
Alma Mater Studiorum · Università di Bologna

CAMPUS DI CESENA
SCUOLA DI SCIENZE

Scienze e Tecnologie Informatiche

Introduction to
Reservoir Computing

Methods

Relatore:
Chiar.mo Prof.
Andrea Roli

Presentata da:
Luca Melandri

Sessione III
Anno Accademico 2013/2014

”An approximate answer to the right problem
is worth a good deal more than an exact

answer to an approximate problem.”
– John Tukey

1

Contents

1 Regressions Analysis 6
1.1 Methodology . 6
1.2 Linear Regression . 6

1.2.1 Gradient Descent and applications 8
1.2.2 Normal Equations . 9

1.3 Logistic Regression . 9
1.3.1 One-vs-All . 11

1.4 Fitting the data . 11
1.4.1 Regularization . 11
1.4.2 Model Selection . 12

2 Neural Networks 14
2.1 Methodology . 14
2.2 Artificial Neural Networks . 14

2.2.1 Biological counterpart . 14
2.2.2 Multilayer perceptrons . 15
2.2.3 Train a Neural Network . 16

2.3 Artificial Recurrent Neural Networks . 19
2.3.1 Classical methods . 22
2.3.2 RNN Architectures . 22

3 Reservoir Computing 26
3.1 Methodology . 26
3.2 Echo State Network . 27

3.2.1 Algorithm . 29
3.2.2 Stability Improvements . 30
3.2.3 Augmented States Approach . 30
3.2.4 Echo node type . 31
3.2.5 Lyapunov Exponent . 31

3.3 Liquid State Machines . 32
3.3.1 Liquid node type . 34

2

3.4 Backpropagation-Decorrelation Learning Rule 34
3.4.1 BPDC bases . 35

3.5 EVOlution of recurrent systems with LINear Output (Evolino) 38
3.5.1 Burst Mutation procedure . 40

3.6 Different approaches . 41
3.7 Technology example: Echo State Network 42
3.8 Application Domains and Future Steps 45

3

Introduction

Since the creation of the first Computer, the idea of an electronic brain, able of thoughts
similar to those of humans, has pervaded minds of a lot of scientist all over the world.
This led in 1955 to the introduction of the term Artificial Intelligence (AI) defined as
”the science and engineering of making intelligent machines” [26]. Within this enormous
field of study, a particular typology of application is Machine Learning, a data science
close-connected to statistics, which studies algorithms with the ability of learning through
experiences. The construction of intelligent machines, involve the necessity of perform
tasks similar to what humans can do. Since there are few basilar things that we could
program a machine to do, and thanks to the numerous datasets we have acquired in years
with the growth of the web, machine learning has been re-discovered as a new capability
for computers, that today touches many segments of industry and science. Two are the
major definitions that we have today of what machine learning is:

. More informal and, historically the ancestor of any definition ever given, is that of
Arthur Samuel in 1959 who defines machine learning as

Definition 1 Field of study that gives computers the ability to learn without being
explicitly programmed

. More formal the definition provided by Tom M. Mitchell in 1997, which states

Definition 2 A computer program is said to learn from experience E with respect
to some class of tasks T and performance measure P, if its performance at tasks
in T, as measured by P, improves with experience E

Both are valid and, while the first asserts what we want, the second, states what should
happen in order to obtain it. In this discipline we can distinguish three major categories
of problems approached in different manners:

• In Supervised learning, the algorithm is fed with a couple ({example input},{desired
output}) with the objective to find a map between the input and the output;

4

• Unsupervised learning uses the input given without requiring a correct output,
as in Supervised learning, allowing the algorithm itself to find any hidden pattern
in data;

• With Reinforcement learning, the algorithms learns how to interact with a
dynamic environment, in order to optimize results on a certain predetermined
goal, without any right choice given from the outside (i.e. learning to play a game
by playing against another player or learn to drive a vehicle, interacting with the
outer world)

Based on the wanted output, we can find instances of Supervised learning prob-
lems like Regression and classification, as we will do in chapter 1, tasks as Clustering,
solved in an Unsupervised way, or a kind of Robotics and Control problems solved using
Reinforcement learning. After this basic overview on machine learning, we will define
incrementally in the next chapters a background of Supervised learning methods, which
will end up to cover a comprehensive summary of new methodologies of training for
recurrent networks.

The thesis has the following structure:

• Chapter 1 introduces Regression methods, applied later in the Readout layer of
Reservoir Computing;

• Chapter 2 gives a comprehensive treatment on Neural Network, included an
overview on Recurrent Neural Network;

• Chapter 3 covers the main topic of the thesis: Reservoir Computing methods;

• The Conclusion chapter, ends the discussion considering possible improvements
for the future of the field of study and providing a few comments on the importance
of the methods treated in real life problems.

5

Chapter 1

Regressions Analysis

1.1 Methodology

Regression analysis is a statistical process used to estimate relationships between two
variables. [9] A Statistical Model is a simplified representation of a data-generating
process. [11] Within a dataset, multiple aspects can be taken in account to pull out inter-
esting predictions. One of the most used models, known in the literature from 1805 [37],
consists in the linear regression: a statistical linear models used to predict output vari-
ables. Lots of researchers try every day to find out relations in data collections, using the
discipline of machine learning merged with statistics methods to analyze relationships
among variables.

1.2 Linear Regression

Linear predictor functions (LPF) are linear functions which combine independent
variables with a set of weights coefficients to predict a dependent variable [5]. A general
model for this function is as follows:

f(i) = β0 + β1xi1 + ...+ βpxip, i = 0, .., n (1.1)

where β are variables that limit the influences of each single independent variable.
Linear regression [29, 6] in statistics, is an approach based on the conditional prob-

ability of y given X, used to model relationships between scalar independent variables
and one or more, dependent variables. In this approach, data are modeled through a
LPF and weights are computed to allow credible predictions for unknown inputs of the
same type which the regressor was trained on. Linear regression in machine learning
is a supervised learning algorithm whose output computes as follows:

hθ(x) = θ0 + θ1x1 + ..+ θnxn. (1.2)

6

Figure 1.1: An example of Linear Regression over a dataset of houses

Terminology:

• hθ: hypothesis formulated by the regression;

• n: number of features;

• m: number of training examples;

• ~x: input vector;

• y: output value;

The purpose of a linear regression model, is to obtain a vector ~θ containing all weights
involved in the regression with values good enough to get satisfactory predictions on
unknown future inputs. To obtain a vectorized implementation of the calculus, a x0 = 1
bias term is added and left untouched in any modification to original features. To obtain
a good set of θ, we need to solve a minimization problem with respect to ~θ

min
θ

J(~θ) =
1

2m

m∑
i=1

cost(hθ(x), y) (1.3)

where:

cost(hθ(x), y) =
(
hθ(x

(i))− y(i)
)2

(1.4)

In particular, we minimize the squared error cost function J(~θ) between the output of the
linear regression hθ(x), and the correct output y which is the correct output we would
expect if our predictor had done a good prediction.

7

1.2.1 Gradient Descent and applications

Minimizing this equation means to find a ~θ that minimize the distance between the
output value computed and the real one. To achieve this result we will need to change,
iteratively, ~θ to obtain a value of J(~θ) smaller at each iteration. This operation can be
done using an algorithm, known as Gradient Descent (GD) [4, 29] whose looping step
states as follows:

θj = θj − α
∂

∂θj
J
(
~θ
)
, (simultaneous update of all θj) (1.5)

In equation (1.5), a critical point consists in the α factor, known as Learning Rate: a
constant that scales how much quickly we descend by higher values to lower values. If
the scale is appropriate, the algorithm will converge. However, if α is too small the
convergence will be reached in a very long time leading to poor performance while, if the
rate is too high we risk to pass beyond the minimum and never converge. Use information
from partial derivatives to update ~θ, means to search a point where our cost function will
be minimal [3]. Due to this behavior, this value has to be hand tuned, based on various
attempts and the experience of the user to get a well performing regression layer. To
improve convergence, sometimes can be useful to apply Feature Scaling to the input
values. This operation consists of a uniform rescale to obtain any feature approximately
in the range −1 ≤ xi ≤ 1. Often an operation called mean normalization is also applied,
to ensure that features (except x0) have approximately mean zero:

• Compute the average of the features;

• Replace each xi with
xi − µi
σ

(1.6)

Gradient Descent, is an instance of the family of algorithms based on the use of the
gradient, used massively in Machine Learning approaches, and base of state-of-the-art
techniques in a lot of tasks. Using this model as seen until now, we can approximate
a various set of linear functions. However, not all features are arranged linearly in the
space and in that cases our linear model would not fit data in a realistic approximation.
It could be useful to have some kind of higher level terms that manipulate our objective
function in a smoother curve. This can be obtained through Polynomial Regression
employing a deformation of more high degree of data employed in the regression in a
similar following way:

hθ(x) = θ0 + θ1x1 + θ2x2 + θ3x3, ⇐⇒
x1 = (feature),

x2 = (feature)2,

x3 = (feature)3,

(1.7)

