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Introduction

Systems Biology is an innovative way of doing biology recently raised
in bio-informatics contexts, characterised by the study of biological
systems as complex systems with a strong focus on the system level
and on the interaction dimension. In other words, the objective is to
understand biological systems as a whole, putting on the foreground
not only the study of the individual parts as standalone parts, but
also of their interaction and of the global properties that emerge at
the system level by means of the interaction among the parts.

This thesis focuses on the adoption of multi-agent systems (MAS)
as a suitable paradigm for Systems Biology, for developing models and
simulation of complex biological systems. Multi-agent system have
been recently introduced in informatics context as a suitabe paradigm
for modelling and engineering complex systems. Roughly speaking, a
MAS can be conceived as a set of autonomous and interacting enti-
ties, called agents, situated in some kind of environment, where they
fruitfully interact and coordinate so as to obtain a coherent global sys-
tem behaviour. The claim of this work is that the general properties
of MAS make them an effective approach for modelling and building
simulations of complex biological systems, following the methodolog-
ical principles identified by Systems Biology. In particular, the thesis
focuses on cell populations as biological systems.

In order to support the claim, the thesis introduces and describes
(i) a MAS-based model conceived for modelling the dynamics of sys-
tems of cells interacting inside cell environment called niches. (ii) a
computational tool, developed for implementing the models and exe-
cuting the simulations. The tool is meant to work as a kind of vir-
tual laboratory, on top of which kinds of virtual experiments can be
performed, characterised by the definition and execution of specific
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models implemented as MASs, so as to support the validation, falsi-
fication and improvement of the models through the observation and
analysis of the simulations. A hematopoietic stem cell system is taken
as reference case study for formulating a specific model and executing
virtual experiments.

Thesis outline

The interest for the themes studied in this thesis began two years ago,
by getting in touch with different but related works and studies on
complex systems, in particular the theory on dissipative structure de-
veloped by Ilya Prigogine and the theory of autopoiesis developed by
Humberto Maturana and Francisco Varela. What is really a complex
system? How can we define and describe their dynamics? In partic-
ular, in the wide field of complex systems, my central interest was on
biological complex systems.

The first chapter of the thesis has its focus in describing the prop-
erties of a biological system which make it complex, in particular hier-
archical organization, non-linear dynamics that arise from the interac-
tion between the components of the system, and emergent behaviours.

The second chapter focuses on traditional and state-of-the-art ap-
proaches currently used to study complex biological systems and their
properties. Among them, one of the discipline which actually had
a big success in the study of biological systems is molecular biology.
Molecular biology is the study of biology at a molecular level and is the
study of the structure, the biochemical composition and the functions
of intracellular components. Despite the important scientific results
obtained in this discipline, it adopts a reductionistic approach which
does not permit the catch some important properties of biological
systems, such the emergent behaviours arising from the interactions
between components.

For this purpose, approaches recently emerged in the context of
Systems Biology seem more appropriate. The main tools of investiga-
tion adopted by these approaches are modelling and simulating tools.
They have been added to the experimental technologies used by molec-
ular biology for data acquisition, and are the mean for interpreting,
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analysing, elaborating such experimental data in order to build new
knowledge on biological systems.

The third chapter provides a survey of the different formalisms used
for modelling and simulating biological systems as found in state-of-
the-art literature. The approaches can be subdivided in two main
categories: mathematical models, based on differential equations (the
most used); computational models, such as process algebra, petri-nets
and agent-based and multi-agent systems models, as the most recent
approaches.

The focus of this thesis is on multi-agent systems, as an approach
for Systems Biology. Key concepts and abstractions of multi-agent
systems are described in the fourth chapter, where also a brief survey
of existing approaches applying MAS for modelling and simulating
biological systems is reported.

MAS formalism gives to a modeller the opportunity of describ-
ing the behaviour of the system in terms of different, heterogeneous
and organizationally closed entities, following a bottom-up approach.
Specified the internal and interactive behaviour of such system’s com-
ponents, through the simulation process, we can observe the global
emergent behaviour of the system. This approach clearly implies a
change of view in comparison to the mathematical approaches based
on differential equations, which exploit a top-down approach and de-
scribe the behaviour of the system in terms of global laws.

In the fifth chapter, a concrete MAS approach for modelling and
simulating cellular populations is proposed. First, an abstract model
is defined, useful to identify the components of the system and to de-
scribe their abstract behaviour. Then, a computational tool for doing
simulations of cell systems modelled upon such an abstract model is
introduced, as a kind of virtual laboratory for doing virtual experi-
ments.

In the sixth and seventh chapter the abstract model and the com-
putational tools are applied to a specific case study, hematopoietic
stem cells (HSCs), making some concrete examples of MAS-based
models and testing the effectiveness of the virtual laboratory tool.
First, a review of the biochemical properties and behaviour of HSC
systems is provided: how do they act, how do they interact with their
micro-environment , how do they respond to external stimuli and how
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do they change their local environment. Them, such a knowledge is
exploited to build a MAS-based model of a HSC systems, and to per-
form some virtual experiments with the aim of validating the model
and the approach, through the reproduction of known biological be-
haviours.

xiv



Chapter 1

Biological Systems as
Complex Systems

1.1 Complex Systems

1.1.1 The paradigm shift

The history of science during the three century that followed the new-
tonian synthesis is a dramatic story indeed. At the beginning of the
last century, when the program of classical science seemed near com-
pletion, physicists were almost unanimous in agreeing that the funda-
mental laws of the universe were deterministic and reversible. However
at each such moment something invariably did not work out as antic-
ipated: processes that did not fit this scheme were taken to be excep-
tions, merely trick due to complexity, which itself had to be accounted
for by invoking our ignorance, or our lack of control of the variables
involved. The scheme had to be enlarged, and the fundamental level
remained elusive.

During the XX century, more and more scientists have come to
think that many fundamental processes shaping nature are irreversible
and stochastic; that the deterministic and reversible laws describing
the elementary interaction may not be telling the whole story; that
our physical world is no longer symbolized by the stable and periodic
planetary motions that are at the heart of classical mechanics, but it is
a world of instabilities and fluctuations, which are ultimately responsi-
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ble for the amazing variety and richness of the forms and structures we
see in nature all around us [35]. Wherever we look, we find evolution,
diversification, and uncertainties.

We have long known that we are living in a pluralistic world, in
which we find deterministic as well as stochastic phenomena, reversible
as well as irreversible phenomena. We observe a great number of de-
terministic phenomena, such as the frictionless pendulum or the tra-
jectory of the moon around the earth; moreover we know that many
phenomena – the frictionless pendulum, for one – are also reversible,
that means that future and past play the same role in the equations
describing the motion or dynamics involved. But other processes such
as diffusion or chemical reactions are irreversible, i.e. in such processes
there is a privileged direction of time. Instead, to explain the variety
of natural phenomena, we are forced to acknowledge the existence of
stochastic processes, whose dynamics is nondeterministic, probabilis-
tic, even completely random and unpredictable. Such processes appear
in a vast number of natural phenomena – for example brain, ecology,
sociology, pedestrian, and human immune cells behaviour – which are
observed in the whole spectrum of scientific fields such as biology,
medicine, social sciences, physics, mathematics and many others.

This critical knowledge point had so been achieved in numerous
research fields simultaneously. At this moment scientists realized that
classical approaches are not longer useful to formulate a wide range
of problems. This leads to a new vision of matter, one no longer
passive, as described in the mechanical world view, but associated
with spontaneous activity.

This deep change is the result obtained in quite different areas
of investigation. In particular, historically there are two disciplines
that have dramatically modified the outlook of science. The first is
nonequilibrium physics, with the discovery of fundamental new mat-
ter’s properties of self-organization in far-from-equilibrium conditions.
The second discipline is the modern theory of dynamical system: here
the central discovery is the prevalence of instability, that means that
small changes in initial conditions may lead to large amplifications of
the effects of changes.

The new approach to understanding nature was pursued by out-
standing researchers and their team around the world: Ilya Progogine
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at the University of Brussels, Humberto Maturana at the University
of Chile in Santiago, Francisco Varela at the École Polytechnique in
Paris, Lynn Margulis at the University of Massachusetts, Benoit Man-
delbrot at Yale University, and Stuart Kaufmann at the Santa Fe In-
stitute. All they and others put the basis for the science of complexity,
unifying and integrating new theories, ideas and methods from many
disciplines which tried to explain natural phenomena, and identifying
their properties and their behaviour. Several key discovery by these
scientists have been hailed has revolutionary.

It is because off all these, that now we may consider applying new
knowledge to situations for which the concepts of classical physics were
insufficient or inappropriate, or even essentially meaningless. The new
methods developed in this context lead to a better understanding of
the environment in which we live, and in which we find both unex-
pected regularities as well as equally unexpected large-scale fluctua-
tions.

To explain and better understand the variety of natural phenom-
ena, the new science of complexity has been responsible of a paradigm
shift from the mechanistic worldwide to a holistic view, arising a basic
tension between the parts and the whole – the emphasis on the parts
belong to a mechanistic or reductionist view, and the emphasis on the
whole to a holistic or organismic view. Following this shift, the new
paradigm of complex systems see the world as an integrated whole
rather then a dissociated collection of parts.

1.1.2 The science of Complexity

The science of complexity has no precise definition but it refers at that
science which studies how parts of a complex system give rise to the
collective behaviours of the system, how the system interacts with its
environment and how these interactions influence both the patterns
of system’s behaviour and of environmental conditions.

The challenge of the science of complexity is understanding the
ways of describing complex systems and the process of formation of
complex systems through pattern organization and evolution.

3



CHAPTER 1. BIOLOGICAL SYSTEMS AS COMPLEX
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Main features of complex systems
Description of complex systems

There is no generally accepted formal definition of complex system.
Informally, a complex system is an open system, composed by elements
which interact through nonlinear dynamics and which constitute an
organized entity, able to adapt itself to its environment, and to evolve
in time. The collective behaviour that arises from the interactions be-
tween components is the emergent behaviour at the base of complex
systems, which define the structure and the dynamic of the intercon-
nections’ network of the whole system.

Systems are typically defined to be complex systems if they exhibit
the following properties.

1. Complex systems may be nested (hierarchical organisation)

Complex systems are organized in the shape of a pyramid, with
each row of elements linked to elements directly beneath it. In
other words, they are systems that rank and organise their com-
ponents, where each element of the systems (except for the top
element) is subordinate to a single other element. The compo-
nents of a complex system may themselves be complex systems.

Such a kind of hierarchical organisation has an important and
specific role, that is controlling a system composed by elements
which have to act in a coordinate and harmonious way.

2. Nonlinear Dynamics and Feedbacks

Starting from an initial state, the system evolves, following non-
linear dynamics, to singular states depending on the value of
certain control parameters. These states, qualitatively different,
are on the temporal level either stationary, periodic or chaotic
oscillating without period. Moreover it means that small per-
turbation may cause a large effect (see butterfly effect), a pro-
portional effect, or even no effect at all. In linear systems, effect
is always directly proportional to cause.

Such a kind of nonlinear dynamics often grow upon network
of interaction between system’s components that are feedback
loops. In fact both negative (damping) and positive (amplifying)
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feedback are often found in complex systems. In this way the
effects of one or more elements’ behaviour are feedback in the
same way that the element themselves are altered.

3. Complex systems are open

Complex systems in nature are usually open systems that is,
they exist in a thermodynamic gradient or dissipate energy or
continuous flux of matter or information. In other words, com-
plex systems are usually far from equilibrium: but despite these
fluxes, there may be pattern stability. According to Prigogine,
this phenomenon arises dissipative structures. The term refers
to the dynamics of non-equilibrium structures; that is, organized
states that remain stable for long periods of time despite matter
and energy continually flowing through them.

Prigogine defines dissipative structures as islands of order in a
sea of disorder, maintaining and even increasing their order at
the expanse of greater disorder in their environment. They are
stable non-equilibrium situations.

4. Complex systems have a memory

The history of a complex system may be important. Because
complex systems are dynamical systems they change over time,
and prior states may have an influence on present states.

5. Complex systems may be autopoietic

Autopoiesis literally means “self-reproduction” and expresses a
fundamental complementarity between structure and function.
Francisco Varela is the father of this theory.

6. Complex systems manifests emergent phenomena

Complex systems, as collections of interacting elements, show
characteristics that are properties of the collective behaviour of
these elements. Such properties do not naturally arise out of
the description of an individual component. To describe this
spontaneous phenomena we use the term emergence. It refers
to the process of complex pattern formation from more basic
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constituent parts or behaviours, and manifests itself as an emer-
gent property of the relationships between those elements. For
a phenomenon to be termed emergent it should generally be
unpredictable from a lower level description. At the very lowest
level, the phenomenon usually does not exist at all or exists only
in trace amounts: it is irreducible.

One form of emergence is Self-Organization, that is a process
where the organization of a system spontaneously increases and
the interactions between components become elaborate and or-
chestrated. With the phenomenon of self-organization emerge
new structures and global properties which involve and organize,
in a coordinate and harmonious way, a lot of system’s elements.
The crucial aspects for the system’s behaviour, at this emergent
hierarchical level, are no more the functions, the structure, and
the behaviour of each element, but the relations and cooperation
between these elements.

1.1.3 Dynamic of Complex Systems

After providing a descriptive feeling of the properties of complex sys-
tems by observing their behaviour and dynamic, we must take a more
systematic, deeper look at these ideas in order to establish the vocabu-
lary of complexity. Complex biological systems inherently behave be-
tween two broad regimes separated by a third-phase transition regime:
the two broad regimes are chaotic and ordered, while the phase tran-
sition zone between them comprises a narrow third complex regime
poised on the boundary of chaos: complex systems appear to lie in
the ordered regime near the edge of chaos.

In this scenario it is useful explain what chaos is and which is the
theory that define and describe it.

A brief history of Chaos Theory

During 1980s decade a fascinating theory changed the international
scientific world: the chaos theory. It became in brief a formidable suc-
cessful theory, that wants explain each natural phenomena through
its general principle, and tried to explain the dynamics of a com-
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plex system. Chaos theory, in fact, describes the behaviour of certain
nonlinear dynamical systems that under certain conditions exhibit a
phenomenon known as chaos, a state of extreme confusion and dis-
order. Kellert (1993) defines chaos theory as “the qualitative study
of unstable aperiodic behaviour in deterministic nonlinear dynamical
systems”.

Chaos theory was formulated during the 1960s. Its story is one
of many people – scientists who dared to think along new and unsus-
pected channels. We think that is not this thesis the true place where
we can go into more deep of this theory. We’d like just talk about its
beginning and cite the major scientists which work on it.

Mathematicians have known about nonlinearity since Henri Poincaré
at the turn of this century. Most equations that attempt to predict
the actions of nature or natural materials are close approximations
rather than exact. They contain one or more factors of nonlinearity.
Several courageous scientists were so intrigued with chaos, that they
began to do research into both nonlinearity and turbulence.

In 1961, Edward Lorentz discovered the butterfly effect. He was
trying to forecast the weather. He was running a long series of com-
putations on a computer when he decided he needed another run.
Rather than do the entire run again, he decided to save some time by
typing in some numbers from a previous run. Later, when he looked
over the printout, he found an entirely new set of results. The results
should have been the same as before. After thinking about this un-
expected result, he discovered that the numbers he typed in had been
slightly rounded off. In principle, this tiny difference in initial con-
ditions should not have made any difference in the result, but it did.
From this, Lorentz determined that long-distant weather forecasts are
impossible. Tiny differences in weather conditions on any one day will
show dramatic differences after a few weeks, and these differences are
entirely unpredictable. Although Lorentz’s discovery was an accident,
it planted the seed for the new theory of chaos.

A dynamical system to be classified as chaotic must so be sensi-
tive to initial conditions. Sensitivity to initial conditions means that
each point in such a system is arbitrarily closely approximated by
other points with significantly different future trajectories. Thus, an
arbitrarily small perturbation of the current trajectory may lead to
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significantly different future behaviour. As a result of this sensitivity,
the behaviour of systems that exhibit chaos appears to be random,
exhibiting an exponential error dispersion, even though the system
is deterministic in the sense that it is well defined and contains no
random parameters.

One of the foremost contributors to the new science was Benoit
Mandelbrot. Using a home computer, Mandelbrot pioneered the math-
ematics of fractals, a term which he coined in 1975. His fractals
helped describe or picture the actions of chaos, rather than explain
it. The striking principle he discovered was that many of the irregular
shapes that make up the natural world, although seemingly random
and chaotic in form, have a simple organizing principle. A new geom-
etry of chaos was born.

In 1971, David Ruelle and Floris Takens described a phenomena
they called a strange attractor. This strange phenomena was said to
reside in what they called phase space and a whole new element of
chaos theory was born.

Another pioneer of the new science was Mitchell Feigenbaum. His
work in the late 1970s was so revolutionary that several of his first
manuscripts were rejected for publication because they were so novel,
they were considered irreverent. He discovered order in disorder.
Feigenbaum showed that period doubling is the normal way that or-
der breaks down into chaos. He calculated universal numbers which
represent ratios in the scale of transition points that occur during the
process of period doubling. These ratios are now called Feigenbaum
numbers. Gleick (1987) mentions that Richard J. Cohen and his med-
ical colleagues at MIT found that period doubling is associated with
the onset of a heart attack. This finding brought chaos science into
the domain of medical science.

By the mid 1970s, the movement toward chaos as a science was
well underway and in 1977, the first conference on chaos theory was
held in Italy. Perhaps the most startling finding to come out of this
new scientific theory is that order exists within chaos. In fact, order
comes from chaotic conditions.

Dynamic systems can show different kind of behaviour: from or-
dered until chaotic behaviour, depending on parameters that define
their evolution. Every system could be found, in different circum-
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Figure 1.1: Lorentz strange attractor

stances, in a state of chaos, but this state could be reversible.

Attractors

The weave between order and chaos, that define complex phenom-
ena, regularities in behaviour of systems which are extraordinarily
complex, ask for formalisms and accepted concepts which allow their
understanding.

A recurrent term in the description of complex systems and their
dynamics is the term attractor, that is a region in phase space: since
a large set of initial conditions the system will lead to orbits that
converge to this region.

Phase space allows scientists to map information from complex sys-
tems, making a picture of their moving parts, and allowing insight into
a dynamic system’s possibilities. It is a mathematically constructed
conceptual space where each dimension corresponds to one state vari-
able of the system.

The simplest kind of attractor is a fixed point. An example of this
is a pendulum subject to friction: no matter how it starts swinging,
the pendulum always comes to rest at the same point. The next most
complicated attractor is a limit cycle, forming a closed loop in phase
space. A limit cycle describes stable oscillations, such as the motion
of a pendulum clock or the beating of a heart.
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Compound oscillations, or quasi-periodic behaviour are described
by a torus, which resembles the surface of a doughnut. One oscillation
is described around the larger perimeter of the doughnut, the other,
perpendicular to it, around the smaller section. Higher dimensional
tori can be used to describe combinations of more than two oscilla-
tions. (a multi-dimensionsal torus is called a hypertorus.) Despite
the complexity of these latter examples, all these attractors describe
predictable systems.

Chaotic, or strange attractors, on the other hand correspond to un-
predictable motions and have a more complex geometric form. Strange
attractors characterize chaotic phenomena, which show some regular-
ities but in which the system’s trajectory change continuously during
time.

The dynamic of a complex system could be also defined by numer-
ous attractors.

Bifurcation Theory

An other important concept for describing the dynamic behaviour of
complex phenomena is the concept of bifurcation. A bifurcation is
a qualitative change of the attractor of a dynamical system as the
result of a moving system’s parameter. It represents the sudden ap-
pearance of a qualitatively different solution for a nonlinear system as
this parameter is varied. It may be accompanied by a change of the
stability of an attractor. For example, a simple equilibrium, or fixed
point attractor, might give way to a periodic oscillation as the stress
on a system increases. Similarly, a periodic attractor might become
unstable and be replaced by a chaotic attractor.

These types of mathematical constructs are the subject of bifurca-
tion theory, that study how and when such bifurcations can occur.

1.1.4 Scientific Research Institute about Complex
Systems

To complete this brief treatment we are going to cite some of the
international research institute which have, as main focus of their re-
searches, complex systems in the numerous fields of knowledge.
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Santa Fe Institute

The Santa Fe Institute is devoted to creating a new kind of scientific
research community, one emphasizing multidisciplinary collaboration
in pursuit of understanding the common themes that arise in nat-
ural, artificial, and social systems. This unique scientific enterprise
attempts to uncover the mechanisms that underlie the deep simplicity
present in our complex world.

Since its founding in 1984, the Santa Fe Institute (SFI) is a private,
independent research and education centre which has devoted itself to
fostering a multidisciplinary scientific research community pursuing
frontier science in the physical, biological, computational, and social
sciences. SFI seeks to catalyse new research activities and serve as an
institute without walls.

New England Complex Systems Institute (NECSI)

For over 10 years, The New England Complex Systems Institute (NECSI)
has been instrumental in the development of complex systems science
and its applications. NECSI conducts research, education, knowledge
dissemination, and community development around the world for the
promotion of the study of complex systems and its application for the
betterment of society.

NECSI was founded by faculty of New England area academic in-
stitutions in 1996 to further international research and understanding
of complex systems, that pervade all traditional fields of science.

NECSI research develops basic concepts and formal approaches as
well as their applications to real world problems. To date, the contri-
butions of NECSI researchers include studies of networks, agent-based
modelling, multi-scale analysis and complexity, chaos and predictabil-
ity, evolution, ecology, biodiversity, altruism, systems biology, cellular
response, health care, systems engineering, negotiation, military con-
flict, ethnic violence, and international development.

Institute for the Study of Complex Systems (ISCS)

ISCS is a research organization in Palo Alto, California, USA, that
specializes in evolutionary/functional approaches to complexity. The
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director of the ISCS is Peter A. Corning, Ph.D., who is known espe-
cially for his work on the causal role of synergy in evolution. Current
work at the Institute also includes a new approach to the relation-
ship between thermodynamics and biology called “thermoeconomics”,
and a new, cybernetic approach to information theory called “control
information”.

