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Abstract

Scopo di questa tesi é di evidenziare le connessioni tra le categorie monoidali,
l’equazione di Yang-Baxter e l’integrabilitá di alcuni modelli. Oggetto prin-
cipale del nostro lavoro é stato il monoide di Frobenius e come sia connesso
alle C∗algebre. In questo contesto la totalitá delle dimostrazioni sfruttano
la strumentazione dell’algebra diagrammatica, nel corso del lavoro di tesi
sono state riprodotte tali dimostrazioni tramite il piú familiare linguaggio
dell’algebra multilineare allo scopo di rendere piú fruibili questi risultati ad
un raggio piú ampio di potenziali lettori.
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Introduction

In both Physics and Mathematics the problem of studying integrable models
as solvable models has always received a great deal of attention since its
very first appearance. In particular, within quantum theories, integrability
is strictly connecetd to the Yang-Baxter equation. As a matter of fact, this
equation arises in several different models, such as

• 1+1D integrable field theories and conformal field theories

• Quantum spin chains

• Quantum groups

Indeed, theoretical Physics has been interested in 1+1D field theories for
several years. Among them a prominent role is undoubtedly played by con-
formal field theories, i.e. theories that are invariant under the action of the
Poincaré group and scale transformations. They display interesting proper-
ties. Notably, they are integrable, that is to say they have infinitely many
conserved quantities.
Furthermore, conformal theories are closely related to quantum spin chains
in so far as the critical points are scale invariants. This means that a per-
turbation of a conformal theory can give more information about the way to
approach to the critical points. Generally speaking, symmetries play a vital
role in Physics in light of Noether’s theorem. As symmetry transformations
are straightfowardly seen to form a group under composition, Algebra has
always been the natural language to deal with them. Along this line, studing
the quantum inverse scattering method, R.J. Baxter, A.B. Zamolodchikov
and Al.B. Zamolodchikov discovered a new algebraic structure, later general-
ized and called quantum group by Drinfield. What’s more, it is still possible
to define a Yang-Baxter equation in a categorical framework by using the
powerful tool provided by braided monoidal categories (abstract categories
modeled on the basic example of VecK, the category of vector spaces over a
field K).
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Although the standard axiomatic presentation of quantum mechanics, es-
sentially due to von Neumann (1932), has long provided the mathematical
bedrock of the subject, the advent of quantum information has given rise
to new kinds of questions and mathematical exigences. To take but one
example, it is enough to consider the changes of perception of quantum en-
tanglement after Samson Abramsky and Bob Coecke developed a categorical
formulation of quantum mechanics. A very notable structure has thus arisen
in their studies: that of Frobenius monoid.

Through my thesis work I tried to examine the categorical connection be-
tween the Yang-Baxter equation, quantum groups and 1+1D topological
quantum field theories. I focused my interest mainly on FdHilb, the category
of finite dimensional Hilbert spaces, because, among other things, B. Coecke,
D. Pavlovic and J. Vicary proved that it is possible to turn any Frobenius
monoid into an orthogonal basis of a Hilbert space and viceversa. One of their
most remarkable results, furthermore, states that Frobenius monoids can be
endowed with a C∗-algebra structure in a natural way. Because their proofs
strongly rely on diagrammatic algebra, a topic that is seldom discussed in
basic courses, we have decided to reproduce them by using, instead, the more
familiar language of multilinear algebra in order to give a more readable and
accessible presentation to the topic as to attract a wider range of potential
readers.
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Un pensiero permanente a DASY
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Chapter 1

A short introduction to
classical integrable systems

1.1 Hamiltonian systems

Let M be a differentiable n-manifold and let m be a point on M of coor-
dinates (q1, ..., qn).These identify ~q, a contravariant vector on M , i.e. the
components of ~q transform by inverse change of basis matrix . Let t ∈ R, the
vectors ~q(t) parametrize a regular curve on M , for each point on this curve
we identify with ~̇q the tangent vectors to M and with the couple (~q(t), ~̇q(t))
we can parametrize the tangent space TmM to manifold M . The unions over
all the points in M of the tangent space is called tangent bundle, TM .

Let L : TM → R be a regular function, we fix two point on M with coordi-
nates ~q(ti) and ~q(tf ) on a regular curve ~q(t), we consider

I(ti, tf ) =

∫ tf

ti

L(~q(ti), ~q(tf )

L is called lagrangian and I is the action integral.
The critical points of action integral are the trajectory of a mechanical sys-
tem, these are given by famous Euler-Lagrange equation :

d

dt

(
∂L
∂~̇q

)
− ∂L
∂~q

= 0 . (1.1)

We set ~p = ∂L
∂~̇q

, ~p is a covariant vector i.e. it transforms by change of basis

matrix.The transformation

H(p, q) = pq̇ − L(p, q) (1.2)
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is called Legendre transformation and the fuctional H is said hamiltonian of
the system. The couple (p, q) parametrize the cotangent space T ∗mM , the
union over all the points of M is the cotanget bundle.

From the hamiltonian we can extract the equations of motion

∂H

∂p
= q̇; (1.3)

∂H

∂q
= −ṗ; (1.4)

A dynamical system satisfying these equations is called hamiltonian system.
For this kind of systems there exist a geometrical description based on vector
field called Poisson bracket.

1.2 Vector fields and simplectic structure

Definition 1.1. A vector field X is a first order differential homogeneus
operator defined by setting

X =
n∑
k=1

Xk
∂

∂xk
(1.5)

where the Xk = Xk(x1, ..., xn) are functions of dynamical variables. The set
of vector fields on a manifold M will be denoted by ν1(M) .
A vector field is a derivation i.e. it fulfills

i)X(f + g) = X(f) +X(g) (1.6)

ii)X(fg) = X(f)g + fX(g) (1.7)

for all f, g : Rn → R or more generally from a smooth manifold M locally
isomorphic to Rn .
It follows that the action of the vector fields on scalars is :

X(c) = 0, ∀c ∈ Rn. (1.8)

The most important operation between vector fields is the Lie bracket.

Definition 1.2. Let X, Y be vector fields . Their Lie Bracket is defined by
setting :

[X, Y ] = X ◦ Y − Y ◦X. (1.9)
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It is easy to prove that [X, Y ] is a vector field, namely

Z =
n∑
k=1

Zk
∂

∂xk
(1.10)

where

Zk = X(Yk)− Y (Xk). (1.11)

Some important properties of Lie brackets:

• Bilinear

• skew-symmetric

• Jacobi identity .

A very important tool in classical mechanics are the Poisson brackets .

Definition 1.3. Given two functions f, g ∈ C∞(T ∗M), the Poisson bracket
of (f, g) is the function defined by setting

{f, g} =
2n∑
i,j

∂f

∂xi
(J0)ij

∂g

∂xj
(1.12)

where

J0 =

(
0 In
−In 0

)
. (1.13)

The coordinates x1, ..., x2n are usually written in the form p1, ..., pn, q1, ..., qn
and therefore the Poisson bracket takes the form

{f, g} =
n∑
i

∂f

∂pi

∂g

∂qj
− ∂g

∂pi

∂f

∂qj
. (1.14)

Definition 1.4. Let f be regular function. We call hamiltonian vector field
of f the vector field

Xf =
2n∑
i,j

∂f

∂xi
(J)ij

∂

∂xj
. (1.15)
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This definition means that

Xf (g) = {f, g} (1.16)

A sympletic square matrix M is a matrix of order 2n such that

MTJM = M. (1.17)

Now suppose to change the coordinates p, q

(p′, q′) = S(p, q) (1.18)

where S is a regular function. If the matrix associated to the transformation
is a sympletic matrix we say that S is a canonical transformation . A canon-
ical transformation preserves the Poisson bracket therefore we can define a
new matrix J = MJ0 with M ∈ Sp(2n,R), the vector space of symplectic
matrices 2n × 2n. Now the Poisson brackets are skew-symmetric, fulfill the
Jacobi identity and the Leibniz rule. It is also possible to define Poisson
brackets by means of sympletic matrix or more generally in the following
form :

Definition 1.5. A sympletic manifold is a couple (M,ω) where M is a
smooth manifold and ω is a 2-closed non-degenerate form

ω = ωij(x)dxi ∧ dyj (1.19)

where det(ω(x))ij 6= 0 ∀x ∈M .
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1.3 Hamiltonian systems and Liouville inte-

grability

Definition 1.6. A Hamiltonian system is a dynamical system for which the
equations of motion are in this form

ẋ = {x,H} (1.20)

where x = (x1, ..., x2n) and the function H is the hamiltonian of the system.

Definition 1.7. A function F on a sympletic manifold M is a called constant
of motion if only if

∂tF + {F,H} = 0. (1.21)

Definition 1.8. If {f, g} = 0 we say that f, g are in involution.

Definition 1.9. (Liouville integrability) A Hamiltonian system on a 2n sym-
pletic manifold M is completely integrable if it has n constants of motion
functionally independent and in involution.

1.3.1 Isospectral deformation method

One of the most powerful tool in the study of integrability for dynamical
systems is the isospectral deformation method, introduced for the first time
in 1968 from Lax. The term ” isospectral deformation” was suggested later
by Moser, in 1975.
The basic idea of this method, for the finite dimensional case, is to find two
operators, i.e. two square matrices, L and M such that the equations of
motion ẋ = {x,H} take the form

L̇ = [L,M ] (1.22)

where [, ] is the usual commutator between square matrices. L is called Lax
matrix.

L(t) = U−1(t)L(0)U(t) (1.23)
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where U(t) is the solution of this equation

U̇(t) = M(t)U(t). (1.24)

The most important property is the temporal independence of the eigenvalues
of the matrix L(t). It is said, hence the matrix L undergoes an iso-spectral
deformation .