8

1.2.2 Normal Equations

Another methodology to obtain a vector of optimal parameters is known as Normal
Equations and consists in an analytical solution of an optimization problem with respect
to θ. This approach is often valuable when the number of features is small, otherwise an
iterative approach could be preferable due to a lower computational complexity. In this
manner, ~θ is obtained using the following expression:

~θ =
(
XTX

)−1
XTy (1.8)

where

• X is a matrix containing each of the m examples;

• XT is the transpose of X;

•
(
XTX

)−1
is the Moore-Penrose pseudo inverse matrix of the multiplication between

X transpose and X;

• y is the correct output vector;

1.3 Logistic Regression

In problems of the real world, it often occurs the necessity to classify data over a dataset.
This problem is considerably different from the linear regression one, composing another
field in the Analysis of regressions, called Logistic Regression [29, 7]. Given a set of
data, it studies the probability of a data to belong or not, to a specific class. Compared
to Linear Regression, this algorithm solves the task providing an hypothesis hθ(x) in the

range [0, 1] computing the probability p(y = 1|x; ~θ) that a data belongs to a positive
class (y = 1) or a negative one (y = 0).
This is done computing the hypothesis using a logistic function, in the range [0, 1]:

hθ(x) = g(z), =⇒ g(z) =
1

1 + e−z
=⇒ z = ~θ Tx; (1.9)

Using variations over data comparable with the equation (1.7)

hθ(x) = g(θ0 + θ1x1 + θ2x2 + θ3x
2
1 + θ4x

2
2),

~θ =

−1
0
0
1
1

 (1.10)

9

Figure 1.2: An example of Logistic Regression over a dataset of exam’s scores

more complex decision boundaries can be obtained and applied to the classification
problem. Compute a set of weights for a classification task, consists in the same problem
of the (1.3), however the objective cost function changes in order to obtain a convex
function that allows GD to converge to the global minimum.
It is defined as follows:

cost(hθ(x), y) =

{
− log(hθ(x)) y = 1,

− log(1− hθ(x)) y = 0
(1.11)

This function embodies the properties researched in a cost function:

• convex behavior to achieve the global minimum;

• cost→ inf if hθ(x) 6= y, to minimize J(~θ) towards minimum;

To optimize J(~θ), the previously used GD in the equation (1.5) can be an option since,
although a very different hypothesis is given in the (1.9), directives like the equation (1.6)
or α choice criteria are still valid. Gradient descent is a straightforward and popular
algorithm to decrease objective function’s value that has in simplicity one of its major
advantage. Other optimization algorithms can be used to obtain a point of minimum:

a) Conjugate Gradient;

b) BFGS;

c) L-BFGS;

10

These methods are more complex than GD, but have interesting advantages over it
because they do not need to choose a learning rate to appropriately converge in short
time and often they are faster than gradient descent with which they share values, J(~θ)

and ∂
∂θj
J(~θ), required to converge.

1.3.1 One-vs-All

In real problems however, it often happens that more than one class can fit the data so
a different paradigm of logistic regression needs to be applied, called one-vs-all classifi-
cation, which consist in

hiθ(x) = P (y = i|x; θ), i = 1, .., N (1.12)

that is the training of a logistic regression classifier for each class i to predict the prob-
ability that y = i. The prediction is then done, choosing the class i that maximizes the
hypothesis

max
i

h
(i)
θ (x) (1.13)

1.4 Fitting the data

1.4.1 Regularization

If we have too many features, the learned hypothesis can adapt very well to the training

set
(
J(θ) = 1

2m

m∑
i=1

(hθ(x
(i))− y(i))2 ≈ 0

)
but not being able to generalize new examples.

On the other hand, use a set of features too small can lead to the opposite problem,
where the induced hypothesis has a strong preconception on the output, approximating
a function that does not fit the dataset. The first problem is called Overfitting and in
this case, hθ(x) is said to have High Variance, overestimating the data; The second one is
known as Underfitting where the hypothesis is said to have High Bias, underestimating
the data. To produce an hypothesis that generalizes well, options available are

- Reduce number of features, manually or by carefully choosing the model;

- Regularization, keeping all features that contributes to the prediction y by scaling
down ~θ values;

Use smaller values for parameters θ allows to obtain a simpler hypothesis less prone to
overfitting. This result can be obtained adding a regularization parameter

• λ
n∑
j=1

θ2j for linear regression,

11

• λ
2m

n∑
j=1

θ2j for logistic regression,

to the cost function that mitigates the influence of all theta, except θ0, over the cost.
The parameter λ, assumes a fundamental role in the regularization function.
Given d̂om = (order of magnitude of the data of the problem),

� λ� d̂om:
in this case all thetas are strongly penalized, leading to an hypothesis close to 0
with an high bias;

� λ� d̂om:
where λ ≈ 0, the regularization term does not influence the hypothesis, leading to
overfitting as if it were not present;

However, as the learning rate, λ has to be chosen through experience and attempts on
data.

1.4.2 Model Selection

To obtain an optimized ~θ, a straightforward strategy is try to minimize the error as
illustrated above. However, a low error does not necessarily mean a good parameter set,
indeed this could also be index of Overfitting. To recognize this issue, a possibility is to
plot a graph of data although this is not ever possible, usually due to an high number
of features. A generally applicable numerical way, adoptable for linear regression as well
as for logistic regression, is the Train and Test Scheme to test the goodness of the
model, that consists in:

• Split the dataset in two distinct pieces, one for training and another for testing,
usually in a 70:30 ratio;

• Optimize the cost function using the Train Set ;

• Use (1.3) to compute the error on theTest Set using learned parameter;

A variation for logistic regression that sometimes best fits the analysis, is the misclassi-
fication test:

errorTest =
1

mtest

mtest∑
i=1

err(hθ(x
(i)
test), y

(i)
test) (1.14)

where

err(hθ(x), y) =

{
1 if (hθ(x) ≥ 0.5 ∧ y = 0) or (hθ(x) ≤ 0.5 ∧ y = 1)

0 otherwise
(1.15)

12

Fundamental to avoid overfitting is to apply a good-fitting model to our dataset, using
at various grade of deepness a polynomial regression that includes more rich features.
Adding features however can lead to overfit data. Train and test can be further enhanced,
to allow evaluation of the best model to use for our problem, splitting the dataset in a
60:20:20 ratio, respectively sets of Training-Cross-validation-Test sets, to apply best
control on the model selection, following this algorithm:

Step 1: Minimize the cost function for each model using the Training set ;

Step 2: Test each hypothesis on the Cross-validation set to compute the cross-validation
error and pick ~θ which result to have the lowest error;

Step 3: Estimate generalization error of the model using the Test set ;

In case of underfitting, we find both cross-validation and training error are high, while
in overfitting the cross-validation error is high but the training error is low. Thus, this
Train, cross and test methodology allows to choose the model whose grade best fit to
the data, resolving from a point of view the overfitting that can occur.

13

Chapter 2

Neural Networks

2.1 Methodology

In the previous chapter, we talked about Regressions as a method to predict or classify.
These techniques work well on data with a relatively simple behavior (e.g. a linear model,
a quadratic model, ..) while, for complex patterns, to obtain precise results, the com-
putational complexity needed to compute the parameters leads to a hard application of
Regression methods. An instance of problems that need a different approach is computer
vision: this branch of computer science which analyzes images involves a high number of
features and complex hypothesis to recognize and catalog objects. These reasons have
led to search an alternative way to solve such problems. Since 1980, neuro-scientists
do experiments of brain rewiring, currently still conducted [28, 18], to study the brain
response to the alteration of stimuli. Evidences showed a sort of plasticity that allows
the brain to readjust in some way to respond to input changes. Hand in hand, it is for-
malized an idea inspired by these researches on the brain, that suggests a single learning
algorithm used by the brain to learn everything, observing positive examples and con-
sequently learning to reproduce them. This is the basilar idea that took to the creation
of artificial Neural Networks, one of the most powerful learning algorithms known today
and state-of-the-art technique in various fields.

2.2 Artificial Neural Networks

2.2.1 Biological counterpart

As mentioned before, the aim to create a general algorithm that can learn everything,
led to the development of Artificial Neural Networks (aNN): a family of statistical
algorithms inspired by their biological counterpart observed studying the brain. In par-
ticular, looking at the composition of a neuron in the brain [29] we can see that a neuron

14

Figure 2.1: Schematic model of a biological neuron found in the brain, with highlight on
most important parts

is composed of a body that contain a nucleus, lots of dendrites that act as ”input wires”
connected to the body, while from the body comes out the axon, that we can consider
as an ”output wire” with lots of terminations of connection to other neurons. At high
level, an interaction between a neuron ”A” and a neuron ”B” is:

� The neuron A receives some input to its dendrites, elaborates the signal and send
a change of polarity, known as ”spike”, across the membrane of the neuron that
ensures the propagation of the signal through the axon;

� The neuron ”B” receives the input from its dendrites which are connected to the
axon of Neuron ”A”;

2.2.2 Multilayer perceptrons

A simplified model of a neuron is represented by a computational unit that receive inputs,
does some computation and then outputs the result to other neurons. [29] An artificial
Neural Network, is a set of artificial neurons that work together to achieve an higher
computational power. Terminology:

• a
(j)
i : activation of unit i in layer j;

15

Figure 2.2: A representation of a neuron’s model that uses a logistic activation function
g(z) = 1

1+e−(θTX)
. It is also known as Perceptron and it is the simplest representation

of a neuron.

