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ABSTRACT 

This work has mainly focused on the poly (L-lactide) (PLLA) which is a material for 

multiple applications with performances comparable to those of petrochemical polymers 

(PP, PS, PET, etc. ...), readily recyclable and also compostable. However, PLLA has 

certain shortcomings that limit its applications. It is a brittle, hard polymer with a very 

low elongation at break, hydrophobic, exhibits low crystallization kinetics and takes a 

long time to degrade. The properties of PLLA may be modified by copolymerization 

(random, block, and graft) of L-lactide monomers with other co-monomers. In this thesis 

it has been studied the crystallization and morphology of random copolymers poly (L-

lactide-ran-ε-caprolactone) with different compositions of the two monomers since the 

physical, mechanical, optical and chemical properties of a material depend on this 

behavior. Thermal analyses were performed by differential scanning calorimetry (DSC) 

and thermogravimetry (TGA) to observe behaviors due to the different compositions of 

the copolymers. The crystallization kinetics and morphology of poly (L-lactide-ran-ε-

caprolactone) was investigated by polarized light optical microscopy (PLOM) and 

differential scanning calorimetry (DSC). Their thermal behavior was observed with 

crystallization from melt. It was observed that with increasing amounts of PCL in the 

copolymer, there is a decrease of the thermal degradation. Studies on the crystallization 

kinetics have shown that small quantities of PCL in the copolymer increases the overall 

crystallization kinetics and the crystal growth rate  which decreases with higer quantities 

of PCL. 

Keywords: random copolymers, overall crystallization rate, crystal growth rate, 

isothermal crystallization kinetics, poly (L-lactide).  
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ABBREVIATIONS USED IN THE THESIS 

LA = racemic lactide 

LLA = L-lactide isomer  

CL = ε-caprolactone 

PLA = poly (lactide) 

PLLA = poly (L-lactide) 

PDLA = poly (D-lactide) 

PCL =  poly (ε-caprolactone) 

%molPLA / %molPCL = Copolymer poly (lactide-ran-ε-caprolactone) 

%molPLLA / %molPCL = Copolymer poly (L-lactide-ran-ε-caprolactone)  

PLOM = Polarized Light Optical Microscope 

DSC = Differential Scanning Calorimetry 

TGA = Thermal Gravimetric Analysis 

GPC = Gel Permeation Chromatography  

1
H-NMR = Hydrogen-1 Nuclear Magnetic Resonance  

Tm = melting temperature 

Tm
0 

= equilibrium melting temperature 

Tc = crystallization temperature 

ΔT = supercooling (Tm-Tc) 
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1. INTRODUCTION 

It's important to remember that in recent years, the research of new polymeric materials 

has  suffered significant boost as a result of the need to provide solutions to the serious 

problems of environmental impact caused by improper use of the plastics material that it 

was made in past. This has brought to a reevaluation of the polymers, having both natural 

and synthetic origin, and in particular of aliphatic polyester, which, among others present 

two particularly important properties: biodegradability and biocompatibility. 

Biopolymers are classified according to the "European Bioplastics Association" as 

biodegradable polymers approved compostable according to EN 13432 that come from 

both renewable and non-renewable sources. Additionally polymers from renewable 

sources can be either biodegradable or not biodegradable [1].  

This work has mainly focused on the poly (L-lactide) (PLLA) which is a material with 

multiple applications with performances comparable to those of petrochemical polymers 

(PP, PS, PET, etc. ...) and is readily recyclable with several techniques (mechanical, 

chemical) and also compostable. Thanks to these characteristics is considered a good 

candidate for the partial replacement of some thermoplastic products. It has, however, 

critical points, which can create limitations in its use in technological and commercial 

applications. Indeeed he has poor heat resistance, poor mechanical properties at room 

temperature (brittleness), low elongation at break and low crystallization kinetics which 

is reflected in the slowing of the molding cycle and high fragility. [2,3] The problem can 

be overcome by adopting strategies such as to identify new ways for the synthesis, but 

also to chemically and/or physically modify polymers already available on the market 

(copolymerization and reactive blending).  

The technique used in this thesis, trying to improve the properties of PLLA, was the 

synthesis via ring-opening polymerization (ROP) of the L-lactide monomer and ε-

caprolactone monomer, in the presence of catalyst tin Octoate [Sn(Oct)2] in order to 

synthesize random copolymers. 

The strategy of the copolymerization has significant advantages, since it is normally 

difficult that a homopolymer can satisfy a wide range of requirements; for example, not 

always a homopolymer characterized by good mechanical properties is easily workable, 

or show good resistance to chemical and physical agents. In addition, every directed 
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effort towards the improvement of a specific property, in the process of synthesis or 

processing, can effect the optimization of other characteristics, with consequent 

limitations in the use of the same product. In this context, the copolymerization is 

particularly efficient since it allows to not significantly alter the already good properties 

of the starting homopolymer, and at the same time to improve those not satisfactory. A 

further advantage of this approach is the ability to produce a range of materials which 

properties are also completely different from those of starting homopolymers; finally, 

since the properties of the copolymers vary with the composition, they can be easily and 

quickly modified to meet the demands imposed by the type of use. 

The final aim of this thesis is to perform the thermal analysis on random copolymers 

containing different percentages of ε-caprolactone monomer and observe how the 

morphological structure varies and the ability to crystallize of these products since the 

physical, mechanical, optical and chemical properties of a material depend on this 

behavior. The thermal analyses were performed by differential scanning calorimetry 

(DSC) and thermogravimetric (TGA) to observe behaviors due to the different 

compositions of the copolymers. Polarized light optical microscopy (PLOM) was used to 

observe the morphology of the crystalline areas and to calculate the spherulitic growth 

rate of them (secondary nucleation). The overall crystallization kinetics (nucleation + 

growth) was finally studied by isothermal DSC. 

 

1.1 Crystallization of polymers 

Polymers constitute a class of special materials regard their ability to crystallize. The 

requirements of constitutional and configurational regularity, that must be satisfied to 

allow the macromolecules to organize into a crystalline structure, are partially present in 

the polymer chains. The need to tie together a very high number of repeating units it's 

very improbable because it’s practically impossible to obtaining macromolecules 

absolutely devoid of constitutional and configurational defects. Electron microscopy and 

the pattern of low angle X-ray show that the fundamental crystalline units of the 

polymeric materials are the lamellae whose thickness is of the order of a few hundred 

Angstroms. In such crystals, the macromolecule, which is much longer than the thickness 

of the lamellae, is folded back on itself several times and forms a crystal in which a heart 

of high crystallinity is confined between two disordered regions which are present in the 
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folds of the chains and contain the greater part of the constitutional and configurational 

defects. The lamellae are the building blocks from which more complex structures are 

obtained by cooling from the molten state crystallizable polymers: the spherulites. These 

are polycrystalline structures of optically anisotropic spherical symmetry, which exhibit 

the phenomenon of birefringence. They show the characteristic Maltese cross when 

viewed with a polarized light optical microscope. Inside the spherulites there is a more or 

less complex arrangement of lamellar crystals, separated by disordered regions, in which 

the conformations are similar to those assumed by the chains in the amorphous state, and 

connected between them by several chains (entaglements) that possess repeat units in at 

least two adjacent lamellae [4]. 

The crystallization is a process in which an ordered structure is produced from a 

disordered phase, generally a molten or solution, while the fusion can be considered a 

process essentially opposite [5]. The crystallization process occurs in a temperature range 

characteristic of each polymer. It can extend from about 30°C above the glass transition 

temperature (Tg) at about 10°C below the melting point (Tm) [6]. These values were 

determined because over Tm, the macromolecular structure has a high mobility that 

facilitates the movement of the chains losing the ordered structure. At temperatures 

below the Tg the high viscosity does not allow the movement of macromolecules and 

thus to achieve an ordered structure.  

The development of the crystalline phase requires two consecutive processes: the 

formation of nuclei (primary crystallization) in the amorphous phase and their growth 

(secondary crystallization) in which there is the formation of stable nuclei on the surface 

of the growing crystal and their subsequent development. The rate of crystallization 

increases when achieve certain values of supercooling (ΔT = Tm
0
 - Tc). Nucleation can 

be divided into homogeneous nucleation and heterogeneous one, the former being the 

sporadic formation of critical nuclei from the pure phase, the latter occurring at the 

surface of impurities within the system [7]. Taking into consideration the time scale in 

which the nucleation process occurs, this can be classified as: 

 Instantaneous when there are many spherulites of small size due to the formation 

of many nuclei in the same instant. It is obtained to high supercooling where the 

nucleation rate is greater than the growth rate of the crystals. 
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 Sporadic when the growth rate is higher than the nucleation rate. In this case a 

few large spherulites can be observed using low values of supercooling. [8] 

 

1.2 Crystallization kinetic 

The trend of the nucleation rate (I) and crystalline growth (G) with the temperature, 

which is generally of a bell-shaped is shown in Figure 1.1, delimited at low temperature 

from the glass transition temperature (below that the molecules are immobilized) and 

high temperature from the fusion. 

 

 

Figure 1.1 Temperature dependence of the nucleus formation rate and the crystallite growth rate on 

cooling from the melt. [9] 

 

The trend of the crystallization growth rate depends only on the temperature of 

crystallization, instead of the nucleation rate which depends on various conditions such 

as the cooling rate from the molten state. 

The overall crystallization rate is given by the sum of the two rate (I) and (G) as can been 

seen in Figure 1.2. At temperatures near to the melting, crystallization rate is very low 

and the process is controlled by the nucleation, which is hindered at high temperatures. 

Lowering the temperature, the crystallization rate increases gradually and returns to 
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decrease when the crystallization is controlled by diffusion, which is hindered at low 

temperature. 

 

Figure 1.2 Crystallization rate vs. crystallization temperature 

 

The nucleation rate and the crystal growth rate are also influenced by the molecular 

weight, presenting opposing trends. The nucleation rate increases with the molecular 

weight because the nuclei being to achieve a stable dimension need some length of chain. 

Opposite case occurs with the crystal growth rate because high values of molecular 

weights slow down the diffusional processes. 

The overall crystallization rate as a function of the molecular weight, shows a bell-

shaped trend. From the image in Figure 1.3 it is possible to see that there is an optimal 

mass (Mw)opt permitting to obtain a maximum speed of crystallization by setting a 

temperatures. 
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Figure 1.3 a) Overall crystallization rate vs the mass logarithm at T = const. b) The overall 

crystallization rate (1/τ0.5) vs. the mass logarithm  for different temperatures. c) Trend of the optimal 

molecular weight (Mw)opt with temperature[10] 

 

The optimum molecular weight increases with temperature. Chain diffusion and chain 

nucleation are both a function of chain lenght. Plotting, in Figure 1.3c, the (Mw)opt versus 

the temperature, is possible to observe this characteristic trend [10]. 

