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“DI COSTUI ALMENO IO SONO PIÚ SAPIENTE;
PUÓ BEN DARSI CHE NÉ LUI NÉ IO SAPPIAMO NIENTE DI BELLO E BUONO,

MA EGLI CREDE DI SAPERE NON SAPENDO,
IO INVECE NON SO, E NON CREDO DI SAPERE;

PARE DUNQUE CHE, ANCHE PER QUESTA PICCOLA COSA,
IO SIA PIÚ SAPIENTE DI COSTUI,

PERCHÉ NON RITENGO DI SAPERE QUELLO CHE NON SO. ”

Platone, “Apologia di Socrate”, Cap. VI.





PREFACE

In this work we derive closed-form pricing formulas for vanilla options on the CBOE VIX
Index by suitably approximating the volatility process risk-neutral density function. We ex-
ploit and adapt the idea, which stands behind popular techniques already employed in the
context of equity options such as Edgeworth or Gram-Charlier expansions, of approximating
the underlying process by an alternate (and more tractable) distribution in terms of a series
expansion. Jarrow and Rudd (1982) pioneered the density expansion approach to option pric-
ing, deriving an option pricing formula from an Edgeworth series expansion of the log-normal
probability density function to model the distribution of stock prices. Corrado and Su (1996)
adopted the Jarrow-Rudd framework and derived a similar option pricing formula where the
chief difference is that they employed a Gram-Charlier series expansion of the normal proba-
bility density function to model the distribution of stock log prices. A probability density func-
tion f can be represented as a Gram-Charlier series expansion in the following form:

f (x) =
+∞∑
k=0

ck Hk (x)z(x)

where z(x) is the normal density function, Hk (x) are Hermite polynomials of order k and the
coefficients ck are simple functions of the moments of the approximated distribution. More
recently, Drimus, Necula and Farkas (2013) developed a new option pricing formula by em-
bracing the Corrado and Su framework and employing a modified Gram-Charlier type A series
expansion, replacing the “probabilists” Hermite polynomials by the “physicists” Hermite poly-
nomials. These methodologies represent a valid alternative to the numerical integration tech-
niques to obtain an option price in case the distribution function is not analytically tractable,
but it may however be straightforward to estimate its moments. The aim of this thesis is to
modestly generalize these techniques to be adapted to the context of volatility options. Indeed
the expansions above-mentioned, which are successful in the context of equities, are not ap-
propriate for approximating volatility densities as their support lies in the whole real line. Thus
we propose an expansion based on a class of polynomials which are weighted by a Gamma dis-
tribution, instead of log-normal or Gaussian distributions, thus ensuring positive mass only in
the positive real line: the polynomials in question are the Laguerre polynomials. We call this
series expansion Gamma-Laguerre expansion and we write

f (x) =
+∞∑
k=0

ck Lk (x)φ(x)

where φ(x) denotes the Gamma density function, Lk (x) are Laguerre polynomials of order k
and the coefficients ck are now expressed in function of the characteristic function of the ap-
proximated volatility process risk-neutral distribution. The latter coefficients property more-
over makes our “approximation recipe” an alternative procedure to the classic inverse Fourier
transform methodology. The accuracy of this approximation is tested for the Heston model and
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closed-form pricing formulas for vanilla options on the VIX Index are developed for the Hes-
ton model as well as for the jump-diffusion SVJJ model, proposed by Duffie et al. (2000). Due
to the empirical evidence that prices essentially move by jumps, manifesting a discontinuous
behaviour, it is of interest to look at jump-diffusion models, such as the SVJJ model where both
the stock and the variance are Lévy processes. Indeed, while diffusion models cannot generate
sudden, discontinuous moves in prices, jump-diffusion models overlay continuous asset price
changes with jumps.

At the beginning of any chapter there is a very short introduction about the topics analyzed
therein. Here we want to give the outline of the thesis.

In Chapter 1 we review some of the main results on the risk-neutral derivative valuation frame-
work for continuous-time diffusion models. We show that, under this framework, the concept
of Equivalent Martingale Measure Q is an essential ingredient for valuation. Indeed the value of
a financial derivative corresponds, in mathematical terms, to the computation of the expected
value, under the risk-neutral measure Q, of the payoff, discounted at the risk-free interest rate.
Chapter 2 is devoted to the study of the class of Affine-Jump-Diffusion processes. We turn to-
wards applications of affine processes to the modeling of stochastic volatility, by presenting two
standard examples given by the Heston model and the SVJJ model. Finally, we derive explicit
expressions for the characteristic function under both the above-mentioned models.
In Chapter 3 we provide the definition of the CBOE VIX Index, from both the economical and
mathematical point of view. Once we have translated the VIX Index in probabilistic terms, we
provide shorthand forms for the VIX squared under the Heston model as well as the SVJJ model.
In Chapter 4 we describe in detail our approximation methodology, the Gamma-Laguerre ex-
pansion, and we provide some illustrative examples, based on the Inverse Gaussian distribu-
tion and the (simulated) Heston model distribution, to highlight the convergence of this ex-
pansion.
In Chapter 5 we give a brief exposition of the contracts on the VIX Index and we derive interest-
ing closed-form formulas for pricing them under the Heston model as well as the SVJJ model.
Chapter 6 contains the numerical tests of the pricing formulas provided in Chapter 5, based on
the Heston model.
Finally, the Appendix gathers some classical results in stochastic calculus and Lévy process the-
ory we consider relevant background material to the drafting of this thesis.



PREFAZIONE

In questo lavoro ricaviamo formule di prezzo per opzioni vanilla sull’indice CBOE VIX in
forma chiusa, approssimando opportunamente la funzione di densità neutrale al rischio del
processo di volatilià. Utilizziamo e adattiamo l’idea che risiede dietro popolari tecniche, già
impiegate nel contesto di opzioni sulle equity, come le espansioni di Edgeworth o di Gram-
Charlier, di approssimare il processo sottostante con una distribuzione alternativa (e più tratta-
bile) in termini di sviluppo in serie. Jarrow and Rudd (1982) hanno aperto la strada all’approccio
basato su espansioni di densità per prezzare opzioni, derivando una formula di prezzo da una
espansione in serie di Edgeworth della funzione di probabilità log-normale per modellare la
distribuzione dei prezzi stock. Corrado and Su (1996) hanno adottato il quadro presentato
da Jarrow e Rudd e derivato una simile formula di prezzo dove la principale differenza risiede
nell’aver utilizzato uno sviluppo in serie di Gram-Charlier della densità di probabilità normale
per modellare la distribuzione dei rendimenti logaritmici. Una funzione di densità di proba-
bilità f può essere rappresentata come uno sviluppo in serie di Gram-Charlier nella seguente
forma

f (x) =
+∞∑
k=0

ck Hk (x)z(x)

dove z(x) è la funzione di densità normale, Hk (x) sono i polinomi di Hermite di ordinek e i
coefficienti ck sono semplici funzioni dei momenti della distribuzione approssimata. Più re-
centemente, Drimus, Necula and Farkas (2013) hanno sviluppato una nuova formula di prezzo
abbracciando il contesto di Corrado e Su e utilizzando uno sviluppo in serie di Gram-Charlier di
tipo A modificato, sostituendo i polinomi di Hermite “probabilistici” con i polinomi di Hermite
“fisici”. Queste metodologie rappresentano una valida alternativa alle tecniche di integrazione
numerica usate per ottenere prezzi qualora la distribuzione non sia trattabile analiticamente,
ma comunque risulti semplice valutare i suoi momenti. Lo scopo di questa tesi è di generaliz-
zare, modestamente, queste tecniche cosicché possano essere adattate al contesto di opzioni
sulla volatilità. Infatti le espansioni di cui sopra, che sono soddisfacenti nel contesto di equity,
non sono appropriate per approssimare densità di volatilità in quanto supportate sull’intera
linea reale. Proponiamo pertanto un’espansione basata su una classe di polinomi pesati da una
distribuzione Gamma, anziché distribuzioni Gaussiane o log-normali, assicurando in questo
modo massa positiva solo sulla linea reale positiva: i polinomi in questione sono i polinomi di
Laguerre. Chiamiamo tale sviluppo in serie Espansione Gamma-Laguerre e scriviamo

f (x) =
+∞∑
k=0

ck Lk (x)φ(x)

dove φ(x) denota la funzione di densità Gamma, Lk (x) sono polinomi di Laguerre di ordine
k and i coefficienti ck sono ora espressi in funzione della funzione caratteristica della dis-
tribuzione neutrale al rischio del processo di volatilità che stiamo approssimando. Quest’ultima
proprietà riguardante i coefficienti dell’espansione inoltre rende la nostra “ricetta” di approssi-
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mazione una procedura alternativa alla classica metodologia basata sulla inversione della trasfor-
mata di Fourier. L’accuratezza della suddetta approssimazione è testata sul modello a volatil-
ità stocastica di Heston e formule di prezzo in forma chiusa sono sviluppate sia per il mod-
ello di Heston che per il modello diffusivo con salti, chiamato SVJJ, proposto da Duffie et al.
(2000). Data l’evidenza empirica che i prezzi si muovono sostanzialmente con salti, manifes-
tando un comportamento discontinuo, abbiamo trovato interessante anche trattare modelli di
diffusione con salti, come il modello SVJJ nel quale sia il sottostante che la sua volatilità sono
processi di Lévy. Infatti, mentre i modelli puramente diffusivi non possono generare repentini,
discontinui movimenti nei prezzi, i modelli diffusivi con salti sovrappongono continui cambi-
amenti di prezzi con salti.

All’inizio di ogni capitolo si trova una breve introduzione circa gli argomenti ivi analizzati. Qui
vogliamo fornire lo schema generale della tesi.

Nel Capitolo 1 esaminiamo alcuni fra i risultati principali della teoria di valutazione neutrale al
rischio di strumenti derivati in modelli a tempo continuo. Mostriamo come, in questo contesto,
il concetto di Misura Martingala Equivalente Q sia un ingrediente essenziale per la valutazione.
Infatti, il valore di un derivato finanziario corrisponde, in termini matematici, al calcolo del
valore atteso, rispetto alla misura neutrale al rischio Q, del payoff, scontato al tasso di interesse
privo di rischio.
Il Capitolo 2 è dedicato allo studio della classe di processi di salto diffusivi affini. Ci spostiamo
verso le applicazioni dei processi affini nella modellizzazione di volatilità stocastiche, presen-
tando due esempi classici dati dal modello di Heston e dal modello SVJJ. Infine, deriviamo
epressioni esplicite per la funzione caratteristica in entrambi i suddetti modelli a volatilità sto-
castica.
All’interno del Capitolo 3 forniamo la defizione di Indice CBOE VIX, sia dal punto di vista eco-
nomico che dal punto di vista matematico. Dopo aver tradotto l’indice VIX in termini proba-
bilistici, forniamo forme abbreviate per il quadrato del VIX sia nel modello di Heston che nel
modello SVJJ.
Nel Capitolo 4 descriviamo dettagliatamente la nostra metodologia di approsimazione, l’ es-
pansione Gamma-Laguerre, e forniamo qualche esempio illustrativo, basato sulla distribuzione
Inverse-Gamma e sulla distribuzione del modello di Heston (simulata), per sottolineare la con-
vergenza della suddetta espansione.
All’interno del Capitolo 5 forniamo una breve descrizione circa le opzioni sull’indice VIX e de-
riviamo formule in forma chiusa per valutarle, considerando sia il modello d Heston che il mod-
ello SVJJ.
Il Capitolo 6 contiene i test numerici delle formule di prezzo fornire nel precedente Capitolo 5,
basate sul modello di Heston.
Infine, l’Appendice raccoglie alcuni classici risultati di calcolo stocastico e analisi di processi di
Lévy che consideriamo materiale di supporto alla stesura di questa tesi.
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1
RISK-NEUTRAL PRICING AND

MARTINGALE MEASURES

Two important concepts in the mathematical theory of option pricing are the absence of arbi-
trage, which imposes constraints on the way instruments are priced in a market and the notion
of risk-neutral price, which represents the price of any derivative in an arbitrage-free market
as its discounted expected payoff at the risk-free interest rate under an appropriate probability
measure called the “risk-neutral” measure. Both of these notions are expressed in mathemati-
cal terms exploiting the concept of Equivalent Martingale Measure (EMM) which plays, in this
chapter, a central role: in a market model defined by a probability measure P on market sce-
narios there is a one-to-one correspondence between risk-neutral pricing that avoids the in-
troduction of arbitrage opportunities and risk-neutral probability measure Q, equivalent to P
verifying a martingale property. Since this chapter is intended as an introduction for the theory
of derivative pricing for continuous-time diffusion models, the proofs of the results we state are
omitted: for a complete treatment of the theory we refer to [15].

1.1 Model assumptions

First of all, we set the assumptions on the model that are going to hold in the rest of the
chapter. Thus, we consider a market whose possible evolutions between 0 and T are described
by a probability space P := (Ω,F,P ) and consisting of N risky assets, one non-risky asset and
d sources of risk that are represented by a d−dimensional correlated Brownian motion W =(
W 1, · · · ,W d

)
on the probability spaceP endowed with the Brownian filtrationFW

t = (
FW

t

)
t∈[0,T ]
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1.

Underlying assets may then be described by a stochastic process:

S : [0,T ]×Ω−→RN

(t ,ω) −→ (
S1

t (ω), · · · ,SN
t (ω)

)
where Si

t (ω) represents the price of the risky asset i at time t in the market scenario ω whose
dynamics is given by

dSi
t =µi

t Si
t d t +σi

t Si
t dW i

t , i = 1, · · · , N , t ∈ [0,T ]

with µi ∈ L1
loc and σi ∈ L2

loc. Concerning the non-risky asset B , we suppose it is a cash account
with fixed (risk-free) interest rate r fulfilling the following formula of continuous compounding

Bt = er t , B0 = 1, t ∈ [0,T ]

or, equivalently, in the “differential form”

dBt = r Bt d t .

Before going any further, it is good to briefly recall some notions about derivative instruments.
Discounting is done using the numeraire Bt : indeed, for any portfolio with value Vt , the dis-
counted value is defined by

Ṽt = Vt

Bt
.

An option with maturity T may be represented by specifying its terminal payoff H(ω) in each
scenario: since H is revealed at T , the payoff is a FT −measurable map

H :Ω−→R.

1.2 Change of measure

Definition 1.1. Let λ ∈ L2
loc be a d−dimensional process. We call exponential martingale asso-

ciated to λ the process

Zλ
t = exp

(
−

∫ t

0
λs ·dWs − 1

2

∫ t

0
|λs |2 d s

)
, t ∈ [0,T ].

1The natural filtration for W is defined by

F̃W
t =σ (Ws |0 ≤ s ≤ t ) :=σ

({
W −1

s (B)|0 ≤ s ≤ t , B ∈B
})

, t ∈ [0,T ] .

We call Brownian filtration, and we denote it by FW
t = (

FW
t

)
t∈[0,T ], the filtration defined as the natural filtration

completed by the collection of P-negligible events, i.e.

FW
t =σ

(
F̃W

t ∪N
)

where N = {
F ∈F|P (F ) = 0

}
. The choice of considering the filtration containing negligible events stems from the

need of avoiding the unpleasant situation in which W1 =W2 a.s., W1 is Ft -measurable but W2 fails to be so.



1.2 Change of measure 3

Remark 1.2. The exponential martingale associated to λ can be written in the “differential
form” as follows

d X λ
t := d ln(Zt )λ =−λt dWt − 1

2
|λt |2d t

whence, by employing the Itô formula A.2 to the process f (X λ
t ) = e X λ

t = Zλ
t , we get

d Zλ
t = d f = e X λ

t d X λ
t + 1

2
|λt |2e X λ

t d t

= e X λ
t (−λt ·dWt − 1

2
|λt |2d t )+ 1

2
|λt |2e X λ

t d t

=−Zλ
t λt ·dWt .

Therefore Zλ is a local martingale.

The following central theorem shows that it is possible to substitute “arbitrarily” the drift
of an Itô process by modifying properly the considered probability measure and Brownian mo-
tion, while keeping unchanged the diffusion coefficient.

THEOREM - 1.2.1 (Girsanov’s theorem).
Let Zλ be the exponential martingale associated to the process λ ∈ L2

loc. We assume that Zλ is a
P−martingale and we consider the measure Q defined by

dQ

dP
= Zλ

T .

Then the process

W λ
t =Wt +

∫ t

0
λs d s, t ∈ [0,T ],

is a Brownian motion on (Ω,F,Q, (Ft )).

THEOREM - 1.2.2 (Change of drift).
Let Q be a probability measure equivalent to P. The Radon-Nikodym derivative of Q with respect
to P is an exponential martingale

dQ

dP

∣∣∣
FW

t

= Zλ
t , d Zλ

t =−Zλ
t λt ·dWt

with λ ∈ L2
loc and the process W λ, defined by

dWt = dW λ
t −λt d t ,

is a Brownian motion on (Ω,F,Q, (FW
t )).

We now extend the previous result to the case of the correlated Brownian motion.

THEOREM - 1.2.3 (Change of drift with correlation).
If Q is a probability measure equivalent to P then there exists a process λ ∈ L2

loc such that

dQ

dP

∣∣∣
FW

t

= Zλ
t , d Zλ

t =−Zλ
t λt ·dWt .

Moreover, the process W λ, defined by

dWt = dW λ
t −ρλt d t ,

is a Brownian motion on (Ω,F,Q, (FW
t )) with correlation matrix ρ.
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Remark 1.3. Under the assumptions of Theorem 1.2.3, let X be an N -dimensional Itô process
of the form

d X t = bt d t +σt dWt .

Then the Q−dynamics of X is given by

d X t = (bt −σtρλt )d t +σt dW λ
t .

Again, we emphasize the fundamental feature of the change of measure: it only affects the drift
coefficient of the process X, whilst the diffusion coefficient (or volatility) does not vary.

1.3 Martingale measures

Definition 1.4. An Equivalent Martingale Measure (EMM) Q with numeraire B is a probability
measure on (Ω,P ) such that

(i) Q is equivalent to P, i.e.

P ∼Q ⇐⇒∀A ∈F, P (A) = 0 ⇔Q(A) = 0

namely that P and Q define the same set of (im)possible events.

(ii) The process of discounted prices

S̃t = e−r t St , t ∈ [0,T ]

is a Q−martingale. Therefore, in particular, the risk-neutral pricing formula

St = e−r (T−t )EQ [
ST |FW

t

]
holds.

Now we consider an EMM Q and we use Theorem 1.2.3, in the form of Remark 1.3, to find the
Q−dynamics of the price process. We recall that there exists a process λ = (λ1, · · · ,λd ) ∈ L2

loc
such that

dQ

dP

∣∣∣
FW

t

= Zt

where
d Zt =−Zt (ρ−1λt ) ·dWt , Z0 = 1. (1.1)

Moreover the process W λ = (W λ,1, · · · ,W λ,d ) defined by

dWt = dW λ
t −λt d t

is a Q−Brownian motion with correlation matrix ρ. Therefore, for i = 1, · · · , N , we have

dS̃i
t = (µi

t − rt )S̃i
t d t +σi

t S̃i
t dW i

t

= (µi
t − rt )S̃i

t d t +σi
t S̃i

t (dW λ,i
t −λi

t d t )

= (µi
t − rt −σi

tλ
i
t )S̃i

t d t +σi
t S̃i

t dW λ,i
t .
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Now we recall that an Itô process is a local martingale if and only if it has null drift (cf. Remark
A.6). Therefore, since Q is an EMM, the following drift condition necessarily holds:

λi
t =

µi
t − rt

σi
t

, i = 1, · · · , N . (1.2)

Finally we give the following

Definition 1.5. A market price of risk is a d−dimensional process λ ∈ L2
loc such that:

(i) the first N components of λ are given by (1.2);

(ii) the solution Z to the SDE (1.1) is a strict P−martingale.