• θ(j): matrix of weights that control function mapping, from layer j to layer j + 1.
If the networks has uj units in layer j and uj+1 units in layer j + 1, then θ(j) ∈
Ruj+1×(uj+1)

• m: training examples, as couples {(x(1), y(1)), (x(2), y(2)), ..., (x(m), y(m))};

• L: total number of layers in the network;

• K: number of classes in a multi-class classification problem;

• ul: number of units in layer l, without bias unit

By inputing data in the network coupled with the correct result respect which the error
is calculated, we bring the network to adapt its weights to approximate better and better
the data given as input, and most likely to issue a correct value when unknown values
will be provided as input to the algorithm.

2.2.3 Train a Neural Network

Using the Figure 2.3 as instance, network’s activations compute as follows:

z
(2)
1 = θ

(1)
10 x0 + θ

(1)
11 x1 + θ

(1)
12 x2 + θ

(1)
13 x3 (2.1)

a
(2)
1 = g(z

(2)
1) (2.2)

z
(2)
2 = θ

(1)
20 x0 + θ

(1)
21 x1 + θ

(1)
22 x2 + θ

(1)
23 x3 (2.3)

a
(2)
2 = g(z

(2)
2) (2.4)

z
(2)
3 = θ

(1)
30 x0 + θ

(1)
31 x1 + θ

(1)
32 x2 + θ

(1)
33 x3 (2.5)

a
(2)
3 = g(z

(2)
3) (2.6)

hθ(x) = a
(3)
1 = g(θ

(2)
10 a

(2)
0 + θ

(2)
11 a

(2)
1 + θ

(2)
12 a

(2)
2 + θ

(2)
13 a

(2)
3) (2.7)

16

Figure 2.3: A structure of a generic artificial Neural Network, known also as Multilayer
Perceptron, composed by 3 input units (plus a bias term), 3 hidden units (plus a bias
term) and 1 output unit

where a
(j)
i = g(z

(j)
i) is the activation of the unit i in the layer j and uses a sigmoidal

function to compute the activation of its internal states. Such sigmoid function [10] is
a mathematical function having ”S” shape, referred to the logistic activation 1

1+e−z
or

other functions like arctangent or hyperbolic tangent which are usually involved in each
unit’s state update.

The calculus of activation in this sequentially chain (2.1) is known as Forward Prop-
agation algorithm and it is the first step in the training of a neural network, also called
Feedforward Neural Network in reference to this procedure. The application of a
neural network to a classification problem, results in a similar problem to the one-vs-all
methodology treated previously in logistic regression with the difference that in this case,
the network independently calculates its parameters for the classification. To achieve a
multi-class classification we need to have an output unit for each class we want to rec-
ognize. In order to find the best approximation we have to minimize the cost function
J(θ), as done before for other learning algorithms, defined here for neural networks as
follows:

hθ(x) ∈ RK =⇒ (hθ(x))i = ithoutput (2.8)

17

J(θ) = − 1

m

[
m∑
i=1

K∑
k=1

y
(i)
k log(hθ(x

(i)))k + (1− y(i)k) log(1− (hθ(x
(i)))k)

]

+
λ

2m

L−1∑
l=1

ul∑
i=1

ul+1∑
j=1

(
θ
(l)
ji

)2
(2.9)

where the logistic regression hypothesis for the current data is summed over all K classes
and it is regularized by a parameter that take in account all weights involved in the
computation. Besides the cost, we must also calculate the partial derivatives with respect
to each θ

(l)
ij . In neural networks, this is done using the Backpropagation algorithm,

the second fundamental step to train a neural network.
Consider δ

(l)
j the ”error” committed by unit j in layer l, formally δ

(l)
j = ∂

∂z
(l)
j

cost(i),

(forj ≥ 0) where cost(i) = y(i) log hθ(x
(i)) + (1 − y(i)) log hθ(x

(i)). Below we provide
the backpropagation algorithm used to compute these values. Notable is that the

Algorithm 1: artificial Neural Networks Backpropagation

Data: a training set of m examples
Result: partial derivatives ∂

∂θ
(l)
ij

J(θ) = D
(l)
ij

1 Initialize the variables ∆
(l)
ij = 0 (for all i, j, l);

2 for i = 1 tom do
3 Set a(1) = x(i);

4 Perform forward propagation to compute a(l) for l = 2, 3, .., L;

5 Using y(i), compute δ(L) = a(L) − y(i);
6 Propagate the error through the network computing δ(L−1), δ(L−2), . . ,δ(2);

7 Accumulate error for each unit through ∆
(l)
ij = ∆

(l)
ij + a

(l)
j δ

(l+1)
i ;

8 end

9 D
(l)
ij =

{
1
m

∆
(l)
ij , if j = 0

1
m

∆
(l)
ij + λθ

(l)
ij , if j 6= 0

first layer never gets involved in the computation of the error because is composed by
inputs and therefore considered right. Also, the error terms as defined can be directly
computed only in the last state with respect to the correct output. Then, in order to
obtain other values we must backpropagate our error’s term, δ(L), to the previous nodes
that competed to form the current output value, to obtain the corresponding weight that
the term have had in the decision. The propagation is done in analogous terms to the
Forward ones, even if here we compute the errors from the last to the first hidden layer
included, through the following equation

δL−h =
(
θ(L−h)

)T
δ(L) ◦ g′(zL−h) =⇒ g

′
(zL−h) = aL−h ◦ (1− aL−h) (2.10)

18

Even if this algorithm is conceptually simple, its application usually is a bit insidious
since the cost could decrease also with an incorrect calculus of the gradient and give non
optimal results. A solution to this problem can be a procedure called Gradient Check-
ing that consists in the calculus of the derivative using the definition, approximating
the slope of the function by the ratio between the cost function difference on a minimal
variation of a specific θ and the variation doubled

∂

∂θj
J(θ) ≈ J(θ1, θ2, .., θj + ε, .., θn)− J(θ1, θ2, .., θj − ε, .., θn)

2ε
(2.11)

The value obtained should not differ more than few decimal places from the backpropa-
gation ones to consider right the algorithm implementation. To train a neural network
the initial θ is chosen random in an interval [−ε, ε] to obtain a symmetry breaking in the
update of the weights; Otherwise, when the update occurs, the weights would advance
coupled without generating a really interesting function. Below, to correctly train a
Neural Network, the sequence of steps to take is:

. Random initialization of all θ;

. Use of Forward Propagation to compute hθ(x
(i)) for each x(i);

. Computation of the cost function J(θ) ;

. Use of Backpropagation to compute partial derivatives ∂

∂θ
(l)
ij

J(θ);

. [Optional] Use of gradient checking to compare backprop values to numerical
estimate of gradient of J(θ);

. Use gradient descent or other optimization algorithms to minimize J(θ) as a
function of parameters θ;

Since the neural network’s cost function is non-convex, gradient descent could being
stuck in a local minimum however this is not commonly a problem obtaining very good
approximations on various problems.

2.3 Artificial Recurrent Neural Networks

Based on the already known aNNs, a more biological design inspired by brain modules
has been developed with the introduction of Artificial Recurrent Neural Network
(aRNN) that are distinguished from the widely used feedforward networks by the pres-
ence of cycles in their connection topology. Artificial Neural Networks are comparable to
functions, able to represent data in the domain of space, and to map input’s features to
the domain of output. The structure of a Recurrent network is characterized by cycles

19

between units; this allows the development of self-sustained temporal activations along
network’s connection pathways, even in absence of inputs. The influence of inputs in
the network is maintained through cycles among nodes, allowing to model a dynamic
system in function of time. This effect is known as dynamic memory. It has been math-
ematically demonstrated [19] that recurrent networks have the universal approximation
property and thus, able to model dynamic systems with arbitrary precision; in addition,
studies show that with a sufficient number of neurons, an aRNN can be computationally
Turing-Equivalent [1]. aRNNs can be seen from two major perspectives: for an emula-
tion purpose of biological models of brain processes in neuroscience or as a tool, a sort
of black-box to model engineering problems and signal processing. In machine learning,
the second instance of tasks mostly applies, so it will be the most focused in the next
analysis, but important influences between approaches will be seen in the next chapter.

