

ALMA MATER STUDIORUM · UNIVERSITÀ DI

BOLOGNA

CAMPUS DI CESENA

SCUOLA DI SCIENZE

Corso di Laurea Triennale in Scienze e Tecnologie

Informatiche

DATA DISSEMINATION OVER

COMPLEX NETWORKS THROUGH GOSSIP

Tesi di Laurea in Reti di Calcolatori

Relatore:

GABRIELE D'ANGELO

 Presentata da:

GIANMARCO BERTI

Sessione III

Anno Accademico 2013-2014

“Admitting we are not heroic

is when we are the most heroic of all.”

J.D. - Scrubs

I

Prefazione

La continua espansione di internet e dei dispositive elettronici utilizzati

ha sollevato la necessità di adottare sistemi di diffusione dell’informazioni

diversi dal classico paradigma client-server, in favore del paradigma peer-

to-peer, che negli ultimi anni ha suscitato notevole interesse anche grazie a

software di successo quali Napster, Torrent, Skype e molti altri, che hanno

contribuito a cambiare le regole della diffusione delle informazioni. In

particolare, questa tesi tratta lo studio di algoritmi per diffusione di

informazioni tra un gruppo di agenti caratterizzati da risorse limitate, come

una rete di sensori o una di router che necessitino di scambiare

informazioni di controllo o di routing.

In particolare, in questa tesi è analizzata una famiglia di algoritmi detta

Gossip; questi algoritmi sono stati ispirati dal modo in cui un’informazione,

quale ad esempio un pettegolezzo, si diffonde tra la popolazione. Questa

famiglia di protocolli, che cerca di ridurre i messaggi inviati sfruttando una

logica generalmente probabilistica, ha dimostrato robustezza, flessibilità,

semplicità e efficienza, suscitando un notevole interesse tra i ricercatori.

A seguito di una iniziale introduzione, costituita dall’analisi dei

protocolli conosciuti in letteratura, viene poi preso spunto per la creazione

di nuovi algoritmi per la diffusione di informazioni. Le sezioni successive

tratteranno l’analisi e il confronto dei nuovi protocolli implementati con

quelli noti in letteratura, da cui verranno tratte le conclusioni in merito.

II

List of figures

5.1 Descending Probability: coverage and overhead 27

5.2 Descending Probability: delay and coverage 28

5.3 Double Descending Probability: coverage and overhead 29

5.4 Double Descending Probability: delay and coverage 30

5.5 DP, DDP, FP, CB: coverage and overhead 31

5.6 DDP, FP, CB: coverage and overhead, closer 32

5.7 DP, DDP, FP, CB: delay and coverage 33

6.1 DP, DP + CIB: coverage and overhead 41

6.2 DP, DP + CIB: delay and coverage 42

6.3 DDP, DDP + CIB: coverage and overhead 43

6.4 DDP, DDP + CIB: delay and coverage 44

6.5: DP + CIB, DDP + CIB, FP, CB: coverage and overhead 45

6.6: DP + CIB, DDP + CIB, FP, CB: coverage and overhead, closer 46

6.7: DP + CIB, DDP + CIB, FP, CB: delay and coverage 47

Index

 Prefazione I

 List of figures II

1 Introduction 1

2 Gossip algorithms 5

2.1 SI 6

2.2 SIR 7

2.3 Push 8

2.4 Pull 8

2.5 Hybrid 9

3 Simulation environment 11

4 Analyzed gossip algorithms 15

4.1 Conditional Broadcast (CB) 16

4.2 Fixed Probability (FP) 17

5 Proposed algorithms 19

5.1 Descending Probability (DP) 20

5.2 Double Descending Probability (DDP) 23

5.3 Comparison with common algorithms 24

6 Advanced functionalities 35

6.1 Conditional incrementing broadcast 36

6.2 Final observations 40

7 Conclusions 49

7.1 Future works 51

7.2 Acknowledgements 51

 Bibliography 53

1

Chapter 1

Introduction

The continuous expansion of Internet and electronic devices has led to a

diversification of methodologies to spread information, and after the

success of peer to peer protocols as alternative to client-server, many

algorithms have been studied and evolved, like Torrent, Skype and Napster,

becoming quickly a landmark for new protocols. Some are proprietary,

others are open source, but they all have something in common: spreading

information efficiently.

 Making nodes reach a state of agreement is a fundamental problem in

decentralized networked systems [1], mostly for what concerns sensor

networks, peer-to-peer (P2P) networks, mobile networks of vehicles and

social networks. Those structures strongly differs from the telephone

network or the Internet, not only because they are not engineered to provide

efficient communication between various entities, but also because they

lack infrastructures, exhibit unpredictable dynamics and face stringent

resource constraints [2]. Their communication is often intense but light

between an unknown number of nodes, where each one only knows its

neighbors and has no idea of the topology that may change too frequently

to relay on common algorithms like Routing Information Protocol (RIP)

and Open Shortest Path First (OPSF) [3]; however, they still require

2

algorithms for communication or merely spreading information. The

unpredictability behavior of those networks combined with their limited

resources have excluded client-server approach. Although it is true that the

latter paradigm is capable of spreading information efficiently with an

appropriate amount of resources, the variable number of nodes in the

network would lead to allocate excesses resources without the guarantee of

an acceptable scalability. For the reasons listed above, client-server has

been sidelined in favor of P2P, which is much more suitable to operate with

limited resources in strongly dynamic networks due to its decentralized

nature and also because it transforms clients into peers, which does not only

consume resources to obtain information they need, but also contributes

actively with their own resources to the spreading.