 

1.2.1 Avrami theory 

The kinetics crystallization analysis of the polymer may be accomplished using various 

techniques and various models. The usual procedure in the study of the crystallization 

rate is to quickly cool the polymer sample from the molten state to the measurement 

temperature and thus measure the development of crystallinity at constant temperature 

(isothermal crystallization). The Avrami model was used to see how different is the trend 

of the overall crystallization rate under isothermal conditions of the copolymers within 
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this thesis. According to Avrami, the progress of the isothermal crystallization can be 

expressed by the equation [6]: 

                  
                              Equation (1) 

Where Vc is the crystalline volume fraction, k is the constant rate of the overall 

crystallization, t0 is the induction time, n is the Avrami index that assumes different 

values depending on the type of geometry of crystal growth and the type of nucleation 

The growth leads to a contribution of 1, 2, 3 (ng), depending on whether one, two or 

three-dimensional growth occurs; nucleation brings a contribution of 0 or 1 (nn) 

depending on whether instantaneous or sporadic is. The sum of these two contributions 

gives the number of Avrami index n. To calculate Vc, can be used the following 

equation: 

   
  

   
  
  

       
                                     Equation (2) 

Since Wc is the mass fraction of crystalline, ρc the material 100% crystalline density and 

ρa the material 100% amorphous density. While Wc is calculated from: 

   
     

     
                                                Equation (3) 

Where ΔH(t) corresponds to the enthalpy of crystallization as a function of the 

crystallization time and ΔHTOT is the maximum crystallization enthalpy of the material. 

Applying the logarithmic properties on both sides of the equation (1), the following 

equation can be obtained:  

                                                      Equation (4) 

Plotting                  as a function of            the values of k and n can be 

obtained. A very important value in the Avrami’s theory is the time required by the 

material to reach the value of 50% of crystallization and can be indicated as       or      

. It is possible to calculate it through this equation: [6] 

      
          

 
 
   

  
         

 
 
   

                          Equation (5) 
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1.2.2 Lauritzen Hoffman theory 

This theory allows to calculate the overall crystallization rate (1/τ1/2 (50%)) or the crystal 

growth rate (G) to a crystallization temperature (Tc). Is possible to obtain the following 

general formula: [11, 12] 

            
   

        
     

   
 

      
                        Equation (6) 

The value of A can be replaced with          or (G) according to the type of kinetics 

that we want to study, Kg is the nucleation constant, Tc is the crystallization temperature, 

ΔT is the supercooling (Tm
0
-Tc) where Tm

0
 is the equilibrium melting temperature and 

corresponds to the melting temperature of an infinite stack of extended chain crystals 

without defects, f is a correction factor that is: 

  
   

   
     

                                    Equation (7) 

U* is the activation energy for transportation of segments to the crystallization site, R is 

the gas constant, T∞ is the hypothetical temperature where all motion are locked and A0 

is a rate constant ((1 / τ50%) or  (G)0 [11-12]. 

The crystal growth rate (G) is governed by two important processes that are a function of 

the rate (i) at which the nuclei are formed and the rate (g) at which the nuclei spread on 

the surface of the crystal. Depending on which of the two rate is higher, we can be in 

three types of different crystallization regimes ; I, II, III. 

 The regime I is when the nucleation rate (i) is very small compared to the rate of 

(g) (i << g). The whole substrate is completed and covered by a new monolayer. 

Following this mechanism monolayers are added one by one. 

 The regime II is when the nucleation rate (i) is high and spreads slowly or at the 

same rate (g) (i ≈ g). In this regime nucleation takes place more before the 

completion of a layer. This regime has medium temperatures crystallization. 

 The regime III is when the nucleation rate (i) is higher than the speed (g) (i >> g). 

It has an increase in the formation of the nuclei during the formation of new 

layers. This regime is obtained at low temperatures of crystallization. 
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Figure 1.4 shows the three regimes. 

 

Figure 1.4 Schematic drawings of how polymer crystal growth takes place in three regimes: (a) 

regime I; (b) regime II; and (c) regime III [13]. 

 

Plots of                 as a function        consist of lines with relatively 

abrupt changes in the slope coefficients shown in Figure 1.5. The regions of linear 

behavior are denoted regimes. [13] 

 

 

Figure 1.5 Growth rate regimes [13] 
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The nucleation constant Kg depends on the regime of crystallization and is given by the 

following formula: 

   
        

 

   
                                            Equation (8) 

Where b is the layer thickness, σs is the lateral surface free energy, σe is the folding 

surface free energy, ΔH is the heat of fusion per unit volume, and k is the Boltzmann 

constant. The value of n is depended on the regime of crystallization, and it is 

theoretically given as 4, 2, and 4 for regime I, II, and III, respectively [12]. σs can be 

obtained from the equation : 

                                                    Equation (9) 

Where a0 is the chain length and b0 is the width of the chain. Another parameter that can 

be determined with the theory of Lauritzen-Hoffman is q, which is the work required to 

make a bend and is obtained by the following expression: 

                                                   Equation (10) 

 

1.3 Ring-Opening Polymerization (ROP) 

Polymer with the general structure of macromolecular chain can be prepared from cyclic 

monomers via ring-opening polymerization (ROP). Additionally, ring-opening 

polymerization can be used to prepare polymer, which cannot easily be prepared by other 

methods, e.g. poly(phospazene)s. The driving force for ring-opening polymerization of 

cyclic monomers is the relief of bond-angle strain and/or steric repulsions between atoms 

crowded into the center of the ring. Therefore, as for other types of polymerization, the 

entalpy change for ring-opening polymerization is negative. Relief of bond-angle strain is 

most important for 3 and 4 membered rings, whereas for 8 to 11 memberead rings it is 

the relief of steric crowding that matters. These enthalpic effects are much smaller for 

five, six, and seven membered rings (especially six-membered) and such monomers are 

more difficult to polymerize. Ring-opening polymerization requires an initiator  and in 

most cases proceeds by chain mechanism which most commonly involved sequential 

additions of monomer to cationic or anionic active centres. However, there are more 
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specialized ring-opening polymerizations which operate by non-ionic mechanism, e.g. 

via radical or coordination mechanism. In addition, some ring-opening polymerizations 

have complex mechanism in which the ring opens to give a monomer that undergoes 

polycondensation. Hence the precise mechanism of ring-opening polymerization depends 

greatly upon the initiator, monomer and polymerization condition. For this reason, it is 

not possible to treat generally the ring-opening polymerization of all cyclic monomers 

[14]. 

 

1.4 Poly (lactic acid) 

Poly (lactic acid) (PLA) is one of the most promising biodegradable and biocompatible 

polymers obtained from renewable resources. The process is accomplished starting from 

starch, that is converted into glucose by enzymatic hydrolysis. Subsequently 

microorganisms break down the sugar into lactic acid through a fermentation process 

[15]. The synthesis of PLA from lactic acid can follow two ways: indirect through the 

lactide, which produces the "polylactide", and one that provides direct polymerization via 

polycondensation, which gives the "poly-lactic acid". The first way requires that it 

obtained a pre-polymer of low molecular weight by condensation of lactic acid in 

aqueous solution. The pre-polymer is then depolymerized to form the lactide (cyclic 

dimer of lactic acid), which polymerizes by ring-opening polymerization (ROP). The 

second case involves the direct conversion of lactic acid in the PLA. This occurs through 

polycondensation, is an equilibrium reaction and is difficult to remove completely the 

water which can limit the molecular weight due to hydrolysis of the ester bonds. Figure 

1.6 shows the two methods [16]. 
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Figure 1.6 PLA production via prepolymer and lactide. 

 

There are two optically active isomers of lactic acid, L-and D- isomer. The lactide 

molecule contains two stereogenic atoms and in the case three possible stereoisomers are 

possible. Figure 1.7 shows all isomers. 
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Figure 1.7 Stereochemistry lactid acid and of the corresponding lactide 
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Processing, crystallization, and degradation behavior of PLA all depend on the ratio 

between the isomer L and D. Their existence is due to the carbon bonded to four different 

substituents (chiral carbon). Both isomers give rise to four morphologically different 

polymers: PLLA and PDLA which are stereoregular polymers, the racemic PDLLA that 

due to the random distribution of the isomers in the macromolecular chains is an 

amorphous polymer, and in the end the PLA-meso that is obtained from DL-lactide. In 

the work of Stanford et. al. [17] the stereocontrolled ROP of L- rac- and meso-lactide can 

result in a wide range of polymer structures (Figure 1.8). 

 

Figure 1.8 Synthesis of different kind of PLAs by ROP [18] 

Isotactic PLLA homopolymer, deriving from L-lactide, is a semi-crystalline material 

with the highest melting point, while PLA copolymers with higher D-isomer content 

exhibit lower melting points and dramatically decreasing crystallization behavior, until 

they finally become amorphous at D-contents higher than 12–15% [19]. 

PLA has a glass transition temperature relatively low (approximately 60°C) and a 

melting temperature of about 160-180°C. Because of the low softening temperature, the 

PLA, unlike PET, is not suitable to contain liquids (or other) hot. The low softening 
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temperature of this polymer also creates problems for the storage of products and in the 

manufacturing of applications for the automotive sector [1]. One of the major 

technological obstacles to the diffusion of the PLA in the packaging industry is the high 

fragility accompanied by a low flexibility.  

The most common approaches to increase the toughness of the PLA reported in literature 

are the copolymerization with monomers such as ε-caprolactone and ethylene oxide or its 

blending [20] with other polymers such as PCL, PEG, EVA [21,22]. 

 

1.5 Poly(ε-caprolactone) PCL 

Biodegradable polymers can be classified into different categories, depending on their 

origin (natural or synthetic) or chemical structure. In this work, we have used the PCL, a 

biodegradable polyester, member of a family where members characteristic are "PLA, 

PCL, PGA (Poly-glycolic acid), PHA (poly-hidroxyalcanoates), PHB (poly-hydroxy-

butirate), PHV (poly-hidroxivalerate), PDO poly (dioxanone), PEA (polyestereamide)". 

These materials are of great interest in the field of biomaterials, due to the fact that the 

ester group can be hydrolytically degraded. 

These biodegradable polyesters are used in the medical field as sutures [23] or for the 

packaging [24]. 

The PCL is obtained by ring-opening polymerization of ε-caprolactone. Although the 

raw material used for its preparation does not come from renewable sources, but from a 

petroleum derivative, the PCL is a fully biodegradable material, because of the ester 

bond, present in its structure, likely to be hydrolyzed [25]. 

The polymerization starts normally from nucleophilic species such as alcohol and in the 

presence or absence of catalysts. The catalysts most used are organometallic compounds 

like  tin or zinc derivatives, which react in situ with the alcohol, giving rise to alkoxides 

which are the species responsible for the polymerization of the monomer according to a 

mechanism of coordination-insertion (see Figure 1.9) [26]. 
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Figure 1.9 Mechanism of the initiation step for coordination–insertion ROP, adapted from Khanna 

et al. [27] and Stridsberg et al. [28] 

 

The polymer has a regular structure and is semi-crystalline. The PCL crystallizes at 

around 50% in the form of spherulites [26].  

As regards its physical characteristics, the PCL has a density of 1.145 g/cm
3
, is a material 

of good property for a process thermoplastic with a glass transition temperature (Tg) of   

- 60°C, a melting point (Tm) of about 60°C, which varies according to its crystallinity 

and a decomposition temperature higher than 350°C. It dissolves in a large number of 

common solvents such as benzene, toluene, chloroform, methyl chloride, 

tetrahydrofurane or dichloromethane [26]. 

