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INTRODUZIONE 
 

 

 

 Questo lavoro riguarda la progettazione e la realizzazione di due 
test dinamici eseguiti sul Dowling Hall Footbridge, sito presso il campus 
centrale della Tufts University, Medford, USA. Dai dati rilevati nei due 
test, è stato possibile, attraverso l’implementazione di adeguati algoritmi 
di calcolo, identificare le caratteristiche dinamiche della struttura e 
aggiornare e affinare il modello numerico agli elementi finiti creato per 
simulare il comportamento strutturale.  

I test dinamici sono strumenti ampiamente utilizzati 
nell’ingegneria civile per identificare le caratteristiche dinamiche delle 
strutture (frequenze naturali, coefficienti di smorzamento, forme modali). 
Negli ultimi decenni si è riscontrato un interesse crescente intorno a 
quest’ambito, sia per la notevole attenzione suscitata dalla progettazione 
di strutture in zona sismica, sia per la possibilità di verificare e affinare 
modelli numerici grazie ai risultati ottenuti dalle prove sperimentali.  

I test dinamici sono operativamente realizzati attraverso 
l’applicazione, in posizioni specifiche e accuratamente pianificate, di 
sensori capaci di rilevare molteplici tipologie di parametri, ambientali ( 
temperatura, umidità, ecc.) e strutturali (accelerazioni, velocità, ecc.), che 
consentano una descrizione approfondita e completa di tutti i fattori che 
caratterizzano il comportamento della struttura sottoposta alle diverse 
tipologie di sollecitazione. In particolare è possibile identificare due 
diverse modi di svolgimento dei test, in cui la struttura risulta eccitata 
attraverso azioni di tipo ambientale (vento, traffico, pedoni) oppure 
attraverso l’utilizzo di appositi dispositivi meccanici che generano input 
dinamici programmati (shakers, vibrodine, ecc.). In entrambi i casi è 
possibile identificare le caratteristiche dinamiche facendo uso di 
appropriati algoritmi per l’identificazione strutturale che interpretino 
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correttamente gli output della struttura a seguito della sollecitazione 
impressa.  

Per il caso in esame, i test sono stati condotti utilizzando 
un’eccitazione di tipo ambientale e registrando la risposta della struttura 
attraverso dodici accelerometri disposti sull’intera lunghezza della 
passerella pedonale. Per analizzare i dati acquisiti durante i test, si sono 
ricorsi all’implementazione di due algoritmi numerici in grado di fornire 
le caratteristiche dinamiche richieste. In particolare, si è fatto uso del 
Peak-Picking method (PP) e del Natural Excitation Technique combinato 
con l’Eigensystem Realization Algorithm (NExT-ERA). Entrambi gli 
algoritmi permettono l’identificazione delle caratteristiche dinamiche 
della struttura partendo dagli output registrati utilizzando gli 
accelerometri. Il Peak-Picking utilizza l’output prodotto nel dominio delle 
frequenze, identificando i picchi del modulo della FRF (Funzioni di 
risposta in frequenza) per la determinazione delle frequenze proprie della 
struttura. Il NExT-ERA analizza l’output direttamente nel dominio del 
tempo e permette, attraverso la risoluzione di un sistema agli 
autovalori/autovettori, di ottenere le caratteristiche dinamiche in maniera 
totalmente automatica. Grazie all’identificazione strutturale è possibile 
descrivere adeguatamente il comportamento della struttura in campo 
dinamico.  
 
 Entrambi gli algoritmi impiegati sono risultati essere strumenti 
adeguati all’identificazione delle caratteristiche dinamica della struttura. 
Essi permettono di automatizzare la proceduta d’identificazione, 
rendendo possibile la loro applicazione a un sistema di monitoraggio 
continuo che permetta di conoscere lo stato strutturale nel tempo. 
 Comparando i dati ottenuti dall’applicazione dei due algoritmi, 
risulta che essi producono risultati confrontabili per quanto riguarda la 
precisione di calcolo e la raffinatezza d’identificazione delle 
caratteristiche dinamiche, nonostante siano di complessità differente, 
soprattutto per quanto riguarda l’onore computazionale. In particolare, il 
Peak-Picking è meno raffinato e di più facile interpretazione e 
maneggevolezza, essendo comunque capace di produrre risultati in linea 
con quelli proposti dal modello teorico di calcolo agli elementi finiti. 
Nonostante ciò, esso non può essere completamente automatizzabile, ma 
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riserva la scelta delle frequenze naturali d’interesse come dato iniziale del 
problema. La sua semplicità lo rende tuttavia uno strumento ampiamente 
adottato nell’analisi strutturale.  
 Il NExT-ERA è uno strumento maggiormente raffinato, che 
richiede onori computazionali elevati, soprattutto in relazione alla 
presenza di una molteplicità di rilevazioni e alla loro durata temporale. 
Esso consente però la piena automatizzazione del processo di calcolo 
dall’output registrato dagli accelerometri direttamente nel dominio del 
tempo e realizza l’analisi partendo da una sollecitazione generica, sia di 
tipo impulsivo sia di tipo ambientale. I risultati ottenibili hanno una 
precisione elevata rendendo il NExT-ERA, lo strumento prescelto per 
l’elaborazione dei dati nel sistema di monitoraggio in continuo che si 
andrà a progettare. 
 Dai risultati dei test eseguiti è stato possibile identificare la 
strumentazione adeguata da installare per l’identificazione delle proprietà 
dinamiche della struttura, che sia in grado di tenere in considerazione le 
esigenze di tipo ambientale (grandi variazioni temperatura e umidità 
stagionali) e strutturali (posizione dei sensori, frequenze proprie 
rilevabili). 
 Il progetto prevede la realizzazione futura di un sistema di 
monitoraggio in continuo dei dati con l’intento di fornire informazioni 
sullo stato della struttura nel corso della sua vita, per identificare la 
presenza di eventuali danni o problematiche che potrebbero 
comprometterne l’integrità funzionale o strutturale. Inoltre, le 
informazioni generate da tale sistema offriranno le basi per la 
pianificazione di un’adeguata opera di manutenzione che prevenga 
l’insorgere di possibili situazioni di pericolo e consentano di 
salvaguardare l’integrità strutturale nel tempo. 
 I risultati dell’analisi sperimentali sono stati validati attraverso la 
realizzazione di un’analisi numerica ottenuta attraverso la creazione di un 
modello agli elementi finiti della struttura. Esso ha permesso di 
scongiurare che i risultati dell’analisi sperimentale fossero affetti da errori 
grossolani. Accertata l’accuratezza dei risultati dell’analisi sperimentali, 
questi sono stati utilizzati come punto di partenza per la calibrazione e 
l’aggiornamento del modello agli elementi finiti, in modo che esso 
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potesse simulare il comportamento reale della struttura con la massima 
precisione possibile. 
 
 Nel primo capitolo viene presentata la struttura oggetto dei test 
dinamici, il Dowling Hall footbridge. In primo luogo sono presentate la 
caratteristiche geometriche e strutturali. Quindi, si analizza la scelta 
operata a proposito delle strumentazioni adottata per la rilevazione dei 
dati acquisiti durante i test, con la giustificazione della caratterizzazione 
delle specifiche di ogni elemento che compone la della postazione di 
registrazione. Successivamente sono descritti i test dinamici, la loro 
progettazione, pianificazione e realizzazione con l’illustrazione 
dettagliata della posizione dei sensori e dei modi di esecuzione di ogni 
test. Segue il capitolo riguardante l’implementazione dei sistemi 
d’identificazione strutturale e della loro applicazione agli output ottenuti 
dai test. I dati sono innanzitutto elaborati in modo da ottenere un segnale 
di qualità adatta all’analisi grazie all’adozione di strumenti di analisi dei 
segnali. Nel terzo capitolo, sono stati elaborati i risultai dell’analisi, 
raccolti  e confrontati mettendo in evidenza le peculiarità dei diversi 
algoritmi per entrambe i test eseguiti. Nell’ultimo capitolo, i risultati 
dell’analisi sperimentale sono stati confrontati con quelli derivanti 
dall’analisi fatta attraverso un modello computerizzato agli elementi 
finiti, il quale è stato affinato e perfezionato in base ai risultati dell’analisi 
sperimentale. Questo consente di verificare la bontà del modello 
utilizzato in fase di progettazione e permette di valutare la necessità di 
eventuali interventi  di adeguamento strutturale. Infine si analizzano le 
soluzioni progettuali per la realizzazione di un sistema di monitoraggio 
continuo che utilizzi un’eccitazione di tipo ambientale e che sia in grado 
di fornire dati riguardanti le caratteristiche dinamiche della struttura. 
 

Questo lavoro ha permesso di analizzare e valutare tutte le fasi che 
riguardano la progettazione e la realizzazione di un sistema per 
l’identificazione delle caratteristiche dinamiche della struttura partendo 
dalle scelta della strumentazione richiesta e dalla progettazione e 
realizzazione dei test dinamici preliminari, della scelta, implementazione 
ed adeguatezza degli algoritmi di calcolo che permettono di comprendere 
il comportamento della struttura in campo dinamico e di progettare 
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adeguatamente le soluzioni progettuali di messa in opera dei sensori e 
della strumentazione necessaria. Questo lavoro fornisce le basi per una 
adeguata progettazione e realizzazione del sistema di monitoraggio 
continuo che verrà realizzato per il monitoraggio del Dowling Hall 
footbridge in un prossimo futuro. 
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INTRODUCTION 

 

 
 

This work is focused on the design and realization of two dynamic 
tests performed on the Dowling Hall Footbridge, located at the central 
campus of Tufts University, Medford, USA. The data collected in the two 
tests were analyzed through the implementation of appropriate 
algorithms, to identify the dynamic characteristics of the structure and 
update and refine a finite element numerical model designed to simulate 
the structural behavior. 
 

The dynamic tests are a widely used civil engineering to identify 
the dynamic characteristics of structures (e.g. natural frequencies, 
damping ratios, modal forms). Over the past decades have seen a growing 
interest around this area, both for the considerable attention paid to the 
design of structures in seismic areas, and for the opportunity to test and 
refine numerical models due to the results obtained from experimental 
tests. 

The dynamic tests are works through the implementation in a 
specific location and carefully planned, the sensors can detect multiple 
types of parameters, environmental (e.g. temperature, humidity, etc.) and 
structural (e.g. acceleration, speed, etc.), allowing the thorough and 
comprehensive description of all the factors that characterize the behavior 
of the structure subjected to different types of stress. In particular, it is 
possible to identify two different modes of tests, in which the structure is 
excited by raising ambient excitation (e.g. wind, traffic, pedestrians), or 
through the use of mechanical devices that generate input dynamic 
program (e.g. shakers, vibrodine, etc.). In both cases dynamic 
characteristics can be identified by using the appropriate algorithms for 



14 
 

identifying structural characteristics by the correct interpretation of the 
output of the structure as a result of the solicitation impressed.  

Modal analysis methodologies can be divided in two categories. 
First, Experimental Modal Analysis (EMA) employs an artificial 
excitation (e.g. mechanical shakers, instrumented hammers) in order to 
measure the frequency response function (FRF) or the impulse response 
function (IRF), which are typically used for modal parameters extraction. 
The input excitation is usually applied at a single location and can be 
monitored. Tests with measured inputs are usually conducted on small 
structures, where mechanical tools are capable to generate significant 
excitations. Second, Operational Modal Analysis (OMA), also known as 
output-only modal analysis, is able to perform modal analysis without 
knowing and/or controlling the input excitation. This method is still 
capable of estimating the same modal parameters as the traditional EMA 
techniques. In such cases, ambient vibration becomes the only source of 
excitation on the structure (more practical for larger structures). OMA 
makes use of ambient environment effects such as wind, traffic and 
pedestrian loads as excitation forces. 

In this work, OMA was employed and the tests were conducted 
using the ambient excitation and recording the response of the structure 
through twelve accelerometers placed along the entire deck's length.  