1.2 Biological Complex Systems

Living beings are undoubtedly the most complex and organized ob-
jects found in nature, in view of their morphology and their function-
ing. In biological systems we can so recognize the cited properties of
complex systems.

For example the simplest living system we know is a cell but, in
order to give an even rough idea of cellular organization, the descrip-
tion of cell’s components has to be quite elaborate; and the com-
plexity increase dramatically when we try to picture how these cell’s
components are interlinked in a vast network, involving thousands of
biochemical processes: large numbers of functionally diverse, and fre-
quently multifuncional, sets of biological elements interact selectively
and nonlinearly to produce complex behaviours. As a consequence
biological systems are characterised by network of elements. Such
organizational characteristics have both a geometric and functional
component with adaptation to the surrounding environment being an
essential ingredient for both development and long-term viability of
the organism.

Moreover, living systems function under conditions far from equi-
librium: an organism as a whole continuously receives fluxes of energy
and of matter, which it transforms into quite different waste products
evacuated to the environment [35]. These fluxes are indispensable so
that biological system lives and functions.

At the biological level, complexity is also often associated at the
concept of emergence: a biological system has a potential richness
higher than that of the sum of its subsystems.

We are now looking for the details of complex features of biological
systems.
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1.2.1 Hierarchy

One of the key characteristic of the organization of living organisms
is their hierarchical nature. Indeed, an outstanding property of all
life is the tendency to form multi-levelled structures of systems within
systems. Each of these forms a whole with respect to its parts while
at the same time being a part of a larger whole. These multi-levelled
structures have been called hierarchies.

Biological systems have different level of hierarchical organization:
(1) sequences; (2) molecules; (3) pathways (such as metabolic or sig-
nalling); (4) networks, collections of cross-interacting pathways; (5)
cells; (6) tissues; (7) organs.

In biological systems there is also a constant interplay between
events at different levels. This interplay extends from the events that
happen very slowly on a global scale right down to the most rapid
events observed on a microscopic scale. A unique molecular event,
like a mutation occurring in particularly fortuitous circumstances, can
be amplified to the extent that it changes the course of evolution. In
addition, all processes at the lower level of this hierarchy are restrained
by and act in conformity to the laws of the higher level.

1.2.2 Interaction between components: Biologi-
cal Networks

Complex systems are defined as systems of interacting parts where the
state of one part is influenced by the state of one or more others. In
biological systems we can find such a kind of interactions in a lot of
biological networks, at different levels of the structural organisation,
which are at the core of all biological functions.

In each of these networks we can find many elements with complex
dynamics interacting with each other, evolving in time and changing
the activities of other components. These processes are found from
biochemical pathways, gene regulation mechanisms and metabolic re-
action networks, inside a cell, to cell communication processes.

In the specific cell context, proteins, genes and other molecules in-
teract changing their activities: a gene can be inhibited or activated
from transcription factors, an enzyme or other proteins can be acti-
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vated through phosphorylation and so on. At a higher level we find
interactions between cells such that of neural and immune networks.
For example a neural network describes a population of physically
interconnected neurons or a group of disparate neurons. Communica-
tion between neurons often involves an electrochemical process which
change the depolarization state of a neuron. This process allow the
transmission of signals and informations in the whole body. Other
communication processes between cells of different tissues are at the
basis of developmental processes and cell differentiation.

Nonlinearity and feedbacks

Often the interactions are nonlinear so it is not possible to reduce the
system’s behaviour to the sum of its parts and to consider the avarege
effects. Common interactions in these systems are feedback loops, in
which information from the output of a system transformation is sent
back to the input of the system.

If the new input facilitates and accelerates the transformation in
the same direction as the preceding output, they are positive feed-
backs, whose effects are cumulative. If the new data produces an out-
put in the opposite direction to previous outputs, they are negative
feedbacks, whose effects stabilize the system. In the first case there is
exponential growth or decline; in the second there is maintenance of
the equilibrium [21].

Negative feedback loops are typically responsible for regulation,
and they are obviously central in the homeostasis of biological systems.
At the other hand, the last result of a positive feedback is often ampli-
fying and “explosive”: a small perturbation will result in big changes.
This feedback, in turn, will drive the system even further away from
its own original setpoint, thus amplifying the original perturbation sig-
nal, and eventually become explosive because the amplification often
grows exponentially (with the first order positive feedback), or even
hyperbolically (with the second order positive feedback).

Autocatalisis and Regulation

Nonlinearity in biology may arise intrinsically, independent from spa-
tial inhomogeneities. Most of the chemical reactions are the results
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Figure 1.2: A wonderful example of regulatory network

of collisions. For instance X + Y → D implies that the molecules
of species X and Y must interact and the function which represent
this interaction could be nonlinear. Of particular interest are the non-
linearities related to regulation. Here a substance X may activate or
inhibit the rate of its own production or of the production of another
constituent, which in turns feeds back on the first substance.

In biology, regulation is intimately related to the peculiar structure
and reactivity of the enzymes, but we find forms of regulations also
at higher level. For example stem cells are a system with the spe-
cific aim of produce new cells, of a specific type, when the organism
need them: these production are complexly regulate through signals
which activated or disactivated stem cells in their reproduction and
differentiations.

1.2.3 Interaction with the environment: Dissipa-
tive Structure

Biological systems also interact with their environment through a con-
tinual exchange of energy and matter. Through their interactions
with the environment living systems continually maintain and renew
themselves, using energy and resources from the environment for that
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purpose. These continual flow of heat through the system maintain
a form of non-equilibrium and generate a complex spatial pattern in
which millions of molecules move coherently. Without these exchanges
a living systems cannot exist.

The conditions of “far from equilibrium” don’t necessarily imply
form of instabilities; though it is opposite to an intuitive feeling, living
organisms are able to maintain their life processes under conditions of
non-equilibrium that may be stable.

This theory have been supported by Ilya Prigogine who describes
the structure of living systems as a dissipative structure, putting a
main emphasis on the openness and stability of biological systems. In
the dissipative structure Prigogine see the coexistence of change (non-
equilibrium) and stability [38]. They maintain themselves in a stable
state far from equilibrium.

A cell is so seen as a stable structure with matter and energy con-
tinually flowing through it. The balancing force for these flows are
chemical, in particular the catalytic loops in the cell’s network that
act as self-balancing feedback loops. At the cellular level the strong
inhomogeneities that we can observe are responsible for some of these
structures. For example the concentrations of potassium ions, K+,
inside a neurons, is higher then the outside environment, while the
opposite is true for the sodium ions, Na+. Such inequalities, which
implies states of high non-equilibrium, are at the origin of processes
such as the conduction of nerve impulse. Besides the cells are main-
tained by active transport and bio-energetic reactions like glycolysis
or respiration.

Many of the characteristics of dissipative structure - the sensitivity
to small changes in the environment, the relevance of previous history
of critical points of choice, the uncertainty and unpredictability of the
future - was revolutionary new concepts from the point of view of
classical sciences.

1.2.4 Autopoiesis, Autonomy and Self-Organization

An other key characteristic of a living network is that it continu-
ally produces itself. According to the theory developed by Humberto
Maturana and Francisco Varela, this property is defined by the term
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autopoiesis. Autopoiesis literally means “self-reproduction” or “self-
making”, and in biological systems refer to a network pattern in which
the function of each component is to participate in the production or
transformation of other components in the network. In this way, the
network is produced by its component and in turn produces those com-
ponents [7] which: (i) through their interactions and transformations
continuously regenerate and realize the network of processes (rela-
tions) that produced them; and (ii) constitute it as a concrete unity
in space in which the components exist by specifying the topological
domain of its realization as such a network.

Since all components of an autopoietic network are produced by
other components in the same network, the entire system is organi-
zationally closed, even though it is open with regard to the flow of
energy and matter. This organizational closure implies that a living
system is self-organizing in the sense that its order and behaviour are
not imposed by the environment but are established by the system
itself: the continual self-making, in fact, also includes the ability to
form new structure and new patterns of behaviour. Self-Organization
refers, in particular, to a high degree of coordination among parts, in
the sense of forming spatial and temporal patterns as a kind of spon-
taneous self-organization [44]. These patterns may emerge at levels
far removed, from the level of single gene.

Moreover the organizational closure also implies that living systems
are autonomous. As seen, this does not mean that their are isolated
from their environment. On the contrary they interact with the en-
vironment, but this interaction does not determine their organization
because they are self -organizing.

Therefore, autopoiesis is seen, in this context, as the pattern un-
derlying the phenomenon of self-organization and autonomy, that is
so characteristic of all living systems.

The canonical example of an autopoietic system, and one of the
entities that motivated Maturana and Varela to define autopoiesis,
is the biological cell. The enzymes alone form an intricate network
of catalytic reactions, promoting all metabolic processes, and the en-
ergy carriers (as ATP) form a corresponding energy network to fuel
them. Or let us think at genetic regulatory networks, that evolve
along complex feedbacks loop made of interaction through which each
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component help to produce or transform other components; thus these
network are clearly autopoietic. At higher level every living organism
continually renews itself, cells breaking down and building up struc-
tures, tissues and organs replacing their cells in continual cycles.

1.2.5 Structural Coupling

According to the Prigogine theory of dissipative structure a living
system is an open system which recurrently interacts with its envi-
ronment. According to Maturana and Varela and their theory of au-
topoiesis these living systems are autonomous, however, and through
a process of self-organization reach a state of stability. When Ilya
Prigogine describes the structure of a living system as a dissipative
structure, his main emphasis is on the openness of that structure to
the flow of energy and matter. When Maturana and Varela describe
the pattern of life as an autopoietic network, by contrast, their main
emphasis is on the organizational closure of that pattern. Thus a liv-
ing system is both open and closed – it is organizationally closed but
structurally open. Matter continually flows through it, but the sys-
tem maintains a stable form, and it does so autonomously through
self-organization.

These researchers use the word organization to connote the config-
uration of relations between components that define the class identity
of a composite unity or system as a totality or singular entity; and the
word structure to connote the physical embodiment of the system’s
pattern of organization, referring to the components and the relations
between them that realize a system or a composite entity as a partic-
ular case of a particular class. The conservation of the organization
of a system is a condition of existence: if the organization changes,
the system disintegrates and something different appears in its place.
The structure of a system is open to change, and can change in two
ways: (1) structural changes through which the organization of the
changing system is conserved: these are changes of state which con-
serve the class identity of the system; (2) structural changes through
which the organization of the structurally changing system is lost, not
conserved; these are disintegrative changes [28].

The structure of a living system changes both as a result of its
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internal structural dynamics and as a result of its interactions. A
realistic picture of autopoietic networks must so include a description
of how living systems interact with their environment and how this
interaction can preserve the autonomy of these systems. Indeed, such
a description is an integral part of the theory of autopoiesis developed
by Maturana e Varela. At the aim they introduce the concept of
structural coupling.

Maturana and Varela claims that the interactions between system
and environment happen through structural coupling, i.e. through in-
teractions that trigger structural changes in the system. For example
a cell membrane continually incorporates substances from its envi-
ronment into the cell’s metabolic processes. An organism’s nervous
systems changes its connectivity with every sense perception. These
living systems are autonomous, however: the environment only trig-
gers the structural changes of the system and it does not specify or
direct them.

As a living system responds to environmental influences with struc-
tural changes, these changes will in turn alter its future behaviour. In
other words, a structurally coupled system is a learning system. As
long as it remains alive, a living organism will couple structurally to
its environment. Its continual structural changes in response to the
environment — and consequently its continuing adaptation, learning
and development — are key characteristic of the behaviour of living
beings.

In this process, the structure of the living system and the structure
of the medium change together congruently as a matter of course,
and the general result is that the history of interactions between two
or more systems becomes a history of spontaneous recursive coherent
structural changes in which all the participant systems change together
congruently until they separate or disintegrate.

1.2.6 Stocasticity

Many studies have reported occurrence of stochastic fluctuations and
noise in living systems. At intracellular level, observations of gene ex-
pression in individual cells clearly illustrates the stochastic nature of
transcription and translation: similar initial conditions, such as con-
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centrations of chemical species, temperature, pressure etc., have been
shown to produce qualitatively different outcomes in the temporal evo-
lution of a regulatory network. A classic example is the lysis/lysogenic
switch of bacteriophage λ infecting Escherichia coli cells. It has two
possible developmental pathways: due to noise the network may ran-
domly evolve into one of the two bistable states [16].

Which are the origin of the observed stochasticity? At the mi-
croscopic level of functioning of cellular processes the interactions be-
tween the molecules - DNA, mRNA, protein, small molecules - follow
the laws of physics. A fundamental result of theoretical statistical
physics is the famous

√
n law, which says that randomness or fluc-

tuations in a system is inversely proportional to square root of the
number of particles which can be considered as an index of the sys-
tem size. As a result, low number of particles or low concentrations
should result in high fluctuation. As the concentrations of the re-
acting species are increases they become less prominent tend to the
determinstic solution.

Biochemical species participating in processes such as gene tran-
scription, regulation and signalling transduction often occur in low
copy numbers. As a result elementary reactions, such as polymerase
binding or complex formation, take place with widely distributed re-
action times. Such stochastic effects arising due to the inherent nature
of biochemical interactions are often termed as intrinsic noise.

In the context of gene expression there exists an extrinsic compo-
nent of noise too, arising from random fluctuations in other factors,
e. g. the number of ribosomes, the stage of the cell cycle, mRNA
degradation, and the cellular environment. These are due to the ex-
ternal environmental conditions. For example a transcription factor
for a particular gene is mostly the protein product of another gene
and thus its production is also probabilistic. In these situations, a
protein product arising out of a stochastic activation of a gene, leads
to a cascade of downstream stochastic events [30].
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Chapter 2

Systems Biology: Modelling
and Simulating Biological
Systems

The ultimate goal of biology is to understand biological systems in
sufficient detail to enable accurate, quantitative predictions about the
behaviours of biological systems, including predictions on the effects
of modifications of the systems. Because the properties of a biological
system make it a complex system, as we have seen in the first chapter,
reaching these challenges is really hard.

One of the main discipline which works at this aim is Molecular
Biology : it had a great expansion and reached at really important
discovery towards the middle of the twentieth century, when genetics
began to explore the molecular structure of the gene. But during the
last decades of that century it seemed no more enough and around
the end of the century a new discipline born: Systems Biology, which
proposes new tools and a different approach in studying biological
systems.

2.1 Molecular Biology

The 1950s were the decade of the spectacular triumph of genetics: the
elucidation of the physical structure of DNA has been hailed as the
grater discovery in biology since Darwin’s theory of evolution.
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On Feb. 28, 1953, Francis Crick walked into the Eagle
pub in Cambridge, England, and, as James Watson later
recalled, announced that “we had found the secret of life”.
Actually, they had. That morning, Watson and Crick had
figured out the structure of deoxyribonucleic acid, DNA.
And that structure a “double helix” that can “unzip” to
make copies of itself confirmed suspicions that DNA car-
ries life’s hereditary information [James Watson & Francis
Crick – by ROBERT WRIGHT].

For several decades, this triumphal success totally eclipsed the systems
view of life.

The achievements of genetics brought about a significant shift in
biological research, a new perspective: whereas cells were regarded as
the basic building-blocks of living systems during the nineteenth cen-
tury, the attention shifted from cells to molecules. Advancing in their
explorations of the phenomena of life, biologists found that the char-
acteristic of all living organisms were encoded in their chromosomes
in the same chemical substance, using the same code script. After two
decades the precise detailed of this code were unravelled. Biologist
had discovered the alphabet of a truly universal language of life.

2.1.1 The Edges of Molecular Biology

This triumph of molecular biology resulted in the widespread belief
that all biological functions can be explained in terms of molecular
structures and mechanism. Thus most biologist have become fervent
reductionists, concerned with molecular detailed. At the same time,
the problems that resist the reductionistic approach of molecular bi-
ology become ever more apparent: while biologist know the precise
structure of a few gene, they know very little about the ways in which
genes communicate and cooperate. This means that, while molecular
biology made enormous progress in understanding the structures and
functions of many of the cell’s subunits, it remained largely ignorant
about the coordinating activities that integrate those operations into
the functioning of the cell as a whole. Biological systems, in fact,
have obvious both structure and organizational principles, and their
behaviour cannot be understood either by “reading the DNA” (even
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though in principle all the information is there) or by studying the
biological components one by one or one level at a time. In few sum-
marizing world: “the whole is more then the sum of the parts”.

At now, even if the molecular biologists have been unravelling the
functions of cellular components and networks, and the amount of
molecular-level knowledge accumulated so far is absolutely amazing,
yet we cannot say that we understand how a cell work: the process
of understanding cellular components is far from finished, but it is
becoming clear that simply obtaining a full part list will not tell us
how a cell works. Rather, even for substructures that have been well
characterized, there are significant difficulties in understanding how
components interact as systems to produce the observed behaviour,
both at static and dynamic level.

For example, at intracellular level, while an understanding of genes
and proteins continues to be important, first of all the focus has to be
on understanding a system structure. Because a biological system, as
we have seen in the first chapter, is not just an assembling of genes and
proteins, its properties cannot be fully understood merely by drawing
diagrams of their interconnections. This diagram is an important first
step but it is analogous to a static roadmap, whereas what we really
seek to know are the traffic patterns, why such traffic patterns emerge,
and how we can control them [22]. At these aims what we have to
know is how the individual components of this diagram dynamically
interact during operation. Similar problems occur also at each level
of biological organization above the cellular level [8].

The complexity barrier between components and systems prevents
us from predicting the behaviour of biological systems, and therefore
from repairing them reliably. New concepts and new tools are clearly
necessary to describe nature, tools for modelling and simulating bi-
ological complex systems. It enter in this context Systems Biology,
an emergent discipline which goal is a predictive understanding of the
whole.
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2.2 Systems Biology

Around the year 2000, when the Institute of Systems Biology was es-
tablished in Seattle, Systems Biology emerged as a movement in its
own right, spurred on by the completion of various genome projects,
by the large increase in “catalogue” from the omics (e.g. genomics
and proteomics), by a growing understanding of how genes and their
resulting proteins give rise to biological form and function, and by the
accompanying advances in high-throughput experiments and bioinfor-
matics. Systems Biology has grew up in recent years as an exciting
new endeavour which aims at achieving a systems-level understanding
of biological processes - and ultimatively whole cells and organisms:
from the huge amounts of data that biologists collected, Systems Bi-
ology is building a science of the principles of operation of biological
systems, based on the integration and interaction between components,
i.e. on that interactions which are ultimately responsible for an or-
ganism’s form and functions [1]. It is so a discipline that, instead of
analysing individual components or aspects of an organism, focuses on
all the components, and on the interactions among them, all as part of
one system. To address the question, Systems Biology chooses mod-
elling methods, which are implemented and then simulated through
computational tools. Simulation is the process of using a developed
model to analyse and predict the behaviour of the original system, do-
ing experiment with this model. Because off the use of computational
technique, in both modelling and simulating phase, Systems Biology
is often called in-silico Biology.

Although Systems Biology believes that the essence of system lies
in dynamics and it cannot be described merely by enumerating com-
ponents of the system, at the same time it does not believe that only
system’s dynamic and structure is important without paying sufficient
attention to diversities and functionalities of components structure.
Both structure of the system and components plays indispensable role
forming symbiotic state of the system as a whole. The effort pro-
vides a new approach for integrating quantitative data from a vari-
ety of sources, especially from genome-wide analyses, in conjunction
with extensive use of a variety of different model: progress in Systems
Biology is heavily dependent on a combination of experimental and
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computational state-of-the-art techniques. Moreover, as the systems
under study do not support an easy experimental access and analysis,
models play an important role in gaining an insight into the systems’
behaviour and structure [45]. In fact using knowledge from Molecular
Biology, a systems biologist can causally model the biological system
of interest and propose hypotheses that describe a system’s behaviour.

Therefore Systems Biology is a new way of doing biology, starting
with experimental knowledge, passing through in-silico modelling, and
finally returning to biological experiments with the simulated results:
it is so an approach that works if integrated with experimental biol-
ogy. Figure 2.1 shows the combined application of experimental and
computational tools.

Figure 2.1: Systems Biology approach

Finally Systems biology is an interactive scientific approach in bi-
ological research that requires expert knowledge in several areas. Sys-
tems biology integrates and combines methods used in biology, math-
ematics, systems sciences and computer sciences. In order to be suc-
cessful, close co-operation and the exchange of information between ex-
perimental research and theoretical computer-assisted simulation are
necessary.
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2.2.1 From Reductionism to Integration

Therefore, what Systems Biology propose is a shift from a reduction-
istic approach at understanding biological systems to an holistic ap-
proach. We want be more clear about the meaning of these two terms.

Reductionism

Reductionism can be defined as the belief that the behaviour of a
whole or system is completely determined by the behaviour of the
parts, elements or subsystems. In other words, if you know the laws
governing the behaviour of the parts, you should be able to deduce
the laws governing the behaviour of the whole.

From the first section we know that molecular biology strongly
promoted the reductionistic approach, resulting in attribution of bio-
logical phenomena to the actions of genes.

The limitations of the reductionist model were shown even more
dramatically by the problems of cell development and differentiation.
In the very early stages of the development of higher organisms, the
number of their cells increases from one to two, to four, etc., doubling
at each step. Since the genetic information is identical in each cell,
how can these cells specialize in different ways, becoming muscle cells,
blood cells, bone cells, nerve cells and so on? This basic problem of
development, which appears in many variations throughout biology,
clearly flies in the face of the mechanistic view of life [7].

In summery reductionism has been highly successful in explaining
some macroscopic phenomena, purely in term of the behaviour of con-
stituent parts. However, this was predicted on the assumption that
there were few parts and their interactions were simple, or that there
were many parts but their interactions could be neglected. However
the scope of reductionist approach is limited because these assump-
tions are not true in many systems of interest.

Holism

Systems theory, according to Complex Systems science, has always
taken an anti-reductionist stance, noting that the whole is more than
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the sum of the parts. In other words, the whole has “emergent prop-
erties” which cannot be merely reduced to properties of the parts.

Systems biology promote a holistic approach

Holism is the idea that all the properties of a biological system
cannot be determined or explained by the sum of its component parts
alone. Instead, the system as a whole determines in an important way
how the parts behave.