1.4 Admissible strategies and arbitrage opportunities

Definition 1.6. A strategy (or portfolio) is a stochastic process in RN+1

(α,β) = (
α1

t , · · · ,αN
t ,βt

)
, t ∈ [0,T ]

such thatα,β ∈ L1
loc. In financial terms,αi

t (resp. βt ) represents the amount of the asset Si (resp.
bond) held in the portfolio at time t . The value of the portfolio (α,β) is the real-valued process

V (α,β)
t =αt ·St +βt Bt =

N∑
i=1

αi
t Si

t +βt Bt , t ∈ [0,T ] .

Definition 1.7. A strategy (α,β) is self-financing if

dVt =αt ·dSt +βt dBt . (1.3)

From a purely intuitive point of view, (1.3) expresses the fact that the instantaneous variation
of the value of the portfolio is caused uniquely by the changes of the prices of the assets, and
not by injecting or withdrawing funds from outside. Therefore, in a self-financing strategy we
establish the wealth we want to invest at the initial time and afterwards we do not inject or
withdraw funds.

Proposition 1.4.1. Let Q be an EMM and (α,β) a self-financing strategy such that

αiσi ∈ L2
loc(Ω,P ), i = 1, · · · , N (1.4)

then, Ṽ (α,β)
t is a Q−martingale. Therefore, in particular, the following risk-neutral pricing for-

mula
V (α,β)

t = e−r (T−t )EQ
[

V (α,β)
T |FW

t

]
, t ∈ [0,T ]

holds.

Definition 1.8. A self-financing strategy (α,β) such that Ṽ (α,β) is a Q−martingale for every
EMM Q, is called an admissible strategy. We denote by A the collection of all admissible strate-
gies.

Proposition 1.4.1 guarantees that the family A is not empty: indeed, any self-financing
strategy (α,β) verifying condition (1.4) is admissible. Moreover we have the following version
of the no-arbitrage principle.
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Proposition 1.4.2 (No-arbitrage principle).
If an EMM exists and (α,β), (α′,β′) are admissible self-financing strategies such that

V (α,β)
T =V (α′,β′)

T P −a.s.

then V (α,β) and V (α′,β′) are indistinguishable.

Proof. If Q exists and (α,β), (α′,β′) are admissible, then Ṽ (α,β) and Ṽ (α′,β′) are Q−martingales
with the same final value Q−a.s., because Q ∼ P . Hence

Ṽ (α,β)
t = EQ

[
Ṽ (α,β)

T

∣∣∣Ft

]
= EQ

[
Ṽ (α′,β′)

T

∣∣∣Ft

]
= Ṽ (α′,β′)

t

for every t ∈ [0,T ].

1.5 Arbitrage pricing

We now analize the problem of pricing of a European derivative.

Definition 1.9. A derivative X is called replicable if there is an admissible strategy (α,β) ∈ A

such that
X =V (α,β)

T P −a.s. (1.5)

where the random variable X represents the payoff of the derivative. An admissible strategy
(α,β) such that (1.5) holds, is called a replicating strategy for X.

Definition 1.10. The risk-neutral price of a European derivative X with respect to the EMM Q,
is defined as

HQ
t = e−r (T−t )EQ [

X |FW
t

]
, t ∈ [0,T ].

Next we introduce the collections of super and sub-replicating strategies:

A+
X =

{
(α,β) ∈A|V (α,β)

T ≥ X , P −a.s.
}

A−
X =

{
(α,β) ∈A|V (α,β)

T ≤ X , P −a.s.
}

For a given (α,β) ∈A+
X (resp. (α,β) ∈A−

X ), the value V (α,β)
0 represents the initial wealth sufficient

to build a strategy that super-replicates (resp. sub-replicates) the payoff X at maturity. The
following result confirms the natural consistency relation among the initial values of the sub
and super-replicating strategies and the risk-neutral price: this relation must necessarily hold
true in any arbitrage-free market, otherwise arbitrage opportunities could be easily created.

Lemma 1.5.1. Let X be a European derivative. For every EMM Q and t ∈ [0,T ] we have

sup
(α,β)∈A−

X

V (α,β)
t ≤ e−r (T−t )EQ [

X |FW
t

]≤ inf
(α,β)∈A+

X

V (α,β)
t .

Lemma 1.5.1 ensures that any risk-neutral price does not give rise to arbitrage opportuni-
ties since it is greater than the price of every sub-replicating strategy and smaller than the price
of every super-replicating strategy. By definition, HQ depends on the selected EMM Q; how-
ever, this is not the case if X is replicable. Indeed the following result shows that the risk-neutral
price of a replicable derivative is uniquely defined and independent of Q.
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THEOREM - 1.5.2. Let X be a replicable European derivative. For every replicating strategy
(α,β) ∈A and for every EMM Q, we have

Ht :=V (α,β)
t = e−r (T−t )EQ [

X |FW
t

]
.

The process H is called risk-neutral (or arbitrage) price of X.

The following result shows that, if the number of risky assets is equal to the dimension of
the underlying Brownian motion, i.e. N = d , then the market is complete and the martingale
measure is unique. Roughly speaking, in a complete market every European derivative X is
replicable and by Theorem 1.5.2 it can be priced in a unique way by arbitrage arguments: the
price of X coincides with the value of any replicating strategy and with the risk-neutral price
under the unique EMM.

THEOREM - 1.5.3. When N = d, the market model (S,B) is complete, that is every European
derivative is replicable. Moreover there exists only one EMM.

Example 1.11 (Heston model).
Heston [8] proposed the following stochastic volatility model:

dSt =µSt d t +p
vt St dW (1)

t (1.6)

d vt = k(v̄ − vt )d t +εpvt dW (2)
t (1.7)

where {St }t≥0, {vt }t≥0 are the price and volatility processes, respectively, and
{

W (1)
t

}
t≥0

,
{

W (2)
t

}
t≥0

are correlated Brownian motion processes (with correlation parameter ρ). {vt }t≥0 is a square
root mean reverting process, previously suggested by Cox, Ingersoll and Ross (1985) as a model
for the short rate dynamics in a fixed-income market, with long-run mean v̄ , and rate of rever-
sion k. ε is referred to as the volatility of volatility. All the parameters, namely µ,k, v̄ ,ε,ρ, are
time and state homogenous. Finally, the interest rate r is supposed to be constant. By the Itô
formula A.2, the solution of (1.6) is

St = S0 exp

(∫ t

0

p
vs dW (1)

t +
∫ t

0

(
µ− vs

2

)
d s

)
.

A market price of risk is a two-dimensional process λ= (λ(1),λ(2)) ∈ L2
loc such that

λ(1)
t = µ− rp

vt

while there is no restriction on the second component λ(2) except for the fact that Z must be a
martingale. If this is the case, we consider the corresponding EMM Q with respect to which the
process W λ, defined by

dWt = dW λ
t −λt d t = dW λ

t −
( µ−rp

vt

λ(2)
t

)
d t ,

is a two-dimensional Brownian motion. Thus the Q−dynamics are given by

dSt = r St d t +p
vt St dW (S)

t (1.8)

d vt =
(
k(v̄ − vt )−εpvtλ

(2)
t

)
d t +εpvt dW (v)

t
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where dW (S)
t := dW λ,(1)

t and dW (v)
t = dW λ,(2)

t . We remark that by taking the process λ(2) of the
form

λ(2)
t = avt +bp

vt

with some real constants a, b, the Q−dynamics of the volatility process reduces to

d vt = k̄(θ− vt )d t +εpvt dW (v)
t (1.9)

where

k̄ := k +εa, θ := kv̄ −εb

k +εa

and therefore v is a square root process under Q as well.

We note that while the drift in (1.8) must be r under any EMM with the cash account as nu-
meraire, we could use Girsanov’s Theorem to change the drift in (1.9) in infinitely many dif-
ferent ways without changing the drift in (1.8). This means that the EMM is not unique, there
are infinitely many EMM’s depending on the value of λ(2), thus, in view of Theorem 1.5.3, the
Heston stochastic volatility model is an incomplete model. This should not be too surprising
as there are two sources of uncertainty in the Heston model, W (S) and W (v), but only one risky
asset and so not every security is replicable. The implications are that the different EMM’s will
produce different option prices, depending on the value of λ(2): this, initially, poses a problem
but we remark that from the economical point of view, the price of risk λ is determined by the
market, namely, λ must be chosen on the basis of observations, by calibrating the parameters
of the model to the available data. Therefore, once λ and the corresponding EMM Q have been
selected, the risk neutral price of a derivative on S is defined as in Definition 1.10.



2
AFFINE JUMP-DIFFUSION PROCESSES

In this chapter we present Affine-Jump-Diffusion (AJD) processes and the Fourier transform
calculation that will later be useful in option pricing. This class consists of all jump-diffusion
processes, whose drift vector, covariance matrix and arrival rate of jumps all depend in an affine
way on the state process. The attractiveness of affine processes for Finance stems from sev-
eral reasons: firstly, a variety of models that have been proposed in the literature, and that are
used by practitioners, fall into the class of affine models. For instance, in the area of interest
rate models, prominent among affine models are the classical models of Vasicek [1977] and
Cox, Ingersoll, and Ross [1985]; in the realm of asset price modelling, the Black-Scholes model,
all exponential-Lévy models (cf. [3]), the model of Heston [1993], extensions of the Heston
model, such as Bates [1996] and Bates [2000] are all based on affine processes. Secondly, affine
processes exhibit a high degree of analytic tractability: the computation of the characteristic
function can be reduced to a system of Riccati equations, which have in many cases explicit
solutions. The explicit knowledge of the Fourier transform allows an analytical treatment of a
range of valuation problems: Fourier inversion methods can be employed as well as alternative
techniques, based on Fourier transform, such as the methodology provided by this work.

Let (Ω,F,P ) be a probability space endowed with an information filtration (Ft ). Suppose that
X = (X t )t∈[0,T ] is an Ft -adapted continuous process solving the stochastic differential equation

d X t =µ(t , X t )d t +σ(t , X t )dWt +d Zt (2.1)

where

• W is a d−dimensional Brownian motion on the filtered probability space (Ω,F,P, (Ft ))

• µ=µ(t , x) : [0,T ]×Rn −→Rn is the drift coefficient, µ(t , X t ) ∈ L1
loc

• σ=σ(t , x) : [0,T ]×Rn −→Rn×d is the diffusion coefficient, σ(t , X t ) ∈ L2
loc

• Z is a pure jump process whose jumps have a fixed probability distribution m and arrive
with intensity λ.
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Definition 2.1. We call Affine-Jump-Diffusion (AJD) process the stochastic process X = (X t )t∈[0,T ]

satisfying (2.1) such that the parameter functions µ,σ and λ are determined by coefficients
(K , H , l ) defined as follows:

• µ(t , x) = K0 +K1 · x, for K := (K0,K1) ∈Rn ×Rn×n

•
(
σ(x)σ(x)T

)
i j = (H0)i j + (H1)i j · x, for H := (H0, H1) ∈Rn×n ×Rn×n×n

• λ(x) = l0 + l1 · x, for l := (l0, l1) ∈R×Rn .

2.1 Two standard models

In this section we will look more closely at the most common affine one factor models, restrict-
ing our attention to the derivation of a closed-form expression for the Fourier transform.

2.1.1 Heston model

In the Heston stochastic volatility model, the risk-neutral dynamics for the joint process (S, v)
is given by {

dSt = r St d t +p
vt St dW (S)

t

d vt = k̄(θ− vt )d t +εpvt dW (v)
t

(2.2)

where W := (
W (S),W (v)

)
is a two-dimensional correlated Brownian motion, with correlation

parameter ρ, the constant parameters k̄,θ are responsible for a mean-reverting ability of the
process and ε is volatility of volatility vt . To ensure that the process v is strictly positive, the
parameters must obey the following condition

2k̄θ > ε2 (2.3)

known as the Feller condition. Furthermore, we assume that both the stochastic processes
(
p

vt )t and (St
p

vt )t belong to the class L2.

Starting from the dynamics (2.2) of the asset, by the Itô formula A.2, we can easily compute the
equivalent risk-neutral dynamics for the joint process (ln(S), v){

d ln(St ) = (
r − vt

2

)
d t +p

vt dW (S)
t

d vt = k̄(θ− vt )d t +εpvt dW (v)
t .

(2.4)

Furthermore, we shall prove that the discounted asset fulfills the martingale property: indeed,
by applying the Itô lemma to f (t ,St ) = e−r t St , we get

d f =−r e−r t St d t +e−r t dSt

=−r e−r t St d t +e−r t r St d t +e−r tpvt St dW (S)
t

= e−r tpvt St dW (S)
t

which corresponds to the following SDE:

e−r t St = S0 +
∫ t

0
e−rτSτ

p
vτdWτ.
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Now, by assumption (St
p

vt )t ∈ L2, then it follows that (e−r t St
p

vt )t ∈ L2 as well. Indeed we
have

E

[∫ T

0

(
e−r t St

p
vt

)2
d t

]
≤ E

[∫ T

0

(
St
p

vt
)2 d t

]
<+∞

since r and T are positive real constants. Therefore the discounted asset price is a martingale,
by means of the Theorem A.1.1.

Among stochastic volatility models, the Heston model exhibits the affine property. The follow-
ing result gives the formula for the Laplace transform in the Heston model:

Proposition 2.1.1 (Affine-type Laplace trasform).
Let LvT be the Laplace transform of vT , conditional on the filtration Ft with time to expiration
τ= T − t , i.e.,

LvT (z; t ,τ, vt ) = E
[
ez·vT

∣∣Ft ]

then, for every z ∈C,
LvT (z; t ,τ, vt ) = ea1(z,τ)+a2(z,τ)vt

where

a1(z,τ) = −2k̄θ

ε2 ln

(
1+ ε2z

2k̄

(
e−k̄τ−1

))
a2(z,τ) = 2k̄z

ε2z + (2k̄ −ε2z)e k̄τ
.

Proof. The Feynman-Kac theorem A.1.4 implies that LvT (z; t ,τ, vt ) is the solution of the (back-
ward) Cauchy problem {

∂
∂t LvT + k̄(θ− v) ∂

∂v LvT + 1
2ε

2v ∂2

∂v2 LvT = 0

LvT (z; t +τ,0, v) = ezv

that is {
− ∂
∂τLvT + k̄(θ− v) ∂

∂v LvT + 1
2ε

2v ∂2

∂v2 LvT = 0

LvT (z; t +τ,0, v) = ezv .
(2.5)

Following the solution procedure used by [6], we can solve this Cauchy problem in closed-form
by guessing that the affine-form solution is

LvT (z; t ,τ, v) = ea1(z,τ)+a2(z,τ)v . (2.6)

By substituting (2.6) into (2.5), we obtain:

−ea1(z,τ)+a2(z,τ)v
(
∂

∂τ
a1(z,τ)+ v

∂

∂τ
a2(z,τ)

)
+ k̄(θ− v)ea1(z,τ)+a2(z,τ)v a2(z,τ)+ ε2v

2
ea1(z,τ)+a2(z,τ)v a2(z,τ)2 = 0

that is

ea1(z,τ)+a2(z,τ)v
(
− ∂

∂τ
a1(z,τ)+ k̄θa2(z,τ)

)
+ vea1(z,τ)+a2(z,τ)v

(
− ∂

∂τ
a2(z,τ)+ ε2

2
a2(z,τ)2 − k̄a2

)
= 0

whence we obtain two ordinary differential equations:{
∂
∂τa2(z,τ) =−k̄a2(z,τ)+ ε2

2 a2(z,τ)2

∂
∂τa1(z,τ) = k̄θa2(z,τ)
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with initial conditions {
a2(z,0) = z

a1(z,0) = 0.

Finally, the solutions to these ODEs are given bya2(z,τ) = 2k̄z
ε2z+e k̄τ

(
2k̄−ε2z

)
a1(z,τ) =−2k̄θ

ε2 ln
(
1+ ε2z

2k̄

(
e−k̄τ−1

))
hence the claim.

Corollary 2.1.2 (Affine-type characteristic function).
Let ψvT be the characteristic function of vT , conditional on the filtration Ft with time to expira-
tion τ= T − t , i.e.,

ψvT (ξ; t ,τ, vt ) = E
[

e iξ·vT

∣∣∣Ft

]
then, for every ξ ∈R,

ψvT (ξ; t ,τ, vt ) = ea1(iξ,τ)+a2(iξ,τ)vt

where

a1(iξ,τ) = −2k̄θ

ε2 ln

(
1+ ε2iξ

2k̄

(
e−k̄τ−1

))
a2(iξ,τ) = 2k̄iξ

ε2iξ+ (2k̄ −ε2iξ)e k̄τ
.

Proof. The claim follows by combining the following equivalence

ψvT (ξ; t ,τ, vt ) =LvT (z; t ,τ, vt )
∣∣∣

z=iξ

with Proposition 2.1.1.

Remark 2.2. It follows from Corollary 2.1.2 that if the Feller condition is fulfilled, thenψvT (ξ; t ,τ, vt )
belongs to the class L1. Moreover, if the condition

4k̄θ > ε2 (2.7)

holds, then ψvT (ξ; t ,τ, vt ) belongs to the class L2.

2.1.2 SVJJ model

The SVJJ model is the stochastic volatility model with simultaneous and correlated jumps in
price and volatility, firstly introduced by Duffie et al. (2000) [6]. Roughly speaking, it corre-
sponds to the Heston model with the addition of simultaneous and correlated jumps in both
the price and volatility processes. The joint process (S, v) is driven by the following dynamics

d X t =
(
r − vt

2 −λc
)

d t +p
vt dW (S)

t +d Z (S)
t

d vt = k̄(θ− vt )d t +εpvt dW (v)
t +d Z (v)

t

X t := ln(St )
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where W := (
W (S),W (v)

)
is a bidimensional correlated Brownian motion, with correlation pa-

rameter ρ and Z := (
Z (S), Z (v)

)
is a two-dimensional compound Poisson process with jump

times process Nt ∼ Poisson(λt ) and correlated jump size processes Y (S), Y (v), independent
from {Nt }t≥0 and with correlation parameter ρY

Z (S)
t =

Nt∑
i=1

Y (S)
i

Z (v)
t =

Nt∑
i=1

Y (v)
i .

The jump sizes in volatility are assumed to have an exponential distribution, i.e.

Y (v)
i ∼ Exp

(
1

µv

)
while jumps in asset log-prices are normally distributed conditionally on the realization of Y (v)

i ,
formally

Y (S)
i |Y (v)

i ∼N(µS +ρY Y (v)
i ,σ2

S).

Finally,

c = eµS+ 1
2σ

2
S

1−ρY µv
−1

is the compensator related to the jump component in the log-return process, that is the term
that ensures that the discounted asset process is a martingale. To do so, with the same notations
as above, let us compute the risk-neutral dynamics, under the general SVJJ model, of the asset
St . By applying the Itô formula A.3.2 to the process

f (X t ) = e X t = e ln(St ) = St

we get

d f =
(
r −λc − vt

2

)
e X t d t + vt

2
e X t d t +e X t

p
vt dW (S)

t + [
e X t−+∆X t −e X t−

]
= (r −λc)e X t d t +e X t

p
vt dW (S)

t +e X t−
[
e∆X t −1

]
whence

dSt = r St d t +St
p

vt dW (S)
t +St−

[
e∆X t −1

]−St cλd t

which corresponds to the following SDE

St = S0 +
∫ t

0
(r Ss − cλSs) d s +

∫ t

0
Ss
p

vsdW (S)
s + ∑

i≥1, Ti≤t
STi−

(
e∆Xi −1

)
. (2.8)

Furthermore, by using again Theorem A.3.2 to f (t ,St ) = e−r t St , we obtain

d f =−r e−r t St d t + (r St − cλSt )e−r t d t +e−r t St
p

vt dWt +
[
e−r t (St−+∆St )−e−r t St−

]
=−cλSt e−r t d t +e−r t St

p
vt dWt +

[
e−r t∆St

]
=−cλSt e−r t d t +e−r t St

p
vt dWt +

[
e−r t St−

(
e∆X t −1

)]
whence

d
(
e−r t St

)= e−r t St
p

vt dWt +
[
e−r t St−

(
e∆X t −1

)]− cλSt e−r t d t .

which corresponds to the following SDE

e−r t St = S0 +
∫ t

0
e−r sSs

p
vs dWs +

∑
i≥1, Ti≤t

e−r Ti STi−
(
e∆Xi −1

)−∫ t

0
cλSse−r s d s.
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Now, as we have already pointed out before, since the process
(
e−r sSs

p
vs

)
s≥0 belongs to L2, in

view of Theorem A.1.1, the process

S0 +
∫ t

0
e−r sSs

p
vs dWs

is a martingale. Therefore, in order to show that the discounted asset price is a martingale it
remains to prove that the process∑

i≥1, Ti≤t
e−r Ti STi−

(
e∆Xi −1

)−∫ t

0
cλSse−r s d s

is a martingale as well. By verifying that the compensator c is indeed the mean of the percentage

price jump size eY (S)
i −1, the claim easily follows from Theorem A.2.3.