 
To analyze the data acquired during the test, two numerical 

algorithms have been implemented, that are able to provide the required 
dynamic characteristics: the Peak-Picking Method (PP) and the Natural 
Excitation Technique combined with Eigensystem Realization Algorithm 
(NExT-ERA). Both algorithms allow the identification of dynamic 
characteristics of the structure starting from the output recorded using 
accelerometers. The Peak-Picking uses the output produced in the 
frequency domain, by identifying the peaks in the form of the FRF 
(frequency response function) for the determination of natural 
frequencies of the structure. The NExT-ERA analyzes the output directly 
in the time domain and allows, through the resolution of a system 
eigenvalue / eigenvectors, obtaining the dynamic characteristics in a 
totally automatic way. By the structural identification, the behavior of the 
structure in the dynamic field can be entirely understood. 



15 
 

 
The project involves the construction of a future continuous 

monitoring system with the intent of providing information on the state of 
the structure during its life, to identify the presence of any damages or 
problems that might compromise the integrity of functional or structural. 
Furthermore, the information generated by this system will provide the 
basis for the planning of adequate maintenance work which prevents the 
occurrence of possible danger and to safeguard the structural integrity 
over time. 

The results of the experiments have been validated through the 
realization of numerical analysis obtained by creating a finite element 
model of the structure. It has helped to avoid the experimental analysis 
results to be affected by blunders. Once the accuracy of the results has 
been verified, they were used as a starting point for calibrating and 
updating of finite element model, so that it could simulate the actual 
behavior of the structure as accurately as possible. 
 

The first chapter presents the Dowling Hall footbridge, presenting 
the geometric and structural characteristics. Then, we analyze the choice 
made regarding the instrumentation adopted for data acquisition gathered 
during testing, with the justification of the specific characterization of 
each element of the data acquisition system. Following in the chapter, the 
dynamic tests have been described, their design, planning and 
implementation with the detailed explanation of the position of sensors 
and ways of performing each test. Chapter two is focused on the raw data 
processing. The data are first processed in order to obtain a good quality 
signal analysis by adopting suitable tools for signal analysis. In the third 
chapter, the analysis results have been elaborated, collected and 
compared, highlighting the peculiarities of different algorithms for both 
tests performed. In the last chapter, the results of experimental were 
compared with those derived from the analysis done by a finite element 
computer model, which has been refined and perfected according to the 
results of the experiment. This allows checking the goodness of the 
model used in the design phase and allows assessing the need for possible 
interventions of structural adjustment. Finally, we analyze the design 
solutions for the creation of continuous monitoring system employing 
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ambient excitation that will be able to provide data regarding the dynamic 
characteristics of the structure. 
 

This work has allowed to analyze and evaluate all phases affecting 
the design and implementation of a system for identifying the dynamic 
characteristics of the structure from the choice of instrumentation 
required, and the design and implementation of preliminary dynamic 
tests, choice, implementation and adequacy of algorithms that allow to 
understand the behavior of the structure in the dynamic field and to 
design appropriate design solutions for deployment of sensors and 
instrumentation required. This work provides the basis for an appropriate 
design and implementation of the monitoring system that will be 
designed for the continuous monitoring of Dowling Hall footbridge in the 
near future. 
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1. TESTS 

 

 

 
Full-scale dynamic testing of structures can provide valuable 

information on the service behavior and performance of structures. With 
the growing interest in the structural condition of civil structures in 
general, and bridges in particular, dynamic testing can be used as a tool 
for assessing their integrity. From the measured dynamic response, 
induced by ambient or forced excitation, modal parameters (e.g. natural 
frequencies, mode shapes and modal damping values) and system 
parameters (stiffness, mass and damping matrices) can be obtained. These 
identified parameters can then be used to characterize and monitor the 
performance of the structure. Analytical models of the structure can also 
be validated using these parameters.  

This section describes the set of dynamic tests performed on the 
Dowling Hall footbridge on April 4, 2009 and on June 4, 2009. The 
following chapter presents the description of the bridge’s structure 
characteristics, the information regarding the instrumentation employed 
in the data acquisition processes and all the design and implementation 
steps for the two dynamic tests. 

 
 

1.1 The Dowling Hall footbridge 
 
 Figure 1.1 shows the Dowling Hall footbridge, which is located in 
the Tufts University main campus area, in Medford, MA.  

The bridge connects the 7th floor of the Dowling Hall building 
with the Tufts main campus area, allowing people to transfer from the 
parking structure to the main campus.  The bridge is a continuous two-
span steel frame with concrete slab deck. It is supported by a central pier 
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placed in the middle of the structure’s length, a pier closes the Dowling 
Hall building and a concrete support, linking the Tufts main campus side 
directly to the ground.  

The Dowling Hall footbridge has a total length of 43.80m and a 
width of 3.20m, with two symmetric spans. The bridge is equipped with a 
heated deck system in order to avoid the snow accumulation during the 
winter months. 
 

 
Figure 1.1 The Dowling Hall footbridge 
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1.2 Instrumentation 

The instrumentation employed during the dynamic tests included 
12 accelerometers, a data acquisition device and a laptop, which allowed 
us to measure the bridge’s ambient acceleration response.  

PCB Piezotronics 393B04 model accelerometers, which are shown 
in Figure 1.2, were used to measure the bridge acceleration response. The 
sensors’ characteristics are shown in Table 1. 
 

Table 1 PCB accelerometers properties 

Flexural ICP acceleration 1000 mV/g 
Sensitivity ±10% 
Broadband resolution (1 to 10000 Hz) 0.000003 g rms 
Measurement range ±5 g 
Frequency range (±5%) 0.06 to 450 Hz 
Electrical connector 10-32 coaxial jack 
Weight 1.8 oz (50 gm) 

 
 

 The data acquisition system consisted of two parts: the National 
Instruments (NI) USB-9234 modules, which are shown on the right side 
of Figure 1.2 and the National Instruments cDAQ 9172 chassis, which is 
shown in Figure 1.3.  
 

 
Figure 1.2 PCB Piezotronics 393B04 accelerometer (left), NI USB-9234 module 

(right) 
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NI USB-9234 is a 4-Channel, ±5 V, 24-Bit software-selectable IEPE and 
AC/DC analog input module which provides the accelerometers 
connection. The NI USB-9234 includes an internal master timebase with 
a frequency of 13.1072 MHz. The frequency of a master timebase ( Mf ) 

controls the data rate ( sf ) of the NI USB-9234. The following Equation 

(1.1) provides the available device data rates: 

 

256 = M
s

ff
n


 (1.1) 

 
where n is an integer between 1 and 31. According to Equation (1.1), the 
acceptable sampling frequency rates are 51.2 kHz, 25.6 kHz, 17.067 kHz, 
and so on down to 1.652 kHz, depending on the value of n. A manageable 
2.048 kHz sampling rate was selected for data acquisition.  

 

 
Figure 1.3 NI cDAQ-9172 chassis 
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The NI cDAQ-9172, shown in Figure 1.3, is an eight-slot USB 
chassis designed for use with I/O modules. The NI cDAQ-9172 chassis is 
capable of measuring a broad range of analog and digital I/O signals and 
sensors using a Hi-Speed USB 2.0 interface. Labview Signal Express 3.0 
software was used to record the data. 

 

1.3 Dynamic tests performed 
 
1.3.1 April test 
 

On April 4 2009, a set of five dynamic tests were performed on the 
Dowling Hall footbridge in order to identify its modal parameters (natural 
frequencies, damping ratios and mode shapes). Figure 1.6 shows the 
instrumentation employed during the tests.  

Twelve accelerometers were placed in different positions on the 
north and the south sides of the bridge, symmetrically about the centre of 
the structure as shown in Figure 1.5. The arrangement of sensors has been 
chosen referring to the mode shapes proposed by the theory of structures 
dynamic. In order to obtain the measurements for each sensor on at least 
the first three vibration modes, accelerometers position have been 
referred to the theoretical framework of the deformation in the dynamic 
field of a symmetrical beam on three supports, so as to avoid the nodes, 
where the displacements are zero and therefore the accelerations. Figure 
1.4 shows the first two theoretical dynamic deflections for a continuous 
beam and the sensors locations, selected in order to provide significant 
results during the dynamic tests.  
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Figure 1.4 Sensors locations showing dynamic deformations 

 
 
Sensors placement on the structure's deck was preceded by the 

study of the dynamic characteristics of plates that make up the concrete 
slab. This analysis is necessary to identify the natural frequencies of 
concrete elements and avoid the mistake with the results relative to the 
whole structure. The study was conducted on a plate type, since all 
elements have the same size and subject to the same degree of restraint. 
The frequencies were found to be higher than that of the steel structure of 
the bridge, with the first natural frequency around 16 Hz and higher 
frequencies greater than 30 Hz. This observation has led to correctly 
identify the natural frequencies of the bridge without interference by 
concrete elements. 

The accelerometers were set as close as possible to the steel 
trusses, on the outer sides of the slabs of concrete, so that they do not 
affect the detection frequencies of the steel structure. Furthermore, the 
sensors were placed in correspondence of the horizontal steal currents, 
near the junction with the main structure, to improve the detection of the 
steal frame frequencies. 

In order to provide a tight connection between the sensors and the 
concrete slabs, aluminum angular brackets were firmly fixed to the 
concrete deck using a fast-setting two-part epoxy cement. The brackets 
were machined to accept the mounting stud of the accelerometer. Then, 
the accelerometers were screwed into the brackets.  
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Figure 1.5 April test sensors layout along the bridge deck 

 
 

The five tests have been performed by exciting the structure with 
pedestrian traffic and people jumping in various positions along the 
bridge deck, together with wind excitation. Two sensors configurations 
were selected in order to measure both vertical and horizontal 
components of the bridge acceleration response:  

1. The vertical configuration, consisting of all the twelve sensors 
measuring vertical accelerations  

2. The horizontal-vertical configuration, employing the six south 
side (S) sensors measuring vertical accelerations and the six 
north side (N) sensors measuring horizontal accelerations.  

The five tests were performed in succession, using a sampling rate 
of 2.048 kHz imposed by instrumentation, and an acquisition time of 300 
seconds, maximum time allowed by the acquisition software used, 
resulting in 614,400 samples per channel. A high acquisition time was 
required to achieve high definition signal in the frequency domain, 
resulting in the distance between two points in the frequency domain (df) 
is inversely proportional to the total time of acquisition. 

Preparation for the test began on the afternoon of April 3rd with 
cementing of the steel brackets to the bridge deck. This was done to allow 
overnight curing of the epoxy and avoid setting up in the rain which was 
predicted for the following morning.  

Final preparations for the test were finished on the morning of 
June 4th, including installation of all sensors, cable connections, and data 
acquisition hardware. The actual test was conducted between 12:00 and 
14:30. Weather conditions at the time of the test were cloudy and quite 
raining, with moderate wind and a temperature of 10° to 13° C.  
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The description of the five tests is presented: 
1. Test 1 consisted of recording the accelerations of the structure 

caused by wind and pedestrian excitation, using the vertical  
accelerometers configuration. 

2. During Test 2, the bridge was excited by wind, pedestrian 
traffic and people jumping in different locations along the 
bridge deck. The test was performed using vertical 
accelerometers configuration. 

3. Test 3 was conducted in the same excitation conditions as Test 
1, still using vertical accelerometers configuration. 

4. Test 4 consisted of recording the accelerations of the structure 
caused by wind and pedestrian excitation, using the vertical-
horizontal  accelerometers configuration. 

5. During Test 5, the bridge was excited by wind, pedestrian 
traffic and people jumping in different locations along the 
bridge deck. The test was performed using vertical-horizontal 
accelerometers configuration. 