The general principle of holism was concisely summarized by Aris-
totle in the Metaphysics: ”The whole is more than the sum of its
parts”.

2.3 Modelling Methods

A model, as a tool for understanding, is an abstract representation, a
schematic description of a system, theory, or phenomenon, that allows
for investigation of the properties of the system and, in some cases,
prediction of future outcome or studies of its characteristics. It is
usually in the form of a set of objects and the relations between them.

Models represent aspects, a term that denotes a coherent set of
properties or phenomena of biological interest. It is a skeleton, but
not a replica of the real system, build with key components based on
a mix of assumptions and known knowledge. It involves simplifica-
tion, aggregation and omissions of details. The key to modelling is
to identify the elements that can reflect chief global properties with
incomplete information [12]. The assumptions that are under a model
construction, condition or determine the relationship between models
and the aspects they represent. These assumptions must be precisely
documented and connected to the model for it to have meaning beyond
the immediate use to which it has been put.

Modelling lies at the hart of Systems Biology. We can use exper-
imental information to build a models at different biological scales,
integrating them to create an orchestrated assemblage ranging from
gross models of physiological functions through detailed models that
build directly on molecular data. In this way these models should span
from DNA and gene expressions to intracellular networks, to cell-to-
cell and transmembrane signals, and through to the organ level.
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2.3.1 A methodology for models construction

Usually, in order to understand a biological systems through modelling
and simulation tools, we have to follow some advised steps, which are
listed below and summarized in Figure 2.2.

1. Formulate the goal of the simulation study or research question,
i.e. fixing the question addressed by the model.

2. Identify, explicate and justify the assumptions under the model.

3. Design the model in two consecutive steps:

(a) coarse level → model concept;

(b) detailed, formal level → model specification;

4. Select output values and measurements.

5. Select simulation software.

6. Implement the model.

7. Calibrate system and bug fixing;

8. Identify and do useful experiments.

9. Analyse simulation results [24].

To the purpose of building a model, the following methodology is
used. Starting from an initial model, suggested by knowledge of reg-
ulatory mechanisms and available data, the behaviour of the system
can be simulated for a variety of experimental conditions. Simula-
tion attempts to predict the dynamics of systems so that the valid-
ity of underlying assumptions can be tested. Detailed behaviours of
computer-executable models are first compared with experimental ob-
servation. Comparing the predictions with the observed experimental
data gives an indication of the adequacy of the model. If the predicted
and observed behaviour do not match, and the experimental data is
considered reliable, the model must be revised. The activities of con-
structing and revising models of the regulatory network, simulating
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Figure 2.2: Main steps in a simulation study

the behaviour of the system, and testing the resulting predictions are
repeated until an adequate model is obtained.

Models that survive initial validation can then be used (1) to make
predictions to be tested by experiments; (2) to explore questions that
are not amenable to experimental inquiry; (3) to analyse rapidly the
effects of manipulating experimental conditions without having to per-
form complex experiments; (4) to verify hypothesis underlying the
model that try to explain biological systems.

Diverse modelling methods are applied in the context of Systems Bi-
ology. They could be, fist of all, static or dynamic models. With a
static model we have a photo of the system (e.g. the diagram of static
interconnections, or the structure of an entity) at a specific instant of
time, but we can’t consider its evolution. In the follow we consider
only dynamic models, which have the simulation phase with all the
properties related to it. We can classify and characterise them taking
into account three dimensions of modelling:

1. continuous and discrete;

2. quantitative and qualitative;

3. deterministic and stochastic;

These dimensions are not entirely independent nor are they exclusive.
Many modelling approach are hybrid as they combine continuous and
discrete, quantitative and qualitative, stochastic and deterministic as-
pects.
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Another important aspect for the distinction of modelling approaches
is at which level a model describe a system:

1. macro level;

2. micro level;

3. multiple levels of organization.

Explaining the properties of these different approaches in the follow,
we may cite some specific tools or formalisms. We refer to the next
chapter for the details.

2.3.2 Continuous and Discrete models

Continuous modelling approach

With a continuous model we assume that the variable of the sys-
tems change continuously during time. The continuous modelling ap-
proaches are perfectly suited for the reproduction of measured time-
dependent trajectories and also easily allow the fitting of the model
parameters. Continuous systems models are dominant type of model
used in Systems Biology: they often use a set of differential equations.

The assumption underlying continuous models is still that the sys-
tem behaves continuously with an infinite number of infinitely close
state transitions in each time interval. The numerical integration
merely serves to approximate this behaviour.

Discrete modelling approach

Often a cell’s activity is perceived as being discrete rather then con-
tinuous, motivating the design of discrete systems models. In contrast
to continuous systems models, discrete systems models assume only
a finite number of state changes within a time interval. Depending
on the time base that underlies the model, discrete time stepped ap-
proaches and discrete event approaches are distinguished. The former
is based on time that advances in equidistant steps, whereas the latter
allows to associate arbitrary time spans with each state of the system
and thus is based on a continuous notion of time.
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In the last one, i.e. in discrete event models, state transition func-
tions define into which state to change triggered by external events,
e.g. the collisions of species like enzymes and metabolites in a biologi-
cal model, or triggered by the flow of time, e.g. after the time required
for intra-molecular rearrangements.

Often systems can best be described by a combination of discrete
and continuous models, e.g. if continuous processes exhibit disconti-
nuities which require to switch from one continuous model to another
one, or if leaving or entering a discrete phase depends on continuous
processes that reach certain thresholds. Hybrid systems models com-
bine continuous and discrete systems behaviour. Many modelling and
simulating approaches for discrete and continuous systems have been
extended to support hybrid systems models.

2.3.3 Deterministic and Stochastic models

Modelling is the process of structuring our knowledge about a given
system. In this perspective, stochastic processes represent one means
to express the uncertainty of our knowledge. A plethora of methods
are dedicated to the problems of stochastic modelling, e.g. to estimate
suitable distributions for random variates, and to interpret the results
of the simulation runs.

From the view of the modelled system, integrating stochasticity
into the models might also serve a slightly different purpose: random-
ness or “noise” arising from small numbers of molecules involved in
processes like gene expression and regulation can directly be repre-
sented in the model. Although stochastic elements are often associ-
ated with discrete event models, they are also applicable to continuous
system models. In Systems Biology, inclusions of stochastic elements
for modelling continuous processes have gained ground recently. –
e.g. chemical reaction equations are described by so called stochastic
differential equations, which determine the probability with which a
combination of molecules will react in a given time interval.

The stochastic discrete event models address specific constraints
of continuous, deterministic models: concentrations do not necessarily
change continuously, particularly if the dynamics of a small amount

31



CHAPTER 2. SYSTEMS BIOLOGY: MODELLING AND
SIMULATING BIOLOGICAL SYSTEMS

of entities, like DNA molecules and plasmids, shall be modelled. In
addition, sometimes, the dynamics of biological systems can be best
approached in a stochastic manner, e.g. if the gene regulation is to
be described, where stochastic fluctuations are abundant. The exact
stochastic simulation approach is not practical for the simulation of
metabolic processes, in which large numbers of molecules of the same
kind are involved, due to the computational cost for the calculation of
all individual molecular collisions.

Extensions of the approach overcome these difficulties and allow
the stochastic simulation of systems composed of both intensive metabolic
reactions and regulatory processes involving small numbers of molecules.
The combination of stochastic discrete with continuous sub-models has
stimulated the desire for an easy integration of stochastic aspects into
continuous models. One common approach is to assume a normal dis-
tribution for key parameters of the differential equation system. The
result is that stochasticity can now permeate the entire model [45].

2.3.4 Qualitative and Quantitative models

Quantitative

We define quantitative models that models whose variables are nu-
merically scaled, in the case of differential equations the state space
is given by real values vectors. This property is often associated with
continuous models, even if continuous behaviour can also be described
qualitatively.

Qualitative

We define qualitative models that models that allow predictions of
qualitative properties of the dynamics of system’s element interaction
networks, that are invariant for a range of reaction mechanism and
values of kinetic constants. The interest on qualitative models come
from the following reasons. On the one hand, precise and quantita-
tive information on reaction mechanisms and kinetic constants is not
available for most networks of biological interest. In the other hand,
in many situations predictions of qualitative rather then quantitative
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dynamical properties are appropriate for gaining an understanding of
the function of system’s element interaction network [11].

2.3.5 Macro, Micro, Multi-level models

According to the complex systems properties of hierarchies, all biolog-
ical systems are amenable to be represented as organised on different
layers, ranging from genes and cells up to tissues, organs and organ-
isms. Each level is essential to the general understanding of the sys-
tem’s wholeness, and it is autonomous with its own laws, pattern and
behaviour. At the same time, no level can be understood in isolation
independently of all the other levels, and the system as a whole can
be understood only through the understanding and representation of
all of its levels.

When we observe such a kind of complex organization, we may not,
and in most cases we can’t, analyse all hierarchical levels to understand
the functioning of the biological system. We can so focus our attention
at one level or more, depending on the problem.

Macro-level, continuous models – Macroscopic View

In a macro model and subsequent simulation, a complete system is
tackled as one entity whose state variables are updated during simu-
lation. Modelling, simulating and observation happens on one global
level. The system is described by a set of state variables with their
interdependencies, which can be expressed as rules, equations, con-
straints etc. All the simulations based on the macroscopic view are
deterministic in nature. As a result, the system evolves along a fixed
path from its initial state [42].

Typical representatives of this class are differential equation models
which describe the time-dependent changes of the state variables, e.g.
a biochemical system based on concentrations and reaction rates.

Focusing only on the population, we lose the representation of the
individual and its locality, with the conditional and adaptive behaviour
of each entity in its local environment [45].

Despite these limitations, macro simulation is used. Their ad-
vantages results from their relative simplicity and from their formal
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aspect. First of all, in fact, differential equations are a really well
understood and established framework, in which the complete model
is documented concisely through formulas, and in which low number
of parameters construction based on global input/output behaviour.
With this approach, moreover, simulation experiments can be very
fast (depending on the integration step).

Micro-level, discrete models – Microscopic View

Micro models are models that represent systems as comprising huge
numbers of rather homogeneously structured entities. Only the be-
haviours of the individuals is explicitly modelled. The macro level of
the system exists only as it aggregates results of the activities at micro
level and is used for reflecting emergent phenomena, e.g. the develop-
ment of specific spatial patterns. They do not have any behaviour of
their own. Typical representative of this class are cellular automata.

The behaviour of the system is modelled by states changing at arbi-
trary points on a still continuous time scale. With discrete approaches
models have emerged that integrate qualitative and stochastic aspects.

Multi-level models

Micro models often form only a transition to multi-level models, which
describe a system at least at two different levels. Interactions are tak-
ing place within and between these levels: not only interdependencies
at one organizational level but between different ones become of in-
terest.

The importance of multi-level models has been emphasized for bi-
ological systems in particular, due to the great interplay that take
place between different levels of hierarchical organization: “the whole
is to some degree constrained by the parts (upward causation), but at
the same time the parts are to some degree constrained by the whole
(downward causation)”. Moreover, the description of systems at dif-
ferent levels of abstraction and different time scales facilitates taking
spatial and temporal structured processes into consideration.

Multi-level models are often defined as hybrid approaches: they
are neither restricted to discrete models nor to continuous ones; they
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can work deterministically or stochastically; they might be qualitative,
quantitative or semi-quantitative.

2.3.6 Top-Down Versus Bottom-Up models

The studies of relational dynamics among many elements or parts
of a system is different from both the top-down and the bottom-up
approach.

Top-Down Approaches

In top down approaches we seek to analyse systems in comparatively
general or high-level terms, lumping together subsystems in order to
make the system easier to understand. With this approach an overview
of the system is formulated, without going into detail for any part of
it. The top-down model in fact, is often designed with the assistance
of dark boxes that make it easier to bring to fulfilment but insufficient
and irrelevant in understanding the elementary mechanisms.

To construct such approach is necessary a priory knowledge and
attempt to disassemble it: we start with the intact system and we
decompose it. In the typical top-down approach the behaviour at the
bottom-up level is determined by the instruction from the top-level.
The relations between the elements are fixed and each element preserve
the same features.

Because with a top-down approach we must define behaviours of
parts of the system so that they are consistent with the expected
behaviour of the entire system, this approach not always works.

Bottom-up Approaches

In bottom-up approach, we study basic components and integrate the
data to detect relevant patterns: the function of the components is well
define (at least under a limited set of conditions), and is determined
by detailed biochemical or molecular biological analysis.

In the bottom-up approach, the top level is generated by interac-
tions among elements at the bottom level without instructions from
the top level. Particularly, in this bottom-up approach the top level
is no longer rigid, in contrast with the top-down approach, since the
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level is not given in advance but is self-organized. Even when the top-
level is self-organized, however, the relations between the elements
and, after all, the state of the whole system, in general, is fixed.

The concept of bottom-up approach overlaps in some aspect to
the concept of reductionism. This is why a bottom-up, data driven
strategy will not work at all: we cannot build an understanding of
biological systems from the understanding of the components alone;
we must seek other approaches.

According to the principles of downward and upward causation, sum-
marized in the “theory of two way causation”, we cannot have organ-
isms whose internal functioning flouts the rules of physics and chem-
istry (Up-ward causation). However, the laws of physics are com-
pletely insufficient to determine which shapes or organizations will
evolve in the living world. Once a particular biological organization
has emerged, it will strongly constrain the behaviour of its components
(Down-ward causation). That means that high level phenomena are
not reducible to physical laws but they must be consistent with them.

If this were true, then the modelling of some biological processes
should not follow solely a bottom-up approach, hoping to go from
simple laws to the desired phenomenon. At the same time it seems
that to posit high-level of organizing principles and even downward
causality is not enough because lost some physical and chemical laws
governing the behaviour of the parts end the consequence of their
interactions.

The top-down approach is to decompose the system to smaller
parts. The bottom-up approach is to reconstitute elemental steps into
larger parts. If the results of these approaches meet in the middle, and
if they are consistent, we can be confident that we are on the right
track. In other words, in studying biological complex systems, it was
important to make the dynamics explicit for all levels. For example
if genetic structure was changed in some way, it was important to
know what happen at the cell level, but also at the level of the multi-
cellular organism: there may be two or more levels of emergence that
have to be explained because every level may influence the level below
and above. In this way we have again underlay the importance of
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multi-level models.

2.4 Simulation Methods

Simulation, as yet anticipated, is the process with which we can study
the dynamic evolution of a model system, usually through computa-
tional tools. The Simulation phase is first of all used to validate the
model, testing input/output behaviour; then simulation is used to do
virtual experiment in a way that would be very hard to do if we had
to actually do the experiment in real life. These experiments are use-
ful to (1) produce quantitative correct prediction about the system’s
behaviour, depending on its input values; or (2) produce qualitative
explanations about the system’s behaviour, that is qualitative signif-
icant results that are sufficient for understanding the reaction of the
system to input values [23].

2.4.1 Continuous or Discrete simulation

Although continuous systems models and subsequent simulations are
the dominant type of models being used in Systems Biology, stochastic
discrete event models are recently gaining ground as well.

In discrete event simulations, an event list is administrated by
simulator, the time of the head is set on the event executed, produces
other events that are inserted into the event list. Time is set to next
event. They address specific constraints of continuous, deterministic
models: concentrations do not necessarily change continuously, par-
ticularly if the dynamics of a small amount of entities.

37



CHAPTER 2. SYSTEMS BIOLOGY: MODELLING AND
SIMULATING BIOLOGICAL SYSTEMS

38



Chapter 3

Modelling and Simulating
Approaches in Systems
Biology

In this chapter we are going to give an overview of formalisms proposed
in the literature and to discuss modelling and simulation techniques
appropriate for each of the formalisms. Formalisms to be discussed
include directed graphs, Bayesian networks, Boolean networks, ordi-
nary and partial differential equations, stochastic master equations,
and some computational formalisms as Petri Nets, process algebra
and multi-agent systems. It will come as no surprise that the review
is not meant to be exhaustive: this is nor our main challenge in this
thesis.

The diversity of modelling approaches, applied in Systems Biology,
illustrates and suggests that, depending on the biological system, the
available data and knowledge about the system, and the objective of
the simulation study, modelling approaches are chosen deliberatively
on demand and thus address the diverse needs of modelling and sim-
ulation in Systems Biology

Each of these models has different strengths and weakness. So the
question is to be asked what do certain approaches offer in modelling
biological systems when compared to others.
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3.1 Structural model

The first step in modelling a biological system is often give a structural
description of its components and of the interactions between these
components, to understand how its parts are dynamically connecting
to form a network. This is important for several reasons. For instance,
if certain structural and organizational properties can be shown to
imply specific dynamical properties, then the behaviour of the system
could be inferred at least by verifying whether the network posses
these structural and organizational properties.

3.1.1 Chemical Reactions

Chemical reactions are the lingua franca of biological modelling. They
provide a unifying notation by which to express arbitrary complex
chemical processes. Specifying chemical reactions is so fundamental,
especially studying intracellular level, that the same set of chemical
reactions can lead to different computational or mathematical models.
In this sense, representing processes by chemical equations is more
basic than using either differential equations, or stochastic processes,
or something else, to run simulations to make predictions.

A general chemical reaction, such as

naA + nbB
k→ ncC + ndD

states that some molecules of type A react with some of type B to
form molecules of type C and D. The terms to the left of the arrow are
called reactants ; those on the right are called products. The n terms
are called stoichiometric coefficients and are small integers. The value
k on the reaction arrow is a rate constant. Chemical reactions do not
occur instantaneously, but rather take some time to occur. The value
k is a way of specifying the amount of time a reaction takes.

3.1.2 Directed Graphs

Most of biological systems, and often, most of levels of hierarchical
organization of the system, involve entities which interact along com-
plex networks. Probably the most straightforward way to model the
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structure and organization of such a kind of networks is to view it as
a directed graph.

A directed graph G is defined as a tuple 〈V, E〉 , with V a set
of vertices and E a set of edges. A directed edge is a tuple 〈i, j〉 of
vertices, where i denotes the head and j the tail of the edge. The
vertices of a directed graph correspond to elements of the network,
while the edges denote interactions among these elements.

For instance, in a transcriptional regulatory network, nodes would
represent genes with edges denoting the interactions between them.
This would be a directed graph because, if gene A regulates gene B,
then there is a natural direction associated with the edge between the
corresponding nodes, starting at A and finishing at B. Directed graphs
also arise in the study of neuronal networks, in which the nodes repre-
sent individual neurons and the edges represent synaptic connections
between neurons.

The graph representation of a network can be generalized in sev-
eral ways. The vertices and edges could be labelled, for instance, to
allow information about the nature of interactions to be expressed. By
defining a directed edge as a tuple 〈i, j, w〉 where w is a weigh which
indicates how much strong is the interaction, and if it is a sign it can
be indicated whether i is activated or inhibited by j [10].

Figure 3.1: (a) Directed graph representing an interactions network
and (b) its definition

The representation of a network as a graph allows the analysis
of its structural properties by means of graph-theoretical techniques.
The global connectivity properties of the network can, for instance,
be described by the average degree and the degree distribution of the
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vertices. The degree k of a vertex indicates the number of edges to
which it is connected. 〈k〉 denotes the average degree and P (k) the
degree distribution of the graph, which measures the proportion of
nodes in the network having degree k (P (k) = N(k)

N
). The properties

give an indication of the complexity of the graph and allow different
types of graphs, and therefore of networks, to be distinguished. We
cite in the following the most common ones:

1. Random graph: the vertices typically have 〈k〉 edges and the
vertices having significantly more or less edges than 〈k〉 are ex-
tremely rare;

2. Scale-free graph: these types of graphs are inhomogeneous, in
that most of the vertices have few edges, whereas some vertices,
called (hubs), have many edges;

3. Hierarchical graphs : these types of graphs describes modular
networks, i.e. they are formed by the repetition of nodes’ cluster.

Observations

A number of operations on graphs can be carried out to make biolog-
ically relevant predictions about regulatory systems.

For instance, a search for paths between two elements, for instance,
may reveal missing regulatory interactions or provide clues about re-
dundancy in the network. Furthermore, cycles in the network point
at feedback relations that are important for homeostasis and differen-
tiation. Again, global connectivity characteristics of a network, such
as the average and the distribution of the number of regulators per
element, give an indication of the complexity of the network. Loosely
connected subgraphs point at functional modules of the regulatory
system of which the behaviour could be considered in isolation.

Alongside the potential benefits of applying graph theoretical meth-
ods in molecular biology, it should be emphasized that the complexity
of the networks encountered in cellular biology and the mechanisms
behind their emergence presents the network researcher with numer-
ous challenges and difficulties. The inherent variability in biological
data, the high likelihood of data inaccuracy and the need to incor-
porate dynamics and network topology in the analysis of biological
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systems are just a sample of the obstacles to be overcome if we are
to successfully understand the fundamental networks involved in the
operation of living cells. The use of graphs alone is not always ad-
vised because it implements a static model which cannot successfully
describe the dynamic of biological networks.

For further details of this modelling approach, interested readers
can refer to a really exhaustive and well done report [27].

3.2 Boolean Networks

The simplest approach to characterizing the dynamics of biological
networks is a Boolean model, which is often applied to studying molec-
ular interaction networks inside a cell, as a method that allow predic-
tions of qualitative properties of such systems [11], i.e. dynamical
properties that are invariant for a range of reaction mechanism and
values of kinetic constants. The qualitative properties express the inti-
mate connections between the behaviour of the system and the struc-
ture of the network of molecular interactions, independently from the
quantitative details of the latter. Also graphs are a qualitative ap-
proach.

To explain how a Boolean network can model a biological network,
we give an example about again gene regulatory networks. As a first
approximation, the state of a gene can be described by a Boolean vari-
able expressing that it is active (on, 1) or inactive (off, 0) and hence
that its products are present or absent. The change in gene expres-
sion can be described by making the assumption that the change in
activation state of a gene is determined in a combinatorial fashion by
the activation of other genes, in particular genes encoding for regu-
latory proteins. Interactions between elements can be represented by
Boolean functions which calculate the state of a gene from the activa-
tion of other genes. The result is a Boolean network, an example of
which is shown in Fig. 3.2. Recent comprehensive reviews of the use
of Boolean network models can be found in Kauffman’s book.