Since the assumption
Y (S)

i |Y (v)
i ∼N(µS +ρY Y (v)

i ,σ2
S)

is equivalent to
Y (S)

i |Y (v)
i ∼ ρY Y (v)

i +N(µS ,σ2
S)

we have

E
[

eY (S)
i −1

]
=

∫
R

∫ +∞

0

(
eρY y+x −1

)
fExp(y) fN(x) d y d x

=
∫
R

∫ +∞

0
eρY y ex fExp(y) fN(x) d y d x −

∫
R

∫ +∞

0
fExp(y) fN(x) d y d x

(by Fubini’s theorem)

=
∫ +∞

0
eρY y fExp(y) d y

∫
R

ex fN(x) d x −
∫ +∞

0
fExp(y) d y

∫
R

fN(x) d x

=
∫ +∞

0
eρY y fExp(y) d y

∫
R

ex fN(x) d x −1

= eµs+ σ2
s

2

1−ρY µv
−1 = c

and this proves the claim.

An explicit formula for the Laplace transform exists, the SVJJ model being an affine model, and
it is stated in the following result.

Proposition 2.1.3 (Affine-type Laplace trasform).
Let LvT be the Laplace transform of vT , conditional on the filtration Ft with time to expiration
τ= T − t , i.e.,

LvT (z; t ,τ, vt ) = E
[
ez·vT

∣∣Ft ]

then, for every z ∈C,
LvT (z; t ,τ, vt ) = ea1(z,τ)+a2(z,τ)vt+a3(z,τ)

where

a1(z,τ) = −2k̄θ

ε2 ln

(
1+ ε2z

2k̄

(
e−k̄τ−1

))
a2(z,τ) = 2k̄z

ε2z + (2k̄ −ε2z)e k̄τ

a3(z,τ) = 2µvλ

2µv k̄ −ε2
ln

(
1+

(
ε2 −2µv k̄

)
z

2k̄
(
1−µv z

) (
e−k̄τ−1

))
.
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Proof. The Feynman-Kac theorem A.3.3 implies that LvT (z; t ,τ, vt ) is the solution of the (back-
ward) Cauchy problem{

∂
∂t LvT + k̄(θ− v) ∂

∂v LvT + 1
2ε

2v ∂2

∂v2 LvT +λ
∫
R

[
LvT (z; t ,τ, v + y)−LvT (z; t ,τ, v)

]
m(d y) = 0

LvT (z; t +τ,0, v) = ezv

that is{
− ∂
∂τLvT + k̄(θ− v) ∂

∂v LvT + 1
2ε

2v ∂2

∂v2 LvT +λE
[
LvT (z; t ,τ, v +Y (v))−LvT (z; t ,τ, v)|Ft

]= 0

LvT (z; t +τ,0, v) = ezv .
(2.9)

Following the solution procedure used by [6], we can solve this Cauchy problem in closed-form
by guessing that the affine-form solution is

LvT (z; t ,τ, v) = ea1(z,τ)+a2(z,τ)v+a3(z,τ). (2.10)

By substituting (2.10) into (2.9), we obtain:

−ea1(z,τ)+a2(z,τ)v+a3(z,τ)
(
∂

∂τ
a1(z,τ)+ v

∂

∂τ
a2(z,τ)+ ∂

∂τ
a3(z,τ)

)
+ k̄(θ− v)ea1(z,τ)+a2(z,τ)v+a3(z,τ)a2(z,τ)

+ε
2v

2
ea1(z,τ)+a2(z,τ)v+a3(z,τ)a2(z,τ)2 +λE

[
ea1(z,τ)+a2(z,τ)v+a3(z,τ)

(
ea2 Z (v) −1

)∣∣∣Ft

]
= 0

that is

ea1(z,τ)+a2(z,τ)v+a3(z,τ)
(
− ∂

∂τ
a1(z,τ)− ∂

∂τ
a3(z,τ)+ k̄θa2(z,τ)+λE

[
ea2 Z (v) −1

∣∣∣Ft

])
+vea1(z,τ)+a2(z,τ)v+a3(z,τ)

(
− ∂

∂τ
a2(z,τ)+ ε2

2
a2(z,τ)2 − k̄a2

)
= 0

whence we obtain three ordinary differential equations:
∂
∂τa2(z,τ) =−k̄a2(z,τ)+ ε2

2 a2(z,τ)2

∂
∂τa1(z,τ) = k̄θa2(z,τ)
∂
∂τa3(z,τ) =λE

[
ea2 Z (v) −1

∣∣∣Ft

]
with initial conditions 

a2(z,0) = z

a1(z,0) = 0

a3(z,0) = 0.

Finally, the solutions to these ODEs are given by
a2(z,τ) = 2k̄z

ε2z+e k̄τ
(
2k̄−ε2z

)
a1(z,τ) =−2k̄θ

ε2 ln
(
1+ ε2z

2k̄

(
e−k̄τ−1

))
a3(z,τ) = 2µvλ

2µv k̄−ε2 ln
(
1+ z(ε2−2µv k̄)

2k̄(1−µv z)

(
e−k̄τ−1

))
and this is precisely the assertion of the proposition.
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Corollary 2.1.4 (Affine-type characteristic function).
Let ψvT be the characteristic function of vT , conditional on the filtration Ft with time to expira-
tion τ= T − t , i.e.,

ψvT (ξ; t ,τ, vt ) = E
[

e iξ·vT

∣∣∣Ft

]
then, for every ξ ∈R,

ψvT (ξ; t ,τ, vt ) = ea1(iξ,τ)+a2(iξ,τ)vt+a3(iξ,τ)

where

a1(iξ,τ) = −2k̄θ

ε2 ln

(
1+ ε2iξ

2k̄

(
e−k̄τ−1

))
a2(iξ,τ) = 2k̄iξ

ε2iξ+ (2k̄ −ε2iξ)e k̄τ

a3(iξ,τ) = 2µvλ

2µv k̄ −ε2
ln

(
1+

(
ε2 −2µv k̄

)
iξ

2k̄
(
1−µv iξ

) (
e−k̄τ−1

))
.

Proof. The claim follows by combining the following equivalence

ψvT (ξ; t ,τ, vt ) =LvT (z; t ,τ, vt )
∣∣∣

z=iξ

with Proposition 2.1.3.



3
THE CBOE VOLATILITY INDEX - VIX

In 1993, the Chicago Board Options Exchange (CBOE) introduced the CBOE Volatility Index,
VIX, which was originally designed to measure the market’s expectation of the 30-day volatility
implied by at-the-money S&P 100 Index (OEX) 1 option prices. VIX soon became a benchmark
barometer of U.S. stock market volatility.

Ten years later, in 2003, trading of S&P 500 (SPX) options was more active, hence the VIX index
calculation was changed and based on the S&P 500 Index, the core index for U.S. equities. The
VIX index formula was altered to reflect a new way to estimate expected volatility by averaging
the weighted prices of SPX puts and calls over a wide range of strike prices.

On March 24, 2004, CBOE introduced the first exchange-traded VIX futures contract on its new,
all-electronic CBOE Futures Exchange. Two years later in February 2006, CBOE launched VIX
options, the most successful new product in Exchange history: in less than five years, the com-
bined trading activity in VIX options and futures has grown to more than 100,000 contracts per
day.

3.1 The VIX calculation step-by-step

Stock indexes, such as the S&P 500, are calculated using the prices of their component stocks.
Each index employs rules for selecting component options and a formula to calculate index
values. VIX is a volatility index comprised of options rather than stocks, with the price of each
option reflecting the market’s expectation of future volatility. Like conventional indexes, VIX
employs rules that govern the selection of component options and a formula to compute index
values.

1The Standard & Poor’s 100 Index is a capitalization-weighted index of 100 stocks from a broad range of indus-
tries. The component stocks are weighted according to the total market value of their outstanding shares. The
impact of a component’s price change is proportional to the issue’s total market value, which is the share price
times the number of shares outstanding. These are summed for all 100 stocks and divided by a predetermined base
value. The base value for the S&P 100 Index is adjusted to reflect changes in capitalization resulting from mergers,
acquisitions, stock rights, substitutions, etc. Index options on the S&P 100 are traded with the ticker symbol “OEX”.
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The generalized formula used in the VIX calculation is:

σ2 =
{

2

T

∑
i

∆Ki

K 2
i

er T Q(Ki )− 1

T

[
F

K0
−1

]2
}

(3.1)

where

σ
VIX

100
, i.e. VIX =σ×100

T Time to expiration

F Forward index level derived from index option prices

K0 First strike below the forward index level, F

Ki Strike price of the i th out-of-the-money option:

− a call if Ki > K0

− a put if Ki < K0

− both put and call if Ki = K0.

∆Ki Interval between strike prices: ∆Ki = Ki+1 −Ki−1

2
(Note. ∆K for the lowest strike is simply the difference between the lowest strike and

the next higher strike. Likewise, ∆K for the highest strike is the difference between the

highest strike and the next lower strike.)

r Risk-free interest rate to expiration

Q(Ki ) The midpoint of the bid-ask spread for each option with strike Ki .

Figure 3.1 below depicts the VIX Index between September 2010 and September 2014. By read-
ing the chart backwards we observe that by 2014 to early 2013 it tended to stay between 10 and
20; then it increased gradually until it spiked at over 40 in September and August 2011. By mid-
2011 it had declined to more normal levels, but in April 2010 it reached a spike of 40. By March
2010 it finally declined to lower levels.

Figure 3.1: The VIX index, September 2010 to September 2014.
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Hereafter we provide all the necessary information about the way the VIX Index is calcu-
lated.

The components of VIX are near- and next-term put and call options, usually in the first and
second SPX contract months. “Near-term” options must have at least one week to expiration;
a requirement intended to minimize pricing anomalies that might occur close to expiration.
When the near-term options have less than a week to expiration, VIX “rolls” to the second and
third SPX contract months. For the purpose of calculating time to expiration, SPX options are
deemed to expire at the open of trading on SPX settlement day - the third Friday of the month.
The VIX calculation measures time to expiration T in calendar days and divides each day into
minutes, indeed it is given by the following expression:

T =
{

MCurrent day +MSettlement day +MOther days
}

Minutes in a year

where

MCurrent day Minutes remaining until midnight of the current day

MSettlement day Minutes from midnight until 8:30 a.m. on the SPX settlement day

MOther days Total minutes in the days between current day and settlement day.

For example, if we assume that the near-term and the next-term options have 9 days and 37
days to expiration, respectively, using 8:30 a.m. as the time of the calculation T , the time for the
near-term and next-term options, denoted by T1 and T2, respectively, is calculated as follows

T1 = 930+510+11520

525600
= 0.0246575

T2 = 930+510+51840

525600
= 0.1013699.

The risk-free interest rate r is the bond-equivalent yield of the U.S. T-bill maturing closest to
the expiration dates of relevant SPX options. As such, the VIX calculation may use different
risk-free interest rates for near- and next-term options. In this example, however, we assume
that r = 0.38% for both sets of options.

Hereafter we present a representative sample of the VIX computation, the interim calculations
will be a repetition of it.

STEP 1 - Select the options to be used in the VIX calculation.

The selected options are out-of-the-money SPX calls and out-of-the-money SPX puts
centered around an at-the-money strike price, K0. Besides, only SPX options quoted with
non-zero bid prices are used in the VIX calculation.

For each contract month:

• Determine the forward SPX level F by identifying the strike price at which the ab-
solute difference between the call and put prices is smallest: the call and put prices
reflect the average of each option’s bid/ask quotation.
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In this example, the difference between the call and put prices is smallest at the
920 strike for both the near- and next-term options, thus using the put-call parity
formula

F = Strike price+erτ(Call price−Put price)

the forward index prices, F1 and F2 for the near- and next-term options, respec-
tively, are

F1 = 920+e0.0038×0.0246575(37.15−36.65) = 920.50005

F2 = 920+e0.0038×0.1013699(61.55−60.55) = 921.00039.

• Determine K0, the strike immediately below the forward index level F for the near-
and next-term options. In this example K0,1 = K0,2 = 920.

• Select out-of-the-money put options with strike smaller than K0. Start with the put
strike immediately lower than K0 and move to successively lower strike prices, ex-
cluding any put options that have a bid price equal to zero. Finally, once two puts
with consecutive strike prices are found to have zero bid prices, no puts with lower
strikes are considered.

Then, select out-of-the-money call options with strike greater than K0. Start with
the call strike immediately higher than K0 and move to successively higher strike
prices, excluding any call options that have a bid price equal to zero. Equally to the
puts, once two calls with consecutive strike prices are found to have zero bid prices,
no calls with higher strikes are considered.
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Finally, select both the put and call with strike price K0. The K0 put and call prices
are averaged to produce a single value. In our example, the price used for the 920
strike in the near-term and in the next-term are, respectively,

(37.15+36.65)/2 = 36.90

(61.55+60.55)/2 = 61.05.

STEP 2 - Calculate volatility for both near-term and next-term options.

Applying the VIX formula (3.1) to the near-term and next-term options with time to expi-
ration of T1 and T2, respectively, yields:

σ1
2 = 2

T1

∑
i

∆Ki

K 2
i

er T1Q(Ki )− 1

T1

[
F

K0
−1

]2

σ2
2 = 2

T2

∑
i

∆Ki

K 2
i

er T2Q(Ki )− 1

T2

[
F

K0
−1

]2

VIX is an amalgam of the information reflected in the prices of all of the selected options.
The contribution of a single option to the VIX value is proportional to ∆K and the price
of that option, and inversely proportional to the square of the option’s strike price.
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In our example the contribution of the near-term 400 Put is given by:

∆K400 Put

K 2
400 Put

er T1Q(400Put) = 25

4002 e0.0038×0.0246575 ×0.125 = 0.0000195

and a similar calculation is performed for each option. The resulting values for the near-
term options are then summed and multiplied by 2

T1
. Likewise, the resulting values for

the next-term options are summed and multiplied by 2
T2

. The table below summarizes
the results for each strip of options.

Next, we calculate 1
T

[
F

K0
−1

]2
for the near-term T1 and the next-term T2.

1

T1

[
F1

K0
−1

]2

= 1

0.0246575

[
920.50005

920
−1

]2

= 0.0000120

1

T2

[
F2

K0
−1

]2

= 1

0.1013699

[
921.00039

920
−1

]2

= 0.0000117.

Finally, we compute σ2
1 and σ2

2:

σ1
2 = 2

T1

∑
i

∆Ki

K 2
i

er T1Q(Ki )− 1

T1

[
F

K0
−1

]2

= 0.4727799−0.0000120 = 0.4727679

σ2
2 = 2

T2

∑
i

∆Ki

K 2
i

er T2Q(Ki )− 1

T2

[
F

K0
−1

]2

= 0.3668297−0.0000117 = 0.3668180.

STEP 3 - Calculate the 30-day weighted average ofσ2
1 andσ2

2, take the square root of that value
and multiply by 100 to get the VIX.

VIX = 100×
√{

T1σ
2
1

[
NT2 −N30

NT2 −NT1

]
+T2σ

2
2

[
N30 −NT1

NT2 −NT1

]
× N365

N30

}
.
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When the near-term options have less than 30 days to expiration and the next-term op-
tions have more than 30 days to expiration, the resulting VIX value reflects an interpola-
tion of σ2

1 and σ2
2; i.e., each individual weight is less than or equal to 1 and the sum of the

weights equals 1. At the time of the VIX “roll”, instead, both the near-term and next-term
options have more than 30 days to expiration: the same formula is used to calculate the
30-day weighted average, but the result is an extrapolation of σ2

1 and σ2
2; i.e., the sum of

the weights is still 1, but the near-term weight is greater than 1 and the next-term weight
is negative.

Returning to our example we finally get

NT1 Number of minutes to settlement of the near-term options (12,960)

NT2 Number of minutes to settlement of the next-term options (53,280)

N30 Number of minutes in 30 days (30×1,440 = 43,200)

N365 Number of minutes in a 365-day year (365×1,440 = 525,600)

and

VIX = 100×
√{

0.0246575×0.4727679×
[

53,280−43,200

53,280−12,960

]
+0.1013699×0.3668180

×
√[

43,200−12,960

53,280−12,960

]
× 525,600

43,200

}

whence
VIX = 100×0.612179986 = 61.22.
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3.2 VIX Squared and Forward Price of Integrated Variance

In this section we derive the probabilistic representation of the square of the VIX, indeed we
will prove that it can be interpreted as the conditional risk-neutral expectation of a log con-
tract. Before proceeding, we state beforehand the definition of the VIX squared we are go-
ing to use hereafter. Since the purpose of this work is to price European options on the VIX
under continuous-time jump-diffusion models, we should be able to provide the correspond-
ing continuous-time version for the definition of VIX squared (3.1). As a matter of fact, it is
straightforward to extend the previous discrete definition (3.1) to the continuous case, simply
by assuming to take the limit as ∆K −→ 0. Indeed we have

VIX2 = 1002 ×
{

2

τ

[∫ F

0

1

y2 P̃ (y) d y +
∫ ∞

F

1

y2 C̃ (y) d y

]}
(3.2)

where P̃ (y) and C̃ (y) represent forward put and call prices with strike y , respectively. We no-

tice that the term
[

F
K0

−1
]2

has disappeared from the new expression for the square of the VIX,

since K0, being the first strike immediately below the forward index level F , tends to equalize
the value F as ∆K tends to zero.

THEOREM - 3.2.1. The risk-neutral probability density function of the stock price S at time T is
given by

f (ST ,T ;St , t ) = ∂2C̃ (St , x, t ,T )

∂x2

∣∣∣
x=ST

(3.3)

or, equivalently,

f (ST ,T ;St , t ) = ∂2P̃ (St , x; t ,T )

∂x2

∣∣∣
x=ST

(3.4)

where C̃ and P̃ represent forward call and put prices, respectively:

C̃ (St , x; t ,T ) = er (T−t )C (St , x; t ,T )

P̃ (St , x; t ,T ) = er (T−t )P (St , x; t ,T ).

Proof. For the sake of simplicity, in the following, we denote the risk-neutral probability density
function of ST , conditional on Ft , as follows

f (·) := f (·,T ;St , t ).

For every measurable function φ, we have∫ ∞

0
φ(x)

∂2C̃ (St , x; t ,T )

∂x2 d x =
∫ ∞

0
φ(x)er (T−t ) ∂

2C (St , x; t ,T )

∂x2 d x

=
∫ ∞

0
φ(x)er (T−t ) ∂

2

∂x2 e−r (T−t )EQ [
(ST −x)+|St

]
d x

=
∫ ∞

0
φ(x)

∂2

∂x2

∫
Ω

(ST −x)+ dQ d x

=
∫ ∞

0
φ(x)

∂2

∂x2

∫ ∞

0
(y −x)+ f (y) d y d x
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=
∫ ∞

0
φ(x)

∂2

∂x2

∫ ∞

x
(y −x) f (y) d y d x

=
∫ ∞

0
φ(x)

∂

∂x

(
∂

∂x

∫ ∞

x
y f (y) d y − ∂

∂x

∫ ∞

x
x f (y) d y

)
d x

=
∫ ∞

0
φ(x)

∂

∂x

(
− ∂

∂x

∫ x

∞
y f (y) d y + ∂

∂x
x

∫ x

∞
f (y) d y

)
d x

(by the fundamental theorem of calculus)

=
∫ ∞

0
φ(x)

∂

∂x

(
−x f (x)+

∫ x

∞
f (y) d y +x f (x)

)
d x

=
∫ ∞

0
φ(x)

∂

∂x

(∫ x

∞
f (y) d y

)
d x

=
∫ ∞

0
φ(x) f (x) d x.