 Many different families of protocols have been studied and amongst all

the interest has raised for gossip algorithms that have been subject of

intense research [4]. In particular, Gossip-Epidemic algorithms have shown

robustness, flexibility, simplicity and efficiency in spreading information

[5], making them particularly appropriate. Due to their probabilistic nature

Gossip-Epidemic algorithms lack reliability: this requires expensive

mechanisms to be implemented and give the possibility to detect missing

messages and initiate retransmission, and causes the algorithm not to scale

over a couple of hundred processes [6].

 Many different algorithms have been proposed, unfortunately none of

them has shown satisfying results, leaving the debate still open; this is due

to the fact that those algorithms are capable of making nodes reach a state

of agreement but their efficiency is not satisfying enough.

 We are looking for an algorithm capable of spreading information on a

network of unknown topology. It should have the highest coverage and the

lowest overhead and delay possible. Appreciable characteristics include

3

topology independence, scalability, adaptability and fault tolerance. Even

though an algorithm studied for a specific network may grant better results,

topology independence and adaptability are necessary to provide a generic

algorithm capable of spreading information in different scenarios. A

possible approach to achieve independence is to avoid considering nodes

position in the graph, as explained in following sections.

4

5

Chapter 2

Gossip algorithms

Gossip algorithms [7], as the name suggests, are built upon a gossip or

rumor style and offer many different methods to archive agreement in a

group of dynamic agents. They are the evolution of the trivial but

inefficient pure flooding protocol, where every node simply forwards every

message received to all its neighbors. This solution will lead to broadcast

storm problem [8]. Gossip algorithms differs from flooding because after

each reception the node evaluates, usually with a probabilistic threshold, if

forward the message or not. The introduction of random events is a solution

adopted by other protocols, as quicksort and many other algorithms do [9],

not only because the application context is not always predictable, but also

because the random events tend to balance. A notable approach to gossip

inspired by the behavior of a spreading disease in epidemiology are

epidemic protocols. These protocols set a dynamic state for each node,

depending on its current knowledge of a specific message:

 Susceptible (S): the node is not aware of the message;

 Infected (I): the node knows the existence of the message and it is

currently spreading the information.

6

 Removed (R): the node is aware of the existence of the message but

is not contributing to its spreading.

The two different models created [10] using these conditions will be briefly

explained below.

2.1 SI

In the SI model, only two states are used, indeed a node can only be

Infected or Susceptible, but once infected the node cannot vary its state

anymore.

Algorithm 1: SI gossip

 1: loop

 2: wait(∆)

 3: p ← random peer

 4: if push and in state I then

 5: send update to p

 6: end if

 7: if pull then

 8: send update-request to p

 9: end if

10: end loop

11: procedure OnUpdate(m)

12: store m.update

13: end procedure

14:

15: procedure OnUpdateRequest(m)

16: if in state I then

17: send update to m.sender

18: end if

19: end procedure

The code is composed by a running thread (lines 1 – 10) executed

every ∆ time units. In every iteration a random peer is chosen and,

depending on the current configuration, the algorithm may be push, pull

or push-pull, acting consequently. When an update is received, the

message is stored and the node changes its state to Infected (line 12).

If a neighbor has requested an update and if the current state is Infected

(line 16), an update is sent (line 17).

7

In case of push algorithms, infected nodes actively spread

information, while susceptible nodes are passive. On the contrary, in the

in push-pull all nodes are always active.

2.2 SIR

SI model has no termination condition; to achieve it, a third state has

been implemented: Removed.

 Algorithm 2: SIR gossip

 1: loop

 2: wait(∆)

 3: p ← random peer

 4: if push and in state I then

 5: send update to p

 6: end if

 7: if pull then

 8: send update-request to p

 9: end if

10: end loop

11:

12: procedure OnFeedBack (m)

13: switch to R with prob. 1/k

14: end procedure

15: procedure OnUpdate(m)

16: if in state I or R then

17: send feedback to m.sender

18: else

19: store m.update

20: end if

21: end procedure

22:

23: procedure OnUpdateRequest(m)

24: if in state I then

25: send update to m.sender

26: end if

27: end procedure

The protocol differs from SI for few but important lines. At the first

reception the node switch state to Infected (line 19): from now on, any

new message will trigger a feedback to the sender (line 17). When a

node receives a feedback has 1/k probability to switch to Removed state

(line 13). Once in Removed state, the node will not answer to update

8

requests (line 24) but will continue to send feedbacks. The SIR gossip is

strongly influenced by the value k.

2.3 Push

The base idea behind push algorithm is that anytime a node has a

new piece of information, it forwards to some or all its neighbors, who

continue to forward the message if the forwarding condition is satisfied,

otherwise the message is dropped. A termination condition is used to

prevent the message travelling forever in the network, which may cause

higher overhead. Usually the termination condition is the Time-To-Live

(TTL) of the message, which is decreased at each hop, but nodes can

also be programmed to drop messages that have already been received.

In a push protocol, when the first message is created, only the node who

generated it know about its existence, so the probability to forward it to

nodes that still have to receive it is higher at the beginning, but every

time it is forwarded, chances to reach an unconscious node decrease at

each hop through the network.

2.4 Pull

Pull protocols have the opposite approach: after a given time, the

node asks some or all its neighbors if new information is available, and

if the answer is positive, the node will be informed. In contraposition

with push protocols, pull tends to be more efficient in later rounds [11],

while the chances to find information in the beginning are much lower.