1.4 Lie-Poisson Groups, Lie bialgebras and

Yang-Baxter equation

A class of examples of Poisson manifolds is given by Poisson-Lie groups in-
troduced by Drinfel’d . The motivations of the introduction of these facilities
are located mainly in the study of quantum groups. For more details about
geometry of Poisson brackets see [3] .

Definition 1.10. A PoissonLie group is a Lie group G equipped with a
Poisson bracket for which the group multiplication

µ : G×G→ G (1.25)

is a Poisson map, µ ∈ P∞(G×G,G).

Definition 1.11. Let G be a Lie group and V a representation of G, let g
be its corresponding Lie algebra and g∗ its dual . A map γ : G → V such
that

γ(gh) = g · γ(h) + γ(g) (1.26)

is called 1-cocycle.

Drinfeld proved the following theorem in [8],[10].
Theorem 1.12 Let G be a Lie-Poisson group. Let π be a tensor such that
the Schouten-Nijenhuis bracket of π is 0, [π, π]s = 0, and γ = Dπ the derived
of tensor. Then the dual map

γ∗ : g∗ ∧ g∗ → g∗ (1.27)

defines a Lie bracket on g∗ .
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Definition 1.12. A Lie bialgebra is a couple (g∗, γ) where g∗ is a Lie algebra,
γ : g∗ → g∗ ∧ g∗ is a 1-cocycle respect to adjoint representation which makes
the dual g∗ a Lie algebra.
This means

γ[X, Y ] = [γX, Y ] + [X, γY ]. (1.28)

So the Drinfeld’s theorem says the the Lie algebra of a Poisson-Lie is a Lie
bialgebra : the structure of manifold is reflected in brackets on g, the Pois-
son bracket is reflected in the bracket on g∗ and the compatibility between
Poisson structure and Lie product is codified in the cocycle condition.

More generally :

Theorem 1.14(Drinfel’d) There exists a functor between the category of
Poisson-Lie groups and the cateogory of Lie bialgebras. If we ristict to the
connected or simply connected groups , the categories are equivalent.
A complete discussion about this fact can be found in [21].

A particularly interesting class of these bialgebras can be found by con-
sidering the theory of Yang-Baxter equation, which originates in statistical
mechanics . A general formulation of the theory of Yang-Baxter can be given
presented as follows :
Let g be a Lie algebra and R a linear map

R : g→ g. (1.29)

Then we can define a bilinear skew-symmetric application by setting

[X, Y ]R = [RX, Y ] + [X,RY ]. (1.30)

Definition 1.13. A classical R-matrix over a Lie algebra is a linear operator
such that [, ]R is a Lie bracket .

When R : g→ g is a R-matrix we can consider the Lie-Poisson structure on
g∗ induced by Lie brackets [, ]R, that has relevance in the theory of diffusion:
in particular it can be proved that the Casimir’s functions,with respect to
the usual Lie brackets on g forms a commutatative subalgebra respect the
[, ]R and the equations of motion respect to the Lie-Poisson brackets induced
by [, ]R are in the Lax form, (cfr. [17],[19] ) .

Now introduce the new notation

BR(X, Y ) = [RX,RY ]−R[RX, Y ]−R[X,RY ] (1.31)
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then the Jacobi identity for the [, ]R becomes

[BR(X, Y ), Z] + [BR(Y, Z), X] + [BR(Z,X), Y ] = 0. (1.32)

this is called the classical Yang-Baxter equation(cYBE).

We note that if R is an R-matrix such that

BR(X, Y ) = 0 (1.33)

we have
[RX,RY ] = R[X, Y ]R (1.34)

i.e. R is a homomorphism between Lie algebras and this is a natural con-
straint to fulfill, called classical Yang-Baxter equation.
Another important condition follows from the YBE

BR(X, Y ) = α[X, Y ] α ∈ K. (1.35)

In this way the cYBE becomes the Jacobi identity for [, ] and the latter is
the modified Yang-Baxter equation.
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Chapter 2

Quantum integrability and
Yang-Baxter equation

In the previous chapter we saw that a Hamiltonian system with a integral of
motion is integrable. In this chapter we will see two examples of quantum
integrable models : 1+1D field theory and quantum spin chains. Above all
our target is to show how the Yang-Baxter equation arises in thes models.
The general S-matrices of a field theories are complicated objects, even in
1+1 dimension . In the years 1975-1980 some papers by Polyakov, Parke,
Zamolodchikov and Zamolodchikov, [16],[23] [24], proved that, for 1+1 di-
mensional models, the existence of conserved charges implies no production
of particles in the scattering process. This means that matrix S can be fac-
torized in two-body interactions.
A model for spin chain was proposed for the first time by Heisemberg in
1930 and it is connected to magnon quasiparticles introduced by Bloch to
explain the reduction of the spontaneous magnetization in a ferromagnet.
We will see two models, XXX and XXZ and how they are stryctly related
to the definition of classical integrability and the Yang-Baxter equation. An
important structure to connect to the quantum spin chains and to 1+1D field
theory is the Yangian. We will dedicate space to its analysis.
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2.1 Introduction to quantum spin chains

This part is largely inspired by de Leeuw M. : Introduction to integrability,
lecture notes corse in ETH .
Quantum spin-chains are particular examples of exactly solvable or ”quantum
integrable” systems in 1+1 spacetime dimensions. Consider a ring of atoms
which periodic boundary conditions. Each of which possesses a quantum
”degree of freedom”, called a ”spin”, which can point in two directions, up
or down. ”Quantum” means that we allow for all positions of the different
possible spin configurations of the ring, this set forms the physical state
space.
A much studied model is the Heisenberg spin-chain. Historically, Bethe’s
1931 work on the isotropic case known as the XXX model, had a major
impact and was the starting point for many of the subsequent developments
in this area. He made an ”ansatz” for the stationary states of the XXX spin-
chain to be a superposition of plane waves whose momenta/wave vectors have
to satisfy an intricate set of non-linear equations, called Bethe’s equations.
In the literature his approach is nowadays referred to as ”coordinate Bethe
ansatz” and has been applied to numerous other quantum integrable systems.
It is the combinatorics and the algebraic aspects behind Bethe’s ansatz which
are of mathematical importance.
Many-particle systems, quantum or classical, are usually quite difficult to
solve, and except for a few cases, one faces often formidable difficulties in the
computations of physically relevant quantities.
The Heisemberg spin-chain nowadays can be experimentally realized in con-
densed matter systems e.g. Mott insulators and the correlation functions can
be measured in the laboratory.
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The Heisenberg spin chain

This is a one-dimensional model of magnetism or simply of spin-1
2

parti-
cles that have a spin-spin interaction. In certain metals where there is a
one-dimensional isotropy these spin chain appear and describe the dominant
physical behaviour .
The spin chain simply consists of N sites, where on each site we consider a
spin-1

2
particle (for example an electron). This electron can have spin up or

down and therefore any electron is in a linear state

a |↑〉+ b |↓〉 : |a|2 + |b|2 = 1

in a two-dimensional Hilbert space. In a system with N electrons the total
Hilbert space where the physical states live in is

H =
⊗
N

C2. (2.1)

The spin operators Sx,y,zi act on each site i and they satisfy local commutation
relations in the sense that

[Sah, S
b
k] = iδhkε

abcSch . (2.2)

The Hamiltonian describes a nearest neighbor spin-spin interaction. More
precisely, we have

H =
JN

4
− J

∑
i

~Si · ~Si+1, ~SN+1 = ~S1 . (2.3)

Let us introduce the usual raising and lowering operators

S± = Sx ± iSy (2.4)

such that

S+ |↑〉 = 0, S− |↑〉 = |↓〉 , Sz |↑〉 =
1

2
|↑〉 (2.5)

S+| ↓〉 = |↑〉 , S−| ↓〉 = 0, Sz |↓〉 = −1

2
|↓〉 . (2.6)

Then we can rewrite the Hamiltonian as

H =
JN

4
− J

∑
i

[
1

2

(
S+
i S
−
i+1 + S−i S

+
i+1

)
+ Szi S

z
i+1

]
. (2.7)
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Let us look at the different terms. The terms involving S± = Sx ± iSy are
called hopping terms since they move a spin up or spin down to a neighboring
site. There is a constant term proportional to N added for convenience. This
is a rudimentary model of (ferro)magnetism. It is an overall shift of the
energy levels depending on the sign of J . Written out in components, the
Hamiltonian is a special case of a more general Hamiltonian which takes the
form

H =
∑
i

(JxS
x
i S

x
i+1 + JyS

y
i S

y
i+1 + JzS

z
i S

z
i+1) . (2.8)

This model is usually called the XYZ spin chain. In the case Jx = Jy it is
called the XXZ spin chain and our model is Jx = Jy = Jz = J referred to as
the XXX spin chain .

Symmetries

To look the symmetries of the system is one way to reducing the size of
Hamiltonian. Consider the operator

Sz =
∑
i

Szi (2.9)

which measures the total number of up or down spins. It is easy to check
that it commutes with the Hamiltonian. This implies that the Hibert space
decomposes to in subspaces of fixed numbers of spin up or down. The spin
operators form an su(2) algebra and consequently this spin chain has su(2) as
a symmetry of algebra and this means that the eigenstates of the Hamiltonian
will arrange themselves in multiplets of su(2).
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2.1.1 The XXX spin chain

The XXX spin chain is exactly solvable i.e. the spectrum of the Hamiltonian
is known. This is possible via coordinate Bethe Ansatz, a Ansatz for the
eigenstates of the Hamiltonian. It was used by Bethe in 1931 and after, this
technique has been applied to more general models. The idea behind Bethe
Ansatz is to consider a reference state which is an eigenstate of the Hamil-
tonian where all the spins are up and then flip some spins. These spins will
behave like quasi-particles called magnons.