Hence
∂2C̃ (St , x; t ,T )

∂x2

∣∣∣
x=ST

is the probability density function of ST . Analogously, in the case of put options, we have, for
every measurable function φ∫ ∞

0
φ(x)

∂2P̃ (St , x; t ,T )

∂x2 d x =
∫ ∞

0
φ(x)er (T−t ) ∂

2P (St , x; t ,T )

∂x2 d x

=
∫ ∞

0
φ(x)er (T−t ) ∂

2

∂x2 e−r (T−t )EQ [
(x −ST )+|St

]
d x

=
∫ ∞

0
φ(x)

∂2

∂x2

∫
Ω

(x −ST )+ dQ d x

=
∫ ∞

0
φ(x)

∂2

∂x2

∫
Ω

(x − y)+ P ST (d y) d x

=
∫ ∞

0
φ(x)

∂2

∂x2

∫ ∞

0
(x − y)+ f (y) d y d x

=
∫ ∞

0
φ(x)

∂2

∂x2

∫ x

0
(x − y) f (y) d y d x

=
∫ ∞

0
φ(x)

∂

∂x

(
∂

∂x

∫ x

0
x f (y) d y − ∂

∂x

∫ x

0
y f (y)

)
d x

(by the fundamental theorem of calculus)

=
∫ ∞

0
φ(x)

∂

∂x

(
∂

∂x

(
x

∫ x

0
f (y) d y

)
−x f (x)

)
d x

=
∫ ∞

0
φ(x)

∂

∂x

(∫ x

0
f (y) d y +x f (x)−x f (x)

)
d x

=
∫ ∞

0
φ(x) f (x) d x.

Thus
∂2P̃ (St , x; t ,T )

∂x2

∣∣∣
x=ST

is the probability density function of ST .
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Proposition 3.2.2. Let g be a measurable function, then there exists a unique Borel-measurable
function h such that

EQ [
g (ST )|St

]= h(St ).

Proof. Firstly, we remark that, since g is measurable, also g (ST ) is σ(ST )−measurable. More-
over, by the defining properties of the conditional expectation, we have that

(i) Yt := EQ
[
g (ST )|St

]
is σ(ST )−measurable;

(ii)
∫

A Yt dQ = ∫
A g (ST ) dQ ∀A ∈σ(ST ).

Thus, from (i ), exploiting a known result (see Corollary A.10 in [15]), there exists a Borel-measurable
function h such that Yt = h(St ) and from (i i ) it follows that h is unique Q-a.s.

By means of the following proposition, we shall provide the analytical expression of the
above function h.

Proposition 3.2.3. Let g be a measurable function. The value of a claim with generalized termi-
nal payoff g (S,T ) is calculated as

EQ [
g (ST )|St

]= g (F )+
∫ F

0
P̃ (St , y ; t ,T )g ′′(y) d y +

∫ ∞

F
C̃ (St , y ; t ,T )g ′′(y) d x (3.5)

where F = St e(r−q)(T−t ) denotes the forward price of the stock with risk-free interest rate r and
dividend yield q.

Proof. For the sake of brevity, in the following we will simply denote the forward call and put
prices by

C̃ (y) := C̃ (St , y ; t ,T ) and P̃ (y) := P̃ (St , y ; t ,T )

respectively. The value of a claim with generalized terminal payoff g (S,T ) is calculated as the
conditional expectation of the quantity g (S,T ) given all the information available on the asset
at time t , under the risk-neutral probability measure, that is

EQ [
g (ST )|St

]= ∫ ∞

0
g (y) f (y,T ;St , t )d y

whence, in view of (3.3) and (3.4), we get

EQ [
g (ST )|St

]= ∫ F

0
g (y)

∂2P̃ (y)

∂y2 d y +
∫ ∞

F
g (y)

∂2C̃ (y)

∂y2 d y.
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Now, integrating by parts twice the expression above, we obtain

EQ [
g (ST )|St

]=g (y)
∂P̃ (y)

∂y

∣∣∣∣F

0
−

∫ F

0
g ′(y)

∂P̃ (y)

∂y
d y + g (y)

∂C̃ (y)

∂y

∣∣∣∣∞
F
−

∫ ∞

F
g ′(y)

∂C̃ (y)

∂y
d y

=g (y)
∂P̃ (y)

∂y

∣∣∣∣F

0
−

(
g ′(y)P̃ (y)

∣∣∣∣F

0
−

∫ F

0
g ′′(y)P̃ (y) d y

)
+ g (y)

∂C̃ (y)

∂y

∣∣∣∣∞
F

−
(

g ′(y)C̃ (y)

∣∣∣∣∞
F
−

∫ ∞

F
g ′′(y)C̃ (y) d y

)
=g (F )

∂P̃ (F )

∂y
− g (0)

∂P̃ (0)

∂y
− g ′(F )P̃ (F )+ g ′(0)P̃ (0)+

∫ F

0
g ′′(y)P̃ (y) d y

+ lim
y→∞g (y)

∂C̃ (y)

∂y
− g (F )

∂C̃ (F )

∂y
− lim

y→∞g ′(y)C̃ (y)+ g ′(F )C̃ (F )+
∫ ∞

F
g ′′(y)C̃ (y) d y

=g (F )

(
∂P̃ (F )

∂y
− ∂C̃ (F )

∂y

)
+ g ′(F )

(
C̃ (F )− P̃ (F )

)− g (0)
∂P̃ (0)

∂y
+ g ′(0)P̃ (0)

+
∫ F

0
g ′′(y)P̃ (y) d y + lim

y→∞g (y)
∂C̃ (y)

∂y
− lim

y→∞g ′(y)C̃ (y)+
∫ ∞

F
g ′′(y)C̃ (y) d y.

From the put-call parity formula

C (St ,K ; t ,T )−P (St ,K ; t ,T ) = St e−q(T−t ) −K e−r (T−t )

we get

(C (St ,K ; t ,T )−P (St ,K ; t ,T ))er (T−t ) = St e(r−q)(T−t ) −K

which, converted to our notations, corresponds to

C̃ (St ,K ; t ,T )− P̃ (St ,K ; t ,T ) = St e(r−q)(T−t ) −K

= F −K .

Then it follows directly that

∂(C̃ (y)− P̃ (y))

∂y
= ∂(F − y)

∂y
=−1.

Hence we have

EQ [
g (ST )|St

]=g (F )− g (0)
∂P̃ (0)

∂y
+ g ′(0)P̃ (0)+

∫ F

0
g ′′(y)P̃ (y) d y + lim

y→∞g (y)
∂C̃ (y)

∂y

− lim
y→∞g ′(y)C̃ (y)+

∫ ∞

F
g ′′(y)C̃ (y) d y.

Now, since

C̃ (y) = EQ [
(ST − y)+|St

]
we observe that

lim
y→∞EQ [

(ST − y)+|St
]= 0

whence

lim
y→∞g ′(y)C̃ (y) = 0.
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Moreover
∂C̃ (y)

∂y
= ∂

∂y
EQ [

(ST − y)+|St
]

= ∂

∂y

∫ ∞

0
(ST − y)+dQ

= ∂

∂y

∫ ∞

0
(x − y)+ f (x) d x

= ∂

∂y

∫ ∞

y
(x − y) f (x) d x

=− ∂

∂y

∫ y

∞
x f (x) d x + ∂

∂y
y

∫ y

∞
f (x) d x

=−y f (y)+
∫ y

∞
f (x) d x + y f (y)

=
∫ y

∞
f (x) d x

whence

lim
y→∞g (y)

∂C̃ (y)

∂y
= 0.

Analogously, considering put options, since

P̃ (y) = EQ [
(y −ST )+|St

]
we observe that

g ′(0)P̃ (0) = 0

and
∂P̃ (y)

∂y
= ∂

∂y
EQ [

(y −ST )+|St
]

= ∂

∂y

∫ ∞

0
(y −ST )+dQ

= ∂

∂y

∫ ∞

0
(y −x)+ f (x) d x

= ∂

∂y

∫ y

0
(y −x) f (x) d x

= ∂

∂y
y

∫ y

0
f (x) d x − ∂

∂y

∫ y

0
x f (x) d x

=
∫ y

0
f (x) d x + y f (y)− y f (y)

=
∫ y

0
f (x) d x

whence

g (0)
∂P̃ (0)

∂y
= 0.

Therefore, it follows that

EQ [
(ST − y)+|St

]= g (F )+
∫ F

0
g ′′(y)P̃ (y) d y +

∫ ∞

F
g ′′(y)C̃ (y) d y

hence the claim.
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Note. We note that equation (3.5) is completely model-independent.

The following result exhibits an expression for the VIX squared in terms of the risk-neutral ex-
pectation of a log contract.

Proposition 3.2.4. The VIX squared can be expressed as

V I X 2
t =−2

τ
EQ

[
ln

(
ST

F

)∣∣∣∣St

]
·1002. (3.6)

Proof. We consider a log contract, that is, using the notations of Proposition 3.2.3,

g (ST ) = ln

(
ST

F

)
.

Then

g ′(ST ) = d

dST
ln

(
ST

F

)
= 1

ST

and

g ′′(ST ) = d

dST

(
1

ST

)
=− 1

S2
T

.

Therefore, in view of Proposition 3.2.3 , we get

EQ
[

ln

(
ST

F

)∣∣∣∣St

]
= ln

(
F

F

)
−

∫ F

0

1

y2 P̃ (y) d y −
∫ ∞

F

1

y2 C̃ (y) d y

=−
∫ F

0

1

y2 P̃ (y) d y −
∫ ∞

F

1

y2 C̃ (y) d y.

(3.7)

Finally, by the definition of VIX squared and (3.7), we have

V I X 2
t = 2

τ

[∫ F

0

1

y2 P̃ (y) d y +
∫ ∞

F

1

y2 C̃ (y) d y

]
·1002

=−2

τ
EQ

[
ln

(
ST

F

)∣∣∣∣St

]
·1002

=−2

τ
EQ

[
ln(ST )− ln(F )

∣∣∣∣St

]
·1002

=−2

τ
EQ

[
ln(ST )− ln(St e(r−q)τ)

∣∣∣∣St

]
·1002

=−2

τ
EQ

[
ln(ST )− ln(St )− (r −q)τ

∣∣∣∣St

]
·1002

= 2(r −q)− 2

τ
EQ

[
ln(ST )− ln(St )

∣∣∣∣St

]
·1002

whence the claim.
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3.3 VIX under Heston model

By examining (3.6), it is clear that different dynamics for the asset price S will result in various
expressions for VIX squared. In this section we provide a shorthand form for the VIX squared
under the Heston model. Later we shall exploit this more manageable form for pricing vanilla
options on the VIX, assuming that the volatility of the asset is driven by square-root diffusion
(Heston model).

THEOREM - 3.3.1. The VIX squared, under the Heston model, is expressed as

V I X 2
t = (aτvt +bτ)×1002 (3.8)

where

aτ = 1−e−k̄τ

k̄τ
bτ = θ(1−aτ)

and τ := T − t = 30
365 .

Proof. By Proposition 3.6, we have

V I X 2
t =− 2

T − t
E

[
ln

(
ST

F

)∣∣∣∣Ft

]
×1002

=− 2

T − t
E

[
ln(ST )− ln

(
St e(r−q)(T−t ))∣∣∣∣Ft

]
×1002.

Now, applying Itô’s lemma A.2 to the stochastic process

f (t ,St ) = ln(F )

under Heston model, we obtain

d ln(F ) = 1

St e(r−q)(T−t )
St e(r−q)(T−t )(q − r )d t

+ 1

St e(r−q)(T−t )
e(r−q)(T−t )dSt − 1

2
vt S2

t
1

S2
t

d t

=−(r −q)d t + 1

St
dSt − 1

2
vt d t

=−
(
r −q + 1

2
vt

)
d t + 1

St

(
(r −q)St d t +St

p
vt dW (S)

t

)
=−

(
r −q + 1

2
vt

)
d t + (r −q)d t +p

vt dW (S)
t

=−1

2
vt d t +p

vt dW (S)
t

that is

ln(ST )− ln(St e(r−q)(T−t )) =−1

2

∫ T

t
vsd s +

∫ T

t

p
vsdW (S)

s .

Hence

E
[
ln(ST )− ln(St e(r−q)(T−t ))|Ft

]= E

[
−1

2

∫ T

t
vsd s +

∫ T

t

p
vsdW (S)

s

∣∣∣Ft

]
= E

[
−1

2

∫ T

t
vsd s

∣∣∣Ft

]
+E

[∫ T

t

p
vsdW (S)

s

]
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(by Theorem A.1.1, as (
p

vs)s ∈ L2)

= E

[
−1

2

∫ T

t
vsd s

∣∣∣Ft

]
.

Therefore

V I X 2
t = 1

T − t
E

[∫ T

t
vsd s

∣∣∣∣Ft

]
×1002.

By applying Itô’s lemma to to the stochastic process

f (t , vt ) = e k̄ t vt

under the Heston model, we have

d
(
e k̄ t vt

)= k̄e k̄ t vt d t +e k̄ t d vt

= k̄e k̄ t vt d t +e k̄ t (k̄ (θ− vt )d t +εpvt dW (v)
t

)
= k̄e k̄ t vt d t + k̄θe k̄ t d t − k̄e k̄ t vt d t +εe k̄ tpvt dW (v)

t

= k̄θe k̄ t d t +εe k̄ tpvt dW (v)
t

that is

e k̄T vT −e k̄ t vt = θ
∫ T

t
k̄e k̄sd s +ε

∫ T

t
e k̄spvsdW (v)

s

= θ
(
e k̄T −e k̄ t

)
+ε

∫ T

t
e k̄spvsdW (v)

s .

Hence we get

vT = e−k̄(T−t )vt +θe−k̄T
(
e k̄T −e k̄ t

)
+εe−k̄T

∫ T

t
e k̄spvsdW (v)

s

= e−k̄(T−t )vt +θ
(
1−e−k̄(T−t )

)
+εe−k̄T

∫ T

t
e k̄spvsdW (v)

s

that leads to the following expression of vT

vT =ατvt +βτ+εe−k̄T
∫ T

t
e k̄spvsdW (v)

s

where

ατ = e−k̄τ

and

βτ = θ
(
1−e−k̄τ

)
.

The mean of the instantaneous variance is thus

E [vT |Ft ] = E

[
ατvt +βτ+εe−k̄T

∫ T

t
e k̄spvsdW (v)

s

∣∣∣Ft

]
(by Theorem A.1.1)

=ατvt +βτ.
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Now, we can compute the expectation of the integrated variance: since the variance is strictly
positive, by Tonelli’s theorem, we have

E

[∫ T

t
vsd s

∣∣∣∣Ft

]
=

∫ T

t
E [vs |Ft ]d s

=
∫ T

t
E

[
αs−t vt +βs−t |Ft

]
d s

=
∫ T

t

(
αs−t vt +βs−t

)
d s

=
∫ T

t
αs−t d s vt +

∫ T

t
βs−t d s

=
∫ T

t
e−k̄(s−t )d s vt +

∫ T

t
θ

(
1−e−k̄(s−t )

)
d s

=−vt
1

k̄

[
e−k̄(s−t )

]T

t
+θ(T − t )+ θ

k̄

[
e−k̄(s−t )

]T

t

=−vt
1

k̄
e−k̄(T−t ) + 1

k̄
vt +θ(T − t )+ θ

k̄
e−k̄(T−t ) − θ

k̄

= vt

(
1−e−k̄(T−t )

k̄

)
+θ

(
(T − t )− 1−e−k̄(T−t )

k̄

)

that leads to the following expression

E

[∫ T

t
vsd s

∣∣∣∣Ft

]
= āτvt + b̄τ

where

āτ = 1−e−k̄τ

k̄

and

b̄τ = θ
(
τ− 1−e−k̄τ

k̄

)
= θ (τ− āτ) .

Finally, the VIX squared is expressed by

VIX2
t =

(
āτ
τ

vt + b̄τ
τ

)
×1002

whence the claim.
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3.4 VIX under SVJJ model

We now state and prove the analogue expression for the VIX squared under the SVJJ model.

THEOREM - 3.4.1. The VIX squared, under the SVJJ model, is expressed as

V I X 2
t = (aτvt +bτ+ cτ)×1002 (3.9)

where

aτ = 1−e−k̄τ

k̄τ

bτ =
(
θ+ λµv

k̄

)
(1−aτ)

cτ = 2λ(c −µS −ρY µv )

and τ := T − t = 30
365 .

Proof. By Proposition 3.6, we have

V I X 2
t =− 2

T − t
E

[
ln

(
ST

F

)∣∣∣∣Ft

]
×1002

=− 2

T − t
E

[
ln(ST )− ln

(
St e(r−q)(T−t ))∣∣∣∣Ft

]
×1002.

Now, applying Itô’s lemma A.3.2 to the stochastic process

f (t ,St ) = ln(F )

under SVJJ model, we obtain

d ln(F ) = 1

St e(r−q)(T−t )
St e(r−q)(T−t )(q − r )d t + (

(r −q)St −St cλ
) 1

St e(r−q)(T−t )
e(r−q)(T−t )d t

+ S2
t vt

2

(
− 1

S2
t

)
d t + 1

St
St
p

vt dWt + ln
(
e(r−q)(T−t )(St−+∆St )

)− ln
(
e(r−q)(T−t )St−

)
=−cλd t − vt

2
d t +p

vt dWt + ln

(
1+ ∆St

St−

)
=

(
−cλ− vt

2

)
d t +p

vt dWt + ln

(
1+ St−

(
e∆X t −1

)
St−

)
=

(
−cλ− vt

2

)
d t +p

vt dWt +∆X t

that is

ln(ST )− ln(St e(r−q)(T−t )) =−1

2

∫ T

t
vs d s +

∫ T

t

p
vs dW (S)

s + ∑
i≥1, t≤Ti≤T

∆Xi − cλ(T − t ).

Hence

E
[
ln(ST )− ln(St e(r−q)(T−t ))|Ft

]= E

[
−1

2

∫ T

t
vs d s +

∫ T

t

p
vs dW (S)

s + ∑
i≥1, t≤Ti≤T

∆Xi − cλ(T − t )
∣∣∣Ft

]

= E

[
−1

2

∫ T

t
vs d s

∣∣∣Ft

]
+E

[∫ T

t

p
vs dW (S)

s

∣∣∣Ft

]
+E

[ ∑
i≥1, t≤Ti≤T

∆Xi

∣∣∣Ft

]
− cλ(T − t )
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(by Theorem A.1.1 and Example A.18)

= E

[
−1

2

∫ T

t
vsd s

∣∣∣Ft

]
+λ(T − t )E [∆XT |Ft ]− cλ(T − t )

(since ∆XT = Y (S) and Y (S)|Y (v) ∼N(µS +ρY Y (v),σ2
S))

= E

[
−1

2

∫ T

t
vsd s

∣∣∣Ft

]
+λ(T − t )

(
µS +ρY µv

)− cλ(T − t )

= E

[
−1

2

∫ T

t
vsd s

∣∣∣Ft

]
+λ(T − t )

(
µS +ρY µv − c

)
.

Therefore

V I X 2
t =

(
1

T − t
E

[∫ T

t
vsd s

∣∣∣∣Ft

]
+2λ(c −µS −ρY µv )

)
×1002

=
(

1

T − t
E

[∫ T

t
vsd s

∣∣∣∣Ft

]
+ cτ

)
×1002.