Formally, a Recurrent Neural Network is defined in a similar way to a feedforward
network: a set of neurons, also called units, connected each other by synaptic links whose
strengths are defined by a set of weights. Input units defined as u(n) are introduced
into the network which generates its internal units activation x(n) and output some
value y(n). Terms that will be used in the upcoming definitions, follow a network’s

Figure 2.4: A structure of a generic artificial Recurrent Neural Network

20

architecture with K input units

u(n) = (u1(n), ..., uK(n))T ; (2.12)

N internal units
x(n) = (x1(n), ..., xN(n))T ; (2.13)

and L output units
y(n) = (y1(n), ..., yL(n))T ; (2.14)

These series of values are connected each other with a set of matrices, where 0 means no
connection [19]:

• Win = (winij), W in ∈ RN×K for connections between inputs and internal units;

• W = (wij), W ∈ RN×N for connections within the network.,

• Wout = (woutij), W out ∈ RN×N for connections between inputs and internal units,

• Wback = (wbackij), W back ∈ RN×L for optional backprojection from output, to
internal units of the network;

To give an update equation for internal states of the aRNN, we have to consider the
external input, u(n + 1), the current internal state, x(n), and eventually the backpro-
jection into the system. In addition, the choice of the internal unit’s activation needs a
bit of attention since it determines an important piece of network dynamics. For con-
siderations done above on the sigmoidal function, and for the large role it covers in the
literature of neural networks in general, this will be the choice almost anywhere, in par-
ticular adopting the hyperbolic tangent definition, tanh. Thus, the activation of internal
units is computed using the following formula [19]:

x(n+ 1) = f(W inu(n+ 1) +Wx(n) +W backy(n)), (2.15)

Then define ~o = (u(n+1), x(n+1)) as the vector composed jointly by input and internal
activations and f out the activation of the output units that will be mostly sigmoidal
functions as considered over; The output is released in the following manner:

y(n+ 1) = f out(W out~o). (2.16)

As already reported, Recurrent networks are very powerful tools to model complex sys-
tems; However, since their first theorical appearance [8] in 1980, were not exploited due
to the high computational requirements required by the known optimization methods
involved in the training (before ”RC” methods).

21

2.3.1 Classical methods

Historical approaches to the train of Recurrent Networks involve the change of weight
matrices in a similar way that occurs with feedforward networks using training algorithms
more or less derived from what used in standard networks, adapted for processing data
through time. It is the case of Backpropagation Through Time (BPTT), the most
commonly used algorithm in aNN’s training, adapted to aRNN, ”unfolding” the recurrent
network in time and generating multiple copies connected each other, as a materialized
time stream of the input sequence {..., u(n−1), u(n), u(n+1), ...}, using in each copy the
same weights and minimizing the error through time between computed output and what
is given as correct result, called also teacher-output, like normally occurs in backprop
for aNN. This method has a computational complexity of backprop applied over T , time
inputs in which the network is splitted, obtaining an O(TN2) load. This requirement
of an high computational power, the long time required to converge to an acceptable
solution and the Vanishing Gradient [12, 19] problem who does not allow the capture
of the effects of previous inputs for a time longer than a dozen of time steps, make this
algorithm a poor choice for the training of a recurrent network. Other methods quotable
which obtain usually better performance over BPTT while continuing to use the same
approach to the network are [19]

• Real-time Recurrent learning (RTRL)
A method that compute the derivatives of states and outputs with respect to all
weights as the network processes the sequence, during each time step of the forward
phase;

• Extended Kalman-filtering (EKF)
A state estimation technique for non linear systems derived by linearizing the
Kalman filter around the current state estimate.

• AtiyaParlos learning (APRL)
An O(n2) complexity [33] method that leads to use directions not pointed by the
gradient to try to minimize the error;

All these methods, exception done for APRL which will be also the base for subsequent
talk, suffer of gradient vanishing and this mean that through time the effects of the
gradient tend to fade with obvious negative results.

2.3.2 RNN Architectures

From the first attempt of aRNN development, various network architectures were pro-
posed. Here we give a massive overview on the most importants:

22

. Fully recurrent network: It is the basic architecture developed in 1980s and is
composed of neuron units each one is connected to all others. Each connection has
a modifiable real-valued weight. Some of these units are called input nodes while
others are output nodes. What is not input nor output is considered an hidden
node.

. Hopfield network: Not designed to recognize sequence of patterns, serves as
content-addressable memory system with binary threshold nodes. It is composed
entirely by symmetric connections which are trained using the Hebbian learning
rule and has an assured convergence to a local minimum;

. Jordan network: Developed in 1986 [21], it is composed of three layers intercon-
nected; an additional ”context layer”, linearly connected to the output layer, holds
the previous output and propagates it as input to the middle hidden layer. Its
major use was prediction thanks to the ”context layer” that granted a short-term
memory , allowing predictions of sequences.

. Elman network: Similar in the structure to the Jordan described above, it lin-
early store in its ”context layer” [14] the entire previous activation of the hidden
layer at each propagation, allowing as above, tasks unavailable to standard aNNs.
The architectures of Elman and Jordan are also known as Simple Recurrent
Networks;

. Long short-term memory network (LSTM): A special class of recurrent net-
works that does not suffer of the Vanishing Gradient issue, hence reaching optimal
results with a training based on gradient’s informations. The particular character-
istic of the LSTM architecture is the memory cell, a linear unit which holds the
state of the cell surrounded by three gates:

⊗ GI : the modify of the neuron internal state is allowed only when the input
gate is open;

⊗ GO: controls when data flow to other parts of the network, that is, how much
and when the cell fires;

⊗ GF : the forget gate, determines how much the state is attenuated at each
time step.

Terminology:

• gin: activation of input gate;

• gout: activation of output gate;

• gforget: activation of forget gate;

23

Figure 2.5: Long short-term Memory cell composition.

• net: weighted sum of external inputs (
∑

);

• h: identity function;

• cj: output of cell j;

• σ: sigmoid function;

• gtypei : amount for gate of type ∈ {in, out, forget} that determines if it is open
or not;

The activation state of cell i is given by

si(t) = neti(t)g
in
i (t) + gforgeti (t)si(t− 1), (2.17)

neti(t) = h

(∑
j

wcellij cj(t− 1) +
∑
k

wcellik uk(t)

)
(2.18)

cj(t) = tanh(goutj (t)sj(t)), (2.19)

gtypei = σ

(∑
j

wtypeij cj(t− 1) +
∑
k

wtypeik uk(t)

)
(2.20)

The definition of dynamic engineering systems as treated until now, apply to various
application fields, for instance: filtering of informations, predictions, data compression,

24

pattern classification, . . . and some interesting applications currently in strong expan-
sion, have been applied in telecommunication, video data analysis, robotics, biomedical
diagnostics and man-machine interfaces. These are only some of the possible uses of this
family of algorithms whose exploit will be treated in the next chapter.

25

Chapter 3

Reservoir Computing

3.1 Methodology

We now want to investigate a relatively new approach in aRNN training called Reservoir
Computing. This technique has been developed in three different methods which we are
covering in the next sections called ”Liquid State Machine”, ”Echo State Network” and
”Backpropagation-Decorrelation learning rule”. These methods aim to promote a new
approach of modeling complex dynamic systems in mathematical and engineering fields
via an artificial Recurrent Neural Network. Each approach covered consists of a fixed-
weight recurrent network that, fed by a dataset, outputs a series of activation’s states.
These intermediate values are then used to train output connections to the second part
of the system which will output a description of original model’s dynamics obtained from
datas. The first part of the system, called Reservoir, is an aRNN with fixed weights that
acts as ”black-box” model of a complex system; The second one is known as Readout, a
classifier layer of some kind, usually a simple linear one, connected by a set of weights to
the Reservoir. A fundamental property belonging to all these techniques is to have a sort
of intrinsic memory effect, due to recurrent connections in the reservoir than whose size,
represented by the time steps needed to exhaust the effect of the th-input in reservoir’s
computed output. During reservoir’s construction, one of the major behavior to take in
account is the activation function in use to characterize nodes’ behavior. In literature
we see use examples of various models of artificial neurons from simple linear models
to more elaborated non-linear ones, like the sigmoidal often used in the ”Echo state”
and Backpropagation-decorrelation’s approach, or biological-inspired LIF model mainly
employed in ”Liquid State” technique we will see later.

26

3.2 Echo State Network

In this first section, we analyze the Echo State Network (ESN) approach introduced
in Jaeger 2001 [20]. The term ”echo” mean that the activation state x(n) of an arbitrary
assembled aRNN is a function of the input history u(n), u(n-1), ... presented to the
network. Networks used in this case are usually discrete-time composed of sigmoidal
units, we will refer to as Dynamic Reservoir (DR). A generic ESN model [20] is
composed of a discrete-time neural network with K input units, N internal network
units and L output units. Activations of network’s units at time step n are described
by u(n) = (u1(n), ..., uK(n)), x(n) = (x1(n), ..., xN(n)) and y(n) = (y1(n), ..., yL(n)) for
inputs, internal and output units respectively. Consider four weight matrices real-valued:

1. Input nodes:
An N x K weight matrix Win = (winij) collects connections between inputs and
internal units

2. Internal nodes:
An N x N weight matrix W = (wij) collects internal units weights and recurrent
pathways between each other

3. Output nodes:
Connection’s weight from system to output units, an L x (K + N + L) matrix is
prepared Wout = (woutij)

4. Backprojection nodes:
An N x L weight matrix Wback = (wbackij) is stored for the connections that project
back from output to internal units.