Consider first the ferromagnetic case.
Ground state . The total spin is conserved, this implies that the state with
all spins aligned is a eigenstate of the Hamiltonian. This is the ferromagnetic
vacuum, let us define the vacuum to be

|0〉 = | ↑↑ ... ↑↑〉. (2.10)

and the energy is H|0〉 = 0 .
Excited states, called magnons, are obtained by the action of S−n . In general
we write

|n1, ..., nk〉 = S−n1
...S−nk |0〉. (2.11)

Every eigenstate with k flipped spins is a linear combination of |n1, ..., nk〉

|ψ〉 =
∑

1≤n1<...nk≤N

a(n1, ..., nk)〉|n1, ..., nk〉 (2.12)

with some unknown coefficients a(n1, ..., nk) . The periodicity can be formu-
lated as

a(n2, ..., nk, n1 +N) = a(n1, ..., nk). (2.13)

The Bethe Ansatz postulates the form of these coefficient to be

a(n1, ..., nk) =
∑
σ∈Sk

Aσe
ipσini (2.14)

this is just a plain-wave type Ansatz.

Bethe equations . Now using the eigenfunctions, we write the Bethe equa-
tions, that arise from periodicity conditions

eipiN =
∏

A(pj, pi). (2.15)
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Again the interpretation is rather simple and corresponds to moving the
i-th particle around the spin chain. Written out in terms of the rapidity,
ui = 2 cot pi

2
it simply becomes[

ui + i
2

ui − i
2

]N
=
∏
i 6=j

ui − uj + i

ui − uj − i
(2.16)

The energy in terms of the rapidity is given by

E =
2J

4 + u2
(2.17)

We can find the spectrum by solving the Bethe equations and summing the
energies of the different magnons.

Monodromy and R-matrix

In this part we’ll show the connection between the YBE, Lax pair and the
quantum spin chain.
Take again a chain with N sites and corresponding Hilbert space

H =
⊗
i

Hi.

In our case Hi = C2. A Lax operator is an endomorphism

L : C2 ⊗ C2 → C2 ⊗ C2

and in our model takes the form

Lnm(u) = u⊗ I + iSmi ⊗ σmi (2.18)

where σmi are the Pauli matrices acting on site m. For spin-1
2

they are
connected to the spin operator as Sj = 1

2
σj. Using the permutation operator

we write

Lnm(u) = (u− i

2
)⊗ I + iPnm . (2.19)

Remembering the commutation relation(CR) for Spins operator

[Sl, Sm] = iεlmkSk , (2.20)

it is possible to write the CR of the Lax matrix

Rmj(u1 − u2)Lnm(u1)Lnj(u2) = Lnj(u2)Lnm(u1)Rmj(u1 − u2) (2.21)
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where R is the quantum R-matrix and has the form

Rmj = λ⊗ I + iPmj . (2.22)

Any R-matrix which fulfills this CR has to satisfy the quantum YBE :

L1L2L3 = R−1
12 R

−1
13 L2L3L1R12R13 = R−1

12 R
−1
13 R

−1
23 L3L2L1R23R13R12 (2.23)

and

L1L2L3 = R−1
23 R

−1
13 L2L3L1R13R23 = R−1

23 R
−1
13 R

−1
12 L3L2L1R12R13R23 (2.24)

hence both relations coincide and the R-matrix must satisfy the

R12R13R23 = R23R13R12.

Using Lax we define the monodromy matrix

Tn = LN,n(u)...L1,n(u). (2.25)

It can be seen as a matrix

T (u) =

(
A(u) B(u)
C(u) D(u)

)
. (2.26)

Where A(u), B(u), C(u) and D(u) are operators acting on a Hilbert space.
From T it is possible derive a set of conserved charges that characterize in-
tegrable systems.

We need first the CR between A(u), B(u), C(u) and D(u). These can be
found using the fundamental CR for the Lax operator. We define a transfer
matrix

t(u) = trnTn = A(u) +D(u) (2.27)

and by cyclicity of the trace we find

[t(u1), t(u2)] = 0. (2.28)

Now we expand t(u) around the point u = i
2

. Using various properties of
permutation it is possible to find the important expression

d

du
ln t(u)

∣∣∣
u= i

2

= −i
∑
n

Pn,n+1. (2.29)
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Since we can express P in terms of Pauli matrices it is possible write the
Hamiltonian

H = −J
2

∑
n

Pn,n+1 (2.30)

and we find that the transfer matrix generates a set of conserved
quantities .
Algebraic Bethe Ansatz - The transfer matrix generates a set of commut-
ing conserved quantities so we can diagonalize them simultaneously. Now we
can find, in addition to the spectrum of Hamiltonian, the spectrum of all the
conserved quantities by a different kind of the Bethe Ansatz called algebraic
BA based on a different use of the monodromy matrix. The fundamental
ingredient of the algebraic Bethe Ansatz approach were the FCR, which are
completely described in terms of the R-matrix. Any R-matrix that satisfies
the Yang-Baxter equation is associated to a integrable spin chain.

Relation between R and L

Proof.We suppose that Rij(ui − uj) is such that

R12R13R23 = R23R13R12.

and for some λ
R(λ) = P (2.31)

We define the Lax operator L

Lnm(u) = Rnm(u− µ) µ ∈ K (2.32)

then using hypothesis L satisfies the fundamental CR and now we can define
the monodromy matrix and t-matrix in the usual way . By the fundamental
commutation relations the transfer matrix defines a family of commuting
quantities. Since R(λ) is the special point where the R-matrix becomes zero.
The t-matrix at x = λ− µ becomes

t(x) = eiP . (2.33)

Now consider the derivative of monodromy matrix and use trjPN,j = 1 P2
ij =

1 to find

H ≡ dt

du
(x)t−1(x) =

∑
n

dLn,n+1

du
(x)Pn,n+1. (2.34)

Recalling the relation between the Lax operator and the R-matrix and by
switching the permutation with the Lax operator we arrive at the desired
result.
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2.1.2 The XXZ Spin chain

We recall briefly the results regarding this model without explicitly repeat
the calculations, which are quite similar to the XXX case.

The Hamiltonian

We expose briefly the XXZ model for N spin-1
2

particles .The Hamiltonian is

H = ∆
JN

4
− J

∑
i

1

2
S+
i S
−
i+1 + S−i S

+
i+1 + ∆Szi S

z
i+1 (2.35)

where ∆ ∈ R and SaN+1 = Sa1 . This model is completely integrable by using
both the Ansatz, algebraic and coordinate. It easy to prove that

[H, Sz] = 0. (2.36)

As consequence the total 3rd component of the spin is conserved and the
states organize in sectors of given Sz.

The coordinate Bethe Ansatz

The |0〉 is defined in the same way for the model XXX

|0〉 = | ↑↑ ... ↑↑〉. (2.37)

where the energy E0 = 0 . Next step is to find the eigenstates of the Hamil-
tonian in the case one spin is flipped.
Take the state

|k〉 =
∑
n

eiknS−n |0〉 = eik| ↓↑↑ ...〉+ e2ik| ↑↓↑ ...〉+ e3ik| ↓↑↑ ...〉+ ... (2.38)

|k〉 is an eigenstate of the Hamiltonian with eigenvalue

E(k) =
1

2
= J(2∆− eik + e−ik) (2.39)

this because eiN = 1 as consequence of p.b.c. .
To determine the scattering phase we use this state

|k1, k2〉 =
∑
j1<j2

[
eik1j1+k2j2 + Aeik2j1+k1j2

]
S−j1S

−
j2
|0〉. (2.40)
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The Ansatz for |k1, k2〉 implies that

E(k1) + E(k2) (2.41)

is the eigenvalue of the |k1, k2〉 .
Considering |... ↓j↓j+1〉 in the Ansatz for the wave function it is possible to
prove that

A = −e
(k1+k2) + 1− 2∆eik2

e(k1+k2) + 1− 2∆eik1
. (2.42)

As s consequence of p.b.c., the Bethe eq. as for the XXX chain hold

eikjN =
∏
j 6=l

A(kl, kj). (2.43)

Introducing ∆ = cos ~ eik =
sinh ~(u+ i

2
)

sinh ~(u− i
2

)
the Bethe eq. takes the form

[
sinh ~(uj + i

2
)

sinh ~(uj − i
2
)

]N
=
∏
l 6=j

sinh ~(uj − ul + i

sinh ~(uj − ul − i)
(2.44)

and now if we send ~→ 0 we recover the XXX Bethe eq.
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Some limiting/special cases of the XXZ model

Let us now consider some interesting limiting cases for the anisotropy pa-
rameter in the Heisenberg XXZ Hamiltonian.

• ∆ = 1 : we obtain the XXX Hamiltonian

• ∆ = 0 yields the so-called XX model. Via a Jordan-Wigner transfor-
mation, one can map this model to free fermions on a lattice.

• ∆J →∞ yields the well-known Ising model, of which the ground state
is | ↑↑ ... ↑↑〉 The lowest energy excitations have one spin flipped down,
which yields a state of the form | ↑↑ ... ↑↓↑ ... ↑〉 . Such a state is
referred to as a one-magnon state. All the other ones can be generated
by a permutation of the one down spin over the lattice sites. Note that
the magnon is a boson as the ground state has total spin N

2
in the

z-direction, whereas the one-magnon state has total spin N
2
− 1. Thus

the magnon has spin S = 1 and is a boson.