By applying Itô’s lemma A.3.2 to to the stochastic process

f (t , vt ) = e k̄ t vt

under the SVJJ model, we have

d
(
e k̄ t vt

)= k̄e k̄ t vt d t + k̄(θ− vt )e k̄ t d t +εpvt e k̄ t dWt +e k̄ t∆vt

= (k̄θ+λµv )e k̄ t d t +εpvt e k̄ t dWt +e k̄ t∆vt −e k̄ tλµv

that is

e k̄T vT −e k̄ t vt = θ
∫ T

t
k̄e k̄sd s +λµv

∫ T

t
e k̄s d s +ε

∫ T

t
e k̄spvsdW (v)

s + ∑
i≥1, t≤Ti≤T

e k̄Ti∆vi −λµv

∫ T

t
e k̄s d s

= θ
(
e k̄T −e k̄ t

)
+ λµv

k̄

(
e k̄T −e k̄ t

)
+ε

∫ T

t
e k̄spvsdW (v)

s + ∑
i≥1, t≤Ti≤T

e k̄Ti∆vi − λµv

k̄

(
e k̄T −e k̄ t

)
=

(
e k̄T −e k̄ t

)(
θ+ λµv

k̄

)
+ε

∫ T

t
e k̄spvsdW (v)

s + ∑
i≥1, t≤Ti≤T

e k̄Ti∆vi − λµv

k̄

(
e k̄T −e k̄ t

)
.

Hence we get

vT = e−k̄(T−t )vt +
(
θ+ λµv

k̄

)
e−k̄T

(
e k̄T −e k̄ t

)
+εe−k̄T

∫ T

t
e k̄spvsdW (v)

s +e−k̄T
∑

i≥1, t≤Ti≤T
e k̄Ti∆vi

−e−k̄T λµv

k̄

(
e k̄T −e k̄ t

)
= e−k̄(T−t )vt +

(
θ+ λµv

k̄

)(
1−e−k̄(T−t )

)
+εe−k̄T

∫ T

t
e k̄spvsdW (v)

s +e−k̄T
∑

i≥1, t≤Ti≤T
e k̄Ti∆vi

− λµv

k̄

(
1−e k̄(T−t )

)
that leads to the following expression of vT

vT =ατvt +βτ+εe−k̄T
∫ T

t
e k̄spvsdW (v)

s +e−k̄T
∑

i≥1, t≤Ti≤T
e k̄Ti∆vi − λµv

k̄

(
1−e k̄(T−t )

)
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where
ατ = e−k̄τ

and

βτ = k̄θ+λµv

k̄

(
1−e−k̄τ

)
.

The mean of the instantaneous variance is thus

E [vT |Ft ] = E

[
ατvt +βτ+εe−k̄T

∫ T

t
e k̄spvsdW (v)

s +e−k̄T
∑

i≥1, t≤Ti≤T
e k̄Ti∆vi − λµv

k̄

(
1−e k̄(T−t )

)∣∣∣Ft

]

= E
[
ατvt +βτ|Ft

]+εe−k̄T E

[∫ T

t
e k̄spvsdW (v)

s

∣∣∣Ft

]
+e−k̄T E

[ ∑
i≥1, t≤Ti≤T

e k̄Ti∆vi

∣∣∣Ft

]

− λµv

k̄

(
1−e k̄(T−t )

)
(by Theorem A.1.1 2, since E

[
e k̄Ti Y (v)|Ft

]
= E

[
e k̄Ti |Ft

]
E

[
Y (v)|Ft

]= e k̄τ

k̄
µv and then by Exam-

ple A.18)
=ατvt +βτ.

We now proceed with the computation of the expectation of the integrated variance. By Tonelli’s
theorem, being the variance strictly positive, we get

E

[∫ T

t
vsd s

∣∣∣∣Ft

]
=

∫ T

t
E [vs |Ft ]d s

=
∫ T

t
E

[
αs−t vt +βs−t |Ft

]
d s

=
∫ T

t

(
αs−t vt +βs−t

)
d s

=
∫ T

t
αs−t d s vt +

∫ T

t
βs−t d s

=
∫ T

t
e−k̄(s−t )d s vt +

∫ T

t

(
θ+ λµv

k̄

)(
1−e−k̄(s−t )

)
d s

= 1

k̄
vt

(
e−k̄(T−t ) −1

)
+

(
θ+ λµv

k̄

)
(T − t )+

(
e−k̄(T−t ) −1

)(
θ

k̄
+ λµv

k̄2

)
= vt

(
1−e−k̄(T−t )

k̄

)
+

(
θ+ λµv

k̄

)(
τ− 1−e−k(T−t )

k̄

)

that leads to the following expression

E

[∫ T

t
vsd s

∣∣∣∣Ft

]
= āτvt + b̄τ

where

āτ = 1−e−k̄τ

k̄

2e k̄ tpvt belongs to L2, indeed

E

[∫ T

0
(e k̄spvs )2 d s

]
≤ e2k̄T E

[∫ T

0
vs d s

]
<∞

as vt belongs to L2 by the assumptions on the SVJJ model.
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and

b̄τ =
(
θ+ λµv

k̄

)(
τ− 1−e−kτ

k̄

)
.

Finally, the VIX squared is expressed by

VIX2
t =

(
āτ
τ

vt + b̄τ
τ

+ cτ

)
×1002

whence the claim.



4
GAMMA-LAGUERRE EXPANSIONS

Under the risk-neutral valuation framework, the risk-neutral probability measure is a crucial
ingredient for asset valuation, since the value of a financial derivative is given by the expected
value, with respect to the risk-neutral measure, of the future payoff, corresponding to the deriva-
tive, discounted at the risk-free interest rate. Therefore the valuation of a European option
translates, in mathematical terms, into the computation of the following integral

EQ [H(ST )] =
∫ ∞

0
H(x) f (x) d x

where f and H denote the density of the risk-neutral measure Q and the payoff function, re-
spectively. The computation of the expectation above for an arbitrary underlying distribution
may be possible only by numerical integration techniques because of the analytical intractabil-
ity of the distribution function. Nevertheless, very often the most popular numerical methods,
although theoretically correct, reveal their inefficiency from the practical point of view. An al-
ternative, appealing approach is to approximate the underlying distribution with an alternate,
and more tractable, distribution. Jarrow and Rudd (1982) [10] pioneered the density expansion
approach to option pricing using an Edgeworth series expansion of the terminal underlying
asset price risk-neutral density around the log-normal density. This approach, similar to the
familiar Taylor series expansion for an analytic function, has the desirable property that the
coefficients in the expansion are simple functions of the moments of the approximating dis-
tribution. Subsequently, Corrado and Su (1996) [4] adopted the Jarrow-Rudd framework and
derived an option pricing formula using a Gram-Charlier type A series expansion of the un-
derlying asset log-return risk-neutral density around the Gaussian density. Recently, Drimus,
Necula and Farkas (2013) [5] developed a new method to retrieve the risk-neutral probabil-
ity measure and to derive an option pricing formula by employing a modified Gram-Charlier
type A series expansion, replacing the “probabilists” Hermite polynomials by the “physicists”
Hermite polynomials. In this work we use instead sums of polynomials weighted by a Gamma
density function φ; more precisely, we choose a family of polynomials

(
pk

)
k∈N such that∫ ∞

0
pi (x)p j (x)φ2(x) d x =Cδi j

and ∫ ∞

0
φ(x)

n∑
k=0

ck pk (x)H(x) d x −−−−−→
n→+∞ EQ [H (ST )] (4.1)
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for some constant C and some real sequence (ck )k∈N.

Now, we choose the space of square integrable functions as the functional space where our
expansion takes place; roughly speaking, we will expand the density function f in L2(R+) and
show that the quadratic convergence of the expansion will lead to the convergence of the in-
tegrals in (4.1). The first assumption is obviously that f belongs to L2(R); we recall that the
condition (2.7) is sufficient, but not necessary, for f̂ to belong to L2, whence for f to belong to
L2 as well, the Fourier transform being a linear isometry from L2(R) into L2(R).

Notation 4.1. The following notation will be needed throughout the chapter: we denote by
ν the Borel regular measure on R with density (with respect to Lebesgue measure) given by

dν(x) =1supp(φ)(x) d x.

THEOREM - 4.0.2. Let
(
pk

)
k∈N be a sequence of orthogonal polynomial functions and (ck )k∈N

a real sequence such that

|| f −φ
n∑

k=0
ck pk ||2,ν −−−−−→

n→+∞ 0. (4.2)

Then, denoting by qn and q

q :=
∫
R

f (x)H(x) d x

qn :=
∫
R
φ(x)

n∑
k=0

ck pk (x)H(x) d x

respectively, it follows that, for every payoff function H such that H ∈ L2
ν(R),

qn −−−−−→
n→+∞ q.

Proof. We have

|q −qn | =
∣∣∣∫
R

H(x)
(

f (x)−φ(x)
n∑

k=0
ck pk (x)

)
d x

∣∣∣
and for every payoff function H such that H ∈ L2

ν(R), by the Cauchy-Schwarz inequality

≤ ||H ||2,ν

∣∣∣∣∣∣ f −φ
n∑

k=0
ck pk

∣∣∣∣∣∣
2,ν

=C
∣∣∣∣∣∣ f −φ

n∑
k=0

ck pk

∣∣∣∣∣∣
2,ν

for some constant C . Therefore, in view of (4.2), we may conclude that

∣∣∣∫
R

f (x)H(x) d x −
∫
R
φ(x)

n∑
k=0

ck pk (x)H(x) d x
∣∣∣−−−−−→

n→+∞ 0.
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4.1 The Gamma choice

To adapt the density expansion approach to the context of volatility options, we choose as φ a
Gamma density function. This leads to the natural choice of Laguerre polynomials as (pk )k∈N
since they are orthogonal over [0,+∞) with respect to the measure with weighting function the
Gamma distribution.

Definition 4.2. For any α> 0,β> 0, the distribution with density

γ(α,β; x) = βα

Γ(α)
e−βx xα−11x≥0(x), x ∈R,

is called Gamma distribution with parameters α and β.

Definition 4.3. We define Laguerre polynomial of degree k and parameter α the polynomial
L(α)

k ∈C∞(R) of the following form

L(α)
k (x) =

k∑
i=0

(−1)i

i !

(
k +α
k − i

)
xi .

Definition 4.4. We define (generalized) Laguerre polynomial of degree k and parameters
(
α,β

)
the polynomial L(α,β)

k ∈C∞(R) of the following form

L(α,β)
k (x) =

k∑
i=0

(−β)i

i !

(
k +α
k − i

)
xi .

Remark 4.5. From the definitions above, it immediately follows that

L(α,β)
k (x) = L(α)

k (βx).

Now, choosing the weighting function φ2 as follows

φ2(α,β; x) =C 2
α,βe−βx xα1x≥0(x)

where

C 2
α,β =

[(
β
2

) α
2 +1

]2

Γ2(α2 +1)

it entails φ to be a Gamma distribution with parameters α
2 +1 and β

2 :

φ(α,β; x) =Cα,βe−
β

2 x x
α
2 1x≥0(x)

=
(
β
2

) α
2 +1

Γ(α2 +1)
e−

β

2 x x
α
2 1x≥0(x) = γ

(
α

2
+1,

β

2
; x

)
.

Definition 4.6. We call Gamma-Laguerre function of degree k and parameters
(
α,β

)
the func-

tion L
(α,β)
k ∈C∞(R) given by

L
(α,β)
k (x) =φ(α,β; x)

k∑
i=0

(−β)i

i !

(
k +α
k − i

)
xi .
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THEOREM - 4.1.1 (Completeness and orthogonality of Laguerre polynomials in L2).

For every α > −1 the family
(
L(α)

k

)
k∈N is an orthogonal and complete system for the space L2

ν(R)

with respect to the weight function e−x xα. In particular∫ +∞

0
L(α)

i (x)L(α)
j (x)e−x xα d x = Γ(α+1)

(
i +α

i

)
δi j (4.3)

for every i , j ∈N.

Proof. First of all we remark that proving that, for every α > −1, the family
(
L(α)

k

)
k∈N is an or-

thogonal and complete system for the space L2
ν(R) with respect to the weight function e−x xα

is equivalent to show that the functions
(
e−

x
2 x

α
2 L(α)

k

)
k∈N are a complete orthogonal system in

L2
ν(R) which in turn corresponds to demonstrate that the orthogonal functions fk (x) = e−

x
2 x

α
2 xk

span a dense subspace of L2
ν(R). In particular, we recall that proving that the system is orthogo-

nal and complete corresponds to showing that the same system represents an orthogonal basis
for L2

ν(R), where the notion of orthogonal basis from linear algebra has been generalized to the
case of Hilbert spaces. Completeness of an orthogonal family of functions is a bit tricky on
unbounded intervals, while it is relatively straightforward on bounded intervals: in our case
there is a nice trick due to von Neumann that allows the reduction to bounded intervals. Let
e−

x
2 x

α
2 f (x) be a function in L2

ν(R), that is∫ +∞

0
e−x xα f 2(x) d x <+∞.

The first idea is to use the change of variable y = e−x to reduce to the case of L2(0,1), whence
we obtain ∫ 1

0
ln

(
1

y

)α
f 2

(
ln

(
1

y

))
d y

that is the function ln
(

1
y

) α
2

f
(
ln( 1

y )
)

belongs to L2(0,1). Now, since the set of continuous func-

tions is dense in L2 on a bounded interval, every function in L2(0,1) can be approximated in
L2−norm by a continuous function which in turn can be approximated, in view of the Weier-
strass approximation theorem, by a polynomial in the sup norm. That being so, it is legitimate

to approximate ln
(

1
y

) α
2

f
(
ln( 1

y )
)

by functions of the form ln
(

1
y

) α
2

p(y) where p is a polynomial.

Transforming back to (0,+∞) this entails that, for any ε > 0, a polynomial p(y) can be deter-
mined so that ∫ +∞

0
e−x xα

(
f (x)−p(e−x )

)2 d x < ε.

Hence this reduces the task to prove that, for all non-negative integer m and for any δ> 0, there
exists a polynomial q such that∫ +∞

0
e−x xα

(
e−mx −q(x)

)2 d x < δ. (4.4)

For this purpose, von Neumann’s trick is to use the generating function of the Laguerre polyno-
mials L(α)

k

(1−w)−α−1 exp
(
− xw

1−w

)
=

+∞∑
k=0

L(α)
k (x)wk

where w = k
k+1 so that exp

(− xw
1−w

)= exp(−kx). Thus a natural choice for q is

qn = (1−w)α+1
n∑

k=0
L(α)

k (x)wk
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with n sufficiently large. Plugging this in (4.4), we get

∫ +∞

0
e−x xα

(
e−mx −qn(x)

)2 d x = (1−w)2α+2
∫ ∞

0
e−x xα

( +∞∑
k=n+1

Lαk (x)wk

)2

d x

(by the orthogonality of the Laguerre polynomials)

(1−w)2α+2
∫ ∞

0
e−x xα

+∞∑
k=n+1

(
Lαk (x)wk

)2
d x

(by Fubini’s theorem 1)

= (1−w)2α+2
+∞∑

k=n+1
w2k

∫ ∞

0
e−x xα

(
Lαk (x)

)2 d x

(by 4.5)

= (1−w)2α+2Γ(α+1)
+∞∑

k=n+1

(
k +α

k

)
w2k .

Therefore it remains to observe that the last term becomes arbitrarily small when n is suffi-
ciently large, and this establishes the statement.

Corollary 4.1.2. For every α > −1,β > 0 the family
(
L(α,β)

k

)
k∈N is an orthogonal and complete

system for the space L2
ν(R) with respect to the weight function φ2(α,β; x). In particular∫ +∞

0
L(α,β)

i (x)L(α,β)
j (x)φ2(α,β; x) d x = Γ(α+1)

(
i +α

i

)
Cα,β

βα+1δi j (4.5)

for every i , j ∈N.

Proof. By the change of variable βx = x in (4.5), we have

Γ(α+1)

(
i +α

i

)
δi j =

∫ +∞

0
L(α)

i (x)L(α)
j (x)e−x xα d x

=
∫ +∞

0
L(α)

i (βx)L(α)
j (βx)e−βx (βx)αβ d x

=
∫ +∞

0
L(α,β)

i (x)L(α,β)
j (x)e−βx xαβα+1 d x

= βα+1

Cα,β

∫ +∞

0
L(α,β)

i (x)L(α,β)
j (x)Cα,βe−βx xα d x

= βα+1

Cα,β

∫ +∞

0
L(α,β)

i (x)L(α,β)
j (x)φ2(α,β; x) d x

whence the claim.

1By the Cauchy-Schwarz inequality:

∫ +∞

0
e−x xα|Lαk (x)||Lαk ′ (x)| d x ≤

(∫ +∞

0
e−x xα

(
Lαk (x)

)2
d x

) 1
2
(∫ +∞

0
e−x xα

(
Lαk ′ (x)

)2
d x

) 1
2 <∞.
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Corollary 4.1.3. For every α > −1,β > 0 the family
(
L

(α,β)
k

)
k∈N is an orthogonal and complete

system for the space L2
ν(R). In particular∫ +∞

0
L

(α,β)
i (x)L(α,β)

j (x) d x = Γ(α+1)

(
i +α

i

)
Cα,β

βα+1δi j (4.6)

for every i , j ∈N.

As a consequence of the previous result, we also have the following useful:

Remark 4.7. For every probability density function f satisfying

(i) f ∈ L2
ν(R) = L2((0,+∞))

(ii) supp( f ) ⊆ supp(φ) = (0,+∞)

we can find a real sequence (ck )k∈N such that

|| f −
n∑

k=0
ckL

(α,β)
k ||2,ν −−−−−→

n→+∞ 0 (4.7)

and, for every payoff function H ∈ L2
ν(R), Theorem 4.0.2 ensures that∣∣∣∫

R
f (x)H(x) d x −

∫
R

n∑
k=0

ckL
(α,β)
k (x)H(x) d x

∣∣∣−−−−−→
n→+∞ 0.

Furthermore, we have, for every k ∈N

ck =
〈 f ,L(α,β)

k 〉2,ν

〈L(α,β)
k ,L(α,β)

k 〉2,ν

=
〈 f ,L(α,β)

k 〉2,ν

||L(α,β)
k ||22,ν

. (4.8)

Note. (4.7) can be also expressed by saying that f can be represented as a Gamma-
Laguerre series expansion. The truncated series

f (x) =
n∑

k=0
ck L(α,β)

k (x)φ(x)

may be viewed as the Gamma probability density function multiplied by some polynomials
that account for the effects of departure from a strict Gamma behaviour of the variance risk-
neutral density function.
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4.1.1 Applications

In order to illustrate the convergence of the Gamma-Laguerre expansion to a target probability
density function we present two illustrative examples based on the Inverse Gaussian (IG) dis-
tribution and the density of the Heston model.

Example 4.8 (Inverse Gaussian distribution).
For any µ,λ> 0, the distribution with density

f (x) =
(

λ

2πx3

) 1
2

exp

(−λ(x −µ)2

2µ2x

)
1x≥0(x)

is called Inverse Gaussian (IG) distribution with parameters µ,λ and denoted by IG(µ,λ).

Figures 4.1, 4.2 below depict the probability distribution function of the target distribution (IG)
with parameters µ = 1 and λ = 3 and the Gamma-Laguerre approximation truncated after 5
terms and 25 terms, respectively.

Figure 4.1: The Gamma-Laguerre approximation of the IG distribution after 5 expansion terms

The graph above shows that after 5 terms the Gamma-Laguerre expansion does not represent
a good approximation for the target density function, whilst increasing the expansion order
to 25 the approximation is notably enhanced, as shown in Figure 4.2 below. Nevertheless, if
we confine our attention to a restricted area around zero, some problems pop out: indeed,
the Gamma-Laguerre expansion is an excellent method for approximating densities away from
zero. As we will see, this behaviour around zero, being inherent of the Gamma-Laguerre ex-
pansions, suggests that we could have some problems in using this approximation method in
pricing options with the great part of their mass concentrated around zero.
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Figure 4.2: The Gamma-Laguerre approximation of the IG distribution after 25 expansion terms

(a)

(b) Behaviour around zero
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Example 4.9 (Heston density).
We want now to show how well the Gamma-Laguerre expansion approximates the Heston den-
sity. Here, the Heston density has been obtained by a simulation based on a Euler scheme with
106 realizations of a CIR process and 1

103 month as discretization parameter. Figures 4.3, 4.4
below depict the probability distribution function of the target distribution (Heston) and the
Gamma-Laguerre approximation truncated after 5 terms and 25 terms, respectively.