 

 
Figure 1.6 April test data acquisition system and bridge instrumentation 
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1.3.2 June test 
 
On June 4 2009, a second set of five dynamic tests were performed 

on the Dowling Hall footbridge, starting from the results of April test. 
The objectives of this second test were to: 1) quantify motion at 

the supporting piers; 2) gather more data on the horizontal motion of the 
bridge; 3) detect any significant axial motion. Accelerometers were laid 
out as shown in Figure 1.7. 

 

 
Figure 1.7 June test sensors layout along the bridge deck 

 
 
Twelve accelerometers were placed in different positions on the 

north and the south sides of the bridge. The arrangement of sensors has 
been chosen in order to provide accelerations at the three supports 
location. A reference sensor (N5,9) has been placed in the same position 
of the April test, so that a comparison and calibration of the data from the 
two tests was possible.  

The accelerometers were set as close as possible to the steel 
trusses, on the outer sides of the slabs of concrete, so that they do not 
affect the detection frequencies of the steel structure. Furthermore, the 
sensors were placed in correspondence of the horizontal steal currents, 
near the junction with the main structure, to improve the detection of the 
steal frame frequencies. 

In order to provide a tight connection between the sensors and the 
concrete slabs, aluminum angular brackets were firmly fixed to the 
concrete deck using a fast-setting two-part epoxy cement. The brackets 
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were machined to accept the mounting stud of the accelerometer. Then, 
the accelerometers were screwed into the brackets.  

The five tests have been performed by exciting the structure with 
pedestrian traffic and people jumping in various positions along the 
bridge deck, together with wind excitation. Sensors configurations were 
selected in order to measure both vertical and horizontal components of 
the bridge acceleration response for all the accelerometers locations. An 
axial component configuration accelerometer (N12) was places at the 
center pier. Finally, one accelerometer (S11) was fixed with the vertical 
configuration on the south side, corresponding to the N2,7 sensors on the 
north side, in order to get the acceleration at the same horizontal 
coordinates of the bridge. 

The five tests were performed in succession, using a sampling rate 
of 2.048 kHz imposed by instrumentation, and an acquisition time of 300 
seconds, maximum time allowed by the acquisition software used, 
resulting in 614,400 samples per channel. A high acquisition time was 
required to achieve high definition signal in the frequency domain, 
resulting in the distance between two points in the frequency domain (df) 
is inversely proportional to the total time of acquisition. 

Preparation for the test began on the afternoon of June 3rd with 
cementing of the steel brackets to the bridge deck. This was done to allow 
overnight curing of the epoxy and avoid setting up in the rain which was 
predicted for the following morning.  

Final preparations for the test were finished on the morning of 
June 4th, including installation of all sensors, cable connections, and data 
acquisition hardware. The actual test was conducted between 11:00 and 
12:30. Weather conditions at the time of the test were sunny and dry, with 
low wind and a temperature of 25° to 27° C.  

The description of the five tests is presented: 
1. Test 1 consisted of recording the accelerations of the structure 

caused by 3 minutes with five persons running and jumping 
across the bridge and 2 minutes with no excitation. 

2. During Test 2, the bridge was excited by: 
1 minute: with five persons jumping at the midpoint between 
the center pier and Dowling Hall;  
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1 minute: with five persons standing at the midpoint between 
the center pier and Dowling Hall; 
1 minute: five persons moving to the midpoint between the 
center pier and main campus; 
1 minute: five persons jumping at the midpoint between the 
center pier and main campus; 
1 minute: five persons standing at the midpoint between the 
center pier and main campus; 

3. Test 3 was conducted with one person walking/lightly jumping 
across the bridge for 5 minutes 

4. Test 4 consisted of recording the accelerations of the structure 
caused by: 
1 minute: hammer impacts at 8m from center on campus side 
(vertical hammer) 
1 minute: hammer impacts at 8m from center on campus side 
(horizontal hammer) 
1 minute: hammer impacts at 2,5m from center on campus side 
(vertical hammer) 
1 minute: hammer impacts at 5m from center on Dowling Hall 
side (vertical hammer) 
1 minute: hammer impacts at 5m from center on Dowling Hall 
side (horizontal hammer) 

5. During Test 5, the bridge was excited with similar conditions 
employed performing Test 4, with input data from impact 
hammer added to record as Channel 13. 
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Figure 1.8 June test data acquisition system and bridge instrumentation 
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2. ROW PROCESSING OF 
EXPERIMETAL DATA 

 

 

 
Before the system identification methods were applied to the 

measured data, they were filtered and down-sampled.  
The down-sampling process allows decreasing the signal’s number 

of samples maintaining the original signal quality. The down-sampled 
signal is obtained by selecting one sample for every N sample in the 
signal’s time history, where N is the integer number that defines the 
down-sampling factor. The down-sampling process is performed in order 
to improve the computational efficiency of data analysis process.  

Increasing the integer N, the computation becomes lighter but, at 
the same time, the down-sampled signal is less accurate. The down-
sampling factor has to be determined based on the frequencies of interest.  

The sampling frequency, according to the NI 9234 timebase 
frequency, was assumed equal to 2048 Hz. The highest identifiable 
frequency is the Nyquist frequency, equivalent to half the sampling rate 
used. Given the large number of samples collected during each phase of 
testing, analysis may be computationally expensive. To make the 
calculation less demanding, a downsampling was performed on data 
sampled in the time domain, thus reducing significantly the number of 
samples that make up the single signal and lowering the sampling 
frequency to values more compatible with the natural frequencies are 
seeking. 

In fact, the maximum frequency detectable in the frequency 
domain, corresponding to the Nyquist frequency, is assumed to be: fd ≤ 
2B , where where fp is the pulse frequency (in pulses per second) and B is 
the bandwidth (in hertz). The quantity 2B later came to be called the 
Nyquist rate. 
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Figure 2.1. Acceleration time history of Channel S2 Test 2 

 
 

Figure 2.1 shows the acceleration time history at Channel S2 
during Test 2, before filtering and down-sampling. 

Appendix A presents plots of the time history, Fourier spectra and 
power spectral density for all the channels and the five tests performed. 
 
 
2.1 Filtering 
 

Signal filtering is often used in eddy current testing to eliminate 
unwanted frequencies from the receiver signal. While the correct filter 
settings can significantly improve the visibility of a defect signal, 
incorrect settings can distort the signal presentation and even eliminate 
the defect signal completely. Therefore, it is important to understand the 
concept of signal filtering.  

Figure 2.2 shows the finite impulse response (FIR) band-pass 
digital filter designed and applied for data filtering. The data filtering 
process allows selecting the frequency range of interest by designing and 
applying a digital filter. The three standard filters found in most 
impedance plane display instruments are: 

 the ‘High Pass Filter (HPF); 
 the‘Low Pass Filter (LPF); 
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 the Band Pass Filter’ (BPF), which is an high and low pass 
filter combination. 

The HPF allows high frequencies to pass and filters out the low 
frequencies. The HPF is basically filtering out changes in the signal that 
occur over a significant period of time. The LPF allows low frequency to 
pass and filters out the high frequency. In other words, all portions of the 
signal that change rapidly (have a high slope) are filtered, such as 
electronic noise. 

The main function of the LPF is to remove high frequency 
interference noise. This noise can come from a variety of sources 
including the instrumentation and/or the probe itself. The noise appears as 
an unstable dot that produces jagged lines on the display as seen in the 
signal from a surface notch shown in the left image below. Lowering the 
LPF frequency will remove more of the higher frequencies from the 
signal and produce a cleaner signal as shown in the center image below. 
When using a LPF, it should be set to the highest frequency that produces 
a usable signal. The HPF is used to eliminate low frequencies which are 
produced by slow changes, such as conductivity shift within a material, 
varying distance to an edge while scanning parallel to it, or out-of-round 
holes in fastener hole inspection. The BPF is typically used to isolate the 
component of a time series that lies within a particular band of 
frequencies. 

Low-pass or band-pass filters with low frequencies ranges are 
typically used in studying bridges, which are flexible structures 
characterized by low natural frequencies. A band-pass digital filter with a 
2-50 Hz range has been designed for the Dowling Hall footbridge 
analysis.  

FIR, Finite Impulse Response, filters are one of the primary types 
of filters used in Digital Signal Processing. FIR filters are said to be finite 
because they do not have any feedback. Therefore, if you send an impulse 
through the system (a single spike) then the output will invariably 
become zero as soon as the impulse runs through the filter. 
There are a few terms used to describe the behavior and performance of 
FIR filter including the following: 

 Filter Coefficients - The set of constants, also called tap weights, 
used to multiply against delayed sample values. For an FIR filter, 
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the filter coefficients are, by definition, the impulse response of the 
filter. 

 Impulse Response – A filter’s time domain output sequence when 
the input is an impulse. An impulse is a single unity-valued sample 
followed and preceded by zero-valued samples. For an FIR filter 
the impulse response of a FIR filter is the set of filter coefficients. 

 Tap – The number of FIR taps, typically N, tells us a couple things 
about the filter. Most importantly it tells us the amount of memory 
needed, the number of calculations required, and the amount of 
"filtering" that it can do. Basically, the more taps in a filter results 
in better stopband attenuation (less of the part we want filtered out), 
less rippling (less variations in the passband), and steeper rolloff (a 
shorter transition between the passband and the stopband). 

 Multiply-Accumulate (MAC) – In the context of FIR Filters, a 
"MAC" is the operation of multiplying a coefficient by the 
corresponding delayed data sample and accumulating the result. 
There is usually one MAC per tap. 
Reducing the number of taps used in the filter will reduce the 

number of calculations to process in the signal, however, the quality of 
the filtering will suffer. Rippling will become more sever, the rolloff will 
be less steep, and the passband will be less accurate. 

The designed FIR filter is characterized by the 2-50 Hz band-pass 
range frequencies and by the 4096 N-th order, as shown in Figure 2.2. 

 

 
Figure 2.2 FIR band-pass digital filter 
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The impulse response, the filter's response to a Kronecker delta 

input, is finite because it settles to zero in a finite number of sample 
intervals. This is in contrast to infinite impulse response (IIR) filters, 
which have internal feedback and may continue to respond indefinitely.  
The impulse response of an Nth-order FIR filter lasts for N+1 samples 
and then dies to zero. The FIR digital filter is real and has linear phase.  
 Figure 2.3 shows the effect of the digital filter on a Fourier 
amplitude spectrum. 
 

 

Figure 2.3 Fourier amplitude spectra of Channel S2 during Test 2, before and 
after filtering 

 
 

Figure 2.3 shows a Fourier spectrum sample before and after the 
FIR digital filter application. 
 
 
2.2 Down-Sampling 
 

The data down-sampling process allows the number of samples 
reduction in signal’s time history by picking one sample from every N, 
where N is a real integer usually called down-sampling factor. The down-
sampling factor N is selected such that the down-sampled Nyquist 
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Frequency is still larger than the frequency range of interest. In addition, 
low-pass filters should be applied to the data before down-sampling in 
order to avoid aliasing. In this work the down-sampling factor has been 
selected equal to 8, corresponding to a down-sampled signal eight times 
smaller than the original one. However, the quality of the “new” signal is 
still acceptable as shown in Figure 2.4. The down-sampling process 
allows working with less data without compromising the signal quality.  

According with the N value, sampling rate has been reduced from 
2.048 kHz to 256 Hz, corresponding to a samples decreasing from 
614,400 to 78,600 samples for each channel.  

 

 
Figure 2.4 Original and the down-sampled signal. 

 
 
If the sampling condition given by the Nyquist-Shannon sampling 

theorem is not satisfied, adjacent copies overlap, and it is not possible in 
general to discern an unambiguous signal. Any frequency component 
above  is indistinguishable from a lower-frequency component, called an 
alias, associated with one of the copies. Aliasing refers to an effect that 
causes different signals to become indistinguishable (or aliases of one 
another) when sampled. 