9

2.5 Hybrid

For the reasons explained above, some protocols try to mix push and

pull [11], aiming to collect the advantages of both and avoiding their

disadvantages. Unfortunately, this family of protocols tends to be more

complex not only because their efficiency is based upon the correct time

when switch from push to pull, but they also require nodes to be aware

of which messages they have already received. This is not a simple

problem, because it requires memory for the node to store the identifier

(ID) of each message, which leads to another problem: knowing when to

remove an ID from the cache; the complexity is not given only by the

correct timing to remove a given message, but also by the unpredictable

number of nodes of the graph in a real scenario and their possible

dynamicity, hardly emulated in a simulation.

10

11

Chapter 3

Simulation environment

The probabilistic nature and the high number of nodes involved in this

algorithm do not allow an accurate evaluation and proper adjustment before

the effective deploy. As the effective ambit of application of the protocol is

not predictable, it is necessary to test in a pseudo-realistic scenario. For this

thesis, simulations have been executed using a simulation environment

created by Parallel and Distributed Simulation Research Group [12]

(Department of Computer Science, Università di Bologna); then the results

have been compared to known algorithms. The core simulation

environment is Advanced RTI System (ARTÌS) [13], a parallel and

distributed simulation middleware, inspired by the High Level Architecture

standard [14]. ARTÌS has been integrated with the Generic Adaptive

Interaction Architecture (GAIA), a framework responsible of migrating

simulation elements in the distributed environment to improve

performances. On the top of this architecture, Large Unstructured NEtwork

Simulator (LUNES) [15] uses services provided by ARTÌS and GAIA to

simulate complex protocols on top of a network graph. Unfortunately, it is

not possible to simulate every single aspect of a real scenario because the

number of nodes, the width or diameter of the graph, which is the largest

number of vertices which must be traversed to trover from one vertex to

12

another, and the number of edges might vary. Moreover it is not possible to

assume a static network and it is not even realistic a graph where all nodes

are homogeneous, with equal bandwidth and no nodes failure or packet

loss. To soften the distance between a simulation and a real scenario,

following tests and evaluations have been executed using the same stable

graphs, with no losses and homogeneous nodes. In particular, one hundred

graphs has been randomly generated by LUNES and each graph is

composed of one hundred nodes, two hundred edges with a diameter of

eight nodes.

The width of the graph is a fundamental information for the simulation

since the Time To Live (TTL), an integer value which is decreased each

hop through the graph and causes the message to be discarded when

reaches 0, will be equal to the diameter of the graph.

LUNES also provides an important function: message caching. Since

each message will have a unique identifier, the system will be capable of

recognizing already received messages simply storing its ID. The default

implementation drops messages already received, but different

implementations may change its behavior.

Each simulation will return:

 Number of nodes of each graph;

 Average coverage;

 Average delay;

 Average number of messages sent in each dissemination;

 Overhead ratio of the dissemination.

The first and the fourth values are self-explicative, the second represents

the percentage of nodes that have been reached by the information, the third

the delay of the message since its first sending and the fifth is given by the

13

ratio between the number of messages sent during the dissemination and

the minimum number of messages necessary to obtain a complete coverage

[16].

Among those values, overhead and coverage are the most interesting,

since they give an idea of how efficient the algorithm is, but the delay is

also notable because it shows how quickly the information is propagated

through the graph.

Before proceeding, some clarifications are needed about the following

figures. Data represented in the figures are the average of 100 run for every

algorithm repeated on the same 100 graphs, with 100 nodes and 200 edges.

Each algorithm’s result is represented using two figures (e.g. 5.1 and 5.2)

that focus respectively on the overhead and the delay referring to the same

coverage.

14

15

Chapter 4

Analyzed gossip algorithms

In this section, two algorithms will be analyzed: Fixed Probability (FP)

and Conditional Broadcast (CB). Both protocols are already built in

LUNES and will be used as comparison for new algorithms in the

following sections. Despite many other algorithms have been implemented

in LUNES, those two have been chosen as metric not only because they

represent a base gossip approach to the problem but also proposed

algorithms have been inspired by CB and FP behaviors, merging their

characteristics and aiming to soften their weakness.

Both algorithms belong to push family, as all the other protocols treated

in this thesis. The next two paragraphs will briefly explain the functioning

of CB and FP with the aid of pseudo-code. As stated above, LUNES

provides caching for messages and drops those who have already been

received, so following implementations will only consider the case where

the message has not been received yet, since the caching system is

transparent for the algorithm. Even if FP and CB do not directly use states,

their capacity to recognize new from already received messages, due to

caching, implicitly render their behavior dynamic and differs from message

to message.

16

4.1 Conditional Broadcast (CB)

The Conditional Broadcast (CB) is a simple algorithm where

messages are sent to all neighbors if the dissemination condition is met.

In particular, after the reception of a new message, the node generates a

random number between 0 and 1 and, if this number is equal or below

the broadcast probability, the node forwards the message to all

neighbors, otherwise it does nothing. The protocol has been improved

removing the node that generated the message and the sender from the

broadcast. All the following algorithms include this feature.

 Algorithm 3: CB gossip

 1: procedure OnUpdate (s)

 2: if TTL > 1 then

 3: TTL = TTL - 1

 4: if random() ≤ threshold then

 5: for all n ∈ neighbors loop

 6: if n ≠ s then

 7: send update to p

 8: end if

 9: end loop

 10: end if

 11: end if

 12: end procedure

TTL is used as termination condition; if the check fails (line 2), the

message will be dropped, otherwise it will be forwarded to all neighbors

provided that the random value is below or equal the threshold (line 4).