Figure 4.3: The Gamma-Laguerre approximation of the Heston distribution after 5 expansion
terms

(a) Behaviour around zero
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Figure 4.4: The Gamma-Laguerre approximation of the Heston distribution after 25 expansion
terms

(a)

(b) Behaviour around zero
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Results of convergence for the Heston model are considerably precise even at low orders
of expansion: the performance of the approximation of order 25 is, indeed, just slightly better
than the one with 5 expansion steps. However, the problematic behaviour around zero is no-
table and, as shown in the graphs above, by it being an inherent issue of the Gamma-Laguerre
expansion, cannot be fixed by increasing the order of approximation to 25. These two consider-
ations lead us to remark that, firstly, the idea of approximating the Heston density by means of
a Gamma-Laguerre expansion reveals to be a suitable choice since the expansion, even at low
orders, adequately reproduces the dynamics of a CIR process; secondly, as already remarked
in the previous example, the behaviour around zero may produce some inaccuracy in the pric-
ing approximation of options whose mass is concentrated around zero, as in the case of Put
options. We will later see how this latter empirical fact will have a higher impact to the final
results than the theoretical results of convergence of the Gamma-Laguerre expansion method
previously studied.
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4.2 Laguerre-Gamma expansion coefficients

In order for this approximation to be useful one needs to know, in closed form, the factors ck .
By the following computation, the expansion coefficients ck can be carried out explicitly in a
final closed form. Indeed we have

ck = 1

||L(α,β)
k ||22,ν

∫
R

f (x)L(α,β)
k (x) d x

(by (4.6))

= βα+1

Cα,βΓ(α+1)

(
k +α

k

) ∫ +∞

0
f (x)

√
Cα,βe−

β

2 x x
α
2

k∑
j=0

(−β) j

j !

(
k +α
k − j

)
x j d x

= βα+1

√
Cα,β

(
k +α

k

)
Γ(α+1)

k∑
j=0

(−β) j

j !

(
k +α
k − j

)∫ +∞

0
f (x)e−

β

2 x x
α
2 x j d x

(if f̂ ∈ L1(R) 2, by the Fourier inversion formula)

= βα+1

√
Cα,β

(
k +α

k

)
Γ(α+1)

k∑
j=0

(−β) j

j !

(
k +α
k − j

)∫
R
1x≥0(x)

(
1

2π

∫
R

e−i xξ f̂ (ξ) dξ

)
e−

β

2 x x
α
2 x j d x

= βα+1

2π
√

Cα,β

(
k +α

k

)
Γ(α+1)

k∑
j=0

(−β) j

j !

(
k +α
k − j

)∫
R
1x≥0(x)

∫
R

e−i xξ f̂ (ξ) dξ e−
β

2 x x
α
2 x j d x

(changing the order of integration, by Fubini’s Theorem 3)

= βα+1

2π
√

Cα,β

(
k +α

k

)
Γ(α+1)

k∑
j=0

(−β) j

j !

(
k +α
k − j

)∫
R

∫
R

e−i xξe−
β

2 x x
α
2 x j1x≥0(x) d x f̂ (ξ)dξ

= βα+1

2π
√

Cα,β

(
k +α

k

)
Γ(α+1)

k∑
j=0

(−β) j

j !

(
k +α
k − j

)∫
R
F

(
e−

β

2 x x
α
2 + j1x≥0(x)

)
(−ξ) f̂ (ξ)dξ

= βα+1

2π
√

Cα,β

(
k +α

k

)
Γ(α+1)

k∑
j=0

(−β) j

j !

(
k +α
k − j

)
Γ

(
α
2 + j +1

)
(
β
2

) α
2 + j+1

∫
R
F

(
γ

(
α

2
+ j +1,

β

2

))
(−ξ) f̂ (ξ)dξ

= βα+1

2π
√

Cα,β

(
k +α

k

)
Γ(α+1)

k∑
j=0

(−β) j

j !

(
k +α
k − j

)
Γ

(
α
2 + j +1

)
(
β
2

) α
2 + j+1

∫
R

(
1+ 2iξ

β

)− α
2 − j−1

f̂ (ξ)dξ.

2By Remark 2.2, if the Feller condition holds then f̂ belongs to L1.
3If f̂ ∈ L1 (R), we have∫

R

∫
R

∣∣∣e−i xξ f̂ (ξ)
∣∣∣ dξ e−

β
2 x x

α
2 x j1x≥0(x) d x =

∫
R

∫
R

∣∣ f̂ (ξ)
∣∣ dξ e−

β
2 x x

α
2 x j1x≥0(x) d x

=
∫
R
|| f̂ (ξ)||1e−

β
2 x x

α
2 x j1x≥0(x) d x

= || f̂ (ξ)||1
∫
R

e−
β
2 x x

α
2 x j1x≥0(x) d x <∞.
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4.2.1 Heston model

Under Heston model, in view of Corollary 2.1.2, the expansion coefficients take the following
form:

ck = βα+1

2π
√

Cα,β

(
k +α

k

)
Γ(α+1)

k∑
j=0

(−β) j

j !

(
k +α
k − j

)
Γ

(
α
2 + j +1

)
(
β
2

) α
2 + j+1

∫
R

(
1+ 2iξ

β

)− α
2 − j−1

ea1(iξ,τ)+a2(iξ,τ)vt dξ

where

a1(iξ,τ) = −2k̄θ

ε2 ln

(
1+ ε2iξ

2k̄

(
e−k̄τ−1

))
a2(iξ,τ) = 2k̄iξ

ε2iξ+ (2k̄ −ε2iξ)e k̄τ
.

Finally, we get

ck = βα+1

2π
√

Cα,β

(
k +α

k

)
Γ(α+1)

k∑
j=0

(−β) j

j !

(
k +α
k − j

)
Γ

(
α
2 + j +1

)
(
β
2

) α
2 + j+1

∫
R

(
1+ 2iξ

β

)− α
2 − j−1

(
1+ ε2iξ

2k̄

(
e−k̄τ−1

)) −2k̄θ
ε2

e
2k̄iξ

ε2iξ+(2k̄−ε2iξ)ek̄τ
vt

dξ.

(4.9)

4.2.2 SVJJ model

Under the SVJJ model, in view of Corollary 2.1.4, the expansion coefficients can be written in
the following explicit expression:

ck = βα+1

2π
√

Cα,β

(
k +α

k

)
Γ(α+1)

k∑
j=0

(−β) j

j !

(
k +α
k − j

)
Γ

(
α
2 + j +1

)
(
β
2

) α
2 + j+1

∫
R

(
1+ 2iξ

β

)− α
2 − j−1

ea1(iξ,τ)+a2(iξ,τ)vt+a3(iξ,τ)dξ

where

a1(iξ,τ) = −2k̄θ

ε2 ln

(
1+ ε2iξ

2k̄

(
e−k̄τ−1

))
a2(iξ,τ) = 2k̄iξ

ε2iξ+ (2k̄ −ε2iξ)e k̄τ

a3(iξ,τ) = 2µvλ

2µv k̄ −ε2
ln

(
1+

(
ε2 −2µv k̄

)
iξ

2k̄
(
1−µv iξ

) (
e−k̄τ−1

))
.

Finally, we get

ck = βα+1

2π
√

Cα,β

(
k +α

k

)
Γ(α+1)

k∑
j=0

(−β) j

j !

(
k +α
k − j

)
Γ

(
α
2 + j +1

)
(
β
2

) α
2 + j+1

∫
R

(
1+ 2iξ

β

)− α
2 − j−1

(
1+ ε2iξ

2k̄

(
e−k̄τ−1

)) −2k̄θ
ε2

e
2k̄iξ

ε2iξ+(2k̄−ε2iξ)ek̄τ
vt

(
1+

(
ε2 −2µv k̄

)
iξ

2k̄
(
1−µv iξ

) (
e−k̄τ−1

)) 2µvλ

2µv k̄−ε2

dξ.

(4.10)





5
PRICING VIX OPTIONS

In this chapter we indicate how our method may be used to price vanilla options on the VIX
Index. Firstly, we dwell on the financial interest of the contracts we are going to price, sec-
ondly, we establish the assumptions that should hold to apply the method theoretically and we
finally provide accurate pricing formulas under both the Heston model and the more general
SVJJ model. The pricing formula can be applied to every model with an analytically tractable
characteristic function and represents a valid alternative to the classic Fourier methods, based
on the inversion of the characteristic function.

5.1 Option contracts on the VIX

VIX volatility index options were introduced in 2006 and their acceptance as a method of trad-
ing an opinion on expected market volatility has been terrific. The chart below illustrates the
rapid growth in the open interest of VIX option contracts.

Figure 5.1: Growth in the interest of VIX derivatives
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One reason for the increase in popularity of VIX options is their ease of use in hedging equity
portfolios. Given the historical inverse relationship between the direction of the S&P 500 Stock
Index (SPX) and the VIX index, VIX Call options can be purchased as a hedge against a declining
stock market: when the market drops, the VIX index often rallies and the percentage rise in VIX
index is frequently much larger than the percentage decline in SPX. This pricing relationship
has made VIX options potentially useful tools for hedging against a forecast move in the overall
stock market.

The multiplier for VIX options is 100, just like equity options, that is a VIX option purchased for
a price of “3.00”, for instance, would cost $300 plus commissions. Moreover, VIX options are
European-style exercise, which means they can only be exercised at expiration. The underly-
ing instrument that determines the cash settlement value of a VIX option at expiration is the
VIX index. At expiration, the holder of an in-the-money VIX option will receive a cash payment
based on the amount the option is in the money, as the following illustrative example shows:

Example 5.1 (VIX Call option).
Let us consider a Call VIX option with expiration in October and strike price 20 and suppose
that the October VIX settlement is 22.10. Thus, we get

Call settlement = $100× (VIX Settlement - Call Strike Price)

= $100× (22.10−20.00) = $210

which entails that a long option holder would receive $210 and a short option holder would pay
$210.

VIX options offer traders and investors an easy way to trade a forecast of expected market
volatility. If a trader forecasts a rise in expected market volatility, then buying a VIX Call op-
tion might be an appropriate strategy, whilst it might be convenient to buy a VIX Put option in
anticipation of a lower VIX index. Similar to buying a VIX call option, a forecast that justifies
purchasing a VIX put should involve three parts, a forecast for the VIX index, a forecast for the
time period and an awareness of the price of the relevant VIX futures contract: if VIX futures
are already anticipating what we forecast, then a strategy other than buying VIX options may
be the best strategy.

5.2 Princing formulas

In view of Remark 4.7, the convergence of our method is guaranteed only if we assume that
the payoff of the option belongs to L2

ν(R) and this immediately prevents us from dealing with
Call options, in favour of Put options, instead. Therefore, let us consider a Put option on the
VIX index, which corresponds to a financial derivative that gives the right to its holder to sell an
amount of the underlying asset at a future date for a prespecified price, where the underlying
asset is assumed to be the VIX index. This entails to choose

H(VIXT ) = (K −VIXT )+

as corresponding payoff function, with K being the fixed strike. Therefore the price of the Put
VPUT can be performed as follows

VPUT = e−r T EQ [H(VIXT )] .
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The following result shows that Put options actually fulfill the assumption for their payoffs to
belong to L2

ν(R).

Proposition 5.2.1. If H denotes the payoff function of a Put option, then H ∈ L2
ν(R).

Proof. H ∈ L2(R) if and only if ∫
R

H(x)2 d x <∞.

Now, since the underlying is positive∫
R

[
(K −x)+

]2 d x =
∫ +∞

0

[
(K −x)+

]2 d x

=
∫ K

0
(K −x)2 d x

=
∫ K

0

(
K 2 −2K x +x2) d x

= K 2
∫ K

0
d x −2K

∫ K

0
x d x +

∫ K

0
x2 d x

= K 3 −K 3 + K 3

3

= K 3

3

whence the claim.

Remark 5.2. Although mathematical theory imposes this restriction upon the option payoff,
empirical evidence on the Gamma-Laguerre expansions suggests that the choice of a Call op-
tion, instead of a Put option, could lead to better results since its mass is concentrated away
from zero and the problematic behaviour of the Gamma-Laguerre expansion around zero is
not involved. Roughly speaking, there is a tradeoff between having a payoff belonging to L2

ν(R),
required by a theoretical convergence result, and avoiding the problems deriving from an ap-
proximation around zero, required by empirical results. For this reason, we “allow” to consider
both Put options and Call options on the VIX Index and we will give the last word to the final
results. We recall that the price of a Call option on the VIX, denoted by VCALL, can be performed
as follows

VCALL = e−r T EQ [H(VIXT )]

where
H(VIXT ) = (VIXT −K )+

is the payoff function.
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5.2.1 Heston model

In this section we derive interesting pricing formulas under the Heston model.

Proposition 5.2.2 (Pricing formula for Put options on VIX).
For every positive strike K , the price of a Put option on the VIX index given by

e−r T EQ
[

H(100×
√

aτvT +bτ)
]

can be approximated by the following formula

100×e−r T
∫ (K∗)2−bτ

aτ

0

(
K ∗−

√
aτx +bτ

) n∑
k=0

ckφ(α,β; x)L(α,β)
k (x) d x (5.1)

where

K ∗ = K

100

aτ = 1−e−k̄τ

k̄τ
bτ = θ (1−aτ)

τ= 30

365

ck = βα+1

2π
√

Cα,β

(
k +α

k

)
Γ(α+1)

k∑
j=0

(−β) j

j !

(
k +α
k − j

)
Γ

(
α
2 + j +1

)
(
β
2

) α
2 + j+1

∫
R

(
1+ 2iξ

β

)− α
2 − j−1

(
1+ ε2iξ

2k̄

(
e−k̄τ−1

)) −2k̄θ
ε2

e
2k̄iξ

ε2iξ+(2k̄−ε2iξ)ek̄τ
vt

dξ

√
Cα,β =

(
β
2

) α
2 +1

Γ(α2 +1)

φ(α,β; x) = γ
(
α

2
+1,

β

2

)
L(α,β)

k (x) =
k∑

j=0

(−β) j

j !

(
k +α
k − j

)
x j .

Proof. A direct computation shows that

E
[
H(VIXT )

]= E
[

(K −VIXT )+
]

= E
[(

K −100×
√

aτvT +bτ
)+ ]

= 100×E
[(

K ∗−
√

aτvT +bτ
)+ ]

= 100×
∫ ∞

0

(
K ∗−

√
aτx +bτ

)+
f (x) d x
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(K ∗−
√

aτx +bτ ≥ 0 if and only if x ≤ (K ∗)2−bτ
aτ

)

= 100×
∫ (K∗)2−bτ

aτ

0

(
K ∗−

√
aτx +bτ

)
f (x) d x

= 100×
∫ (K∗)2−bτ

aτ

0

(
K ∗−

√
aτx +bτ

) n∑
k=0

ckφ(α,β; x)L(α,β)
k (x) d x

whence the claim.

Analogously, for Call options the following pricing formula holds:

Proposition 5.2.3 (Pricing formula for Call options on VIX).
For every positive strike K , the price of a Call option on the VIX index given by

e−r T EQ
[

H(100×
√

aτvT +bτ)
]

can be approximated by the following formula

100×e−r T
∫ ∞

(K∗)2−bτ
aτ

(√
aτx +bτ−K ∗

) n∑
k=0

ckφ(α,β; x)L(α,β)
k (x) d x (5.2)

where the usual notations have been used.

Remark 5.3. We are now interested in finding the proper expression for (5.1) and (5.2) that
makes the calculations on MATLAB more efficient. In this way, our approximation method
turns out to be a concrete alternative to the usual Monte Carlo method, since it shows much
more effectiveness in terms of computational speed.

By means of direct computations we obtain the final working formulas which may be directly
transcribed on our MATLAB codes:

(1) For Put options:

100×
√

Cα,β

n∑
k=0

k∑
j=0

ck
(−β) j

j !

(
k +α
k − j

)[
K ∗

∫ (K∗)2−bτ
aτ

0
e−

β

2 x x
α
2 + j d x −

∫ (K∗)2−bτ
aτ

0

√
aτx +bτe−

β

2 x x
α
2 + j d x

]
(5.3)

(2) For Call options:

100×
√

Cα,β

n∑
k=0

k∑
j=0

ck
(−β) j

j !

(
k +α
k − j

)[∫ ∞
(K∗)2−bτ

aτ

√
aτx +bτe−

β

2 x x
α
2 + j d x −K ∗

∫ ∞
(K∗)2−bτ

aτ

e−
β

2 x x
α
2 + j d x

]
(5.4)

where the integrals ∫ (K∗)2−bτ
aτ

0
e−

β

2 x x
α
2 + j d x,

∫ ∞
(K∗)2−bτ

aτ

e−
β

2 x x
α
2 + j d x

can be easily computed by remarking that they are incomplete Gamma functions.
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5.2.2 SVJJ model

The explicit pricing formulas for vanilla options on the VIX Index under the SVJJ model are
stated in the following results.

Proposition 5.2.4 (Pricing formula for Put options on VIX).
For every positive strike K , the price of a Put option on the VIX index given by

e−r T EQ
[

H(100×
√

aτvT +bτ+ cτ)
]

can be approximated by the following formula

100×e−r T
∫ (K∗)2−bτ−cτ

aτ

0

(
K ∗−

√
aτx +bτ+ cτ

) n∑
k=0

ckφ(α,β; x)L(α,β)
k (x) d x (5.5)

where

K ∗ = K

100

aτ = 1−e−k̄τ

k̄τ

bτ =
(
θ+ λµv

k̄

)
(1−aτ)

cτ = 2λ(c −µS −ρY µv )

c = eµS+ 1
2σ

2
S

1−ρY µv
−1

τ= 30

365

ck = βα+1

2π
√

Cα,β

(
k +α

k

)
Γ(α+1)

k∑
j=0

(−β) j

j !

(
k +α
k − j

)
Γ

(
α
2 + j +1

)
(
β
2

) α
2 + j+1

∫
R

(
1+ 2iξ

β

)− α
2 − j−1

(
1+ ε2iξ

2k̄

(
e−k̄τ−1

)) −2k̄θ
ε2

e
2k̄iξ

ε2iξ+(2k̄−ε2iξ)ek̄τ
vt

(
1+

(
ε2 −2µv k̄

)
iξ

2k̄
(
1−µv iξ

) (
e−k̄τ−1

)) 2µvλ

2µv k̄−ε2

dξ

√
Cα,β =

(
β
2

) α
2 +1

Γ(α2 +1)

φ(α,β; x) = β
α+1

2

Γ
1
2 (α+1)

e−
β

2 x
α
2 1x≥0(x)

L(α,β)
k (x) =

k∑
j=0

(−β) j

j !

(
k +α
k − j

)
x j .

Proof. A direct computation shows that

E
[
H(VIXT )

]= E
[

(K −VIXT )+
]

= E
[(

K −100×
√

aτvT +bτ+ cτ
)+ ]

= 100×E
[(

K ∗−
√

aτvT +bτ+ cτ
)+ ]

= 100×
∫ ∞

0

(
K ∗−

√
aτx +bτ+ cτ

)+
f (x) d x
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(K ∗−
√

aτx +bτ+ cτ ≥ 0 if and only if x ≤ (K ∗)2−bτ−cτ
aτ

)

= 100×
∫ (K∗)2−bτ−cτ

aτ

0

(
K ∗−

√
aτx +bτ+ cτ

)
f (x) d x

= 100×
∫ (K∗)2−bτ−cτ

aτ

0

(
K ∗−

√
aτx +bτ+ cτ

) n∑
k=0

ckφ(α,β; x)L(α,β)
k (x) d x

whence the claim.

Proposition 5.2.5 (Pricing formula for Call options on VIX).
For every positive strike K , the price of a Put option on the VIX index given by

e−r T EQ
[

H(100×
√

aτvT +bτ+ cτ)
]

can be approximated by the following formula

100×e−r T
∫ ∞

(K∗)2−bτ−cτ
aτ

(√
aτx +bτ+ cτ−K ∗

) n∑
k=0

ckφ(α,β; x)L(α,β)
k (x) d x (5.6)

where the usual notations have been used.