For a sinusoidal component of exactly half the sampling 
frequency, the component will in general alias to another sinusoid of the 
same frequency, but with a different phase and amplitude. 
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To prevent or reduce aliasing, two things can be done: 
 Increase the sampling rate, to above twice some or all of the 

frequencies that are aliasing. 
 Introduce an anti-aliasing filter or make the anti-aliasing 

filter more stringent. 
 
 
2.3 Fourier transform and Power Spectral Density 
 

Non-sinusoidal periodic signals are made up of many discrete 
sinusoidal frequency components (see applet Fourier Synthesis of 
Periodic Waveforms). The process of obtaining the spectrum of 
frequencies H(f) comprising a time-dependent signal h(t) is called Fourier 
Analysis and it is realized by the so-called Fourier Transform (FT). A 
single square pulse or an exponentially decaying sinusoidal signal are 
typical examples of non-periodic signals, of finite duration. Even these 
signals are composed of sinusoidal components but not discrete in nature, 
i.e. the corresponding H(f) is a continuous function of frequency rather 
than a series of discrete sinusoidal components 

The traditional approach to a modal parameters identification 
process consists of detecting the natural frequencies directly from peaks 
in the signal’s Fourier amplitude spectra. The signal is generally acquired 
in time domain (signal time history) and then transformed into its 
corresponding frequency domain. The Fourier transform (FT) is a widely 
used mathematical tool to get this transformation.  

The periodic signals, i.e. if x (t) = x (t + T0) for each instant of 
time t, since T0 is the period, can be written as a sum, usually finite, of 
harmonic functions through the Fourier series: 

 

 ( ) jk t
k

k
x t X e 


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   (2.1) 

 
where the coefficients Xk are derived from the following 

expression (2.2): 
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The Fourier transform is a generalization of the Fourier series to 

the case where the function x(t) is not periodic (i.e. infinite period). The 
Fourier transform of a function x(t) is given by the (2.3): 
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To calculate the Fourier coefficient corresponding to the k-th 

harmony through discrete steps Δt, should approximate formula (2.2) as 
follows: 
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where the summation term is the fast Fourier transform (FFT) or 

discrete transform. The discrete Transforms produce Fourier spectra 
consist of values in which each can be thought as the output of a filter 
centered at frequency ω. 

The autocorrelation function for a generic signal x(t) is: 
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showing the correlation of a signal to itself. The autocorrelation of a 
periodic function is periodic, while the autocorrelation of a random signal 
tends to zero for nonzero τ. The Fourier transform of the autocorrelation 
function Rxx(τ) is that power spectral density (PSD), or autospettrum, 
defined as:  
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Function Sxx(ω) is related to the Fourier transform X(ω) of x(t) by 
report:  
 

       xxS X X  (2.6) 

 
where X(ω)* indicates the complex conjugate of X(ω). It is a real function 
and contains information on the frequencies present in x (t) but not those 
on the phases, as obtained from the only form. X(ω). The cross-
correlation (or cross-correlation) function of two signals x(t) and y(t) is 
defined as: 
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(2.7) 

 
and indicates how the two signals are correlated. Fourier transform 
function of cross-correlation Rxy is called cross-spectrum (CSD) and is 
usually indicated by Sxy(ω): 
 

    2 dj
xy xyS R e   
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Function Sxy(ω) is related to the Fourier transform of x(t) and y(t) by the 
expression:  
 

       xyS X Y  (2.9) 

 
that is a complex function containing information both on frequencies 
and phases. 

Through the FFT, the frequency domain shows the signal’s 
frequency content, allowing the direct natural frequencies detection. The 
signal can also be analyzed into its frequency domain by using the power 
spectral density (PSD), providing the representation of the frequencies 
power content. Using PSD, the signal can be averaged through the 
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windowing process in order to provide smoother plots as shown in Figure 
2.6 

.  

 
Figure 2.5 Fourier spectra and averaged PSD. of Channel S2 during Test 2. 

 
 
 The purpose of the window function  is to reduce side-lobe level 

in the spectral density estimate, at the expense of frequency resolution, 
exactly as in the case of sinusoidal spectrum analysis. 

Welch's method is based on the concept of using periodograms, 
which converts a signal from the time domain to the frequency domain. 

The Welch method develops in the following steps: 
 The signal is split up into overlapping segments. The original 

data segment is split up into L data segments of length M, 
overlapping by D points. 
If D = M/2, the overlap is said to be 50% 
If D = 0, the overlap is said to be 0%. 

 The overlapping segments are then windowed. After the data is 
split up into overlapping segments, the individual L data 
segments have a window applied to them (in the time domain). 
Most window functions afford more influence to the data at the 
center of the set than to data at the edges, which represents a 
loss of information. To mitigate that loss, the individual data 
sets are commonly overlapped in time (as in the above step). 
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The windowing of the segments is what makes the Welch 
method a "modified" periodogram. 

The periodogram is calculated by computing the discrete Fourier 
transform, and then computing the squared magnitude of the result. The 
individual periodograms are then time-averaged, which reduces the 
variance of the individual power measurements. 

A window function is a function that is zero-valued outside of 
some chosen interval. For instance, a function that is constant inside the 
interval and zero elsewhere is called a rectangular window, which 
describes the shape of its graphical representation. When another function 
or a signal (data) is multiplied by a window function, the product is also 
zero-valued outside the interval: all that is left is the view through the 
window. 

The generalized Hamming family of windows is constructed by 
adding one period of a cosine function to the rectangular window. The 
benefit of adding the cosine segment is lower side lobes. An example of 
Hamming window representation in time domain is shown in Figure 2.6. 

 

 
Figure 2.6 Hamming window 

 
 
In this work the power spectral density has been computed using 

Welch's method. Windowing is applied by 9600 points (N) Hamming 
windows with 50% overlap resulting in a frequency resolution of 

0.016f   Hz. 
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3. MODAL ANALYSIS 

 

 

 
System identification using output-only ambient response was 

originally performed in frequency domain. The method of selecting peaks 
in frequency domain of spectral density is generally called the Peak 
Picking method (Bernat & Piersol, 1993) and has been used extensively 
in classical modal analysis based on ambient excitation. Several 
techniques were later developed to facilitate an automatic ‘picking’ 
procedure, such as frequency domain decomposition using singular value 
decomposition of power spectral density. However, in practice the 
classical identification techniques that use spectral analysis give 
reasonable estimates of natural frequencies and mode shapes only if the 
modes are well separated. Natural Excitation Technique (NExT) (James 
et al. 1993) combined with Eigensystem Realization Algorithm (ERA) 
(Juang and Pappa 1985) have been frequently used for modal 
identification of structures. NExT-ERA has been successfully applied to 
structural identification based on ambient excitation (He et al. 2009; 
Farrar and James 1997). In this section the Peak Picking method and the 
NExT-ERA are briefly reviewed and their modal identification results are 
presented.  

 
 
3.1 Peak Picking  
 

Ambient excitation testing does not directly lend itself to FRFs or 
IRFs calculations because the input forces are not measured. In the paper 
two modal parameter identification methods that can deal with ambient 
vibration measurements are implemented. The first is a rather simple 
Peak-Picking (PP) method. Though it has some theoretical drawbacks, 
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the Peak-Picking method is probably the most widely used method in 
civil engineering because of its simplicity.  
 

3.1.1 Method 

 
The Peak-Picking method (Bendat and Piersol 1993) is the 

simplest known method for identifying the modal parameters of civil 
engineering structures subjected to ambient vibration loading.  

The method leads to reliable results provided that the basic 
assumptions of low damping and well-separated modes are satisfied. In 
fact, when a lightly damped structure is subjected to a random excitation, 
the output ASD at any response point (and the CSD amplitude between 
any two measurement points) will reach a maximum at frequencies where 
either the excitation spectrum peaks or the frequency response function of 
the structure peaks. Since narrow-band peaks in the frequency response 
function of lightly damped mechanical systems occur at the frequencies 
corresponding to system normal modes (resonance frequencies), peaks in 
the ASDs and CSDs can be generally assumed to represent either peaks 
in the excitation spectrum or normal modes of the structure. In order to 
identify the output spectral peaks which are due to vibration modes, it has 
to be recalled that all points on a structure responding in a lightly damped 
normal mode of vibration will be either in phase or 180° out of phase 
with one another; hence, for well-separated modes, the spectral matrix 
can be approximated in the neighbourhood of a resonant frequency fr as a 
rank-one matrix: 

 

 
(3.1) 

 
where  αr is a scale factor depending on the damping ratio, the natural 
frequency, the modal participation factor and the excitation spectra. 

Equation (3.1) highlights that: 
1. each row or column of the spectral matrix at a resonant frequency  

fr  can be considered as an estimate of the mode shape φr  at that 
frequency; 
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2. the square-root of the diagonal terms of the spectral matrix at a 
resonant frequency  fr  can be considered as an estimate of the 
mode shape φr at that frequency. 

 

 
Figure 3.1 Complex modes representation  

 
 
The corresponding modal damping ratios can be estimated based on half-
power bandwith as shown in Equation (3.2). 
 

2,i 1,i
i

n,i

ω +ωξ =
2ω

 (3.2) 

 
where ,n i  is the i-th natural frequency, 1,i  and 2,i  are  the frequencies 

corresponding to magnitude of / 2H , where H is the value of the peak 
Fourier amplitude spectra at the i-th natural frequency. Identified 
damping from Equation (3.2) depends on the shape of the Fourier 
spectrum plot (i.e. the sharper the peak is, the smaller is the structure’s 
damping). 

In the present application of the PP method, natural frequencies 
were identified from resonant peaks in the ASDs and in the amplitude of 
CSDs, for which the cross-spectral phases are 0 or π. The mode shapes 
were obtained from the amplitude of square-root ASD curves while CSD 
phases were used to determine directions of relative motion. Drawbacks 



44 
 

of the PP method (Abdel-Ghaffar and Housner 1978) are related to the 
difficulties in identifying closely spaced modes and damping ratios. 
 

 
Figure 3.2 Power Spectra example 

 
 

In the context of ambient vibration measurements the FRF is only 
replaced by the auto spectra of the ambient outputs. In such a way the 
natural frequencies are simply determined from the observation of the 
peaks on the graphs of the averaged normalized power spectral densities 
(ANPSDs). The ANPSDs are basically obtained by converting the 
measured accelerations to the frequency domain by a discrete Fourier 
transform (DFT).   

Although the input forces are not measured in ambient vibration 
testing, this problem has often been circumvented by adopting a derived 
modal parameter identification technique where the reference sensor 
(base station) signal is used as an “input” and the FRFs and coherence 
functions are computed for each measurement point with respect to this 
reference sensor. It not only helps in the identification of the resonances, 
but also yields the operational shapes that are not the mode shapes, but 
almost always correspond to them. The coherence function computed for 
two simultaneously recorded output signals has values close to one at the 
resonance frequencies because of the high signal-to-noise ratio at these 
frequencies. Consequently inspecting the coherence function may assist 
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to select the frequencies. In current Peak-Picking method, the 
components of the mode shapes are determined by the values of the 
transfer functions at the natural frequencies. Note that in the context of 
ambient testing, transfer function does not mean the ratio of response 
over input force, but rather the ratio of response measured by a roving 
sensor over response measured by a reference sensor. So every transfer 
function yields a mode shape component relative to the reference sensor. 
Here it is assumed that the dynamic response at resonance is only 
dominated by one mode. The validity of this assumption increases as the 
modes are better separated and as the damping in the structure is lower. 

The Peak-Picking is a kind of frequency domain based technique. 
Frequency domain algorithms are most popular, mainly due to their 
simplicity and processing speed, and also for historical reasons. These 
algorithms, however, involve averaging temporal information, thus 
discarding most of their details.  

Peak-picking technique has some theoretical drawbacks: 
• Picking the peaks is always a subjective task;  
• Operational deflection shapes are obtained instead of mode shapes; 
• Only real modes or proportionally damped structures can be 

deduced by the method; 
• Damping estimates are unreliable. 
In spite of these drawbacks many civil engineering cases exist where 

the eak-picking technique is successfully applied. The popularity of the 
method is due to its implementation simplicity and its speed. 
 
