6) with respect to 𝜃 and then use the definition of 𝑍̂ to get the
following result

d
d𝜃 𝑋̂𝑖(𝜃) =

𝑛

∑
𝑘=1[

𝑛

∑
𝑗=1

𝑐𝑖𝑗𝑘𝛽𝑗]
𝑋̂𝑘(𝜃). (A.7)

The solution of (A.7) gives 𝑋̂𝑖(𝜃) in terms of a linear combination of 𝑋̂1(0), … , 𝑋̂𝑛(0) ≡
𝑋̂1, … , 𝑋̂𝑛.
By solving the similarity transformations with (A.7) the right hand side of (A.5) reduces to

a linear combination of the 𝑋̂𝑖s. A comparison of the coefficients in the equation then leads
to differential equations for the {𝑓𝑖(𝜃)}; their solution gives the solution to the problem
of disentangling the exponential operator. This general procedure can be carried out for
different algebras, but we will focus on the only one needed in this Thesis, i.e. the harmonic
oscillator algebra.

A.1.1 Harmonic Oscillator Algebra
The set of operators ( ̂𝑎†, ̂𝑎, 𝑁̂ = ̂𝑎† ̂𝑎, 𝐼) which we have already introduced in section 1.1.1
obeys the following commutation relations

[ ̂𝑎, ̂𝑎†] = 1 [𝑁̂, ̂𝑎] = − ̂𝑎 [𝑁̂, ̂𝑎†] = ̂𝑎†, (A.8)

the second two follow from the first one, which is the standard bosonic commutation relation
(1.2). For this property these operators are the generators of the harmonic oscillator Lie
algebra; the name is given by the fact that the hamiltonian of a harmonic oscillator with a
linear driving force can be expressed as a linear combination of the elements of this algebra.
A general element of the algebra is expressible as

𝑍̂ho = 𝛼1 ̂𝑎 + 𝛼2 ̂𝑎† + 𝛼3 ̂𝑎† ̂𝑎, (A.9)

where the 𝛼𝑖 are complex coefficients. We have the following general similarity transforma-
tion

̂𝑎(𝜃) = exp(−𝜃𝑍̂ho) ̂𝑎 exp(−𝜃𝑍̂ho), (A.10)
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which, following the general arguments, leads to

d
d𝜃 ̂𝑎(𝜃) = 𝛼3 ̂𝑎(𝜃) + 𝛼2, (A.11)

which is solved by
̂𝑎(𝜃) = exp(𝛼3𝜃) ̂𝑎 + 𝛼2

𝛼3
[exp(𝛼3𝜃) − 1]. (A.12)

With this result we can address the problem of disentangling the exponential of a sum of
generators of the harmonic oscillator algebra, so we focus on the following equation

exp[𝜃{𝛼1 ̂𝑎 + 𝛼2 ̂𝑎† ̂𝑎 + 𝛼3 ̂𝑎†}] = exp[𝑓1(𝜃) ̂𝑎†] exp[𝑓2(𝜃) ̂𝑎† ̂𝑎] exp[𝑓3(𝜃) ̂𝑎] exp[𝑓4]. (A.13)

A long but straight-forward calculation, using the procedure outlined for the general case
along with the result (A.12), yields the following differential equations

̇𝑓1 − 𝑓1 ̇𝑓2 = 𝛼3, ̇𝑓2 = 𝛼2, ̇𝑓3 = 𝛼1 exp(𝑓2), ̇𝑓4 − 𝑓1 ̇𝑓3 exp(−𝑓2), (A.14)

their solutions reads

𝑓1 = 𝛼3
𝛼2

[exp(𝛼2𝜃) − 1], 𝑓2 = 𝛼2𝜃,

𝑓3 = 𝛼1
𝛼2

[exp(𝛼2𝜃) − 1], 𝑓4 = 𝛼1𝛼3

𝛼2
2

[exp(𝛼2𝜃) − 𝛼2𝜃 − 1].
(A.15)

If we choose the particular solution 𝛼2 = 0, 𝜃 = 1 and we substitute the solutions (A.15) into
equation (A.1) we have

exp[𝛼1 ̂𝑎 + 𝛼3 ̂𝑎†] = exp[𝛼1 ̂𝑎] exp[𝛼3 ̂𝑎†] exp[−1
2𝛼1𝛼3]

= exp[𝛼3 ̂𝑎†] exp[𝛼1 ̂𝑎] exp[
1
2𝛼1𝛼3],

(A.16)

these expressions readily become the normally and antinormally ordered forms of the dis-
placement operator (1.6) and (1.7).
We often deal with a function 𝐹 ( ̂𝑎, ̂𝑎†) which has to be expanded in powers of ̂𝑎 and ̂𝑎† and

this expansion can be done in normal or antinormal order. In particular we want to expand
the exponential of the number operator exp[𝜃 ̂𝑎† ̂𝑎] in its normally ordered form to get the
expression (1.37). We start from

exp[𝜃 ̂𝑎† ̂𝑎] =
∞

∑
𝑚=0

𝑥𝑚(𝜃)
𝑚! ̂𝑎†𝑚 ̂𝑎𝑚, (A.17)

where the function 𝑥(𝜃) is unknown and has to be determined. We differentiate (A.17) with
respect to 𝜃 and get

̂𝑎† ̂𝑎 exp[𝜃 ̂𝑎† ̂𝑎] = d
d𝜃

∞

∑
𝑚=0

𝑥𝑚(𝜃))
𝑚! ̂𝑎†𝑚+1 ̂𝑎𝑚+1. (A.18)

