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Prefazione 
 

La continua espansione di internet e dei dispositive elettronici utilizzati 

ha sollevato la necessità di adottare sistemi di diffusione dell’informazioni 

diversi dal classico paradigma client-server, in favore del paradigma peer-

to-peer, che negli ultimi anni ha suscitato notevole interesse anche grazie a 

software di successo quali Napster, Torrent, Skype e molti altri, che hanno 

contribuito a cambiare le regole della diffusione delle informazioni. In 

particolare, questa tesi tratta lo studio di algoritmi per diffusione di 

informazioni tra un gruppo di agenti caratterizzati da risorse limitate, come 

una rete di sensori o una di router che necessitino di scambiare 

informazioni di controllo o di routing. 

In particolare, in questa tesi è analizzata una famiglia di algoritmi detta 

Gossip; questi algoritmi sono stati ispirati dal modo in cui un’informazione, 

quale ad esempio un pettegolezzo, si diffonde tra la popolazione. Questa 

famiglia di protocolli, che cerca di ridurre i messaggi inviati sfruttando una 

logica generalmente probabilistica, ha dimostrato robustezza, flessibilità, 

semplicità e efficienza, suscitando un notevole interesse tra i ricercatori. 

A seguito di una iniziale introduzione, costituita dall’analisi dei 

protocolli conosciuti in letteratura, viene poi preso spunto per la creazione 

di nuovi algoritmi per la diffusione di informazioni. Le sezioni successive 

tratteranno l’analisi e il confronto dei nuovi protocolli implementati con 

quelli noti in letteratura, da cui verranno tratte le conclusioni in merito.
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Chapter 1 

Introduction 

The continuous expansion of Internet and electronic devices has led to a 

diversification of methodologies to spread information, and after the 

success of peer to peer protocols as alternative to client-server, many 

algorithms have been studied and evolved, like Torrent, Skype and Napster, 

becoming quickly a landmark for new protocols. Some are proprietary, 

others are open source, but they all have something in common: spreading 

information efficiently. 

     Making nodes reach a state of agreement is a fundamental problem in 

decentralized networked systems [1], mostly for what concerns sensor 

networks, peer-to-peer (P2P) networks, mobile networks of vehicles and 

social networks. Those structures strongly differs from the telephone 

network or the Internet, not only because they are not engineered to provide 

efficient communication between various entities, but also because they 

lack infrastructures, exhibit unpredictable dynamics and face stringent 

resource constraints [2].  Their communication is often intense but light 

between an unknown number of nodes, where each one only knows its 

neighbors and has no idea of the topology that may change too frequently 

to relay on common algorithms like Routing Information Protocol (RIP) 

and Open Shortest Path First (OPSF) [3]; however, they still require 
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algorithms for communication or merely spreading information. The 

unpredictability behavior of those networks combined with their limited 

resources have excluded client-server approach. Although it is true that the 

latter paradigm is capable of spreading information efficiently with an 

appropriate amount of resources, the variable number of nodes in the 

network would lead to allocate excesses resources without the guarantee of 

an acceptable scalability. For the reasons listed above, client-server has 

been sidelined in favor of P2P, which is much more suitable to operate with 

limited resources in strongly dynamic networks due to its decentralized 

nature and also because it transforms clients into peers, which does not only 

consume resources to obtain information they need, but also contributes 

actively with their own resources to the spreading. 

     Many different families of protocols have been studied and amongst all 

the interest has raised for gossip algorithms that have been subject of 

intense research [4]. In particular, Gossip-Epidemic algorithms have shown 

robustness, flexibility, simplicity and efficiency in spreading information 

[5], making them particularly appropriate. Due to their probabilistic nature 

Gossip-Epidemic algorithms lack reliability: this requires expensive 

mechanisms to be implemented and give the possibility to detect missing 

messages and initiate retransmission, and causes the algorithm not to scale 

over a couple of hundred processes [6].  

     Many different algorithms have been proposed, unfortunately none of 

them has shown satisfying results, leaving the debate still open; this is due 

to the fact that those algorithms are capable of making nodes reach a state 

of agreement but their efficiency is not satisfying enough.  

