

ALMA MATER STUDIORUM - UNIVERSITA' DI BOLOGNA

SECONDA FACOLTA’ DI INGEGNERIA

CON SEDE A CESENA

CORSO DI LAUREA

IN INGEGNERIA AEROSPAZIALE

Sede di Forlì

ELABORATO FINALE DI LAUREA

in Attitude Determination and Control

Development and implementation of a S/W platform

to automatically receive and share satellite data

CANDIDATO RELATORE

Alessandro Romolo Prof. Paolo Tortora

 CORRELATORE

 Prof. Fernando Aguado

Anno Accademico [2013/2014]

Sessione seconda

1

CONTENTS

CONTENTS .. 1

LIST OF FIGURES ... 4

LIST OF TABLES ... 5

ABSTRACT ... 6

1 INTRODUCTION ... 8

1.1 The Web Database .. 9

1.2 Technical information about the database ... 10

1.3 Thesis outline ... 10

2 WEB PROGRAMMING .. 12

2.1 Web Development and Web Programming .. 12

2.1.1 HTML .. 14

2.1.2 CSS ... 15

2.1.3 JavaScript ... 16

2.2 Object-oriented programming .. 17

2.3 PHP .. 18

2.4 Frameworks ... 19

3 THE SYMFONY FRAMEWORK ... 22

3.1 Why Symfony2 ... 22

3.2 The Bitnami WAMP ... 24

3.3 Understanding the Directory Structure ... 25

3.4 Bundle .. 25

3.5 Controllers, Front Controllers and Environments ... 27

3.6 Routing... 28

3.7 Template & CSS ... 30

3.8 Database and Doctrine .. 32

3.8.1 Annotations ... 33

3.8.2 Annotations in Doctrine .. 34

2

4 THE SOFTWARE – CLIENT SIDE .. 36

4.1 The public area .. 37

4.2 The Mission area.. 38

4.3 The Ground Station area ... 40

4.4 The management area... 41

4.4.1 The Admin area ... 42

4.4.2 The Users area ... 44

5 THE SOFTWARE – STRUCTURE AND OPERATING PRINCIPLE ... 45

5.1 Structure of the software (bundles) .. 46

5.2 Security .. 48

5.2.1 Cross-site scripting ... 50

5.3 FOSUserBundle .. 50

5.4 Overriding a bundle ... 52

5.5 PUGXMultiUserBundle .. 53

5.6 MainBundle ... 54

5.6.1 Controllers ... 54

5.6.2 Routing... 55

5.6.3 Templates .. 56

5.7 MissionBundle ... 57

5.7.1 Controllers ... 57

5.7.2 Routing... 57

5.7.3 Templates .. 57

5.8 GroundStation Bundle ... 58

5.8.1 The Product Entity ... 58

5.8.2 Controllers ... 59

5.8.3 Routing... 59

5.8.4 Templates .. 60

5.9 ManagementBundle .. 60

5.9.1 The Mission Entity ... 61

5.9.2 The User Entities .. 61

3

5.9.3 Controllers ... 62

5.9.4 Routing... 63

5.9.5 Templates .. 63

5.10 Software Scheme ... 64

5.11 Redirect URLs with a Trailing Slash .. 68

6 INSTALLATION ON THE SERVER AND CUSTOMIZATION .. 69

6.1 Installation of the Bitnami WAMP with Symfony2 .. 70

6.2 Installation of the Software ... 77

6.2.1 Installation of the Bundles ... 77

6.2.2 Installation of the Vendors .. 78

6.3 Settings, Routing and Configuration files .. 79

6.4 Customization of the settings .. 79

6.4.1 Setting the time zone in Synfony2 ... 79

6.4.2 Setting the name and folder of the stored file .. 80

6.4.3 Upload file validation ... 81

6.4.4 Customization of the User Entities .. 82

6.5 Customization of the templates .. 83

6.5.1 Logic of the templates ... 84

6.6 Maintenance .. 85

6.6.1 Create an Admin User .. 85

7 CONCLUSIONS AND FUTURE DEVELOPMENT .. 87

7.1 Future Development.. 87

7.2 Conclusions .. 90

 Appendix USEFUL CMD COMMANDS ... 91

Bibliography and Webography ... 96

4

LIST OF FIGURES

Figure 1-1 Graphic flow between the database and the client devices .. 9

Figure 3-1 The Workflow of a Symfony request .. 24

Figure 3-2 MCV Pattern design ... 26

Figure 3-3 The basic process for a server-side web templating system. ... 30

Figure 4-1 Homepage .. 37

Figure 4-2 Indication of the relative template in the homepage. ... 38

Figure 4-3 Mission Operators Homepage’s Body .. 39

Figure 4-4 Form for the download of the uploaded objects ... 39

Figure 4-5 Screenshot of the visualization of the strings. Note: Missions' names and data are fictitious..... 40

Figure 4-6 Screenshot of the Ground Station Homepage’s Body.. 40

Figure 4-7 Form to upload a Product Object ... 41

Figure 4-8 Upload object for Admin User .. 42

Figure 4-9 List of the Mission Operators. .. 43

Figure 4-10 List of the Stored Missions ... 43

Figure 4-11 Ground Station Registration Page .. 44

Figure 6-1 Installer download page for WAMP Stack (from http://bitnami.com/stack/wamp 2013) 70

Figure 6-2 Component installing selection .. 71

Figure 6-3 Panel to set database password. .. 72

Figure 6-4 Symfony localhost. ... 76

Figure 6-5 How the template used is shown in every page. ... 83

Figure 6-6 Example of field to modify in order to customize the template. ... 83

file:///C:/Users/Alessandro/Dropbox/Università/Erasmus/Tesi/TesiCompleta.docx%23_Toc400119140

5

LIST OF TABLES

Table 1 Bundles Path ... 47

Table 2 Routing scheme of the bundles .. 48

Table 3 security.yml ... 49

Table 4 MainBundle Templates ... 56

Table 5 MissionBundle Templates ... 58

Table 6 GroundStationBundle Templates ... 60

Table 7 ManagementBundle Templates ... 63

Table 8 Software schema – part 1 ... 65

Table 9 Software schema – part 2 ... 66

Table 10 Software schema – part 3 ... 67

6

ABSTRACT

La seguente tesi è la relazione del lavoro di creazione e implementazione della

piattaforma software che sviluppa l’archivio del progetto SATNET.

I satelliti universitari hanno un tempo di vista della propria Stazione di Terra

di pochi minuti al giorno: SATNET risponde all’esigenza di comunicare con un

satellite universitario in orbita bassa per più dei pochi minuti al giorno che una

singola Stazione di Terra permette. Questo avviene grazie a una rete di Stazioni di

Terra Satellitari collegate da specifiche missioni comuni che mettono in

condivisione dati ricevuti da uno o più satelliti, aumentando il rendimento

dati/giorno di questi e permettendo una migliore fruizione delle Stazioni di Terra

stesse. Il network sfrutta Internet come canale di connessione, e prevede la presenza

di un archivio nel quale memorizzare i dati ricevuti, per poi renderne possibile la

consultazione e il recupero.

Oggetto di questo lavoro di tesi è stato lo sviluppo e l’implementazione di tale

archivio: utilizzando un sito web dinamico, il software risponde a tutte le richieste

evidenziate nel paragrafo precedente, permettendo a utenti autenticati di inserire

dati e ad altri di poterne avere accesso.

Il software è completo e funzionante ma non finito, in quanto manca la

formulazione di alcune richieste; per esempio non è stato specificato il tipo di

informazioni che è possibile caricare in upload, né il tipo di campi richiesti nel

modulo di registrazione dei vari utenti. In questi casi sono stati inseriti campi

generici, lasciando all’utente la possibilità di modificarli in seguito.

Il software è stato dunque concepito come facilmente personalizzabile e

modificabile anche da utenti inesperti grazie alla sola lettura della tesi, che

7

rappresenta quindi una vera e propria guida per l’utilizzo, l’installazione, la

personalizzazione e la manutenzione della piattaforma software.

La tesi evidenzia gli obiettivi e le richieste, mostrando l’aspetto del sito web

e le sue funzionalità, e spiega passo per passo il procedimento per la modifica

dell’aspetto delle pagine e di alcuni parametri di configurazione. Inoltre, qualora

siano necessarie modifiche sostanziali al progetto, introduce i vari linguaggi di

programmazione necessari allo sviluppo e alla programmazione web e aiuta l’utente

nella comprensione della struttura del software.

Si conclude con alcuni suggerimenti su eventuali modifiche, attuabili solo a

seguito di un lavoro di definizione degli obiettivi e delle specifiche richieste.

In futuro ci si aspetta l’implementazione e la personalizzazione del software,

nonché l’integrazione dell’archivio all’interno del progetto SATNET, con

l’obiettivo di migliorare e favorire la diffusione e la condivisione di progetti comuni

tra diverse Università Europee ed Extra-Europee.

8

1

 INTRODUCTION

In 2013 started the development of SATNET1, a worldwide network of radio

amateur and university Ground Station (GS) to support the operations of university

satellites.

A network like SATNET allows the access to a great number of GS and

satellites, increasing the data return to many hours per day and do not let the GSs

unused.

A single satellite sends data to many GSs along its orbit. At the ground there

must be a connection between the GSs that collect the data in order to make them

available for successive elaborations and analysis.

This connection must comprehend a line of communication and a database

for data storage.

1 Inserire significato acronico e riferimento alla relazione di preparazione alla tesi.

9

1.1 The Web Database

The SATNET project requires a database to store the data provided by the

missions supported.

Nowadays, one of the best way to exchange data is by internet; internet is

available worldwide and create a database online in a web page seems the best

solution.

Every GS will receive data from the space segment, probably from different

missions. Then it will pass the data through a web page to a main server, which will

store the data in a Database Server and will make them available for the clients,

distributing every piece of information with his associate mission and blocking with

a firewall not authorized requests.

Figure 1-1 Graphic flow between the database and the client devices

A dynamic web application enhances the database and makes it accessible in

a protected web page, accessible only by authenticated users.

The main topic of this work focuses on the module of the SATNET, that

allows the storage and sharing of information through the web.

10

1.2 Technical information about the database

The dynamic web application is written in PHP, a server-side scripting

language designed for web development but also used as a general-purpose

programming language.

In order to speed up the creation of the application and to improve the

maintenance we used the framework Symfony2, a free software released under the

MIT license. Symfony2 is a PHP framework; it simplifies all the development and

improvement process.

The relational database management system is Doctrine and the

programming technique is ORM (Object-relational mapping).

ORM is a powerful method for designing and querying database models at

the conceptual level, allowing data converting between incompatible type systems

in object-oriented programming languages. Relational database management

systems (RDBMS) represent data in a tabular format, whereas object-oriented

languages, such as Java, represent it as an interconnected graph of objects: ORM

allows the connection between the two type systems.

For more information about ORM we suggest 2

1.3 Thesis outline

The remaining of this thesis is organized as follows.

 Chapter 2 presents a guideline for a preliminary study of the basics of

web applications. It involves a series of languages for the

programming of static pages (HTML), the settings about look and

formatting (CSS), the scripting of basic functions (JavaScript) and,

eventually, a look into dynamic web applications with server-side

2 http://www.orm.net/

http://en.wikipedia.org/wiki/Computer_programming

11

programming languages (PHP). It closes with the basics of

programming development framework.

 Chapter 3 introduces to Symfony2, the framework used to develop the

project presented in this paper. A short introduction helps the user to

install PHP, Symfony, Perl and all the useful tools to make the

application work. Then follows a quick tour to Symfony, how it works

regarding director structure, routing, controllers and bundles. A

skilled operator about Symfony and web applications can neglect this

and the previous chapter.

 Chapter 4 outlines the project as seen by the users. For every web page

we presented a brief description of the principal functions, how to

perform them, possible problems an applications.