Remark 5.4. Similarly to the Heston case, we provide the exact formulas we used in our MAT-
LAB codes to guarantee more computational efficiency:

(1) For Put options:

100×
√

Cα,β

∞∑
k=0

∞∑
j=0

ck
(−β) j

j !

(
k +α
k − j

)[
K ∗

∫ (K∗)2−bτ−cτ
aτ

0
e−

β

2 x x
α
2 + j d x

−
∫ (K∗)2−bτ−cτ

aτ

0

√
aτx +bτ+ cτe−

β

2 x x
α
2 + j d x

]

(2) For Call options:

100×
√

Cα,β

∞∑
k=0

∞∑
j=0

ck
(−β) j

j !

(
k +α
k − j

)[∫ ∞
(K∗)2−bτ−cτ

aτ

√
aτx +bτ+ cτe−

β

2 x x
α
2 + j d x

−K ∗
∫ ∞

(K∗)2−bτ−cτ
aτ

e−
β

2 x x
α
2 + j d x

]

where the integrals

∫ (K∗)2−bτ−cτ
aτ

0
e−

β

2 x x
α
2 + j d x,

∫ ∞
(K∗)2−bτ−cτ

aτ

e−
β

2 x x
α
2 + j d x

can be easily computed by remarking that they are two incomplete Gamma functions.
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NUMERICAL RESULTS

In this chapter we assess the performance of the method described above. Before present-
ing our numerical results it is worth mentioning the broader context our pricing formula fits
in. Indeed, our technique can be included in the class of methods based on the knowledge in
closed form of the characteristic function and represents an alternative to the inverse Fourier
transform methodology. To the best of our knowledge, in an influential paper in the option-
pricing literature [8], Heston showed that the risk-neutral probabilities appearing in the Call
option-pricing formulas for bonds, currencies and equities can be computed by Fourier in-
version of the conditional characteristic function which he showed is known in his particular
affine stochastic volatility model.

For the purpose of examing the efficiency of our pricing formula, the numerical study pre-
sented here is based on the Heston stochastic volatility model, which is a special case covered
by the general SVJJ model. We have adopted the parameters from calibrations reported in Bak-
shi et al. (1997) and Jacquier et al. (2012) which we recall in Table 6.1 below.

B. et al. J. et al.
k̄ 1.15 1.15
θ 0.0348 0.04
ε 0.39 0.2p

v0 0.1865 0.2

Table 6.1: Parameters for Heston model

In our numerical computations we have assessed how well results obtained by our pricing for-
mula match with those obtained from the Monte Carlo simulations. In particular, we have
implemented a Monte Carlo algorithm based on an Euler simulation scheme with 106 simula-
tions and 1 month

103 as discretization parameter. We have chosen one month as option maturity

and we have considered a vector of strikes such that the “moneyness” K
VIX0

, varies between 0
and 3. Finally, the interest rate r has been assumed to be zero.

59
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Once we have set the parameters of the model, some further indication is needed for the
choice of the parameters α, β corresponding to the Gamma-Laguerre expansion. An intuitive
choice for α and β could be a calibration of them by making a matching between the moments
of the model density f and the moments of the approximating density φ(α,β). This approach
is based on an optimization technique called “moment matching”. The characteristic function
of the volatility process, by it being known in closed-form, allows us to easily compute the first
two moments, by recalling that for any n ∈N, if (xn f ) ∈ L1(R)

mn = E
[
vn]= ∫

R
xn f (x) d x

=
∫
R

e i xξxn f (x) d x
∣∣∣
ξ=0

=F(xn f (x))(0)

= (−1)n d

d xn F( f (x))(0).

Thus, we compute the first two moments ofφ(α,β) which we recall being a Gamma distribution

with parameters α∗ = α
2 +1 and β∗ = β

2 . We have:

{
m1 = Mean = α∗

β∗

m2 = Variance+m2
1 = α∗

(β∗)2 +m2
1

that is {
β∗ = α∗

m1

m2 =α∗ m2
1

(α∗)2 +m2
1 =

m2
1

α∗ +m2
1

β
∗ = m2

1

m2−m2
1

1
m1

= m1

m2−m2
1

α∗ = m2
1

m2−m2
1

whence 
β
2 = m1

m2−m2
1

α
2 +1 = m2

1

m2−m2
1

and finally β= 2 m1

m2−m2
1

α= 2
(

m2
1

m2−m2
1
−1

)
.

Roughly speaking, making a Gamma-Laguerre expansion of the model density means that we
are approximating f by means of a Gamma distribution with the addition of some corrective
terms, i.e.

f (x) =
n∑

k=0
φ

1
2 (α,β, x)L(α,β)

k (x)

= c0φ
1
2 (α,β, x)+

n∑
k=1

φ
1
2 (α,β, x)L(α,β)

k (x) as L(α,β)
0 (x) = 1.

The moment matching technique, by choosing α and β as above, requires that, in absence of
corrective terms, the Gamma distribution perfectly approximates the target density, and their
moments consequently: this is equivalent to require the coefficient c0 to be equal to one and
the remaining other (ck )k≥1 equal to zero. This calibration for the expansion parameters reveals
to be efficient by empirical stability tests, as suggested by the following Example.
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Example 6.1. Let us consider the simulated probability density function of the Heston model.
Figures 6.1, 6.2 below depict the results obtained in the approximation of the density by means
of the moment matching technique and by freely choosing the parameters α and β, respec-
tively. The moment matching scheme performs the following values for the expansion param-
eters

α= 3.6928

β= 168.6273

which will be used in Figure 6.1, whereas Figure 6.2 shows numerical outcomes by employing
the following free combinations of values:

(a) α= 1 and β= 5

(b) α= 0.1 and β= 10

(c) α= 3 and β= 60.

Figure 6.1: The Gamma-Laguerre approximation of the Heston distribution by means of the
moment matching technique

As already mentioned, the moment matching technique imposes that the expansion coefficient
of order 0 tends to be equal to 1 and the remaining coefficients equal to zero, as confirmed in
our particular example where the expansion has been truncated after 25 steps. The coefficients
vector is indeed given by:

c =(0.9591, −0.0385, −0.0010, 0.0065, 0.0038, 0.0020, 0.0013, 0.0009, 0.0006, 0.0005, 0.0004,

0.0003, 0.0002, 0.0002, 0.0002, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001, 0.0001,

0.0000, 0.0000, 0.0000, 0.0000).
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Figure 6.2: The Gamma-Laguerre approximation of the Heston distribution without moment
matching

(a) α= 1 and β= 5

(b) α= 0.1 and β= 10

(c) α= 3 and β= 60
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It is straightforward to remark that the results are basically in accord with the intuition
which stands behind the moment matching technique and show that the latter represents a
valid rule for the determination of the expansion parameters.

The first immediate advantage of our technique is that, compared to a Monte Carlo method
which is assumed to be parallelized on the system CPU cores, is very few time-consuming: the
differences in time between the two methods are extremely considerable. It is worth mention-
ing that the time component of an option pricing methodology is very relevant if it is thought
to be used in a calibration process, that is the procedure of selecting model parameters in
such a way that the value of a set of benchmark instruments, computed in the model, cor-
respond to their market prices. A calibration algorithm is an optimization scheme where, once
a “goodness-of-fit” measure has been chosen, the objective is to find the model parameters so
that this goodness-of-fit measure is minimized; the numerical procedures involved in a cali-
bration process are very time-consuming, requiring, at each step of minimization of the error,
the computation of several option prices for different strikes and maturities.

As already remarked, the accuracy of our pricing technique depends on both a convergence
result which is applicable only to Put options and a problematic behaviour around zero, typi-
cal of the Gamma-Laguerre expansion, which manifests for Put options, but can be averted by
considering Call options instead.

Figure 6.3 depicts a comparison between the VIX Call prices obtained by the numerical imple-
mentation of the Gamma-Laguerre approximation (5.4) truncated after n = 5 terms (panel (a))
and n = 20 terms (panel (b)) and the outcomes from the Monte Carlo simulation, based on the
Heston model with parameters by Bakshi et al. The same comparison is also shown in Figure
6.4 where the parameters used are the ones from Jaquier et al. We can clearly observe that our
results perfectly match with the outcomes from the Monte Carlo simulation. After 20 terms of
the expansion the approximation is enhanced but, recalling that we can not rely on a conver-
gence result, after 25 terms the expansion which employs the parameters by Bakshi et al. still
converges to the Monte Carlo simulation, whilst the expansion that makes use of the parame-
ters by Jaquier et al. does not, as depicted in Figure 6.5.

For the sake of completeness, we also provide the results obtained by our formula for VIX Put
options (5.3), comparing the Gamma-Laguerre approximation truncated after n = 5 terms and
n = 20 terms to the outcomes from the Monte Carlo simulation. The comparison is based on
the Heston model with parameters by Bakshi et al. (Figure 6.6) and by Jacquier et al. (Fig-
ure 6.7). The results are quite in line with our expectations, they do not perfectly match with
the Monte Carlo simulation and, even increasing the order of the expansion, the convergence
being ensured in this case, the results do not improve. This is the effect of the problem that
the Gamma-Laguerre expansion has in approximating around zero which cannot be repaired
either by a high number of terms in the series expansion.



64 6. Numerical results

Figure 6.3: The VIX Call prices via Gamma-Laguerre expansions, B. et al.

(a) n = 5

(b) n = 20
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Figure 6.4: The VIX Call prices via Gamma-Laguerre expansions, J. et al.

(a) n = 5

(b) n = 20
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Figure 6.5: Non convergence for Call prices at high expansion orders

(a) n = 25, B. et al.

(b) n = 25, J. et al.
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Figure 6.6: The VIX Put prices via Gamma-Laguerre expansions, B. et al.

(a) n = 5

(b) n = 20
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Figure 6.7: The VIX Put prices via Gamma-Laguerre expansions, J. et al.

(a) n = 5

(b) n = 20
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APPENDIX

A.1 ...regarding stochastic calculus

In what follows W is a real Brownian motion on the filtered probability space (Ω,F,P, (Ft ))
where the following hypotheses hold:

(i) F0 (and so also Ft , for every t > 0) contains N := {
F ∈F|P (F ) = 0

}
;

(ii) the filtration is right-continuous, i.e. for every t ≥ 0

Ft =
⋂
ε>0

Ft+ε.

Definition A.1. A stochastic process X is called progressively measurable with respect to the
filtration (Ft ) if, for every t , X |[0,t ]×Ω is B([0, t ])⊗Ft− measurable, i.e.

{(s,ω) ∈ [0, t ]×Ω|Xs(ω) ∈ H } ∈B([0, t ])⊗Ft , H ∈B.

Definition A.2. The stochastic process u belongs to the class L2 if

(i) u is progressively measurable with respect to the filtration (Ft )

(ii) u ∈ L2 ([0,T ]×Ω), i.e.

E

[∫ T

0
u2

t d t

]
<∞.

THEOREM - A.1.1. For any process u ∈ L2 and 0 ≤ a < b ≤ T , the following properties hold:

(i) null expectation:

E

[∫ b

a
ut dWt

∣∣∣Fa

]
= 0

(ii) the stochastic process

X t =
∫ t

0
usdWs , t ∈ [0,T ]

is a continuous Ft−martingale.
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70 A. Appendix

Proof. We present the proof of the theorem only in the particular case of a simple stichastic
process: the general theorem can be proved by taking the limit in the analogous relation that
holds for the integral of simple stochastic processes. We consider a simple process in L2

ut =
N∑

k=1
ek1]tk−1,tk ](t ), t ∈ [0,T ]

where 0 ≤ t0 < t1 < ·· · < tN ≤ T and ek are random variables on (Ω,F,P ). Since we always
assume the right-continuity of the filtration and u is progressively measurable, it follows that
ek is Ftk−1 -measurable for every k = 1, · · · , N .

(i) We have

E

[∫ b

a
ut dWt

∣∣∣Fa

]
=

N∑
k=1

E
[

ek (Wtk −Wtk−1 )
∣∣∣Fa

]
(since t0 ≥ a, ek is Ftk−1−measurable and so independent of Wtk −Wtk−1 )

=
N∑

k=1
E [ek |Fa]E

[
Wtk −Wtk−1

]= 0.

(ii) For 0 ≤ s < t , we have

E [X t |Fs] = E [Xs |Fs]+E

[∫ t

s
uτdWτ|Fs

]
= Xs

since Xs is Fs-measurable and (i) holds.

Definition A.3. The stochastic process u belongs to the class L2
loc if

(i) u is progressively measurable with respect to the filtration (Ft )

(ii)
∫ T

0 u2
t d t <∞ a.s.

THEOREM - A.1.2. If u ∈ L2
loc, then its stochastic integral

X t =
∫ t

0
usdWs

is a continuous local martingale.

A.1.1 Correlated Brownian motion

For simplicity, we only consider the case of constant correlation matrix even if all the fol-
lowing results can be extended to the more general case of stochastic correlation (cf. Remark
10.23 in [15]). Thus, we assume that

Wt = AW̄t

where W̄t is a standard d-dimensional Brownian motion and A = (
Ai j

)
i , j=1,··· ,d is a non-singular

d ×d constant matrix. We then denote by ρ = A AT the correlation matrix assuming that, for
any i = 1, · · · ,d

ρi i =
∣∣∣Ai

∣∣∣2 =
d∑

j=1

(
Ai j

)2 = 1, t ∈ [0,T ] a.s.
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whence we get that

W i
t =

d∑
j=1

Ai j W̄ j
t i = 1, · · · ,d

is a standard real Brownian motion and the covariance processes are given by

d
〈

W i ,W j
〉

t
= ρi j d t , i , j = 1, · · · ,d .

Example A.4 (Particular case d = 2). We typically assume

A =
(

1 0

ρ̄
√

1− ρ̄2

)

where ρ̄ ∈ ]−1,1[ . Then Wt = AW̄t is a correlated Brownian motion with non-singular correla-
tion matrix

ρ =
(

1 ρ̄

ρ̄ 1

)
.

A.1.2 Itô calculus

Here, we provide the definition of Itô process and we present the formula for the “change
of variable” extended to the stochastic integration theory, the so-called Itô formula.

Definition A.5. An Itô process is a stochastic process X of the form

X t = X0 +
∫ t

0
µs d s +

∫ t

0
σs dWs , t ∈ [0,T ] (A.1)

where X0 is a F0-measurable random variable, µ ∈ L1
loc and σ ∈ L2

loc are the drift and diffusion
coefficients, respectively. Formula (A.1) is usually written in the “differential form”

d X t =µt d t +σt dWt .

The Itô process X is the sum of the continuous process with bounded variation

X0 +
∫ t

0
µs d s

with the continuous local martingale ∫ t

0
σs dWs .

Remark A.6. An Itô process is a local martingale if and only if it has null drift, namely µ = 0
m ⊗P )−a.e. Indeed, by assumption the process∫ t

0
µs d s = X t −X0 −

∫ t

0
σs dWs

would be both a continuous local martingale and a bounded variation process, it being a Lebesgue
integral. However, it can be proved that if a (local) martingale has bounded variation, then it is
indistinguishable from the null process. Whence the claim.
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THEOREM - A.1.3 (Itô formula).
Let X be an Itô process and f = f (t , x) a function belonging to C 1,2(R2). Then the stochastic
process

Yt = f (t , X t )

is an Itô process as well and we have

d f (t , X t ) = ∂t f (t , X t )d t +∂x f (t , X t )d X t + 1

2
∂xx f (t , X t )d 〈X 〉t . (A.2)

where d 〈X 〉t =σ2
t d t.

Formula (A.2) can be explicity written as follows

d f =
(
∂t f +µt∂x f + 1

2
σ2

t ∂xx f

)
d t +σt∂x f dWt

where f = f (t , X t ).

A.1.3 Feynman-Kac formula

In this section we state a representation formula for the classical solution of the Cauchy
problem {

Au −au +∂t u = f , in ST :=]0,T [×RN

u(T, ·) =φ (A.3)

where f , a,φ are given functions, (ci j ) =σσT and

A= 1

2

N∑
i , j=1

ci j∂xi x j +
N∑

j=1
b j∂x j

is the characteristic operator of the SDE

d X t = b(t , X t )d t +σ(t , X t )dWt . (A.4)

We assume that

(i) the coefficients b, σ are measurable and have at most linear growth in x;

(ii) for every (t , x) ∈ ST , there exists a solution X t ,x of the SDE A.4 relative to a d-dimensional
Brownian motion W on the space (Ω,F,P, (Ft )).

Having a probabilistic representation of the solution u in terms of an associated Markovian dif-
fusion process is very interesting for the pricing purpose: the link between option values (de-
fined via risk neutral expectations of terminal payoffs) and solutions of second order parabolic
PDEs is established by the well-known Feynman-Kac formula.

THEOREM - A.1.4 (Feynman-Kac formula).
Let u ∈ C 2(ST )∪C (S̄T ) be a solution of the Cauchy problem (A.3) where a ∈ C (ST )) is such that
a0 = inf a >−∞. Assume that (i), (ii) and at least one of the following conditions are in force:

1) there exist two positive constants M, p such that

|u(t , x)|+ | f (t , x)| ≤ M(1+|x|p ), (t , x) ∈ ST ;
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2) the matrix σ is bounded and there exist two positive constants M and α, with α small
enough, such that

|u(t , x)|+ | f (t , x)| ≤ Meα|x|
2
, (t , x) ∈ ST .

Then, for every (t , x) ∈ ST , we have the representation formula

u(t , x) = E

[
e−

∫ T
t a(s,XS ) d sφ(XT )−

∫ T

t
e−

∫ s
t a(r,Xr ) dr f (s, Xs) d s

]
where, for the sake of simplicity, X = X t ,x .

A.2 Lévy processes

In this section we merely introduce Lévy processes and discuss some of their general prop-
erties. We then give particular stress to the simplest examples of Lévy processes, the compound
Poisson processes, which can be considered as Poisson processes with random jump sizes. The
class of compound Poisson processes is both simple to study and rich enough to introduce two
important theoretical tools of Lévy processes: the Lévy-Khintchine formula that allows to study
distributional properties of Lévy processes and the Lévy-Itô decomposition, that describes the
structure of their sample paths.

Definition A.7. Let (Ω,F,P, (Ft )) be a filtrated probability space. A stochastic process X =
(X t )t≥0 with state space on Rd is called a Lévy process if it possesses the following properties:

(i) X0 = 0;

(ii) Stationary increments: X t −Xs ∼ X t−s , 0 ≤ s < t ;

(iii) Independent increments: for every increasing sequence of times 0 ≤ t1 < t2 < ·· · < tn the
random variables

X t1 , X t2 −X t1 , · · · , X tn −X tn−1

are independent;

(iv) For everyω ∈Ω, the path t −→ X t (ω) is cadlag (i.e. right continuous with finite left limits).

Definition A.8. A measure m on (Rd ,B(Rd )) is called a Lévy measure if it satisfies the following
properties:

(i) m({0}) = 0

(ii)
∫
Rd (1∧||x||2) m(d x) <∞.

Definition A.9. We call Lévy triplet the triplet (a,σ,m) where a ∈Rd , σ is a d ×d matrix and m
is a Lévy measure.

Definition A.10. Let (a,σ,m) be a Lévy triplet. A Lévy exponent ψ is a function

ψ :Rd −→C

such that

ψ(ξ) = i (a ·ξ)+ 1

2
||σξ||2 +

∫
Rd

[
1−e iξ·x + i (ξ · x)1(0,1)(||x||)

]
m(d x).
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Remark A.11. Let (a,σ,m) be a Lévy triplet. We assume that∫
Rd

(1∧||x||) m(d x) <∞

and we put

b = a +
∫
||x||<1

x m(d x).

Then, the Lévy exponential assumes the following form

ψ(ξ) = i (b ·ξ)+ 1

2
||σξ||2 +

∫
Rd

[
1−e iξ·x

]
m(d x).