     We are looking for an algorithm capable of spreading information on a 

network of unknown topology. It should have the highest coverage and the 

lowest overhead and delay possible. Appreciable characteristics include 
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topology independence, scalability, adaptability and fault tolerance. Even 

though an algorithm studied for a specific network may grant better results, 

topology independence and adaptability are necessary to provide a generic 

algorithm capable of spreading information in different scenarios. A 

possible approach to achieve independence is to avoid considering nodes 

position in the graph, as explained in following sections. 
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Chapter 2 

Gossip algorithms  

Gossip algorithms [7], as the name suggests, are built upon a gossip or 

rumor style and offer many different methods to archive agreement in a 

group of dynamic agents. They are the evolution of the trivial but 

inefficient pure flooding protocol, where every node simply forwards every 

message received to all its neighbors. This solution will lead to broadcast 

storm problem [8]. Gossip algorithms differs from flooding because after 

each reception the node evaluates, usually with a probabilistic threshold, if 

forward the message or not. The introduction of random events is a solution 

adopted by other protocols, as quicksort and many other algorithms do [9], 

not only because the application context is not always predictable, but also 

because the random events tend to balance.  A notable approach to gossip 

inspired by the behavior of a spreading disease in epidemiology are 

epidemic protocols. These protocols set a dynamic state for each node, 

depending on its current knowledge of a specific message:  

 

 Susceptible (S): the node is not aware of the message; 

 Infected (I): the node knows the existence of the message and it is 

currently spreading the information. 
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 Removed (R): the node is aware of the existence of the message but 

is not contributing to its spreading.  

 

The two different models created [10] using these conditions will be briefly 

explained below. 

 

2.1 SI 

In the SI model, only two states are used, indeed a node can only be 

Infected or Susceptible, but once infected the node cannot vary its state 

anymore. 

 

Algorithm 1: SI gossip  

   

  1:  loop 

  2:     wait(∆) 

  3:     p ← random peer 

  4:     if push and in state I then 

  5:        send update to p 

  6:     end if 

  7:     if pull then 

  8:        send update-request to p 

       9:     end if 

10: end loop 

 

11: procedure OnUpdate(m) 

12:    store m.update 

13: end procedure 

14: 

15: procedure OnUpdateRequest(m) 

16:    if in state I then 

17:        send update to m.sender 

18:    end if 

19: end procedure 

 

 

The code is composed by a running thread (lines 1 – 10) executed 

every ∆ time units. In every iteration a random peer is chosen and, 

depending on the current configuration, the algorithm may be push, pull 

or push-pull, acting consequently. When an update is received, the 

message is stored and the node changes its state to Infected (line 12).   

If a neighbor has requested an update and if the current state is Infected 

(line 16), an update is sent (line 17).  
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In case of push algorithms, infected nodes actively spread 

information, while susceptible nodes are passive. On the contrary, in the 

in push-pull all nodes are always active. 

 

2.2 SIR 

SI model has no termination condition; to achieve it, a third state has 

been implemented: Removed.  

 

     Algorithm 2: SIR gossip  

   

  1: loop 

  2:    wait(∆) 

  3:    p ← random peer 

  4:    if push and in state I then 

  5:       send update to p 

  6:    end if 

  7:    if pull then 

  8:       send update-request to p 

       9:    end if 

10: end loop 

11:  

12: procedure OnFeedBack (m) 

13:    switch to R with prob. 1/k 

14: end procedure 

 

15: procedure OnUpdate(m) 

16:     if in state I or R then 

17:        send feedback to m.sender 

18:     else 

19:         store m.update 

20:     end if  

21: end procedure 

22:  

23: procedure OnUpdateRequest(m) 

24:    if in state I then 

25:       send update to m.sender 

26:    end if 

27: end procedure 

 

 

The protocol differs from SI for few but important lines. At the first 

reception the node switch state to Infected (line 19): from now on, any 

new message will trigger a feedback to the sender (line 17). When a 

node receives a feedback has 1/k probability to switch to Removed state 

(line 13). Once in Removed state, the node will not answer to update 
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requests (line 24) but will continue to send feedbacks. The SIR gossip is 

strongly influenced by the value k. 

 

2.3 Push 

The base idea behind push algorithm is that anytime a node has a 

new piece of information, it forwards to some or all its neighbors, who 

continue to forward the message if the forwarding condition is satisfied, 

otherwise the message is dropped. A termination condition is used to 

prevent the message travelling forever in the network, which may cause 

higher overhead. Usually the termination condition is the Time-To-Live 

(TTL) of the message, which is decreased at each hop, but nodes can 

also be programmed to drop messages that have already been received. 

In a push protocol, when the first message is created, only the node who 

generated it know about its existence, so the probability to forward it to 

nodes that still have to receive it is higher at the beginning, but every 

time it is forwarded, chances to reach an unconscious node decrease at 

each hop through the network.  

 

2.4 Pull 

Pull protocols have the opposite approach: after a given time, the 

node asks some or all its neighbors if new information is available, and 

if the answer is positive, the node will be informed. In contraposition 

with push protocols, pull tends to be more efficient in later rounds [11], 

while the chances to find information in the beginning are much lower.  
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2.5 Hybrid 

For the reasons explained above, some protocols try to mix push and 

pull [11], aiming to collect the advantages of both and avoiding their 

disadvantages. Unfortunately, this family of protocols tends to be more 

complex not only because their efficiency is based upon the correct time 

when switch from push to pull, but they also require nodes to be aware 

of which messages they have already received. This is not a simple 

problem, because it requires memory for the node to store the identifier 

(ID) of each message, which leads to another problem: knowing when to 

remove an ID from the cache; the complexity is not given only by the 

correct timing to remove a given message, but also by the unpredictable 

number of nodes of the graph in a real scenario and their possible 

dynamicity, hardly emulated in a simulation. 