Internal units’ activation through time is updated according to the following activa-
tion scheme where f = (f1, ..., fN) are output functions of internal units:

x(n+ 1) = f(W inu(n+ 1) +Wx(n) +W backy(n)) (3.1)

The output is computed through the following activation scheme where f out = (f out1 , ..., f outL)
are output functions of the output units and (u(n+1), x(n+1), y(n)) is the concatenation
of input, internal and previous output activation vectors:

y(n+ 1) = f out(W out(u(n+ 1), x(n+ 1), y(n))) (3.2)

Given a generic model for ESNs, we want to guess characteristics that a network must
show to have Echo State, a property that belongs to the weight matrix W and is influ-
enced by external inputs used during the training. With regards to this last statement,
is required that training input vectors u(n) belong to a compact interval U and training
output vectors y(n) belong to a compact interval Y [19].

27

Figure 3.1: General structure of an ESN, where dashed arrows represents possible op-
tional connections.

Definition 3 (echo states) Assume an untrained network with weights Win, W and
Wback is driven by teacher input u(n) and teacher-forced by teacher output y(n) from
compact intervals U and Y, if for every left-infinite input/output sequence (u(n),y(n−
1)), where n = ...,−2,−1, 0, and for all state sequences x(n),x’(n) compatible with the
teacher sequence, e.g. with

x(n+ 1) = f(W inu(n+ 1) +Wx(n) +W backy(n))
x
′
(n+ 1) = f(W inu(n+ 1) +Wx

′
(n) +W backy(n))

(3.3)

it holds that x(n) = x
′
(n) for all n ≤ 0.

The definition, states that as long as we train a network, its state in a finite time
T is determined by the history of the input and the teacher-forced output so, for every
internal signal xi(n) exists an echo function ei which maps input/output histories to the
current state:

ei : (UxD)−1 → ∇
(..., (u(−1), y(−2)), (u(0), y(−1)))→ xi(0)

(3.4)

From Jaeger 2002 [19] we know there is a connection between algebraic properties of the
internal weight matrix W and the echo state property (ES property) even if Jaeger him-
self in its work states that no known algebraic conditions allows, given (Win,W,Wback),
to certainly assert the network own the echo state property. However he formulates a
sufficient condition [20] for the non-existence of echo state

28

Proposition 1 Assume an untrained network (Win,W,Wout) with state update accord-
ing to (3.1) and with transfer functions tanh. Let W have a spectral radius |λmax| > 1,
where |λmax| is the largest absolute value of an eigenvector of W. Then the network
has no echo states with respect to any input/output interval U x D containing the zero
input/output (0,0).

This proposition gives a condition which does not allows the existence of echo state
property in the weight matrix W with spectral radius major than one. Tests [19] showed
that usually when the spectral radius is below one, W has the ES property. Other
matrices part of ESN definition such Win and Wback can be freely chosen because are
not involved in echo state property definition. Following these ideas, in Jaeger (2002) [19]
is given an empiric algorithm used to train a complete Echo State Network that should
be able to approximate data generated by the same system the network was trained on.

3.2.1 Algorithm

Step 1: Generate an untrained DR (Win,W,Wback) which has echo state property and
choose arbitrarily Win and Wback. Attention and experimental attempts must be
addressed to use an appropriate scale, based on task’s values, to obtain an appro-
priate activation of internal sigmoidal-units. To obtain the echo state property on
W no specific rules has been discovered, however was observed with references to
1 that if (|λmax| < 1) the system has the echo state property. In order to obtain a
weight matrix W with desired characteristics an heuristic has been listed:

• Random generation of a sparse, uniform distributed in values, DR internal
weight matrix W0. The size (N) of W0 should reflect the length of training
data and the difficulty of the task, so it should not exceed, when possible, an
order of magnitude of T/10 to T/2 as precaution against overfitting.

• Normalization of W0 to a matrix W1 with unit spectral radius by putting
W1 = 1

|λmax|W0 where |λmax| is the spectral radius of W0 computable in a
finite polynomial time.

• Scale W1 to W = αW1, where α < 1 to give W a |λmax| = α. The value
of α has to be chose with respect to input dataset dynamics changes, with
smaller values for faster dynamics an larger values for slower ones. Right now
no known rules are available to choose the best fit α value to use in matrix
scale and the parameter must be hand tuned trying out several settings.

Step 2: Network training involves a series of mechanical steps as follows

• Initialize network to an arbitrary state (e.g. x(0) = 0);

29

• Train the network using training data, for times n = 0, ... , T, presenting
teacher’s input u(n) and teacher-forcing output y(n - 1), by computing the
activation (3.1).

• At time n = 0, where y(n) is not defined, use y(n) = 0

• For each time larger or equal than an initial washout time T0, collect input/
reservoir/previous-output states (u(n) x(n) y(n - 1)) concatenated as a new
row into a state collecting matrix M. In output we obtain a state collecting
matrix of order (T - T0 + 1) x (K + N + L).

• For each time larger or equal to T0, collect the sigmoid-inverted teacher output
tanh−1 y(n) row-wise into a teacher collection matrix T, to end up with a
teacher collecting matrix T of size (T - T0 + 1) x L.

Step 3: Compute output weights multiplying the pseudo-inverse of M with T, obtaining
a (K + N + L) x L sized matrix whose i-th column contains the output weights
from all network units to the i-th output unit

(Wout)t = M−1T (3.5)

Transpose the resulting matrix to obtain Wout.

Step 4: In this stage the resulting network (Win,W,Wback,Wout) is ready for use and can
be driven by novel input sequences u(n) using (3.1) and (3.2).

3.2.2 Stability Improvements

Some instability issues can occur when using the trained network; a possible solution [20]
consist in the addition of a small white noise source 0.0001 ≤ v(n) ≤ 0.1 to the state
activation equation (3.1)

x(n+ 1) = f(W inu(n+ 1) +Wx(n) +W backy(n) + v(n)). (3.6)

Another possible way to stem the over-fitting is applying Tikhonov regularization to W
and find the parameter using cross-validation [32]

3.2.3 Augmented States Approach

Due to the high non-linear behaviors that systems sometimes presents it may be useful
to model them with augmented network states that means add some non-linear transfor-
mation of activation states during Sampling phase.

30

3.2.4 Echo node type

Since the first approach and in most of the implemented ESNs, reservoir’s internal nodes’
activations were created as standard sigmoidal functions without any time dependence,
limiting somehow tasks whose relies totally on this feature. To make up for this behavior
another type of model known as Leaky Integrator Neuron (LIN) has been studied to
absolve this task. The model x(t) is defined as

ẋ =
1

τ
(−axs + f(wx)). (3.7)

In the over expression, w is a weight vector of connections from all units x into the
neuron xs while f is the neuron’s output non-linearity activation, in this case a sigmoid
function tanh. The constant τ is a positive quantity of time use to manipulate activation
dynamics; The a term is a non-negative decaying constant of neuron’s previous state xs.
An update state of a Reservoir composed entirely by LINs with decay constant ai, is
described by

ẋ =
1

τ
(−Ax+ f(W inu+Wx+W backy)). (3.8)

In this representation, A is a diagonal matrix containing decay constants in its diagonal.
A state update equation can be obtained from the (3.8) in function of the retainment
rate ri = 1− ai [19]

x(n+ 1) = Rx(n) + f(Winu(n+ 1) + Wx(n) + Wbacky(n)). (3.9)

This model’s condition take the Echo State Property existence to be compromised [20]
if the spectral radius of W +R in the (3.9) become greater than one (|λmax| > 1).

3.2.5 Lyapunov Exponent

From [32] is know that spectral radius is influenced by input scale and/or bias terms:
large inputs or bias leads to smaller effective spectral radius; For this reason, a more
accurate measure of performance of the reservoir with respect to task’s inputs has been
investigated. The Lyapunov exponent Lk of a dynamical system is a measure that
characterize the rate of separation of infinitesimally close trajectories in phase space, a
space in which all possible states of the system are represented as an unique point in the
space. In case of Reservoir, due to its input-driven dynamic nature, this value can not
be calculated but in a sigmoidal model using a Jacobian matrix Jn calculated over a map
of reservoir’s internal units activation, a close related pseudo-Lyapunov exponent of a
trajectory of N timesteps can be computed through the following equation, as reported
in [35]

h̃ = max
k

∏N
n=1(rK)

1
n (3.10)

31

Figure 3.2: Leaky Integrator neuron model reach the peak and progressively leaks its
state, described by x(t+ δt) = x(t) + (−AleakRatex+ I) ∗ δt.

where rK =
√
|λK |, λK represents the kth eigenvalue of JnJ

T
n . Has been demonstrated [35]

the validity of the pseudo-Lyapunov exponent h̃ as a measure of input-output reservoir
dynamics.

3.3 Liquid State Machines

Liquid State Machine approach has close links to the Echo State Network although these
two theories have been independently developed and released. The technical approach
behind this idea is based on the concept of ”Liquid Computer” [27] imagined by Maass
that consists in a liquid medium (a cup of coffee) that act as a filter perturbed by time-
series inputs u(·) in function of time, and a Readout (a pc with a camera) that captures
all state changes in the liquid without memorize them. This idea is not applicable on
real liquids due to physical limitations but has found a well applicable field in neuro-
computation using a neural circuits base that acts as the ”liquid”, and a readout that
maps output signal to specialize on a specific task. A mathematical model of ”liquid
computer” is called Liquid State Machine (LSM) and consists of a Reservoir, in this
case called liquid, which processes an input time-series u(·) into a liquid state x(t) who
integrates influences from inputs at all times prior t.