We call (b,σ,m) the modified Lévy triplet.

Definition A.12. Let (S,S,m) denote a σ−finite measure space with m(S) > 0. A Poisson ran-
dom measure with intensity m is a family of random variablesΠ= {Π(A)}A∈S, withΠ(A) defined
on (Ω,F,P ), such that

(i) Π(A) ∼ Poisson(m(A)), A ∈ S;

(ii) if A1, · · · , An ∈ S are disjoint, thenΠ(A1), · · · ,Π(An) are independent;

(iii) For any ω ∈Ω and A ∈ S, A −→Π(A)(ω) is a measure.

Remark A.13. The existence of a Poisson random measure with intensity m, Π, can be proved
and, from the proof it follows thatΠ can be represented as

Π=
N∑

j=1
δZ j

where Z1, Z2, · · · are independent S-valued random variables that are also independent of N ,
and N ∼ Poisson(m(S)).

Definition A.14. Let S∗ = R+ ×Rd , m∗ = LEB ×m, S∗ = B(R+ ×Rd ), we define the Poisson
random measure with respect to the product measure m∗ as follows

Π∗ =
∞∑

j=1
δ(T j ,Z j ), T j ∈R+, Z j ∈Rd .

Remark A.15. Let X be a Lévy process with Lévy measure m, then the Poisson random measure
Π∗ is often referred as jump measure of X. Indeed, we have

Π∗((0, t ]× A) = ]{ j : T j ≤ t , Z j ∈ A
}

= ] {s ≤ t ,∆Xs ∈ A,∆Xs 6= 0} .

In other terms, Π∗((0, t ]× A) counts the number of jumps occurring in the time interval [0, t ]
and such that their size is in A.
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A.2.1 Some examples of Lévy processes

Real Brownian motion

The real Brownian motion W = (Wt )t≥0 is a particular Lévy process on R: indeed it fulfills
the defining properties in A.7 since, by definition

(i) W0 = 0;

(ii) Stationary increments: Wt −Ws ∼N0,t−s , 0 ≤ s < t ;

(iii) Independent increments: for every 0 ≤ s < t the random variable Wt −Ws is independent
of Fs ;

(iv) For every ω ∈Ω, the path t −→ X t (ω) is even continuous, thus in particular cadlag.

Poisson processes

Definition A.16. Let (τi )i≥1 be a sequence of independent exponential random variables with
parameter λ and Tn =∑n

i=1τi . The process (Nt )t≥0 defined by

Nt =
∑

n≥1
1t≥Tn

is called a Poisson process with intensity λ.

The Poisson process is therefore defined as a counting process: it counts the number of
random times (Tn) which occur between 0 and t , where (Tn −Tn−1)n≥1 is an i.i.d. sequence of
exponential variables.

Compound Poisson processes

Definition A.17. Let N be a Poisson process with intensity λ and assume that Y = (Yi )i≥1 is a
sequence of i.i.d. random variables in Rd with distribution m, i.e. Yi ∼ m for i ≥ 1, and which
are independent of N . The compound Poisson process is defined as

Ct =
Nt∑

i=1
Yi

for t ≥ 0 and where
∑0

i=1 Yi := 0.

The following properties of a compound Poisson process are easily deduced from the defi-
nition:

(i) The sample paths of X are càdlàg piecewise constant functions.

(ii) The jump times (Ti )i≥1 have the same law as the jump times of the Poisson process Nt :
they can be expressed as partial sums of independent exponential random variables with
parameter λ.

(iii) The jump sizes (Yi )i≥1 are independent and identically distributed with law m, while the
jumps of N are of fixed size equal to one.

The Poisson process itself can be seen as a compound Poisson process on R such that Yi = 1.
The graph in Figure A.1 depicts a typical trajectory of a compound Poisson process - note the
piecewise constant path.
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Figure A.1: One path of a compound Poisson process with λ= 1 and m =N(0,1)

Compound Poisson processes are Lévy processes and they are the only Lévy processes with
piecewise constant sample paths, as shown by the following proposition

Proposition A.2.1. (X t )t≥0 is a compound Poisson process if and only if it is a Lévy process and
its sample paths are piecewise functions.

Proposition A.2.2 (Characteristic function of a compound Poisson process).
Let (Ct )t≥0 be a compound Poisson process on Rd . Its characteristic function has the following
representation:

E
[

e iξ·Ct

]
= exp

{
tλ

∫
Rd

(
e iξ·x −1

)
m(d x)

}
, ∀ξ ∈Rd , (A.5)

where λ denotes the jump intensity and m the jump size distribution.

Introducing a new Borel measure m̃(B) =λm(B), for any B ∈B(Rd ), we can rewrite Formula
(A.5) as follows

E
[

e iξ·X t

]
= exp

{
t
∫
Rd

(
e iξ·x −1

)
m̃(d x)

}
, ∀ξ ∈Rd , . (A.6)

m̃ is the Lévy measure of process (X t )t≥0 and Formula (A.6) is a particular case of the Lévy-
Khintchine representation A.7.
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Proof. For every t ≥ 0, we have

E
[

e iξ·Ct

]
= E

[
exp

{
iξ ·

Nt∑
j=1

Y j

}]

= E

[
E

[
exp

{
iξ ·

Nt∑
j=1

Y j

}∣∣∣Nt

]]
= E

[
E

[ Nt∏
j=1

e iξ·Y j

∣∣∣Nt

]]

= E

[
E

[ Nt∏
j=1

e iξ·Y j

]]
by the independence of N and (Y j ) j≥1

= E

[
Nt∏
j=1

E
[

e iξ·Y j

]]
by the independence of (Y j ) j≥1

= E

[(
E

[
e iξ·Y1

])Nt
]

as Y j , j≥1 are identically distributed

=
∞∑

n=0

(
E

[
e iξ·Y1

])n

P (Nt = n)

=
∞∑

n=0
e−λt (λt )n

n!

(
E

[
e iξ·Y1

])n

as N is a Poisson process

= e−λt
∞∑

n=0

(λtE
[
e iξ·Y1

]
)n

n!
= exp

{
−λt

}
exp

{
λtE

[
e iξ·Y1

]}
= exp

{
−λt

(
1−E

[
e iξ·Y1

])}
= exp

{
−λt

(
1−

∫
Rd

e iξ·x m(d x)
)}

as Y j , j≥1 have common law m

= exp
{
λt

(∫
Rd

(e iξ·x −1)m(d x)
)}

.

THEOREM - A.2.3. Let {X t }t≥0 be an integrable Lévy process. Then the process{
X t −E [X t ]

}
t≥0

is a martingale.

Proof. For every 0 < s ≤ t , we have

E
[

X t −E [X t ] |Fs

]
= E

[
X t |Fs

]
−E

[
E [X t ] |Fs

]
= E

[
(X t −Xs)+Xs |Fs

]
−E [X t ]

= E
[

X t −Xs |Fs

]
+E

[
Xs |Fs

]
−E [X t ]

(since X t −Xs is independent of Fs and Xs is Fs−measurable)

= E
[

X t −Xs

]
+Xs −E [X t ]

= E [X t ]−E [Xs]+Xs −E [X t ]

= Xs −E [Xs] .
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Example A.18. The process
C̃t =Ct −µλt ,

where µ = E [Y1], called compensated compound Poisson process, is a martingale. Indeed, we
have

E [Ct ] = E [E [Ct |Nt ]]

= E

[
E

[
Nt∑

i=1
Yi

∣∣∣Nt

]]
= E [Nt E [Y1|Nt ]]

(since N and Y1 are independent)
= E [Nt E [Y1]]

= E [Nt ]E [Y1]

=λtE [Y1]

and the claim follows from Theorem A.2.3.

THEOREM - A.2.4. Let X be a Lévy process with triplet (a,σ,m). Then X has bounded variation
if and only if

σ= 0

and ∫
Rd

1∧||x|| m(d x) <∞.

Corollary A.2.5. A compound Poisson process has bounded variation.

Proof. A Lévy process is a compound Poisson process if and only if it has modified Lévy triplet
(0,0,m), where m(Rd ) <∞. Then to prove that a a compound Poisson process is of bounded
variation it remains to show that ∫

Rd
1∧||x|| m(d x) <∞.

Indeed, we have∫
Rd

1∧||x|| m(d x) =
∫
||x||≥1

1∧||x|| m(d x)+
∫
||x||<1

1∧||x|| m(d x)

=
∫
||x||≥1

m(d x)+
∫
||x||<1

||x|| m(d x)

≤
∫
||x||≥1

m(d x)+
∫
||x||<1

m(d x)

=
∫
Rd

m(d x)

= m
(
Rd

)
<∞.

The starting point of the classification of Lévy processes via their characteristic function is
known as the Lévy-Khintchine formula.

THEOREM - A.2.6 (Lévy-Khintchine formula).
For every Lévy exponent ψ on Rd there exists a Lévy process X such that for all t ≥ 0 and ξ ∈Rd

E
[

e iξ·X t

]
= exp

(−tψ(ξ)
)

. (A.7)
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Outline of the proof. The proof of the Lévy-Khintchine formula follows the treatment of
Itô and is divided into two steps:

(i) By direct computation, we know that the characteristic function of a Brownian motion
W is given by

E
[

e iξ·Wt

]
= exp

(
−1

2
t ||ξ||2

)
as Wt ∼N0,t . This entails that, given the Lévy triplet (0,σ,0), its associated Lévy process
is

X t =σ
 W 1

t
· · ·

W d
t

 .

Therefore it remains to prove that there is a Lévy process X with modified Lévy triplet
(b,0,m) such that

E
[

e iξ·X t

]
= exp

(
−t

(
i b ·ξ+

∫
Rd

(1−e iξ·x m(d x))

))
.

(ii) The construction will be based on a Poisson random measure and there will be distin-
guished three cases:

1) Compound Poisson process case: m(Rd ) <∞;

2) Bounded variation case:
∫
Rd (1∧||x||) m(d x) <∞;

3) General case:
∫
Rd (1∧||x||2) m(d x) <∞.

The Lévy-Itô proof of the Lévy-Khintchine formula shows among other things that a Lévy pro-
cess admits a process-wise decomposition, called Lévy-Itô decomposition.

THEOREM - A.2.7 (Lévy-Itô decomposition).
If X is a Lévy process with triplet (a,σ,m) we have the following process-wise decomposition

X t =Wt +Zt +Yt

where:

• Wt :=σBt −at, with Bt a Brownian motion on Rd ;

• Zt is a compound Poisson process with Lévy triplet (0,0,m(·∩ {||x|| ≥ 1}))

Zt =
∫

(0,t ]×{||x||≥1}
xΠ∗(d(u, x))

and
∆Zt = Zt −Zt− =∆X t1||∆X t ||≥1,

that is Zt is the jump component which includes only big jumps.

• Yt is a mean-zero Lévy process with Lévy triplet (0,0,m(·∩ {||x|| < 1}))

Yt = lim
n→∞

∫
2−n<||x||<1

xΠ∗(d(u, x))− t
∫

2−n<||x||<1
xm(d x)

where the convergence is in L2. Moreover it is a martingale satisfying

∆Yt = Yt −Yt− =∆X t1||∆X t ||<1

that is Yt is the jump component which includes only small jumps.
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A.3 Stochastic calculus for jump-diffusion processes

A.3.1 Itô formula for jump-diffusion processes

In this section we obtain a more general version of the Itô formula by extending its validity
to the case of jump-diffusion processes, that is processes consisting of a drift term, a diffusion
part and a jump component determined by a compound Poisson process. The more tractabil-
ity of compound Poisson processes, among Lévy processes, stems from their being, in partic-
ular, of bounded variation. Thus it doesn’t take a notion of stochastic integral with respect to
Lévy processes to deal with them, but it suffices to remind the definition of Riemann-Stieltjes
integral and extend the standard Itô formula for continuous bounded variation functions to
discontinuous bounded variation functions.

Firstly ,we state a deterministic Itô formula, generalized to the case of discontinuous bounded
variation functions, which is basically an extended change of variable formula for piecewise
smooth functions.

Consider a function x : [0,T ] −→ R which has a finite number of discontinuities at T1 ≤ T2 ≤
·· ·Tn ≤ Tn+1 = T , but is smooth on each interval ]Ti ,Ti+1[. We choose x to be càdlàg at the
discontinuity points by defining x(Ti ) := x(Ti+). Such a function may be represented as

x(t ) =
∫ t

0
b(s) d s + ∑

i , Ti≤t
∆xi

where∆xi = x(Ti )−x(Ti− and the sum takes into account the discontinuities occuring between
0 and t . Consider now a C 1 function f : R −→ R. Since on each interval ]Ti ,Ti+1[ x is smooth,
f (x(t )) is also smooth. Therefore we can apply the change of variable formula for smooth func-
tions and write, for i = 0, · · · ,n and T0 = 0 for convention:

f (x(Ti+1−))− f (x(Ti )) =
∫ Ti+1−

Ti

f ′(x(t ))x ′(t ) d t =
∫ Ti+1−

Ti

f ′(x(t ))b(t ) d t .

At each discontinuity point, f (x(t )) has jump equal to

f (x(Ti ))− f (x(Ti )) = f (x(Ti−)+∆xi )− f (x(Ti−)).

Adding these two contributions together, the overall variation of f between 0 and t can be
written as:

f (x(T ))− f (x(0)) =
n∑

i=0

[
f (x(Ti+1))− f (x(Ti ))

]
=

n∑
i=0

[
f (x(Ti+1)− f (x(Ti+1−))+ f (x(Ti+1−))− f (x(Ti ))

]
=

n+1∑
i=1

[
f (x(Ti−)+∆xi )− f (x(Ti−))

]+ n∑
i=0

∫ Ti+1−

Ti

f ′(x(t ))b(t ) d t .

Finally we obtain the following

THEOREM - A.3.1 (Deterministic Itô formula).
If x is a piecewise C 1 function given by

x(t ) =
∫ t

0
b(s) d s + ∑

i=1,··· ,n+1, Ti≤t
∆xi
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where ∆xi = x(Ti )−x(Ti−), then for every C 1 function f :R−→R:

f (x(T ))− f (x(0)) =
∫ T

0
b(t ) f ′(x(t−)) d t +

n+1∑
i=1

f (x(Ti−)+∆xi )− f (x(Ti−)).

Now, we finally present the version of the extended Itô formula for jump-diffusion processes,
which is based on both the contributions of the Brownian Itô formula and the deterministic
one.

Consider a jump-diffusion process

X t =µt +σWt +Zt = X c (t )+Zt

where Z is a compound Poisson process and X c is the continuous part of X :

Zt =
Nt∑

i=1
∆X j

X c
t =µt +σWt .

Define Yt = f (X t ) where f ∈C 2(R) and denote by Ti , i = 1, · · · , NT the jumps times of X .

On ]Ti ,Ti+1[, X evolves according to

d X t = d X c
t =σdWt +µd t

hence, by applying the Itô formula in the Brownian case we obtain

YTi+1− −TTi =
∫ Ti+1−

Ti

σ2

2
f ′′(X t ) d t +

∫ Ti+1−

Ti

f ′(X t ) d X t

=
∫ Ti+1−

Ti

{
σ2

2
f ′′(X t ) d t + f ′(X t ) d X c

t

}
since d X t = d X c (t ) on this interval.

If a jump of size ∆X t occurs, then the resulting change in Yt is given by f (X t−+∆X t )− f (X t−).
The total change in Yt can therefore be written as the sum of these two contributions:

f (X t )− f (X0) =
∫ t

0
f ′(Xs) d X c

s +
∫ t

0

σ2

2
f ′′(Xs) d s + ∑

0≤s≤t ,∆Xs 6=0

[
f (Xs−+∆XS)− f (Xs−)

]
. (A.8)

Remark A.19. Replacing d X c
S by d Xs −∆Xs we obtain an equivalent expression:

f (X t )− f (X0) =
∫ t

0
f ′(Xs−) d Xs+

∫ t

0

σ2

2
f ′′(Xs) d s+ ∑

0≤s≤t ,∆Xs 6=0

[
f (Xs−+∆XS)− f (Xs−)−∆Xs f ′(Xs−)

]
.

(A.9)
When the number of jumps is finite, which is the case of compound Poisson processes, this
form is equivalent to (A.8). However, the form (A.9) is more general: indeed, for instance, if
jumps have infinite variation, the sum in Equation (A.8) may not converge, whereas it can be
shown that both the stochastic integral and the sum over the jumps in (A.9) are well-defined
for any semimartingale.
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Here we have only used the Itô formula for diffusions, which is of course still valid if σ is
replaced by a Ft−measurable square-integrable process. Indeed we have the following general

THEOREM - A.3.2 (Itô formula for jump-diffusion processes).
Let X be a diffusion process with jumps, defined as the sum of a drift term, a Brownian stochastic
integral and a compound Poisson process:

X t = X0 +
∫ t

0
bsd s +

∫ t

0
σsdWs +

Nt∑
j=1
∆Xi

where bt and σt are continuous, progressively measurable (with respect to the filtration Ft ) pro-
cesses with

E

[∫ T

0
σ2

t d t

]
<+∞.

Then, for any C 1,2 function f : [0,T ]×R−→R, the process Yt = f (t , X t ) can be represented as

f (t , X t )− f (0, X0) =
∫ t

0

[
∂ f

∂s
(s, Xs)+ ∂ f

∂x
(s, Xs)bs

]
d s

+ 1

2

∫ t

0
σ2

s
∂2 f

∂x2 (s, Xs)d s +
∫ t

0

∂ f

∂x
(s, Xs)σs dWs

+ ∑
{i≥1,Ti≤t }

[
f (XTi− +∆Xi )− f (XTi−)

]
.

In differential notation:

dYt = ∂ f

∂t
(t , X t )d t+bt

∂ f

∂x
(t , X t )d t + σ2

t

2

∂2 f

∂x2 (t , X t )d t

+∂ f

∂x
(t , X t )σt dWt +

[
f (X t−+∆X t )− f (X t−)

]
.

A.3.2 Feynman-Kac representation

Similarly to the diffusion case, in this section, we examine the deep connection between
SDEs with jumps and partial integro-differential equations (PIDEs), where the trait d’union is
the Itô formula A.3.2.

Let a : [0,T ] −→R be a bounded (L∞) function andσ : [0,T ] −→R+ be a positive bounded func-
tion. Let us denote by Π∗ a Poisson random measure on [0,T ]×R with intensity m∗(d y,d t ) =
m(d y) d t with m a Lévy measure and Π̃∗ the compensated version of Π∗, i.e. Π̃∗(A) =Π∗(A)−∫

A d t m(d y). For a given t ∈ [0,T [, x ∈R we define the jump process
(
X t ,x

s
)

s∈[t ,T ] by

X t ,x
s = x +

∫ s

t
a(u) du +

∫ s

t
σ(u) dWu +

∫ s

t

∫
|y |≥1

y Π∗(du,d y)+
∫ s

t

∫
|y |≤1

y Π̃∗(du,d x). (A.10)

X t ,x
s is the position at time s > t of a jump process starting in x at time t and having drift a(·), a

time-dependent volatilityσ(·) and a jump component described by a (pure jump) Lévy process
with Lévy measure m.

Remark A.20. If σ(t ) =σ and a(t ) = a then X t ,x
S = x +Xs−t where X is a Lévy process with Lévy

triplet (a,σ2,m) and (A.10) is simply the Lévy-Itô decomposition.
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THEOREM - A.3.3 (Feynman-Kac representation).
Consider a bounded function h ∈ L∞(R). If

∃c, c̄ > 0, ∀t ∈ [0,T ], c ≥σ(t ) ≥ c̄

then the Cauchy problem{
∂ f
∂t (t , x)+ σ2(t )

2
∂2 f
∂x2 (t , x)+a(t )∂ f

∂x (t , x)+∫
R

[
f (t , x + y)− f (t , x)− y1|y |≤1

∂ f
∂x (t , x)

]
m(d y) = 0, ∀x ∈R

f (T, x) = h(x)

has a unique solution given by
f (t , x) = E

[
h(X t ,x

T )
]

,

where X t ,x
T is the process given by (A.10).
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