The node excludes itself and the node who generated the message from

the broadcast (line 6).

17

4.2 Fixed Probability (FP)

The Fixed Probability (FP) algorithm differs from CB because the

probability is evaluated for each neighbor independently. That choice is

the first attempt to better disseminate the information through the graph.

 Algorithm 4: FP gossip

 1: procedure OnUpdate (s)

 2: if TTL > 1 then

 3: TTL = TTL - 1

 4: for all n ∈ neighbors loop

 5: if random() ≤ threshold and n ≠ s then

 7: send update to p

 8: end if

 9: end loop

 10: end if

 11: end procedure

TTL is used as termination condition; if the check fails (line 2), the

message will be dropped, otherwise it will be forwarded to all neighbors

provided that the random value is below or equal the threshold (line 4).

The node excludes itself and the node who generated the message from

the broadcast (line 6).

18

19

Chapter 5

Proposed algorithms

Analyzing previous protocols it is noticeable that they are static, since

the dissemination probability remains the same for the whole algorithm.

This is not a good thing because, as explained in previous sections, push

algorithms tends to be efficient in early rounds but may cause much

overhead later due to a lower probability to reach an unconscious node

every hop through the network. That leads to the conclusion that the

algorithm should try to adapt during the dissemination to avoid infecting

again the same nodes. This is not a trivial problem, because due to the

random and simple nature of Gossip algorithms, nodes are not aware of the

current situation, thus a high probability may lead to loops through the

graph while a low probability will leave a high number of nodes

unconscious.

Ideally, if nodes were somehow able to know how the dissemination is

going, they would be able to correct their behavior due to the current

situation. Unfortunately, the decentralized nature of Gossip, and more in

general of P2P algorithms, does not allow nodes to be conscious of what is

happening to others and anyone of them has a global view of the graph. The

only way to increase nodes awareness of the dissemination is to increase

their communication, which is exactly what we are trying to avoid.

20

5.1 Descending Probability (DP)

A possible approach to the problem consists in lowering the

probability proportionally to the time elapsed since the message has

begun its journey through the network. This relies on the idea that the

longer a message has travelled, the higher is the number of nodes

already informed, so a slowdown would reduce global overhead without

compromising too heavily dissemination.

To obtain that behavior, different mechanisms are available:

 Starting the dissemination with a fixed initial value, then

reducing it by a constant at each hop;

 Creating a disproportional relation between the time spent by

the message in the graph and the dissemination probability;

 Assigning to every TTL a different probability, not necessary

related or different from previous or subsequent values.

The last option is pretty easy to implement, since 8 values could be

saved into a vector, where at each position corresponds the TTL. Even if

this method gives more control for values at each step, it would cause

too much effort to study which value would be the best for each

position, since combinations are in the order of 100
8
 possible

combination and may lead to a completely different algorithm.

The first mechanism has the appreciable characteristic to require only

two values: the initial and the decrementing one; unfortunately, just like

the third mechanism, it has a very high number of combinations but has

also the drawback of a static value for the whole dissemination.

I think that it would be more interesting to have a full control of the

dissemination instead of a partial one.

21

The second mechanism is the one which has been chosen for DP, not

only because it allows a harmonious and proportional decrease for the

probability, but also because it has a reduced pool of possible values and

only requires a value that will be proportionated to the time spent by the

information through the graph simply multiplying it for the TTL.

Adopting the last one as meter for the age of the message and creating a

proportional relation between it and the probability, an easier

implementation is obtained, since that value is already present and

managed in LUNES and nodes are already aware of its existence. Each

node only needs to read the TTL of the received message and obtain the

current dissemination probability simply multiplying a constant for the

TTL. Of course, the node who generated the message will spread it to all

its neighbor, since none of them has been informed, so the algorithm

will start its evaluation after the first hop. DP algorithm is meant to

obtain the dissemination probability as the result of the multiplication

between a constant and the TTL, but since the TTL value is decreased

immediately after reception, to prevent the constant to be multiplied for

zero and provide a better dissemination, the value used for this

multiplication will be equal to the TTL + 1, resulting in a range between

1 and 8 due to the initial value. This gives a range for the constant as

well, which can be between 1 and 12. Dissemination behavior is similar

to FP because each neighbor is evaluated independently.

Note that the algorithm uses indirectly the caching system provided

by LUNES, that simply drops messages already received, which is

transparent for the algorithm, thus the implementation will not consider

the reception of an already received message.

22

 Algorithm 5: DP gossip

 1: procedure OnUpdate (s)

 2: if TTL > 1 then

 3: TTL = TTL – 1

 4: threshold = constant * (TTL + 1)

 5: for all n ∈ neighbors loop

 6: if random() ≤ threshold and n ≠ s then

 7: send update to p

 8: end if

 10: end loop

 12: end if

 13: end procedure

If TTL check is successful (line 2), this is decreased (line 3),

otherwise the message will be dropped. A new threshold is set each

update (line 4) and the message will be forwarded to all nodes which

pass the random evaluation (line 6). The node excludes itself and the

one who generated the message from the dissemination (line 6). As

stated above, constant is a value between 1 and 12, and of course

threshold is comprised between 0 and 100.

As shown in figure 5.1, DP can reach a good coverage without

exceeding in overhead; despite that, the algorithm is not capable of

reaching a full coverage which may become a considerable problem if

the network requires continuous information for all nodes. Figure 5.2

shows better results for what concerns delay, which decreases with

coverage increase, so the lack of coverage may be softened by a good

delay and constant dissemination.