• ∆J → −∞ yields an anti-ferromagnetic Ising model, with two ground
states:

| ↑↓ ... ↑↓↑〉
and

| ↓↑↓↑↓ ...〉
which are called Néel states. The lowest energy excitations of these

ground states are called domain walls, which look like

| ↓↑↓ ... ↑↓↓↑ ...〉

• J∆ > 0 and |∆| > 1 yields a ferromagnet along the z-direction. We can
deduce this as the overall sign of the Hamiltonian is negative, yielding a
preference for alignment. Furthermore, the fact that |∆| > 1 represents
a dominance of the z-term as opposed to the x and y terms in the
Hamiltonian, so that we may neglect the latter two.

• J∆ < 0 and |∆| > 1 yields an overall plus sign of the Hamiltonian,
thus favoring misalignment. Thus we have an anti-ferromagnet along
the z-direction.

• J∆ 6= 0 and |∆| < 1 : now the configurations in the XY-plane energet-
ically dominate those in the z-direction and depending on the overall
sign of the Hamiltonian we get (mis)alignment in the XY-plane, also
called the planar regime. As consequence the correlation length λ→∞
and we have the conformal invariance .
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2.1.3 Yangian and Yang-Baxter equation

To introduce the Yangian of simple Lie algebra we must define the univer-
sal enveloping algebra. In this section, we’ll see the connection between the
Yangian, YBE and R-matrix saw in the preceding sections. Next chapter
will introduce the basic definitions of category theory.

Definition 2.3 Let g be a Lie algebra and T(g) the tensorial algebra on the
underlying vector space g. T(g)0 = K · 1 and T(g)m is the subspace of T(g)
of all homogeneous tensors of m-degree .

We put
uv,w = v ⊗ w−w ⊗ v− [v,w] v,w ∈ g (2.45)

We denote
L(g) =

∑
v,w∈g

T (g)⊗ uv,w ⊗ T (g). (2.46)

Since
uv,w ∈ T (g)1 + T (g)2 ⇒ L(g) ⊆

∑
m≥1

T (g)m (2.47)

L(g) is two-sides ideal in T(g) .

We define universal enveloping algebra g as the quotient

U(g) =
T (g)

L(g)
. (2.48)

Exemple 2.4 Consider sl(2,K).

sl(2,K) = spanK

{
H =

[
1 0
0 −1

]
;X =

[
0 1
0 0

]
;Y =

[
0 0
1 0

]}
(2.49)

from this we can find [H,X] = 2X, [H,Y ] = −2Y, [X, Y ] = H.

The Poincaré - Birkhoff - Witt theorem say that a basis for

U(sl(2)) =
T (sl(2))H ⊗X −X ⊗H − 2X

H ⊗ Y − Y ⊗H + 2Y
X ⊗ Y − Y ⊗X −H

 (2.50)

is {
Hh, Xx, Y y, h, x, y ∈ Z+

}
. (2.51)
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To give a formal definition of Yangian we would need many definitions. Such
an approach is beyond the scope of this section therefore we’ll expose this
concept drawing inspiration [14].

Definition 2.5 A coproduct on U(g) is a map ∆ : U(g) → U(g) ⊗ U(g)
defined on the generators of g, {Ij}, j = 1, ..., dimg}

∆(Ij) = Ij ⊗ 1 + 1⊗ Ij (2.52)

such that

• this diagram

U(g)
∆−−−→ U(g)⊗ U(g)

∆

y yU(g)⊗∆

U(g)⊗ U(g)
∆⊗U(g)−−−−→ U(g)⊗ U(g)⊗ U(g)

(2.53)

is commutative ∀x ∈ g . The diagram expresses the coassociativity of
∆, physically we say that the action of x on a 3-particle state is unique.

• homomorphism

∆([x, y]) = [∆(x),∆(y)] ∀x, y ∈ g (2.54)

i.e. physically the multiparticle states carry representations of the sym-
metry algebra.

The Yangian Y (g) is the eveloping algebra generated by {Ij}j=1,...,dimg and a
second set of generators {Jµ, µ = 1, ..., dimg}, in the adjoint representation
of g so that

[Iν , Jµ] = ΓνµkJk (2.55)

equiped with a coproduct

∆(Jµ) = Jµ ⊗ 1 + 1⊗ Jµ +
α

2
ΓνµkIk ⊗ Iµ (2.56)

for α ∈ C .

The Yangian Y (g) is a Hopf algebra defining a co-unit map

ε : Y (g)→ C, ε(Ii) = ε(Ji) = 0 (2.57)
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physically a one-dimensional vacuum representation and antipode map

s : Y (g)→ Y (g) s(Ii) = −(Ii) s(Ji) = −Ji +
1

2
ΓνµkIkIµ (2.58)

an anti-automorphism and physically a PT-transformation .

It is the moment to spend some words about the [Ja, Jb]. Since ∆ must be a
homomorphism we have a ”terrific” constrains

•
[Ja, [Jb, Ic]]− [Ia, [Jb, Jc]] = α2Λabcdef{Id, Ic, Ig} (2.59)

where

Λabcdef =
1

24
fadifbejfcgkfijk (2.60)

and
{x, y, z} =

∑
i 6=j 6=k

xiyjzk (2.61)

•

[[Ja, Jb], [Il, Jm]]+[[Jl, Jm], [Ia, Jb]] = α2Λabcdefflmc+Λlmcdegfabc{Id, Ie, Jg}.
(2.62)

Drinfel’d called those relations ”terrific” .

The R-matrix and YBE
A way to see link between YBE and Y (g) is this definition of monodromy
matrix

T (λ) ≡ exp(−1

λ
taIa +

1

λ2
taJa −

1

λ3
ta

1

cA
fabc[Jc, Jb] + ...) (2.63)

where λ ∈ C is a new, ”spectral” parameter .

Now we see that T is a matrix where the elements ∈ Y (g) . The significance
of T lies in the fact that

∆(Tij(λ)) = Tik(λ)⊗ Tkj(λ) (2.64)

Y (g) has an automorphism

Lmu : Ia 7→ Ia, Ja 7→ Ja + µIa (µ ∈ C) (2.65)

whose action on T is
T (λ) 7→ T (λ+ µ). (2.66)

32



Let us consider the intertwiners R̃ which are required to satisfy commutativ-
ity with the action on T

R̃(ν − µ). Lµ × Lν(∆(x)) = Lν × Lµ(∆(x)). R̃(ν − µ) (2.67)

for any x ∈ Y (g) .Their equivalence

R̃(λ−ν)⊗1. 1⊗R̃(λ−µ). R̃(µ−ν)⊗1 = 1⊗R̃(ν−µ). R̃(λ−µ)⊗1. 1⊗R̃(λ−ν)
(2.68)

is the Yang-Baxter equation . This is a

R̃(µ− ν)

R̃(λ− ν)

R̃(λ− µ)

=

R̃(µ− ν)

R̃(λ− ν)

R̃(λ− µ)

Figura 2.1 Graphic Yang-Baxter equation from Yangian

This is the same equation of 1+1D S-matrix theory stating the condition for
factorization of multiparticle S-matrix into 2-particles factors. Here, each
line in figure will carry a representation of the Yangian.
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2.2 Two-dimensional conformal field theory

Conformal field theory: a brief overview

The conformal maps are present in complex analisis but also in complex
geometry, here we give a definition and we prove a very important feature of
conformal maps .
Definition 2.6 A holomorphic map f : U ⊂ Cn → C is conformal if

f ′(z) 6= 0 ∀z ∈ U. (2.69)

The most important consequence for the conformal functions and the theory
of fields is :
Theorem 2.7 A conformal map is angle-preserving and sense-preserving.

Proof . Let f : U → C be a holomorphic map on an open set U . Let
z0 ∈ U and let γ1 : [−1, 1] → U and γ2 : [−1, 1] → U be two paths which
meet at z0 = γ1(0) = γ2(0) . The original curves meet at z0 in the (signed)
angle

θ = arg γ′2(0)− arg γ′1(0) = arg
γ′2(0)

γ′1(0)
(2.70)

The images of the curves f(γ1) and f(γ2) meet at f(z0) at angle

φ = arg (fγ2)′(0)− arg (fγ1)′(0)

= arg
(fγ2)′(0)

(fγ′1(0))

= arg
f ′(γ2)(0)γ′2(0)

f ′(γ1(0))γ′1(0)

= arg
f ′(z0)γ′2(0)

f ′(z0)γ′1(0)

= arg
γ′2(0)

γ′1(0)
= θ. (2.71)

2

Let’s talk about Physics. A classical model of statistical mechanics in D spa-
tial dimension on a lattice is equivalent to a euclidean field theory in D − 1
spatial dimension and one temporal dimension . The equivalence is obtained
in the continuum limit when the lattice spacing a→ 0 .
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The equivalence is essentially summarized by the following points :

• it is possible to represent the partition function as a path integral

• the limit of the fields for a→ 0 is finite i.e. the fields are renormalizable
.

• the continuum limit of field theory is justified around the critical point
where the fluctuations of observables are correlated at macroscopic dis-
tance.

• Correlation length λ is connected to the mass m of the theory by λ = 1
m

therefore at the critical point, when λ is macroscopic corrisponds to
vanishing of m .