 Chapter 5 outlines the project as developed by the programmer, with

detailed explications about the structure of the bundles, the security

system and the third-party repository.

 Chapter 6 is a guide for the installation of the software in a Server,

and the customization of settings and templates.

 Chapter 7 presents conclusions and suggestions for future software

developments.

 An appendix closes the thesis, showing the most recurring and useful

command prompt or terminal (cmd) commands.

12

2

 WEB PROGRAMMING

In order to comprehend and properly use the web application, we need a study

of the philosophy of the web and the web application programming. The knowledge

of some scripting and programming languages is essential: in this chapter, we try

to explain the function of the most important, like HTML, CSS and JavaScript, and

to introduce the object-oriented programming and PHP, fundamental for the web

programming server side.

2.1 Web Development and Web Programming

The Web development involves the development of every kind of web site or

web application for a very generic private network that use Internet Protocol

technology to share information.

The Internet Protocol (IP) is the principal communications protocol base of

the internetworking and the entire Internet: it establishes every communication on

the web.

13

A conversation on the web starts with a request for a resource. The client (e.g.

a browser, a mobile app, etc.) asks for it sending a message, and then waits for the

response. The sent message is written in a special format known as HTTP, and must

contains everything necessary to identify the requested resource. If the server is not

able to find it, answers with an error message.

The server receives the request, analyses it, checks for errors, and creates a

new message, the response. The response is written in an HTTP message, which

the browser is able to read and display to the user.

The response contains the requested resource, as well as other information

about the status of the system, the HTTP response status code, the HTTP header

and other metadata.

To reach this aim, there are many languages dedicated to different types of

application (web, mobile, JSON API), but the philosophy of the process is standard;

every web application is built to understand a request and create and return an

appropriate response. This principle, extremely easy and powerful, drives the

communication on the web.

The web started with static web pages, written in simply HTML. Write a static

web page is a simply matter of compiling an HTML file, without programming

logic.

 With the growth of the internet, the requirements for the web pages

increased, leading to the birth and growth of web programming.

Nowadays every web site presents a big dynamic component, that allows

interactivity between the clients and the server and it requires the knowledge of

more than only one programming language.

To write a static web site you need to know at least HTML and CSS. To

improve the web site you need to start putting a bit of logic inside the HTML code,

with possibly JQuery/JavaScript for interactivity, but still applying a client.-side

scripting.

14

In order to create a modern, interactive website, you should know about

server-side scripting, like PHP, and SQL for managing data held in a relational

database management system (RDBMS).

Languages such as Ruby and Python are useful for different skills, but can be

learn at a later stage, and for a starting point, the PHP/MySQL combo is the place

to start.

2.1.1 HTML

HTML (HyperText Mark-up Language) is a scripting language intended to

write and show the content of a web page.

HTML is HyperText, because it is the principal characteristic defining the

structure of the web; it allows reference to other text through hyperlinks or other

structures embedded inside a page.

HTML is a mark-up language because the way of annotate the text is

syntactically distinguishable from the text. In particular, HTML is a descriptive

mark-up, and it uses the tag to determine how the content of the page is shown to

the user.

The browser born to read HTML and properly compose the information and

presents it to the user. It does not display the tags, and it can be taken as example

of no use of the WYSIWYG3 scripture system; indeed the browser does not display

the HTML tags, but uses the tags to determine how the content of the HTML page

is shown to the user.

HTML is written in the form of HTML elements consisting of tags enclosed

in angle brackets: every tags refers to a different kind of metadata or format.

Here an example of an HTML page:

<HTML>

 <head>

3 Acronym for "What You See Is What You Get".

15

 <title>This is a title</title>

 </head>

 <body>

 <p>Hello world4!</p>

 </body>

</HTML>

Basic HTML is a limited approach that does not allow for flexibility or

responsiveness. Visitors accessing HTML-only sites see simple pages with no level

of customization or dynamic behaviour. That is the motivation for the development

of programming languages, in order to integrate it and open the boundary of the

web.

The actual version of HTML is the 5.0 released in February, 4th 2014.

HTML5 is intended to subsume not only HTML 4, but also XHTML 15.

Many books and website widely describe HTML and his tags. We referred to

the official documentation of the World Wide Web Consortium (W3C)6.

2.1.2 CSS

HTML was intended to define the content of a document rather than

formatting.

HTML 3.2 specification added tags like , and colour attributes: it

improved the visualization of the webpage, but incredibly extended the

development of large web sites, where fonts and colour information were added to

every single page.

From HTML 4.0, the CSS (Cascading Style Sheet) tried to solve this problem,

allowing the storage of formatting in a separate CSS file.

4 It is by tradition often used to illustrate to beginners the most basic syntax of a programming language with a
computer program that outputs “Hello, world” on the display device.
5 XHTML is an extend versions of the widely used HTML, developed to make HTML more extensible and increase
interoperability with other data formats.
6 http://www.w3.org/MarkUp/

16

CSS uses keywords to specify the names of various style properties; in this

way, the HTML defines the semantic of the text and the CSS the formatting.

 <style type="text/css">

 body {

 color: purple;

 background-color: #d8da3d }

 </style>

Like for HTML, many books and website describe CSS: the official

dispositions and the latest development are in the World Wide Web Consortium

website.7

2.1.3 JavaScript

HTML allows the development of only static web pages: JavaScript (JS) is

used to interact with the user, control the browser, communicate asynchronously,

and alter the document content that is displayed, allowing the development of

dynamic web pages.

JavaScript is a prototype-based scripting language with dynamic typing, a

syntax influenced by C and first-class functions. JavaScript code can be inserted

into any HTML page, and nowadays all web browsers are able to execute it.

The more common way to use JavaScript is the manipulation of the contents

of a HTML element, substituting, erasing or creating it.

It allows also the change of the value of HTML attributes, the change of

HTML Styles, for input validation and more.

JavaScript born for client-side scripts, but now is also used on server-side for

programming, game development and the creation of desktop applications. It finds

7 http://www.w3.org/Style/CSS/

17

application also outside the web pages, like in PDF documents, site-specific

browsers, and desktop widgets.

2.2 Object-oriented programming

The object-oriented programming (OOP) is a programming paradigm, base

of many programming languages like Java, Python, C++ and PHP.

In OOP, the “object” refers to a particular concept that can be a combination

of variables, functions, and data structures.

The object is defined as instance of a class, where a class is an extensible

template for creating objects. The class is the abstraction of a concept as

implemented in a software: his object is a specific realization of the class.

The OOP includes many others concepts, like encapsulation and inheritance.

The encapsulation defines the technique to hide the working principle of a

part of a program, restricting access to some of the object's components. It protects

the code and allows taking part of the project like a “black box”, without any

knowledge of its internal mechanism and using it only in terms of its input, output

and transfer characteristics.

The inheritance defines a relation between two different objects or classes:

it allows an object to inherit another object, using the same implementation. One

object can be inherited by more objects; consequently, this procedure leads to a

hierarchy, with subclasses and superclasses. Inheritance helps the programmer

limiting code redundancy, with overriding and code reuse.

A more detailed description of these concepts goes beyond the scope of this

work and it can be found in [8] and [9]. The reader is expected to learn these concepts

to better understand the PHP language.

8 http://docs.oracle.com/javase/tutorial/java/concepts/index.html
9 http://www.codeproject.com/Articles/22769/Introduction-to-Object-Oriented-Programming-Concep#Interface

http://en.wikipedia.org/wiki/Object_(computer_science)

18

2.3 PHP

PHP is a recursive acronym for PHP: Hypertext Preprocessor, but it

originally stood for Personal Home Page. The new name fits the improvements and

extended capabilities of the last versions of the language.

PHP is a “widely-used general-purpose scripting language that is especially

suited for Web development and can be embedded into HTML”.10

To say that PHP can be embedded into HTML means that PHP code can be

written within the HTML code, and not in a separate file.

PHP is a scripting language, as opposed to a compiled language. This means

that PHP is designed to do something only after an event occurs, exactly like

JavaScript, which commonly handles events that occur within the Web browser.

These two languages can also be described as interpreted, because the code must

be run through an executable, such as the PHP module or the browser’s JavaScript

component.

The difference between JavaScript and PHP is that PHP is a server-side

technology, and its aim is to send information to the Web browser, and not to open

new browser window, make pop-up alerts, etc. However, PHP can be used to

generate JavaScript, just as it can be used to create HTML.

When a client calls a uniform resource identifier (URI), the server read the

request written in HTML, extracts and performs the PHP code: according on these

instruction, it creates and sends the appropriate Web page data to the browser in the

form of HTML. Shortly, PHP creates an HTML page dynamically based on the

request or others parameters (like time, date, etc.).

10 www.php.net

19

The client can only see the HTML code, and there is no perceptible difference

between www.homepage.html or www.homepage.php appearance, but how the

page’s content is compiled is significantly different.

There are alternatives to PHP, but to develop dynamic Web sites, PHP is

preferred for the following reasons:

 PHP is much easier to learn and use

 PHP was written specifically for dynamic Web page creation.

 PHP is free and cross-platform.

 PHP is now the most popular tool available for developing dynamic

Web sites, covering the 75% of all Web sites, and it is one of the most

popular programming language.

PHP is an orient-object programming language (OOP); thus we suggest to

study OOP before reading the documentation in the official web page11, and the

dedicated books in the Bibliography.

2.4 Frameworks

A framework is a platform for developing software applications. The exact

definition of a framework is quite hard and complex: the idea is to create a real or

conceptual structure in order to serve as a support for the programming of some

kind of applications.

Technically, the programmer does not need a framework. He may need it

because it contains lots of already written and tested functionality that represent a

great shortcut when developing applications.

11 http://www.php.net/docs.php

http://www.homepage.html/
http://www.homepage.php/
http://www.php.net/docs.

20

The basic principle of framework is “Investing in the task, not in the

technology”. It means that recurring tasks are already written and the developer can

fully focus on specific components, with solid sustainable and high quality code.

“In computer programming, a software framework is an

abstraction in which software providing generic functionality

can be selectively changed by additional user-written code, thus

providing application-specific software. A software framework

is a universal, reusable software platform to develop software

applications, products and solutions. Software frameworks

include support programs, compilers, code libraries, tool sets,

and application programming interfaces (APIs) that bring

together all the different components to enable development of

a project or solution.”12

The programmer community agrees on this matter: except for very simple

web sites, small and isolated, a PHP framework represents a great opportunity for

many reasons:

 A PHP framework already has a structured folder and it helps with

code and file organization.

 PHP frameworks comes with Libraries and Helpers, and there is

plenty of plugins provided by the community.

 A framework facilitates the management of the security system, with

tools already tested many times by many programmers.

 After a slowing down due to the learning of the framework, it allows

a rapid application development, writing less code.

 The organization of a project in a PHP Framework creates a suitable

environment for teamwork.

12 http://en.wikipedia.org/wiki/Software_framework

21

 A PHP framework can make available a debugger, facilitating the

debug and the maintenance of the project.

Nowadays the majority of complex web projects are written within a framework.

22

3

 THE SYMFONY

FRAMEWORK

The purpose of this paper is to provide a practical guideline in order to

familiarize with Symfony and start a first basic project. This is not meant to be a

User's guide to Symfony.

For a deeper study on this matter, we suggest to read the official documentation

integrated by the books and websites in the bibliography.

Symfony2 is widely used in the programmer community, therefore forums, web

sites and books can help the neophyte to start programming.

3.1 Why Symfony2

“Symfony2 is a reusable set of standalone, decoupled, and

cohesive PHP components that solve common web development

23

problems. Based on these components, Symfony2 is also a full-

stack web framework.”13

The web offers many PHP frameworks. According to us, Symfony is one of

the best for the following reasons:

 The code is rock solid: the majority of Symfony2 components is the

result of many years of work and the contributions of many

developers.