Let the n-vector x̂ of variables in a Boolean network represent the
state of a regulatory system of n elements. Each x̂i has the value 1
or 0, so that the state space of the system consists of 2n states. The
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Figure 3.2: Boolean networks

state x̂i of an element at time-point t + 1 is computed by means of a
Boolean function or rule b̂i from the state of k of the n elements at
the previous time-point t. (Notice that k may be different for each x̂i)
The variable x̂i is also referred to as the output of the element and
the k variables from which it is calculated the inputs. In summary,
the dynamics of a Boolean network describing a regulatory system are
given by

x̂i(t + 1) = b̂i(x̂(t)), 1 ≤ i ≤ n. (3.1)

Transitions between states in a network are deterministic, with a single
output state for a given input, and synchronous, in the sense that the
outputs of the elements are updated simultaneously.

A sequence of states connected by transitions forms a trajectory
of the system. Because the number of states in the state space is
finite, the number of states in a trajectory will be finite as well. More
specifically, all initial states of a trajectory will eventually reach a
steady state or a state cycle, also referred to as point attractor or
dynamic attractor, respectively. The states that are not part of an
attractor are called transient states.

Probabilistic Boolean networks

Recently Boolean networks have been generalized to probabilistic Boolean
networks (PBNs) to facilitate the incorporation of uncertainty in the
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model and to represent cellular context changes in biological mod-
elling. In essence, a PBN is composed of a family of Boolean networks
between which the PBN switches in a stochastic fashion. In what-
ever framework Boolean networks are studied, their most important
attribute is their attractors. Left to run, a Boolean network will settle
into one of a collection of state cycles called attractors. The set of
states from which the network will transition into a specific attrac-
tor forms the basin of the attractor. The attractors represent the
essential long-run behaviour of the network. In a classical Boolean
network, the network remains in an attractor once there; in a Boolean
network with perturbation, the states form an ergodic Markov chain
and the network can escape an attractor, but it will return to it or
a different attractor unless interrupted by another perturbation; in a
probabilistic Boolean network, so long as the PBN remains in one of
its constituent Boolean networks it will behave as a Boolean network
with perturbation, but upon a switch it will move to an attractor of
the new constituent Boolean network. Given the ergodic nature of
the model, the steady-state probabilities of the attractors are criti-
cal to network understanding. Heretofore they have been found by
simulation.

Observation

This formalism is typically used to obtain a first representation of a
complex system with many components until such time more detailed
data become available. Its attractiveness is based on the intuitive-
ness of the representation of molecular regulation networks by Boolean
functions. A Boolean model is advantageous in its simplicity and it
does not require detailed data on how cellular components interact.
Despite their apparent simplicity, Boolean models can provide many
insights into the qualitative behaviour of the underlying system. For
instance, Kauffman [20] has successfully employed Boolean models to
explore self-organization phenomena and their implications in evolu-
tion. It is really well suited for modelling regulatory networks and
signalling pathways. At now there is not a strong literature that ex-
periment such a kind of approach in modelling biological system at
higher levels. However, the classical formalisms make strong simpli-
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fying assumptions, in particular the use of binary value for activation
and synchronous transitions.

3.3 Bayesian Networks

Bayesian network is a form of probabilistic graphical model In the
formalism of Bayesian networks, the structure of the system is mod-
elled by a directed acyclic graph G = 〈V, E〉. The vertices i ∈ V ,
1 ≤ i ≤ n, represent elements and correspond to random variables
Xi. For instance, if i is a gene, then Xi will describe the expression
level of i. For each Xi, a conditional distribution p(Xi|parents(Xi)),
is defined, where parents(Xi) denotes the variables corresponding to
the direct regulators of i in G. The graph G and the conditional dis-
tributions p(Xi|parents(Xi)), together defining the Bayesian network,
uniquely specify a joint probability distribution p(X), where

p(X) =
n∏

i=1

p(Xi|parents(Xi)). (3.2)

Observation

Statistical inference of graphical models has become an important tool
in the reconstruction of biological networks of the type which model,
i.e. gene regulatory interactions. In particular, the construction of a
score-based Bayesian posterior density over the space of models pro-
vides an intuitive and computationally feasible method of assessing
model uncertainty and of assigning statistical confidence to structural
features [37]. Moreover the mathematical rules of probability theory
are consistent rule for conducting plausible reasoning processes if:

1. we must reason with incomplete prior knowledge of and limited
data on the biological system under study;

2. we must be able to update our inferences taking into account
new data, without having to revisit the entire reasoning process;

as reasoning in biology imposes.
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3.4 Nonlinear Ordinary Differential Equa-

tions (ODEs)

Being arguably the most widespread formalism to model dynamical
systems in science and engineering, ordinary differential equations
(ODEs) have been widely used to analyse biological systems, at each
level of abstraction. At molecular level, we can model the dynamic
of signalling and metabolic pathway taking concentrations of RNAs,
proteins, and other molecules as time-dependent variables with values
contained in the set of nonnegative real numbers. Regulatory inter-
actions take the form of functional and differential relations between
the concentration variables. At higher levels we can model cell-to-cell
interactions, cell population, and cell system network, such as immune
system, nervous system and endocrine system, considering always as
variables concentrations of chemical molecule that are involved in these
processes of communication and interaction.

In this way, at each level we are analysing, we have to identify
some variables that can describe the state of the system, and that we
call state variables.

To define a model with ODEs we can follow two methodologies:

1. forward modelling : structural model and parameters’ value are
known. We can directly define system of differential equations
and then, through analytical or numerical methods, we can easily
solve the problem;

2. inverse modelling / reverse engineering : if experimental data
don’t include parameters’ value, a direct solution of the problem
is essentially impossible, as they are normally hugely underde-
termined and do not have an analytical solution. The normal
approach is thus an iterative one in which a candidate set of
parameters is proposed, the system run in the forward direction,
and on the basis of some metric of closeness to the desired out-
put – experimental data – a new set of parameters is tested.
Eventually a satisfactory set of parameters, and hence solutions,
will be found.
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In the first case, to write a system of ODE, we start with a structural
model, in which the reactions and the effectors are known. To get from
a wiring diagram, to a set of ODEs, we must think about a network
as a dynamical system whose state is changing from one moment of
time to the next. We assign to each node in the diagram a single
state variable, Xi(t), that is a macroscopic collective variable of such
a system and that are, in the most of cases, the concentration of species
i. The collection of values of all these state variables {X1, X2, ..., Xn}
denote a complete set of variables to define the instantaneous state of
the system X. The time evolution of Xi(t) will take the form, through
a mathematical expression:

dXi

dt
= Fi(X1, X2, ..., Xn; γ1, γ2, ..., γm) (3.3)

where Fi may be complicated functions of the state variables, and
γ1, γ2, ..., γm, are some parameters present in the problem whose vari-
ation influence the evolution of the system and which can be modified
by the external world. We call them control parameters [35].

In view of the diversity of biological phenomena, we expect that
the structure of the function Fi will depend in a very specific way
on the system considered and on the type of precess going on in this
system. However, only certain basic features can be sorted out of this
apparently bewildering variety, and the function will help us tackle
complex phenomena in a systematic fashion.

The system of differential equations that we have defined, describes
how the concentrations of the molecules involved in the process under
study, changes over time due to its interactions with the other species
in the network. The rate of each reaction must be represented by a
kinetic rate law, which will have one or more rate constants associated
with. By assigning specific values to these rate constants, we fine-tune
general rate laws to particular reactions. The set of all rate constants
needed to describe the reactions in a molecular interaction network is
part of the parameter set, we define before. Because the kinetic rate
laws on the right side of (3.3) equation are often nonlinear functions
of the state variables, the function Fi is often nonlinear.

We can also extend the system including concentrations u ≥ 0 of
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molecules which are inputs for the system as drugs, signal molecules,
metabolites.

Notice that the ODEs tell us how each state variables is changing
with respect to time; they do not tell us the value of X at any spe-
cific time t. Solving the differential equations is to find these functions,
Xi(t), for each variable i of the system. In order to solve equation (3.3)
we must first prescribe a set of initial conditions {X1(0), X2(0), ..., Xn(0)}.

We can imagine three types of solutions of a system of ODEs.

1. Analytical solution:

under very special circumstances, i.e. when the function Fi is
linear, it is possible to write the solution of a set of ODEs in
terms of exponential functions, exp(λit), and harmonic func-
tions, sin(ωit + φi).

2. Numerical solution:

Alternatively, one can take recourse to numerical techniques. In
numerical simulation, the exact solution of the equations is ap-
proximated by calculating approximate values {X1, X2, ..., Xn}
for X at consecutive time-points t0, t1, ..., tm. A variety of com-
puter tools specifically adapted to the simulation and analysis
of biochemical reaction systems are available, such as GEPASI
[29].

3. Qualitative solution:

Whereas numerical integration of the ODEs gives us quantitative
information about solution, sometimes we are more interested
in answer qualitative questions, like – what will the network
do for t → ∞, that is characterize the stable attractor of the
system – or – how will the long-term behaviour of the network
change if I double the rate of synthesis of a specific protein, that
is characterize the dependence of the stable attractors on any
parameter in the ODEs [9].

Once we have the time course of each variables, we can design state
space of the system of ODEs. At each point of this space, differential
equations define a vector that tell us which direction and how far
dynamical system will move over the next small increment of time ∆t.
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The collection of vectors describing the behaviour of the system at
each time point, is called vector field. A solution of ODEs is just a
curve that stars at some initial point and follows the vector field. On
the state space we can identify one or more attractors.

Simulation of the functioning of a system is often complemented
by bifurcation analysis tools, to investigate the sensitivity of steady
states and limit cycles to parameter values. From a practical perspec-
tive, well-polished computational techniques (e.g., bifurcation analysis
- analysis of qualitative changes in the dynamics of a system caused
by the variation of some system parameters) and software tools (e.g.,
Xppaut at
http://www.math.pitt.edu/ bard/xpp/xpp.html) are available for
high-level analysis of system dynamics using ODEs.

For further details and examples of this modelling approach, we
suggest reading [9], a chapter of an exhaustive book on modelling
tools used for biochemical network.

Observations

Although the great importance and usefulness of ODEs approach to
biological models cannot be denied, we should not lose sight of the
fact that the physical basis for this approach leaves something to be
desired. Not all systems can be modelled with differential equations.
Specifically differential equations assume that: (i) concentrations are
well-defined quantities, (ii) rate constants are well-defined quantities,
(iii) the system is spatially homogeneous, (iv) concentrations vary
deterministically over time and (v) concentrations vary continuously
and continually. In the following we are going to explain better these
points.

3.4.1 Assumption of spatially homogeneous sys-
tem

A system of ordinary differential equations is a “well-stirred” chemical
reactor, so that component concentrations don’t vary with respect to
space. This assumption hardly seems appropriate for an intact cell.
Whether it is a good approximation or not depends on the time and
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space scales involved. To bring an example, we know that molecular
diffusion is sufficiently fast to mix proteins throughout a yeast-size
cell in less then a minute. If we are interested in cell cycle precesses,
which have a time scale of hours, then the “well-stirred” assumption
is justified.

However, in many cases, one may assume that the processes con-
sidered are synchronous in all parts of biological objects, and therefore
dependence on space coordinates is absent. In these cases we usually
deal with ODE.

When spatial information is required, then partial differential equa-
tions would be indicated.

3.4.2 Assumption of continuous and deterministic
system

The second basic assumption under a system of ordinary differential
equations, is that variables are continuous function of time and vary
deterministically. These assumptions may be valid only if the number
of entities, such as molecules, of each species in the reaction volume
is sufficiently large (say, thousands of entities each, at least).

In a biological cell, these underlying assumptions for the ODEs are
often violated: a realistic model must take the inherent randomness
into account and therefore need to be of stochastic nature. Stochas-
ticity becomes more pronounced with the decrease in the number of
molecules. As the concentrations of the reacting species increase the
fluctuations become less prominent and tend towards the deterministic
solution. This fact is important from the computational complexity
point of view as stochastic simulations are more expensive to run com-
pared to deterministic Ordinary Differential Equations (ODE)-based
simulations.

When stochastic behaviour has to be modelled, then stochastic
differential equations would be indicated.

Granted these two simplifying assumptions, the ODEs are a very
useful language in which to express mathematically the dynamical
consequences of a biological network. If then the mathematical con-
sequences of the mechanism do not agree with observations, we must
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search for the problems in out hypothesis. If the consequences agree
with the observations, then we can have some confidence that we are
on the right track to understanding the mechanism.

Finally, remembering the classification that we introduced in the
previous chapter we can say, without doubts, that continuous systems
models can easily be translated into a set of differential equations,
independently of being defined as graphs, or as a set of chemical re-
actions.

3.5 Partial Differential Equations (PDEs)

Differential equations of the form (3.3) describe processes while ab-
stracting from spatial dimensions. As mentioned before, the systems
of interest are assumed, implicitly, to be spatially homogeneous.

There are situations in which these assumptions are not appropri-
ate. From cells to tissues and organisms, biological systems display
spatially inhomogeneous structures. All processes, in fact, develop in
time and space. It might be necessary, for instance, to distinguish
between different compartments of a cell, say the nucleus and the cy-
toplasm, and to take into account the diffusion of regulatory proteins
or metabolites from one compartment to another. Again, gradients
of protein concentrations across cell tissues are a critical feature in
development processes.

The introduction of time delays for diffusion effects allows some
aspects of spatial inhomogeneities to be dealt with, while preserving
the basic form of the rate equations. In the case that multiple com-
partments of a cell, or multiple cells, need to be explicitly modelled,
a more drastic extension of (3.3) becomes necessary.

Given a continuous variable l ∈ [0, λ], where λ represents the size
of the system, let’s define the state of the system X as functions of
both t and l. The time variation of the concentration of each substance
Xi, is computed trough a partial differential equation, in the form:

∂Xi

∂t
= Fi(x) + δi

∂2Xi

∂l2
(3.4)

where δi is the diffusion constant for the species i.
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In order to solve equation (3.4) we must prescribe other then a set
of initial conditions {X1(0), X2(0), ..., Xn(0)}, also a set of boundary
conditions in l = 0 and l = λ. If it is assumed that no diffusion
occurs across the boundaries l = 0 and l = λ, the boundary conditions
become:

∂2Xi

∂l2
(0, t) = 0 and

∂2Xi

∂l2
(λ, t) = 0 (3.5)

Excellent introduction into PDEs and their applications in biology can
be found in [19].

Observation

Continuum description of a system gave by partial differential equa-
tions is appropriate if one is interested in the dynamics on scales that
are large compared to molecular or cell, in general unit of the system
under study, length scales. In such a description, the discrete nature
of the single entity forming the system is neglected. Instead, the state
of the system is given in terms of continuous functions of space and
time. On smaller scales, the discrete nature of the components can-
not be neglected and a stochastic and discrete description is required,
where we consider both inhomogeneous particle distribution and the
stochastic aspects of biological events (next section) [26].

3.6 Stochastic Modelling

Despite their broad applications, ODE-based kinetic models are crit-
icized because they implicit assume that the time evolution of the
concentrations of interacting cellular species is both continuous and
deterministic, particularly for intracellular processes.

In the first place, the time evolution of a chemical reacting sys-
tem is not a continuous process, because molecular population levels
obviously can change only by discrete integer.

In the second place, cellular events, at both intra- and extra-
cellular level, are triggered by random collisions between molecules.
If each type of event occurred numerous times per generation, this
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randomness could possibly average out and the cells or cellular popula-
tion could behave deterministically. But many proteins are expressed
at nanomolar levels, which correspond to only tens or hundreds of
molecules per cell. As a consequence of the small numbers of the in-
teracting species, many central cellular reactions, occur so infrequently
that substantial relative fluctuations arise spontaneously. By affecting
the rates of other reactions, these fluctuations can propagate through
networks and spread to any cellular process, and then also to higher
level of organism [17].

Stochasticity in the dynamics arises in one of the two following
ways: intrinsic stochasticity is inherent to the system, arising due
to the relatively small number of reactant molecules, whereas extrin-
sic stochasticity originates due to random variation of one or more
environmental factors, e. g. temperature and concentrations of the
reactant species.

Many aspects of life in an individual cell are therefore best un-
derstood probabilistically. Deterministic in nature, ODE models will
fail to predict such fluctuations. For this reason, some researchers
have questioned the use of deterministic simulations in characterizing
the behaviours of biological systems, and suggested using stochastic
simulations instead. Several algorithms are available for carrying out
stochastic simulations [36].

For stochastic modelling, it is feasible to keep track of every molecule
in the system. Concentrations changes of discrete number of molecules
corresponding to certain reaction events. Also, in contrast to the de-
terministic system, the change is random or stochastic in nature. In
some literature the approaches that have these properties implements
a mesoscopic level model/view.

The following paragraphs of this section outline some of the repre-
sentative algorithms along with a comparative study of strengths and
limitations of each algorithm [30].

3.6.1 Chemical Master Equation

The temporal behaviour of a spatially homogeneous mixture of molec-
ular species can be described by a Chemical Master Equation [18].
Chemical Master Equation is a form of mathematical formalism that
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describes the transition of the system from one state to another state
using probabilistic methods. Before introducing the Master Equation,
we first define the following notations:

• M = number of reactions

• N = number of species

• X = [X1, X2, ..., Xi, ...XN ] = number of molecules of species i in
the system – i = [1, 2, ..., N ]

• p(X, t) = probability of the system in state X at time t

• cj = stochastic kinetic constant for reaction j – j = [1, 2, ...,M ]

• Rj = reaction j – j = [1, 2, ...,M ]

• αj∆t = probability of Rj happening in time (t, ∆t) given that
the system is in the state X at time t.

• βj∆t = probability that the system is one Rj reaction removed
from the X and undergoes the Rj reaction in time (t, ∆t).

Given the notations, we can describe the evolution of p(X, t) in terms
of the rates α and β as follows:

p(X, t + ∆t) = p(X, t)

(
1−

M∑
j=1

αj∆t

)
+

M∑
j=1

βj∆t. (3.6)

The first term on the right hand side of (3.4) represents the proba-
bility at which X remains its state, whereas the second term is the
probability at which X undergoes one reaction in time (t, t+∆t). Re-
organizing (3.4), and taking the limit as ∆t → 0, gives the final form
of Master Equation (3.5). Notice that the transition of the state of the
system is described through changes of the probability of the system
being in a certain state, p(X, t). Hence, the inherent stochasticity of
the system is mathematically formalized in this context:

∂p(X, t)

∂t
=

M∑
j=1

(βj − αjp(X, t)). (3.7)
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The Master Equation approach tries to write a system of equations for
every possible transition state and solve them simultaneously. Solving
that equation gives the complete probability distribution at any point
in time. Even better, it is linear differential equations with constant
coefficients, so one can actually solve it.

There is of course a catch: Chemical Master Equation needs one
variable for each possible state of the system. For all but the simplest
systems, this number of variables becomes huge, and so one cannot
even write out the full master equation, let alone solve it. Generat-
ing a single trajectory is significantly easier: ones need to generate a
sequence of state transitions and the times of which they occur. How-
ever, when the dimensionality of problem increases, the possible trajec-
tories explode combinatorially and the problem becomes intractable.

In view of this limitation, Gillespie devised a better way of gen-
erating such trajectories [18]. Instead of writing the whole Master
Equation explicitly, the Gillespie Algorithm generates trajectories by
picking reactions and times according to the correct probability distri-
butions so that the probability of generating a given trajectory with
the simulation algorithm is exactly the same as the solution of the
Master Equation [15].

Two different classes of stochastic simulation algorithms exist for
chemically reacting system, namely the Gillespie Algorithm and StochSim
Algorithm. The following sections will describe these algorithms in
detail, stating the strengths and limitations of each. Various improve-
ment and enhancement schemes proposed by

3.6.2 Gillespie algorithms

In 1976 Gillespie developed a discrete stochastic simulator algorithm
to solve the Chemical Master Equation based on the assumptions that
the system is homogeneous and well mixed.

The Gillespie algorithm makes time steps of variable length; in
each time step, based on the rate constants and population size of
each chemical species, one random number is choose which reaction
will occur, and another random number determines how long the time
step will last.

At each time step, the chemical system is exactly in one state.
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The idea is to directly simulate the time evolution of the system.
Basically, the algorithm determines the nature and occurrence of the
next reaction, and consequently of the next transition, given that the
system is in state α at time t. Given a system with total number
of reaction channels N and total number of species M, there are at
most N possible transitions from a given state. The key is to choose
random number using a computer random number generator, and use
those to pick transitions.

Gillespie proposed two methods for accomplishing the simulation.

Consider a system of N reaction. Gillespie propose two exact
stochastic simulation algorithms

The Gillespie algorithm is by far the most popular. Following a
Monte Carlo procedure, the Gillespie algorithm predicts the time evo-
lution of the system by determining when and in what order the next
reaction is going to occur. This algorithm has a rigorous theoretical
foundation, and is shown to give exact solution for a network of el-
ementary reactions occurring in a well-stirred environment. It often
generates dynamics drastically different from the prediction by deter-
ministic simulations, particularly when some reactions have nonlinear
terms in their rate expressions.

Although the Gillespie algorithm reveals stochastic fluctuations re-
sulting from small molecular numbers, several outstanding questions
make it unclear whether or to what extent it is more appropriate
than a deterministic approach in modelling cellular reaction networks.
Also, stochastic simulations by the Gillespie algorithm are often much
more time consuming than deterministic simulations. In fact, the
computation time of this algorithm approximately scales with the fre-
quency of the reaction events: the more reactions there are, or the
more molecules there are, the longer the computation will take for a
given simulated time span.

One way to model coupled chemical reactions stochastically at a
mesoscopic level is to the use the Stochastic Simulation Algorithm
(SSA) proposed by Gillespie. This Monte Carlo algorithm yields a
correct realization of the process, but the computing time required
to approximate the probability distribution of the species in the sys-
tem is often dictated by the reactions involving the molecules with
the largest copy numbers or the fastest reaction rates. They may well
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be the components where the stochastic description is the least im-
portant. The convergence rate is also slow for this method and it
can be computationally cumbersome to obtain detailed information
of the probability distributions when the number of different reacting
molecules is large.