 

 

 

 

 

 



10 

 

 

 

 

  



11 

 

 
 

 

 

 

Chapter 3 

Simulation environment  

The probabilistic nature and the high number of nodes involved in this 

algorithm do not allow an accurate evaluation and proper adjustment before 

the effective deploy. As the effective ambit of application of the protocol is 

not predictable, it is necessary to test in a pseudo-realistic scenario. For this 

thesis, simulations have been executed using a simulation environment 

created by Parallel and Distributed Simulation Research Group [12] 

(Department of Computer Science, Università di Bologna); then the results 

have been compared to known algorithms. The core simulation 

environment is Advanced RTI System (ARTÌS) [13], a parallel and 

distributed simulation middleware, inspired by the High Level Architecture 

standard [14]. ARTÌS has been integrated with the Generic Adaptive 

Interaction Architecture (GAIA), a framework responsible of migrating 

simulation elements in the distributed environment to improve 

performances. On the top of this architecture, Large Unstructured NEtwork 

Simulator (LUNES) [15] uses services provided by ARTÌS and GAIA to 

simulate complex protocols on top of a network graph. Unfortunately, it is 

not possible to simulate every single aspect of a real scenario because the 

number of nodes, the width or diameter of the graph, which is the largest 

number of vertices which must be traversed to trover from one vertex to 
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another, and the number of edges might vary. Moreover it is not possible to 

assume a static network and it is not even realistic a graph where all nodes 

are homogeneous, with equal bandwidth and no nodes failure or packet 

loss. To soften the distance between a simulation and a real scenario, 

following tests and evaluations have been executed using the same stable 

graphs, with no losses and homogeneous nodes. In particular, one hundred 

graphs has been randomly generated by LUNES and each graph is 

composed of one hundred nodes, two hundred edges with a diameter of 

eight nodes.  

The width of the graph is a fundamental information for the simulation 

since the Time To Live (TTL), an integer value which is decreased each 

hop through the graph and causes the message to be discarded when 

reaches 0, will be equal to the diameter of the graph.  

LUNES also provides an important function: message caching. Since 

each message will have a unique identifier, the system will be capable of 

recognizing already received messages simply storing its ID. The default 

implementation drops messages already received, but different 

implementations may change its behavior.   

Each simulation will return: 

 

 Number of nodes of each graph; 

 Average coverage; 

 Average delay; 

 Average number of messages sent in each dissemination; 

 Overhead ratio of the dissemination.  

 

The first and the fourth values are self-explicative, the second represents 

the percentage of nodes that have been reached by the information, the third 

the delay of the message since its first sending and the fifth is given by the 
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ratio between the number of messages sent during the dissemination and 

the minimum number of messages necessary to obtain a complete coverage 

[16].  

Among those values, overhead and coverage are the most interesting, 

since they give an idea of how efficient the algorithm is, but the delay is 

also notable because it shows how quickly the information is propagated 

through the graph.  

Before proceeding, some clarifications are needed about the following 

figures. Data represented in the figures are the average of 100 run for every 

algorithm repeated on the same 100 graphs, with 100 nodes and 200 edges. 

Each algorithm’s result is represented using two figures (e.g. 5.1 and 5.2) 

that focus respectively on the overhead and the delay referring to the same 

coverage. 
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Chapter 4 

Analyzed gossip algorithms 

In this section, two algorithms will be analyzed: Fixed Probability (FP) 

and Conditional Broadcast (CB).  Both protocols are already built in 

LUNES and will be used as comparison for new algorithms in the 

following sections. Despite many other algorithms have been implemented 

in LUNES, those two have been chosen as metric not only because they 

represent a base gossip approach to the problem but also proposed 

algorithms have been inspired by CB and FP behaviors, merging their 

characteristics and aiming to soften their weakness. 

Both algorithms belong to push family, as all the other protocols treated 

in this thesis. The next two paragraphs will briefly explain the functioning 

of CB and FP with the aid of pseudo-code. As stated above, LUNES 

provides caching for messages and drops those who have already been 

received, so following implementations will only consider the case where 

the message has not been received yet, since the caching system is 

transparent for the algorithm. Even if FP and CB do not directly use states, 

their capacity to recognize new from already received messages, due to 

caching, implicitly render their behavior dynamic and differs from message 

to message. 
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4.1 Conditional Broadcast (CB) 

The Conditional Broadcast (CB) is a simple algorithm where 

messages are sent to all neighbors if the dissemination condition is met. 