3.1.2 Identification results 
 

Table 3.1 and Table 3.2 present the natural frequencies and the 
damping ratios of the six identified modes for each of the 4 April and 4 
June five tests, respectively. The modes frequencies have been compared 
using the coefficient of variation (Cv), defined as: Cv=σ/μ. It is a 
normalized measure of dispersion of a probability distribution. The small 
coefficient of variation (Cv) for the identified natural frequencies 
indicates the accuracy of these estimates. However, the same accuracy is 
not found for the damping ratios. The Cv of the natural frequency 
estimates are in the range of 0,13-1,6%, while the corresponding 
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coefficient for damping ratios are in the range 0,42-1,09%. However, 
these identified damping values provide an estimation of the structure’s 
damping. Table 3.1 put in evidence the accuracy of the system 
identification method, showing precise results especially for Mode 1 and 
Mode 3, the first vertical deflection and torsional modes respectively. 

 

Table 3.1 April tests Peak Picking identification results  

 
 
 

Results from 4 June test are collected in Table 3.2. Data show a 
good correlation between the six modes identified, with best results for 
Mode 1 and Mode 3 as the 4 April test results. The influence of the 
ambient factor can be recognize, in particular the temperature effect on 
the structure’s stiffness variation. The natural frequencies identified on 
the 4 June test are smaller than the natural frequencies identified on the 4 
April test. This fact is due to a warmer temperature on the June test day 
that provides a less structure’s stiffness and so smaller natural 
frequencies. However, both results from the two tests are really close one 
to the other, showing the good efficiency of the instrumentation and of 
the system identification process employed. 
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Table 3.2 June tests Peak Picking identification results  

 
 

Figure 3.2 presents the identified mode shapes corresponding to 
the six identified modes reported in Table 3.2 

 

 

 
Figure 3.3 Peak Picking mode shapes 
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3.2 Natural Excitation Technique combined with  
Eigensystem Realization Algorithm (NExT-ERA)  
 
 

NExT-ERA is the second method used for system identification of 
the Dowling Hall footbridge. In the following sections, a brief review of 
the theoretical bases is provided both for Natural Excitation Technique 
and Eigensystem Realization Algorithm together with the presentation of 
system identification result. 
 
3.2.1 Natural Excitation Technique (NExT) 

 
Conventional modal analysis utilizes frequency response functions 

(FRFs) which require measurements of both input force and the resulting 
response. However, ambient wind excitation does not lend itself to FRF 
calculations because the input force cannot be measured. NExT is a four-
step process designed to estimate modal parameters of structures excited 
in their operating environment.  

The first step is to acquire response data from the operating 
structure. Sensors that can measure strain, displacement, velocity, or 
acceleration response are required. Long  time  histories  of  continuous  
data  are desired,  provided  the  operating  conditions  are  relatively 
stationary. 

The second step is to calculate auto- and cross-correlation 
functions from these time histories using standard techniques. Correlation 
functions are commonly used to analyze randomly excited systems. As 
the following section will show, the correlation functions can be 
expressed as summations of decaying sinusoids. Each decaying sinusoid  
has  a  damped  natural  frequency  and  damping  ratio  that  is  identical  
to  that  of  a  corresponding  structural mode.  

The  third step of NExT  uses a time-domain modal identification 
scheme to estimate  the modal  parameters by  treating the  correlation  
functions  as though  they were free  vibration  responses that  is, sums of 
decaying sinusoids. The Eigensystem  Realization  Algorithm  (ERA)  
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have  been  used  as  the  time-domain  modal  identification  schemes to  
extract modal  frequencies and damping  ratios.  

The final step of NExT estimates mode shape using the identified 
modal frequencies and modal damping ratios. An activity closely related 
to mode shape extraction uses the identified modal parameters to 
synthesize the auto spectrum from each sensor. This provides a means of 
visually verifying the accuracy of the estimated modal frequencies and 
damping ratios.  

A  theoretical  justification  of NExT  entails proving  that  a 
MIMO  (multiple  input,  multiple  output),  multiple-mode  system  
excited  by  random  inputs  produces  autocorrelation  and  cross-
correlation  functions  that  are  sums  of  decaying  sinusoids.  

Furthermore, these decaying sinusoids must have the same damped 
frequencies and damping ratios as the modes of the system. 
Consequently, the correlation functions will  have  the  same  form  as  
impulse  response  functions  and  thus can be  used  in standard  modal  
analysis algorithms.  

The approach is to develop a general solution for a structure with a 
discrete spatial representation; define the cross-correlation function 
between two outputs; and solve for the case of random inputs. The  
theoretical justification  of NExT  can be developed  for  a  general  class  
of  random  inputs,  fully  complex  modes,  and  the  presence  of  known  
harmonic  inputs. However,  this development  will be  limited  to  the 
case of white-noise  inputs, real modes, and no harmonics, thus allowing 
the reader to obtain an appreciation  for  the  theoretical  background  of  
NExT  without  the  added  complexities  of  the most general case. 

The derivation begins by assuming the standard matrix equations 
of motion:  

 
[M]  { x(t)}+  [C]  { x(t)}+  [K]  { X(t)}=  { f(t)} (3.3) 

 
Where: 

[M] Is the mass matrix  
[C] Is the damping matrix  
[K] Is the stiffness matrix  
{F} is a vector of random forcing functions  
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{X} is the vector of random displacements. 
Equation (3.3) can be expressed in modal coordinates using a 

standard modal transformation:  
 
 

(3.4) 

 
Where:  

[Ф] Is the modal matrix 
{q(t)}  is a vector of modal coordinates 
{ФT}  is the rth mode shape. 

 
A premultiplication of Equation (3.4) by [Ф]T is also performed. 

Since real normal modes are assumed,  [M],  [C], and  [K]  are 
simultaneously diagonalized. A set of scalar equations in the modal 
coordinates result:  

 

 

(3.5) 
 

where:  
ωr is the rth  modal  frequency  
ζr  is the  rth  modal  damping ratio  
mr  is the  rth  modal mass.  

 
The solution of Equation (3.5), assuming a general {f} and zero 

initial conditions, is obtained from the convolution or Duharnel integral: 
 

 

(3.6) 

 

where:     
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Equations (3.4) and (3.6) can now be used to obtain the solution 
for {x(t)}:  

 

 

(3.7) 

 
where n  is the number of modes.  

Equation (3.7) will now be specialized for a single output, xik(t), 
due to a single input force,  fk(t), at point  k.  

 

 

(3.8) 

 
where ФT is the  ith component  of mode  shape r. 
 

The impulse response function between input k and output i results 
when f(τ) in Equation (3.8) is a Dirac delta function at τ = O. The 
integration is collapsed and the following results:  

 

 

(3.9) 

 
The next step of the theoretical development is to form the cross-

correlation function of two responses (xik  and xjk) due to a white-noise  
input at a particular input point k. defines the cross-correlation function 
Rijk(T) as the expected value of the product of two responses evaluated at 
a time separation of T:  

 

 
(3.10) 

 
where E is the expectation operator.  
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Figure 3.4 Cross-correlation function 

 
 

Substituting Equation (3.8) into (3.10) results in the following, 
since fk(t) is the only random variable:  

 

 

(3.11) 

 
Using the definition of the autocorrelation function , and  assuming 

f(t) of Equation (3.11) is white noise, then the autocorrelation function of 
f is:  

 

 
(3.12) 

 
where αk is a constant and δ (t) is the Dirac delta function.  
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Substituting Equation (3.12) into Equation (3.11), and collapsing 
the first integration by using the definition of the delta  function produces 
the following:  

 

 

(3.13) 

 
Equation (3.13) can be further simplified by making a change in 

the variable of integration. If we let λ = t — τ, then the limits of 
integration are zero and m. And Equation (3.13) becomes:  

 

 

(3.14) 

 
Using the definition of g from Equation (3.6) and the trig identity 

for the sine of a sum results in all the terms involving T separating from 
those involving λ:  

 

 

(3.15) 

 
Note that substitution of Equation  (3.15) into (3.14) along with the 

corresponding formula for gg(λ) allows terms that depend on T to be 
factored out of the integral and out of the second summation (the s-
index), resulting in:  

 

 

(3.16) 
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where Gijk and Hijk. k are independent of T, are functions of only the 
modal parameters, contain completely the summation on s, and are shown 
below.  
 

 

(3.17) 

 
Equation (3.16) is the key result of this derivation. Examining 

Equation (3.16), we can see that  the cross-correlation function is indeed 
a sum of decaying sinusoids, with the same characteristics as the impulse  
response function of the original system (see Equation (3.9); thus, cross-
correlation functions can be used as impulse response functions in time-
domain modal parameter estimation schemes.  

 
Lastly, Gijk and Hijk can be further simplified by evaluating the 

definite integral, and we have:  
 

 

(3.18) 

 
To further illustrate the useful form of these results, define a 

quantity γrs, such that:  
 

 
(3.19) 

 
Using this relationship in Equations (3.18) and (3.19) provides:  
 

 

(3.20) 
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and  

 

(3.21) 

 
where  
 

Substituting Equation (3.21) into Equation (3.16), and summing 
over all the input locations, m, to find the cross-correlation function due 
to all the input, we find:  

 

 

 
(3.22) 

 
 

The inner summations on s  and k are merely a summation of 
constants times the sine function, with variable  phase but fixed 
frequency. Equation (3.22) can therefore be rewritten as a single sine 
function with a new phase angle (ϴr) and a new constant multiplier (Ajr):  

 

 
(3.23) 

 
This completes the theoretical development for the single input, 

multi-output, multi-mode case. It shows that the cross-correlation 
function (3.23) is a sum of decaying sinusoids of the same form as the 
impulse response function of the original system in Equation (3.9). This 
similarity allows the use of time-domain modal parameter identification 
schemes such as ERA. The next sections illustrate some applications of 
NExT and further verify NExT using simulated data. 
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3.2.2 Eigensystem Realization Algorithm (ERA) 

 

The ERA is a time-domain system identification based on the 
evolution of the method, which introduces the concept of minimum 
realization. It was developed by Juang and Pappa in 1985 as automate 
algorithm for modal parameters identification. The minimum realization 
method identifies a system model with the smallest state dimension that 
holds an equivalent relationship of input-output as in the real system. The 
algorithm description starts from the dynamic equation of motion of a 
damped linear system. 

3.2.2.1 Discrete-Time State-Space System Representation 
 

The classical differential equation encountered in problems of 
linear oscillations is: 

 
2

2 ( )d d t
dt dt

  
w wM Kw fC  (3,24) 

 
where M, C, K, and f represent mass, damping, stiffness and force input, 
respectively. By making the substitutions: 
 

0

11 1
0

( ) ( )

c c

t td
dt

 

 
  
 
 

  
        

w
x f B uw

00 I
A B

M BM K M C

 (3.25) 

 
the equation of motion can be written as a first-order system in state 
space: 
 

c c
d
dt

 
x A x B u  (3.26) 
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The general solution to (3.26) is: 
 

0

0

( ) ( )
0( ) ( ) ( )c c

tt t t
ct

t e t e d     A Ax x B u  (3.27) 

 
We wish to use (3.27) to represent the system in discrete time by 

relating the present state to the state at a time Δt in the future. By making 
the substitutions: 
 

0( 1)t k t t k t      (3.28) 
 
(3.27) becomes: 
 

( 1) (( 1) )(( 1) ) ( ) ( )c c
k tt k t

ck t
k t e k t e d  

    


     A Ax x B u  (3.29) 

 
By making a change of variables τ′ = (k+1)Δt – τ, and assuming 

u(t) is constant over the time interval, (3.29) simplifies to: 
 

'

0
(( 1) ) ( ) ' ( )c c

tt
ck t e k t e d k t 

     A Ax x B u  (3.30) 

 
By defining: 
 

'

0
'c c

tt
ce e d 

  A AA B B  (3.31) 

 
the discrete-time state space system equations become: 
 

( 1) ( ) ( )
( ) ( ) ( )

k k k
k k k
  

 
x Ax Bu

y Cx Du
 (3.32) 

 
In this notation x(k) refers to the internal state of the system while 

y(k) refers to measurements of the system. The system matrix A 
determines the evolution of the system with time. The input matrix B 
transfers the input u to the system. The output matrix C represents 
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measurement of the system state and the feed-through matrix D 
represents direct measurement of the input u. 
 