To be an LSM, a system with these characteristics needs to supply two fundamental
properties [27],

1) Separation
All output-relevant differences in the preceding part of two input time series u1(·)

32

Figure 3.3: General structure of a LSM. A time-series input crosses the liquid and the
resulting liquid state x(t) is mapped by the readout who outputs the result.

and u2(·) (before time t) are reflected in the corresponding liquid states x1(t) and
x2(t) of the system. This property should be fulfilled by the liquid reservoir.

2) Approximation
The readout has the capability to approximate any given continuous function f
that maps current liquid states x(t) on current outputs v(t). This property should
be fulfilled by the readout function.

Regarding the theory, a basic and very high-level approach to the implementation of a
specific target filter consist in

1. Choosing a suitable liquid as reservoir.

2. Elaborate numerous inputs u(·) through the liquid and collect the output states
x(t) at various time points.

3. Apply a supervised learning algorithm on a dataset of the form (x(t), yu(t)) to train
a readout function f such that the actual outputs f(x(t)) are as close as possible
to yu(t)

33

The over stated procedure does not specify what liquid, nor a learning algorithm to
choose for a specific filter implementation, such that could be possible choose a sim-
pler reservoir composed by a collection of delay lines and use a more complex readout
function like a neural network. However was observed [27] that a single perceptron is
able to accomplish all type of classification tasks if inputs are first projected into an
high, dimensional space. Hence a trade-off between reservoir and readout complexity,
unbalanced in favor of the first, must be applied in a certain measure to achieve good
performance in the resolution of the task.

3.3.1 Liquid node type

Given these considerations on system’s properties, one major characteristic of LSM ap-
proach consist of a model of the reservoir based on neurons with activation functions
based on biological synapse model theorized observing natural patterns found in the
microcircuits of the brain. One example above the other is the Leaky Integrate and
Fire (LIF) neuron model that in its basic form appears as [2]

I(t)− Vm(t)

Rm

= Cm
dVm(t)

dt
(3.11)

that is an evolution of Integrate and Fire model which represents a neuron as the
time derivative of the law of capacitance Q = CV . The term ”Leaky” refers to Ith = Vth

Rm
that is a threshold for the cell who can fire an output if the input was enough intense
or cancel any change in membrane potential. This type of node has an internal memory
comparable with the leaky integrator neuron over cited that competes with the Reservoir
intrinsic memory effect as stated above [35].

3.4 Backpropagation-Decorrelation Learning Rule

Two years after the approaches proposed by Jaeger and Maass, another independent
study on recurrent networks has been published under the name of Backpropagation-
decorrelation (BPDC) learning rule [34]. In its linear, O(N) complexity, solution he
combines

• Backpropagation of errors in one step;

• Temporal memory in network dynamics, adapted on the base of the decorrelation
of the activations;

• Internal reservoir of non-adaptive neurons;

34

Figure 3.4: Leaky Integrate and Fire neuron model fires [13].

• A linear readout function implemented through output weights, and a feedback
provided back to the reservoir;

And in addition, a formal technique has been developed to analyze and improve online
the stability of network’s configuration. A general model for this methodology as re-
ported in [34] is composed of a fully connected recurrent reservoir with fixed weights,
which receives a constant dummy bias input in addition to external inputs, connected
through the only set of trainable weights in the system to the output neuron who pro-
vides feedback connections into the reservoir.

3.4.1 BPDC bases

The equation of activation states in the reservoir is as follows

x(k + ∆t) = (1−∆t)x(k) + ∆tWf(x(k)) + ∆tWuu(k). (3.12)

where the terms means:

• xi, i = 1, ..., N are the states at time k < (k + ∆t);

• f is a standard, sigmoidal, differentiable activation function applied component
wise to the vector x;

35

Figure 3.5: A generic BPDC model as described in Steil 2006 [34]

• W ∈ RNxN is the internal weight matrix, initialized with small random values in
defined weight initialization interval [−a, a] which can be adaptively rescaled to
achieve system’s stability;

• Wu is the input weight matrix;

• k is a discrete time variable defined as k = k̂∆t, k̂ ∈ N+, where ∆t determines the
discrete or continuous dynamics of the reservoir;

Also in this case, inner neurons behave as a dynamical reservoir triggered by external
inputs and providing a dynamic memory as discussed previously for other methods, and
the output layer linearly combines the outcoming values to predict the desired output.
The weight update’s equation in Backpropagation-decorrelation is:

∆wBPDCij (k + 1) =
η

∆t

f(xj(k))∑
s∈O

f(xs(k))2 + ε
γi(k + 1) (3.13)

where

γi(k + 1) =
∑
s∈O

((1−∆t)δis + ∆twisf
′
(xs(k))× es(k)− ei(k + 1). (3.14)

In the equation (3.13)

36

• O ⊂ {1, ..., N} is a set of indices of output neurons;

• η is the learning rate;

• ε is a regularization constant usually around 0.002;

• es(k) are the non-zero error components for s ∈ O at time k : es(k) = xs(k)−ys(k)
with respect to the teaching signal ys(k).

To justify the provided rule in [34, 33] a constraint’s optimization problem has been
solved, minimizing the quadratic error with respect to the target output y forK timesteps

E =
1

2

K∑
k=1

∑
s∈O

[xs(k̂∆t)− ys(k̂∆t)]2 (3.15)

where constraint’s equations for k = 0, ..., K − 1 are obtained from the activation state
equations (3.12)

g(k + 1) ≡ −x(k + 1) + (1−∆t)x(k) + ∆tWf(x(k)) = 0. (3.16)

In the case of BPDC, this minimization problem has been approached [33] using an
algorithm proposed by Atiya and Parlos (APRL) to compute weight changes, using g
constraint equations to obtain a ”virtual target” by differentiating E with respect to the
state x:

∆x = −
(
∂E

∂x

)T
= −(eT (1), ..., eT (K))T (3.17)

where

es(k) =

{
xs(k)− ys(k), s ∈ O,
0, s /∈ O

(3.18)

Then, virtual teacher forcing has been applied to compute weight’s updates ∆w to guide
network’s changes by x+ η∆x expression:

∂g

∂w
∆w ≈ −η ∂g

∂x
∆x (3.19)

and this is done applying APRL to solve the (3.19), obtaining a full autocorrelation
matrix Ck of network activities. In BPDC, some adjustment are done to APRL algorithm
and the result is the (3.13) pointing out the Backpropagation-decorrelation learning rule
as an improvement over Atiya-Parlos method, mixing the new point of view in Reservoir
Computing methodology with algorithms of the literature and in a certain way, acts as
a link between the new and old school of thought regarding aRNN’s training.

37

3.5 EVOlution of recurrent systems with LINear Out-

put (Evolino)

The last method who will be covered in this paper, regards a technique [31] much different
from others which relies on Long short-term memory (LSTM) [17] aRNN.

LSTM networks overcome traditional aRNN problems (e.g. gradient vanishing) al-
lowing the use of standard backpropagation rule, obtaining unreached results before with
standard recurrent networks. However can sometimes occur, due to characteristics of al-
gorithms based on gradient, a lock of the result in a local minimum obtaining thus a
sub-optimal output. A possible solution to avoid the problem consist in the use of evo-
lutionary algorithms to search in the space of aRNN’s weight matrices, learning quickly
how to solve reinforcement learning jobs. Evolutionary methods, since they do not rely
on teacher’s input, can be very slow in supervised learning applications; However in this
last section, we are going to cover a general framework for supervised sequence learning
called EVOlution of recurrent systems with LINear Output (Evolino) [31] which
combines neuroevolution and linear methods (e.g. linear regression) to solve time-series
tasks.

Figure 3.6: Generic Evolino network.

Network’s output at time t is computed with the following equations:

φ(t) = f(u(t), u(t− 1), ..., u(0)), (3.20)

where terms

38

• φ(t) ∈ Rn is the Reservoir output;

• f(·) is the network’s activation function in function of the entire input history;

and the output equation
y(t) = Wφ(t). (3.21)

where terms

• y(t) ∈ Rm;

• W is a weight matrix.

To evolve f(·) that minimizes the error between the correct output d and y, no specific
algorithms are specified but a two-phase procedure [31] must be applied on the network:

Phase 1: submit to the network a training set of sequences (ui, di), i = 1, .., k of length li.
For each input pattern ui(t), t = 0, .., k, feed the network, produce vector activation
φi(t) and store it as a row in a matrix φ ∈MLk×n(R). In another matrix D store the
teacher output for each time step. After the computation of all activations, output
weights W are computed using linear regression from φ to D. The row vectors in
φ form a non-orthogonal basis that, combined linearly by W approximates D.

Phase 2: Present again the dataset to the network to obtain predictions y(t). Computes
∆E, errors with respect to desired teacher output D, and use it as fitness measure
to minimize by evolution.