3.6.3 StochSim algorithm

The computer program StochSim was written by Carl Morton-Firth
as part of his PhD work at the University of Cambridge [34]. The pro-
gram provides a general purpose biochemical simulator in which indi-
vidual molecules or molecular complexes are represented as individual
software objects: the algorithm treats the biological components, for
example, enzymes and proteins, as individual objects interacting ac-
cording to probability distribution derived from experimental data.

Reactions between molecules occur stochastically, according to prob-
abilities derived from known rate constants. In every iteration, a pair
of molecules is tested for reaction. Due to the probabilistic treatment
of the interactions between the molecules, StochSim is capable of re-
producing realistic stochastic phenomena in the biological system.

Simulation time is quantised into a series of discrete, independent
time-slices, the size of which is determined by the most rapid reaction
in the system. At the start of the simulation, the user assigns the
maximum number of molecules, N, the system will use. In each time-
slice, one molecule is selected at random from N possibilities (the
probability of selection of each molecule is 1/N). Then, another object,
either a molecule or dummy molecule, is selected at random from N
possibilities. Another random number is then generated and used to
see if a reaction occurs. The probability of a reaction is retrieved from
a look-up table and if the probability exceeds the random number,
the particles do not react. On the other hand, if the probability is
less than the random number, the particles react, and the system is
updated accordingly. The next time-slice then begins with another
pair of molecules being selected.

Molecules that can exist in more than one state can be encoded in
the program as a “multistate molecule” with a series of binary flags.
Each flag represents a state or property of the molecule, such as a
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conformational state, ligand binding, phosphorylation, methylation,
or other covalent modification. The flags specify the instantaneous
state of the molecule and may modify the reactions it can perform.
For instance, a multistate molecule may participate in a reaction at an
increased rate as a result of phosphorylation, or fail to react because it
is in an inactive conformation. The flags themselves can be modified in
each time-slice as a result of a reaction, or they can be instantaneously
equilibrated according to a fixed probability. The latter tactic is used
with processes such as ligand binding or conformational change that
occur several orders of magnitude faster than other chemical reactions
in the system.

Under special circumstances when the number of reactions is small
and the number of molecules is large, the Gillespie algorithm is more
efficient than the StochSim algorithm [33].

3.7 Computational Models

Also computer science techniques and formalisms are used to build,
analyse and interpret biological models. We are now going to briefly
survey these computational approaches that exploit the similarities be-
tween networks of biochemical components (molecules, cells or other)
and networks of computing processes.

One of the fundamental dimension which characterize a compu-
tational model, is the possibility to have a large number of compo-
nents that work independently or concurrently, and also interact with
each other from time to time through different form of communication
methods. Biological molecular systems, as we know, may be viewed as
complex concurrent processes. Cellular mechanisms are complex and
dynamic: multiple genes are transcribed, multiple types and copies
of transcripts are translated to proteins, and those proteins partake
in multiple signalling processes and metabolic reactions in a concur-
rent fashion. On higher level, huge amounts of different cells work
concurrently inside a tissue to achieve complex goals. Conceptually,
because off these properties of biological systems, it seems interesting
to treat them and their components as concurrent processes and use
techniques from the global computing field to study their behaviour.
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For example, a network of cells can be seen as a computing machin-
ery, made of processing components which interact and cooperate to
achieve a common goal.

Petri Nets, process calculi and agent-based and Multi-agent sys-
tems are some of these computational models, which are best known
in the context of computer and engineering. The most comprehensive
works used Petri nets for representation, simulation and analysis of
cellular pathways. For other reasons particularly promising is the use
of process calculi, which provide the basis to study in a more system-
atic way hypotheses on properties of complex systems of biochemical
reactions.

Instead the adoption of agent technologies and multi-agent systems
constitutes an emerging area in Systems Biology. The use of agents in
computational and systems biology suggest the design of agent-based
systems, tools and languages for modelling the biological processes
themselves. More specifically, an agent can be considered a high-level
software abstraction that provides a convenient and powerful way to
describe a complex software entity in terms of its behaviour within
a contextual computational environment. Agents provide designers
and developers with a way of structuring an application around au-
tonomous, communicative elements [31]. Next chapter is all dedicate
at this last formalism.

3.7.1 Petri Nets

One approach to the representation of concurrent, distributed, asyn-
chronous, parallel, deterministic and non deterministic systems is based
on a mathematical concept called a Petri Net. This powerful formal
specification tool is mainly used for dealing with performability is-
sues in systems with concurrent processes with local behaviour. Petri
nets are so used to describe processes as concurrent and interacting
machines which engage in internal actions and communications with
their environment or user.

The simplest kind of Petri Net is a bipartite digraph, i.e. a graph
with two types of node and directed arcs which connect nodes of dif-
ferent types. The two types of node are called place nodes, represented
as circles, and transition nodes, represented as boxes; places may hold
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tokens, transition represent time events; hence this type of net is also
known as a place-transition net. The arcs may be labelled with an
integer weight, but if unlabelled are assumed to have a weight equal
to 1. Places may be marked by an integer number of tokens.

The overall state of a system of n places is represented by a vector
of size n consisting of the markings on each place. The arcs connected
to a transition node define sets of input places and output places for
that transition. In a simple Petri Net, a transition is enabled if all of
its input places have a marking equal to or greater than the weight
of the arc connecting that place to the transition. When a transition
is enabled, it may be fired to remove a number of tokens from each
input place equal to the weight of the connecting input arc, and create
a number of new tokens at each output place equal to the weight of
the connecting output arc.

Many extensions to the simple Petri Net model have been devel-
oped for various modelling and simulation purposes. These high-level
nets include the following: (i) Hierarchical Petri Nets, which allow
composition relations where a previously defined net is represented by
a single place or transition in a new net; (ii) Hybrid Petri Nets, which
incorporate places which may take continuous values instead of inte-
ger numbers of tokens; (iii) Timed Petri Nets, in which places and/or
transitions may be assigned deterministic time delays; (iv) Stochastic
Petri Nets, in which places and/or transitions may be assigned delays
which are given by a probability distribution; (v) Coloured Petri Nets,
which allow tokens to have internal structure and transitions to have
more complex firing rules.

In Figure 3.3 continuous and discrete transitions of hybrid func-
tional Petri net are represented. (a) An example of continuous tran-
sition. Four input arcs are attached to continuous transition TC : two
continuous input arcs from continuous places P1 and P4, and two test
input arcs from continuous place P2 and discrete place P3. ai is the
weight of arc from place Pi for i = [1, 2, 3, 4]. Two continuous arcs
are headed from the transition TC to continuous places Q1 and Q2,
respectively. Variables b1 and b2 are assigned to these arcs as weights.
(b) An example of discrete transition. Four input arcs are attached to
discrete transition TD: two discrete input arcs from discrete place P1

and continuous place P3, and two test input arcs from discrete place
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Figure 3.3: Petri Net

P2 and continuous place P4. ai is the weight of arc from place Pi for
i = [1, 2, 3, 4]. Two output arcs are headed from the transition TD to
discrete place Q1 and continuous place Q2. Variables b1 and b1 are
assigned to these arcs as weights.

Petri Nets in Systems Biology

Petri nets have recently been proposed as a potential tool for mod-
elling, composing and analysing biological systems. Petri Nets of var-
ious different kinds have been used in several studies in Systems Bi-
ology, both as structural network models for qualitative analyses and
as quantitative models using high level nets.

There are two aspects of biological networks that can be repre-
sented and analysed using Petri net based models:

1. Network structure

Network structural properties can be analysed using methods
already devised for the structural analysis of Petri nets. Some
progress has been made in this area already, for example the use
of Place and Transition invariants, although there are many in-
teresting net properties such as boundedness, liveness and reach-
ability for which a biological context still remains to be investi-
gated.
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2. Network behaviour

Individual cellular processes can be viewed as discrete event sys-
tems in which sets of single molecules act as species, products
and mediators in these reactions and processes. Hence, the con-
centrations of these entities can ultimately be expressed as in-
teger units. The behaviour of biological networks over time has
been modelled with stochastic and hybrid Petri nets. When sim-
ulating a network over time the rates of the reaction must be cap-
tured. Currently these rates are obtained from a combination
of experimental results, expert knowledge and experimentally
manipulating the network representation.

An example has been shown in Figure 3.4: glycolysis pathway (GP)
is a sequence of reactions that converts glucose into pyruvate with the
concomitant production of a relatively small amount of ATP.

3.7.2 Π-calculus

The π-calculus is one of the process algebra, which was developed
by Robin Milner as a formal language for concurrent computational
processes. It provides a framework for the representation, simulation,
analysis and verification of mobile communication systems. A typi-
cal system in the π-calculus consists of multiple concurrent processes.
Pairs of processes interact with each other by sending and receiving
messages in a synchronized way. This communication is done on com-
plementary (input and output) channels. The content of messages
can be also channel’s name. As a result of such a communication
event, the recipient process may now use the received channel for fur-
ther communication. This feature, called mobility, allows the network
“wiring” and structure to change with interaction. Mobile systems
are made up of few operators to compose elementary actions (say α)
over distributed channels (denoted hereafter by their names, given in
lower-case letters).

These operators are: sequentialisation (α.P), parallel composition
(P—Q), name declaration (ν x), and recursion (recx.P ).

Note, that the calculus can be non-deterministic: stochastic pi-
calculus. Thus, when several options are available, the actual interac-
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Figure 3.4: Petri Net

tion that occurs is chosen on a completely random basis.

Π-calculus in Systems Biology

The use of π-calculus as a means to analyse biological networks and
to represent pathways is suggested in a lot of work developed in recent
years.

The abstract characteristics of biological systems are the same as
those of distributed and mobile systems. Many processes are active
simultaneously over a set of physical resources for which they com-
pete while cooperating to accomplish a common goal. Acquisition
of a resource from a process or reception of a message upon which
choices have to be taken can surely affect the future behaviour of the
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whole system and even change the logical interconnection structure
among processes. Trust barriers and administrative domains work as
membranes that can be passed only by those processes that possess
the right keys - hence the concept of localisation of processes is an
important one.

Mimicking the description of mobile and distributed systems in
a biological domain, it can be stated that processes are the biologi-
cal components. Sharing of channels establishes the interconnection
topology of the system and represents the interaction potentials of
components together with their affinity. Scopes of channels or explicit
binders represent the boundaries within which interactions through
such channels may occur. Since channel names can be sent as data
along channels, the interconnection topology varies dynamically, so
modelling the impact of an interaction on the future behaviour of the
whole system. The above interpretation immediately provides a dy-
namic description of the temporal as well as causal evolution of the
system in hand: we only need to run the program.

The π-calculus is suitable for modelling various intracellular molec-
ular systems, including transcriptional circuits, metabolic pathways,
and signal transduction networks.

We suggest the reading of [40] to have an example on how the
π-calculus can be used to model biochemical networks as mobile com-
munication systems. In this paper authors treat molecules and their
individual domains as computational processes, where their comple-
mentary structural and chemical determinants correspond to commu-
nication channels. Chemical interaction and subsequent modification
coincide with communication and channel transmission.

Based on its formal semantics, the model is amenable to computer
simulation, analysis and formal verification, using a combination of
existing and self-developed tools. The compositional nature of the
calculus allows incremental modelling of complex networks and alter-
nation between different levels of complexity. This is instrumental for
studying the modular design of biological systems.

An extension of π-Calculus in form of the stochastic π-Calculus,
supports the definition of discrete event models and their execution by
discrete event simulation. In the stochastic π-Calculus actions are as-
signed rates according to the rates of the corresponding biochemical re-
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actions and a probabilistic distribution function is defined, driving the
selection of the action to fire among all the ones enabled. Openly avail-
able simulation systems like BiosPI also push the application of the
stochastic π-Calculus. Recent developments like BioAmbients which
is based on the stochastic π-Calculus, allow the description of spatial
cell compartments, and entities moving from one compartment to the
next and thus increase the expressiveness of the language [39].
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Chapter 4

Multi-agent Systems
Approaches in Systems
Biology

In this chapter we explain the basic concepts and principles concern-
ing agents and multi-agent systems, considering — in particular —
the Agents and Artifacts meta-model. Such concepts and principles
provide a background to understand how a multi-agent system can be
used in modelling and simulating biological systems.

4.1 Basic Concept of MASs

The area of Multi-agent systems (MASs) brings together and draws on
results, concepts and ideas of many disciplines including artificial in-
telligence (AI), distributed artificial intelligence (DAI), Parallel & Dis-
tributed Systems P&D, Mobile Computing, Programming Languages
and Paradigms (PL), Software Engineering (SE), Robotics.

Generally speaking, MAS is an effective paradigm for modelling,
understanding, and engineering complex systems, providing a basic set
of high level abstractions that make is possible to directly capture and
represent the main aspects of such complex systems, such as interac-
tion, multiplicity and decentralization of control, openness, dynamism
to cite few.

A MAS can be characterized by three key abstractions in a MAS:
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agents, societies and the environment. Agents are the basic active
components of the systems, executing pro-actively and autonomously
some kind of work. Agent societies are formed by set of agents that
suitably interact and communicate so as to do some kind of collective
work, which requires the contribution — including knowledge, skills,
activities — of multiple agents. In order to do their work agents
typically need to exploit and affect the environment where they are
situated.

4.1.1 The notion of Agent

The first key concept of a MAS is that of “agent”. To give an agent
definition is not easy because, actually now, there is no accepted notion
of the term “agent”, and indeed there is a good deal of ongoing debate
and controversy on this subject; we can find a lot of agent definitions,
more or less convergent, coming from the different area cited above.

Essentially there is a general consensus and agreement that auton-
omy is central to the notion of agent. Part of the difficulty is that
various attributes associated with agent are of different importance
for different domains.

Nevertheless, some sort of definition is important. The most ac-
cepted and cited is that of [47] where: an agent is a computer sys-
tem that is situated in some environment, and that is capable of au-
tonomous action in this environment in order to meet its design ob-
jectives.

There are some agent properties to note, because they represent
the fundamental keys for the proposal that we intend to develop in
the next chapters:

1. agents are clearly identifiable entities with well defined bound-
aries;

2. agents are situated in a particular environment over which they
have partial control and observability – they receive/sense inputs
related to the state of the environment through some form of
sensors and they act on the environment through effectors;

3. agents are autonomous, i.e. they have both control of their in-
ternal state and over their own behaviour;
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Besides these properties which are central for this work, in particu-
lar for the MAS model that will be described in next chapters, many
other features can be found in the models of agents found in the litera-
ture, which makes such a notion a powerful modelling and engineering
abstraction, useful for several heterogeneous contexts.

Different kind of computational and programming models / archi-
tectures have been devised for defining agent structure and behaviour,
depending on the specific application domains. Generalising the ap-
proaches, some points can be identified:

1. agents are designed to fulfil a specified role, as a set of tasks to
achieve. As such they are entities with some objective;

2. agents are entities with inferential capabilities – it dynamically
can compute new data representing a new solution to a given
problem; new knowledge inferred from old data; new methods
to solve a given problem; new laws describing a portion of the
world; on these new data, new solution, new knowledge, new
methods, new laws it can autonomously choose the following
action to perform;

3. agents are capable of exhibiting flexible problem-solving behaviour
in pursuit of their design objectives - being both reactive (sens-
ing environment changes and behaving accordingly or able to
respond in a timely fashion to changes that occur in the en-
vironment) and proactive (deliberating upon its own course of
actions based on its mental representation of the world or able
to opportunistically adopt goal and take the initiative).

As we said, various definitions and classifications besides this one have
been given in literature for the agent concept, with different charac-
terisations coming from different fields. From the different contexts,
different acceptation of the agent abstraction have emerged, still shar-
ing the basic issues of autonomy and situatedness. A synthesis is
currently ongoing in the MAS community.
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4.1.2 Agent Societies

When adopting an agent-oriented view, it soon becomes apparent that
most application domain contexts require or involve multiple agents:
to represent the decentralised nature of the problem, the multiple loci
of control, the multiple perspectives or the competing interests. As
obvious, MAS emphasise the multiplicity of the agents composing a
system as a “society” of agents.

Each agent of this system, a MAS agent, is an autonomous entity
pursuing its goal / task by interacting with other agents. In this view a
MAS agent does not lives in isolation: it lives within an agent society.
Its main features are: (i) autonomy / proactivity, (ii) interactivity
/ reactivity / situatedness....[SPIEGARE MEGLIO,MA FORSE NN
QUI]

Interaction is therefore a main dimension of multi-agent systems.
Agents need to interact either to fulfil their individual tasks or to
take part to the collective processes which characterise the MAS as
a whole. Interactions can vary from simple semantic interoperation
through traditional client/server type of interactions, to rich social in-
teractions (the ability to cooperate, coordinate, and negotiate in the
same social context). More generally, we can say that different kind of
interaction models can be adopted for enabling interaction and com-
munication inside a MAS.

A first main distinction is between direct and mediated interaction.
In the former case agents interact by directly exchanging informations;
in the latter case, the media enabling agent interaction and commu-
nication, are explicitly modelled, and actually become fundamental
in the engineering of the whole MAS. In this case the interaction and
communication is not considered to take place directly between agents,
but through these media as first class entities of the system. Such me-
dia could be the environment itself, or a different object.
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Figure 4.1: MAS

4.1.3 The notion of environment and the A&A
meta-model

First of all, the notion of environment is what makes it possible to
define agents’ situated-ness, defining a notion of locality, a model for
the stimuli that can be perceived by the agents and also a model for
the actions available to agents to affect their environment. Accord-
ingly, the environment plays a key role of enabler and mediator of
agents’ interaction: such a mediation role is crucial for realising forms
of communication among agents than are complimentary to direct
communication (which takes place directly between agents through
some kind of agent communication language). By generalising this
point, the A&A meta-model [41] a notion of “working environment”
is introduced, modelling those parts of the environment which are ex-
plicitly conceived and designed to be fruitfully exploited by agents in
their working activities.
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The notion of artifact

Following A&A, such working environments can be generally modelled
as a dynamic set of entities called artifacts, organised in workspaces.
The notion of artifact is the core abstraction of A&A: it is meant
to represent any entity belonging to the working environment—hence
existing outside the agent mind—that is created, shared & used (and
eventually disposed) by agents to carry on their activities, in particular
social ones. So, an artifact (type) is typically meant to be explicitly
designed by MAS engineers so as to encapsulate some kind of function,
here synonym of “intended purpose”.

Artifacts work then as the basic building blocks to compose com-
plex working environments: MAS designers can define different types
of artifacts, according to the need of the application at hand or to de-
vise a library of reusable artifacts. Analogously to artifacts as studied
in human science disciplines, two basic categories of artifacts could be
identified: resources and tools. While resources are primary source
and target result of the agent activities, tools are artifacts used as
“instrument” to achieve some objective or execute some task.

The artifact abstraction leads to a notion of use that is the basic
kind of relationship among agents and artifacts, besides creation and
disposal. Accordingly, the notion of usage interface is defined, as the
basic set of operations and observable states and events that an artifact
expose so as to be usable by agents. Informally, we can think about
an agent interacting with an artifact through its usage interface as
follows: an agent executes actions that result in the triggering of some
artifact operations, which then leads to the observation of events or
the evolution of the artifact state. Such an abstraction strictly mimics
the way in which humans use their artifacts: a simple example is the
coffee machine, whose usage interface includes suitable controls—such
as the buttons—and means to make (part of) the machine behaviour
observable—such as displays—and to collect the results produced by
the machine—such as the coffee can.

Artifacts then are meant to model those parts of the MAS which
are not autonomous or proactive: they are meant to represent passive
entities that are useful if and only if properly (created and) used by
agents.
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4.2 Abstract Architectures for MAS

4.2.1 Abstract architectures for Agents

We can easy formalize the abstract view of agents presented so far,
that does not help us to construct them, since it gives us no clues about
how to design the decision function action. For this reason, we will
now begin to refine our abstract model of agents, by breaking it down
into subsystem. As we refine our view of agents, we find ourselves
making design choices that mostly relate to the subsystems that go to
make up an agent – what data and control structure are present.

An agent architecture is essentially a map of the internals of an
agent – its data structure, the operations that maybe performed on
these data structures, and the control flow between these data struc-
tures. There are a huge number of different types of agent architecture,
with very different views on data structures and algorithms. In the
remainder of this thesis, however, we will survey some fairly high-level
design decisions.

First, let us assume that the environment may be in any of a finite
set E of discrete, instantaneous states E = {e1, e2...}. At any given
instant, the environment is assumed to be in one of these states. The
effectoric capability of an agent is assumed to be represented by a set
A = {a1, a2...} of actions, through which it transforms the state of the
environment. Then abstractly, an agent can be viewed as a function

action : S∗ → A

which maps sequence of environment states to actions: an agent de-
cides what action to perform on the basis of its history – its expe-
riences to date. These experience are represented as a sequence of
environmental states – those that the agent has so far encountered.

The non deterministic behaviour of an environment can be mod-
elled as a function

env : S × A → ρ(S)
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in which the environment starts in some state, and the agent begins
by choosing an action to perform on that state. As a result of this
action, the environment can respond with a number of possible states.
However, of course, only one state will actually result – though the
agent does not know in advantage which it will be.

We can represent the interaction of agents and environment as a
history. A history h is a sequence:

h : s0
a0→ s1

a1→ s2
a2→ s3

a3→ ...

which is thus a sequence of interleaved environment states and ac-
tions.

Purely reactive agent

Certain type of agents decides what to do without reference to their
history. They base their decision making entirely on the present, with
no reference at all to the past. We will call such agents purely reactive,
since they simply respond directly to their environment. Formally the
behaviour of a purely reactive agent can be represented by a function

action : S → A.

Figure 4.2: Purely reactive agent
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Agent with perceptions

In this agent an agent’s decision function is now separated into percep-
tion and action subsystems [Fig. 4.3]. The idea is that the function

Figure 4.3: Agent with perceptions

see captures the agent’s ability to observe its environment through
sensors, whereas the action function represents the agent’s decision
making process. Let P be a (non-empty) set of percepts. Then see is
a function

see : S → P

which maps environment states to percepts, and action is now a func-
tion

action : P ∗ → A

which maps sequences of percepts to actions.