 Symfony embraces the "don't reinvent the wheel" philosophy, and

provides tight integration with many other Open-Source projects (like

Monolog, Assetic, Doctrine, Propel ...).

 Symfony enjoys a huge community of users and contributors.

 There are many open source high quality vendors. Almost for any task

there is a bundle you can base your stuff on or at least to get an idea

how to approach the problem.

As of today, Symfony has twenty-one components and any of them can be

used as a standalone library. With these, many tasks are simplified, like validating

an object, creating a form, routing or checking the security of the system.

Figure 3-1 shows the workflow of a Symfony request, highlighting

Symfony’s role in the managing of the Request object.

13 http://fabien.potencier.org/article/49/what-is-symfony2

http://connect.sensiolabs.com/
http://symfony.com/contributors

24

Figure 3-1 The Workflow of a Symfony request

3.2 The Bitnami WAMP

To install Symfony we decided to install the Bitnami WAMP, which provides a

complete development environment for Windows.

Bitnami comprehends PHP, MySQL and Apache, and bundles many functions

among which CURL, PEAR, SQLite and the Symfony framework.

The use of a WAMP gives the opportunity for a fast and easy installation of

the useful components for the server-side web programming.

In the Symfony web site14, there is a useful Quick Start Guide. After the

installation of Apache and Symfony2, there is the possibility to start seeing the

practical use of Symfony: using and modifying a demo project developed for

practicing with Symfony helps understanding the framework and its working

principle.

For the sake of completeness, an installation guide for Bitnami WAMP is

reported in chapter 6.1.

14 http://symfony.com/doc/current/quick_tour/the_big_picture.html

25

3.3 Understanding the Directory Structure

Symfony2 follows and recommends the directory structure:

 app/: the application configuration;

 src/: the project's PHP code;

 vendor/: the third-party dependencies;

 web/: the web root directory.

The app directory stores the AppKernel class, which is the main entry point

of the application configuration. It stores the configurations, including routing and

security, and the cache.

The web directory contains public and static files, like images, stylesheets,

and JavaScript files. Moreover, it contains the front controller: it creates the Request

object and sends the response contents back to the user.

Vendor is the default directory for third-party dependencies, but they can be

stored in other directories.

The source directory (src) contains the project’s PHP code, organized into

bundles.

3.4 Bundle

A bundle is a directory that has a well-defined structure and can host anything

from classes to controllers and web resources. It is also a PHP namespace15, but a

namespace becomes a bundle as soon as you add a bundle class to it.

In other words, a bundle is a part of an application with its own logic,

including controllers, views and models in the classical MVC-Paradigm.

MVC paradigm specifies the role that a single object can assume in an

application, and the way in which objects communicate to each other.

Figure 3-2 shows the MCV pattern design.

15 Namespaces are a way of encapsulating items. More information in the next page.

26

Figure 3-2 MCV Pattern design

The model contains the specific data of an application and defines every

procedure for the manipulation of these data.

The view simply displays the content to the client.

The controller is an intermediary between the model and the view.

Symfony is not exactly an MVC software16, indeed, it provides the tools for

the Controller part, the View part, but not the Model part, and it’s up to the

developer create the model or use other tools. We capitalized the integration for

Doctrine, designing the whole application like a MVC.

The bundles give you the flexibility to use pre-built features packaged in

third-party bundles or to distribute your own bundles. It makes easy to choose

which features to enable in your application and optimize them in your favourite

way.

PHP uses namespaces. Namespaces are a way of encapsulating items,

designed to solve two problems that authors of libraries and applications encounter

when creating re-usable code elements such as classes or functions.

These two problems are the following:

1) Name collisions between code you create, and internal PHP

classes/functions/constants or third-party classes/functions/constants.

16 The author of Symfony wrote few interesting lines about it. You can find it at the web site
http://fabien.potencier.org/article/49/what-is-symfony2

http://fabien.potencier.org/article/49/what-is-symfony2

27

2) Ability to alias (or shorten) Extra_Long_Names designed to alleviate

the first problem, improving readability of source code.17

It provides a way in which to group related classes, interfaces, functions and

constants.

In Symfony, the namespaces reflect the bundle structure, so every bundle

creates a namespace and every namespace are identified by a bundle, with

directories and subdirectories. This structure is briefly shown in the following lines:

 Controller/: contains the controllers,

 DependencyInjection/: contains the respective service.

 Entity/: contains the entities.

 Resources/:

o Config/: contains routing and services.

o Views/: contains the templates.

o Public/:

 Css/: contains css files.

 Images/: contains images.

 Js/: contains javascript files.

 Tests/: contains files for the application testing.

 Form/: contains the forms used by the application.

3.5 Controllers, Front Controllers and Environments

A Controller is simply a class file that is named in a way that can be associated

with an URI.

All requests run through the front controllers: in Symfony are the files

app.php and app_dev.php in the web/ directory. These are the very first PHP scripts

executed when a request is processed.

17 http://www.php.net/manual/en/language.namespaces.php

28

The front controller creates an instance of the AppKernel, makes it handle the

request and return the response to the client. Furthermore, the front controller

initializes settings and decorate the kernel with additional features.

The front controller can be chosen by requesting URLs like:

http://localhost/app_dev.php/some/path/...

In this way, we will call the app_dev.php front controller, which opens the

application in development environment mode. To open the application in

production environment we have to call:

http://localhost/app.php/some/path/...

In this second situation, the app.php string in the URL is hidden

automatically, and we can directly request:

http://localhost/some/path/...

The front controller initializes the bundle controller chosen by the requested

routing. The controllers are in the Controller folder of every bundle. The aim of the

controller is always to produce a Response object for the client, rendering a

template, showing a form, querying the database and so on: it carries the logic into

the static web page, making it dynamic.

3.6 Routing

The request of a client contains an address to the requested resource. This

address is the URL, and in Symfony, it identifies the called controller.

A route is the map from a URL path to a controller. In Symfony, the routing

system is flexible and allows creating complex routes and generating URLs inside

templates and controllers.

The parameters of a single route are:

 Name of the route

 Pattern

29

 Defaults

We can also optionally define:

 Requirements

 Methods

 Prefix/Suffix

The name of the route is the reference to call it in the project. The pattern is

the relative URLs to the page. The defaults are the parameters called automatically

by the route: in particular, the controller and the action to call.

The requirement can appear when the route is dynamic and accepts a variable

in the routing definition; methods restrict the route for a particular method (i.e.

GET, HEAD, POST, PUT, DELETE); prefix or suffix are morpheme post before or

after the regular pattern.

homepage:

 pattern: /

 defaults: { _controller: AcmeMainBundle:Default:index}

In this example, the name of the route is homepage, the pattern is just “/”,

because it is the homepage and the relative pattern is null, and the controller is

defined.

There is an easy way to identify the controller. The first part is the project

followed by the name of the Bundle. The second part is the name of the controller.

The last part is the name of the Action inside of the controller.

In the previous example, the homepage route calls the indexAction of the

DefaultController into the MainBundle of the Acme project.

In the controller, Symfony adds the string Controller to the class name

(Default=> DefaultController) and Action to the method name (index =>

indexAction).

The controller could be called also using its fully-qualified class name and

method: Acme\BlogBundle\Controller\BlogController::showAction, but in a less

flexible way.

30

Also the templates can be called in a more flexible way, as is shown in the

next chapter.

3.7 Template & CSS

A Template is a text file, used to define the pattern of a page and, using some

data source, display the data.

The idea of the template meets the idea of separation of concerns18: in order

to develop and deploy applications that are flexible and easily maintainable is

important to separate the domain logic from presentation logic.

Figure 3-3 The basic process for a server-side web templating system.

18 The idea that a software system must be decomposed into parts that overlap in functionality as little as possible.

31

In this way, the logic is in the controllers and the view in the templates. It

simplifies the flexibility, but also the reusability of code and allows the content

suppliers to focus on content, without the need to know the logic of the application

and the programming language.

Figure 3-3 shows the basic process for a server-side web templating system:

the template engine collects information from the database, combines it with the

template and displays the page. Changing the request, the page pattern is fixed, but

the contents change with the requested contents from the database.

Symfony uses a powerful templating language called Twig. Twig allows the

user to write concise and readable templates with no PHP code inside, allowing its

modification also by unskilled operators.

Twig defines two kinds of delimiters: {% ... %} and {{ ... }}. The former

encloses the programming, the latter prints the result of an expression to the

template. Moreover the delimiters {# #} enclose the comments into the template.

The Templates are by default in the app/Resources/views directory, or into

the path/to/bundle/Resources/views directory. The first case is used for basic

templates (like for layout), the second case for the others: actually, the majority of

templates is inside a bundle.

Twig supports inheritance: a child template can extend the basic layout and

override any of its blocks. In order to extend a parent template, you should use the

command extend:

{% extends 'AcmeMainBundle::base.html.twig' %}

Like for controllers, there is an easy way to route templates: Symfony uses a

bundle:folder:template string syntax. In our example, the template extends the

“base.html.twig” template, into the default template folder inside of the MainBundle

of the Acme project.

The name of the template, base.html.twig is the result of a composition:

 base : the name

 html: the format

32

 twig: the template engine

Another example of template name may be

AcmeMainBundle:Public:index.css.twig

It refers to the index template into the view/Public directory of the

MainBundle, and that contains the CSS elaborated with the twig engine.

3.8 Database and Doctrine

Symfony comes with Doctrine, a library that provides powerful tools to easily

persist and read information to and from a database.

Doctrine is totally decoupled from Symfony, but their integration is absolute.

Doctrine works with entity classes, placed in the entity folder of the bundles.

“The class - often called an "entity", meaning a basic class

that holds data - is simple and helps fulfil the business

requirement of needing products in your application. This class

can't be persisted to a database yet - it's just a simple PHP class.

For Doctrine to be able to do this, you just have to create

"metadata", or configuration that tells Doctrine exactly how the

Product class and its properties should be mapped to the

database. This metadata can be specified in a number of

different formats including YAML, XML or directly inside the

Product class via annotations.”19

In the Symfony website,20 there is a detailed explanation about how Doctrine

works.

19 http://symfony.com/doc/current/book/doctrine.html
20 As note 19

33

3.8.1 Annotations

“Annotations are meta-meta-object which can be used to

describe other meta-object. Meta-object are class, field and

method. Asking an object for its meta-object

(e.g. anObj.getClass()) is called introspection. The

introspection can go further and we can ask a meta-object what

are its annotations (e.g. aClass.getAnnotations). Introspection

and annotations belong to what is called reflexion and meta-

programming.”21

An annotation needs to be interpreted in one way or another to be useful.

Annotations can be interpreted at development-time by the IDE or the compiler or

at run-time by a framework, as Symfony2 does.

Annotation is a powerful mechanism and can be used in many different ways:

 to describe constraints or usage of an element: e.g. @Deprecated,

@Override, or @NotNull

 to describe the "nature" of an element, e.g. @Entity, @TestCase,

@WebService

 to describe the behaviour of an element: @Statefull, @Transaction

 to describe how to process the element: @Column, @XmlElement

In every case, an annotation is used to describe the element, which is

frequently referred as its semantics.

Prior to JDK522, the information that is now contained in the annotations

needed to be stored somewhere else, and XML23 files were frequently used.

21 http://stackoverflow.com/questions/1372876/how-and-where-are-annotations-used-in-java
22 Java Development Kit.
23 Extensible Markup Language.

http://stackoverflow.com/questions/1372876/how-and-where-are-annotations-used-in-java

34

Nevertheless, it is more convenient to use annotations because they will belong to

the Java code itself, and are hence much easier to manipulate than XML.

Annotations let you inject behaviour and can promote decoupling. Actually,

there are misgivings about the application of annotations in PHP24-25. They are

configurations, but since PHP only supports them through third party add-ons, they

are in comments. A common opinion is that something that is designed for

enterprise use should not be using a hack like this. Indeed installing a library,

plugin, or module in your application should not oblige you to modify the library

code to change a configurable behaviour. This should be done in a centralized

configuration location, not chasing down annotations that may be buried in code.