Let consider an example, a scalar field φ(x) in D euclidean dimension . The
action associated to φ(x) is

S =
1

2

∫
dDx∂µφ(x)∂µφ(x) (2.72)

is invariant under this transformation

x 7→ kx; k ∈ K (2.73)

if the the field transform

φ(x) 7→ k−
D−2
2 φ(x) (2.74)

then for 2-point correlator

〈φ(x)φ(y)〉 1

|x− y|D−2
. (2.75)

Hence a classical theory massless is invariant under conformal transforma-
tion. The conformal invariance arise from a generalization of the (2.70).
A infinitesimal transformation of coordinates xµ 7→ xµ + εµ is a conformal
transformation if

g′µν(x
′) = Ω(x)gµν(x) where Ω(x) is a scale factor (2.76)

and this is a deformation of euclidean metric gµν = δµν . The transformation
is

g′µν(x
′) = gµν(x)− ∂µε(x)ν − ∂νε(x)µ (2.77)
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now eqating (2.75) and (2.76) we have

∂µε(x)ν + ∂νε(x)µ = (1− Ω(x))gµν(x) ≡ Λ(x)gµν(x). (2.78)

Taking the trace

∂µε(x)ν + ∂νε(x)µ =
2

D
∂ · εgµν . (2.79)

It means that the trace of symmetric part is vanishing when we do a conformal
change of coordinates .
A key tool in CFT is the stress-energy tensor defined with respect to defor-
mations of coordinates :

δS =
1

(2π)D−1

∫
dDxTµν∂

µεν . (2.80)

The invariance under traslations, rotations and local dilatation implies

∂µTµν = 0, Tµν = Tνµ, T µµ = 0. (2.81)

i.e. if is hold (2.81) we have

δS = 0. (2.82)

In light of Poliakov’s theorem we can see the conformal symmetry as natural
extension under dilatations for theories with local interaction that admit
well-defined Tµν .

Conformal invariance in 1+1 dimensional field theory

For D = 2 the condition (2.78) is{
∂1ε2 = −∂2ε1,

∂1ε1 = −∂2ε2.
(2.83)

Where z = x + iy, ε(z) = ε1 + iε2 (2.79) are the usual Cauchy-Riemann
condition for the analyticity of ε(z) :

∂z̄ε(z) = ∂z ε̄(z̄) = 0. (2.84)

In D=2 the conformal transformation are all the functions analytic in z and
anti-analytic in z̄ : {

z 7→ z + ε(z),

z̄ 7→ z̄ + ε(z̄)
(2.85)
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as consequence the conformal group is infinite dimensional. The algebra
which generates these transformations is infinite dimensional and the corre-
sponding infinitesimal generators are found to be

ln = −zn+1∂, and l̄n = −z̄n+1∂̄, (2.86)

where

∂ :=
∂

∂z
, ∂̄ :=

∂

∂z̄
and n ∈ Z. (2.87)

These generators satisfy the Witt algebra,

[ln, lm] = (n−m)ln+m, [l̄n, l̄m] = (n−m)l̄n+m (2.88)

with
[ln, l̄n] = 0, for any n,m ∈ Z. (2.89)

Therefore the conformal algebra is the direct sum of two isomorphic subal-
gebras generated by ln, l̄n. Not all the conformal transformation are globally
defined : only the automorphism of Riemann sphere (C∪∞) are the Moebius
transformation or global conformal transformation :

z 7→ w(z) =
αz + β

γz + δ
; α, β, γ, δ ∈ C; ∆ = αδ − βγ 6= 0. (2.90)

They correspond to ε(z) = α+ βz + γz2. i.e. traslations, dilatations and in-
versions. In the other cases, the transformation introduce a singularity and
do not correspond to symmetries of the states of theory.

A conformal field theory is equipped with particular fields called primary,
φhh̄(z, z̄). Primaries fields transform as covariant tensors :

φhh̄(z, z̄) 7→
(
dw

dz

)h(
dw̄

dz

)h̄
φhh̄(w, w̄) (2.91)

(h, h̄) ≡ i are called conformal weights of φhh̄ ≡ φi; ∆ = h + h̄ is the
scale dimension and s = h − h̄ is the conformal spin. The 2-points func-
tions are uniquely determined by the invariance under the global conformal
transformation (2.82):

〈φi(z1, z̄1)φj(z2, z̄2)〉 =
δij

(z1 − z2)2h(z̄1 − z̄2)sh̄

=
δij

|z1 − z2|2∆

(
z̄1 −−z̄2

z1 − z2

)s
. (2.92)
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The primary fields are mapped univocally in to irriducible represen-
tation of the conformal algebra.

Definition 2.8 A integrable field theory is a theory with an infinity of com-
muting conserved charges.

The conserved charges associated to the QFT in the z-plane are generated
by the energy momentum tensor Tµν : which is always symmetric and in
conformally invariant theories, also traceless . It is usually more convenient
to express the components of the energy momentum tensor in terms of the
z, z̄ coordinates.

Tzz =
1

4
(T00 − 2iT10 − T11) (2.93)

Tz̄,z̄ =
1

4
(T00 + 2iT10 − T11) (2.94)

Tz,z̄ = Tz̄,z
1

4
(T00 + T11) =

Θ

4
. (2.95)

The conservation of the energy momentum tensor amounts to the imposition
of the following constraints,

∂̄Tzz = ∂Tz̄,z̄ = 0, (2.96)

which justify the definitions

T (z) := Tzz, T̄ (z̄) := Tz,z̄. (2.97)

Consequently, local conformal transformations in the complex z-plane are
generated by the holomorphic and antiholomorphic components of the energy
momentum tensor defined before. In fact the constraints (2.96) suggests the
introduction of the generators

Ln, L̄n

which arise as the coefficients of the Laurent expansion of the holomorphic
and anti-holomorphic components of the stress-energy tensor :

T (z) =
∑
n∈Z

z−2−nLn ⇔ Ln =

∮
dγ(γ − z)n+1T (γ). (2.98)

It is possible to define a similar expansion for the component T̄ (z̄) in terms
of L̄n .
To compute the algebra of commutators satisfied by these modes it is required
the evaluation of commutators of contour integrals of the type [

∮
dz,
∮
dγ]
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together with the computation of operator product expansions (OPE) of the
holomorphic and anti- holomorphic components of the energy momentum
tensor. OPE’s characterise the behaviour in the limit z → γ . In 1+1
dimensions and in the Euclidean regime give us the following OPE

T (z)T (γ) =
c
2

(z − γ)4
+

2T (γ)

(z − γ)2
+

∂T (γ)

(z − γ)
. (2.99)

The constant c is called central charge of the CFT and depends on the partic-
ular theory. By the OPE we can compute the commutator of the generators
above introduced

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (2.100)

and is known as Virasoro algebra .

2.2.1 Scaling near critical point

For the quantum case the scaling invariance is obtained near the critical
points where the beta function vanish. Dynamics in the vicinity of second
order phase transitions can be described by CFT perturbed by the addition
of operators that break the conformal symmetry and introduce a mass scale
in the system. The specific values of the parameters for which a statistical
system is critical are associated to fixed points of the renormalization group
flow. A renormalization group trajectory flowing away from a fixed point is
obtained by combinations of the relevant scalar operators Φi present in the
corresponding CFT. The corresponding off-critical action is given by

Sλ = SCFT +
∑
n

λn

∫
Φn(x)d2x (2.101)

where the λn are the coupling constants and SCFT is the action of the original
unperturbed CFT. The coupling constant has scale dimension 2(1− h) and
so has conformal dimensions (1− h, 1− h). The CFT is a fixed point of the
renormalisation group; so provided 2(1− h) > 0 a RG transformation moves
the model away from the critical point. Thus Φ is called relevant operator if
h < 1 and irrelevant if h > 1.
The integrability of a PCFT was proved by Zamolodchikov using the counting
argument [26] .The quantum integrability of a 1+1-dimensional massive QFT
possessing an infinite number of quantum conserved charges was established
in light of the results found in [28].
Parke demonstrated the existence of two of these quantities different from
the energy momentum tensor and having different spin from each other needs
to be proven in order to conclude the quantum integrability of the theory.
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2.2.2 S matrix in 1+1 dimensional theories

Factorisability and Parke’s theorem

For a scattering process with m massive particles incoming and n outgoing
the elements of S matrix are defined by

S1′,...,n
1,...,m = 〈F ′1(p′1)...F ′m(p′m)||F1(p1)...Fn(pn)〉. (2.102)

From Coleman, Mandula’s theorem we know that a field theory with a con-
served charge that transform under the action of Lorentz’s group like a tensor
of rank 2 has a trivial S matrix. It is obvius that the conserved charge is the
energy-momentum vector. For a 1+1 field theory with 2 conserved charges
different from impulse, the set of initial impulses are conserved i.e. :

{p′1, ..., p′m} = {p1, ..., pm} (2.103)

and the S matrix is factorized. This is Parke’s theorem,(see [16] ), and implies
that there is no production of particles. These key properties are obtained if
we assume the following hypothesis:

• There are two different conserved charges by the impulses, Q+ and Q−.
They transforms under action of Lorentz group in this way:

Q′+ = Λ+qQ+ Q′− = Λ−nQ− (2.104)

where q, n are odd numbers such that q ≥ n ≥ 1.

•
Q± =

∫
j0
±dx (2.105)

•
[Q+, Q−] = 0 (2.106)

• Q+, Q− on no trivial linear combination of particles in a multiplet is
never null.

With the assumptions made until now one can show that the following prop-
erties hold :

1. There is no creation of particles.

2.
{p′1, ..., p′m} = {p1, ..., pm}
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3. The S-matrix is factorized in terms of 2 particles interaction

More details on (3), let’s consider a diagram with m lines of different in-
clination like in figure case m=4. Time flows from the top down. At each
intersection point corresponds an element Skhij (θab) The given rule has an

ambiguity: a certain element Sj1,...,jmi1,...,im
can be associated to several diagrams.