3.2.2.2 Markov Parameters and Weighting Sequence 
 

Consider the output measurement of a system at rest subjected to a 
pulse input (u(0) = u0 and u(k) = 0 for k>0). By (3.32), the system state 
and measured output are: 
 

0

0 0

0 0

1 1
0 0

(0) (0)
(1) (1)
(2) (2)

( ) ( )k kk k 

 
 
 

 

x 0 y Du
x Bu y CBu
x ABu y CABu

x A Bu y CA Bu
 

 (3.33) 

 
The output pulse response y(k) is completely determined by the 

sequence: 
 

1
0 1 2

k
k

   Y D Y CB Y CAB Y CA B  (3.34) 
 

The sequence of Yi is the unit pulse response sequence and is often 
referred to as the Markov parameter sequence. 

The response to an arbitrary input signal can be cast in terms of the 
Markov parameters as follows: 

 

1 1

1 1

1

(0) (0) (0)
(1) (0) (1) (0) (1)
(2) (0) (1) (2) (0) (1) (2)

( ) ( ) ( ) ( )

( )

k k
i i

i i
k

i
i

k k i k k i

k i

 

 



 
  
    

   

 

 



x 0 y Du
x Bu y CBu Du
x ABu Bu y CABu CBu Du

x A Bu y CA Bu

Yu

   (3.35) 

 
This is sometimes known as the weighting sequence. Note the 

similarity between this formulation and the continuous-time case in 
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which the response to an arbitrary forcing function is the convolution of 
the impulse response and the forcing function. 
 
3.2.2.3 Controllability and Observability 
 

The subject of controllability arises from considering what internal 
state x(p) is reached when a sequence of inputs u(k), k=0..p-1 is applied 
to the system. (3.35) gives the internal state as: 
 

1

1
( ) ( )

p
i

i
p p i



 x A Bu  (3.36) 

 
This can be written as: 
 

( 1)
( 2)

( )

(0)

p

p
p

p

 
  
 
 
 

u
u

x Q

u


 (3.37) 

 
where the controllability matrix Qp is defined as 
 

1p
p

   Q B AB A B  (3.38) 

 
Note the sequence of inputs u is arranged in reverse-time order. If 

the rank of the controllability matrix is equal to the order of the system, 
any internal state can be reached with the proper input and the system is 
said to be ‘controllable.’ 

The subject of observability arises from considering whether an 
internal state x(0) can be determined by observing its free response y(k), 
k=0..p-1. The free response is given by: 

 

1

(0) (0)
(1) (0)

( 1) (0)pp 




 

y Cx
y CAx

y CA x


 (3.39) 
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This can be written as:  
 

(0)
(1)

(0)

( 1)

p

p

 
 
  
 
  

y
y

P x

y


 (3.40) 

 
where the observability matrix Pp is defined as: 
 

1

p

p

 
 
 
 
 
 

C
CA

P

CA


 (3.41) 

 
If the rank of the observability matrix is equal to the order of the 

system, any initial internal state can be determined by observing its free 
response. Such a system is said to be ‘observable.” 
 
3.2.2.4 Hankel Matrices 
 

System identification algorithms commonly use a Hankel matrix 
composed of the Markov parameters (pulse response) of the system. The 
Hankel matrix is given as: 

 
1 2

1 1
1 1

1 2

2 1 3
1 2

( 1)

k k k
k k k

k k k
k k k

k k k
k k k

k







   
   

  
  

  
  

      
     

   
   
     
   
   

     

Y Y Y CA B CA B CA B
Y Y Y CA B CA B CA B

H

Y Y Y CA B CA B CA B

 

 

       

 

 (3.42) 

 
where α and β are arbitrary indices which determine the size of the 
matrix. 

The Hankel matrix can be factored in the following useful form: 
 

( ) kk  H P A Q  (3.43) 
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where Pα and Qβ are the observability and controllability matrices defined 
in (3.38) and (3.41), respectively. 

Hankel matrices are frequently formed but rarely interpreted. A 
simple interpretation is offered here. Consider the following experiment: 
A system is subjected to arbitrary input f(k), k=0.. β-1. Once the input has 
been completed (after β time steps), the output y(k) is measured for α 
time steps (that is, for k= β..α+β-1). 

Following the form of the weighting sequence in (3.35), the input-
output relation of the experiment described is: 
 

1 2

2 3 1

1 1

( ) ( 1) ( 2) (0)

(1 ) ( 1) ( 2) (0)

( 1) ( 1) ( 2) (0)





   

  

  

   



  

     

      

       

y Y f Y f Y f
y Y f Y f Y f

y Y f Y f Y f









 (3.44) 

 
Note that the input f(k) is zero for k>β-1 and that the output y(k) is 

only measured for k> β-1. (3.44) can therefore be rewritten in matrix 
form as: 

 

1 2

2 3 1

1 1

( ) ( 1)
(1 ) ( 2)

( 1) (0)





   

 
 

 



  

    
         
    
           

Y Y Yy f
Y Y Yy f

Y Y Yy f





    



 (3.45) 

 
By identifying the rectangular matrix in (3.45) as H(0), it is seen 

that the Hankel matrix H(0) provides the input-output relationship for the 
experiment described. Note that in (3.45) (as in (3.37)), the input f is 
arranged in reverse-time order. 

In the same fashion, the general Hankel matrix H(k) can be 
understood as the input-output relationship for a similar experiment in 
which the measurement begins an additional k time steps after the 
excitation has ended.  
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3.2.2.5 The Eigensystem Realization Algorithm (ERA) 
 

The ERA begins by finding the singular values and vectors of the 
Hankel matrix H(0). In brief, the singular valued decomposition (SVD) 
finds matrices U, Σ, and V such that: 

 
(0) (0)T T Σ U H V H UΣV  (3.46) 

 
where U and V are orthogonal matrices containing the left and right 
singular vectors, and Σ is a diagonal matrix. 

For a (normalized) right singular vector v, the system output is 
H(0)v = σu, where u is the corresponding (normalized) left singular 
vector and σ is the gain factor. The singular value decomposition of H(0) 
represents the solutions to the maximization of the output/input gain 
factor σ for the Hankel matrix H(0). These maxima are resonance 
conditions and correspond to the modes of the system. 

Having found the SVD of H(0) (as in (3.46)), a decision must be 
made regarding the effective order of the system. For an observable 
noise-free system, the rank of the Hankel matrix will equal the order of 
the system. In the case of significant noise, the Hankel matrix will usually 
have a larger number of singular values, many of which are nearly zero. 
These small singular values correspond to noise in the signal. Modes with 
low input or observability may be masked by this noise. 

An order n is chosen for the system such that the n largest singular 
values are judged to be true modes and the remaining smaller singular 
values are judged to be noise. At this point, the Hankel matrix may be re-
formed using only the significant singular values: 

 
(0) T

n n n nH U Σ V  (3.47) 
 
where Un, Σn, and Vn have been truncated to only n singular values. 
It was shown previously (3.43) that H(k) = PαAkQβ, or H(0) = PαQβ. The 
ERA proceeds by making the identifications: 
 

1 1
2 2 T

n n n n  P U Σ Q Σ V  (3.48) 
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This is not the only possible factorization but it is the most obvious 

one. 
By examining (3.38) and (3.41), the input and output matrices (B 

and C) can be identified as the first blocks of the controllability and 
observability matrices (Pα and Qβ). 

The state matrix A is extracted using the shifted Hankel matrix 
H(1). It is known (3.43) that H(1) = PαAQβ. By forming the pseudo-
inverses of Pα and Qβ as: 

 
1 1† †2 2T

n n n n 
  P Σ U Q V Σ  (3.49) 

 
the state matrix A is found to be: 
 

1 1† † † † 2 2(1) (1)T
n n n n     
   A P P AQ Q P H Q Σ U H V Σ  (3.50) 

 
3.2.2.6 Transformation of ERA Realization to Continuous Time 
 

Once the system, input, and output matrices A, B, and C are found 
the realization is in principle complete. However, these matrices represent 
the system in discrete-time state space. The results must be transformed 
into continuous time and geometric space in order to determine the 
system parameters (natural frequencies, damping ratios, and mode 
shapes). 

Equation (3.31), repeated here, states that: 
 

0

11 1
0

( ) ( )

c c

t td
dt

 

 
  
 
 

  
        

w
x f B uw

00 I
A B

M BM K M C

 (3.51) 

 
And 
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c te  AA  (3.52) 
 
Solving for Ac, we find: 
 

0

11 1
0

( ) ( )

c c

t td
dt

 

 
  
 
 

  
        

w
x f B uw

00 I
A B

M BM K M C

 (3.53) 

And 
 

ln( )
c t



AA  (3.54) 

 
It is most convenient to compute the eigenvalues and eigenvectors 

of A before attempting to compute ln(A):  
 

0

11 1
0

( ) ( )

c c

t td
dt

 

 
  
 
 

  
        

w
x f B uw

00 I
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M BM K M C

 (3.55) 

And 
 

TΛ Ψ AΨ  (3.56) 
 

By the properties of the matrix exponential function, Ac has the 
same eigenvector matrix, ψ, as A does. The eigenvalues of Ac are: 
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And 
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ln( )

c t



ΛΛ  (3.58) 

 
Because the state-space representation is a first-order differential 

equation while the standard formulation (3.24) is a second-order 
differential equation, there are twice as many eigenvalues of A and Ac 
(that is, λ i and λc,i) as there are system modes. These values occur as 
complex conjugate pairs for each mode. It is therefore sufficient to 
consider only alternating eigenvalues to determine the system parameters.  

The natural frequencies and damping ratios are found using the 
eigenvalues λc,i, which are the poles of the system in Laplace’s s-space. 
The natural frequency is the magnitude of the eigenvalue and the 
damping ratio is the cosine of the angle with the negative real axis. 
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And 
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The mode shapes (as detected by the sensors) are simply the 

measurements associated with the eigenvectors ψ. The ^ symbol indicates 
that the matrix C has been estimated in the realization: 
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And 
 

modal
ˆ ˆ φ C Cψ  (3.62) 

 
The eigenvectors occur as complex conjugate pairs for the same 

reasons that the eigenvalues do. The mode shapes therefore usually 
consist of complex numbers. For a noise-free system with classical 
damping, all components of a mode are collinear in the complex plane. 
Due to noise, experimental components will not be exactly collinear even 
in the case of classical damping. However, for modes which display 
nearly collinear shape, real-valued mode shapes can be found by 
projecting the complex-valued components onto the mode shape’s 
principal axis. The individual mode shapes can then be normalized by 
one of the standard methods, giving a normalized modal matrix Φ.  
 