One of its major applications as biomaterial (both as homopolymer or copolymer) is like 

a matrix for controlled drug release systems [29], forming part of surgical devices such 

as bioresorbable sutures and also in the field of packaging or biodegradable containers. 

Unfortunately, its use in the latter field is more limited because it has a low elasticity and 

a low softening point [30]. Tokiwa and Suzuki have analyzed the hydrolysis of PCL and 

its degradation by mushroom, showing that the PCL can also be degraded enzymatically 

[31]. 
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2. OBJECTIVE OF THE THESIS 

The physical, mechanical, optical properties of PLA depend on the morphology of the 

solid state, the crystallinity degree of the material and the molecular weight. PLA may 

have an amorphous or semi-crystalline structure that depends on the stereochemistry and 

on the thermal history [32]. The L-isomer, poly (L-lactide) (PLLA) is a biodegradable 

thermoplastic polyester and can be produced from renewable sources [33]. However, 

PLLA has certain shortcomings that limit its applications. It is a brittle, hard polymer 

with a very low elongation at break, hydrophobic and takes a long time to degrade. The 

properties of PLLA may be modified by copolymerization (random, block, and graft) of 

L-lactide monomers with other co-monomers. [19]  

The copolymers synthesized for this thesis are interesting because they are theoretically 

biodegradable. The biodegradation rate is different because the degradation, hydrolytic 

and enzymatic response, depends on the material density. The amorphous areas are more 

easily degraded as compared to the crystalline area, then the average time of degradation 

depends on the crystallinity degree and on the copolymer composition. 

The objective of this thesis is to evaluate the variation of the morphology, nucleation and 

crystallization of PLA-ran-PCL random copolymers when the comonomer content of ε-

caprolactone is changed. 

We performed differential scanning calorimetry (DSC) and thermogravimetric (TGA) 

measurements in order to observe the different behavior due to the different compositions 

of the copolymers. Polarized light optical microscopy (PLOM) was used to observe the 

morphology of the crystalline areas and calculate the spherulites growth rate (secondary 

nucleation). The overall crystallization kinetics (nucleation + growth) was investigated 

by isothermal DSC. 
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3. RESULTS AND DISCUSSION 

3.1 Copolymers synthesis 

Copolymers PL(L)A/PCL were synthesized via the ring-opening polymerization (ROP) 

of lactide (LA) and ε-caprolactone (CL) in the presence of tin octanoate (Sn(Oct)2). 

Various composition and reaction conditions were employed for obtaining different 

composition of the copolymers. Table 3.1 shows the compositions and the molecular 

weight of obtained copolymers. 

Table 3.1 Molecular weight of the synthesized copolymers  

 

SAMPLE 
%mol / mol 

P(L)LA/PCL 
       

(g/mol)        
(g/mol) Polidispersity 

PLA-ran-PCL 83/17 22800 11700 1.94 

PLA-ran-PCL 30/70 36500 20000 1.82 

PLA-ran-PCL 50/50 29000 16400 1.76 

PLLA-ran-PCL 92/8 30000 18200 1.59 

PLLA-ran-PCL 7.5/92.5 28000 14300 1.95 

PLLA-ran-PCL 97/3 12800 8600 1.47 

PLLA-ran-PCL 2/98 55000 36000 1.51 

 

During the synthesis of the samples, an analysis was performed to evaluate the variation 

of the molecular weight as a function of time. Figure 3.1 shows the effect of 

polymerization time on the weight average molecular weight of the sample 50/50.  
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Figure 3.1  Effect of polymerization time on the weight average molecular weight of sample 50/50 

The graph shows that the weight average molecular weight increases at first and then 

decreases with the increase of polymerization which optimal value is about seven hours. 

The weight average molecular weight increases at the initial stage of polymerization 

because there is a high concentration of monomer to decreases with the increase of 

polymerization time, probably because there is not a correct homogenization due to the 

large increase of viscosity during the polymerization process. It was noted that the 

magnetic stirring, after some reaction time, is not enough to stir the reaction environment 

due to high viscosity of the product being formed. Moreover, being the polymerization a 

transesterification reaction, and then a reversible one, it is possible to correlate the 

variation of molecular weight with the reaction time to the fact that after some hours the 

reaction achieving equilibrium. Therefore the speed of the direct reaction 

(polymerization), and the reverse (depolymerization), are equal and aren't seeing further 

increases in the molecular weight. The molecular weight reaches a maximum and doesn't 

grow. Now the position of equilibrium depends on temperature, and then increasing it, 

moves the reaction. 

The final composition of the copolymers were determined by characterization using 

proton nuclear magnetic resonance (
1
H-NMR). As can be seen in Figure 3.2, the 
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multiplet from 5.05 to 5.25 ppm is assigned to methine proton (a) of polymerized lactide. 

The multiplet from 4.08 to 4.18 ppm is due to proton (g) of polymerized caprolactone 

that linked to a lactide molecule, while the triplet at 4.05 ppm indicates that the CL 

proton (g) linked to another CL unit. The multiplet between 2.35 to 2.48 ppm is due to 

proton (c) of polymerized caprolactone that linked to a lactide unit, while the triplet at 

2.31 ppm indicates that the CL proton (c) is linked to another CL unit. For the rest of the 

spectrum, multiplets at 1.66 ppm and 1.40 ppm are related to the caprolactone protons 

(d), (e), (f), and the multiplet at 1.56 ppm, to the lactide methyl protons (b) 

 

O

O

O

O

O

O

a

b

x y

c

d

e

f

g

Lactide unit Caprolactone unit  

 

Figure 3.2 
1
H-NMR spectrum of the poly(lactide-ran-ε-caprolactone) 50/50 

The final copolymer composition were determined from the ratios of the methine proton 

integrations and the methylene proton integrations for caprolactone units at the chemical 

shifts of 5.15 and 4.10 ppm respectively 

3.2 Standard or non-isothermal DSC 

The copolymers of poly (lactide-ran-ε-caprolactone) are comprised of the following 

repeating units: racemic mixture of L-lactide and D-lactide, PLA, and ε-caprolactone 
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(PCL). Some considerations can be made about the behavior of homopolymers derived 

from these monomers, poly (ε-caprolactone) (PCL) and racemic poly(lactide) (PLA). 

Regarding their crystallization, the following was observed: 

After bringing the PCL to the melting temperature and subsequently cooling the polymer, 

some degree of crystallization was obtained [34]. 

After bringing the PLA to the melting temperature and subsequently cooling the 

polymer, it was observed that the presence of the two optical isomers interfere with the 

crystallization in proportion to the quantity of each isomer relevant to the other [19]. The 

quantity of the optical isomer D or L is of critical importance as it directly affects the 

crystallization of the polymer. 

It is known that in general, statistical copolymers are usually not able to crystallize. 

For this reason we have performed standard measurements using differential scanning 

calorimetry DSC) for the random copolymers poly(lactide-ran-ε-caprolactone), and for 

the copolymer containing the isomer L, poly(L-lactide-ran-ε-caprolactone) to determine 

how the thermal properties change when compared to homopolymers of P(L)LA and 

PCL. 

DSC cooling and second heating scans have been made, see Figure 3.3 Table 3.2 reports 

the values for the glass transition temperature (Tg), the peak crystallization temperature 

(Tc), the peak temperature of cold crystallization (Tcc), the enthalpy of crystallization 

(ΔHc), the enthalpy of cold crystallization (ΔHcc), the peak melting temperature (Tm) 

and the enthalpy of fusion (ΔHm). 
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Figure 3.3 a) DSC Cooling scans at 20°C/min and b) Subsequent heating scans at 20°C/min of the 

PLA-ran-PCL copolymers and homopolymer PCL. 

 

Table 3.2  DSC data obtained from Figure 3.3 Copolymers PLA-ran-PCL 

 

  COOLING   HEATING 

Sample 

Tc 

(ºC) 

ΔHc 

(J/g) 

 

*Tg 

(ºC) 

Tcc 

(ºC) 

ΔHcc 

(J/g) 

Tm 

(ºC) 

ΔHm 

(J/g) 

80/20 - - 

 

12 - - - - 

50/50 - - 

 

**-36 - - - - 

3070 - - 

 

**-51 -6.9 -0.6 33.9 33.3 

PCL 24.7 -60.1   **-60 - - 56.2 62.4 

         *For reasons of size of the graphics and the presence of many scans, it is not possible 

to observe the values of Tg 

** Data analyzed by a different DSC. Range of work of -80°C to 90°C. The data are 

not present in the graphs. 

 

As previously stated data confirm that PCL is a polymer which crystallizes during 

cooling from the molten state. When PLA contains a racemic mixture of L and D chains 
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in an equimolar amount it is an amorphous polymer unable to crystallize. Therefore, in 

the random copolymers, only PCL will be able to crystallize at compositions when it 

constitutes the major component (30/70). It is possible to see in Figure 3.3a), that by 

increasing the amounts of PLA the crystallization of PCL cannot be achieved. 

Observing heating scans, it can be noted that the endothermic peak of melting cannot be 

obtained when the amount of PLA increases. This is due to the fact that PCL 

crystallization does not occur and it is not possible to obtain any fusion because the 

material is amorphous. We only observed a melting peak in the copolymer 30/70. This 

result is unexpected since the PCL phase does not crystallize upon cooling but it shows 

melting upon heating. Since the objective of this work is not to observe the ability to 

crystallize the PCL, we have not investigated further this behavior. 

Regarding random copolymers PLLA-ran-PCL, Figure 3.4a) shows that in the presence 

of copolymers, when the amount of PCL is very large, although the copolymer is 

random, PCL can crystallize. This is probably due to the presence of a large quantity of 

PCL relative to PLA, therefore, no large interruptions are present in the chain sequences 

of PCL repeating units. 
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Figure 3.4  a) Cooling scanning 20°C/min b)Scanning of the second heating at 20°C/min of the 

copolymers of PLLA-ran-PCL and homopolymers PCL and PLLA 
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On the other hand, a PLLA homopolymer can crystallize since it is composed of only L 

chains. Nevertheless, it is a slow crystallizing polymer and therefore, it barely 

crystallizes upon cooling at 20°C/min from the melt when high molecular weight 

materials are used, as in Figure 3.4a). It can crystallize during the heating scan, 

undergoing cold crystallization, as shown in Figure 3.4b.  

Table 3.3  DSC data obtained from Figure 3.4 Copolymers PLA-ran-PCL 

 

 
COOLING 

 
HEATING 

Sample 
Tc 

(ºC) 

ΔHc 

(J/g)  

*Tg 

(ºC) 

Tcc 

(ºC) 

ΔHcc 

(J/g) 

Tm1 

(ºC) 

Tm2 

(ºC) 

ΔHm 

(J/g) 

PCL 24.7 -60.1 
 

**-60 - - 56.2 - 62.4.3 

2/98 26.1 -64.2 
 

**-61 - - 51.8 - 68.5 

7.5/92.5 24.8 -64 
 

**-64 - - 50.1 52.3 68.7 

92/8 - - 
 

40 101.6 -30.9 141.9 156.2 30.3 

97/3 90.2 -2.9 
 

44 95.3 -27.5 145 159.2 43 

PLLA - - 
 

61 115.2 -43.3 180.7 - 42.7 

*For reasons of size of the graphics and the presence of many scans, it is not possible to observe the 

values of Tg 

**Data analyzed by a different DSC. Range of work of -80°C to 200°C. The data are not present in the 

graphs. 