Instead, these diagrams should coincide. This is possible only if S satisfies
the following factorization equation :

t

j4 j3 j2

l4

l3

l2

l1

k4

i2

θ2 θ3

i3i1

θ1

j1

i4

θ4

i3

Figura 1 : S-matrix for m=4 and θ1 > θ2 > θ3 > θ4

Sk1k2i1j2
(θ12)Sk1i3j1k3

(θ13)Sk2k3j1j3
(θ23) = Sk1k2j1j2

(θ12)Si1k3k1j3
(θ13)Sk2k3i2i3

(θ23)

(2.107)

the Yang-Baxter- Zamolodchikov-Faddeev, where θ13 = θ23 + θ12 . This
equation has the same structure of YB equation found in statistical mechanics
for the Boltzman’s weights in a vertex model .

2.2.3 Yangian symmetry in 1+1D field theory

Yangian from classical charges

Suppose a 1+1D field theory equipped with a symmetry associated to a Lie
algebra g. Noether theorem tells that there exists a conserved current

jµ(x, t) ∈ g : ∂µjµ = 0. (2.108)

Under the further hypothesis that

∂0j1 − ∂1j0 + [j1, j0] = 0 (2.109)

we can write
jµ = jµat

a (2.110)

where ta are the generators of g . Then we have the charges
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• local

Q(0)
a =

∫ +∞

−∞
j0adx (2.111)

• and non local

Q(1)
a =

∫ +∞

−∞
j1adx+

fabc
2

∫ +∞

−∞
j0b(x)

(∫ x

−∞
j0c(y)dy

)
dx. (2.112)

Using these charges we can define a classical Yangian making the correspon-
dence

Q(0)
a = Ia Q(1)

a = Ja (2.113)

and replacing the commutators with

{jµa, jνb} = fabcjσcδ(x− y) σ = |µ− ν|. (2.114)

The antipode map is a PT-transformation

jµ(x, t) 7→ jµ(−x,−t). (2.115)

It remains to define a coproduct. A way to interpret this map is by splitting
space into two regions (positive and negative x, say), each of which would
naturally contain just one of a pair of asymptotically-separate, particle-like
lumps.
The two components of the coproduct correspond to the integrals over the two
regions, and the non-triviality of coproduct is connected to the non-locality
of Q

(1)
a .

More specifically :

Q(0)
a =

∫ 0

−∞
j0a(x)dx+

∫ +∞

0

j0a(x)dx = Q
(0)
a− +Q

(0)
a+ (2.116)

and

Q(1)
a = Q

(1)
a− +Q

(1)
a+ +

fabc
2
Q(0)
a Q

(0)
c−Q

(0)
b+ (2.117)

therefore by correspondence and (2.52), (2.56) it is easy define the coproduct.

Now an important question will take us to find again the YBE : how to
incorporate the boundary conditions into field theories with Y (g) symmetry
without losing integrability?
We take as our starting point the boundary equation of motion for the model
on −∞ < x ≤ 0, written in terms of the currents :

j+a(0)j−a(0) = 0 (2.118)
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and we solve this with
j+(0) = α(j−(0)) (2.119)

where
α : g→ g

ta 7−→ αabt
b (2.120)

in light-cone coordinates (2.90) lead to local charges connected to sym-
metrized trace, an invariant tensor of g. For more details about da1a2...am
and the Casimir operator associated see [18].
The local charges important for our expositions are :

q±s =

∫ +∞

−∞
da1a2...amj

a1
± j

a2
± ...j

am
± dx (2.121)

Now let us require that α be such as to leave precisely one of each pair qs+q−s
of local charges conserved, this is so if α in involution .

α(g) = h⊕m (2.122)

α decomposes g in two subalgebra, h is the subalgebra with eigenvalue + 1
and m is the -1 eigenspace .
By some calculation, on half-line the Q

(1)
p , m components are not conserved

but the modified charges

Q̃(1)
p ≡ Q(1)

p +
fpiq
4

(Q
(0)
i Q(0)

q +Q(0)
q Q

(0)
i ) (2.123)

are conserved.
We denote as Y (g, h) he subalgebra of Y(g) generated by Q

(0)
a , Q̃

(1)
a . The

key algebraic property of Y (g, h), which fixes the special form of the Q̃
(1)
a , is

that
∆(Y (g, h)) ⊂ Y (g)⊗ Y (g, h) (2.124)

This property makes Y (g, h) a coideal subalgebra. Its significance is that
boundary states form representations of Y (g, h) and, just as the usual co-
products being a homomorphism (2.54) enables two-particle states to repre-
sent the correct symmetry algebra, so this property allows a state consisting
of a bulk particle and a boundary to represent Y (g, h) .

The analogue of R̃ and its relation (2.68) is the ”reflection”- or K-matrix,
which satisfies

K(µ)Lµ(x) = L−µK(µ) ∀ ∈ Y (g, h). (2.125)

The analogue of the Yang-Baxter equation is the reflection equation or bound-
ary Yang-Baxter equation
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R̃(ν − µ). 1⊗K(ν). R̃(µ+ ν). 1⊗K(µ) = 1⊗K(µ). R̃(µ+ ν). 1⊗K(ν). R̃(ν − µ)

(2.126)

We conclude this by saying that there are many other models where the Yang-
Baxter equation emerges . Thery are not cited for reasons of space. This
chapter was intended to show how this equation is related to integrability.
Next step will be the introduction to category theory and how its wonderful
logic allows to connect and unify different models.
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Chapter 3

Prolegomenon of category
theory to the practing physicist

The Category theory arises in the context of algebraic topology . It was
developed by Saunders Mac Lane and Samuel Eilenberg in 1945. The first
concept on which they worked was the natural transformation around which
they developed the idea of category. This theory allows the unification of
many aspects of science. Is it not the unification what it seeks to do theo-
retical physics? The Category theory it’s not just a set tools to codify alge-
braically the connection between different aspects of mathematics or physics,
it’s poetry, the logic flow and describes, makes light in the kingdom of caos
elegantly. Is the correct enviroment where to work for whom try to solve the
foundational problems of quantum field theory .
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3.1 Basical definition

Definition 3.1 A category C is

• a class of objects denoted by Ob(C)

• ∀ C1,C2 ∈ Ob(C) a set HomC(C1, C2) called the set of morphisms from
C1 to C2

• for every C1, C2, C3 ∈ Ob(C) there is a map :

◦ : HomC(C1, C2)×HomC(C2, C3) −→ HomC(C1, C3) (3.1)

(f, g) 7−→ g ◦ f (3.2)

called the composite of g and f satisfying the following conditions :

– if (C1, C2) 6= (C3, C4), HomC(C1, C2) ∩HomC(C3, C4) = ∅

– if h ∈ HomC(C1, C2), h ◦ (g ◦ f) = (h ◦ g) ◦ f ;

– for every C ∈ Ob(C) there exists 1C ∈ HomC(C,C) such that for
every f ∈ HomC(C,C), f ◦ 1C = f = 1C′ ◦ f .

Example 3.1. Sets, together with functions between sets, form the cate-
gory Sets. For every algebraic structure you can consider its category: take
sets endowed with that algebraic structure as objects and take morphisms
between two objects as mor- phisms. In this way, you obtain the category of
groups, of rings, of right R-modules and so on.

Definition 3.2. A category is called small if the class of its objects is a
set; discrete if, given two objects C1, C2 such that C1 = C2 implies that
HomC(C1, C2) = {1C1} if C1 6= C2 then HomC(C1, C2) = ∅ .

The opposite category of a category C is the category Cop where Ob(Cop) =
Ob(C) and HomCop(C1, C2) = HomC(C2, C1) .

Definition 3.3. Let C and D be categories . A covariant functor F : C → D
consists of assigning to each object C ∈ C an object F (C) ∈ D and to each
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morphism f : C1 → C2 a morphism F (f) : F (C1)→ F (C2) such that

F (1C) = 1F (C) , F (g ◦ f) = F (g) ◦ F (f) (3.3)

F is contravariant functor if F (f) ∈ HomD(F (C2), F (C1)) and

F (g ◦ f) = F (f) ◦ F (g). (3.4)

Definition 3.4. Consider the map

FC1
C2

: HomC(C1, C2)→ HomC(F (C1), F (C2)) (3.5)

f 7−→ F (f)

• F is faithful if FC1
C2

is injective for every C1, C2 ∈ C

• F is full if FC1
C2

is surjective for every C1, C2 ∈ C

Example 3.5. Let C a category and C1 ∈ C , we define a functor

hC1 = HomC(C1, •) : C → Set (3.6)

that allows to embed each category in the category Set.
hC1 on the objects :

hC1(C2) = HomC(C1, C2) ∈ Set (3.7)

hC1 on f : C3 → C4

hC1(f) = HomC(C1, f) : HomC(C1, C3)→ HomC(C1, C4) (3.8)

(g : C1 → C3) 7→ (f ◦ g : C1 → C4).

hC1 is covariant :

•
hC1(1C)(g) = 1C ◦ g = g ⇒ hC1(1C) = 1hC1 (C) (3.9)

•

hC1(k ◦ f)(g) = k ◦ f ◦ g
= hC1(k)(f ◦ g)

= (hC1(k) ◦ hC1(f)) ◦ g (3.10)

2

Similarly, we can define a contravariant functor

hC1 = HomC(•, C1) : C → Set.