3.2.2.7 Advantages of the ERA realization 
 

It has been previously stated that there are many realizations which 
give the same system parameters, that is, there is not a unique valid 
realization. The first step in system realization as performed by the ERA 
is identifying P = UΣ½ and Q = Σ½VT. This step seems arbitrary at first 
glance. It is worthwhile to consider this realization in more detail. Recall 
the roles of the observability and controllability matrices ((3.40) and 
(3.37), repeated below): 
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And 
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There is some freedom in the realization of P and Q; any 

realization which preserves the relation H(0) = PQ will preserve the 
eigenvalues of the system matrix A and give the same system parameters. 
Considering that the right singular vectors v of the Hankel matrix H(0) 
represent resonant input, we would expect the input v to also maximize 
the final internal state x(p). Q is therefore chosen such that its right 
singular vectors are the same as those of H(0): 
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And 
 

T T Κ M QV Q MΚV  (3.66) 
 
where Κ is a diagonal matrix containing singular values of Q and M is an 
undetermined orthogonal matrix. V is understood to be the same right 
singular matrix as for H(0). 
In the same manner, the left singular vectors u of the Hankel matrix H(0) 
represent modal free decay. We would expect the output u to correspond 
to a minimized (i.e. one-mode) initial internal state x(0). P is therefore 
chosen such that its left singular vectors are the same as those of H(0): 
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And 
 

T T Λ U PN P UΛN  (3.68) 
 
where Λ is a diagonal matrix containing singular values of P and N is an 
undetermined orthogonal matrix. U is understood to be the same left 
singular matrix as for H(0). 

Forming the Hankel matrix H(0) from the decompositions of P 
and Q, we have H(0) = PQ = UΛNTMΚVT. From the singular value 
decomposition of H(0) we also know that H(0) = UΣVT. ΛNTMΚ is 
therefore identified as the (diagonal) singular value matrix Σ. 

Because ΛNTMΚ is diagonal and Λ and Κ are each separately 
diagonal, NTM must also be diagonal. Because N and M are each 
separately orthogonal, NTM must also be orthogonal. NTM is therefore a 
diagonal orthogonal matrix – the identity matrix – NTM = I and N = M. 
We therefore have ΛNTMΚ = ΛΚ = Σ.  Λ and Κ are chosen to be equal 
in order to balance the input and output gains: Λ = Κ = Σ½.  

With the above identifications made, we can write P = UΣ½MT 
and Q = MΣ½VT, where M is yet to be identified. To make the best 
choice for M, consider the observability and controllability Gramians: 
PTP = MΣMT and QQT = MΣMT. If M is chosen as the identity matrix, 
the observability and controllability Gramians will be simultaneously 
equal and diagonal, with both being equal to the singular values Σ of the 
Hankel matrix.  

By substituting M = I we have the realization P = UΣ½ and Q = 
Σ½VT. 
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3.2.3 Identification results 

 

Table 3.3 and Table 3.4 present the natural frequencies and the 
damping ratios of the six identified modes for each of the 4 April and 4 
June five tests, respectively. The modes frequencies have been compared 
using the coefficient of variation (Cv), defined as: Cv=σ/μ. It is a 
normalized measure of dispersion of a probability distribution. The small 
coefficient of variation (Cv) for the identified natural frequencies 
indicates the accuracy of these estimates. However, the same accuracy is 
not found for the damping ratios. The Cv of the natural frequency 
estimates are in the range of 0,13-1,6%, while the corresponding 
coefficient for damping ratios are in the range 0,42-1,09%. However, 
these identified damping values provide an estimation of the structure’s 
damping. Table 3.3 put in evidence the accuracy of the system 
identification method, showing precise results especially for Mode 1 and 
Mode 3, the first vertical deflection and torsional modes respectively. 

 

Table 3.3 April tests NExT-ERA identification results  

 
 

Results from 4 June test are collected in Table 3.4. Data show a 
good correlation between the six modes identified, with best results for 
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Mode 1 and Mode 3 as the 4 April test results. The influence of the 
ambient factor can be recognize, in particular the temperature effect on 
the structure’s stiffness variation. The natural frequencies identified on 
the 4 June test are smaller than the natural frequencies identified on the 4 
April test. This fact is due to a warmer temperature on the June test day 
that provides a less structure’s stiffness and so smaller natural 
frequencies. However, both results from the two tests are really close one 
to the other, showing the good efficiency of the instrumentation and of 
the system identification process employed. 

 

Table 3.4 June tests NExT-ERA identification results  

 
 
 

Figure 3.5 presents the identified mode shapes corresponding to 
the six identified modes reported in Table 3.4 
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Figure 3.5 NExT-ERA mode shapes 

 
 

3.3 Comparison of the April and June tests experimentally 
identified modal parameters 
 

Once the modal identification phase was completed, the two sets 
of mode shapes resulting from the application of  PP and  NExT-ERA 
were compared using the Modal Assurance Criterion (MAC, Allemang 
and Brown 1982). The MAC is probably the most commonly used 
procedure to correlate two sets of mode shape vectors and is defined as: 
 

(஺,௞,߶஻,௝߶) ܥܣܯ =
(߶஺,௞

் ߶஻,௝)ଶ

(߶஺,௞
் ߶஺,௞)(߶஻,௝

் ߶஻,௝)
 

 
where ߶஺,௞ is the k-th mode of data set A and ߶஻,௝ the j-th mode of the 
data set B. The MAC is a coefficient analogous to the correlation 
coefficient in statistics and ranges from 0 to 1; a value of 1 implies 
perfect correlation of the two mode shape vectors while a value close to 0 
indicates uncorrelated (orthogonal) vectors. In general, a MAC value 
greater than 0.80 is considered a good match while a MAC value less 
than 0.40 is considered a poor match. 
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Table 3.5 summarizes, the modal parameters identified from the 
PP and the NExT-ERA techniques and the mode classification. 
Specifically, Table 3.5 compares the corresponding mode shapes and 
scaled modal vectors obtained from the two different output-only 
identification techniques through the frequency discrepancy                   
DF = |( fNExT-ERA – fPP)/ fNExT-ERA | and the MAC. 
 
 

Table 3.5 Peak Picking, NExT-ERA identification results 

 
 
 

Table (3.5) shows the results of the two system identification in 
terms of natural frequencies. The output-only analysis results are referred 
to the 4 April and 4 June tests.  
 The Df coefficients shows the good correlation between the PP and 
the NExT-ERA results, both for the 4 April and for the 4 June tests. The 
identified natural frequencies are close one to each other for the two 
dynamic tests.  The MAC coefficients relate the mode shapes: it puts in 
evidence the matching between the mode shapes identification performed 
with the PP and the NExT-ERA methods. The two system idendification 
methods are capable of providing a complete modal analysis, returning 
similar results. As shown in Table 3.5, the 4 April test and the 4 June test 
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natural frequencies are close but not the same. This fact shows the 
influence of ambient parameters (temperature and humidity) on the 
structure’s dynamic behavior. In fact, temperature and humidity modify 
the stiffness of the structural elements, producing changes in the dynamic 
response. 4 June test natural frequencies are smaller than the 4 April test 
natural frequencies because the higher temperature situation performing 
the 4 June test, decrease the stiffness of the bridge, resulting in a more 
deformable structure’s behavior. 
 The PP and the NExT-ERA have shown to be powerful tools for 
modal analysis and dynamic parameters identification, providing similar 
results for the two dynamic tests performed. 
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4. TEST-ANALYSIS CORRELATION 
 
 
 
4.1 Finite element model  
 

Since the early 70s, many finite element models have been 
proposed for the analysis of structural elements. They were mainly 
devoted to the design of any types of complex structures in civil 
engineering fields. During the last two decades, several review papers 
and bibliographies have appeared in the open literature on the finite 
element technology and modeling of structural elements (beams, plates, 
shells, continua). 

In modern times the finite element method has become established 
as the universally accepted analysis method in structural design. The 
method leads to the construction of a discrete system of matrix equations 
to represent the mass and stiffness effects of a continuous structure. The 
matrices are usually banded and symmetric. No restriction is placed upon 
the geometrical complexity of the structure because the mass and 
stiffness matrices area assembled from the contributions of the individual 
finite elements with simple shapes. Thus, each finite element possesses a 
mathematical formula which is associated with a simple geometrical 
description, irrespective of the overall geometry of the structure. 
Accordingly, the structure is divided into discrete areas or volumes 
known as elements. Element boundaries are defined when nodal pointes 
are connected by a unique polynomial curve or surface. In the most 
popular (isoperimetric, displacement type) elements, the same polynomial 
description is used to relate the internal, element displacements to the 
displacement of the nodes. This process is generally known as shape 
function interpolation. Since the boundary nodes are shared between 
neighboring elements, the displacement field is usually continuous across 
the element boundaries 
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The mathematical formulation of the finite element method can be 
posed as a variational problem with an element-wise Rayleigh-Ritz 
treatment and shape function discretisation. Alternatively the finite 
element equations may be obtained directly from the differential 
equations using a Galerkin approach weighted by the element shape 
functions. It is undoubtedly the combination of mathematical versatility 
with a simple geometric interpolation which has led to the immense 
popularity of the method across wide areas of engineering and sconce. 
The well known texts by Zienkiewicz and Taylor (1988) and Irons and 
Ahmad (1980) provide details of the formulation of element matrices for 
various structural element types (beams, plates, shells, continua). 
NAFEMS (1986) produced A Finite Element Primer which is an. 
excellent introduction to finite element methodology. 

For model updating, the influence of the shape function upon the 
distribution of mass and stiffness must be understood if the result is to be 
an improvement in the physical parameterization, as well as a closer 
agreement between test results and numerical predictions. The 
discretisation using shape functions affects both the eigendata and the 
sensitivities of the numerical model. 

The experimental investigation was preceded by the development 
of a 3D finite element model (Figure 4.1), based on as-built drawings of 
the bridge and on-site geometric survey. The model was formulated using 
the following assumptions: 

a) two-nodes beam elements were used to represent the steel 
trusses structure; 
b) the Dowling Hall, the main campus and the center pier supports  
were considered as fixed; 
c) the concrete slabs were modeled with plate elements ; 
d) an equivalent weight per unit volume of 26 kN/m3 was assumed 
for the deck concrete slab in order to account for the effects of the 
heated system. 
The model results in a total of 76 nodes, 197 beam elements and 

18 plate elements. 
A preliminary dynamic analysis was performed to check the 

similarity between experimental and theoretical modal parameters. 
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Figure 4.1 Dowling Hall footbridge finite element model 

 
 
4.2 Calibration of the finite element model based upon the 
analytical experimental correlation study 
 

Finite element model updating has emerged in the 1990s as a 
subject of immense importance to the design, construction and 
maintenance of mechanical systems and civil engineering structures. 
Computer based analysis techniques (especially the finite element 
method) have had a huge impact on engineering design and product 
development since the 1960s. In the case of many engineering products, 
we now stand at the point where more detailed finite element models are 
not capable of delivering the improvements in product performance that 
are demanded. Clearly, the approach of numerical predictions to the 
behavior of a physical system is limited by the assumptions used in the 
development of the mathematical model. Model updating, at its most 
ambitious, is about correcting invalid assumptions by processing 
vibration test results. Updating is a process fraught with numerical 
difficulties. These arise from inaccuracy in the model and imprecision 
and lack of information in the measurements. An understanding of the 
purpose of the updated model is necessary before an answer to the above 
question can be given. In some cases, the only requirement of the updated 
model is that it should replicate the physical test data.  The extent to 
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which a numerical model can be improved by updating depends upon the 
richness of information on the test structure contained in measurements. 
In general, the measurements will be both imprecise and incomplete. The 
imprecision takes the form of random and systematic noise.  

Signal processing errors, such as aliasing and leakage, may be 
reduced by the correct choice of filters and excitation signals. Systematic 
errors can occur when, for example, the suspension system fails to 
replicate free-free conditions, or when the mass of a roving accelerometer 
causes changes in measured natural frequencies. Rigidly clamped 
boundary conditions are usually very difficult to obtain in a physical test. 
Extreme care is necessary to either eliminate systematic errors, or to 
obtain an assessment of them which can be used in subsequent 
processing. The measurements will be incomplete in the sense that the 
measurement frequency range (determined by the sampling rate) will be 
much shorter than that of the numerical model which might typically 
contain tens or hundreds of thousands of degrees of freedom. An extreme 
case of incompleteness occurs when the inputs, or response sensors, are 
located at, or close to, vibration nodes so that the effect of one or more 
modes is obscured by measurement noise. In addition to modal 
incompleteness, the measurements will also be spatially incomplete. This 
arises because the number of measurement stations is generally very 
much smaller than the number of degrees of freedom in the finite element 
model. Rotational degrees of freedom are usually not measured and some 
degrees of freedom will be inaccessible. Spatial incompleteness often 
requires either the reduction of the model or the expansion of measured 
eigenvectors. 