23

5.2 Double Descending Probability (DDP)

Descending Probability (DP) tries to reduce overhead in later rounds,

but its probability drops down significantly after some iterations, down

to 12% in the best case. The direct consequence is that after a certain

value, the number of messages forwarded through the graph is not

sufficient to reach all uninformed nodes left. To soften this gap, the

algorithm has been modified resetting the probability to its initial value

in the middle of the dissemination. The idea behind the modification is

that after some iteration with high dissemination, the message may have

reached new portions of the graph which have not been sufficiently

informed yet, so reducing the dissemination probability too early and

heavily may be the cause of unsatisfying coverage.

 Algorithm 6: DDP gossip

 1: procedure OnUpdate (s)

 2: if TTL > 1 then

 3: TTL = TTL – 1

 4: if TTL ≥ 4 then

 5: threshold = constant * (TTL + 1)

 6: else

 7: threshold = constant * (TTL + 5)

 8: end if

 9: for all n ∈ neighbors loop

10: if random() ≤ threshold and n ≠ s then

11: send update to p

12: end if

13: end loop

14: end if

15: end procedure

24

TTL is checked (line 2) and if above one, it is decreased (line 3). If the

dissemination is in the first half (line 4), the constant will be multiplied

for TTL + 1 (line 5), otherwise it will be multiplied for TTL + 4 (line 7).

Likewise DP, DDP threshold will be reevaluated at each reception and

dissemination will be fixed (lines 9-13).

Figure 5.3, shows that even if coverage is increased by almost 10%,

DPP is not capable of reaching full coverage and its delay is quite worse

compared to DP delay. Despite this, its coverage is slightly better and

the overhead is acceptable, so it may be worth.

5.3 Comparison with common algorithms

This section will concern practical tests, comparisons and

evaluations.

Figure 5.5 compares the coverage and the overhead of DP, DDP, FP

and CB; many things are notable:

 DP does not show striking results, compared to other algorithms,

in particular it tends to emulate FP, without granting the complete

coverage of the latter;

 DDP instead, is slightly better than FP and can reach a coverage

above 95%, but still cannot grant 100%;

 CB, even if it is worse than all the other algorithms, tends to

approximate FP when both are about to reach 100% coverage.

That is because FP with a high probability tends to have the

behavior of a broadcast dissemination.

25

Figure 5.6 compares delay and coverage of DP, DDP, FP and CB.

 DP performs even worse than CB, offering the slowest

dissemination;

 FP has the quickest dissemination;

 DDP seems to act very similarly to FP, despite having worse

results.

This first evaluation has shown unsatisfying results: neither DP nor

DDP are currently capable of reaching full dissemination, but since the

latter has reached an acceptable overhead for an almost acceptable

dissemination, algorithms will be analyzed separately.

DP high delay is the result of a slow and highly selective

dissemination in later rounds; its efficiency fades when the algorithm is

at its ending, likely because it reaches a probability too low to satisfy all

unconscious nodes left and those who are informed suffers a long wait.

My first thought was that the probability was getting reduced too

much at each hop, but many tests trying to slow its reduction or keep a

higher dissemination in later rounds have not shown better results.

These tests led to the conclusion that even if DP definitely needs

improvements, these improvements cannot be given by values

adjustments but only changing the DP behavior, or maybe introducing

functionalities to manage more efficiently the dissemination, keeping a

good level until later rounds.

DDP values showed in figure 5.5 require a closer look since it is

pretty hard to notice its difference from FP. Figure 5.6 consider a

smaller section to better clarify the results; and as it is shown, DDP

performs slightly better than FP even if can cover narrower values.

Despite its not impressive results for what concerns overhead, its delay

26

is clearly lower (figure 5.7) for the same coverage values, but it is higher

for a higher coverage. Those results have been given by the capacity of

the algorithm to maintain an appropriate amount of nodes active during

the dissemination. That deficiency of DP is a problem that does not

afflict CB and FP since their static dissemination allows a constant

spreading of the information and has been partially resolved by DDP.

27

Figure 5.1: Descending Probability: coverage and overhead

60

65

70

75

80

85

90

95

100

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

C
o

ve
ra

ge
 (

%
)

Overhead

Descending Probability:
Coverage and Overhead

28

 Figure 5.2: Descending Probability: delay and coverage

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

60 65 70 75 80 85 90 95 100

D
e

la
y

Coverage (%)

Descending Probability:
Delay and Coverage

29

Figure 5.3: Double Descending Probability: coverage and overhead

60

65

70

75

80

85

90

95

100

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

C
o

ve
ra

ge
 (

%
)

Overhead

Double Descending Probability:
Coverage and Overhead

30

Figure 5.4: Double Descending Probability: delay and coverage

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

60 65 70 75 80 85 90 95 100

D
e

la
y

Coverage (%)

Double Descending Probability:
Delay and Coverage

31

Figure 5.5: DP, DDP, FP, CB: coverage and overhead

60

65

70

75

80

85

90

95

100

0.5 1 1.5 2 2.5 3

C
o

ve
ra

ge
 (

%
)

Overhead

DP, DDP, FP, CB:
Coverage and Overhead

Desc Probability Double Desc Probability Fixed Probability Conditional Broadcast

32

Figure 5.6: DDP, FP, CB: coverage and overhead, close

86

88

90

92

94

96

1.6 1.7 1.8 1.9 2 2.1 2.2 2.3

C
o

ve
ra

ge
 (

%
)