In particular, after the reception of a new message, the node generates a 

random number between 0 and 1 and, if this number is equal or below 

the broadcast probability, the node forwards the message to all 

neighbors, otherwise it does nothing. The protocol has been improved 

removing the node that generated the message and the sender from the 

broadcast. All the following algorithms include this feature.  

 

     Algorithm 3: CB gossip  

   

  1:  procedure OnUpdate (s)  

  2:     if TTL > 1 then 

  3:         TTL = TTL - 1 

  4:         if random() ≤ threshold then 

  5:             for all n ∈ neighbors loop 

  6:                 if n ≠ s then 

  7:                     send update to p 

  8:                 end if 

  9:             end loop 

 10:         end if 

 11:     end if 

 12: end procedure 

 

 

 

            

 

TTL is used as termination condition; if the check fails (line 2), the 

message will be dropped, otherwise it will be forwarded to all neighbors 

provided that the random value is below or equal the threshold (line 4). 

The node excludes itself and the node who generated the message from 

the broadcast (line 6). 
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4.2 Fixed Probability (FP) 

The Fixed Probability (FP) algorithm differs from CB because the 

probability is evaluated for each neighbor independently. That choice is 

the first attempt to better disseminate the information through the graph. 

 

     Algorithm 4: FP gossip  

   

  1:  procedure OnUpdate (s)  

  2:     if TTL > 1 then 

  3:         TTL = TTL - 1 

  4:         for all n ∈ neighbors loop 

  5:             if random() ≤ threshold and n ≠ s then 

  7:                 send update to p 

  8:             end if 

  9:         end loop 

 10:     end if 

 11: end procedure 

 

 

 

            

 

TTL is used as termination condition; if the check fails (line 2), the 

message will be dropped, otherwise it will be forwarded to all neighbors 

provided that the random value is below or equal the threshold (line 4). 

The node excludes itself and the node who generated the message from 

the broadcast (line 6).  
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Chapter 5 

Proposed algorithms 

Analyzing previous protocols it is noticeable that they are static, since 

the dissemination probability remains the same for the whole algorithm. 

This is not a good thing because, as explained in previous sections, push 

algorithms tends to be efficient in early rounds but may cause much 

overhead later due to a lower probability to reach an unconscious node 

every hop through the network. That leads to the conclusion that the 

algorithm should try to adapt during the dissemination to avoid infecting 

again the same nodes. This is not a trivial problem, because due to the 

random and simple nature of Gossip algorithms, nodes are not aware of the 

current situation, thus a high probability may lead to loops through the 

graph while a low probability will leave a high number of nodes 

unconscious.  

Ideally, if nodes were somehow able to know how the dissemination is 

going, they would be able to correct their behavior due to the current 

situation. Unfortunately, the decentralized nature of Gossip, and more in 

general of P2P algorithms, does not allow nodes to be conscious of what is 

happening to others and anyone of them has a global view of the graph. The 

only way to increase nodes awareness of the dissemination is to increase 

their communication, which is exactly what we are trying to avoid.  
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5.1 Descending Probability (DP) 

A possible approach to the problem consists in lowering the 

probability proportionally to the time elapsed since the message has 

begun its journey through the network. This relies on the idea that the 

longer a message has travelled, the higher is the number of nodes 

already informed, so a slowdown would reduce global overhead without 

compromising too heavily dissemination.  

To obtain that behavior, different mechanisms are available: 

 

 Starting the dissemination with a fixed initial value, then 

reducing it by a constant at each hop; 

 Creating a disproportional relation between the time spent by 

the message in the graph and the dissemination probability; 

 Assigning to every TTL a different probability, not necessary 

related or different from previous or subsequent values. 

 

The last option is pretty easy to implement, since 8 values could be 

saved into a vector, where at each position corresponds the TTL. Even if 

this method gives more control for values at each step, it would cause 

too much effort to study which value would be the best for each 

position, since combinations are in the order of 100
8
 possible 

combination and may lead to a completely different algorithm. 

The first mechanism has the appreciable characteristic to require only 

two values: the initial and the decrementing one; unfortunately, just like 

the third mechanism, it has a very high number of combinations but has 

also the drawback of a static value for the whole dissemination. 

I think that it would be more interesting to have a full control of the 

dissemination instead of a partial one. 
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The second mechanism is the one which has been chosen for DP, not 

only because it allows a harmonious and proportional decrease for the 

probability, but also because it has a reduced pool of possible values and 

only requires a value that will be proportionated to the time spent by the 

information through the graph simply multiplying it for the TTL. 