Analysis results obtained by experimental dynamic tests were 
compared with those given modal analysis performed by the numerical 
FE model. Experimental results represent the baseline figures to update 
the FE model. In fact, being affected by the mathematical model 
assumptions and errors of fact concerning the mechanical characteristics 
and constraints of structural elements, they should be targeted according 
to the findings resulting from the experimental tests. 

The calibration process allowed the model to be updated in the 
mass estimated of the concrete deck's elements and to optimize the 
stiffness of the supports, particularly the central pier. However, the 
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mathematical modeling confirmed the results of the experimental 
analysis, both for the natural frequencies and the mode shapes, avoiding 
blunders in experimental analysis. 

The mode shapes obtained from FE model are shown in Figure 
(4.2): 
 

 
Figure 4.2 Finite element model mode shapes 

 
 

4.3 Comparison of FE predicted and experimentally 
identified modal parameters 
 

Once the modal identification phase was completed, the two sets 
of mode shapes resulting from the application of PP and NExT-ERA 
were compared using the Modal Assurance Criterion (MAC, Allemang 
and Brown 1982). The MAC is probably the most commonly used 
procedure to correlate two sets of mode shape vectors and is defined as: 
 

(஺,௞,߶஻,௝߶) ܥܣܯ =
(߶஺,௞

் ߶஻,௝)ଶ

(߶஺,௞
் ߶஺,௞)(߶஻,௝

் ߶஻,௝)
 

 
where ߶஺,௞ is the k-th mode of data set A and ߶஻,௝ the j-th mode of the 
data set B. The MAC is a coefficient analogous to the correlation 
coefficient in statistics and ranges from 0 to 1; a value of 1 implies 
perfect correlation of the two mode shape vectors while a value close to 0 
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indicates uncorrelated (orthogonal) vectors. In general, a MAC value 
greater than 0.80 is considered a good match while a MAC value less 
than 0.40 is considered a poor match. 

Table 4.1 summarizes, the modal parameters identified from the 
PP and the NExT-ERA techniques and the mode classification. 
Specifically, Table 4.1 compares the corresponding mode shapes and 
scaled modal vectors obtained from the two different output-only 
identification techniques through the frequency discrepancy DF = |( fNExT-

ERA − fFEM)/ fNExT-ERA | and the MAC. 
 

 
Table 4.1 Peak Picking, NExT-ERA and FEM identification results 

fPP 
(Hz) 

fNExT-ERA 
(Hz) 

fFEM 
(Hz) 

DF 
(%) MAC Vibration  

modes 

4,59 4,59 4,58 0,22 1,00 1st vertical 
anti-symmetric 

5,93 5,91 6,13 3,72 0,99 2st vertical 
symmetric 

6,97 6,96 7,80 6,75 0,98 1st torsional 
anti-symmetric 

8,90 8,90 9,21 3,48 0,99 2st torsional 
symmetric 

12,56 12,71 14,21 11,80 0,98 3st vertical 
anti-symmetric 

13,17 13,31 15,33 15,18 0,98 4st vertical 
symmetric 

 
 

Table (4.1) shows the results of experimental and FE model 
analysis in terms of natural frequencies. The output-only analysis results 
are referred to the 4 June test. However, the natural frequencies are 
variable throughout the year depending on environmental conditions 
(particularly temperature, humidity) that influence the stiffness 
characteristics of the structure. 
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The comparison shows that the FE model results are correct and 
faithfully approximate the dynamic characteristics of the real structure. In 
particular, the discrepancy of the natural frequencies is on the order of 
6% for the first two vertical and torsional deflections and not exceeds 
15% for the next modes. The MAC coefficient confirms the accuracy of 
the modal shapes obtained by experimental analysis and numerical 
simulation. 

In agreement with the results, the FE model provides a 
representation of the structure's actual situation and can be used for future 
analysis of static and dynamic.  
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Future work: the continuous monitoring 
system project 
 
 
 

Structural Health Monitoring (SHM) provides a vital link between 
monitored structures and a central monitoring site. This allows many 
structures to be monitored at a central site, with information transmitted 
via the Internet, thereby eliminating costly permanent site installation and 
reducing the number of site visits. SHM also provide a structured 
approach to assessing the performance of various ISIS technologies and 
reporting on successes based on monitoring a number of field projects 
over extended periods of time. In addition to field projects, numerical 
modeling and identification of damage using the finite element method 
and, alternatively, damage detection algorithms, are also being 
developed. Acceptance of intelligent sensing and structural health 
monitoring as an essential part of infrastructure design. 

Long-term continuous monitoring of structures may be helpful in 
many aspects of structural engineering when parameters of interest can be 
affected significantly over time. Such monitoring systems require high-
speed data acquisition systems, highly sensitive sensors, and efficient 
operating software, and remote control and transfer mechanisms for data 
collection. Such remote monitoring systems are now possible. To test the 
idea of continuous monitoring for bridge structures and to examine the 
sensitivity of vibration properties to structural damage or deterioration, 
specifications for remote bridge-monitoring systems were developed.  

They were implemented on bridges for experimental monitoring of 
conditions. Although intended for use in monitoring bridge structures, 
they may also be used where remote monitoring is appropriate for such 
civil engineering structures as dams, retaining walls, buildings, 
pavements, drainage structures, and traffic signal and sign structures. 

 



84 
 

Starting from the results of the dynamic tests, the experimental and 
numerical modeling analysis, and a continuous monitoring system is 
being design and installing on the Dowling Hall Footbridge. The dynamic 
tests design allowed selecting the proper instrumentation properties and 
the most suitable sensors locations. 

The NExT-ERA algorithm provided good results in identifying the 
dynamic characteristics, starting from the output-only measurements. The 
NExT-ERA identification process has been automated for the continuous 
acquisition system compatibility, in order to process the continuous 
sensors’ measurements. The continuous system data acquisition 
instrumentation will employ a Wi-Fi internet connection device, allowing 
data to be transfer directly to the central analysis location. The data 
acquisition system will be similar to the one employed for 4 April and 4 
June dynamic testing and will be placed close to the Dowling Hall side, 
providing the sensors connection along the structure. PCB accelerometers 
proved their effectiveness performing the two dynamic tests. Therefore, 
the same kind of sensors will be employed for the continuous monitoring 
system design. 

The continuous monitoring system will provide all the information 
for controlling the dynamic characteristics evolution across the years, 
correlating the dynamic behavior with the ambient parameters 
(temperature, humidity). Through the system, future structural damages 
and failures will be identified by the observation of the dynamic 
characteristics change, especially evidences in the natural frequencies 
alteration will suggest global troubles and the mode shapes allow the 
identification of local damages.   
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CONCLUSIONS 

 

 

 
This work was focused on the design and realization of two 

dynamic tests and on the structural identification of the Dowling Hall 
footbridge, starting from the results of these tests.  

The development of the project started with the process of 
evaluating and identifying the most appropriate instrumentation for tests 
achievement, planning and carrying out the test and the acquisition and 
processing of recorded data. First, a data processing step was performed, 
allowing deleting errors in the acquisition phase and provide a good 
quality data set for future analysis.  

Two different algorithms were designed to identify the dynamic 
characteristics: the Peak Picking (PP) method and the Natural Excitation 
Technique combined with Eigensystem Realization Algorithm (NExT-
ERA). The two methods made it possible to automate the process of 
natural frequencies, the damping ratios and mode shapes extraction. Both 
methods have proved to be effective and properly corrected for modal 
identification, as shown in Table 3.5, which compares the results obtained 
with both methods in terms of natural frequencies and modal shapes 
correlation (through the MAC coefficients). The two algorithms have a 
different implementation complexity and computational honor. The PP 
method was found to be lighter and more manageable. Nevertheless, the 
results it produces are quite comparable with those obtained employing 
the NExT-ERA. The latter is certainly a more complex, both during 
deployment and in runtime. However the advantage of allowing fully 
automatic analysis of data obtained from recordings made directly on the 
structure of the instrumentation (time history), producing as a result of 
the dynamic characteristics.  
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The results of the experimental analysis were compared and 
validated with those produced by a numerical analysis carried out through 
the creation of a finite element model. Once certified that the data from 
the experimental analysis were not infected by fundamental error, they 
were used as the basis for calibrating and updating the numerical model, 
so that it could better reflect the behavior of the real structure. This 
adjustment has resulted in a model that can be used for future analysis 
without the need to implement any experimental tests.  

The results produced by both the experimental analysis that those 
using the numerical model were taken as a basis for designing of a 
continuous monitoring system that will be developed and installed in the 
near future. The complete automation of the identification system that 
uses the NExT-ERA for the dynamic analysis has allowed the selection of 
that method as a tool for processing data that will be used in the 
continuous monitoring system, allowing data acquisition and processing 
in time real and the identification of anomalies that may indicate the 
presence of problems or structural damage. 
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APPENDIX A :  
 
4 April Test 
 
Time history, Fourier amplitude spectra and Power 
Spectral Density for all the channel and all the performed 
tests. 
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Figure A-1. Time history of the 12 channels recorded during Test 1 
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Figure A-2. Fourier amplitude spectra of the 12 channels recorded during Test 1 
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Figure A-3. Power Spectra Density of the 12 channels recorded during Test 1 
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Figure A-4. Time history of the 12 channels recorded during Test 2 
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Figure A-5. Fourier amplitude spectra of the 12 channels recorded during Test 2 
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Figure A-6. Power Spectra Density of the 12 channels recorded during Test 2 
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Figure A-7. Time history of the 12 channels recorded during Test 3 
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Figure A-8. Fourier amplitude spectra of the 12 channels recorded during Test 3 
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Figure A-9. Power Spectra Density of the 12 channels recorded during Test 3 
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Figure A-10. Time history of the 12 channels recorded during Test 4 
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Figure A-11. Fourier amplitude spectra of the 12 channels recorded during Test 4 
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Figure A-12. Power Spectra Density of the 12 channels recorded during Test 4 
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Figure A-13. Time history of the 12 channels recorded during Test 5 
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Figure A-14. Fourier amplitude spectra of the 12 channels recorded during Test 5 
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Figure A-15. Power Spectra Density of the 12 channels recorded during Test 5 
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APPENDIX B :  
 
4 June Test 
 
Time history, Fourier amplitude spectra and Power 
Spectral Density for all the channel and all the performed 
tests. 
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Figure B-1. Time history of the 12 channels recorded during Test 1 
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Figure B-2. Fourier amplitude spectra of the 12 channels recorded during Test 1 
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Figure B-3. Power Spectra Density of the 12 channels recorded during Test 1 
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Figure B-4. Time history of the 12 channels recorded during Test 2 
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Figure B-5. Fourier amplitude spectra of the 12 channels recorded during Test 2 
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Figure B-6. Power Spectra Density of the 12 channels recorded during Test 2 
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Figure B-7. Time history of the 12 channels recorded during Test 3 
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Figure B-8. Fourier amplitude spectra of the 12 channels recorded during Test 3 
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Figure B-9. Power Spectra Density of the 12 channels recorded during Test 3 
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Figure B-10. Time history of the 12 channels recorded during Test 4 
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Figure B-11. Fourier amplitude spectra of the 12 channels recorded during Test 4 
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Figure B-12. Power Spectra Density of the 12 channels recorded during Test 4 
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Figure B-13. Time history of the 12 channels recorded during Test 5 
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Figure B-14. Fourier amplitude spectra of the 12 channels recorded during Test 5 
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Figure B-15. Power Spectra Density of the 12 channels recorded during Test 5 
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