Having to pour through library code to chase down a bug or change a configuration

is a huge waste of time and resources.

However, in moderation, kept simple and done right, they can make code and

configuration simpler and cleaner.

3.8.2 Annotations in Doctrine

One example of a proper use of the annotations would be the Doctrine ORM.

Because of the use of annotations, you do not have to inherit from a Doctrine-

specific class unlike the Propel ORM. If you did not inherit from a Doctrine class,

you would most likely have to use some other metadata specification, like a

configuration file, to specify that a particular property is the ID of the record. In

that case, it would be too far removed from the syntax that the annotation (metadata)

describes.

The Doctrine Common annotations library was born from a need in the

Doctrine2 ORM to allow the mapping information to be specified as metadata

24 http://www.marclewis.com/2013/10/25/php_annotations_are_a_bad_idea/
25 http://r.je/php-annotations-are-an-abomination.html

35

embedded in the class files, on properties and methods. The library is independent

and can be used in your own libraries to implement doc block annotations.

The documentation process for Doctrine begins with the most basic element

of phpDocumentor: a Documentation block or DocBlock26. A basic DocBlock

looks like this:

/**

 *

 */

A DocBlock is an extended C++-style PHP comment that begins with "/**"

and has an asterisk at the beginning of every line. DocBlocks precede the element

they are documenting.

A clear understanding of the inner workings of annotation is important

because they are hard to debug. Not having an appropriate awareness of the

mechanism can lead us to a huge waste of time.

26 http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html

http://docs.doctrine-project.org/projects/doctrine-common/en/latest/reference/annotations.html

36

4

THE SOFTWARE – CLIENT

SIDE

This chapter describes the S/W from the client’s perspective. It displays the

developed web pages, and consequently it helps to better comprehend the operating

principle of the application.

The web site is divided into four main areas: the Public area, the Mission area,

the Ground Station area and the Management area.

In this chapter and in the following, we use the word object to indicate the

data uploaded by the GS Operators, including all the fields and the associated file,

as explained in Figure 4-7 and in chapter 5.8.1. The reader should not confuse it

with the object as defined in chapter 2.2.

We also use the terms “Ground Station Operator” and “Mission Operator” for

the clients, which represent the different kinds of clients.

37

4.1 The public area

The public area includes a series of pages accessible without authentication.

The pages considered of public interest will be accessible from the bar in the

homepage.

The current defined sections can be integrated with more useful pages and

information. For example we could add pages for the satellites tracking, with

information about satellites modulation, or with pictures and social contents.

Figure 4-1 Homepage

The homepage welcomes the user; if the user is not logged in, there is an

invitation to login, otherwise it contains the links for the mission area, the ground

38

station area, the management area and the others accessibly pages, depending on

the ROLE of the logged user.

Figure 4-1 displays the homepage of the project, when the user is not logged

in. The URLs is the one on the local machine, in production environment. To

visualize the same page in development environment, the URLs

localhost/symfony/app_dev.php should be called.

A page will shows information about the project: a presentation, objectives,

and the procedure to join and subscribe to the project, as a new ground station

operator or as a new mission operator.

Another page, a “contact us” page, contains the contacts to the developers of

the project, and the list of the subjects involved in it.

Every page has clearly indicated the relative template, in order to ease the

customization.

Figure 4-2 Indication of the relative template in the homepage.

The routing system used to indicate the template, is the same of Symfony, as

explained in the chapter 3.6; it means that in this case we should modify the

template called “index.HTML.twig” in the folder Resources\views\Public of the

MainBundle.

4.2 The Mission area

The mission area is dedicated to the operators that need to visualize and

download the objects of specific missions.

39

A mission homepage, where the mission operator is redirected after the login,

allows the user to reach all the useful pages about his tasks and his own user profile.

Figure 4-3 Mission Operators Homepage’s Body

The link “Download a string” redirects to the URL “…mission/download”:

the user has to choose one of the missions associated to him, and to visualize the

objects related to that mission. He is authorized to retrieve only the information that

concern to him, visualizing in the form only the associated missions.

The associated missions are the missions in which the user is authorized to

work. If twenty missions are stored, but the user is authorized to see only products

of Humsat mission, he is able to query product only from those mission, as shown

in Figure 4-4.

Figure 4-4 Form for the download of the uploaded objects

The visualization also allows the user to download directly, when available,

the file associated to the uploaded string.

Figure 4-5 displays how the results of a query are shown to the users.

40

4.3 The Ground Station area

Concurrently, another area is dedicated to the operators of the ground station.

The area allows to upload data and to see the uploaded data.

As before, it starts with a Ground Station homepage, with useful links and

information.

Figure 4-6 Screenshot of the Ground Station Homepage’s Body

A section is dedicated to download the uploaded string. This section has the

same structure of the mission’s one; it allows to query and visualize the objects

associated to a mission, or to visualize all the objects uploaded by the logged user,

independently from the mission.

A different section allows the user to upload the data.

Figure 4-5 Screenshot of the visualization of the strings.

Note: Missions' names and data are fictitious

41

Data uploaded consist in a string, a file audio, and the date. The software

automatically integrates the product object, sending information about mission,

name and location of the ground station, and other parameters.

Figure 4-7 Form to upload a Product Object

As shown in Figure 4-7, the user has to select a name for the uploaded data,

the associated mission, the upload time and a field to choose a file to upload.

Again, the user in the mission field can view and select only missions that he

is authorized to work with.

The upload time is automatically set to the current time, and the user can

modify it.

4.4 The management area

The management area is not directly referred to the project: it is supposed to

manage the users, debug and possibly fit administration needs.

42

4.4.1 The Admin area

This area is dedicated to the SATNET operators. There is an Admin

homepage, from which the Admin can visualize all accessible links, news about

project, statistics and useful information.

The Admin can upload objects, visualize them and he can save, store and

modify the missions.

The upload of the object allows the selection of a user, like anyone of the

Ground Station user, as shown in Figure 4-8.

Figure 4-8 Upload object for Admin User

The Admin can visualize the list of the users (Ground Stations and Mission

Operators), with information about their associated mission and date of the last

login.

43

Figure 4-9 List of the Mission Operators.

The Admin can create a Mission, which is identified by a Name, a

Description, and a list of associated users: the only ones who can visualize the

objects of a mission, or upload objects related to that mission.

A page displays the list of the missions, associated users and the link to

modify it.

 Figure 4-10 List of the Stored Missions

Every mission has two links to be modified: one for the association of Ground

Station Operators, and one for Ground Station Operators. The same links allow the

customization of the name and the description.

44

4.4.2 The Users area

There are two user’s areas, one dedicated to the Mission Operators, and one

dedicated to the Ground Station Operators.

In this area, the operators can visualize their profile and request adjustments

and updates, as change password or delete the user.

In the User Management Area, we include the registration pages. Presently,

the registration page is public, accessible by every user. The user can register, but

cannot upload, download or visualize anything, until an Admin Operator associates

a mission to him. Figure 4-11 shows the registration form for a Ground Station

Operator. The form for a Mission Operator is very similar, except for the lack of

the Latitude, Longitude and Altitude fields.

Figure 4-11 Ground Station Registration Page

Once registered, the user does not have any associated mission, and cannot

access the database: he needs to wait for the Admin approval.

45

5

 THE SOFTWARE –

STRUCTURE AND

OPERATING PRINCIPLE

The web site developed for this thesis is a dynamic web site, and can be considered

like a real software, with its programming logic.

The Symfony2 framework helped the development of the software; therefore, its

structure follows the Symfony2 structure, in which every namespace is represented

by a bundle that develops a specific task.

Some bundles are open source vendors, specifically downloaded in order to

integrate the application. Some others are the results of a scripting and compiling

work, which complies with the request of securely storing information.

46

5.1 Structure of the software (bundles)

The software is divided into four compiled bundles, plus the vendors. The Bundles

are called MainBundle, MissionBundle, GroundStationBundle and

ManagementBundle.

The structure chosen presents advantages and disadvantages: we endorsed the

easiness of future modifications, sacrificing the principles of not repeatability of

code.

The MainBundle contains the public part of the web site, the layout templates,

CSS, and the resources accessible without authentication.

The MissionBundle is dedicated to the Mission Operator.

The GroundStationBundle is dedicated to the Ground Station Operators, and

includes the product entity related to the uploaded file.

The ManagementBundle is dedicated to all that concern the management of the

web site, the Admin area, the mission and users entities and all the resources

accessible only by the administrators.

Moreover, we installed some vendors. We downloaded two open source bundles,

to implement specific functions: in particular, FOSUserBundle and

PUGXMultiUserBundle allow the management of the users.

Other vendors are automatically integrated with Symfony; the SecurityBundle, the

AsseticBundle, the FrameworkBundle, the DoctrineBundle, the TwigBundle and

others.

Table 1 outlines the chosen structure.

47

Table 1 Bundles Path

 Name of the Bundle Path

 MainBundle [symfony-path]\src\Acme\...]

o Public part of the web site

 It partially overrides the FosUserBundle

 MissionBundle [symfony-path]\src\Acme\...]

o Dedicated to Mission Operators

 GroundStationBundle [symfony-path]\src\Acme\...]

o Dedicated to Ground Station Operators

 Stores the Product Entity.

 ManagementBundle [symfony-path]\src\Acme\...]

o Dedicated to the management of the application.

 Stores the Mission Entity.

 Stores the User, UserGroundStation and UserOperator

Entities.

 FosUserBundle [symfony-path]\vendor\friendsofsymfony\...]

o Adds support for a database-backed user system.

 PUGXMultiUserBundle [symfony-path]\vendor\pugx\...]

o An extension for FOSUserBundle to handle users of different types

 DoctrineBundle [symfony-path]\vendor\doctrine\...]

o Doctrine integration.

 TwigBundle [symfony-path]\vendor\twig\...]

o Twig engine integration.

…

48

The file called routing.yml in the config folder of every bundle stores the

routing of the application. These files are imported by a main file into the app/config

folder, following the scheme in Table 2.

Table 2 Routing scheme of the bundles

Routing Hierarchy

 app/config/routing.yml Prefix

o AcmeIndexBundle ^/

o AcmeMissionBundle ^/mission/

o AcmeGrounstationBundle ^/groundstation/

o AcmeManagement ^/admin/

o FosUserBundle ^/

5.2 Security

The SecurityBundle manages the security of the application. The

configuration file, that is the only one that we have to take in account, is in the

/app/config/ folder of Symfony, and it is called security.yml.

A whole chapter of the Symfony book27 explains how this configuration file

works.

Table 3 shows the security.yml file of our project. It uses FOSUserBundle for

encoders and users provider.

27 http://symfony.com/doc/current/book/security.html

49

Table 3 security.yml

security:

 encoders:

 FOS\UserBundle\Model\UserInterface: sha512

 role_hierarchy:

 ROLE_ADMIN: [ROLE_OPERATOR, ROLE_GS]

 ROLE_SUPER_ADMIN: [ROLE_ADMIN,

ROLE_ALLOWED_TO_SWITCH]

 ROLE_OPERATOR:

 ROLE_GS:

 providers:

 fos_userbundle:

 id: fos_user.user_provider.username

 firewalls:

 main:

 pattern: ^/

 form_login:

 provider: fos_userbundle

 csrf_provider: form.csrf_provider

 logout: true

 anonymous: true

 access_control:

 - { path: ^/login$, role:

IS_AUTHENTICATED_ANONYMOUSLY }

 - { path: ^/register, role:

IS_AUTHENTICATED_ANONYMOUSLY }

 - { path: ^/resetting, role:

IS_AUTHENTICATED_ANONYMOUSLY }

 - { path: ^/admin/, role: ROLE_ADMIN }

 - { path: ^/mission, roles: ROLE_OPERATOR }

 - { path: ^/groundstation, roles: ROLE_GS}

The roles are three: ROLE_GS, ROLE_OPERATOR and ROLE_ADMIN.