Notation 3.6 From now on, if not otherwise specified, the world functor
will mean covariant functor.
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Definition 3.7. Given two functors C F,G−−→ D a functorial morphism (or
natural transformation) ϕ : F → G is a collection of morphisms in D,

(ϕC : F (C)→ G(C))C∈C

such that, for every f : C1 → C2,

ϕC2 ◦ F (f) = G(f) ◦ ϕC2 (3.11)

i.e. the following diagram

F (C1)
ϕC1−−−→ G(C1)

F (f)

y yG(f)

F (C2)
ϕC2−−−→ G(C2)

(3.12)

is commutative ∀f : C1 → C2 .F,G are isomorph if ∀C ∈ C, ϕC is an iso-
mophism and we write F ∼= G.

Definition 3.8. Let C F−→ D be functor . We say that

• F is an equivalence of categories if there is a functor D G−→ C such that

FG ∼= 1D, GF ∼= 1C.

• F is an isomorphism of categories if there is a functor Let D G−→ C such
that

FG = 1D, GF = 1C.

Theorem 3.9. Let C T−→ D be functor. Then T is an equivalence of cate-
gories if and only if T is full, faithful and, for every D ∈ D, there exist C ∈ C
and an isomorphism T (C)

λD−→ D.

Proof.Assume first that T is an equivalence, then there exist a functor

D S−→ C and functorial isomorphisms α : ST → 1C, β : TS → 1D.

T is faithful.

Let f, f ′ ∈ HomC(C1, C2)with T (f) = T (f ′), then ST (f) = ST (f ′). Since α
is a functorial morphism we have the following commutative diagram

ST (C1)
αC1−−−→ C1

F (f)

y yG(f)

F (C2)
αC2−−−→ G(C2)

(3.13)
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αC2 ◦ ST (f) = f ◦ αC1 αC2 ◦ ST (f ′) = f ′ ◦ αC1

since α is an isomorphis, is invertible :

αC2 ◦ ST (f) ◦ α−1
C1

= f αC2 ◦ ST (f) ◦ α−1
C1

= f ′ (3.14)

but ST (f) = ST (f ′)⇒ f = f ′.

T is full.

We put h : T (C1)→ T (C2) and

g = αC2 ◦ S(h) ◦ α−1
C2
∈ HomC(C1, C2)

. Simce α is an isomorphism we have

ST (g) = α−1
C2
◦ g ◦ αC1 = S(h) (3.15)

by definition of g, but S is an equivalence therefore is faithful ⇒ h = T (g):

ST (C1)
αC1−−−→ C1

S(f)=ST (g)

y yg
F (C2)

αC2−−−→ G(C2)

(3.16)

For all D ∈ D if we put C = T (D), the isomorphism being looked for is
βD : ST (D)→ D .

2
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3.2 Monoidal category

Definition 3.10 A monoidal category(C,⊗,1, a, l, r) is a category endowed

• with an object 1 ∈ C

• a functor

⊗ : C × C → C (3.17)

called tensor product.

• An associative constraint for ⊗ is a functorial isomorphism

aX,Y,Z : (X ⊗ Y⊗)Z → X ⊗ (Y ⊗ Z) (3.18)

such that the diagram

(X ⊗ Y⊗)Z
aX,Y,Z−−−−→ X ⊗ (Y ⊗ Z)

(f⊗g)⊗h
y yf⊗(g⊗h)

(X ′ ⊗ Y ′⊗)Z ′
aX′,Y ′,Z′−−−−−→ X ′ ⊗ (Y ′ ⊗ Z ′)

(3.19)

is commutative for every f, g, h ∈ C .

The associativity constraint a satisfies the Pentagon Axiom if the pentago-
nal diagram

X ⊗ (Y ⊗ (Z ⊗ T ))

X ⊗ ((Y ⊗ Z)⊗ T ))

(X ⊗ (Y ⊗ Z))⊗ T ((X ⊗ Y )⊗Z)⊗ T

(X ⊗ Y )⊗ (Z ⊗ T )

1⊗ φ

φ

φ⊗ 1

φ

φ

commutes for all objects X, Y, Z, T ∈ C .
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• Fix an object 1 in C , a left unit constraint and right unit constraint
with respect to 1 are a natural isomorphisms

lX : 1⊗X → X (3.20)

rX : X ⊗ 1→ X (3.21)

such that

1⊗X lX−−−→ X

1⊗f
y yf

1⊗X ′ lX′−−−→ X ′

(3.22)

X ⊗ 1
rX−−−→ X

f⊗1
y yf

X ′ ⊗ 1
rX′−−−→ X ′

(3.23)

commutes for every f .

In a monoidal category lX , rX satisfy the Triangle Axiom :

(X ⊗ 1)⊗ Y X ⊗ (1⊗ Y )

X ⊗ Y

aX,1,Y

rX ⊗ Y
X ⊗ lY

commutes for all objects X, Y ∈ C .

Proposition 3.11 For any object X ∈ C one has the equalities

l1⊗X = X ⊗ lX and rX⊗1 = rX ⊗X. (3.24)

Proof.It follows from the functoriality of l that the following diagram com-
mutes
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1⊗ (1⊗X)
X⊗lX−−−→ 1⊗X

l1⊗X

y ylX
1⊗X lX−−−→ X

(3.25)

Since lX is an isomorphism, the first identity follows. The second identity
follows similarly from the functoriality of r.

2

Proposition 3.12 The unit object in a monoidal category is unique up to
a unique isomorphism.

Proof.If X = 1 ⇒ lX = rX = ι . Let 1,1′ be two unit objects. Let
(r, l), (r′, l′) be the corresponding unit constraints. Then we have the isomor-
phism

η := l1′ ◦ r′1 : 1→ 1′. (3.26)

It is easy to show using commutativity of the above triangle diagrams that
η maps ι to ι′. It remains to show that η is the only isomorphism with this
property. To do so, it suffices to show that if f : 1 → 1 is an isomorphism
such that the diagram

1⊗ 1
f⊗f−−−→ 1⊗ 1

ι

y yι
1

f−−−→ 1

(3.27)

is commutative, then f = 11. To see this, it suffices to note that for any
morphism g : 1→ 1 the diagram

1⊗ 1
g⊗1−−−→ 1⊗ 1

ι

y yι
1

g−−−→ 1

(3.28)

is commutative, so f ⊗ f = f ⊗ 1 and hence f = 1.

2
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Examples of monoidal category

• Sets the category of sets is a monoidal category, where the tensor
product is the Cartesian product and the unit object is a one element
set; the structure morphisms a,, l, r are obvious.

• Let G be a group . The category Rep(G) of all representations of G over
a vector space V, where ⊗ is the tensorial product of representation : if
for a representation V we denote by ρV the corresponding : G→ GL(V )
then

ρV⊗W (g) := ρV (g)⊗ ρW (g).

The unit object in this category is the trivial representation .

• Similarly if g is a Lie algebra, the category of its representations Rep(g)
where the tensor product is defined by

ρV⊗W (a) := ρV (g)⊗ IdW + IdV ⊗ ρW (a).

where ρY : g → gl(Y ) is the homomorphism associated to a represen
tation Y of g, and 1 is the 1-dimensional representation with the zero
action of g.

3.2.1 Monoidal category of vector space

The most important example of a monoidal category is given by the category
VecK of vector spaces over a field K. The latter is equipped with a monoidal
structure for which ⊗ is the usual tensor product defined by

V ⊗W = Ll(V ×W )
/
U

(3.29)

as quotient vector space of Ll(V × W ) the free vector space on V × W .
U = Span(N1 ∪N2 ∪N3 ∪N4)

N1 = {δ(v,w) − δ(λv,w), v ∈ V,w ∈ W,λ ∈ K} (3.30)

the homogeneity on the first component

N2 = {δ(v,w) − δ(v,λw), v ∈ V,w ∈ W,λ ∈ K} (3.31)

the homogeneity on the second component and the additivity on first and
second component

N3 = {δ(v,w′+w) − δ(v,w) − δ(v,w′), v ∈ V,w,w′ ∈ W,λ ∈ K} (3.32)
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N4 = {δ(v+v′,w) − δ(v,w) − δ(v′,w), v, v
′ ∈ V,w ∈ W,λ ∈ K} (3.33)

where
δ : V ×W → Ll(V ×W )

acting like Kroneker’s δ on the couple (v, w) ∈ V ×W .

After the quotient we have π : Ll(V × W ) → V ⊗ W and the following
diagram is commutative

(V ×W ) V ⊗W

Ll(V ×W )

⊗

δ
π

.

⊗ satisfie the universal property : For each S vector space and for each
bilinear map

φ : V ×W → S

∃ !ψ (bilinear) : S → V ⊗W

such that

(V ×W ) V ⊗W

S

⊗

φ

ψ

.

this diagram is commutative :

ψ = ⊗ ◦ φ. (3.34)

The unit object 1 is K and the associativity and unit constraints are the
natural isomorphisms :

aV1,V2,V3 : V1 ⊗ (V2 ⊗ V3)→ (V1 ⊗ V2)⊗ V3

(u⊗ v)⊗ w 7→ u⊗ (v ⊗ w)

lV : V → K⊗ V

v 7→ 1⊗ v
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rV : V → V ⊗K

v 7→ v ⊗ 1.

Note that the inverse to lV is

l−1
V : K⊗ V → V

k ⊗ v 7→ k · v.
The scalars are provided by K itself, since it is in bijective correspondence
with the linear maps from K to itself.