69



A Appendices

Now a few manipulations have to be performed: we have to rewrite the expansion (A.17)
in the last expression, then we have to repeatedly use the relation ̂𝑎 ̂𝑎†𝑚 = ̂𝑎†𝑚 ̂𝑎 + 𝑚 ̂𝑎†𝑚−1 (a
consequence of property (1.4)). The comparison of the coefficients of the resulting equation
gives rise to the following differential equation for 𝑥(𝜃)

d𝑥(𝜃)
d𝜃 = 𝑥(𝜃) + 1, (A.19)

if we choose the initial condition 𝑥(0) = 0 the solution reads

𝑥(𝜃) = exp(𝜃) − 1, (A.20)

which finally gives the wanted result

exp[𝜃 ̂𝑎† ̂𝑎] =
∞

∑
𝑚=0

(exp(𝜃) − 1)𝑚

𝑚! ̂𝑎†𝑚 ̂𝑎𝑚. (A.21)

We remark that the procedure to get the antinormally ordered form is analogous.
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A.2 Expectation Value of The Displacement Operator
In this appendix we want to show an explicit derivation of the result (3.31) which is the
expectation value of the displacement operator between two Fock states. We start by making
use of the normally ordered form of the displacement operator (1.6), so we get

⟨𝑛′|𝐷̂(𝑧)|𝑛⟩ = 𝑒− 1
2 |𝑧|2⟨𝑛′|𝑒𝑧 ̂𝑎†𝑒−𝑧∗ ̂𝑎|𝑛⟩. (A.22)

We can now focus just on the product of right part of the scalar product 𝑒−𝑧∗ ̂𝑎|𝑛⟩, this becomes

𝑒−𝑧∗ ̂𝑎|𝑛⟩ =
∞

∑
𝑘=0

(−𝑧∗)𝑘

𝑘! ̂𝑎𝑘|𝑛⟩ =
𝑛

∑
𝑘=0

(−𝑧∗)𝑘

𝑘! √𝑛(𝑛 − 1) … (𝑛 − 𝑘 + 1)|𝑛 − 𝑘⟩, (A.23)

where we used the properties of the bosonic creation and destruction operators eq. (1.1). By
noting that 𝑛(𝑛 − 1)…(𝑛 − 𝑘 + 1) = 𝑛!

(𝑛−𝑘)! we can do the same manipulation for ⟨𝑛′|𝑒𝑧 ̂𝑎† and
put all together to rewrite (A.22) as

⟨𝑛′|𝐷̂(𝑧)|𝑛⟩ = 𝑒− 1
2 |𝑧|2

𝑛′

∑
𝑗=0

𝑛

∑
𝑘=0

𝑧𝑗(−𝑧∗)𝑘

𝑗! 𝑘! √
𝑛′! 𝑛!

(𝑛′ − 𝑗)! (𝑛 − 𝑘)!⟨𝑛′ − 𝑗|𝑛 − 𝑘⟩. (A.24)

We have that ⟨𝑛′ − 𝑗|𝑛 − 𝑘⟩ = 𝛿𝑛′−𝑗,𝑛−𝑘 and if we choose the case where 𝑛′ > 𝑛 then we can
carry one summation and get

⟨𝑛′|𝐷̂(𝑧)|𝑛⟩ = 𝑒− 1
2 |𝑧|2√𝑛′! 𝑛!𝑧𝑛′−𝑛

𝑛

∑
𝑘=0

(−1)𝑘|𝑧|2𝑘

𝑘! (𝑘 + 𝑛′ − 𝑛)! (𝑛 − 𝑘)!

= 𝑒− 1
2 |𝑧|2√(𝑛 + 𝑑)! 𝑛!𝑧𝑑

𝑛

∑
𝑘=0

(−1)𝑘|𝑧|2𝑘

𝑘! (𝑘 + 𝑑)! (𝑛 − 𝑘)! ,
(A.25)

where 𝑑 = 𝑛′ − 𝑛. By noting that the following relationship holds true

(
𝑛 + 𝑑
𝑛 − 𝑘) = (𝑛 + 𝑑)!

(𝑛 − 𝑘)! (𝑛 + 𝑑 − 𝑛 + 𝑘)! = (𝑛 + 𝑑)!
(𝑛 − 𝑘)! (𝑘 + 𝑑)! (A.26)

and reminding the explicit expression for the generalized Laguerre polynomials

𝐿(𝛼)
𝑛 (𝑥) =

𝑛

∑
𝑘=0

(−1)𝑘
(

𝑛 + 𝛼
𝑛 − 𝑘)

𝑥𝑘

𝑘! , (A.27)

we can finally write

⟨𝑛′|𝐷̂(𝑧)|𝑛⟩ = 𝑒− 1
2 |𝑧|2𝑧𝑑

√
𝑛!

(𝑛 + 𝑑)!𝐿𝑑
𝑘(|𝑧|2). (A.28)

If instead of 𝑛′ > 𝑛 the opposite is true, then everything can be done in the same way but we
get

⟨𝑛′|𝐷̂(𝑧)|𝑛⟩ = 𝑒− 1
2 |𝑧|2(−𝑧∗)𝑑

√
𝑛!

(𝑛 + 𝑑)!𝐿𝑑
𝑛 (|𝑧|2). (A.29)
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