 

Figure 3.4b) shows the second heating scans. When a large amount of PCL is present in 

the copolymer, the PCL crystals formed during the previous cooling (Figure 3.4a)) melt 

and Table 3.3 shows that the melting point decreases as the amount of PLLA increases in 

the copolymer as expected for a random copolymer.  

When the PLLA is present in large amounts, the PCL component cannot crystallize and 

the PLLA component exhibits cold crystallization (exothermic peak) during the heating 

scan. This phenomenon is due to the absence of previous PLLA crystallization due to a 

slow crystallization rate during previous cooling. In addition, cooling PLLA through its 

Tg usually causes the formation of nuclei that can later be employed during heating for 

cold crystallization purposes. The crystals formed by cold crystallization during the scan 

also exhibit clear melting peaks (Figure 3.4b)). The peak temperature of cold 

crystallization decreases in the copolymer as compared to neat PLLA for 3% PCL to a 
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value of 95.3°C and then increases to 101.6°C with 8% PCL. This can be interpreted as a 

nucleating effect of the PCL component, that is maximum at 3%. Such effect may be 

caused by impurities transfer, since PCL can not crystallize at these compositions. As 

expected for a random copolymer, when PCL is incorporated in the chains, the 

crystallizable units of PLLA are interrupted leading to shorter crystallizable segments of 

PLLA that form thinner lamellar crystals that melt at lower temperatures. 

For all the samples, the Tg was obtained and the data has been included in Tables 3.2 and 

3.3. From the values of Tg it's possible obtain some qualitative information about the 

miscibility of polymer multi-component systems, such as for our copolymers, and we can 

also obtain confirmation that random copolymers were synthesized. This is because 

systems that are completely immiscible or block copolymers show two Tgs, 

corresponding to those of the pure components, while in this case, a single glass 

transition temperature, whose value is intermediate between that of the components and 

is a function of their composition, has been obtained. The experimental data obtained by 

DSC analysis has been compared with the theoretical results obtained from the Fox 

equation [35]: 

 

  
 

  

   
 

  

   
 Equation (1) 

Where w1 and w2 are the weight fractions of the two components and Tg1 and Tg2 the 

Tg values of the neat homopolymers. Figure 3.5 shows, for all the copolymers, the 

variation of the Tg value related to the percentage of PCL. 
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Figure 3.5 Glass transition temperature as a function of the amount of PCL 

 

It is possible to compare the data of two classes of copolymers (PLA-ran-PCL and 

PLLA-ran-PCL) because the D-isomer and the L are physically and chemically identical 

[19]. 

In Figure 3.5 the blue line is the linear variation of Tg with the amount of PCL; the black 

and red lines indicate the theoretical and experimental data. We can observe a negative 

deviation from theoretical data which may be a consequence of less rigidity in the new 

amorphous phase [4]. The qualitative trend of the experimental data is similar to that 

predicted by the Fox equation. 

 

3.3 TGA analysis 

In order to evaluate the mass loss trend related to the temperature variation of the 

homopolymers and copolymers, thermogravimetric experiments have been performed. In 

Figure 3.6 the graphs displays the thermograms of the copolymers containing the racemic 

PLA and PCL homopolymer. 
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Figure 3.6 Thermogravimetric analysis of the copolymers poly (lactide-ran-ε-caprolactone) and 

homopolymer of poly (ε-caprolactone) 

 

In Figure 3.6b) the 10% weight loss can be observed in greater detail. The results are 

shown in Table 3.4 

 

Table 3.4  Data analysis TGA poly(lactide-ran-ε-caprolactone) 

 

Sample Tpeak (°C) T10% (°C)        
(g/mol) 

0/100 433 384 45000 

30/70 363 282 36500 

50/50 343 262 29000 

80/20 270 235 22800 

 

As observed from the graphs in Figure 3.6, it is evident that the copolymers tend to 

degrade at lower temperatures than the homopolymer PCL. Comparing the results of the 

copolymers, analyzing their composition, it was observed that with increasing amounts 

of PCL in the copolymer, there is a decrease of degradation during the rise in 
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temperature. This trend can be seen by observing both the losses of 10% by mass, and the 

peak decomposition temperature. Was also noticed the influence due to the molecular 

weight of the samples. Decrease in molecular weight results in a more rapid 

decomposition, probably due to the fact that the amounts of terminal hydroxyl and 

carboxyl groups also increases, and in those chain ends is where degradation begins. 

Indeed the mechanism of thermal degradation of PLA and PCL consists of random chain 

scissions with reactions of depolymerization [19][36]. 

In Figure 3.7 are displayed the thermograms of the copolymers containing L-isomer and 

homopolymers PLLA and PCL, the results have been reported in Table 3.5. 
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Figure 3.7 Thermogravimetric analysis of the copolymers poly (L-lactide-ran-ε-caprolactone) and 

homopolymers of poly (ε-caprolactone) and poly (L-lactide) 
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Table 3.5  Data analysis TGA poly (L-lactide-ran-ε-caprolactone) 

 

Sample T10% (°C) T (°C) peak        
(g/mol) 

PCL 433 384 45000 

PLLA 341 300 280800 

2/98 319 282 55000 

7.5/92.5 326 275 28000 

92/8 265 239 30000 

97/3 253 220 12800 

 

Also it is possible to observe that the degradation trend of the copolymers decreases 

when the amount of PCL increase.  

In the following Figure 3.8 we examine the variation of the thermostability of all the 

copolymers with respect to the content of PCL. 
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Figura 3.8 Temperature trend of the loss of 10% by weight in function of the amount of PCL 

 

Studies undertaken by Sivalingam et al. [37] give us a possible explanation for this 

observation. The thermal stability of PCL and PLA in their studies, based on the peak 

decomposition temperature is in the order PCL>PLA. The activation energies for random 
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chain scission and specific chain scission for the homopolymers were determined and 

they also follow the same trend. The stability of the polyesters may thus depend on the 

number of carbon atoms in the monomer. The thermal stability of the copolymers of was 

also investigated. The presence of PLA in the copolymer increases the degradation rate 

of PCL. A possible explanation for this observation is that the acid released during the 

degradation of PLA influences the degradation of PCL. These results were accepted 

since this is consistent with an earlier study [38] showing that PCL degrades at higher 

rate in the presence of acid releasing polymers as PVC and PVAC. 

 

3.4 Spherulitic growth 

A Polarized Light Optical Microscope (PLOM) was used to observe the morphological 

structure of the copolymers. The morphological structure observed is the spherulitic. A 

spherulite is from an optical point of view a birefringent object with two unique 

refractive indices: the radial (nr) and the tangential (nt).  

Most spherulites observed in this work were negative, nr < nt. The direction of the 

maximum birefringence can be determined by inserting a lambda plate parallel to the 

main direction of the local birefringence. This ascertains the presence of negative 

spherulites because the colors are yellow for the first and third quadrant and blue for the 

second and fourth. Negative spherulite can, in this manner be distinguished from positive 

spherulite which show an opposite refractive indices where nr > nt. For a positive 

spherulite, the first and third quadrants are blue, and the second and forth ones are 

yellow. If the color differences between the four quadrants cannot be clearly discerned, 

the spherulite is a mixed one.  Both types of spherulite show a Maltese cross pattern with 

a maximum in the intensity of the transmitted light for parts of the spherulites at an angle 

of 45° to the polarizer/analyzer pair. [13] 

The following samples were analyzed: the copolymers PLLA-ran-PCL with the content 

of 3% PCL, the copolymers PLLA-ran-PCL with the content of 8% of PCL and the 

homopolymer PLLA. These samples were selected for analysis in order to compare the 

variation of the morphology and the crystals growth rate in the copolymers with small 

amounts of PCL. All samples show a birefringent spherulitic structure with the 

characteristic Maltese cross [13]. 
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The following images illustrate the regions of the anisotropic sample order.   

The copolymer containing 8% of PCL has been studied, using a temperature range 

between 105 and 135°C. Figure 3.9 shows some micrographs of the morphological 

structure of this sample. 

 Figure 3.9 Morphology of the sample PLLA/PCL 92/8 by PLOM 

The pictures illustrate that a temperature of 135°C a structure that is not perfectly round 

is generated. Additionally, the Maltese cross has been distorted in the sample. This is 

probably due to the low nucleation probability of the material at very high temperatures 

which limits the number of lamellae that can grow simultaneously. The structure looses 

its tridimensional character (i.e., spherulitic character) and is now more two dimensional 

(i.e., it forms axialites or two dimensional aggregates of lamellae that can be stack on one 

another copying the facets characteristics of single crystals). 

The crystalline morphology of the copolymer with 3% of PCL shows a situation similar 

to the previous one. The analysis was conducted in a temperature range between 115 and 

135°C. 
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Figure 3.10 Morphology of the sample PLLA/PCL 97/3 by PLOM 

 

Figure 3.10 shows the Maltese cross forms at temperatures between 120 and 127°C. At 

the temperature of 115°C we can observe the phenomenon of "banding" due to the 

twisting [39] of the lamellae which form the spherulite in the radial direction. At 130°C 

the presence of hexagonal structures can be observed. In a few studies reported by Abe et 

al. [12] they observed that this effect occurs because the crystal grows in two orthogonal 

directions on a single layer. This structure is organized in such a way as to have a 

stacking of crystals where it is only possible to view the upper layer and is therefore 

defined as aggregate crystals of two-dimension. 

In Figure 3.11, we can observe the crystal morphology of PLLA homopolymer. 
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 Figure 3.11 Morphology of PLLA homopolymer by PLOM 

 

Comparing the images presented, it can be observed that there is only little difference 

between the copolymer with 3% of PCL and PLLA homopolymer. In both cases the 

spherulites have a defined outline and the distinct presence of the Maltese cross unlike 

the copolymer containing 8% of PCL. 

After observing the samples crystal morphology, the next step was to study the kinetics 

of crystallization in order to determine the spherulitic growth rate (G).  

To measure G, using isothermal crystallization, a Polarized Light Optical Microscope 

(PLOM) was used. For the overall kinetics of the process (which includes both 

nucleation and growth), the analysis was performed using DSC, which will be discussed 

in the next section. 

To measure the growth rate of spherulites, micrographs were taken at regular time 

intervals to determine the variation of the radius over time. The result of plotting 

spherulite radius versus time is a straight line with a slope equal to the growth rate (G) of 

the spherulites. To obtain a more accurate result of G, several spherulites were analyzed 
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using each temperature to obtain multiple values of G and create an average of all the 

obtained slopes.  Figure 3.12 shows a sequence of images where the spherulitic growth as 

a function of time can clearly be observed. The radii values are given in Table 1 below. 