Evolino tries to evolve not the network model directly, but instead its output bases to
obtain a good representation for the model. Most used Evolino’s preset is composed of an
LSTM network, evolved using a variant of Enforced SubPopulation (ESP) neuroevo-
lution algorithm that coevolve, through a cross-over algorithm, separate subpopulations
of neurons, accelerating neuron’s specialization in different subfunctions needed to form
good networks, due to the closeness of evolution that ensures members of different sec-
tions will never be mated. The division of population, in addition to performance boost,
reduces noise in the neuron’s fitness measure ensuring a more balanced representation of
each neuron in every evolved network. These features of ESP, allows more efficiency than
its ancestor method called Symbiotic Adaptive NeuroEvolution (SANE), which
evolves neurons in a single population. In Evolino, ESP promotes individual evolution
through Cauchy-distributed mutation as in the following algorithm:

Step 1: Initialization

• Set H, number of hidden units that will be evolved;

39

• Create a subpopulation of n neuron’s chromosome, each of which encodes a
neuron’s input and recurrent connection weights with a string of random real
numbers, for each hi, i = 1, .., H;

Step 2: Evaluation

• Randomly, select a neuron from each of the H subpopulations and combine
them to create a new aRNN.

• Evaluate the freshly created network on the task and collect a fitness score;

• Add score to the cumulative fitness value of each neuron that partecipated in
the network.

• Repeat the procedure until each neuron participated in m evaluations.

Step 3: Reproduction

• Rank each subpopulation by fitness function using neuron’s score;

• Duplicate top quarter chromosomes in each subset, then alter their weight
values adding noise obtained through the Cauchy distribution f(x) = α

π(α2+x2)

where α determine the width of the distribution.

• Replace the lowest-ranking half of the original corresponding population with
the copies;

Step 4: Repeat

• If the fitness of the best network does not improve for a predetermined number
of generations, apply burst mutation procedure.

• Repeat Step 2 and Step 3 until a sufficiently fit network is found;

3.5.1 Burst Mutation procedure

This procedure consists in a research in the space of modifications to find best solution.

1. Save best neurons in each subpopulation and discard the others;

2. Create from the saved elite set, substitutes of deleted neurons, through the addition
of some Cauchy noise to each copy.

This operation allows ESP to continue evolving after a first population convergence,
injecting new diversity into the subpopulation’s set.

40

3.6 Different approaches

In previous sections, we looked at the actual techniques in the panorama of the training
for artificial Recurrent Neural Network, collected under the name of Reservoir Com-
puting. Each of them is driven by almost the same approach that consists in feeding
a time-series input into an assembled network with fixed internal weight that acts as
a sort of resonance box, connected through some weights to one or more output units
composing an interpreter with the task of approximate signals generated by the system
after an appropriate tuning. The only trainable weights in the entire system are the
output ones. A good set of output weights together with an appropriate scale of in-
puts and the well-position of the reservoir system, can actually produce a state-of-art
technique for the ”training” of recurrent networks both in software as hardware imple-
mentation [30] for various tasks. One of the differences to be noted is the basic idea that
attends with each method. Echo state networks were originally thought to exploit
aRNN as a sort of black-box suited for modeling of dynamical systems, often involved
in engineering tasks, modeling signals with a sigmoidal activation state, not aimed to
emulation of any biological features, free of memory. While, on the other hand, Liq-
uid State Machines embody the attempt to give biological similar dynamics to aRNN
with the use of spiking neurons, using a model of synapse obtained in years from studies
on brain’s biological structures. We treated then nearly the latest discovery technique,
note as Backpropagation-decorrelation learning rule which improves a method al-
ready known in aRNN’s training, to achieve the solution of the problem in a way similar
to that pursued by the ESN but without the integral cut in relation to old methods.
A fourth most recent [2007] methodology, known as Evolino has the most different
approach in RC assumed until now. While it maintains a ”physical” structure compa-
rable with others approaches, it operates on LSTM models and attempts to train the
Reservoir using evolutionary algorithms, hypothesize as others RC methods’ limit could
reside in the randomic and static nature of the recurrent neural network which composes
the Reservoir. Conceptually [24], aRNN’s training methods increasingly deviate from
standard methods applied on the entire network, towards exclusive output-connection
enhancement:

↓ 0: BPTT

↓ 1: APRL

↓ 2: BPDC

↓ 3: ESN/LSM

41

3.7 Technology example: Echo State Network

In this short section we aim to provide a practical example of how an implementation of
Reservoir Computing can be approached, given a set of data known in literature. Indeed,
the data that the ESN should approximate, are taken from an online publication at [22]
and obtained from the equation of Mackey-Glass (delay 17) [16].

Taken the data, what has been done is to follow the directives from the guide [23] to
implement an ESN that approximates the input signal.
Taken into account all dynamics of the equation, the following basic code in Octave (a
language compliant with Matlab) has been implemented:

1 % ESN implementation: rc esn.m
2 clear;more off;clc; %some global cleaning
3 disp '% % % % % % % % % % % % % % % % % % %'
4 disp '% MackeyGlass signal reproduction %'
5 disp '% % % % % % % % % % % % % % % % % % %'
6 % Global Parameters
7 data = load('MackeyGlass t17.txt'); %data
8 alpha = 0.3; %leak rate
9 beta = 1e-8; %regularization term

10 K = 1; %input nodes
11 N = 1000; %DR size
12 L = 1; %output nodes
13 Ttrain = 2000; %train time
14 Ttest = 2000; %test time
15 Twashout = 100; %leak init time
16 Terr = 1000; %error time
17 rhoScale = 1.25; %DR scale factor
18 M = zeros(1+K+N,Ttrain-Twashout);%bias;input;state foreach T
19 x = zeros(N,1); %store an activation
20 D = data(Twashout+2:Ttrain+1)'; %correct data
21 Y = zeros(L,Ttest); %predicted data
22 y = data(Ttrain+1); %store a computed output
23 Win = rand(N,1+K) - 0.5; %input connections
24 W = randi([-1.5,1.5],N); %DR internal structure
25 Wout = zeros(1,1+K+N); %output connection to readout
26 opt.tol = 1e-3; %tollerance for eigs search
27 % complete the scale factor for W
28 rhoScale = rhoScale / abs(eigs(W,1,'lm',opt));
29 W = W .* rhoScale; %scale spectral radius of W
30 for T = 1:Ttrain
31 % leaky integrator - take in account the past x
32 % to predict future states
33 % run for the first Twashout time steps to sync
34 % internal states with the input
35 x = (1 - alpha) * x + alpha * tanh(Win*[1;data(T)] + W*x);

42

36 if T > Twashout
37 %bias;input;internal state x
38 M(:,T-Twashout) = [1;data(T);x];
39 end
40 end
41 Mt = M'; %transpose of state collecting matrix
42 %compute output connection using normal equations
43 Wout = D * Mt * inv(M*Mt + beta * eye(1+K+N));
44 for T = 1:Ttest
45 %compute predicted output, starting from last train
46 x = (1 - alpha) * x + alpha * tanh(Win * [1;y] + W * x);
47 y = Wout * [1;y;x];
48 Y(:,T) = y;
49 end
50 %compute Mean Squared Error measure
51 mse = sum((data(Ttrain+2:Ttrain+Terr+1)'-Y(1,1:Terr)).ˆ2)./Terr;
52 disp(['Mean-Squared-Error = ', num2str(mse)]);
53

54 % plot generated data vs. correct ones
55 figure(1);
56 plot(data(Ttrain+2:Ttrain+Ttest+1),'r');
57 hold on;
58 plot(Y', 'b');
59 hold off;
60 axis tight;
61 legend('Target signal', 'Free-running predicted signal');
62 % plot a subset of internal activation
63 figure(2);
64 plot(M(1:20,1:200)');
65 % plot a bar graph of output connection's weights
66 figure(3);
67 bar(Wout')

The output:

Figure 3.7: The output represents the mean squared error between the signal in input
and the generated

The results obtained fit well the input signal, however not always the output model
adapt so tight to that in input. Indeed there is a strong dependency of performance

43

Figure 3.8: Generated signal y(n) in the first 2000 steps

Figure 3.9: Plot of a restricted subset of internal activations of the reservoir W

Figure 3.10: Bar graphic of output weights contained in Wout

44

with respect to the the random initialization of internal structures of reservoir and input
connections, a constraint on performance which is still object of investigation.

3.8 Application Domains and Future Steps

RC methods have been widely employed in various kinds of engineering tasks [25] like
temporal pattern classification and/or generation, time series prediction [36], memo-
rizing, or controlling nonlinear systems. Now we are going to provide a report of the
actually applied methods in various fields:

� Speech Recognition:
The first approach has been focused on recognition of Japanese vowels and dig-
its [25]. After that, the first effective test of recognition on a continuous speech has
been based on a large set of predictive Echo state networks, who yielded good re-
sults, performing better than the actual state-of-the-art technique in this field. At-
tempts to speech recognition in an LSTM context, evaluated the Evolino approach
on a 100.000 units network worst in comparison to a Gradient approach allowed
by this particular network architecture [31]. Enhanced performance was achieved
in ESN-HMM hybrid models and an active research is based on a neuro-inspired
LSM approach [15] who also denotes high potentialities for future developments.