Overhead

DP, DDP, CB, FP:
Coverage and Overhead, closer

Double Desc Probability Desc Probability Fixed Probability Conditional Broadcast

33

Figure 5.7: DP, DDP, FP, CB: delay and coverage

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

60 65 70 75 80 85 90 95 100

D
e

la
y

Coverage (%)

DP, DDP, FP, CB:
Delay and Coverage

Desc Probability Double Desc Probability Fixed Probability Conditional Broadcast

34

35

Chapter 6

Advanced functionalities

Previous simulations have not shown the expected results, anyway a

refinement of DP and DDP with the implementation of more functionalities

may improve their performance. First it is important to analyze what is

wrong with their behavior and what the desired result is. Both DP and DDP

cannot reach 100% dissemination, so a mechanism to reach it is necessary,

possibly without upsetting the whole algorithm; in addition, their overhead

and delay are still too high. Unfortunately, the reasons of their failure are

not so easy to interpret: it is not possible to easily know why the algorithm

is causing overhead, for example the first part of the dissemination might

involve a limited number of nodes who are not sufficient to spread the

information to different sections from their own, or the algorithm may have

higher dissemination probability that causes redundancy in some part of the

dissemination.

FP and CB are capable of reaching high dissemination when their

probability strongly increases, approximating a flooding protocol. Since DP

and DDP are both derived from FP and CB, increasing their dissemination

probability would give the same results.

Even if DP was meant to reduce global overhead, progressively

decreasing its probability during the dissemination seems to exceed its

36

purpose, as explained above. This consideration led to the conclusion that a

mechanism which acts oppositely to descending probability may solve or at

least soften the problem.

6.1 Conditional incrementing broadcast

The Conditional Incrementing Broadcast (CIB) is one of the tested

mechanisms which shows the best results. DP has been slightly

modified to include this functionality, as the pseudo-code below shows.

 Algorithm 7: DP + CIB (DPCIB)

 1: procedure OnUpdate (s)

 2: if TTL > 1 then

 3: TTL = TTL – 1

 4: threshold = random(0, TTL)

 5: if (threshold < 1) then

 6: for all n ∈ neighbors loop

 7: if n ≠ s then

 8: send update to p

 9: end if

10: end loop

11: else

12: threshold = constant * (TTL + 1)

13: for all n ∈ neighbors loop

14: if random() ≤ threshold and n ≠ s then

15: send update to p

16: end if

17: end loop

18: end if

19: end if

20: end procedure

37

TTL is checked (line 2) and decreased (line 3) as usual, but threshold is

used for two random evaluations (lines 4 and 12), in particular, lines 4-

11 implement CIB: a random number between 0 and TTL (both

included) will be generated (line 4), and if this value is lower than 1

(line 5) this node will broadcast to all its neighbor (lines 6-10) instead of

using fixed dissemination (lines 11-18). With this modification, the

message will have 1/TTL chances to be broadcast; probability is 1/8 the

first hop, up to 100% when the TTL is 0. This behavior can be changed

adding to the TTL a fixed value, for example adding 1 will result in a

1/2 broadcast probability when TTL is 0. Different cases have been

evaluated but, due to the reduced number of messages that continue

their travel through the graph, omitting the value does not seem to rely

on the overall performance, on the contrary it provides a better

coverage.

Figure 6.1 compares DP coverage and overhead with its advanced

version: DPCIB. The latter algorithm seems to continue the behavior of

its original version, with a better coverage for the same overhead,

reaching over 95% graph coverage. Including CIB seems to have soften

DP deficiencies, and despite not being able to solve them completely, it

still improved algorithm performances.

Figure 6.2 compares DPCIB and DP coverage and delay. DPCIB

behavior may confuse, because its values are much more concentrated

than DP, and the delay seems to drop down quickly, but their density is

just given by the higher proximity among coverage values of the

algorithm. In fact, DPCIB has much higher delay for the same coverage,

but reduces it quickly when its coverage increases.

38

DDP has been modified to include CIB but, since it can be considered

the result of two DP algorithms applied two different parts of the

dissemination, CIB probability will be proportionated to DDP

probability.

 Algorithm 8: DDP + CIB (DDPCIB)

 1: procedure OnUpdate (s)

 2: if TTL > 1 then

 3: TTL = TTL – 1

 4: if TTL ≥ 4 then

 5: threshold = random(0, TTL)

 6: else

 7: threshold = random(0, TTL + 4)

 8: end if

 9: if (threshold < 1) then

10: for all n ∈ neighbors loop

11: if n ≠ s then

12: send update to p

13: end if

14: end loop

15: else

16: if TTL ≥ 4 then

17: threshold = constant * (TTL + 1)

18: else

19: threshold = constant * (TTL + 5)

20: end if

21: for all n ∈ neighbors loop

22: if random() ≤ threshold and n ≠ s then

23: send update to p

24: end if

25: end loop

26: end if

27: end if

28: end procedure

39

Line 4 checks if the dissemination is in the first or second half, then

adapts the threshold (lines 5 and 7). The rest of the code does not vary

from previous examples.

Figure 6.3 compares DPPCIB coverage and overhead with its

previous version. This algorithm’s results make it appear as an extension

of DPP, but unlike DPCIB, it does not seem to provide notable

improvements except a couple of points of coverage, that is slightly

above 97% in the best case. These results could have been expected

considering that CIB is a functionality meant to increase the

dissemination when the probability is getting too low, proportionating

the chances to broadcast disproportionally to the dissemination

probability, and since DDP characteristic is to restore initial values in

the middle of the algorithm, round 5 will be equal to round 1, round 6 to

2, and so on. Thus instead of having a broadcast probability from 1/8 to

1/1, it will be 1/8-1/4 for the first half and 1/8-1/4 for the second half.