 

 

Figure 3.12 Display of the spherulitic growth of the copolymer PLLA-ran-PCL 97/3 at 120°C 

 

Table 3.6  Results obtained from the spherulitic growth of the copolymer PLLA-ran-PCL 

97/3 at a temperature of 120°C  

 

Photo 1 2 3 4 5 6 

Time(min) 4.5 4.75 5 5.25 5.5 5.75 

Radius(μm) 77.4 81.2 86.8 90.9 94.8 98.1 

1 2 

3 4 

5 6 

50μ

m 

50μ

m 

50μ
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50μ

m 

50μ
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50μ
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Plotting these values  as radius vs time, a linear trend was shown. Figure 3.13 shows an 

example of measurements of six different spherulites at the crystallization temperature of 

120°C. 
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Figura 3.13 Measurement of radius vs time of six different spherulites 

 

The average value of the slope, obtained by the lines, was used to obtain the value of G = 

16 μm/min with a standard deviation of σ = 0.8056. This procedure was carried out with 

the PLLA spherulites formed by the two copolymers (3% and 8% of PCL), and with the 

homopolymer of PLLA at different temperatures of isothermal crystallization from the 

melt. With the data obtained it was possible to compare the trend of the crystal growth 

rate with respect to the temperatures of isothermal crystallization. Figure 3.14 reports the 

experimental data obtained from the described analysis. 
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Figure 3.14  Spherulitic growth rate vs isothermal crystallization temperature of samples analyzed 

by PLOM 

 

From Figure 3.14, it is possible to observe that all samples have a bell-shaped trend due 

to the dependence of the spherulites growth rate (G) from the temperature. The 

temperature range in which to observe this behavior is bounded by two values: the Tg 

and the Tm. 

Moving to temperatures close to the Tg (the left side of the bell shaped curve) diffusion 

of macromolecules is difficult and spherulite growth tends to be slower. For this reason, 

G is governed by the diffusion of macromolecules, which tends toward zero when we are 

at values equal to or below the Tg. 

On the right side of the bell shaped curve, we are bounded by Tm, because close to this 

temperature, the copolymer nucleation on the surface of the crystals already present is 

difficult, because the macromolecules have a high mobility. In this zone, the dominant 

term is the secondary nucleation (crystal growth) [40]. 
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In Figure 3.14 a dependence of G from the molecular weight of the copolymers and the 

homopolymer can be observed; the lower the molecular weight the higher the value of G 

[11]. Since the objective is to see how the spherulites growth rate changes as a result of 

the amount of PCL, and since the homopolymer of PLLA that was used, posses a 

molecular weight much higher than the copolymers, for subsequent analysis we have 

taken the data from a previous work [41] in which two PLLA homopolymers have a 

molecular weight comparable to the copolymers analyzed (8600 g/mol and 17300 g/mol). 

The trend of the samples was observed by setting an equal temperature to all 

(Tiso=130°C) and found that 3% of PCL in the PLLA causes a small increase in the 

spherulites growth rate followed by an important decrease when the amount of PCL 

increase to 8%. From the graph in Figure 3.15 it is possible to observe this trend. 
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Figure 3.15 Trend of G compared to the amount of PCL. Constant temperature T=130°C 

 

After obtaining experimental values of G for each sample, the Lauritzen-Hoffman model 

(L-H), which provides expressions for the linear growth rate as a function of 

supercooling degree, was employed (see figure 3.16a)). 
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Figure 3.16 Trend of the theory of L-H with PLOM 

 

According to the L-H theory, from the slope of the line it is possible to obtain the values 

of   
  (a term proportional to the energy barrier for spherulite growth), while the 

intercept with the ordinate gives us the value of G0 (pre-exponential term). In figure 

3.16b) the bell-shaped trends of the experimental data can be observed as well as the 

theoretical values represented by the red lines. 

Observing the lines we can say that we are in a single crystallization regime since there is 

no change of their slope, and noting the spherulitic morphology during crystallization, we 

can say that we are in a regime II. In this regime, the rate G is governed by the secondary 

nucleation rate, and by the lateral growth rate since the two are similar [42]. 

Table 3.7 Data obtained using the model L-H with PLOM data 

PLLA/PCL 
     

(II) (K
2
) 

σ(erg/cm
2
) σe(erg/cm

2
) q(erg) G0(cm/sec) R

2
 

92/8 3.55E+04 8.08 32.29 1.19E-13 1.38E-01 0.9953 

97/3 2.59E+05 8.08 214.37 8.97E-14 7.91E-13 0.9839 

PLLA 3.26E+05 8.08 266.47 9.83E-13 5.09E+03 0.9998 
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As can be seen in Figure 3.16, the number of data points for PLLA is insufficient. We 

can observe an unexpected trend in terms of copolymer composition that may be due to 

errors in the fitting since not all samples have the same number of data points. Normally 

one needs at least seven data points per curve. In the case of PLLA we have only four 

very close data points which of course fit a straight line in the L-H plot, but is difficult to 

extrapolate such behavior over a large temperature range. More data are needed to be 

able to confirm the trends shown in Table 3.7. Nevertheless, the fact that both 

copolymers crystallize faster than PLLA is probably related to the plasticizing effect of 

PCL co-units within the copolymer that depress the Tg values. 

We used the “LH Model fit” Origin® plugin, that was designed in a previous work to 

analyze crystallization kinetic data (G or 1/τ), performing the linear fit according to the 

LH Theory model. This “LH Model Fit” is available for free distribution upon request 

[43]. 

 

3.5 Overall isothermal crystallization kinetics 

To study the isotherm crystallization, analysis at different temperatures from the melt 

have been performed using the DSC instrument.  

Figure 3.17 shows the DSC scans as a function of time collected during isothermal 

crystallization at various Tc from a melt state (Tc = constant, t = 30 min). Starting 

temperatures of  ~ 30°C higher than the Tg were selected, in a range of about 40°C. At 

low temperatures the crystallization rate is slow, with a broad exothermic peak. Figure 

3.17c) shows that the copolymer 92/8 does not have enough time (t = 30 min) to finish 

the crystallization until temperatures of about 80-86°C are reached. In addiction for all 

samples, for intermediate temperatures an increase of the crystallization rate can be 

observed.  
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Figure 3.17  Isothermal scans with DSC  a) PLLA; b) 97/3 copolymer; c) 92/8 copolymer 
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For all scans the half-crystallization time,      , has been calculated, this is the time 

needed for 50% relative conversion to the semi-crystalline state. The inverse of the half-

crystallization time is proportional to the overall crystallization rate. 
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Figure 3.18 Inverse of half-time of crystallization vs. isothermal crystallization temperature. Samples 

analyzed by DSC 

 

Figure 3.18 shows the trend of the crystallization rate with crystallization temperature 

which includes the process of nucleation and growth. The sample of PLLA analyzed has 

a high molecular weight (Mn=280800 g/mol) and its experimental values are 

intermediate with respect to the two copolymers. Studies undertaken by Okui et al. [11] 

illustrate how the trend of the crystallization rate varies as a function of the molecular 

weight at a constant temperature, thus obtaining a bell-shape curve. Therefore it is 

possible that the molecular weight of PLLA being too high causing a decrease of the 

crystallization rate (see figure 3.19). Since the interest of this work is to observe the 

influence of the PCL in the copolymer, data have been taken from a previous work [41] 

in which a PLLA homopolymer has a molecular weight comparable to the copolymers 

analyzed (8600 g / mol) to see how this behavior is related to the amount of PCL. From 

the graph in figure 3.19b) it is possible to observe this trend by setting a temperature 
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equal for all (108°C). From the results it was observed that 3% of PCL causes an increase 

of the crystallization rate followed by a decrease when there is 8% of PCL. 
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Figure 3.19 a) Crystallization rate, expressed as 1/τ1/2 as a function of the number average molecular 

weight (Mn) of PLLA samples with different molecular weight; Tc= 110°C. b) 1/τ1/2 as a function of 

PCL content at a fixed isothermal crystallization temperature of 108°C 

 

It would seem that small amounts of PCL (3%) lowers the Tg and causes a plasticization 

effect which increases the mobility of PLLA chains, hence they crystallize faster. When 

there is a quantity of 8% of PCL, the crystallization rate of the copolymer decreases, 

probably because a higher amount of PCL is interfering with PLLA crystallization by 

interrupting the linear sequences that are capable of crystallization (in spite of the 

plasticization effect of PCL), as in any random copolymer. In fact, higher amounts of 

PCL would lead to the absence of PLLA crystallization. The trends observed are similar 

and consistent with those previously obtained for spherulitic growth rate measurements. 

For the analysis of data obtained by DSC under isothermal conditions, we used the 

Avrami equation to obtain the values of n and k. All the calculations needed to perform 

the "Avrami fits" and comparisons between the experimental data and the predictions of 

the theory were performed with an Origin® application software. This Origin plugin was 

designed to analyze the DSC isotherms, establish the baseline, calculate the integral of it, 
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perform the linear fit according to the Avrami equation, calculate fitting errors and 

perform graphical comparisons between the experimental data and the predictions [43]. 

Figure 3.20 shows an example of graphs obtained by applying the theory of Avrami on 

isothermal curves for each sample. Figure 3.20a) is the linear equation of Avrami, where 

the slope of the line is n and the intercept on the ordinate is k. In all the samples a 

conversion degree between 3% and 20% to the semi-crystalline state was used in order to 

obtain the best values from the theory of Avrami [44]. Figure 3.20b) shows the 

relationship between the semi-logarithmic amorphous fraction and the material (1-Vc) as 

a function of time (log (t-t0)). Figure 3.20c) shows the graphs for the theoretical and 

experimental isothermal crystallization process. In the last graph, Figure 3.20d), we can 

see the change of the enthalpy of crystallization as a function of crystallization time; 

from this curve we can obtain the value of τ1/2. 
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Figure 3.20 a) Avrami plot. b) Unconverted relative volumetric fraction as a function of time for the 

isothermal crystallization of the PLLA at 104°C. Comparison between the experimental data and 

Avrami fit. c) Comparison between experimental DSC isothermal and Avrami prediction for PLLA 

isothermally crystallized at 10°C. d) change of the enthalpy of crystallization as a function of 

crystallization time  

 

The data obtained with the model of Avrami are reported in Table 3.8. It is possible to 

see  that the values of Avrami index n, are between 2.15 to 2.46 for PLLA, while for 

copolymers 97/3 and 92/8 we obtained the respective values between 2.07 to 3.1 and 

from 2.06 to 2.61. The n values correspond to the morphologies previously observed by 

PLOM. Indeed two-or three-dimensional growth superstructural aggregates were 

observed with an instantaneous nucleation (n=2-3) [45]. 
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Table 3.8 Data obtained by the Avrami model  

Sample Tc(°C) n K(min
-n

) 
τ 1/2 TEO 

(min) 

τ 1/2 EXP 

(min) 
R

2
 

Interval 

conversion 

(%) 

 

88 2.17 0.00612 8.83 8.80 1.0000 3 - 20 

 

90 2.15 0.0095 7.35 7.13 1.0000 3 - 20 

 

92 2.22 0.0117 6.31 6.07 0.9999 3 - 20 

 

94 2.23 0.0214 4.77 460 0.9999 3 - 20 

 

96 2.46 0.0171 4.50 4.35 0.9999 3 - 20 

 

98 2.31 0.0379 3.53 3.38 0.9998 3 - 20 

 

100 2.29 0.0568 2.99 2.87 0.9998 3 - 20 

 