Adopting the last one as meter for the age of the message and creating a 

proportional relation between it and the probability, an easier 

implementation is obtained, since that value is already present and 

managed in LUNES and nodes are already aware of its existence. Each 

node only needs to read the TTL of the received message and obtain the 

current dissemination probability simply multiplying a constant for the 

TTL. Of course, the node who generated the message will spread it to all 

its neighbor, since none of them has been informed, so the algorithm 

will start its evaluation after the first hop. DP algorithm is meant to 

obtain the dissemination probability as the result of the multiplication 

between a constant and the TTL, but since the TTL value is decreased 

immediately after reception, to prevent the constant to be multiplied for 

zero and provide a better dissemination, the value used for this 

multiplication will be equal to the TTL + 1, resulting in a range between 

1 and 8 due to the initial value. This gives a range for the constant as 

well, which can be between 1 and 12. Dissemination behavior is similar 

to FP because each neighbor is evaluated independently.  

Note that the algorithm uses indirectly the caching system provided 

by LUNES, that simply drops messages already received, which is 

transparent for the algorithm, thus the implementation will not consider 

the reception of an already received message. 
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     Algorithm 5: DP gossip  

 

  1:  procedure OnUpdate (s)  

  2:     if TTL > 1 then 

  3:         TTL = TTL – 1 

  4:         threshold  = constant * (TTL + 1) 

  5:         for all n ∈ neighbors loop 

  6:             if random() ≤ threshold and n ≠ s then 

  7:                 send update to p 

  8:             end if 

 10:        end loop 

 12:    end if 

 13: end procedure 

 

 

 

            

 

If TTL check is successful (line 2), this is decreased (line 3), 

otherwise the message will be dropped. A new threshold is set each 

update (line 4) and the message will be forwarded to all nodes which 

pass the random evaluation (line 6). The node excludes itself and the 

one who generated the message from the dissemination (line 6). As 

stated above, constant is a value between 1 and 12, and of course 

threshold is comprised between 0 and 100.  

As shown in figure 5.1, DP can reach a good coverage without 

exceeding in overhead; despite that, the algorithm is not capable of 

reaching a full coverage which may become a considerable problem if 

the network requires continuous information for all nodes. Figure 5.2 

shows better results for what concerns delay, which decreases with 

coverage increase, so the lack of coverage may be softened by a good 

delay and constant dissemination. 
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5.2 Double Descending Probability (DDP) 

Descending Probability (DP) tries to reduce overhead in later rounds, 

but its probability drops down significantly after some iterations, down 

to 12% in the best case. The direct consequence is that after a certain 

value, the number of messages forwarded through the graph is not 

sufficient to reach all uninformed nodes left. To soften this gap, the 

algorithm has been modified resetting the probability to its initial value 

in the middle of the dissemination. The idea behind the modification is 

that after some iteration with high dissemination, the message may have 

reached new portions of the graph which have not been sufficiently 

informed yet, so reducing the dissemination probability too early and 

heavily may be the cause of unsatisfying coverage.  

 

     Algorithm 6: DDP gossip  

   

  1:  procedure OnUpdate (s)  

  2:     if TTL > 1 then 

  3:         TTL = TTL – 1 

  4:         if TTL ≥ 4 then 

  5:                 threshold  = constant * (TTL + 1) 

  6:         else 

  7:                 threshold  = constant * (TTL + 5) 

  8:         end if 

  9:         for all n ∈ neighbors loop 

10:             if random() ≤ threshold and n ≠ s then 

11:                 send update to p 

12:             end if 

13:        end loop 

14:    end if 

15: end procedure 
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TTL is checked (line 2) and if above one, it is decreased (line 3). If the 

dissemination is in the first half (line 4), the constant will be multiplied 

for TTL + 1 (line 5), otherwise it will be multiplied for TTL + 4 (line 7). 

Likewise DP, DDP threshold will be reevaluated at each reception and 

dissemination will be fixed (lines 9-13).  

Figure 5.3, shows that even if coverage is increased by almost 10%, 

DPP is not capable of reaching full coverage and its delay is quite worse 

compared to DP delay. Despite this, its coverage is slightly better and 

the overhead is acceptable, so it may be worth. 

 

5.3 Comparison with common algorithms 

This section will concern practical tests, comparisons and 

evaluations.  

Figure 5.5 compares the coverage and the overhead of DP, DDP, FP 

and CB; many things are notable: 

 

 DP does not show striking results, compared to other algorithms, 

in particular it tends to emulate FP, without granting the complete 

coverage of the latter; 

 DDP instead, is slightly better than FP and can reach a coverage  

above 95%, but still cannot grant 100%; 

 CB, even if it is worse than all the other algorithms, tends to 

approximate FP when both are about to reach 100% coverage. 