Although it could have been implemented without considering the

probability, keeping this probability from 1/8 to 1/1 just like DPCIB,

simulations have shown negative effects on the algorithm, causing more

overhead without increasing the coverage, likely because of an

excessive dissemination in later rounds. Another possibility is that DDP

performs well enough in its later rounds that the presence of CIB is

almost unnoticed.

As figure 6.4 shows, while the relation between overhead and

dissemination has remained the same, CIB has reduced the delay of the

algorithm.

40

6.2 Final observations

As conclusion to this chapter, the two algorithms explained in the

previous section have been compared to FP and CB. Again, figure 6.5

does not clarify enough differences between FP, DPCIB and DDPCIB,

but certainly it gives the idea of how limited the range of new

algorithms is confronted to canonicals.

DPCIB performs better than FP when the coverage is between 89 and

94 (figure 6.6), but then it is overturned when reaching its higher

coverage. Its delay (figure 6.7) is considerably lower for the coverage

that DPCIB can cover; unfortunately FP reduces its delay even more

when the coverage increases, nullifying DPCIB initial good results.

As figure 6.6 shows, DDPCIB performances are slightly above FP,

for all its range, between 89 and 98, since for the same coverage the

overhead of FP is higher. The problem of the coverage is not yet

resolved and is not mitigated by a lower delay (figure 6.7), because

despite it offers a lower delay for the same coverage, the increase of the

coverage of FP corresponds to a reduction of the delay.

41

Figure 6.1: DP, DP + CIB: coverage and overhead-

60

65

70

75

80

85

90

95

100

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

C
o

ve
ra

ge
 (

%
)

Overhead

DP, DPCIB:
Coverage and Overhead

Desc Probability DP + CIB

42

Figure 6.2: DP, DP + CIB: delay and coverage

3.4

3.6

3.8

4

4.2

60 65 70 75 80 85 90 95 100

D
e

la
y

Coverage (%)

DP, DPCIB:
Delay and Coverage

Desc Probability DP + CIB

43

Figure 6.3: DDP, DDP + CIB: coverage and overhead

60

65

70

75

80

85

90

95

100

1.2 1.4 1.6 1.8 2 2.2 2.4 2.6

C
o

ve
ra

ge
 (

%
)

Overhead

DDP, DDPCIB:
Coverage and Overhead

Double Desc Probability DDP + CIB

44

Figure 6.4: DDP, DDP + CIB: delay and coverage

3.4

3.6

3.8

4

4.2

60 65 70 75 80 85 90 95 100

D
e

la
y

Coverage (%)

DDP, DDPCIB:
Delay and Coverage

Double Desc Probability DDP + CIB

45

 Figure 6.5: DP + CIB, DDP + CIB, FP, CB: coverage and overhead

60

65

70

75

80

85

90

95

100

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

C
o

ve
ra

ge
 (

%
)

Overhead

DPCIB, DDPCIB, CB, FP:
Coverage and Overhead

DDP + CIB DP + CIB Fixed Probability Conditional Broadcast

46

Figure 6.6: DP + CIB, DDP + CIB, FP, CB: coverage and overhead, closer

89

90

91

92

93

94

95

96

97

98

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

C
o

ve
ra

ge
 (

%
)

Overhead

DPCIB, DDPCIB, CB, FP:
Coverage and Overhead, closer

DDP + CIB DP + CIB Fixed Probability Conditional Broadcast

47

 Figure 6.7: DP + CIB, DDP + CIB, FP, CB: delay and coverage

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

60 65 70 75 80 85 90 95 100

D
e

la
y

Coverage (%)

DPCIB, DDPCIB, CB, FP:
Delay and Coverage

DP + CIB DDP + CIB Fixed Probability Conditional Broadcast

48

49

Chapter 7

Conclusions

In this thesis, we have considered practical and theoretical evaluations

about gossip-epidemic algorithms, comparing them with proposed

algorithms and analyzing their behavior. Unfortunately, results are not

impressive because, as widely explained above, even though their overhead

and delay are lower for certain coverage values they cannot grant full

coverage. The incapacity of all proposed algorithms to reach full coverage

is a notable gap that excludes them from a wide number of scenarios where

leaving part of the network uninformed is not acceptable; this aspect is

more negative than what may appear because is the result of the failure of

algorithms to adapt themselves to different scenarios.

Despite unsatisfying results, this thesis has focused on studying these

results regardless their success to better understand reason of their success

or, in this case, their failure hoping to contribute to the study of other

algorithms with ideals and qualities to emulate and defects to avoid.

In addition, literature algorithms have been explained and treated at a

high level to better allow a clear understanding of their ideals and

functionalities even for those who approach this topic for the first time.

Another important aspect observed is the huge distance between the

expected results of an idea and its effective implementation and its strong

50

dynamicity; indeed DP was not originally meant to operate as it has been

explained, but has been adapted before and during the writing of this thesis

to refine its behavior to better fit the studied scenario to finally be evolved

in DDP, while CIB was originally part of a more complex algorithm

discarded after the implementation phase.

Efficient data dissemination is an interesting field of research due to its

wide application to different sectors and to the increasing interest of

companies to improve their services with the minimum effort.

In particular, last years have seen a crescent interest for mobile networks

since nowadays a high percentage of population has an electronic device

capable of interface itself with others thanks to various applications. These

networks are highly dynamic and since they follow human behaviors they

can be interpreted with the aid of sciences like sociology or psychology to

better adapt the algorithm to the current scenario.