They are integrated by the ROLE_SUPER_ADMIN and by the

ROLE_ALLOWED_TO_SWITCH.

Eventually, the access control defines the restriction and privileges of every

role: the path /mission is accessible only by Mission Operators, the path

50

/groundstation by Ground Station Operators, and the path /admin by the Admins.

The login, register and resetting pages are accessible without authentication.

5.2.1 Cross-site scripting

The XSS, cross-site scripting, is a vulnerability, specific of dynamic web

sites. When a web site is meant to receive data from a client, the client could inject

client-side script into the page, and commit illicit actions.

Three different options can solve this vulnerability. In Symfony2, the answer

to the problem is output escaping, enabled by default using Twig: the site is

automatically protected from the unintentional consequences of a XSS attack, until

it use twig as template engine. Thus, we do not have to worry about it.

There are also ways to protect the web site against the Cross-site request

forgery in login form: in few passages, we can activate the protection28.

5.3 FOSUserBundle

“The FOSUserBundle adds support for a database-backed

user system in Symfony2. It provides a flexible framework for

user management that aims to handle common tasks such as

user registration and password retrieval”29.

It is related to the User Area described in 4.4.2.

Features include:

 Users can be stored via Doctrine ORM, MongoDB/CouchDB ODM

or Propel

28 http://henrik.bjrnskov.dk/symfony2-cross-site-request-forgery
29 https://github.com/FriendsOfSymfony/FOSUserBundle

51

 Registration support, with an optional confirmation via e-mail

 Password reset support

 Unit testing

The whole install process is properly described here on https://github.com30,

and it consists of:

a) Download FOSUserBundle using composer

b) Enable the bundle in the Kernel

c) Create the User class

d) Configure the application's security.yml

e) Configure the FOSUserBundle. config.yml

f) Import FOSUserBundle routing files

g) Update the database schema

We imported the FOSUserBundle routing files in YAML31 in the

ManagementBundle routing file and used ORM32 as datastore. The class name of

the User class it is not important because we modified it at a later stage, importing

PUGXMultiUserBundle.

The FOSUserBundle webpage33 contains the whole documentation for this

Bundle.

In order to adapt the bundle to our use, we changed three templates:

 Resources/views/layout.html.twig

 Resources/views/Security/login.html.twig

 Resources/views/Profile/show_content.html.twig

30 https://github.com/FriendsOfSymfony/FOSUserBundle/blob/master/Resources/doc/index.md
31 YAML is a recursive acronym for "YAML Ain't Markup Language", and it is a human-readable data serialization
format.
32 Object-relational mapping, programming technique for converting data between incompatible type systems.
33 https://github.com/FriendsOfSymfony/FOSUserBundle/blob/master/Resources/doc/index.md#next-steps

52

5.4 Overriding a bundle

As written above, we need to change some settings, parameters and

characteristic of the controller of our vendors. Symfony provides an easy way to

override things like controllers, templates, and other files in a bundle's Resources/

directory.

Override means that you take an existent function and "shadow" it by

redefining elsewhere, where it can be used instead of the original one. This is a

common technique for add extra functionalities to a function or to change the

function itself.

To override a bundle's template you could simply place a new one in

your app/Resources folder of the bundle, or directly modify the template already in

the folder. To override the layout template located

at Resources/views/layout.html.twig in the FOSUserBundle directory, you should

place your new layout template in the app/ subdirectory, and then

at Resources/FOSUserBundle/views/layout.html.twig.

Changing directly the code of the vendors can be dangerous for many reasons,

we list here the main drawbacks:

 If we need to update the vendors, using the composer erases every

modifications we made.

 If more than one bundle in the project need to use the vendor, the

custom behaviour makes sense for a bundle but not for the other one.

Customizing the behaviour at local bundle level helps to keep logic

intact and avoid problems.

 If the bundle is shared with other user, the modification force them to

take the customized version of the vendor, without permission of

updating it.

53

The overriding technique takes advantage of inheritance: it is well described

in the Symfony website34.

To customize some functions and templates of the FOSUserBundle, we

overrode it in the MainBundle.

We added the following lines to the main file, the one we use to register the

bundle35, of the MainBundle:

 public function getParent()

 {

 return 'FOSUserBundle';

 }

Then we just move the files that we want to override into the MainBundle,

reproducing the "tree-folder-structure" of the original bundle until reaching the

class that contains the function to override.

Reading the documentation and visualizing its real implementation into the

main bundle makes it clearer to the reader.

5.5 PUGXMultiUserBundle

“PUGXMultiUserBundle came by the need to use different

types of users using only one fos_user service. In practice, it is

a hack that forces FOSUser bundle through custom

UserManager, controllers, and forms handlers. It’s a fast way

to use for free most of the functionality of FOSUserBundle”36.

34 http://symfony.com/doc/current/cookbook/bundles/inheritance.html
35 C:\BitNami\wampstack-5.4.23-0\frameworks\symfony\src\Acme\MainBundle\AcmeMainBundle.php
36 https://github.com/PUGX/PUGXMultiUserBundle/blob/master/Resources/doc/index.md

54

The whole install process is properly described in https://github.com37. It

consists of:

a) Downloading PUGXMultiUserBundle

b) Enabling the Bundle

c) Creating your Entities

d) Configuring the FOSUserBundle (PUGXMultiUserBundle params)

e) Configuring parameters for UserDiscriminator

f) Creating your controllers

g) Using the User Manager

Obviously, as for the previous vendors, we imported the FOSUserBundle

routing files in YAML in the ManagementBundle routing file and we used ORM as

datastore. The bundle has been realized as a part of a real application that uses

doctrine ORM, thus it only supports the ORM database driver.

5.6 MainBundle

The MainBundle contains the public part of the web site, the layout templates,

the CSS, and the resources accessible without authentication.

It also partially overrides the FOSUserBundle, as explained in 5.4. Due to this

overriding, there is the command folder, added in order to register an Admin User,

as explained in 6.6.1.

5.6.1 Controllers

The Bundle comprehends two controllers: the Redirecting Controller and the

Default Controller.

37 https://github.com/PUGX/PUGXMultiUserBundle/blob/master/Resources/doc/index.md

https://github.com/PUGX/PUGXMultiUserBundle/blob/master/Resources/doc/index.md

55

The Default Controller simply allows the rendering of the templates of public

access.

The Redirecting Controller redirects URLs with a trailing slash, as explained

in chapter 5.11.

5.6.2 Routing

The pages of the MainBundle can be virtually divided into three main

sections. The routing follows this same division, with three main sections.

The first section routes the pages of public access, like the homepage, the

page with the information about the project and the page to contact the

administrators.

The second section allows the Users to register. It comprehends two different

route, for registration of a Ground Station Operator or a Mission Operator. Now

these parts are public, accessible to everyone, and once registered a user can already

enter into his specific section. Actually, there is not a security lack, until the user

cannot do anything until authorized by an administrator with an association to a

mission: it is like have an inactive user. In the future, the registration form can be

moved in a protected area, or an Invitation Model can request38 the registration.

The last part calls the routing of the FosUserBundle, in order to see or edit

the profile, change password, etc. You can import more routes, implementing the

functions of the FosUserBundle: they can be found in the routing folder into the

FosUserBundle directory39.

38
https://github.com/FriendsOfSymfony/FOSUserBundle/blob/master/Resources/doc/adding_invitation_registration.m
d
39 In our project it is in C:\BitNami\wampstack-5.4.23-0\frameworks\symfony\vendor\friendsofsymfony\user-
bundle\FOS\UserBundle\Resources\config\routing.yml

56

5.6.3 Templates

The Resource folder contains the templates of the public part of the website,

the template of the login page, the template that confirms the user registration and

shows the user profile.

There are also two layout templates. The base template is the fundamental

template of all the application, with the layout of the website and extended by every

other template. The layout template is the overriding of the main template of the

FOSUserBundle, and allows the integration of the style between the templates in

the FosUserBundle and all the others.

They are organized as shown in Table 4.

Table 4 MainBundle Templates

Folder40 Name41 Extends

__

 /

 base no extend

 layout AcmeManagementBundle::default.HTML.twig

 Security

 login FOSUserBundle::layout.HTML.twig

 Public

 info AcmeMainBundle::base.HTML.twig

 contact AcmeMainBundle::base.HTML.twig

 index AcmeMainBundle::base.HTML.twig

 Profile

 show_content trans_default_domain 'FOSUserBundle

 Registration

 confirmed FOSUserBundle::layout.HTML.twig

40 In this and in the following tables, the folder of the bundle is intended as the sub-path from the
[Bundle]\Resources\views path.
41 In this and in the following tables, the name of the templates is indicated without the extension .html.twig.

57

5.7 MissionBundle

The MissionBundle develops the part of web site dedicated to the Mission

Operators. It requests the ROLE_OPERATOR role to be seen.

5.7.1 Controllers

The MissionBundle contains two controllers.

The Default Controller includes the mainAction that render the Mission

Operator Homepage.

The Product Controller includes the showAction that queries and shows the

products, and the downloadAction, which allows the download of the uploaded files

associated with the product objects.

5.7.2 Routing

All the routes have the mission/ prefix, in order to identify and secure this

section of the web site.

The bundle has three routes: one is the mission operator homepage, one is the

page for the query and the display of a list of objects, and the last one is the route

for the download of the uploaded files associated with the product objects.

5.7.3 Templates

There is a template for every page. The template default.HTML.twig is the

Mission Operator homepage and defines the layout, the header and the footer of the

section.

Furthermore, there is a template for the query of the product entities and one

for the display. They are organized as shown in Table 5.

58

Table 5 MissionBundle Templates

Folder Name Extends

 /

 default AcmeMainBundle::base.HTML.twig

 Product

 showlist AcmeMissionBundle::default.HTML.twig

 querydata AcmeMissionBundle::default.HTML.twig

5.8 GroundStation Bundle

The GroundStationBundle develops the web site part dedicated to the Ground

Station Operators, and contains the Product entity.

This Bundle is similar to the MissionBundle, but implements more

functionalities. Indeed, the Ground Station Operator, as well as the Mission

Operator, can visualize the uploaded strings, but can also upload them and manage

more functions

5.8.1 The Product Entity

In the GroundStationBundle, in the Entity folder, the file Product.php

represents the product entity.

Product is the object uploaded by the Ground Station Operator, which can be

displayed and downloaded by the Mission Operators.

The product entity includes many properties42:

 Id object identifier

 Name object name

 User associated user

42 Class member variables are called "properties". You may also see them referred to using other terms such as
"attributes" or "fields". They are defined by using one of the keywords public, protected, or private, followed by a
normal variable declaration.

59

 Data object data

 uploadTime uploaded date and time

 path stored file directory

 file stored file name

 temp temporary variable

Every product object is defined by all these properties: they allow the user to

identify univocally the object, and to search it by mission, data or user. Every object

also has an associated file, intended to store audio or text information not suitable

for the form.

5.8.2 Controllers

The GroundStationBundle contains two controllers.

The DefaultController includes the mainAction that renders the Ground

Station Operator Homepage.

The ProductController, as in the MissionBundle, contains the showAction

that queries and shows the objects, and the downloadAction for the download of the

files associated with the objects.

This controller contains two more actions: the createAction and the

myproductsAction. The former allows the user to upload a product object, the latter

shows the products uploaded by the user.

5.8.3 Routing

Also he routing system is similar to the one in the MissionBundle.

This time, all routes have the groundstation/ prefix, in order to identify and

secure this section of the web site.