State-based agent

We have so far been modelling an agent’s decision function action as
from sequences of environment states or percepts to actions. This al-
lows us to represent agents whose decision making is influenced by en-
vironment history. We want now consider something more, i.e. agents
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that maintain state.
These agents have some internal data structure, which is typically

used to record information about the environment state and history.
Let I be the set of all internal states of the agent. An agent’s decision
making process is the based, at least in part, on these information. The
perception function see for a state-based agent is unchanged, mapping
environment states to percepts as before:

see : S → P .

The action-selection function action is now defined a mapping

action : I → A

from internal state to action. An additional function next is intro-
duced, which maps an internal state and percept to an internal state:

next : I × P → I

The behaviour of a state-based agent can be summarised as follows.
The agent starts in some initial internal state i0. It then observes
its environment state s, and generates a percept see(s). The inter-
nal state of the agent is then updated via the next function, becom-
ing set to next(i0, see(s)). The action selected by the agent is then
action(next(i0, see(s))). This action is then performed, and the agent
enter another cycle, perceiving the world via see, updating its state
via next, and choosing an action to perform via action.

4.2.2 Abstract architectures for the environment

Following the A&A metamodel, an environment can be designed in
terms of sets of artifacts, distributed and collected in workspaces. The
abstract architecture of an artifact can be characterised here by:

• a usage interface, defining which operations can be invoked by
agents to exploit artifacts functionalities. Such an interface in-
cludes also the set of observable events that are generated by the
artifact, as a consequence of operation execution.
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Figure 4.4: Agent with state

• artifact functions or operations, which defines the functionalities
that an artifact encapsulates, which are exploited by the agents
through the interface.

4.3 Modelling and Simulating Biological

Systems as MASs

MASs have been widely recognised as a good approach for modelling
and simulating complex systems. As such, they can be seen as a
promising choice also for modelling and simulating biological complex
systems, in particular those scenarios in which traditional approaches,
such as the one most used based on Ordinary Differential Equations
(ODE), fail.

MASs dimension of interaction is one of the main reasons that
makes MASs a rather new modelling and simulating method available
in Systems Biology.

As we know, in biological systems, interactions inside the system
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and between the system and its environment plays a fundamental role
and must be explicitly taken into account in order to understand the
overall system behaviour, typically emergent, along with related effects
concerning non-linearity, stochastic phenomena, feedbacks, and so on
[32].

With MASs, biological systems are so modelled as a set of inter-
acting autonomous components , i.e. a set of agents, and the chemical
environment is modelled through an environment abstraction. With
MASs, we have methods to: (i) model individual structures and be-
haviours of different entities of the biological system as different agents
(heterogeneity); (ii) model local interactions between biological enti-
ties/agents (locality); (iii) model the environment structures and dy-
namics; (iv) define biological entities/agents-environment interactions.

It is so clear that multi-agent systems seems to promote a natural
form of modelling, where active entities in the original systems are
interpreted as actors in the model [25].

On the other hand, simulating a MAS model means execute it
as a program and study its time evolution: (i) observing individual
and environment evolution; (ii) observing global system properties as
emergent properties from agent-environment and inter-agent local in-
teraction; (iii) making in-silico experiments. From local interactions
a multi-agent system arises a global coherent behaviours and emer-
gent structures, with the same processes of self-organization that we
can observe in real biological systems. The systemic, emergent prop-
erties that characterize a biological system are so reproducible and
analysable in the virtual system.

4.3.1 A methodology

We propose now a possible methodology that can be followed in de-
signing, developing and simulating a multi-agent model.

Step 1 : Identify general objectives of the simulation study.

Step 2 : Identify the scope of the model – what aspects should be
contained, which not – and the assumptions and parameters - with
justifications of their actual setting.
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Step 3 : Do a coarse plan of experiments – which are possible con-
figuration tests; listing of simulation experiments.

Step 4 : Do a coarse characterisation of the system (agents, inter-
actions, environment):

1. Identify agents, observing and defining:

– which are the actors involved in the process under study: active
entities of the process are agents in the model;

– which is their role;

– which are the interactions between them;

– which is the result of the interactions;

– which new entity are produced by the composition of simpler
entities.

2. Characterize the environment defining spatial aspects (build map)
and its possible functions.

3. Define a coarse agent behaviour:

– taking the agents perspective and formulate what you would
do for performing your agent-goal;

– information that the agent might receive, actions that it might
perform - what effect should these actions have?

Step 5 : Specification of Multi-Agent Model.
This step correspond to “classical” specification phases in Software
Engineering. Its aim is making the coarse concept more concrete:
detailed, almost executable model, at least guideline. We suggest in
the follow which are the main components of this specification, to take
into account:

1. definition of agent classes, their internal structure, i.e. definition
of agent architecture. We can identify, from a modellers point
of view, two main forms of models:
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(a) Behaviour-oriented agent models:

The modeller describes agent behaviour, status and dynam-
ics with some kind of formalisms such as rules, activity,
graphs. Reactions to perceptions/status changes are de-
fined by the modeller. Agent goal is implicit treated.

(b) Goal-oriented agent models:

The modeller identifies and associates goals of the agents,
which possess some forms of cognitive capabilities, which
make it possible to explicitly represent their goals, and
which possess a set of actions that they may execute after
selecting that goal. Reactions are not predefined, but goal
dependent. Agent goals are explicit treated in the agent
behaviour.

2. definition of the environmental elements and their relation to
agents;

3. concrete definition of interactions and organisational structures;

4. definition of the computation procedures for performance values.

4.3.2 What can we Model with MASs

Based on the attempts to represent the same model in different frame-
works, [25] identifies some basic characteristics in systems to be mod-
elled that advise for the use of a multi-agent modelling and then sim-
ulation:

(a) When feedback loops in the agents behaviour are important, but
the conditional behaviour they are based on is not purely locally de-
termined. When the ability of the entity to decide is not only based
on its local surroundings but also must relate to more or less global
properties or values, then a multi-agent simulation is well suited.

(b) When the feedback loops are not fixed in the sense that the number
of affected entities is not predefinable or the existence of the feedback
loop is depending on additional factors, then the formulation of flex-
ible agent behaviour has advantages to network structures with fixed
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connections.

(c) When inhomogeneous space is relevant, then abstractions using
stochastic terms for flight times, etc. might not always be sufficient to
reproduce the effects of space onto different behavioural patterns, or
at least make a valid representation of behaviour unnecessarily com-
plex compared to an multi-agent model. The problem seems to be
still more sophisticated, when the configuration of the relevant spatial
patterns has to undergo dynamic changes.

(d) When flexible conditional or even adaptive individual behaviour
has to be formulated, then it could be easier to concentrate on the be-
haviour of an agent than to describe a network that is passed through
by a token, even if it carries an internal structure. Adaptivity of be-
haviour was not a central point in this study, but is also an important
feature that is rather directly representable in an agent-based model,
whereas it causes problems in other modelling frameworks.

(e) When interactions with flexible individual participants have to
be represented, then it might be hard to formulate it using either
uniform entities or predefined sequences of processes. When it is not
irrelevant who the interaction partner of a particular agent is, or the
agent may flexibly decide not to interact at all, then a focus on the
agent, its behaviour and reasoning may be advisable. Another ad-
vantage of multi-agent simulation consists in its un-fixed interaction
participants. That facilitate the modelling of variable agent numbers.
When an agent has to be erased or a new agent enters the scenario,
it may start interacting with the other agents without complex recon-
figurations of the system. However, this advantage is relative to the
application domain.

Developing, designing and finally implementing a multi-agent simu-
lation is not trivial. The situation is even worse, as there exists nei-
ther an unified formal framework for multi-agent models nor a widely
accepted methodology for developing multi-agent simulations. The
modeller must carefully think about whether the instrument of multi-
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agent simulation is necessary and explain why there is no “simpler”
method for modelling and simulating the system. This even leads
to the basic question: what the advantages of multi-agent simulation
are?

In the following we want to tackle the question, comparing different
standard methods with MASs method.

4.4 A Comparison with Standard Approaches

For what we have said until now some of the differences between MAS
approach and traditional ones are clear. For argumenting why multi-
agent simulation should be used, we have to know weak points of other
paradigm and modelling and simulating approaches, and then we can
talk about benefits and drawbacks of a MAS approach.

Weak point of mathematical approaches

Some of the weak points of standard approaches are yet underlined in
the third chapter, where we made a review of the modelling techniques
applied in Systems Biology. Now we recall and deepen some of these
points.

The most commonly used models of biological systems are based
on ODE and PDE. Differential equations are a really well understood
and established framework: their advantages results from their relative
simplicity and from their formal aspect. They promote a macro-model
approach, since the complete system is tackled as one object whose
state variables are updated during simulation. Modelling, simulating
and observation happens on one level, the global level. The character-
istics of a population are averaged together and the model attempts
to simulate changes in the averaged characteristics of the whole pop-
ulation.

Focusing only on the population, we lose the representation of the
individual and its locality, with the conditional and adaptive behaviour
of each entity in its environment/locality, and we ignore the local
processes performed by low-level components [42]. A particular entity
or individual groups are no longer accessible [5].
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Besides, in most biological systems the number of different types
of entities which compound them has an important role and makes
the classical approach through differential equations hard and often
without any simple analytical solution.

To give an example, if traditional mathematical approaches have
proved to be quite effective in modelling and simulating metabolic
pathways, the same does not hold for signalling pathways. The mech-
anisms underlying these complex behaviours involve many interacting
components and cannot be understood by experiments alone. No ad-
equate mathematical models are known for analysing such pathways.

4.4.1 Advantages of Multi-agent systems simula-
tion

MAS is a powerful paradigm. Generally speaking, they allow, of
course, to stay quite close to biological reality: each real entity is
a simulated agent, that means that it provides a really intuitive way
of modelling, enabling more researcher to use simulation. In addition,
we can design a lot of different entities/agents, encapsulating heteroge-
neous structures and behaviours, and a inhomogeneous environment,
dealing with biological heterogeneity in space and population.

The virtual model so designed has amazing dynamic properties:
each agent could be viewed, modified, removed from the model or
added to the model very easily, introducing a peculiar property of the
Multi-agent simulation.

Multi-level approach

Agent and MAS dimensions, as individual and social dimensions that
coexist in the same model, suggest that a simulations based on the
agent and multi-agent paradigm give, at the same time, at least two
hierarchical level of description of biological system. They integrate
aspects that can be found both in micro and macro techniques to
simulation. On the one side, in the same way as micro techniques,
agent-based approaches model specific behaviour of individual enti-
ties or components. On the other side, in the same way as in macro
techniques, agent-based approaches promote the investigation of sys-
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temic properties that cannot be understood at the individual com-
ponent level, but require the introduction of new categories for their
description. In other words, agent-based approaches make it possible
to simulate and analyse emergent properties, which can be understood
as properties of the ensemble of the components in the overall [6].

This is not all: what can be described at one level as an individual
agent, at a more detailed level can be described as a society of agents
(zooming in) and vice-versa (zooming out), according to hierarchy
principle that characterize biological systems. The hierarchy principle
suggests that agent-oriented processes and methods should support
some forms of MAS layering, allowing modellers to design and develop
MAS along different levels of abstractions - a number of independent,
but strictly related, MAS layers.

The same biological system is so described at different levels of
abstraction: MAS models are, undoubtedly, multi-level models.

Top-down & bottom-up approach

An agent-based or multi-agent simulation can follows both “top-down”
and “bottom-up” approaches. The former approach starts with the
phenomena (described on a global level) and systematically derive
agents/behaviours, constructing an organisational structure. The lat-
ter approach starts with the observation of the real entity, from which
it derives simulated agents, hoping that the global behaviour can be
produced; it follows a try and error strategy and the parameter cali-
bration is costly.

But with an agent formalism we can also combine these two ap-
proaches, using global knowledge for constraining/guiding bottom-up
development,that means that the modeller has to start by determining
the objective, then use objective to determine coarse dependences, use
this knowledge for constraining the bottom-up approach.

Hybrid approach

An agent-based or multi-agent simulation can implement an hybrid
method. We can in fact model different aspects or components of
the system in different way, obtaining an hybrid model, discrete and
continuous, deterministic and stochastic, qualitative and quantitative.
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We can also integrate existing and new approaches to model indi-
vidual and social behaviours, so that reusing existing algorithm. For
instance for defining agent behaviour, in terms of reactive and proac-
tive rules, we can adopt existing models, already implemented and
validated, such as models of gene regulation networks which describe
their dynamical evolution.

Modular Approach

A multi-agent approach is a modular approach because it allows con-
secutive specifications of the components of the system, of its parame-
ters or variables; or it allows the addition of new elements or variables
formerly not considered without change the existing MAS model, sim-
ply add them to the existing MAS model.

4.4.2 Disadvantages of Multi-agent systems sim-
ulation

As mentioned above multi-agent simulation currently has a lot of draw-
backs. The huge parameter space that has to be searched for valid sys-
tem behaviour causes an immense effort on justification, modelling and
simulation. The lack of a formal framework makes the un-ambiguous
presentation of a model a rather hard task. Thus there a some prop-
erties of the original system that on the other hand make the method
of multi-agent simulation not advisable, although it seems to become
a rather popular method.

(a) It is not clear, what parts of the system can be identified as agents,
then multi-agent simulation is not apt. Components with simple non-
autonomous behaviour or systems with fixed direct connections be-
tween components with well defined input-output behaviour can be
tackled with better developed methods.

(b) If the considered space has a large extension or the agent numbers
are huge, then an abstraction of homogeneous space and homogeneous
societies may still be satisfying. A macro simulation approaches might
to be sufficient. One has to regard that a simulation of millions of
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agents takes very much time, especially compared to the computa-
tions necessary for simulating a set of differential equations.

(c)If a formal analysis of the model without simulating is necessary,
e.g. for detecting deadlocks, etc., then a modelling method result-
ing in an exact and explicit model is necessary. Such a modelling
method does not yet exist for multi-agent models. This restriction
might change as there is a lot of ongoing work about formal specifi-
cation in distributed artificial intelligence aiming at tools for software
specification and verification.
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Chapter 5

An Abstract Model of a
Cellular Population based on
MASs

In this chapter we propose a Multi-Agent based model of a cellular
population embedded in its niche. Our abstract model is founded on
A&A conceptual framework as specific reference for modelling and
designing the simulation framework. Such a meta-model makes it
possible to model a set of interacting cells in a niche as a multi-agent
system, with societies of agents interacting in the same environment.

The abstract model proposed tries to be faithful and to repro-
duce the complex properties of biological systems, which are listed
and explained in the first chapter. We have developed such model
and subsequent simulation following the methodology proposed in the
second chapter. At the beginning of each section we explicitly identify
the step of the methodology in which we are. In this chapter we face
the first points of the methodology. The last points are faced in the
last seventh chapter. We intentionally do not consider some points of
this methodology that we consider less important for our goal.

5.1 Model and Simulation Goal

STEP 1. Formulate the goal of the simulation study or
research question, i.e. fixing the question addressed by the
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model.

The first goal of our model is to propose a concrete example of a
multi-agent based model engineered with A&A conceptual framework.
We model a cellular population. For this purpose, we experiment a
bottom-up approach, in which the single entities of the system are
modelled specifying their behaviour and how they interact with their
environment. Following this approach, we aim at capturing the emer-
gent properties which originate from the local interactions between
components.

5.2 Model Assumptions

STEP 2. Identify, explicate and justify the assumptions
under the model.

Here is a list of some strong assumptions on the background of the
model:

• the first fundamental assumption of the approach is that every
global properties and phenomenon emerges from the local inter-
action of the individual components; so the approach is heavily
based on a principle of locality.

• we assume that molecules have not spatial extension, and that
they have a brownian movement, as the result of the collisions.
Cells instead are supposed to have a spatial extension.

• the membrane proteins are supposed to have a uniform distri-
bution on the cell membrane, and to be continuously moving.
So, if a signalling molecule is found in the perceptive region of
the cell and there is a membrane protein with a free binding site
complimentary to the molecule, the binding is established.

5.3 An Abstract Model

STEP 3. Design the model in two consecutive steps:
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1. coarse level → model concept;

2. detailed, formal level → model specification;

We face in this chapter the point (1), defining the concept of the ab-
stract model. The model specification will be described in the seventh
chapter.

5.3.1 The Cell System as A&A System

Modelling a biological complex system in terms of a MAS accounts for
directly identify and represent the individual entities of the system as
agents, the environment where such entities are situated and the basic
type of interaction, both in terms of agent-environment interaction and
inter-agent communication. The environment defines the topology of
the system.

In this way, through a process of direct mapping we can easily ob-
tain a model of the static structure of our cellular population which
can be a multi-agent system, where each cell is modelled as an “agent”
— with a heterogeneous type and behaviour—, and the chemical en-
vironment is modelled through an “environment” abstraction — an
artifact or set of artifacts, according to the A&A metamodel described
in previous chapter. With this computational metaphor we can also
model the interaction between the cells as some kind of interaction
between agents, which could be direct, modelling for example neural
signal transmission, or indirect, mediated by environment, as in the
case of the release and consumption of signalling molecules.

Going from agent-based systems to multi-agent systems account
for considering the collective or social aspect of the system as a pri-
mary aspects, beyond the behaviour of the individual autonomous
entities. The MAS dimension leads to focus then on the behaviour of
the system as an ensemble of interacting components, in terms of both
emergent global behaviours —including self-organising behaviours—,
and designed collective behaviours, that can be fully characterized and
explained (or reduced) in terms of the individual entities behaviour.
Accordingly, we aim at capturing the global properties of cell systems
by integrating the properties that emerge from the individual interac-
tion of the (cell) agents with (possibly) the global laws and constrains
enforced by the environment (artifacts).
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5.3.2 Modelling a Cell as an Agent

The agent architecture that we have chosen for modelling a generic
cell is the architecture of state-based agent. We have already defined
it in the previous chapter.

We are now opportunely integrating and adapting this architecture
for modelling a cell and its interaction with other cells and with the
biochemical environment where it is suited.

Given such notions from molecular and cellular biology, we think
that this is the best architecture to capture the cell functions and be-
haviour. Cells are, in fact, entities with a state, through which past
events/history are memorized and a specific behaviour is identified.
This behaviour consist of a sets of general cellular functions which
can be modelled by a sets of reactive and proactive rules, that de-
fine agent’s interactive behaviour with environment and inner agent’s
modifications. These rules are triggered on the basis of cell agent state
and stimuli coming from the environment.

5.3.3 The Cell Agent State

Each gene of a cell contains the information for thousands of proteins:
it is first transcribed into a specific mRNA molecule, which in turn
guide the synthesis of protein molecules by the more complex machin-
ery of translation. Proteins are the principal catalysts for almost all
the chemical reaction in the cell, and have a host of other functions as
well – maintaining structures, generating movements, sensing signals
and so on. Proteins, above all, are the molecules that put the cell’s
genetic information into action.

We identify the state of the cells in their gene expression profil-
ing, that measure the concentrations of different mRNA, i.e. in the
transcription levels of each gene, which could be active (transcripted)
or inactive (not transcripted). The gene expression level reflect in
fact the type of proteins, and in which number, we find inside a cell
in a specific time instant, and consequently most of the actions and
functions that the cell has to and can perform instant after instant.

This is the reason way we choose to model the cell agent state
through a set of state variables which represent the expression level of
each gene.
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Eg. gene-x(0.0)

Variables varies continuously in the interval [0, 1], where the mini-
mum and maximum value mean that the gene is completely active or
completely inactive. In the example above the gene is not transcripted.

The cell agent state at time t is so identified by the set of state
variable’s values. Depending on the state, the cell agent has particular
functions and behaviours: at each state in fact correspond a particular
set of proteins which are expressed.

The state modification is then done as a consequence of the stim-
uli coming from the environment, opportunely trasducted, or as an
effect of particular internal modification. Both of these modifications
are defined by the reactive and proactive rules characterizing agent’s
behaviour.

5.3.4 Interaction with the Environment: The Cell
Membrane

Cells membrane are crucial to the life of the cell. The plasma mem-
brane encloses the cell, defines its boundaries, and maintains the essen-
tial differences between the cytosol and the extracellular environment.
In all cells, the plasma membrane also contains proteins that act as
sensors of the external signals, allowing the cell to change its behaviour
in response to environmental cues; these protein sensors, or receptors,
transfer information – rather then ions ecc. These proteins in fact can
bind in particular sites, specific molecules and consequently activate
a signal-transduction pathway.

A signal-transduction pathway is a series of molecular changes that
converts a signal on target cell’s surface into a specific response inside
the cell. The main elements of a signal-transduction pathway in which
the target cell’s response is the transcription (turning on) of a gene
are the following:

1. The signal cell first secretes the signal molecules.

2. The secreted molecules binds to specific receptor protein embed-
ded in the target cell’s plasma membrane.
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3. The binding activates the first in a series of relay proteins within
the target cell. Each relay protein activates another.

4. The last relay molecule in the series activates a transcription
factor.

5. The factor triggers transcription of a single gene.

6. Subsequently, translation produces the corresponding protein.

Therefore, as a consequence of this transduction, the cell changes its
state and also its functions/activities, depending on the new proteins
which are produced.

Figure 5.1: Signal-transduction pathway
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see function: the source of interaction

The membrane proteins are modelled as the agent’s sensor. Each agent
has a particular set of protein sensors, which are defined by the specific
binding sites that they expose. These binding sites can interact with
specific binding sites of other proteins or with specific molecules of
extracellular environment.

The state of a protein sensor is characterized by the set of free
and/or bounded binding sites which it has in that moment. The state
of a protein sensor represent the tridimensional structure of a protein
identified in molecular biology. At each state is associated the eventual
generation of an internal perception.

The sensors has then a set of transition rules for moving between
different state, as a consequence of the creation of a new binding or
of the liberation of a site.