That is because FP with a high probability tends to have the 

behavior of a broadcast dissemination.  
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Figure 5.6 compares delay and coverage of DP, DDP, FP and CB. 

 

 DP performs even worse than CB, offering the slowest 

dissemination; 

 FP has the quickest dissemination; 

 DDP seems to act very similarly to FP, despite having worse 

results. 

 

This first evaluation has shown unsatisfying results: neither DP nor 

DDP are currently capable of reaching full dissemination, but since the 

latter has reached an acceptable overhead for an almost acceptable 

dissemination, algorithms will be analyzed separately.  

DP high delay is the result of a slow and highly selective 

dissemination in later rounds; its efficiency fades when the algorithm is 

at its ending, likely because it reaches a probability too low to satisfy all 

unconscious nodes left and those who are informed suffers a long wait.  

My first thought was that the probability was getting reduced too 

much at each hop, but many tests trying to slow its reduction or keep a 

higher dissemination in later rounds have not shown better results. 

These tests led to the conclusion that even if DP definitely needs 

improvements, these improvements cannot be given by values 

adjustments but only changing the DP behavior, or maybe introducing 

functionalities to manage more efficiently the dissemination, keeping a 

good level until later rounds. 

DDP values showed in figure 5.5 require a closer look since it is 

pretty hard to notice its difference from FP. Figure 5.6 consider a 

smaller section to better clarify the results; and as it is shown, DDP 

performs slightly better than FP even if can cover narrower values. 

Despite its not impressive results for what concerns overhead, its delay  
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is clearly lower (figure 5.7) for the same coverage values, but it is higher 

for a higher coverage. Those results have been given by the capacity of 

the algorithm to maintain an appropriate amount of nodes active during 

the dissemination. That deficiency of DP is a problem that does not 

afflict CB and FP since their static dissemination allows a constant 

spreading of the information and has been partially resolved by DDP. 
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Figure 5.1: Descending Probability: coverage and overhead 
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   Figure 5.2: Descending Probability: delay and coverage 
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Figure 5.3: Double Descending Probability: coverage and overhead 
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Figure 5.4: Double Descending Probability: delay and coverage 
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Figure 5.5: DP, DDP, FP, CB: coverage and overhead 
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Figure 5.6: DDP, FP, CB: coverage and overhead, close  
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Figure 5.7: DP, DDP, FP, CB: delay and coverage  
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Chapter 6 

Advanced functionalities  

Previous simulations have not shown the expected results, anyway a 

refinement of DP and DDP with the implementation of more functionalities 

may improve their performance. First it is important to analyze what is 

wrong with their behavior and what the desired result is. Both DP and DDP 

cannot reach 100% dissemination, so a mechanism to reach it is necessary, 

possibly without upsetting the whole algorithm; in addition, their overhead 

and delay are still too high. Unfortunately, the reasons of their failure are 

not so easy to interpret: it is not possible to easily know why the algorithm 

is causing overhead, for example the first part of the dissemination might 

involve a limited number of nodes who are not sufficient to spread the 

information to different sections from their own, or the algorithm may have 

higher dissemination probability that causes redundancy in some part of the 

dissemination.  

FP and CB are capable of reaching high dissemination when their 

probability strongly increases, approximating a flooding protocol. Since DP 

and DDP are both derived from FP and CB, increasing their dissemination 

probability would give the same results.  

Even if DP was meant to reduce global overhead, progressively 

decreasing its probability during the dissemination seems to exceed its 
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purpose, as explained above. This consideration led to the conclusion that a 

mechanism which acts oppositely to descending probability may solve or at 

least soften the problem.  

 

6.1 Conditional incrementing broadcast 

The Conditional Incrementing Broadcast (CIB) is one of the tested 

mechanisms which shows the best results. DP has been slightly 

modified to include this functionality, as the pseudo-code below shows. 
 

     Algorithm 7: DP + CIB (DPCIB) 

 

  1: procedure OnUpdate (s)  

  2:     if TTL > 1 then 

  3:         TTL = TTL – 1 

  4:         threshold  = random(0, TTL) 

  5:         if (threshold < 1) then 

  6:             for all n ∈ neighbors loop 

  7:                  if n ≠ s then 

  8:                      send update to p 

  9:                  end if 

10:             end loop 

11:         else 

12:             threshold  = constant * (TTL + 1) 

13:             for all n ∈ neighbors loop 

14:                 if random() ≤ threshold and n ≠ s then 

15:                     send update to p 

16:                 end if 

17:             end loop 

18:         end if 

19:     end if 

20: end procedure 
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TTL is checked (line 2) and decreased (line 3) as usual, but threshold is 

used for two random evaluations (lines 4 and 12), in particular, lines 4-

11 implement CIB: a random number between 0 and TTL (both 

included) will be generated (line 4), and if this value is lower than 1 

(line 5) this node will broadcast to all its neighbor (lines 6-10) instead of 

using fixed dissemination (lines 11-18). With this modification, the 

message will have 1/TTL chances to be broadcast; probability is 1/8 the 

first hop, up to 100% when the TTL is 0. This behavior can be changed 

adding to the TTL a fixed value, for example adding 1 will result in a 

1/2 broadcast probability when TTL is 0. Different cases have been 

evaluated but, due to the reduced number of messages that continue 

their travel through the graph, omitting the value does not seem to rely 

on the overall performance, on the contrary it provides a better 

coverage. 