We developed five routes: three like in the MissionBundle, respectively for

the Ground Station Operators homepage, for the query and the display of a list of

objects, and for the download of the uploaded files associated with the product

60

objects. They are integrated by two more routes: one for the upload of the products,

and one for the display of the products uploaded by the logged user.

5.8.4 Templates

Also the templates are similar to the mission’s ones: indeed, in this bundle we

find the template default, for the homepage and layout, and the two templates for

the query of the product entities and their display.

In addition, two templates refer to the two routing for the upload of the

products and for the display of the products uploaded by the user.

They are organized as shown in Table 6.

Table 6 GroundStationBundle Templates

 Folder Name Extends

__

 /

 default AcrmeMainBundle::base.HTML.twig

 Product

 showlist AcrmeGroundStationBundle::default.HTML.twig

 querydata AcrmeGroundStationBundle::default.HTML.twig

 formupload AcrmeGroundStationBundle::default.HTML.twig

 tasksuccess AcrmeGroundStationBundle::default.HTML.twig

 5.9 ManagementBundle

The ManagementBundle is dedicated to the management of the web site, the

Admin area and the resources accessible only by the administrator.

It contains the missions and users entities, and the forms for the registration

of the user and the display of the profile info.

Again, it includes the function already implemented by Mission and

GroundStationBundle, integrated by many functions prerogative of the Admin.

61

Consequently, also the structure about routing, controllers and templates, is similar

to the GroundStationBundle, integrated and completed.

5.9.1 The Mission Entity

The mission entity allows the Admin user to store the missions as objects.

It includes the following properties:

 Id object identifier

 Name object name

 Description mission description

 Users associated users

 Products associated products

Every mission has three properties that define the mission, and two properties

that put in correlation the mission with the users, and the mission with the associated

product objects. The associated products objects are all the uploaded products that

refer to that mission. Consequently, we can choose a mission and visualize all object

referred to that mission. In the same way, we can check all the users allowed to see

or modify the mission’s product objects.

5.9.2 The User Entities

The User Entities are three: one for the Ground Station Operator, one for the

Mission Operator, and the last one, extended by the other two, which implements

the method and property in common between the two roles.

The user.php entity extends the Base user of the FosUserBundle, and includes

the following properties:

 Id object identifier

 Mission associated missions

 Products uploaded products

62

We have an Id that identifies the user, and the other two @ManytoMany and

@OnetoMany correlation43 with missions and products.

The UserOperator does not have new properties, just new actions in order to

set the role on the registration.

The UserGroundStation adds, to the already discussed properties, the latitude

and the longitude, in order to place the Ground Station on a map. Also this entity

sets the role on the registration.

5.9.3 Controllers

The ManagementBundle contains four controllers.

As in the previous bundle, there is a DefaultController: it renders the

homepage, but also allows the Admin to see the list of the users, in two different

pages for the two different roles. It also contains the MissionListAction, which

displays the stored missions.

The Product Controller contains the same Actions as the one in the

GroundStationBundle, the difference is in the privileges: the Ground Station

Operator can see and store only objects related to his associated missions, while the

Admin operator does not have this limitation. Therefore, it contains the showAction,

the downloadAction, the createAction and the myproductsAction, as already

described.

The RegistrationController contains the two action that, as explained in the

5.5, allow the users to register as Ground Station and Mission Operator,

respectively.

43 We choose the correlation @OnetoMany Mission to Object, so every object is associated to a single mission, but
every mission has associated more than one object. We also choose the correlation @ManytoMany between Users
and Missions, and between Users and Objects, with the consequently meaning.

63

The last one is the MissionController, for the management of the mission

entity. It allows to create a new mission and to edit it. A supplementary action

redirects URLs with a trailing slash, in order to avoid trivial errors in the routing.

5.9.4 Routing

In the Admin section, all the pages have the admin/ prefix.

 Again, the scheme is the same: one route for the homepage, and four for the

managing of the product entity.

In addition, there are four routes for the creation and editing of the mission

entity, one for the redirect of URLs with trailing slash, and three more routes for

the display of the stored missions, and of all the users divided by role.

5.9.5 Templates

The templates are organized like in the GroundStationBundle, where we find

the same five templates.

What differs is the presence of an index template: for Admin we divided the

template containing the layout, header and footer, from the template with the body

of the Admin homepage, called index.

In addition, a Mission folder contains the templates directly referred to the

management of the Mission Entity: to create and edit, to confirm the success of the

operations, and to display the stored missions.

Eventually, two templates display the list of the users: one for the Ground

Station Operators and one for the Mission Operators.

They are organized as shown in Table 7.

Table 7 ManagementBundle Templates

 Folder Name Extends

__

 /

 default AcrmeMainBundle::base.HTML.twig

64

 Admin

 index AcmeManagementBundle::default.HTML.twig

 Product

 showlist AcmeManagementBundle:Admin:index.HTML.twig

 querydata AcmeManagementBundle:Admin:index.HTML.twig

 formupload AcmeManagementBundle:Admin:index.HTML.twig

 tasksuccess AcmeManagementBundle:Admin:index.HTML.twig

 Registration

 User_GroundStation.form FOSUserBundle::layout.HTML.twig

 User_Operator.form FOSUserBundle::layout.HTML.twig

 Mission

 create AcmeManagementBundle:Admin:index.HTML.twig

 tasksuccess AcmeManagementBundle:Admin:index.HTML.twig

 edit AcmeManagementBundle:Admin:index.HTML.twig

 editsuccess AcmeManagementBundle:Admin:index.HTML.twig

 showlist AcmeManagementBundle:Admin:index.HTML.twig

 Users

 showOPlist AcmeManagementBundle:Admin:index.HTML.twig

 showGSlist AcmeManagementBundle:Admin:index.HTML.twig

5.10 Software Scheme

The following scheme shows the software structure, with routing, controllers,

actions, path and templates. The routes are divided by Bundles, and every route

shows its associated path, with the relative controller and action. Some paths use

only one template; some others use more than one template, for example for the

query and the display of query results. In both cases, we indicated the templates,

one or two, with their relative page.

65

Table 8 Software schema – part 1

66

Table 9 Software schema – part 2

67

Table 10 Software schema – part 3

68

5.11 Redirect URLs with a Trailing Slash

A simple method allows redirecting automatically a user who search for

URLs with a trailing slash, avoiding errors and improving the performance of the

web site.

It consists adding the affected URLs:

remove_trailing_slash:

 path: /{url}

And a function in a controller

public function removeTrailingSlashAction

The procedure is well explained in the Chapter 78 of Symfony Cookbook44.

44 http://symfony.com/doc/current/cookbook/routing/redirect_trailing_slash.html

69

6

 INSTALLATION ON THE

SERVER AND

CUSTOMIZATION

This chapter is meant to be a guide for the installation of the software in a

server. It is divided into two principal section; one for installation and one for

customization and maintenance.

The first section is divided in turn into a few sections:

 A section about “installation of Bitnami WAMP”, to install PHP,

MySQL, Apache and Symfony2.

 A section about “installation of the Bundles” will help to install and

activate the bundles.

70

 A section about “installation of the vendors” will help to install and

activate the vendors, and to integrate it with the software.

 A section about “Settings, Routing and Configuration files” will help

the user to import configuration files in the proper folders.

The second part is in turn divided into:

 A section about the customization of the settings.

 A section that help the user in the customization of the templates.

 A section about testing and maintenance.

6.1 Installation of the Bitnami WAMP with Symfony2

Bitnami comprehends PHP, MySQL and Apache, and bundles many functions

among which CURL, PEAR, SQLite and the Symfony framework.

Figure 6-1 Installer download page for WAMP Stack (from

http://bitnami.com/stack/wamp 2013)

71

The convenience of using a WAMP is the opportunity of a fast and easy

installation of the useful components for the server-side web programming.

 Download and install WAMPStack

To install the WAMP Bitnami application, we have to download the WAMP

Stack45 (see Figure 6-1) for Windows at the website bitnami.com46. We installed

the version 5.4.23, selecting the Symfony framework (see Figure 6-2) and setting

the password for the database, as in Figure 6-3. It can take several minutes.

Figure 6-2 Component installing selection

45 For us bitnami-wampstack-5.4.23-0-windows-installer.exe 92,5 MB
46 http://bitnami.com/stack/wamp

72

Figure 6-3 Panel to set database password.

In a different section of the same website,47 the Stack for LAMP, for Linux,

is available.

We installed:

o PHP Version 5.4.23

o HTTP Server, Apache 2.4 Handler Apache Lounge

o MySQL database server

o phpMyAdmin, web application management tool for MySQL

database

o Symfony2 framework

 Check the Bitnami installation

When the installation finishes, we can launch Bitnami WAMP Stack: it

automatically opens a browser window redirected to the localhost48 page, which

suggests to check the installation49.

We firstly have to start the servers; the Stacks include a graphical tool to

manage the servers easily. You can find the "manager-windows.exe", "manager-

osx" or "manager-Linux" tool in your installation directory. Using this tool, you can

Start, Stop or Restart the servers and check the log files.

47 http://bitnami.com/stack/lamp
48 Localhost is hostname that allows to access the computer's own network services via its loopback network
interface. You can reach it at the URL localhost or http://127.0.0.1/ (http://127.0.0.1:100/ if running in port 100)
49 http://wiki.bitnami.com/Infrastructure_Stacks/BitNami_AMP_Stacks

http://bitnami.com/stack/lamp
http://127.0.0.1/
http://127.0.0.1:100/
http://wiki.bitnami.com/Infrastructure_Stacks/BitNami_AMP_Stacks

73

To check the Bitnami installation you should copy the

installdir/docs/phpinfo.php file into the installdir/apache2/htdocs folder and go to

the browser to check the enabled PHP modules by accessing

http://localhost/phpinfo.php50.

Installdir is obviously the directory of installation of the wampstack

(C:\BitNami\wampstack-5.4.23-0, in our case).

Now PHP is installed and operative, we can also check the installation

running a file .php with the command phpinfo (exactly the content of the file

phpinfo.php).

The operations are well explained in the web site wiki.bitnami.com.

We still need some steps, before we can properly use and manage Symfony.

 PEAR installation and upgrade

We have to install PEAR, by manual installation or simply by command

windows running the command

$ pear install PEAR-1.9.4

To update:

$ pear upgrade pear

The complete procedure can be founded in the pear.php.net web site51.

If you encounter problems, you can install it also by Pyrus52, with the

command

php pyrus.phar install pear/PEAR-1.9.4

50 Or http://localhost:100/phpinfo.php if running in port 100.
51 http://pear.php.net/package/pear/download
52 http://pear2.php.net/ You first have to download Pyrus,

http://localhost:100/phpinfo.php
http://pear2.php.net/

74

Another method is requesting http://pear.php.net/go-pear.phar in your

browser and save the output to a local file go-pear.phar. You can then run

php go-pear.phar

PEAR should be installed and upgraded in your server machine; you can

check53 it simply running pear in the installation folder, and a list of all commands

appears. Remember to restart the web server every time you change the file php.ini.

 PHPUnit Installation

 We need to run the Symfony2 test suite to check that everything is working

properly. To run the Symfony2 test suite, we first have to install PHPUnit 3.6.4 or

later:

$ pear config-set auto_discover 1

$ pear install pear.phpunit.de/PHPUnit

The system download the files, and installs it. It confirms the installation with

install ok: channel://pear.phpunit.de/PHPUnit-4.0.17

More information can be founded in the phpunit.de web site54

 Installation of the composer

We now have to install the composer. We can install it running the command:

php -r "readfile('https://getcomposer.org/installer');" | php

You can also install the PHAR manually55 or download and running

Composer-Setup.exe56. The installation with executable file, asks the location of

Composer-Setup.exe, which is in installdir\wampstack-5.4.23-0\php.

53 http://pear.php.net/manual/en/installation.checking.php
54 http://phpunit.de/manual/current/en/installation.html
55 http://getcomposer.org/download/
56 https://getcomposer.org/Composer-Setup.exe

http://getcomposer.org/download/

75

More information can be founded in the web-site getcomposer.org. We might

be asked to restart the computer.