The model is also provided of a mechanism for the bindings’ break.
At a biological level this break happens because (i) there are other
molecules in the environment which casually collide with the bounded
molecules or protein, (ii) the cell digest the bounded molecule at the
aim of interrupting the signal-tranduction (iii) the bounded molecule
is naturally reduced (it has a limited life-time).

For capturing all these aspects we have defined a probability distri-
bution function, linearly time dependent. This function has the follow
time evolution:

P (t) =

{
kt per 0 ≤ t ≤ T
1 per t > T

(5.1)

where k = 1/T and T is the maximum possible value for the binding’s
duration.

All the membrane proteins are encapsulated in the plasma mem-
brane, whose function is collecting all the perception generated as a
consequence of an external stimulus.

Finally, depending on the type of membrane proteins which are
encapsulated in the plasma membrane, on the state of each of that,
on the molecules’ type or membrane proteins of other cells which are
in the perception radius of the cell agent, the plasma membrane deter-
mines the satte transition of each protein and collects the consequent
perceptions.
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We have so modelled the perception function see for a state-based
agent, mapping environment states to perceptions:

see : Environment State → Perception.

5.3.5 The Cell Agent behaviour

Each agent of MAS encapsulates a dynamic state, a dynamic be-
haviour and the full control of such a behaviour, establishing time by
time which kind of actions to take upon the environment—according
to some kind of criterion, which can be defined in terms of agent goal
or task—and how to react to stimuli perceived by the environment.

next Function: Agent Reactive Behaviour

The reactive behaviour of a cell agent is defined by a set of reactive
rules, which can be used to define the cell reaction to the perceptions
generated by membrane proteins . Once triggered, the effect of a re-
active rule is changing one or multiple state variables inside the agent,
updating their value with a quantity that is specified and controlled
by the rule. The reactive rules are meant to play the same role and
function of the signalling-transduction pathway inside the cell, which
are fundamental to transmit an external signal to the inner part of
the cell and then to modify expression of one or multiple genes.

Then, a reaction rule maps an internal state and perception into a
new internal state I’:

next : I × Perception → I ′ (REACTIVE RULE)

action Function: Agent Proactive Behaviour

The pro-active behaviour of an agent is described by a set of rules —
called proactive rules — which define the set of actions that the cell
agent perform depending on its inner state. Such actions include also
updates of the inner state itself. Each cell, as anticipated, has certain
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particular functions on the basis of the number and type of proteins
which compose it. These numbers are controlled inside the cell by
the gene regulation networks. For this reason, pro-active rules are
triggered depending on the dynamic value of the state variables, which
represent the gene expression level. The actions and functions that a
cell agent can do can be of different kinds, including also the update
of the gene expression level (explicitly modelling the gene regulation
networks). As a result, some basic cell processes can be started, such
as cell division, differentiation, apoptosys and so on.

The action-selection function action can be defined by the follow-
ing mapping:

action : I ′ → A× I ′′ (PROACTIVE RULE)

5.3.6 Modelling Cell Niches as Agent Environ-
ments

Finally, we explicitly model cell niches as MAS environments where
cell agents are situated. We keep the term “niche” to identify such
MAS environments. An individual niche encapsulates different kind
of functions:

• it defines the topology of the space where cells and molecules
are immersed;

• it functions as a container and controller for the overall set of
molecules, including those playing the role of cues such as the
cytochines, and proteins.

• it functions as an artifact enabling the interaction between the
cell agents and the molecules, or between the cell agents.

It’s worth noting that a niche controls the movement of molecules,
but not the movement of the cell agents, which are supposed to au-
tonomous.

A complete biosystems can be modelled then by a network of
niches, linked together so as to make it possible the migration of cell
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agents and molecules from one niche to another, according to the laws
specified to rule such migrations. A cell agent then can be situated in
a niche and then migrates to another niche; the reactive and proactive
behaviour of the cell agent can change then according to the niche
where the cell agent is currently situated, and the different kind of
signalling molecules that are part of the niche.

5.4 The Simulator

STEP 6. Implement the model and a simulation software.

The model is implemented and executed on top of a simulator called
CPSIM, developed to function as a virtual laboratory to execute virtual
experiments.

The simulator can be conceived as an abstract (virtual) machine,
and an experiment as a kind of a program on top of such a machine,
defining the multi-agent system representing the specific cell popula-
tion. The execution of the multi-agent system program corresponds to
the execution of the virtual experiments, with the possibility for the
users to observe and control the experiments by means of a suitable
user interface.

The simulator has been implemented in Java, an object-oriented
language with a runtime architecture — based on the Java Virtual
Machine — that makes it possible to execute the application on al-
most all the main operating systems and machines (on every system
where the Java platform is available, actually). Besides the portabil-
ity, the choice of such an Object-Oriented programming language with
a runtime architecture — despite of the performance penalty with re-
spect to other languages without a runtime architecture, such as the C
or C++ languages — has been effective for rapid prototyping such a
quite complex application, based on a multi-agent system architecture.

The main parts of such an architecture are the following:

• BioSystem class, which represents the overall multi-agent system
modelling the cell population. It keeps track of the overall cell
agents and niches that are part of the system. Mainly, it provides
a services to initialize and then step on the state of the multi-
agent system by a certain delta time (a cycle), step by step,
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computing the sequence of states that defines MAS execution.
An updating cycle of the overall MAS accounts for the following
main steps:

1. update niches states

2. let cell agents step on, providing them the information
about their current locality, that is the set of the molecules
and cells that are currently part of their neighbourhood

3. collect and execute cell agent actions, which possibly change
their local environment

• Cell, which represents a cell inside the system, as an agent of
the MAS. A cell agent is composed by three main parts: the
membrane represented by the class CellMembrane — contain-
ing the set of reactive rules that define agent reactive behaviour,
represented by the class ReactiveRule —, the inner state repre-
sented by the class CellState — and the set of proactive rules,
represented by the class ProactiveRule. The CellMembrane is
then composed by a set of specific proteins represented by classes
extending the base class MembraneProtein. A membrain protein
then is described in terms of a set of binding sites, represented
by the BindingSite class, and its behaviour is defined in terms
of a set of states, represented by the class ProteinState, along
with state transitions, represented by the ProtStateTransition
class.

Besides these components, the class CellPhase is used to repre-
sent a cell phase of a cell: as defined in the abstract model, a cell
can have one or more phases, which define different configura-
tions of cell structure and behaviour. A single CellPhase groups
a specific configuration for the membrane, the state, the set of
the proactive rules and also a specific cell shape, represented by
the class CellShape.

Then, a specific cell agent can be defined by extending the class
Cell — which functions as a base class for defining new cell types
—, and initializing its structure so as to contains a specific set
of cell phases.

An individual simulation step for a Cell agent accounts for:
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1. detecting the structural changes occurred in the membrane,
given the current neighbourhood of the cell

2. updating accordingly the part of the inner state which is
affected by the execution of the triggered reactive rules

3. collecting the perceptions generated by such updates

4. checking all the proactive rules and executing the ones that
are triggered, according the current set of perceptions and
the inner state of the cell

• Niche class, which represents a niche inside the system, that is
an environment part (artifact) inside the MAS. A Niche is re-
sponsible to manage the set of molecules, represented by the class
Molecule, which enable the interactions between the Cell agents
and the niche environment. Also, the Niche defines and control
the spatial property and topology of the space of the environ-
ment where the cells (and the molecules) are immersed, enabling
and constraining cell (agents) and molecules movements.

Besides these classes which represent the most part of the model of the
simulator, the controller part is represented by the SimControllerAgent,
which is responsible to initialize and control the simulation execution,
moving on the simulation step by step and reacting to user commands,
triggered through the view part, that is the graphical user interface
(GUI).

The view part is composed by three main panels: the view panel
— implemented by the ViewPanel class — is used to provide a graph-
ical representation of the simulation state and evolution; the control
panel — implemented by the ControlPanel class — provides the
GUI controls that the user can trigger to interact and control the
simulation; and finally the inspection panel — implemented by the
InspectionPanel class — makes it possible to inspect the value of
parameters concerning the structure and dynamics of the simulation,
such as the current number of a certain type of a cell or of a molecule.
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Chapter 6

Modelling and Simulating
Hematopoietic Stem Cells
with Multi-agent Systems

Cells evolved originally as free living individuals, but the cells that
matter most to us, as human beings, are specialized members of a
multicellular community. They have lost features needed for indepen-
dent survival and acquired peculiarities that serve the needs of the
body as a whole. Although they share the same genome, they are
spectacularly diverse: more than 200 different types are traditionally
recognized in the human body. These collaborate with one others to
form a multitude of different tissues, arranged into organs performing
widely varied functions [3].

In this chapter we first describe the functions and lifestyle of a
specialized type of cells in the adult body of a vertebrate, blood cells.
In particular we are going to describe how new specialized cells born,
how they live and die.

Then we try to explain why a model of stem cell is useful for
understand their behaviour.
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6.1 Blood cell

Blood contains many types of cells with different functions , ranging
from the transport of oxygen to the production of antibodies. Some

TYPE OF CELL MAIN FUNCTIONS

Red blood cells (erythrocytes) Transport O2 and CO2

White blood cells (leucocytes)
Granulocytes

Neutrophils Phagocytose and destroy
invading bacteria

Eosinophils Destroy larger parasites and modulate
allergic inflammatory responses

Basophils Release istamine (and in some species
serotonin) in certain immune reactions

Monocytes Become tissue macrophages, which
phagocytose and digest invading
microorganisms and foreign bodies
as well as damaged senescent cells

Linfocytes
B cells Make antibodies
T cells Kill virus-infected cells and regulate

activities of other leucocytes
Natural killer Kill virus-infected cells and some
(NK cells) tumor cells

Platelets Initiate blood clotting

Table 6.1: The various type of blood cells and their functions, as reported
in [3]

of these cells function entirely with vascular system, while others use
the vascular system as a means of transport and perform their func-
tion elsewhere. All blood cells, however, have certain similarities in
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their life history. They all have limited life-span and are produced
throughout the life of the animal. Most remarkably, they are all gen-
erated ultimately from a common stem cell in the bone marrow. This
hempoietic (blood forming) stem cell is thus multipotent, giving rise
to all the types of terminally differentiated blood cells as well as some
other types of cells, such as osteoclasts in bone.

The classification of blood cells is shown in Table 5.1, with the
main functions of each of them.

6.2 Hematopoietic Stem Cell (HSC)

Before going in the details of hematopoietic stem cells, we are now
doing a brief introduction at the characteristics of a general stem cell.

6.2.1 Stem Cell Definition

A cellular population has to be self-renewing. It must therefore contain
some cells that generate a mixture of progeny, including daughters
that remain undifferentiate like their parent, as well as daughters that
differentiate. Cells with this property are called stem cells. They have
so a important role in such a variety of tissues that it is useful to have
a formal definition.

The defining properties of a stem cell are as follows:

1. it is not itself terminally differentiated (that is, it is not at the
end of a pathway of differentiation);

2. it can divide without limit (or at least for the lifetime of the
animal);

3. when it divides, each daughter has a choice: it can either remain
a stem cell, or it can embark on a course that commits it to
terminal differentiation.

Although it is a part of the definition of a stem cell that it should
be able to divide, it is no part of the definition that it should divide
rapidly; in fact, stem cells usually divide at a relative law rate. They
are required wherever there is a recurring need to replace differentiated
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cells that cannot themselves divide, and this includes a great variety
of tissues. Thus stem cells are of many types, specialized for the
genesis of different classes of terminally differentiated cells –epidermal
stem cells for epidermis, intestinal stem cell for intestinal epithelium,
hemopoietic stem cell for blood, and so on.

Each stem cell system nevertheless raises similar fundamental ques-
tions. What factors determine whether the stem cell divides or stays
quiescent? What decides whether a given daughter cell differentiates
or remains a stem cell? And where the stem cell can give rise to
more then one kind of differentiated cell –as in very often case– what
determines which differentiation pathway is followed?

Trying to respond, in part, at these questions, we are going to
explore in the next section the hematopoietic stem cell (HSC), which
is the best-characterized adult stem cell is.

6.2.2 Role of Hematopoietic Stem Cell

Each day the human body produces billions of new white blood cells,
red blood cells, and plates to replace blood cells lost to normal turnover
precesses as well as to illness or trauma.

All of the mature blood cells in the body are generated from a
relatively small number of hematopoietic stem cells and progenitors.
HSCs are able to generate every lineage found in the hematopoietic
system including red blood cells, platelets and a variety of lymphoid
and myeloid cells.

HSCs generate the multiple hematopoietic lineages through a suc-
cessive series of intermediate progenitors. These include common lym-
phoid progenitors (CLPs), which can generate only B, T, NK cells,
and common myeloid progenitors (CMPs) which can generate only
red cells, platelets, granulocytes, and monocytes. Downstream of the
CLPs and CMPs are more mature progenitors that are further re-
stricted in the number and type of lineages that they can generate.
Ultimately, terminally differentiated cells are produced that cannot di-
vide and undergo apoptosis after a period of time ranging from hours
(for neutrophils) to decades (for some lymphocytes). A summary of
the process of blood development is presented in Fig 5.1.

In this way, during homoeostasis, a proportion of stem cells are
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Figure 6.1: A summary of the process of blood development

expected to divide at least occasionally, to maintain a constant flow
of short-lived progenitors that can generate enough cells to replace
those that are constantly lost during normal turnover. This result is
obtain balancing asymmetric division results in sufficient self-renewal –
primitive cells– to sustain hematopoiesis throughout life and sufficient
differentiation to produce mature cells with specialized capabilities
necessary for blood. In this way, under homoeostatic conditions in
the adult, the number of tissue stem cells remains relatively constant,
despite the fact that they proliferate, because they not only self-renew
but also produce differentiated progeny.

During times of physiologic stress such as haemorrhage, it is hy-
pothesized that division may shift to more symmetric division favour-
ing differentiation to replenish necessary mature cell pools [4].

A variety of homoeostatic mechanisms allow blood cell production
to respond quickly to stress such as bleeding or infection and then
return to normal levels when the stress is resolved, as we are going to
explain in the next paragraph.

103



CHAPTER 6. MODELLING AND SIMULATING
HEMATOPOIETIC STEM CELLS WITH MULTI-AGENT

SYSTEMS

6.2.3 Hematopoiesis

The process of hematopoiesis involves a complex interplay between
the intrinsic genetic processes of blood cells and their microenviron-
ment. This interplay determines whether HSCs, progenitors, and ma-
ture blood cells remain quiescent, proliferate, differentiate, self-renew,
or undergo apoptosi. Intrinsic genetic processes are cell autonomous,
mechanisms possibly determined by developmental state. The spe-
cific microenvironment of stem cells has been historically called the
haematopoietic-inductive microenvironment or “stem-cell niche” [46].

All of the genetic and environmental mechanisms that govern blood
production operate by affecting the relative balance of these funda-
mental cellular processes. Under normal conditions, the majority of
HSCs and many progenitors are quiescent in the G0 phase of the cell
cycle; however, many of the more mature progenitors are proliferating
and producing mature offspring.

In the absence of any stresses, this is balanced by the rate of apop-
tosis in progenitors and mature cells. In the event of a stress such as
bleeding or infection, several processes occur. Stored pools of cells in
the marrow or adherent to the endothelium are quickly released into
the circulation in order to localize to the site of injury. Fewer pro-
genitors and mature cells undergo apoptosis. In addition, quiescent
progenitors and HSCs are stimulated by a variety of growth factors to
proliferate and differentiate into mature white cells, red blood cells,
and platelets. When the bleeding, infection, or other underlying stress
ceases and the demand for blood cells returns to normal, the anti-
apoptotic and proliferative processes wind down, blood cells are redis-
tributed back to their storage sites, and the kinetics of hematopoiesis
return to baseline levels [43].

6.2.4 Regulation of hematopoietic stem cell growth

Many of the different types of signals that are exchanged between stem
cells and niche cells, as well as some of the signalling pathways that
control stem cells maintenance, self-renewal and differentiation, have
recently been identified. Between them:

1. Colony Stimulating Factor 1 (Macrophage)
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Figure 6.2: Possible HSC fates

2. Colony Stimulating Factor 2 (Granulocyte-Macrophage)

3. Colony Stimulating Factor 3 (Granulocyte)

4. Erythropoietin

5. Interleukin 1

6. Interleukin 3

7. Interleukin 4

8. Interleukin 5

9. Interleukin 6

10. Interleukin 7

11. Interleukin 11

12. OPN

13. Transforming Growth Factor-beta
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6.2.5 Symmetric and asymmetric division in HSCs

We talk about both symmetric and asymmetric division. Let’s now
explain better their meaning.

Symmetric division

The vast majority of cell divisions are symmetrical, producing identical
daughter cells and leading (in the absence of apoptosis) to increased
numbers of cells, both generating two identical daughter cells with
stem-cell function or two differentiated daughter cells.

Asymmetric division

A single division of a HSC can result in the formation of both an
identical stem cell and a more highly mature cell. An individual stem
cell can give rise to two non-identical daughter cells, one maintaining
stem-cell identity and the other becoming a differentiated cell. There
are two mechanisms by which this asymmetry can be achieved, de-
pending on whether it occurs pre- (divisional asymmetry), or post-
(environmental asymmetry) cell division.

• Divisional asymmetry.

In divisional asymmetry, specific cell-fate determinants in the
cytoplasm (mRNA and/or proteins) redistribute unequally be-
fore the onset of cell division. During mitosis, the cleavage plane
is oriented such that only one daughter cell receives the determi-
nants. Therefore, two non-identical daughter cells are produced,
one retaining the stem-cell fate while the other initiates differ-
entiation.

• Environmental asymmetry.

An alternative way to achieve asymmetry is by exposure of the
two daughter stem cells to different extrinsic signals provided by
distinct local micro environments. Therefore, a stem cell would
first undergo a symmetric self-renewing division, producing two
identical daughter cells. While one daughter cell would remain
in the niche microenvironment, conserving its stem-cell fate, the
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other would contact (passively or actively) a different microen-
vironment that would no longer preserve its stem-cell phenotype
but would instead produce signals initiating differentiation.

6.3 Need of a model of stem cell

Stem cell research has been arguably the biggest growth area of med-
ical science in recent years. However, experiments are very limited
because it is not possible to track stem cells in the adult human body.
Even if you remove cells from the human body and look at them in
the laboratory you can only tell if you had some stem cells in your
original sample some weeks later when you see what the cells have
actually done. However, we do know what stem cells do at the system
level. They maintain the population of the various functional cells
in our bodies, they can maintain there own number, and can also re-
cover populations of stem and functional cells after disease, injury or
radiation theory [13].

So we know what the system of stem cells does functionally but we
do not have much idea of what happens at the level of individual cells
and this gives us a clear reason as to why we might want to model
and simulate systems of stem cells. Specifically we are interested in
relating the behaviour of the system (macro) to what happens at the
local cell (micro).

We don’t know whether the fate of stem cells is pre-determined or
stochastic, and whether the fate cells relies on their internal state, or
on extra-cellular micro-environmental factors.

Until quite recently it seems that many researchers that stem cell
fate was essentially pre-determined and that it was simply a matter
of time before a stem cell did what it was pre-programmed to do.
However, it is now reasonably clear that stem cell fate is a function of
the local interaction with its environment.

We summarize what we see are the key reasons for the systematic
development of formal models and simulations.

1. It is not possible to investigate how stem cells react by looking at
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dead tissue, and much stem cell research is based on observation
of dead, 2-D slides. Building simulations allows researchers to
test possible cell behaviours that can then be related back to
observable laboratory results.

2. In the adult stem cells cannot be distinguished morphologically
from other primitive non-differentiated cell types. It is there-
fore hard, if not impossible, to observe their behaviour in the
dynamic system of which they are a part.

3. The size and complexity of stem cell systems mean that without
simulation, it is not possible to consider the whole system. Sim-
ulations provide an important tool for understanding the global
behaviour of complex systems reacting agents.

4. There is no way to determine whether any individual isolated
cell is a stem cell, or, to be able to model what its potential be-
haviour might be. It is not possible to make any definite state-
ments about this cell. At best it can be tracked and its behaviour
observed though clearly any particular behaviour is simply one
of many possibly paths. The notion of a stem cell refers to the
wide-ranging set of potential behaviours that it might have, and
these are influenced by internal, environmental, and stochastic
processes. Simulations provide a way of determining which be-
haviours are essential to stem cells and which are incidental in
systems that have been studied in the laboratory.

5. the number of possible interactions and behaviours of a large
number of stem cells makes the system an extremely complex (in
all the senses described above) one. Theoretical simplifications
are therefore key to understanding fundamental properties.

6. When you consider experimental evidence you have seen only
one behaviour. This behaviour may have been one of many, and
it is the potential for cells to behave in certain ways that might
be key to defining them. Modelling and simulation is a much
more effective device for understanding “behavioural potential”
than looking at completed chains of events in the lab.
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7. Though our work has been explicitly concerned with modelling
the adult human body, it is clear that simulation does not in-
volve any ethical difficulties such as extracting stem cells from
an embryo in such a way that it is sacrificed.

8. And of course, simulation is cheap [14].

There have been several attempts to build formal models of these
theories, so that predictions can be made about how and why stem
cells behave either individually or collectively.

109



CHAPTER 6. MODELLING AND SIMULATING
HEMATOPOIETIC STEM CELLS WITH MULTI-AGENT

SYSTEMS

110



Chapter 7

A MAS-based Model for A
Hematopoietic Stem Cells
System

Following the abstract model proposed in the fifth chapter, in this
chapter a first model of a multiagent system representing a population
of hematopoietic stem cells is described and first results obtained by
running experiments on top of the simulator described in previous
chapter briefly discussed.

7.1 A MAS-based Model for Hematopoi-

etic Stem Cells

Recalling the methodology described in chapter two:

STEP 3. Design the model in two consecutive steps:

1. coarse level → model concept;

2. detailed, formal level → model specification;

Based on the abstract model described in the fifth chapter, in this sec-
tion we apply the model by defining a concrete model the a hematopoi-
etic stem cells system. The cellular population is composed by cells
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which are specified with a set of different phases that corresponds to
the differentiation steps of the stem cells.