These years have been full of changes and technology’s evolution seems

to proceed at high speed, offering solutions to unresolved problems and

improving performances. Gossip-epidemic algorithms have the appreciable

characteristic to adapt themselves to ambits where much in required but

few information are available and their characteristics seems to fit perfectly

the current technology scenario. Indeed, in computer science everything

comes to a price, and gossip algorithms are no exception; in fact, they offer

high flexibility, simplicity, robustness and efficiency, but their simplicity

often hides an intense and accurate study which is not always rewarded

with satisfactory results.

For all these reasons, I think that gossip-epidemic algorithms have the

potential to maintain a significant role for the coming years.

51

7.1 Future works

Test and evaluations has been conducted using static graphs, with

nodes immune to failure or packet losses. Even if a network with a

stable topology for the current technology is possible to obtain, gossip

algorithms have raised interest for their notable results in highly

dynamic networks, thus studying algorithms behavior in a real or pseudo

real scenario is much more interesting. This has the notable drawback to

require a deep knowledge of the application context, or at least the

behavior. In fact, different ambits may have different characteristics for

what concerns nodes failures: P2P networks are highly dynamic, but

peer are much more likely to leave once they have completed the

download or soon after, while nodes’ failures in a sensor networks could

be simulated statistically estimating their living time or the probability

to have power loss. I think that would be interesting studying gossip

algorithms applied to a specific ambit, possibly in a pseudo real scenario

like a cluster or a small network.

7.2 Acknowledgements

I would like to thank my parents for giving me the opportunity to

study one of the few fields that really fascinates me and all members of

my family for supporting me during my school and university career.

Thanks also to my friends and whoever are part of my everyday life

despite my nature not always easy to deal with.

Last but not least I would like to thank my teacher and supervisor

Gabriele D’Angelo for giving me the possibility to write this thesis and

for his constant support, availability and scrupulosity.

52

53

Bibliography

[1] Tuncer C. Aysal, Mehmet E. Yildiz, and Anna Scaglione. Broadcast

gossip algorithms, Information Theory Workshop, 2008, pages 343 – 347.

[2] Devavrat Shah. Network gossip algorithms. Acoustics, Speech and

Signal Processing, 2009. ICASSP 2009. IEEE International Conference on,

pages 3673 – 3676.

[3] James F. Kurose, Keith W. Ross. Computer Networking: A Top-Down

Approach 6
th

 edition, Prentice Hall, 2012.

[4] Walid Ben-Ameur, Pascal Bianchi Jeremie Jakubowicz. Robust Average

Consensus using Total Variation Gossip Algorithm, 2012 6
th
 International

ICST Conference on Performance Evaluation Methodologies and Tools

(VALUETOOLS), pages 99 – 106.

[5] Bogdan Ghit, Florin Pop, Valentin Cristea. Epidemic-Style Global Load

Monitoring in Large-Scale Overlay Networks, 2010 International

Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pages

393 – 398.

[6] Rico Piantoni, Constantin Stancescu. Implementing the Swiss Exchange

Trading System. Fault-Tolerant Computing, 1997. FTCS – 27. Digest of

Papers., Twemty-Senventh Annual International Symposium onn. Pages

309 – 313.

[7] D. Shah. Gossip algorithms, vol. 3 of Foundations and Trends in

Networking, Now Publishers Inc., 2009.

[8] Isabelle Demeure, Ruijing Hu, Julien Sopena, Luciana Arantes, Pierre

Sens. Fair Comparison of Gossip Algorithms over Large-Scale Random

Topologies, 2012 31st International Symposium on Reliable Distributed

Systems, pages 331 – 340.

54

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, McGraw-Hill.

Introduction to Algorithms, 3
rd

 edition, The MIT Press, 2009.

[10] Márk Jelasity. Gossip. Self-organising software, 2011. Pages 139 –

162.

[11] Ali Saidi, Mojdeh Mohtashemi. Minimum-Cost First-Push-Then-Pull

Gossip Algorithm, 2012 IEEE Wireless Communications and Networking

Conference: Mobile and Wireless Networks, pages 2554 – 2559.

[12] http://pads.cs.unibo.it/doku.php?id=

[13] Luciano Bononi, Michele Bracuto, Gabriele D’Angelo, Lorenzo

Donatiello. Scalable and efficient parallel and distributed simulation of

complex, dynamic and mobile systems. Techniques, Methodologies and

Tools for Performance Evaluation of Complex Systems, 2005. (FIRB - Perf

2005). 2005 Workshop on, pages 136 – 145.

[14] IEEE Computer Society. 1516 – 2000 – IEEE Standard for Modeling

and Simulation (M&S) High Level Architecture (HLA) – Framework and

Rules.

[15] Gabriele D'Angelo, Stefano Ferretti. LUNES: Agent-based Simulation

of P2P Systems. Proceedings of the International Workshop on Modeling

and Simulation of Peer-to-Peer Architectures and Systems (MOSPAS

2011). Istanbul (Turkey), IEEE, July 2011. ISBN 978-1-61284-382-7.

[16] Gabriele D’Angelo, Stefano Ferretti, Moreno Marzolla. Adaptive event

dissemination for peer-to-peer multiplayer online games. Proceedings of

2nd ICST/CREATE-NET Workshop on DIstributed SImulation and

Online gaming (DISIO 2011). In conjunction with SIMUTools 2011.

Barcelona, Spain, March 2011. ISBN 978-1-936968-00-8.