102 2.28 0.0704 2.73 2.62 0.9998 3 - 20 

 

104 2.38 0.0903 2.36 2.30 0.9999 3 - 20 

 

106 2.33 0.11 2.20 2.15 0.9999 3 - 20 

PLLA 108 2.38 0.1 2.26 2.22 0.9999 3 - 20 

 

110 2.30 0.0915 2.42 2.35 0.9999 3 - 20 

 

112 2.36 0.0607 2.81 2.73 0.9999 3 - 20 

 

114 2.28 0.031 3.91 3.80 0.9999 3 - 20 

 

116 2.22 0.0197 4.97 4.82 0.9999 3 - 20 

 

118 2.22 0.0126 6.09 5.92 1.0000 3 - 20 

 

120 2.38 0.00793 6.55 6.50 1.0000 3 - 20 

 

122 2.17 0.00988 7.06 6.92 1.0000 3 - 20 

 

124 2.23 0.00517 9.02 8.78 1.0000 3 - 20 

 

126 2.15 000419 10.82 10.42 0.9999 3 - 20 

 

128 2.19 0.0038 10.82 10.63 1.0000 3 - 20 

 

130 2.05 0.00529 10.76 10.47 1.0000 3 - 20 

 

70 N.E.* N.E.* N.E.* N.E.* N.E.* 3 - 20 

 

72 N.E.* N.E.* N.E.* N.E.* N.E.* 3 - 20 

 

74 N.E.* N.E.* N.E.* N.E.* N.E.* 3 - 20 

 

76 N.E.* N.E.* N.E.* N.E.* N.E.* 3 - 20 

 

78 N.E.* N.E.* N.E.* N.E.* N.E.* 3 - 20 

 

80 2.38 0.00134 13.80 13.78 1.0000 3 - 20 

 

82 2.61 0.001 12.26 12.62 1.0000 3 - 20 

 

84 2.39 0.00315 9.53 10.02 0.9999 3 - 20 

 

86 2.06 0.0165 6.14 6.25 0.9999 3 - 20 
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88 2.46 0.00808 6.09 6.25 1.0000 3 - 20 

92/8 90 2.08 0.0276 4.72 4.78 1.0000 3 - 20 

 

92 2.07 0.033 4.35 4.40 1.0000 3 - 20 

 

94 2.30 0.0124 5.73 5.80 1.0000 3 - 20 

 

96 2.16 0.0201 5.15 5.18 1.0000 3 - 20 

 

98 2.14 0.025 4.73 4.75 1.0000 3 - 20 

 

100 2.46 0.0256 3.83 3.95 1.0000 3 - 20 

 

102 2.28 0.0429 3.39 3.42 1.0000 3 - 20 

 

104 2.33 0.0443 326 3.25 10000 3 - 20 

 

106 2.45 0.0199 4.26 4.33 1.0000 3 - 20 

 

108 2.29 0.0257 422 4.22 1.0000 3 - 20 

 

110 2.29 0.0226 4.,44 4.40 1.0000 3 - 20 

 

68 2.17 0.00694 8.38 8.18 0.9998 3 - 20 

 

70 2.24 0.00671 7.92 7.85 1.0000 3 - 20 

 

72 2.07 0.0219 5.32 5.30 1.0000 3 - 20 

 

74 2.89 0.00247 7.03 7.55 1.0000 3 - 20 

 

76 3.10 0.0029 5.84 5.72 0.9996 3 - 20 

 

78 2.13 0.0873 2.64 2.30 0.9978 3 - 20 

 

80 2.32 0.043 3.32 3.30 1.0000 3 - 20 

 

82 2.37 0.0376 3.40 3.32 1.0000 3 - 20 

 

84 2.13 0.0873 2.64 2.30 0.9978 3 - 20 

 

86 2.32 0.143 1.98 1.92 0.9998 3 - 20 

97/3 88 2.32 0.214 1.66 1.65 0.9999 3 - 20 

 

90 2.26 0.142 2.02 1.90 0.9995 3 - 20 

 

92 2.37 0.184 1.75 1.78 1.0000 3 - 20 

 

94 2.35 0.197 1.71 1.77 1.0000 3 - 20 

 

96 2.40 0.302 1.37 1.43 1.0000 3 - 20 

 

98 2.40 0.24 1.56 157 1.0000 3 - 20 

 

100 2.52 0.16 179 1.73 0.9999 3 - 20 

 

102 2.16 0.111 2.34 2.55 0.9999 3 - 20 

 

104 2.48 0.0584 2.72 2.87 1.0000 3 - 20 

 

106 2.37 0.0574 2.86 3.03 1.0000 3 - 20 

 

108 2.50 0.0691 2.52 2.53 1.0000 3 - 20 

 

110 2.58 0.0359 3.15 3.27 0.9999 3 - 20 

*N.E.= Crystallization not end 
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After each scan at isothermal temperature, were performed heating scans to observe the 

related melting points, in order to extrapolate, by the method of Hoffmann-Weeks [46], 

the value of the equilibrium melting temperature (Tm
0
). In Figure 3.21 (a-c) heating 

scans performed after isothermal crystallization, at a rate of 10 °C/min are shown. From 

the plots, it is evident the presence of two melting peaks indicated by the arrows: Tm1 

and Tm2. Plotting the Tm2 vs Tc to the line Tm = Tc, the value of Tm
0
 was obtained from 

the point of intersection of the two lines, see Figure 3.21d). 
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Figure 3.21 DSC heating scans for a) PLLA, b) 97/3, c) 92/8 with a heating rate of 10°C/min after 

isothermal crystallization at various temperatures Tc. d) Variation of Tm2 with Tc for PLLA, 97/3 

and 92/8 copolymers 

 

Values of Tm
0
 equal to 207°C, 201°C and 158°C were obtained for PLLA, 97/3 and 92/8 

respectively. Studies undertaken by Huang et al. [47] show that the existence of double 

melting peaks in the DSC heating profiles of the sample may result from one of the 

following reasons: the presence of two different crystal structures, the presence of two 

different thickness of crystal lamellae with the same type of crystal structure formed at 

the isothermal crystallization condition, and the simultaneous melting-

reorganization/recrystallization-remelting of the lamellae originally formed during the 

crystallization process. Tm1 is a result of the melting of the crystallites recrystallized 

during the heating process, while the lower melting peak Tm2 refers to the melting of the 

primary crystallites formed during the isothermal crystallization process. 

The kinetic data of isothermal crystallization were analyzed applying the equation of 

Lauritzen-Hoffman, in order to observe the variation between the experimental and 
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theoretical data of the overall crystallization rate (1/τ1/2 vs Tc). Figure 3.22 shown the 

trend of the linear crystallization rate in relation to supercooling degree for all the 

samples. 

 

3,0x10
-5

4,0x10
-5

5,0x10
-5

6,0x10
-5

1

2

3

4

5

6

7

8

9

10

 

 

L
n

1
/t

a
o

+
U

/R
(T

c
-T

in
f)

1/(Tc.T.f)

 97/3

 PLLA

 92/8

 Fitting

a)

 

60 80 100 120 140

0,0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

 

1
/t

a
o

 [
1

/m
in

]

Temp. [ºC]

 97/3 Exp

 100/0 Exp

 92/8 Exp

 Fit L-H

b)

 

Figure 3.22  Trend of the theory of L-H using DSC data 

 

In Table 3.9 are shown the data obtained by the method of Lauritzen-Hoffman using data 

provided by DSC. 

 

Table 3.9 Data obtained using the model L-H with DSC 

Sample 
     

(II) 

(K
2
) 

σ (erg/cm
2
) σe (erg/cm

2
) q (erg) R

2
 

92/8 1.74E+05 8.08 158.19 5.84E-13 0.9714 

97/3 7.18E+05 8.08 593.68 2.19E-12 0.9655 

PLLA 1.07E+06 8.08 870.38 3.21E-12 0.9924 

 

This analysis differs from that carried out with the PLOM because when we have 

previously calculated the crystal growth with the model L-H, we have analyzed only the 
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secondary nucleation (or crystal growth). Instead, when we perform the analysis with 

isothermal DSC, the global crystallization including nucleation and growth is taken into 

account. 

Notice that the values of    obtained from the model of LH by DSC are higher than 

those obtained with the PLOM (   ) and this can be explained due to the contribution of 

the nucleation and the crystal growth. The data are unfortunately too noisy and the errors 

involved in the fittings large, hence the trends with respect to PCL content are 

inconclusive as far as the parameters reported in Table 3.9 are concerned. 
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4. CONCLUSIONS 
 

In this thesis several experimental techniques were employed to study the crystallization 

and morphology of the PLLA phase within poly (L-lactide-ran-ε-caprolactone) materials. 

The following conclusions can be derived from the analysis of the results obtained: 

 The experimentally determined Tg values give confirmation that random 

copolymers were synthesized, since a single Tg was observed. 

 When PLLA is present in large amounts in the copolymers, the PCL component 

cannot crystallize and the PLLA component exhibits cold crystallization during 

the heating scan. The peak temperature of cold crystallization decreases in the 

copolymer as compared to neat PLLA for the copolymer with 3% PCL and then 

increases for the copolymer with 8% PCL. PCL repeating units randomly 

interrupt PLLA chains leading to shorter crystallizable segments of PLLA that 

form thinner lamellar crystals that melt at lower temperatures. 

 TGA demonstrated that in P(L)LA-ran-PCL random copolymers, increasing 

amounts of PCL promoted degradation during the heating scan. 

 PLOM demonstrated the presence of well developed spherulites in the 97/3 

PLLA-ran-PCL copolymer in addition to the distinct presence of the Maltese 

cross. On the other hand, the copolymer with 8% of PCL exhibited hexagonal-

like two dimensional crystalline aggregates (i.e., it forms axialites or two 

dimensional aggregates of lamellae that can be stack on one another copying the 

facets that are characteristic of single crystals). 

The PCL co-units within the copolymer gives a plasticizing effect that depresses 

Tg values. Therefore, 3% of PCL incorporation in the copolymer causes a small 

increase in the spherulitic growth rate as compared to homo-PLLA spherulites. 

However, if 8% PCL is incorporated in the random copolymers, the dominant 

effect is the interruption of the crystallizable sequences of PLLA chains and the 

spherulitic growth rate decreases. The trends observed by DSC regarding the 

overall isothermal crystallization followed the same composition dependence as 

the spherulitic growth rate measurements. The results indicate that both 

nucleation and growth processes were affected by PCL incorporation in the 

synthesized PLLA-ran-PCL random copolymers  
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5. EXPERIMENTAL SECTION 

5.1 Process for the synthesis of random copolymers poly (lactide-ran-ε-

caprolactone) 

Materials 

The racemic lactide (Sigma-Aldrich-CAS Number: 95-96-5) and the L-lactide (Sigma-

Aldrich-CAS Number: 4511-42-6) have been previously purified by recrystallization 

from boiling toluene and subsequent complete elimination of the solvent under vacuum 

at 40°C for 4 hours. The ε-caprolactone (Sigma-Aldrich-CAS Number: 502-44-3) is 

already dried by stirring with molecular sieves (4A) in anhydrous environment for an 

hour. Tin octanoate (Sigma-Aldrich-CAS Number: 301-10-0) was used as received. All 

the used glassware was dried in an oven at 105°C for a time not less than 4 hours. PLLA 

was previously synthesized by the group of Professor Philippe Dubois at Mons 

University. PCL (Polyscience Inc. CAS Number: 24980-41-4) was used as received. 