 Vendors’ installation.

We already installed composer, then we only have to install vendors by the

following command:

$ php composer.phar --dev install

After installation, we updated the vendors to their latest version with the

follow command:

$ php composer.phar --dev update

These latter two-steps are well exposed in the Symfony webpage.57

 Check Symfony installation

We can check Symfony installation58. The Symfony framework is installed

in the "frameworks" folder in the installation directory. To start a project with

Symfony, it is necessary to start the Bitnami Console59-60.

You can check first the requirements:

$ cd installdir/frameworks/symfony/app

$ php check.php

A simple way to start learning Symfony is via the Quick Tour accessible via

web. To enable it, you should uncomment the following line that you can find in

57 http://symfony.com/doc/master/contributing/code/tests.HTML
58 http://wiki.bitnami.com/Components/php_Frameworks/Symfony
59 Bitnami console is a script to load the Stack environment. This console is useful to run any command included in the

Stack: mySQL, PHP, OpenSSL, Ruby, and rake among others. On Windows there is a shortcut in Start ->

BitNami Application Stack -> "Application console" or "Use Application Stack"
60 http://wiki.bitnami.com/Components/Bitnami_console

http://wiki.bitnami.com/Components/BitNami_console
http://wiki.bitnami.com/Components/php_Frameworks/Symfony
http://wiki.bitnami.com/Components/Bitnami_console

76

the Apache configuration file installdir/apache2/conf/bitnami/bitnami-apps-

prefix.conf:

Include "installdir/frameworks/symfony/conf/httpd-prefix.conf"

And restart the Apache server.

After that, we are finally capable to request our first "real" Symfony2

webpage: point your browser to http://127.0.0.1/symfony/app_dev.php
61. This page

is only accessible from the local machine.

Symfony2 welcomes us and congratulate for our hard work so far (see Figure

6-4)!

Figure 6-4 Symfony localhost.

The Symfony webpage62 in the local machine explains and deepens this

procedure, and provides a first Quick Tour to Symfony.

You can see some examples during the Quick Tour and you can find more

information at symfony.com63.

 Optional

61 Or http://localhost/symfony/app_dev.php
62 http://symfony.com/doc/current/quick_tour/the_big_picture.html
63 http://symfony.com/doc/current/

http://127.0.0.1/symfony/app_dev.php
http://symfony.com/doc/current/

77

The project now is ready to be developed, but we might install also a PHP

accelerator64, Packagist65 and Doctrine66.

6.2 Installation of the Software

With PHP and Symfony2 working, we can install the web application.

Before installing the software, we suggest to practise with Symfony2 with the

Quick Tour and the DemoBundle: the installation of the software erases

DemoBundle and Quick Tour, and prevent from reaching it again.

6.2.1 Installation of the Bundles

To install the bundles you need to copy and paste the entire Acme folder into

the src folder67 of Symfony, replacing the default folder.

The file AppKernel.php in the folder symfony/app is the kernel of the

application and contains an array with the bundles of the application.

We must add some lines to the $bundles array, in the function

registerBundles();

new Acme\MainBundle\AcmeMainBundle(),

new Acme\ManagementBundle\AcmeManagementBundle(),

new Acme\MissionBundle\AcmeMissionBundle(),

new Acme\GroundStationBundle\AcmeGroundStationBundle(),

We also must erase the line relative to the demo bundle, a standard bundle of

Symfony created to help new users to check the operating principles.

Actually, the modification of the AppKernel.php file can be avoided simply

importing the relative file available, as explained in the Settings, Routing and

64 Internet offers a wide choice.
65 https://packagist.org
66 http://www.doctrine-project.org/projects/dbal.html
67 C:\Bitnami\wampstack-5.4.23-0\frameworks\symfony\src

78

Configuration files section of this chapter. This procedure will avoid the same

operation with the vendors.

6.2.2 Installation of the Vendors

The Symfony framework installs most of the vendors by default. Online we

can also find open source vendors, useful for our aim. We used FOSUserBundle

and PUGXMultiUserBundle.

Chapter 5.3 and 5.5 contain a brief explanation for the installation of these

bundles. Thanks to the already compiled files, you can speed the installation. You

just should add to the file composer.json68 the following lines:

{

 "require": {

 "friendsofsymfony/user-bundle": "2.0.*@dev",

 "pugx/multi-user-bundle": "3.0.*@dev"

 }

}

And run in successions the two commands:

php composer.phar update friendsofsymfony/user-bundle

And

php composer.phar update pugx/multi-user-bundle

As described in the previous section, the modification of the AppKernel.php

file, can be avoided importing the relative file already compiled, availed in the

installation folder.

Importing also the files config.yml, parameters.yml, routing.yml and

security.yml as explained in the next section of this chapter, we can skip the

passages described in the installation regarding the modification of these files.

68 It is stored in the Symfony folder.

79

Symfony could ask us to erase some lines from the file routing_dev.yml in the

app/config folder: you should delete the lines referred to the demoBundle, not

installed anymore.

6.3 Settings, Routing and Configuration files

The software comprehends the four bundles, the vendors and the

configuration files.

The configuration files not allocated in the bundles are in the app folder of

Symfony. We have to import and replace the files:

 Symfony/app/AppKernel.php

 Symfony/app/config/config.yml

 Symfony/app/config/parameters.yml

 Symfony/app/config/routing.yml

 Symfony/app/config/security.yml

After that, the application should be active and fully functional.

6.4 Customization of the settings

The following chapters explain some modifications available to the user. We

focused about the most interesting issues: every other change can be easily done

with the knowledge of PHP and Symfony2.

6.4.1 Setting the time zone in Synfony2

Our project is intended to work in every part of the world. In order to

synchronize all users, we must define a common time zone.

To set the time zone is possible to set an YML directive and make it available

to the app, in order to be able to use it whenever needed.

In /app/config/parameters.yml we add the line:

80

 default_timezone: "Europe/Paris"

And in the controller, when needed, the lines:

$tz = $this->container->getParameter('default_timezone');

$now = new \DateTime();

$now->setTimezone(new \DateTimeZone($tz))

Another way to set the time zone could be, since the time zone is not really a

dynamic part of your application, to stick it inside .htaccess file. It is enough to add

the following line:

PHP_value date.timezone "Europe/London"

For the whole list of the functions and the codes, refer to

http://www.php.net/69-70.

6.4.2 Setting the name and folder of the stored file

In the Product entity71 it is possible to change the name of the stored file and

the folder in which the file is stored.

We set it in the following way:

$filename = "{$mission}_{$user}_{$newDate}";

This name allows identifying immediately the origin of every file, and

avoiding misunderstandings. Indeed the filename contains the name of the

associated mission, the user that uploaded that mission, and the date and time of the

upload.

69 http://www.php.net/manual/en/book.datetime.php
70 http://www.php.net/manual/en/timezones.php
71 C:\BitNami\wampstack-5.4.23-0\frameworks\symfony\src\Acme\GroundStationBundle\Entity\Product.php

81

The $newDate object contains the year, the month, the minute and the hour

of the upload.

In order to change the name, add more information in order to simplify the

doctrine query or the organization of the folder, it is enough to modify the public

function preUpload() in the above-mentioned entity.

In the same entity, there is also the function

 protected function getUploadRootDir()

 {

 return __DIR__.'/../../../../web/'.$this-

>getUploadDir();

 }

We set this to go in the web folder of Symfony72, where public files are.

Actually, it may be better to change the folder and put restrictions; this can be easily

done modifying the function.

6.4.3 Upload file validation

Presently, the uploaded file can be everything, inasmuch it does not have a

validation process.

The validation can be done with annotation or with a validation.yml file in the

Resources\config folder of the bundle.

The file, in the GroundStationBundle, is the following:

Acme\GroundStationBundle\Entity\Product:

 properties:

 file:

 - File:

 maxSize: 6000000

72 C:\BitNami\wampstack-5.4.23-0\frameworks\symfony\web

82

The only limit we set is the maximum size. Of course, for security problems,

we must set a stronger validation system. It can be done following the instructions

in the Symfony2 web site73-74.

6.4.4 Customization of the User Entities

In order to customize the users, the files of the entities must be modified.

If the change includes both of the roles, it must be done in the User.php file:

otherwise, the entities UserGroundStation and UserOperator in the Entity folder

of Management bundle allow editing a characteristic for a single role.

With the entity, we must modify also the forms:

 RegistrationUserOperatorFormType.php

 RegistrationUserGroundStationFormType.php

 ProfileUserOperatorFormType.php

 ProfileUserGroundStationFormType.php

The first two files modify the registration forms, the latter two modify the

forms to show or edit the users, respectively for Ground Station Operators and

Mission Operators.

These files are in the Form/Type directory of the ManagementBundle.

We suggest not to modify directly the file in the FosUserBundle, but to

override it. To keep a better logic, these files can be moved also to the MainBundle,

respecting the idea of overriding everything in the same bundle: the controller calls

the form, so it can be done changing the destination in the controllers that call the

forms, like the RegistrationController of the ManagementBundle.

73http://symfony.com/doc/current/book/validation.html
74 http://symfony.com/doc/current/reference/constraints/File.html

http://symfony.com/doc/current/reference/constraints/File.html

83

6.5 Customization of the templates

The project uses the template engine Twig75: indeed Symfony2 comes with a

bundled support for Twig as its default template engine.

All the web pages well show the templates used to display the data (see Figure

6-5). It makes plain to realize which file requires to be modified to have a different

layout of the page or add contents. The code for this display is shown in Figure 6-6.

Figure 6-5 How the template used is shown in every page.

The templates are in the folder Acme\NameBundle\Resources\views\, where

NameBundle is the name of the Bundle that contains the template. The views folder

is partitioned, in order to improve the organization.

Figure 6-6 Example of field to modify in order to customize the template.

To modify a template is sufficient the knowledge of HTML and basic

programming.

75 http://twig.sensiolabs.org/

84

The name of the templates looks like nameTemplate.html.twig, in order to be

read by the twig engine and preserve the extension of the file (HTML): for a CSS

file, the name is nameTemplate.css.twig; for a JavaScript, nameTemplate.js.twig

and so on.

6.5.1 Logic of the templates

The routing of the templates has the same logic as Symfony:

AcmeMainBundle:Index:layout.html.twig locate the template

layout.html.twig in the MainBundle of the Acme Project, in the

\Resources\views\Index folder.

As for the classes, also the templates support inheritance. To call a parent

template add, at the beginning of the file, the following line:

{% extends 'AcmeMainBundle:Index:layout.HTML.twig' %}

included into the delimiters that enclose the programming sections.

The principal template contains the opening and closing tag, and it is

internally divided into different sections (called blocks), whose names explain the

function:

 Stylesheets

 Title

 Header

 Body

 Content

 Footer

 JavaScript

Obviously, the block Stylesheets recalls the template with the CSS, the title

sets the title of the page and so on. More blocks can be added.

85

The layout template is filled only with tags and the inheritance logic, leaving

the contents to the specific templates.

For a better understanding of the template system, refer to the

documentation76.

6.6 Maintenance

The maintenance of the project consists in continuously updating the logic

and managing the connected users and the uploaded objects.

In order to manage the web site, we need Admin users, which registration

cannot follow the normal rules explicated for the clients, as they need particular

privileges.

6.6.1 Create an Admin User

The official documentation of FosUserBundle77 explains how to create a new

user, and promote the role as Admin.