Figure 6.1 compares DP coverage and overhead with its advanced 

version: DPCIB. The latter algorithm seems to continue the behavior of 

its original version, with a better coverage for the same overhead, 

reaching over 95% graph coverage. Including CIB seems to have soften 

DP deficiencies, and despite not being able to solve them completely, it 

still improved algorithm performances. 

Figure 6.2 compares DPCIB and DP coverage and delay. DPCIB 

behavior may confuse, because its values are much more concentrated 

than DP, and the delay seems to drop down quickly, but their density is 

just given by the higher proximity among coverage values of the 

algorithm. In fact, DPCIB has much higher delay for the same coverage, 

but reduces it quickly when its coverage increases.  
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DDP has been modified to include CIB but, since it can be considered 

the result of two DP algorithms applied two different parts of the 

dissemination, CIB probability will be proportionated to DDP 

probability. 

 

     Algorithm 8: DDP + CIB (DDPCIB) 

 

  1: procedure OnUpdate (s)  

  2:     if TTL > 1 then 

  3:         TTL = TTL – 1 

  4:         if TTL ≥ 4 then 

  5:             threshold  = random(0, TTL) 

  6:         else 

  7:             threshold  = random(0, TTL + 4) 

  8:         end if 

  9:         if (threshold < 1) then 

10:             for all n ∈ neighbors loop 

11:                  if n ≠ s then 

12:                      send update to p 

13:                  end if 

14:             end loop 

15:         else 

16:             if TTL ≥ 4 then 

17:                 threshold  = constant * (TTL + 1) 

18:             else 

19:                 threshold  = constant * (TTL + 5) 

20:             end if 

21:             for all n ∈ neighbors loop 

22:                 if random() ≤ threshold and n ≠ s then 

23:                     send update to p 

24:                 end if 

25:             end loop 

26:         end if 

27:     end if 

28: end procedure 
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Line 4 checks if the dissemination is in the first or second half, then 

adapts the threshold (lines 5 and 7). The rest of the code does not vary 

from previous examples. 

Figure 6.3 compares DPPCIB coverage and overhead with its 

previous version. This algorithm’s results make it appear as an extension 

of DPP, but unlike DPCIB, it does not seem to provide notable 

improvements except a couple of points of coverage, that is slightly 

above 97% in the best case. These results could have been expected 

considering that CIB is a functionality meant to increase the 

dissemination when the probability is getting too low, proportionating 

the chances to broadcast disproportionally to the dissemination 

probability, and since DDP characteristic is to restore initial values in 

the middle of the algorithm, round 5 will be equal to round 1, round 6 to 

2, and so on. Thus instead of having a broadcast probability from 1/8 to 

1/1, it will be 1/8-1/4 for the first half and 1/8-1/4 for the second half. 

Although it could have been implemented without considering the 

probability, keeping this probability from 1/8 to 1/1 just like DPCIB, 

simulations have shown negative effects on the algorithm, causing more 

overhead without increasing the coverage, likely because of an 

excessive dissemination in later rounds. Another possibility is that DDP 

performs well enough in its later rounds that the presence of CIB is 

almost unnoticed. 

As figure 6.4 shows, while the relation between overhead and 

dissemination has remained the same, CIB has reduced the delay of the 

algorithm.  
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6.2 Final observations 
 

As conclusion to this chapter, the two algorithms explained in the 

previous section have been compared to FP and CB. Again, figure 6.5 

does not clarify enough differences between FP, DPCIB and DDPCIB, 

but certainly it gives the idea of how limited the range of new 

algorithms is confronted to canonicals. 

DPCIB performs better than FP when the coverage is between 89 and 

94 (figure 6.6), but then it is overturned when reaching its higher 

coverage. Its delay (figure 6.7) is considerably lower for the coverage 

that DPCIB can cover; unfortunately FP reduces its delay even more 

when the coverage increases, nullifying DPCIB initial good results. 