� Handwriting Recognition: Currently, most interest in handwriting recognition
was directed onto an aRNN employment to handle time-series of pixels. This is
the approach studied in RC’s recent attempts: texts has been sampled in a time-
series input of pixels and used, coupled with teacher-output, to feed a hierarchical
architecture of reservoirs. There has not been necessity to segment the data before
use them thanks to the composition of the recognizer used in the experiment,
actually an improvement compared to state-of-the-art techniques employed until
now.

� Robotics: Deadbeat controllers can be obtained through a careful training of
Echo State Networks as described in detail in ESN patent document. ESNs are
currently explored also as mouldable neural pattern generators in the European
FP7 project AMARSi.

� Financial Forecasting: In the field of time-series many studies has been headed
to success results using RC approaches and researches has shown [36] how much
data regularization and reservoir size influences the resulting performance. Some
techniques, like seasonal decomposition and a collective vote approach using many
of ”small size” reservoir to obtain a more balanced result, were introduced in order
to achieve satisfactory results.

45

� Medical: An improvement over state-of-the-art technique (already held by RC
methods) has been obtained in a study taken at Ghent university, applying reservoir
computing to epileptic seizures real-time detection.

Other RC methods possibilities are biological and cognitive phenomena modeling, in
particular using LSM paradigm within includes spiking neurons to mime biological neu-
ron’s behavior. The application of Reservoir Computing methodologies is taking place
with very good results, leading the use of recurrent neural networks for many tasks in
various branches of scientific environment which do not have never applied seriously due
to poor performance got with previous learning algorithms. Although the exponential
improvements have revitalized aRNN as an usable tool, researches continue to enlarge the
spectrum of possible applications. This objective in mind, one of major research fields
consists of Automated Reservoir’s Optimization for a particular task, operation until now
done by a manual search on specific problem [24]. Another fundamental research’s topic
consists of the Stability of the reservoir’s states during training, achieved nowadays in
some ways adding noise or ridge regression as regularization parameter, solutions that
needs to be improved a lot with a consistent indications behind the application of a
regularization of some type. Reservoir Architectures has became another research field
for future improvements, indeed a direct correlation to output’s goodness was observed
in spread applications of these techniques.

46

Conclusion

In this overview, we presented Machine Learning from one of its various points of view,
to denote its actual applications in various fields of engineering and data analysis, since
today it is the base of the execution of a huge quantity of automated tasks. We have
started our report from the simplest techniques involved in prediction and classification
like the Regressions (chapter 1), passing through the application of more complex al-
gorithms like Neural Networks that currently dominate the applications of automated
learning. Moreover, we looked at three recent techniques, independently developed each
others, involved in the training of artificial Recurrent Neural Networks (chapter 2), gath-
ered under the common name of Reservoir Computing, that overwhelm in efficiency the
historical methods, in almost every aspect (chapter 3). This family of approaches has
caught on, in response to poor results obtained using methodologies derived from the
resolution methods of feedforward networks, historically adopted to train aRNN. From a
look at each method, is observable that each one has some aspects not enough satisfying
to unleash of the full computational power of the network, summarizable in:

? Reservoir production, that consists in each process involved in the production of
the reservoir: size, node type, architecture involved and weights assumed by the
connections in the network are all fundamental aspects of this piece of the system.
For instance, in biological brain, most structures have a predefined constitution
and various types of learning are involved in the formation of the ”networks”. This
collides with the actual random constitution of the reservoir and highlights a source
of improvements;

? Readout production, that consists in the choice of the readout layer placed as
output of the reservoir to analyze and elaborate signals generated from the first.

Reservoir computing counts among its merits that it has initiated the use of aRNNs
in real world problem such before was not achievable and also, to have taken a step
forward to the creation of processes similar to that who occur in biological brains, using
specific models of neuron and biological-inspired architectures. Another characteristic of
RC methods, is the separation between the part that generates signals from that who
interprets them, implicitly providing an easy testbed for modifications and evaluation of
new best-practice for this methodology. The research for methods that define formally a

47

satisfying reservoir who permits a better exploitation of aRNN for each purpose, compose
today the main field of research in Reservoir Computing, that will allow a day perhaps
to achieve full computational power from this powerful tool.

48

Bibliography

[1] Turing equivalence of neural networks with second order connection weights, 1991.

[2] K. Christof and S. Idan. Methods in neuronal modeling : from ions to networks,
1999.

[3] Crowd-Edited. Gradient. http://en.wikipedia.org/wiki/Gradient, February.

[4] Crowd-Edited. Gradient descent. http://en.wikipedia.org/wiki/Gradient_

descent, February.

[5] Crowd-Edited. Linear predictor function. http://en.wikipedia.org/wiki/

Linear_predictor_function, February.

[6] Crowd-Edited. Linear regression. http://en.wikipedia.org/wiki/Linear_

regression, February.

[7] Crowd-Edited. Logistic regression. http://en.wikipedia.org/wiki/Logistic_

regression, February.

[8] Crowd-Edited. Recurrent neural network. http://en.wikipedia.org/wiki/

Recurrent_neural_network, February.

[9] Crowd-Edited. Regression analysis. http://en.wikipedia.org/wiki/

Regression_analysis, February.

[10] Crowd-Edited. Sigmoid function. http://en.wikipedia.org/wiki/Sigmoid_

function, February.

[11] Crowd-Edited. Statistical model. http://en.wikipedia.org/wiki/Statistical_
model, February.

[12] Crowd-Edited. Vanishing gradient problem. http://en.wikipedia.org/wiki/

Vanishing_gradient_problem, February.

[13] ekaakurniawan. 3nb - neural network notebook. GNU Project mantained at
http://ekaakurniawan.github.io/3nb/.

49

[14] J. L. Elman. Finding structure in time. Cognitive Science, 14:179–211, 1990.

[15] A. Ghani, T. McGinnity, L. Maguire, L. McDaid, and A. Belatreche. Neuro-inspired
speech recognition based on reservoir computing. Technical report, University of
Ulster, 2010.

[16] L. Glass and D. M. Mackey. Mackeyglass equation. http://www.scholarpedia.

org/article/Mackey-Glass_equation.

[17] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation,
9(8):1735–1780, 1997.

[18] S. H. Horng and M. Sur. Visual activity and cortical rewiring: activitydependent
plasticity of cortical networks. Progress in Brain Research, 157, 2006.

[19] H. Jaeger. A tutorial on training recurrent neural networks, covering BPPT, RTRL,
EKF and the ”echo state network” approach. Fraunhofer Institute for Autonomous
Intelligent Systems (AIS).

[20] H. Jaeger. The ”echo state” approach to analysing and training recurrent neu-
ral networks. Technical report, German National Research Center for Information
Technology, 2001.

[21] M. I. Jordan. Serial order: A parallel distributed processing approach. Technical
Report 8604, San Diego: University of California, Institute for Cognitive Science.,
1986.

[22] M. Lukoeviius. Mackeyglass distribution. http://minds.jacobs-university.de/
pubs.

[23] M. Lukoeviius. A practical guide to applying echo state networks. Technical report,
Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany, 2012.

[24] M. Lukoeviius and H. Jaeger. Reservoir computing approaches to recurrent neural
network training. Computer Science Review, 3:127–149, 2009.

[25] M. Lukoeviius, H. Jaeger, and B. Schrauwen. Reservoir computing trends. Technical
report, ENS Cachan, 2012.

[26] J. McCarthy. What is artificial intelligence? http://www-formal.stanford.edu/

jmc/.

[27] T. Natschlager, W. Maass, and H. Markram. The ”liquid computer”: A novel
strategy for real-time computing on time sries. Special Issue on Foundations of
Information Processing of TELEMATIK, 8:39–43, 2002.

50

[28] J. R. Newton and M. Sur. Rewiring cortex: functional plasticity of the auditory
cortex during development. Technical report, Massachusetts Institute of Technology,
2008.

[29] A. Ng. Stanford university - machine learning. http://ml-class.org.

[30] Y. Paquot, F. D. adn A. Smerieri, J. Dambre, B. Schrauwen, M. Haelterman, and
S. Massar. Optoelectronic reservoir computing. Scientific Reports, 2(287), 2012.

[31] J. Schmidhuber, D. Wierstra, M. Gagliolo, and F. Gomez. Training recurrent net-
works by evolino. Neural Computation, 19:757–779, 2007.

[32] B. Schrauwen, D. Verstraeten, and J. V. Campenhout. An overview of reservoir
computing: theory, applications and implementations. In ESANN’2007 proceedings,
2007.

[33] J. J. Steil. Backpropagation-decorrelation: online recurrent learning with o(n) com-
plexity. Technical report, Neuroinformatics Group, Faculty of Technology University
of Bielefeld, Germany, 2004.

[34] J. J. Steil. Online stability of backpropagation-decorrelation recurrent learning.
Neurocomputing, 69:642–650, 2006.

[35] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt. An experimental
unification of reservoir computing methods. Neural Networks, 20, 2007.

[36] F. Wyffels and B. Schrauwen. A comparative study of reservoir computing strategies
for monthly time series prediction. Neurocomputing, 73:1958–1964, 2010.

[37] X. Yan. Linear Regression Analysis: Theory and Computing. World Scientific, june
2009.

51