It consist in the use of command lines, and allows to

 Create a user

 Activate a user

 Deactivate a user

 Promote a user

 Demote a user

 Change a user’s password

The command

php app/console fos:user:create

76 http://symfony.com/doc/current/book/templating.html
77 https://github.com/FriendsOfSymfony/FOSUserBundle/blob/master/Resources/doc/command_line_tools.md

86

creates an user, asking for username, mail and password. In the project, the

Admin User extends the Ground Station User, which has latitude and longitude as

mandatory proprieties: during the creation of a new user, the system recognizes the

lack of the mandatory properties and prints the error:

SQLSTATE[23000]: Integrity constraint violation: 1048 Column

'latitude' cannot be null

We solve the problem changing the command. We properly override the cli

command of FosUserBundle placed into Command/CreateUserCommand.php and

the user create method of FosUserBundle placed into Util/UserManupulator.php.

The MainBundle does it, in the respective folders.

Now the same command asks for the following properties:

C:\BitNami\wampstack-5.4.23-0\frameworks\symfony> php

app/console fos:user:create [--super-admin] [--inactive]

username email password latitude longitude

The Admin user can be created as a standard user, then promoted as Admin

later.

We can create the user with the command:

php app/console fos:user:create testuser email@uvigo.es pswd1

000 000

Then promote the user with the command:

php app/console fos:user:promote username ROLE_ADMIN

87

7

 CONCLUSIONS AND

FUTURE DEVELOPMENT

The aim of this thesis was the development of a web-application conceived

as the archive system of the SATNET project.

The result has been the realization of the structure of a website that will

support the SATNET group work in the development of the platforms.

The software is not completed; it need a full revision and a development.

7.1 Future Development

For the future, we recommend some important developments.

 The public part of the web site needs the composition of the contents.

We set the “contact us” page, the “information” page and some others,

but now they are almost blank, with no information.

88

The header and the footer need an improvement, and a lateral

navigation bar can help surfing the web site.

The structure and formatting of the website now is plain and simple.

The list of missions or users are not formatted in a proper way, and

this can be improved with a quick study of HTML applied to the

appropriate templates.

Some JavaScript code can help surfing the web site and avoiding

errors, for example asking confirmation in the form submissions.

 Almost every page has its dedicated template, even though the

contents shown have similar formatting. The similar templates have

the same name and are stored in the same folder of different bundles.

This structure helps the new developer to understand how to

modifications, but should be improved, avoiding the repetition of

code.

 As for the templates, the controllers with the same name in different

bundles have similar Actions, and their relation can be improved,

avoiding repetitions of code. This task is more critical than with the

controller, because the differences between the Actions determine the

privileges of the user and a wrong implementation can lead to a lack

of security.

 In order to endorse the clearness, we sacrificed the shortness of the

routes. The system can be improved, properly organizing the routing

structure.

 The Bundle system follows the routing system: there is a Bundle for

every section of the web site. We choose it as the best structure to

start, but many different choice can be developed: for example, we

89

could divide the bundles into a UserBundle, a ProductBundle and a

MissionBundle. The first one would extend the FOSUserBundle and

contain the Users Entities, the second one for the download and

upload of the Product Entities, and the last one for the management of

Mission Entities. This choice would help the templating system, but

would need more work on the routing system. The new developer can

chose a new structure, also following the suggestion in the official

documentation78, in order to improve the maintainability and

efficiency.

 The entities are as simple as possible: they can be changed and

updated according to the needs in the applications. For example, in

the User Entity, a “reputation number property”, and a consequently

classification, can drive the users to upload more strings, in order to

increase their ranking.

 Some pages are public, but may be put behind a firewall, and vice

versa. The routing system allows changing it in a easy way. We refer

particularly to the pages that shows the list of users and the list of

missions.

 Now the error pages are the standard pages of Symfony: an

appropriate setting of the layout and the content will improve the

navigation of the page.

78 http://symfony.com/doc/master/cookbook/bundles/best_practices.html

90

 An appropriate testing, and the consequent upkeep, can be done only

with the continued use of the software.

7.2 Conclusions

This thesis is realized as a guidebook for the use, modification, and

improvement of the web application.

The website has only essential functionalities. We expect a future

improvement in the number and quality of these functionalities, thanks to the

growth of the project and the number of stakeholders. The contents of the website

are only sketched; indeed the aim of the thesis was the development of the structure,

while the contents can be easily modified and integrated.

Considering this future integration, we conceived the entire project as easily

adjustable as possible, with clear reference between the webpages and the

associated codes, and a template view that a user without acknowledge in PHP can

quickly modify.

91

 Appendix

 USEFUL CMD COMMANDS

This appendix provides a quick reference to the commonly used cmd

commands. Every command is followed by a brief explication: for a deeper

analysis, we suggest the reading of the official documentation79.

 How to use the cmd commands.

All the commands should be used in the WAMP Stack Environment. It can

be reached from the file use_wampstack.bat in the C:\BitNami\wampstack-5.4.23-

0 folder. Once opened the new window, you should submit all the command in the

/symfony folder. You can reach it by the following command:

cd frameworks/symfony

 Generate a bundle.

The SensioGeneratorBundle, installed by default with Symfony2, extends the

default Symfony2 command line interface by providing new interactive and

79 http://symfony.com/doc/current/components/console/introduction.html

92

intuitive commands for generating code skeletons like bundles, form classes or

CRUD controllers based on a Doctrine 2 schema.

The command to generate a bundle is:

php app/console generate:bundle

The command asks questions to determine the bundle name, location,

configuration format and default structure.

After the options submission the command creates the bundle and the relative

namespace, and modifies the files app/AppKernel.php and app/config/routing.yml

in order to include the new bundle.

 Visualize all the routes.

A very useful command for the debugging and maintenance is the following:

php app/console router:debug

This command shows on the screen a list of all the routes, with the associated

method, scheme, host and the relative path.

 Clear the cache.

After modifying the project, especially after a configuration modification, the

clear of the cache is mandatory for the proper visualization of the new project. The

command is:

php app/console cache:clear

By default, console commands run in the dev environment, so the command

will clear and warm the cache for the specified environment only. To clear and

warm the prod cache you need to run:

php app/console cache:clear --env=prod

We suggest also running the command in “no-debug” mode, avoiding the

performance hit of collecting debug data, with the command:

93

php app/console cache:clear --env=prod --no-debug

 Open the shell.

If you need to run several commands, you can avoid specifying php

app/console each time, with an interactive shell provided by Symfony. To enter the

shell run:

php app/console –shell

 View Doctrine command list.

The Doctrine2 ORM integration offers several console commands under the

doctrine namespace. To view the command list you can use the list command:

php app/console list doctrine

All Doctrine commands are well deepen in the Chapter 8, Databases and

Doctrine, of the Symfony2 book [80].

 Create and drop the database.

To create a new database, you should run the command:

php app/console doctrine:database:create

If the command does not work, can appear the following message:

SQLSTATE[HY000] [1045] Access denied for user 'root'@'localhost'

 (using password: YES)

You should open the parameter.yml file, in the app/config folder, and modify

the line with the password database, writing the password you set during the

Bitnami Stack installation.

80 http://symfony.com/doc/current/book/doctrine.html

94

 database_password: password_set

To drop the database, erasing all the data stored, run:

php app/console doctrine:database:drop --force

 Create the getters and setters with doctrine.

Even though Doctrine knows how to persist a Product object to the database,

you need to create getter and setter methods. You can do it with the command:

php app/console doctrine:generate:entities

Acme/StoreBundle/Entity/Product

The command automatically creates all the methods for the Product class. It

is a safe command: it does not replace existing methods, so it can be run any times

without any risk of code corruption. The command creates simple setters and

getters, and should be adjusted to your own needs

The same command also generate all known entities of a bundle or an entire

namespace:

php app/console doctrine:generate:entities AcmeStoreBundle

php app/console doctrine:generate:entities Acme

 Creating the Database Tables/Schema.

Doctrine automatically create all the database tables needed for every known

entity in your application just running the command:

php app/console doctrine:schema:update –force

It is a very powerful command: indeed update the database according to the

mapping information of the entities and generates the relative SQL statements.

 Visualize all the entities.

95

As for the routes, there is a command that display all the entities that Doctrine

is aware of and whether or not there are any basic errors with the mapping. The

command is:

php app/console doctrine:mapping:info

 Execute SQL queries.

The Console component also allows executing SQL queries directly from the

command line with the command:

php app/console doctrine:query:sql

Chapter 22, How to create a Console Command, of the Symfony cookbook

[81] explain how to create new Console commands.

81 http://symfony.com/doc/master/cookbook/console/console_command.html

96

Bibliography and

Webography

[1] Francois Zaninotto; Fabien Potencier . 2007. The definitive guide to Symfony. Berkeley: Apress.

[2]Holzner, Steven. 2006. Spring into PHP. Prentice Hall Ptr.

[3]2013. http://bitnami.com/stack/wamp. http://bitnami.com/stack/wamp.

[4]2013. http://www.genso.org/. December. http://www.genso.org/.

[5]Ullman, Larry. 2013. PHP Advanced and Object-Oriented Programmin. Berkeley: Peachpit Press: Visual

Quickstart Guides.

[6]—. 2012. PHP and MySQL for Dynamic Web Sites. Berkeley: Peachpit Press: Visual Quickstart Guides.

[7]—. 2011. PHP for the Web. 4th Edition. Berkeley: Peachpit Press: Visual Quickstart Guides.

[8] http://symfony.com/

 http://symfony.com/doc/current/cookbook/index.html

 http://symfony.com/doc/current/book/index.html

http://symfony.com/doc/current/components/index.html

[9] http://wiki.bitnami.com/

[10] http://www.w3.org/

[11] http://getcomposer.org/

[12] http://pear.php.net/

[13] http://pear2.php.net/

[14] https://github.com/

[15] http://www.wampserver.com/en/

[16] http://www.apache.org/

[17] http://www.php.net/

[18] http://www.mysql.com/

http://symfony.com/
http://symfony.com/doc/current/cookbook/index.html
http://symfony.com/doc/current/book/index.html
http://symfony.com/doc/current/components/index.html
http://wiki.bitnami.com/
http://www.w3.org/
http://getcomposer.org/
http://pear.php.net/
http://pear2.php.net/
https://github.com/
http://www.wampserver.com/en/
http://www.apache.org/
http://www.php.net/
http://www.mysql.com/

97

[19] http://www.apress.com/

[20] http://www.doctrine-project.org

[21] http://php.about.com/

[22] http://docs.oracle.com/

[23] http://propelorm.org/

[24] http://www.phpframeworks.com/

[25] http://www.levinecentral.com

[26] http://www.celestrak.com

[27] http://www.stoff.pl/

[28] http://www.esa.int/Education

[29] http://www.humsat.org

[30] http://www.klofas.com

[31] http://vbn.aau.dk/ws/files/13411830/report.pdf

[32] http://www.orm.net/

[33] http://www.phonesat.org/

[34] http://www.nasa.gov/

[35] http://www.codeproject.com

[36] http://fabien.potencier.org

[37] http://henrik.bjrnskov.dk

[38] http://en.wikipedia.org/

[39] https://packagist.org

[40] http://twig.sensiolabs.org/

[41] http://www.phptherightway.com/

Useful communities:

[41] http://stackoverflow.com/

[42] https://moodle.org

http://www.apress.com/
http://www.doctrine-project.org/
http://php.about.com/
http://docs.oracle.com/
http://propelorm.org/
http://www.phpframeworks.com/
http://www.levinecentral.com/
http://www.celestrak.com/
http://www.stoff.pl/
http://www.esa.int/Education
http://www.humsat.org/
http://www.klofas.com/
http://vbn.aau.dk/ws/files/13411830/report.pdf
http://www.orm.net/
http://www.phonesat.org/
http://www.nasa.gov/
http://www.codeproject.com/
http://fabien.potencier.org/
http://henrik.bjrnskov.dk/
http://en.wikipedia.org/
https://packagist.org/
http://twig.sensiolabs.org/
https://moodle.org/

98

[43] http://forums.phpfreaks.com/

[44] http://www.codingforums.com/

[45] http://forum.symfony-project.org/