The description of the hematopoietic stem cell — in the following
— is given in a bottom-up style: first we describe some individual
parts that are partially shared by cell phases, i.e. membrane proteins,
state variables, reactive rules, proactive rules; then, we describe the
the set of cell phase that characterise an homopoietic cell. Finally, we
specify how the hematopoietic cell is composed, by referring all the
parts.

7.1.1 Cell plasma membrane and membrane pro-
tein

The cell plasma membrane is the model collector of all the membrane
proteins which are responsible of the interaction with the cell environ-
ment (as everything out to the cell). The cell membrane is also the
collector of the stimuli which arise from the structural change of the
membrane proteins.

Identified the molecules or proteins which are in the perception
region of each cell, each protein of plasma membrane, depending on
its own state and on the free binding sites associated to this state, can
bind one ore more molecules and consequently make a transition in
an other state. At each state of the protein is associated the eventual
generation of one stimulus.

The following is the brief description of the membrane proteins
considered in our case study. For each protein, the name and some
basic information are reported: the number of binding sites, the type
of molecule or protein that can be bound by the binding sites (ligand),
the possible states of the protein, and the perceptions generated (P.g.)
by the protein when being in the specified states.

1. CD44

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
1 BS OPN s0 = OPN bound → stimulus fired (P.g.)

s1 = OPN not bound
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2. Colony Stimulating Factor 1 receptor (Macrophage)

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
CSF1 BS M-CSF s0 = M-CSF bound → stimulus fired (P.g.)

s1 = M-CSF not bound

3. Colony Stimulating Factor 2 receptor(Granulocyte-Macrophage)

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
CSF2 BS GM-CSF s0 = GM-CSF bound → stimulus fired (P.g.)

s1 = GM-CSF not bound

4. Colony Stimulating Factor 3 receptor (Granulocyte)

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
CSF3 BS G-CSF s0 = G-CSF bound → stimulus fired (P.g.)

s1 = G-CSF not bound

5. Erythropoietin receptor

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
EPO Rec. BS Erythropoietin s0 = EPO bound → stimulus fired (P.g.)

s1 = EPO not bound

6. Interleukin 1 receptor

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
IL1 Rec. BS Interleukin 1 s0 = IL1 bound → stimulus fired (P.g.)

s1 = IL1 not bound
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7. Interleukin 3 receptor

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
IL3 Rec. BS Interleukin 3 s0 = IL3 bound → stimulus fired (P.g.)

s1 = Il3 not bound

8. Interleukin 4 receptor

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
IL4 Rec. BS Interleukin 4 s0 = IL4 bound → stimulus fired (P.g.)

s1 = IL4 not bound

9. Interleukin 5 receptor

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
IL5 Rec. BS Interleukin 5 s0 = IL5 bound → stimulus fired (P.g.)

s1 = IL5 not bound

10. Interleukin 6 receptor

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
IL6 Rec. BS Interleukin 6 s0 = IL6 bound → stimulus fired (P.g.)

s1 = IL6 not bound

11. Interleukin 7 receptor

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
IL7 Rec. BS Interleukin 7 s0 = IL7 bound → stimulus fired (P.g.)

s1 = IL7 not bound

12. Interleukin 11 receptor
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Binding Sites (BS) Ligand State & Stimuli (Perceptions)
IL11 Rec. BS Interleukin 11 s0 = IL11 bound → stimulus fired (P.g.)

s1 = IL11 not bound

13. Jagged

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
Jagged BS Notch BS s0 = Notch bound → stimulus fired (P.g.)

s1 = Notch not bound

14. Kit

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
Kit BS Kit Ligand s0 = SCF bound → stimulus fired (P.g.)

s1 = SCF not bound

15. N-cadherin

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
N-cadherin BS N-cadherin BS s0 = N-cadherin bound → adhesion

s1 = N-cadherin not bound

16. Notch

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
Notch BS Jagged BS s0 = Jagged bound → stimulus fired (P.g.)

s1 = Jagged not bound

17. Kit Ligand

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
Kit Ligand BS Kit BS s0 = Kit bound → stimulus fired (P.g.)

s1 = Kit not bound
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18. TGFβ Receptor

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
TGF Rec BS TGFβ s0 = TGFβ bound → stimulus fired (P.g.)

s1 = TGFβ not bound

19. VLA4

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
VLA4 BS VCAM1 BS s0 = VCAM1 bound → stimulus fired (P.g.)

s1 = VCAM1 not bound

20. VCAM1

Binding Sites (BS) Ligand State & Stimuli (Perceptions)
1 BS TGFβ s0 = VLA4 bound → stimulus fired (P.g.)

s1 = VLA4 not bound

7.1.2 Cell State Variables

Following the abstract model, we define a set of state variables which
represent the expression level of different genes. Because the number
of gene in a human cell is about of 30.000 genes, and because we don’t
have the complete knowledge of which of them are involved in the
processes we are interested in, we abstract by the specific gene involved
introducing a set of “virtual genes”. Each one of these virtual genes
represents the set of genes (or, analogously the translated protein)
which are responsible of a specific process. The value of a state variable
ranges between 0 and 1. When the value reaches the maximum value,
the corresponding process is triggered and can start. Currently, each
process is realised as a set of proactive rules.

• APOPTOSIS State Variable:

This variable represents all the genes involved in the apoptosis
process, that is a process of deliberate life relinquishment by a
cell in a multicellular organism.
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• DIFFERENTIATION State Variables:

The great differences among cells in an organism result from the
selective expression of genes. This is the reason why, during
the differentiation processes, different genes must be activated
in different cells at different times. Each cell type has a different
pattern of turned genes: particular cells express particular genes
for specialized proteins. This suggests that in order for cells to
differentiate – to become different from one another – certain
genes must somehow be activated, while others remain inactive.

With this variable we identify all the genes which are specific
for the development of a cell in a specific pattern. We have in
this way a differentiation state variable for each of the different
phases of the cell (e.g. DIFFe for Erythrocyte, or DIFFgemm
fro CFU-GEMM phase ans so on).

• QUIESCENCE State Variable: This variable is representative
for those genes which leavethe cell in the G0 phase of the cell
cycle; quiescence is the state of a cell when it is not dividing.

• SENESCENCE State Variable: This variable is representative
for that genes which are responsible for the cellular senescence.
Cellular senescence is the phenomenon where cells lose the abil-
ity to divide. Cellular senescence is a state that occurs in re-
sponse to DNA damage or degradation that would make a cell’s
progeny nonviable; it is often a biochemical alternative to the
self-destruction of such a damaged cell by apoptosis.

• Symmetric DIVISION State Variable:

This variable is representative for that genes which are respon-
sible for the beginning of the cell cycle whose last small segment
causes the cell division. Cell division is the process by which a
cell, called the parent cell, divides into two cells, called daughter
cells.

• Asymmetric DIVISION State Variables:

Some kinds of stem cells are thought to undertake asymmetric
cell division, generating one daughter cell that remains a stem
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cell and one daughter cell that differentiates. For Hematopoietic
Stem Cells, however, whether asymmetric cell division occurs
during self-renewal is not known with certainty. It is instead pos-
sible that hematopoiesis occurs via symmetrical divisions, that
sometimes give rise to two daughter HSC, and that at other times
give rise to progeny that are committed to differentiate. The bal-
ance between self-renewal versus differentiation would therefore
be regulated by the control of these two kinds of symmetrical
cell division.

7.1.3 Reactive Rules

A reactive rule is easily defined specifying: (i) one or more stimuli
(perceptions) that trigger it, (ii)the target state variable (SV) whose
value has to be updated (representing the gene expression level, which
is changed because of the signal-transduction pathway), (iii) the “up-
dating force”, that is amount of the update. Here it follows a set of
reactive rules. Some rules are omitted because off their strong analogy
and similarity with other cited. Some other

1. Stimulus N-cadherin BOUND → QUIESCENCE SV ((+)value)

2. Stimulus VCAM1 BOUND → QUIESCENCE SV ((+)value)

3. Stimulus OPN BOUND → QUIESCENCE SV ((+)value)
APOPTOSIS SV ((+)value)

4. Stimulus IL1 BOUND → Sym DIVISION SV ((+)value)

5. Stimulus IL3 BOUND → Sym/Asym DIVISION SV ((+)value)

6. Stimulus IL7 BOUND → Sym/Asym DIVISION SV ((+)value)

7. Stimulus EPO BOUND → Sym/Asym DIVISION SV ((+)value),
Ery

8. Stimulus GM-CSF BOUND→ Sym/Asym DIVISION SV ((+)value),
(Neut,Macr)
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7.1.4 Proactive Rules

As for the abstract model proposed we defined a set of proactive rule
which are triggered depending on the cell agent state, i.e. when one
or more state variables reach a specific value.

Apoptosis Proactive Rule

This proactive rule is triggered when the APOPTOSIS state variable
reach the one value. When fired, it execute the action of die().

Differentiation Proactive Rule

This proactive rule is triggered when a DIFFERENTIATION vari-
able versus a specific phase reach the one value. Once it is triggered
the differentiation process starts. It ends with the transformation of
the cell from one phase to the target phase associated to the specific
DIFFERENTIATION state Variable.

Produce Molecule Proactive Rule

This rule implements the production of the molecules of the desired
type, in the desired number.

Symmetric Division Proactive Rule

This proactive rule models the cellular behaviour during the cell-
division cycle. The cell cycle consists of several phases. In the first
phases G1, the cell growth and become larger. When it was reached
a certain size it enters in the next phase S, in which DNA synthesis
takes place. The cell duplicates its hereditary material and a copy
of each chromosome is formed. During the next phase G2, the cell
check that DNA-replication is complete and prepares for cell division.
Chromosomes are separated in the next phase M and the cell divides
in two daughter cells. After division the cells are back in G1.

It is essential that the different phases are precisely coordinated.
The phases must follow in correct order, and one phase must be com-
pleted before the next phases can begin.
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Our modelled rule of division is so composed by 5 different proac-
tive rules, each for each different phase of the cell cycle. We have:

1. Symmetric Division Proactive Rule phase G1

2. Symmetric Division Proactive Rule phase S

3. Symmetric Division Proactive Rule phase G2

4. Symmetric Division Proactive Rule phase Mitosis

5. Symmetric Division Proactive Rule phase Cytokinesis (cytoplasm
physical division)

The first rule is triggered every time that the SYMMETRIC DIVI-
SION state variable exceeds the value 1. It launches the division
process. The next rules are triggered every time that the control’s
conditions are verified, so as to model the precise coordination and
control among the different phases of the cell cycle. The control’s
conditions are also modelled through state variables which represent
that gene/proteins necessarily express in the different phases.

Cells that have temporarily or reversibly stopped dividing are said
to have entered a state of quiescence called G0 phase, while cells that
have permanently stopped dividing due to age or accumulated DNA
damage are said to be senescent. We model the first cell state with
the state variable of QUIESCENCE, which has value 1 in phase G0.
To enter in the division process through the phase G1, this variable
has to have a value minor or equal to 0, representing that the cell is
no more in a state of quiescence. And finally we model with an other
state variable of SENESCENCE equal to one the concept that the cell
can no more divide.

Asymmetric Division Proactive Rule

We have also modelled the process of asymmetric division. It is really
similar to the rule of symmetric division, and it develops along four
different steps:

1. Asymmetric Division Proactive Rule step 1
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2. Asymmetric Division Proactive Rule step 2

3. Asymmetric Division Proactive Rule step 3

4. Asymmetric Division Proactive Rule step 4

The last step has a consequence to produce two cells: one becomes
differentiated in the target phase and the other becomes equal to the
original cell.

Change Direction Proactive Rule

This rule implements the movement of the cell, individuating step by
step a casual new directions of the velocity vector.

7.1.5 Cell Phases

The phase that we have considered in our model are indicated in Fig-
ure 7.1. Note that some complexity is omitted from the diagram. The
complete diagram can be found in [2]. Lymphocytes come from Lym-
phoid line, while granulocytes, monocytes, megakaryocytes, and ery-
throcytes come from Myeloid line. Among myeloid cells, granulocytes
and monocytes/macrophage have a common precursor, CFU-GM.

Each phase is identified by:

1. a name

2. a shape (which include also dimension and colour)
[shape(name,width,height,colour)]

and is composed by a set of:

1. proteins
[protein(name, number)];

2. state variables
[state variable(name, initial value)];

3. of reactive rules
[reactive rule(triggering STIMULUS,(target variable(∆ Value)))];

4. of proactive rules
[proactive rule(name,(parameters))].
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Figure 7.1: Diagram of Hematopoietic Stem Cell Lineage

Hematopoietic Stem Cell Phase

We define here the specific components of the HSC are the precursor
cells which give rise to all the types of both the myeloid and lymphoid
lineages. The others are obviously different in the type and number
of proteins, in the description of reactive and proactive rules. We
omitted these particulars for not making this model presentation too
heavy.
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shape(round,0.1,0.1,grey)

protein(CD44,x)

protein(IL1receptor,x)

protein(IL3receptor,x)

protein(IL6receptor,x)

protein(IL7receptor,x)

protein(Kit,x)

protein(N_cadherin,x)

protein(Notch,x)

protein(VLA4,x)

state_variable(DIFFERENTIATION,0.0)

state_variable(symDIVISION,0.0)

state_variable(asymDIVISION,0.0)

state_variable(APOPTOSIS, 0.0)

state_variable(ADHESION, 1.0)

state_variable(QUIESCENCE, 1.0)

reactive_rule(STIM_Jagged_BOUND,

(symDIVISION(0.005),QUIESCENCE(-0.005),DIFFERENTIATION(-0.05)))

reactive_rule(STIM_N_cadherin_BOUND,(QUIESCENCE(0.005)))

reactive_rule(STIM_SCF_BOUND,

(symDIVISION(0.005),QUIESCENCE(-0.005),APOPTOSIS(-0.005)))

reactive_rule(STIM_VCAM1_BOUND,(QUIESCENCE(0.05)))

reactive_rule(STIM_OPN_BOUND,(QUIESCENCE(0.05),APOPTOSIS(0.005)))

reactive_rule(STIM_IL1_BOUND,

(symDIVISION(0.005),QUIESCENCE(-0.005),DIFFERENTIATION(0.001)))

reactive_rule(STIM_IL3_BOUND,(asymDIVISION(0.05),QUIESCENCE(-0.005)))

reactive_rule(STIM_IL6_BOUND,

(symDIVISION(0.005),QUIESCENCE(-0.005),DIFFERENTIATION(0.0005)))

reactive_rule(STIM_IL7_BOUND,(asymDIVISION(0.05),QUIESCENCE(-0.05)))

proactive_rule(ApoptosisProactiveRule)

proactive_rule(SymDivisionProactiveRule)

proactive_rule(AsymDivisionProactiveRule,PH_CMP)
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proactive_rule(AsymDivisionProactiveRule,PH_CLP)

proactive_rule(DiffProactiveRule,PH_CMP)

proactive_rule(ChangeDirProactiveRule,0.001)

proactive_rule(QuiescenceProactiveRule);

7.2 Preparing and Executing Virtual Ex-

periments

STEP 4. Select output values and measurements.
STEP 5. Select simulation software.
STEP 8. Identify and do useful experiments.

First Experiment

It is now generally accepted that all blood cells are made from a rel-
atively few uncommitted cells which are capable of mitosis and of
differentiation into committed precursors of each of the main types of
blood cell. In this first experiment, we start with a single stem cell
and we verify that the cell properly reacts to all the different kind of
stimuli, executing the right actions.

From the execution of the experiment we verified — as expected
— that an individual cell stem, even if equipped with all the pro-
tein membranes, keeps quiescent, starts the symmetric / asymmetric
division and follows a specific path of the lineage depending on the
molecules that are found in the niche.

In particular we show here what happen if we compose the envi-
ronment with molecules of Interleukin 3 and Erythropoietin [Figure
7.2].
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Figure 7.2: Simulation Snapshot 1

The expected behaviour is the final production of a set of Erythro-
cytes passing through the intermediate phases of Colony forming units
(pink), Colony forming Unit-GEMM (light red) and Colony Forming
Unit-E (dark red) [Figure 7.3].

Figure 7.3: Simulation Snapshot 2

When the mature cells are produced they pass in the blood niche
and starts to produce TGFβ (the yellow molecules) which inhibit the
division of CMP while accelerate the differentiation of CFU-GEMM
and CFU-E, so that the number of Erythrocytes does not become too
high [Figure 7.4].
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Figure 7.4: Simulation Snapshot 3

Finally, when the Erythrocytes die, they produce IL3 and EPO so
that reactivate the progenitor and maintain the set of red blood cells
essential for the organism life. With these consecutive steps we have

Figure 7.5: Simulation Snapshot 4

modelled the mechanisms of feedback control and regulation.

Second Experiment

In this second experiment, again we start with a single HSC, situated
in a niche containing all the types of molecules as in the real case. In
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this case we can observe that – as expected – different kind of mature
cells are finally generated, since the choice of the lineage path to follow
is not deterministic, since the same signalling molecule can trigger the
division along multiple paths.

Third Experiment – normal turnover

In this third experiment, we introduce a second niche, representing
the blood. The blood niche functions as collector of all the mature
cells, which are meant to migrate from the niche to the blood and then
be spread over other niches (tissues). For each cell a maximum life-
time is specified: when a mature cell dies, it produces some signalling
molecules that trigger its production in the bone marrows, which func-
tions as a pool containing (not mature) hematopoietic stem cell. By
executing the experiment, we can observe the turnover of the cells.

Fourth Experiment – hypoxia

This experiment explores the behaviour of the cell system reacting to
a global condition mimicking some kind of physiological abnormality.
We can observe an emergent behaviour of the cell population in the
overall that finally results in removing the abnormality, bringing back
the system to a normal situation.

As a specific example, we consider Erythropoiesis, which is is stim-
ulated by hypoxia (lack of oxygen). The lack of oxygen does not act
directly on the hemopoietic tissues, but instead stimulates the pro-
duction of a hormone, erythropoietin. This hormone then stimulates
hemopoietic tissues to produce red cells. Erythropoietin is a glycopro-
tein. It is inactivated by the liver and excreted in the urine. It is now
established that erythropoietin is formed within the kidney by the ac-
tion of a renal erythropoietic factor erythrogenin on plasma protein,
erythropoietinogen.

Fifth Experiment – disease response

The last experiment investigates the system dynamics in the case of
a physiological condition of disease, represented in particular by the
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presence of an infection. The hematopoietic cell system is triggered
so as to activate a large number of white blood cells.

7.3 Calibrating and Analysing the Results

Following the methodology, last points of the overall process consist
in:

STEP 7. Calibrate system and bug fixing;
STEP 9. Analyse simulation results.

For the former point, the model adopted makes it possible to calibrate
the system by:

• acting on the local properties and parameters of the individual
parts, in particular by tuning the structure and behaviour of the
cell agents. Examples of this kind of calibration includes tuning
the number of membrane proteins, changing the behaviour of
the proactive rules, tuning the timings taken by a cell to realise
some kind of process.

• acting on the environment, by tuning the number of molecules
— and possibly of cells — contained in the niches.

For the latter point, the virtual laboratory application — that is, the
simulator — makes it possible to dynamically observe and analyse the
evolution of the systems dynamics both from a qualitative point of
view, through visualisation, and from a quantitative point of view,
making it dynamically inspectable the numerical value of some basic
parameter, such as the number of cells of a certain kind contained in
the niche in a specific moment.
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Conclusions

The objective of this master thesis was twofold: on the one side, to
investigate the adoption of multi-agent systems as an approach for
modelling and simulating complex biological systems, and as a mean
to realise the methodological principles suggested by Systems Biol-
ogy; on the other side, to experiment concretely the approach, by
introducing a first model based on a multi-agent system to model the
dynamics of systems of cells interacting inside some niches, taking as
a reference case study the hematopoietic cell stems system, and by
developing a basic computational tool for supporting the execution of
proper simulations. The tool is meant to work as a kind of virtual labo-
ratory, on top of which kinds of virtual experiments can be performed,
characterised by the definition and execution of specific models im-
plemented as MASs, so as to support the validation, falsification and
improvement of the models through the observation and analysis of
the simulations.

First of all, the results achieved have confirmed the effectiveness
of multi-agent systems as a tool for modelling and simulating such
complex systems as the ones focussed by this thesis, that is biological
systems, cell systems in particular. Differently from traditional mod-
elling approaches, which account for the a-priori formulation of the
global laws that govern systems’ evolution, the approach presented in
this thesis starts from modelling the behaviour of the individual parts
of the system and their interaction, obtaining the global properties as
emergent properties of system execution, observable a-posteriori. In
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the specific case study considered in chapter seven, the global proper-
ties of the behaviour of the hemapoietic stem cell system emerge from
the behaviour of the individual stem cells and their interaction within
the bone marrow and blood niches, and can be observed by execut-
ing the multi-agent systems modelling the cell population, executing
the simulation. This makes the approach an effective complimentary
tool to be used with traditional approaches, useful to investigate those
aspects that are not directly captured by those approaches, such as
individual behaviours, interactions, strong non-linearities, emergent
behaviours and properties.

Then, the results achieved show that the specific MAS model in-
troduced for modelling cell populations and the related computational
tool for executing the simulations — the virtual laboratory, imple-
mented on top of the Java language and platform —have been quite
effective and flexible in supporting the implementation and execu-
tion of virtual experiments. In particular, the tools, in spite of their
simplicity, provide a first concrete support for scientist / biologist /
engineer users to (i) describing the behaviour of the individual parts
and their interaction quite intuitively, adopting a basic set of quite
powerful high-level abstractions, reducing the gap between the real
system to be modelled and the virtual counterpart; (ii) formulating
models — by integrating hypothesis and experimental data — using
different levels of detail, which can be refined incrementally, as soon
as new knowledge and hypothesis are available; (iii) exploiting a sim-
ulation environment that gives full control on the simulation, making
it possible not only to observe but also interact with the simulated
system in execution, changing — for instance — the structure of the
system by introducing or removing molecules in niches, dynamically.
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[24] F. Klügl and E. Norling. Agent-based Simulation: Social Science
Simulation and Beyond. Technical report, The Eighth European
Agent Systems Summer School (EASSS 2006), Annecy, July 2006.
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