Polymerization process 

In a three-necked flask containing a magnetic stirrer, under nitrogen flow and connected 

to a column condenser equipped with calcium chloride  septum at the head of, have been 

put in sequence the ε-caprolactone and the lactide. When a complete dissolution of 

lactide in ε-caprolactone was achieved tin octanoate catalyst was added. The flask was 

put under stirring in an oil bath at a controlled temperature of 140°C for 16 or 24 hours, 

taking care to ensure that the stirring is always effective. At end of the reaction the flask 

was cooled in an ice bath and the raw product (gray-white color) was diluted with a small 

amount of dichloromethane to reduce the viscosity. To purify the polymer from the 

presence of monomers or oligomers with low molecular weight, three subsequent 

precipitation of the crude in methanol have been performed. The tacky precipitate was 

placed in a separate vials and subsequently the residual solvent was eliminated under 

vacuum. The synthesized copolymers are shown in Table 1. In this thesis a copolymer 

notation such as, PLA/PCL 30/70, means that the final copolymer compositions 

consisted of 30 mol% PLA and 70 mol% PCL. 
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Table 5.1 Ring-Opening Polymerization of CL and LA by Sn(Oct)2.  

SAMPLE T 

(°C) 

Time 

(h) 

 LA 

(g) 

CL 

(ml) 

Cat/mon. 

(μL) 

PL(L)A/PCL 

mol%/mol% 

        

(g/mol) 

        

(g/mol) 

Polidispersity 

I=                  

PLA/PCL 140 18 3.27 1.68 19.6 83/17 22800 11700 1.94 

PLA/PCL 140 21 1.39 6.42 25 30/70 36500 20000 1.82 

PLA/PCL 140 47 2.02 3.11 18.2 50/50 29000 16400 1.76 

PLLA/PCL 140 29 7.38 0.60 34.9 92/8 30000 18200 1.59 

PLLA/PCL 140 24 0.26 7.52 23.1 7.5/92.5 28000 14300 1.95 

PLLA/PCL 140 24 7.69 0.30 35.43 97/3 12800 8600 1.47 

PLLA/PCL 140 24 0.13 7.64 22.9 2/98 55000 36000 1.51 

Catalyst ratio (Cat/monomer)= 1/1000 

 

5.2 Gel permeation chromatography (GPC) 

Gel permeation chromatography is a liquid chromatography technique which measures 

the molecular weight of a polymer and its distribution. The peculiarity of this liquid 

chromatography resides in the fact that the stationary phase of the column is able to 

separate the components according to the size of the polymer chains. The larger 

molecules migrate more quickly following a short and direct way along the length of the 

column. On the other hand, the molecules with smaller size penetrate into the pores and 

their passage along the column is slower. The size of the macromolecule is related, 

although in an indirect manner, with the molecular weight of the chains. At the exit of the 

column, the solution is analyzed by the detector, which provides a signal whose intensity 

is proportional to the concentration of the polymer. The result of the analysis is a graph 

of signal intensity as a function of time. For this reason, this technique is the most useful 

for the determination of the average molecular weight of a polymer and its distribution. 

The molecular weights shown in Table 5.1 were determined in THF (flow in column 1 

ml/min, injection volume 20 μl) by GPC at 20°C, using a lab Floe 2000 HPLC apparatus 

equipped with a Rheodyne injector 7725th, a refractive index detector and a column set 

5MXL (column set length 300 mm). Calibration curves were obtained using 

monodispersed polystyrene standards with molecular weights in the range of 800-35000 

g/mol, in order to convert the elution times in molecular weights. 
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5.3 Hydrogen-1 nuclear magnetic resonance (
1
H-NMR) 

The nuclear magnetic resonance (NMR) spectroscopy is a special technique that allows 

to analyze the chemical structure of a substance: it uses the principle that the nuclei of the 

atoms of certain elements, when subjected to an external magnetic field are oriented in 

the direction of the imposed field. In general each nucleus is provided with a specific 

number of spin (I), e.g. I = 0, 1/2, 1, 3/2 ..., which depends on the mass number and the 

atomic number. The nuclei which possess non-integer spin, rotating, give origin to a 

elementary magnetic field μ, which makes them similar to small magnets. In a 
1
H-NMR 

spectrum can be seen that hydrogen atoms with "chemical environments" different, 

correspond to different peaks. Furthermore, from the relative area under each peak, 

which has no value in an absolute sense, since it varies depending on the solution 

concentration, can be determined the numbers of the various types of hydrogen atoms 

present. Then dividing the area of each peak by the number of hydrogens to which 

corresponds, values can be obtained perfectly comparable with the data from the 

chemical formula which corresponds to the analyzed product. The spectroscopic 

investigation represents a useful method used for the polymer structure [48]. In this 

work, the 
1
H-NMR spectra have been recorded in CDCl3 with a spectrometer Varian 

"Mercury 400" operating at 400 MHz. Chimical shifts (δ) for 
1
H are given in ppm 

relative to the known signal of the internal reference (TMS). 

 

5.4 TGA analysis 

The thermogravimetric analysis includes the set of methods that measure the change in 

weight of a sample undergone a specific heat treatment. In general, the 

thermogravimetric induces processes that are accompanied by changes in weight as a 

function of temperature or time in a specific atmosphere. The thermogravimetric curves 

are characteristic of each compound, due to the singular sequence of physical and 

chemical reactions that occur in certain temperature ranges, which are a function of the 

molecular structure of each substance. The weight changes are the result of the breaking 

and/or formation of chemical and physical bonds at elevated temperatures, causing the 
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formation of materials or volatile products. The obtained curves, provide data regarding 

the thermodynamic and kinetic of the chemical reactions, of the intermediate and final 

reaction products [49]. Is interesting to note that can be also measured the weight change 

with temperature or with the time that is what is referred to as differential 

thermogravimetric analysis. 

The experiments were performed in a thermobalance TA Instruments, model Q500, 

constituted by an electronic balance placed inside an oven. The computer is connected to 

a system which controls the temperature of the oven, and the changes are recorded and 

compared to the sample’s change of weight. Heating scans were performed in an inert 

atmosphere using high purity nitrogen. For every analysis about 5-10 mg for each sample 

have been weighed. TGA analysis was performed the following temperature change: 

 1 minute at 40 ° C  

 heating from 40 °C to 650 °C at 20 °C/min  

Only for the sample of PLLA was achieved a temperature of 700 °C. 

 

5.5 Polarized Light optical microscopy (PLOM) 

The polarized light optical microscope is basically a microscope with two polarizing 

filters, one located above and the other below the sample. When the polarizers are 

crossed, they allows the passage of light only in a orthogonal direction. This means that 

no light is transmitted through the instrument when there is no sample or when the 

sample has an, isotropic disordered structure like the case of amorphous polymers or 

semi-crystalline melted polymers. When the polarizers are crossed and it is analyzed a 

birefringent polymer, it produces an interference phenomenon causing the passage of 

light through the apparatus. In this form, there are areas of the sample, the anisotropic 

ordered regions, which are seen brighter and colored in a dark background, which is the 

one that corresponds to the fraction of melt or amorphous material. Therefore, polarized 

light optical microscopy (PLOM) is a very suitable technique in qualitative study of 

ordered regions of semi-crystalline polymer.  

The optical microscope used was a Leitz ARISTOMET equipped with the analyzer, a 

rotating polarizer and digital camera LEICA DC420 using a software IM-1000. The 
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instrument is also equipped with a heating station METTLER TOLEDO FP80 with 

programmable hot plate METTLER TOLEDO FP82 HT that allows a good temperature 

control (± 0.4°C accuracy). The samples were located above a microscope slide , covered 

with a cover slip  and introduced into the heating plate. Samples where heated to a 

temperature 30°C higher than the melting temperature of them and maintained at this 

temperature for 3 minutes, in order to remove the thermal history. This method of 

analysis has been used for copolymers 97/3, 92/8 and for the homopolymer of PLLA. 

The temperatures used were the following: 

 Temperature of 210°C for the homopolymer of PLLA.  

 Temperature of 190°C for copolymers 97/3 and 92/8. 

Immediately after, the samples were cooled at the maximum speed provided by the 

instrument (20°C/min) to the crystallization temperature required to observe the 

crystalline morphology and take pictures the obtained spherulites. 

 

5.6 Differential scanning calorimetry (DSC) 

The differential scanning calorimetry is a thermo analytical technique very effective to 

determine the enthalpy change of a substance as well as the transitions temperatures. The 

principle on which it is based is the power compensation. The DSC is constituted by two 

cells: one is where the sample capsule is located and the other one guest the reference 

capsule. The apparatus has two heating circuits that control the average temperature and 

the temperature difference between the two cells. The first circuit regulates the 

temperature of the sample and of the reference sample at a constant heating or cooling 

speed that is indicated in the program. The second circuit eliminates the temperature 

difference between sample and reference when some endothermic or exothermic process 

take over in the sample. As reference material an empty sample pan is used, it must be of 

a material which does not undergo changes in the composition and structure in the 

temperature range in which the instrument works. Normally aluminum capsules are used. 

This technique, applied to the field of polymers, allows to determine physical changes in 

the materials, as the temperature changes, such as: glass transition temperature (Tg), 

crystallization temperature (Tc), melting temperature (Tm), enthalpy of fusion (ΔHm) 

and enthalpy of crystallization (ΔHc) [50, 51]. 
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Thermal analyses of the samples were carried out in a differential scanning calorimeter 

PERKIN ELMER PYRIS 1, equipped with a cooling system INTRACOOLER 2P with a 

nitrogen flow of 20 ml/min. The thermal and enthalpy calibration was performed with an 

indium sample (Tm = 156.61°C and ΔHm = 28.71 J/g). The analyses were performed 

with different methods as a function of the samples. All samples have been weighed in 

portions of approximately 5 mg and analyzed by performing dynamics scans, while the 

copolymers containing the greatest amount of L optical isomer(97/3 and  92/8)  and the 

PLLA homopolymer were also submitted to isothermal scans . The dynamic scans of all 

samples were as follows: 

For the copolymers PLA / PCL and PCL homopolymer: 

 Heating from 25°C to 90°C at a rate of 20°C/min, keep this temperature for 3 

minutes to remove thermal history. 

 Cooling from 90°C to -20°C at a rate of 20°C/min, keep this temperature for 3 

minutes. 

 Heating from -20°C to 90°C at a rate of 20°C/min. 

For copolymers PLLA / PCL and PLLA homopolymer:  

 Heating from 25°C to 200°C at a rate of 20°C/min, keep this temperature for 3 

minutes to remove thermal history.  

 Cooling from 200°C up to -20°C at a rate of 20°C /min, keep this temperature for 

3 minutes. 

 Heating from -20°C to 200°C at a rate of 20°C/min 

Isothermal scans to study the crystallization kinetics of copolymers 97/3, 92/8 and the 

PLLA homopolymer were the following: 

 Heating from 25 °C to Tthe at the speed of 20°C/min, keep this temperature for 

3 minutes to remove thermal history.  