As figure 6.6 shows, DDPCIB performances are slightly above FP, 

for all its range, between 89 and 98, since for the same coverage the 

overhead of FP is higher. The problem of the coverage is not yet 

resolved and is not mitigated by a lower delay (figure 6.7), because 

despite it offers a lower delay for the same coverage, the increase of the 

coverage of FP corresponds to a reduction of the delay.  
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Figure 6.1: DP, DP + CIB: coverage and overhead- 
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Figure 6.2: DP, DP + CIB: delay and coverage 
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Figure 6.3: DDP, DDP + CIB: coverage and overhead 
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Figure 6.4: DDP, DDP + CIB: delay and coverage 
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      Figure 6.5: DP + CIB, DDP + CIB, FP, CB: coverage and overhead 
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Figure 6.6: DP + CIB, DDP + CIB, FP, CB: coverage and overhead, closer 

 

 

89

90

91

92

93

94

95

96

97

98

1.7 1.8 1.9 2 2.1 2.2 2.3 2.4 2.5

C
o

ve
ra

ge
 (

%
) 

Overhead 

DPCIB, DDPCIB, CB, FP:  
Coverage and Overhead, closer 

DDP + CIB DP + CIB Fixed Probability Conditional Broadcast



47 

 

 
 

 

 

 

       Figure 6.7: DP + CIB, DDP + CIB, FP, CB: delay and coverage 

 

 

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

60 65 70 75 80 85 90 95 100

D
e

la
y 

Coverage (%) 

DPCIB, DDPCIB, CB, FP:  
Delay and Coverage 

DP + CIB DDP + CIB Fixed Probability Conditional Broadcast



48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 

 

 
 

 

 

 

Chapter 7 

Conclusions  

In this thesis, we have considered practical and theoretical evaluations 

about gossip-epidemic algorithms, comparing them with proposed 

algorithms and analyzing their behavior. Unfortunately, results are not 

impressive because, as widely explained above, even though their overhead 

and delay are lower for certain coverage values they cannot grant full 

coverage. The incapacity of all proposed algorithms to reach full coverage 

is a notable gap that excludes them from a wide number of scenarios where 

leaving part of the network uninformed is not acceptable; this aspect is 

more negative than what may appear because is the result of the failure of 

algorithms to adapt themselves to different scenarios.  

Despite unsatisfying results, this thesis has focused on studying these 

results regardless their success to better understand reason of their success 

or, in this case, their failure hoping to contribute to the study of other 

algorithms with ideals and qualities to emulate and defects to avoid.  

In addition, literature algorithms have been explained and treated at a 

high level to better allow a clear understanding of their ideals and 

functionalities even for those who approach this topic for the first time. 

Another important aspect observed is the huge distance between the 

expected results of an idea and its effective implementation and its strong 



50 

dynamicity; indeed DP was not originally meant to operate as it has been 

explained, but has been adapted before and during the writing of this thesis 

to refine its behavior to better fit the studied scenario to finally be evolved 

in DDP, while CIB was originally part of a more complex algorithm 

discarded after the implementation phase. 

Efficient data dissemination is an interesting field of research due to its 

wide application to different sectors and to the increasing interest of 

companies to improve their services with the minimum effort.  

In particular, last years have seen a crescent interest for mobile networks 

since nowadays a high percentage of population has an electronic device 

capable of interface itself with others thanks to various applications. These 

networks are highly dynamic and since they follow human behaviors they 

can be interpreted with the aid of sciences like sociology or psychology to 

better adapt the algorithm to the current scenario.  

These years have been full of changes and technology’s evolution seems 

to proceed at high speed, offering solutions to unresolved problems and 

improving performances. Gossip-epidemic algorithms have the appreciable 

characteristic to adapt themselves to ambits where much in required but 

few information are available and their characteristics seems to fit perfectly 

the current technology scenario. Indeed, in computer science everything 

comes to a price, and gossip algorithms are no exception; in fact, they offer 

high flexibility, simplicity, robustness and efficiency, but their simplicity 

often hides an intense and accurate study which is not always rewarded 

with satisfactory results.  

For all these reasons, I think that gossip-epidemic algorithms have the 

potential to maintain a significant role for the coming years. 
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7.1 Future works 

Test and evaluations has been conducted using static graphs, with 

nodes immune to failure or packet losses. Even if a network with a 

stable topology for the current technology is possible to obtain, gossip 

algorithms have raised interest for their notable results in highly 

dynamic networks, thus studying algorithms behavior in a real or pseudo 

real scenario is much more interesting. This has the notable drawback to 

require a deep knowledge of the application context, or at least the 

behavior. In fact, different ambits may have different characteristics for 

what concerns nodes failures: P2P networks are highly dynamic, but 

peer are much more likely to leave once they have completed the 

download or soon after, while nodes’ failures in a sensor networks could 

be simulated statistically estimating their living time or the probability 

to have power loss. I think that would be interesting studying gossip 

algorithms applied to a specific ambit, possibly in a pseudo real scenario 

like a cluster or a small network.  
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