 Cooling form Tthe to the crystallization temperature (Tc) at a speed of 

60°C/min.  

 Keep at this temperature for a time estimated as three times the time it takes 

to reach 50% of the formation of crystals in the sample (30 min)  

 Heating from Tc to Tthe at the speed of 10°C/min. 
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Where Tthe is the thermal history erased of copolymers 97/3, 92/8 and PLLA, 

(respectively 190°C, 190°C and 210°C) 21-22 values were chosen as a Tc for each 

sample, included in a 40°C range. Each sample pan was replaced after every three 

analyses of temperature isotherms because the samples suffered degradation when they 

were subjected to many scans. 



63 
 

Reference: 

[1] A. Casale, L’Acido Polilattico: dalla scoperta alle applicazioni attuali, Workshop 

tecnico-scientifico: "Opportunità applicative del PLA: Problematiche ed aspettative", 

Alessandria (TO), 2014 

[2] McLauchlin, A.R. Thomas, N., Preparation and thermal characterisation of 

poly(lactic acid) nanocomposites prepared from organoclays based on an amphoteric 

surfactant. Polym. Degrad. Stabil., Vol. 94 (5), 2009, pp. 868-872. 

[3] Ogata, N., Jimenez, G., Kawai, H., Ogihara, T., Structure and thermal/mechanical 

properties of poly(l-lactide)-clay blend. J. Polym. Sci. B, Polym. Phy., Vol. 35 (2), 1997, 

pp. 389- 396. 

[4] Italian Association of Science and Technology of macromolecules (AIM), Acts of the 

Conference-school on "Structural polymeric materials". Gargnano (BS) 1989 

[5] Italian Association of Science and Technology of macromolecules (AIM), Experience 

days on "Thermal characterization of polymeric materials", Gargnano (BS), 2005 

[6] Van Krevelen, Dirk Willem, and Klaas Te Nijenhuis. Properties of polymers: their 

correlation with chemical structure; their numerical estimation and prediction from 

additive group contributions. Elsevier, Slovenia 2009. 

[7] Hobbs, J. K., Encyclopedia of Polymer Science and Technology Vol. 9 (3) Ed. John 

Wiley & Sons. Inc. 2004, pp. 465-497.    

[8] Olabisi O., Robenson L., Polymer-Polymer Miscibility, Academic Press, London, 

1979. 

[9] Ehrenstein G.W, Polymeric Materials, (2001), Hanser 

[10] A.J. Müller, Structure and properties of  semi-crystalline polymers, Venezuela, 

Grupo de Polímeros USB, Departamento de Ciencia de los Materiales, Universidad 

Simón Bolívar 



64 
 

[11] Okui, N., Susumu, U., Kawano, R., Mamun, A., Temperature and Molecular Weight 

Dependencies of Polymer Crystallization, Lect. Notes Phys., Vol. 714, (2007), pp. 391–

425 

[12] Abe, Hideki, et al. "Morphological and kinetic analyses of regime transition for poly 

[(S)-lactide] crystal growth." Biomacromolecules  Vol. 2 (3), 2001, pp. 1007-1014. 

[13] Gedde, W., Polymer Physics, Chapman & Hall, London, 1995. 

[14] Young, Robert J., and Peter A. Lovell. Introduction to polymers. CRC press, 2011. 

[15] Drumright, R.E. Gruber, P.R. Henton, D.E. Advanced Materials, 2000, 12 (23): 

1841- 1845 

[16] Henton, David E., et al. "Polylactic acid technology." Natural Fibers, Biopolymers, 

and Biocomposites, Taylor & Francis, Boca Raton, FL (2005): pp. 527-577. 

[17] Stanford, Matthew J., and Andrew P. Dove. "Stereocontrolled ring-opening 

polymerisation of lactide." Chemical Society Reviews Vol. 39 (2) (2010): pp. 486-494 

[18] Becker, Jan M., Ryan J. Pounder, and Andrew P. Dove. "Synthesis of poly (lactide) s 

with modified thermal and mechanical properties." Macromolecular rapid 

communications Vol. 31 (22) (2010): pp. 1923-1937. 

[19] Auras, Rafael A., et al., eds. Poly (lactic acid): synthesis, structures, properties, 

processing, and applications. Vol. 10. John Wiley & Sons, 2011. 

[20] Bastioli, Catia, ed. Handbook of biodegradable polymers. iSmithers 

RapraPublishing, 2005. 

[21] Ma, P., et al. "Toughening of poly (lactic acid) by ethylene-< i> co</i>-vinyl 

acetate copolymer with different vinyl acetate contents." European Polymer Journal Vol.  

48 (1) (2012): pp. 146-154. 

[22] Zhu, K. J., Lin Xiangzhou, and Yang Shilin. "Preparation, characterization, and 

properties of polylactide (PLA)–poly (ethylene glycol)(PEG) copolymers: a potential 

drug carrier." Journal of applied polymer science, Vol. 39 (1) (1990): pp. 1-9. 



65 
 

[23] Nagarajan, S., and B. S. R. Reddy. "Bio-absorbable polymers in implantation—An 

overview." J. Sci. Ind. Res 68 (2009): pp. 993-1009. 

[24] K.Leia, G.Lewandowicz, Polymer biodegradation and biodegradable polymers: a 

review, polish journal of environmental studies, 19 (2), (2010): pp. 255-266 

[25] R.Chandra, R.Rustgi, Biodegradable polymers, Progress in Polymer Science, Vol 23 

(7), (1998): pp.1273-1335 

[26] Labet, Marianne, and Wim Thielemans. "Synthesis of polycaprolactone: a review." 

Chemical Society Reviews Vol. 38 (12) (2009): pp. 3484-3504. 

[27] Khanna, Ashok, et al. "Molecular modeling studies of poly lactic acid initiation 

mechanisms." Journal of Molecular Modeling Vol.14 (5) (2008): pp. 367-374. 

[28] Stridsberg, Kajsa M., Maria Ryner, and Ann-Christine Albertsson. Controlled ring-

opening polymerization: polymers with designed macromolecular architecture. Springer 

Berlin Heidelberg, 2002. 

[29] Eastmond, G. C. "Poly (ε-caprolactone) blends." Biomedical Applications Polymer 

Blends. Springer Berlin Heidelberg, (1999): pp. 59-223. 

[30] Iannace, S., De Luca, N., Nicolais, L., Carfagna, C., & Huang, S. J. Physical 

characterization of incompatible blends of polymethylmethacrylate and 

polycaprolactone. Journal of applied polymer science, Vol. 41 (11-12), (1990): pp. 2691-

2704. 

[31] Tokiwa, Yutaka, and Tomoo Suzuki. "Hydrolysis of polyesters by lipases." Nature  

Vol. 270 (5632) (1977): pp. 76-78. 

[32] Lim, L-T., R. Auras, and M1 Rubino. "Processing technologies for poly (lactic 

acid)." Progress in Polymer Science Vol 33 (8) (2008): pp. 820-852. 

[33] Di Lorenzo, Maria Laura. "Crystallization behavior of poly (L-lactic acid)." 

European Polymer Journal Vol.41 (3) (2005): pp. 569-575. 

[34] Jiang, Shichun, et al. "Crystallization behavior of PCL in hybrid confined 

environment." Polymer Vol 42 (8) (2001): pp. 3901-3907. 



66 
 

[35] McCrum, Norman Gerard, C. P. Buckley, and Clive B. Bucknall. Principles of 

polymer engineering. Oxford University Press, 1997. 

[36] Jamshidi, K., S-H. Hyon, and Y. Ikada. "Thermal characterization of polylactides." 

Polymer Vol. 29 (12) (1988): pp. 2229-2234. 

[37] Sivalingam, G., and Giridhar Madras. "Thermal degradation of binary physical 

mixtures and copolymers of poly (ε-caprolactone), poly (d, l-lactide), poly (glycolide)." 

Polymer degradation and stability Vol. 84 (3) (2004): pp. 393-398. 

[38] Sivalingam, G., R. Karthik, and Giridhar Madras. "Effect of metal oxides on thermal 

degradation of poly (vinyl acetate) and poly (vinyl chloride) and their blends." Industrial 

& engineering chemistry research Vol. 42 (16) (2003): pp. 3647-3653. 

[39] Lotz, Bernard, and Stephen ZD Cheng. "A critical assessment of unbalanced surface 

stresses as the mechanical origin of twisting and scrolling of polymer crystals." Polymer 

Vol. 46 (3) (2005): pp. 577-610. 

[40] Lorenzo, A. T., and A. J. Müller. "Estimation of the nucleation and crystal growth 

contributions to the overall crystallization energy barrier." Journal of Polymer Science 

Part B: Polymer Physics Vol. 46 (14) (2008): pp. 1478-1487. 

[41] E.M. Da Silva de Sousa, R.M. Michelle, A.J.Muller., Study of the influence of 

estereocomplx made to the racemic mixture of PLLA in the crystallization of PLLA. 

University of Simon Bolivar. Professional study of materials engineering. Venezuela 

(2013)  

[42] Muthukumar, M. (2007). Shifting paradigms in polymer crystallization. In Progress 

in understanding of polymer crystallization. Springer Berlin Heidelberg. (pp. 1-18) 

[43] A. T. Lorenzo, "Avrami and LH Plugin for Origin" June 2013. Available at: 

https://sites.google.com/a/usb.ve/ajmuller/downloads/plugins 

[44] Lorenzo, A. T., Arnal, M. L., Albuerne, J., & Müller, A. J.. DSC isothermal polymer 

crystallization kinetics measurements and the use of the Avrami equation to fit the data: 

Guidelines to avoid common problems. Polymer testing, 26 (2), (2007): pp. 222-231. 

[45] Mandelkern, Leo. Crystallization of polymers. Vol. 38. New York: McGraw-Hill, 

1964. 



67 
 

[46] Marand, Hervé, Jiannong Xu, and Srivatsan Srinivas. "Determination of the 

equilibrium melting temperature of polymer crystals: linear and nonlinear Hoffman-

Weeks extrapolations." Macromolecules Vol. 31 (23) (1998): pp. 8219-8229. 

[47] Huang, Ching-I. Shang-Hsiu Tsai, and Chih-Ming Chen. "Isothermal crystallization 

behavior of poly (L-lactide) in poly (L-lactide)-block-poly (ethylene glycol) diblock 

copolymers." Journal of Polymer Science Part B: Polymer Physics Vol. 44 (17) (2006): 

pp. 2438-2448. 

[48] Abraham, Raymond John, Julie Fisher, and Philip Loftus. Introduction to NMR 

spectroscopy. Wiley, (1988). 

[49] Brown, Michael E., ed. Introduction to thermal analysis: techniques and 

applications. Vol. 1. Springer, (2001). 

[50] P.Gabbott, Principles and Applications of Thermal Analysis, Blackwell, Oxford, 

U.K., 1, (2008) 

[51] M.Reading, D.J.Hourston, Modulated temperature differential scanning 

calorimetry: theoretical and practical applications in polymer characterisation, 

Springer, Dordrecht, Netherlands, (2006).     