3.2.2 Braided categories

These categories are the fundamental instrument to introduce the categorical
notion of Yang-Baxter equation.[19]

Definition 3.11 A functorial system of isomorphisms cA,B : A⊗B → B⊗A
in a monoidal category (C,⊗, 1, a, l, r) is called a commutativity constraint if
it satisfes the hexagon identities

cA⊗B,C = aC,A,B ◦ (cA,C ⊗B) ◦ a−1
A,C,B ◦ (A⊗ cB,C) ◦ aA,B,C (3.35)

cA,B⊗C = a−1
B,C,A ◦ (A⊗ cB,C) ◦ aB,A,C ◦ (cB,C ⊗ C) ◦ a−1

A,B,C (3.36)

or the commutativity of the hexagon diagrams:

(A⊗B)⊗ C

C ⊗ (A⊗B)

(C ⊗ A)⊗B

(A⊗ C)⊗B

A⊗ (C ⊗B)

A⊗ (B ⊗ C)

aA,B,CcA⊗B,C

aC,A,B

cA,C ⊗B aA,C,B

A⊗ cB,C

(3.37)
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A⊗ (B ⊗ C)

(B ⊗ C)⊗ A

B ⊗ (C ⊗ A)

B ⊗ (A⊗ C)

(B ⊗ A)⊗ C

(A⊗B)⊗ C

a−1
A,B,C

cA,B⊗C

a−1
B,C,A

A⊗ cB,C aB,A,C

cB,C ⊗ C

(3.38)

The functoriality means that it commutes with morphisms in C, i.e. the
diagram

A⊗B
cA,B−−−→ B ⊗ A

f⊗g
y yg⊗f

C ⊗D
cC,D−−−→ D ⊗ C

(3.39)

is commutative for all A,B,C,D ∈ Ob(C), and all f : A→ B and g : C → D.

Definition 3.12 A monoidal category with a commutativity constraint is
called a braided monoidal category .

Definition 3.13 A category which has a commutativity constraint satisfying

cA,B ◦ cB,A = 1A⊗B (3.40)

symmetric monoidal category .
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3.2.3 Dagger category

Definition 3.14 A dagger category is a category C with an involutive,
identity-on-objects, contravariant functor

† : Cop → C

this means that to every morphism f : A → B one associates a morphism
†(f) = f † : B → A called the adjoint of f, such that for all f : A → B,
g : B → C

• 1†A = 1A

• (g ◦ f)† = f † ◦ g† : C → A

• f †† = f

Definition 3.15 (Unitary map, self-adjoint map) In a dagger category, a
morphism f : A→ B is called unitary if it is an isomorphism and

f−1 = f †

and is called self-adjoint or hermitian if

f = f †.

Definition 3.16 (Dagger symmetric monoidal category) A dagger symmetric
monoidal category is a symmetric monoidal category with a dagger structure,
such that the contravariant functor

† : Cop → C

coherently preserves the symmetric monoidal structure:

(f ⊗ g)† = f † ⊗ g† : B ⊗D → A⊗ C (3.41)

α†A,B,C = α−1
A,B,C : (A⊗B⊗)C → A⊗ (B ⊗ C) (3.42)

λ†A = λ−1
A : 1⊗ A→ A (3.43)

c†A,B = c−1
A,B : A⊗B → B ⊗ A (3.44)
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Definition 3.17 In a †-category a morphism f : A→ B is an isometry if

f ◦ f † = 1A (3.45)

and normal if
f ◦ f † = f † ◦ f (3.46)

Definition 3.18 An object A in a monoidal category has a left dual if there
exists an object A∗L and left-duality morphisms

εLA : 1→ A∗L ⊗ A (3.47)

ηLA : A⊗ A∗L → 1 (3.48)

satisfying the triangle equations:

A A

A⊗ A∗L ⊗ A

IdA

A⊗ εLA ηLA ⊗A

.

(3.49)

A∗L A∗L

A∗L ⊗ A⊗ A∗L

IdA∗L

εLA ⊗A
∗ A∗ ⊗ ηLA

.

(3.50)

Analogously, an object A has a right dual if there exists an object A∗R and
right-duality morphisms

εRA : 1→ A⊗ A∗R (3.51)

ηRA : A⊗ A∗R → 1 (3.52)

satisfying similar equations to those given above.

Definition 3.19 A monoidal category has left duals (or has right duals) if
every object A has an assigned left dual or a right dual along with assigned
duality morphisms, such that

I∗L = I (3.53)
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(A⊗B)∗L = B∗L ⊗ A∗L (3.54)

or the equivalent with L replaced with R .

Definition 3.20 In a monoidal category with left or right duals, with an
assigned left dual for each object or a chosen right dual for each object, the
left duality functor(−)∗L is a contravariant functor that take an abject A to
their assigned duals, and act on morphisms

f ∗L := (A∗ ⊗ ηLB) ◦ (A∗ ⊗ f ⊗B∗) ◦ (εLA ⊗B∗) (3.55)

and right duality functor

f ∗R := (ηRB ⊗ A∗) ◦ (B∗ ⊗ f ⊗ A∗) ◦ (A∗ ⊗ εLA). (3.56)

Definition 3.21. A monoidal † - category is a monoidal category equipped
with a -functor, such that the associativity and unit natural isomorphisms
are unitary. If the monoidal category is equipped with natural braiding
isomorphisms, then these must also be unitary.
We will not assume that our monoidal categories are strict. A good reference
for the essentials of monoidal category theory is[13] .

Definition 3.22. In a monoidal category, the scalars are the monoidHom(I, I).
In a monoidal † - category the scalars form a monoid with involution.

Definition 3.23 . In a monoidal † - category a state of an object X is a
morphism

ψ : 1→ X. (3.57)

Definition 3.24 . In a monoidal † - category the squared norm of a state
ψ : 1→ X. is the scalar

ψ† ◦ ψ : 1→ 1. (3.58)

Lemma 3.25 In a monoidal †-category, left-dual objects are also right-dual
objects.
Proof.Give an object A with left dualA∗L witnessed by left-duality mor-
phisms

εLA : 1→ A∗L ⊗ A

ηLA : A⊗ A∗L → 1
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we can define
εRA := ηL†A ηLA := εL†A (3.59)

which witness that A∗L is a right dual for A.

2

Since left or right duals are always unique up to isomorphism, left duals must
be iso morphic to right duals in a monoidal †-category. We will exploit this
isomorphism to write A∗ instead of A∗L or A∗R, and it follows that A∗∗ ∼= A.

Definition 3.26 A monoidal †-category with duals is a monoidal †-category
such that each object A has an assigned dual object A∗ with this assignment
satisfying (A∗)∗ = A, and assigned left and right duality morphisms for each
object, such that these assignments are compatible with †-functor in the
following way :

εLA = ηR†A = ηL†A∗ = εRA∗ , ηLA = εRA = εL†A∗ = ηRA∗ , ((−)∗L)† = ((−)†)∗L

(3.60)
Since the left and right duality morphisms can be obtained from each other
using the † − functor, from now on we will only refer directly to the left-
duality morphisms, definig

εA := εLA, ηA := ηLA.

Definition 3.27 In a monoidal †-category with duals, the conjugation func-
tor (−)∗ is defined on all morphisms f by

f∗ = (f ∗)† = (f †)∗ (3.61)

Since the †-functor is the identity on objects, we have A∗ = A∗ for all objects.
To make this equality clear we will write A∗ exclusively, and the A∗form will
not be used. For any morphism f : A → B we can use these functors to
construct

f∗ : A∗ → B∗

f ∗ : B∗ → A∗

f † : B → A

Definition 3.28 In a †-category, a morphism f : X → Y is an isometry if

f † ◦ f = 1X . (3.62)

62



Definition 3.29 In a †-category, a morphism f : X → Y is unitary if

f † ◦ f = 1X . (3.63)

and

f ◦ f † = 1Y ; (3.64)

in other words, if f is an isomorphism and f−1 = f †.

Definition 3.30 In a †-category, a morphism f : X → X is self-adjoint if

f = f †. (3.65)

Definition 3.31 . In a †-category, a morphism f : X → X is normal if

f † ◦ f = f ◦ f †. (3.66)

Involution monoids

An important tool in functional analysis is the ∗ − algebra : a complex,
associative, unital algebra equipped with an antilinear involutive homomor-
phism from the algebra to itself which reverses the order of multiplication.
Category-theoretically, such a homomorphism is not very convenient to work
with, since morphisms in a category of vector spaces are usually chosen to
be the linear maps. However, if the vector space has an inner product, this
induces a canonical antilinear isomorphism from the vector space to its dual.
Composing this with the antilinear self- involution, we obtain a linear iso-
morphism from the vector space to its dual. This style of isomorphism is
much more useful from a categorical perspective, and we use it to define the
concept of an involution monoid. [21]

Definition 3.32 In the context of monoidal categories a monoid is an or-
dered triple (H,m, u) consisting of an object H, a multiplication morphism

m : H ⊗H → H

and a unit morphism

u : 1→ H

which satisfy associtativity condition
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(M ⊗M)⊗M

M ⊗ (M ⊗M)

M ⊗M M

M ⊗M

a

M ⊗m

m

m

m⊗M

(3.67)

a ◦M ⊗m ◦m = m⊗M ◦m

and unit condition :

l
r

u⊗H H ⊗ u

m

H ⊗H H ⊗ 11⊗H

H

(3.68)

Definition 3.33 In a symmetric monoidal category a morphism f : X → Y
is a monoid homomorphism for monoids (X,m, u) (Y,m′, u′) if the following
diagrams are commutative

X ⊗X m−−−→ X

f⊗f
y yf

Y ⊗ Y m′−−−→ Y

(3.69)

i.e. f ◦m = m′ ◦ (f ⊗ f) and

X Y

1

f

u

u′

.
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f ◦ u = u′.

Definition 3.34 In a monoidal †-category with duals, an involution monoid
(A,m, u; s) is a monoid equipped with a morphims s : A → A∗ called lin-
ear involution, which is a morphism of monoids with respect to monoid
structure (A∗,m∗, u∗) on A∗, and wich satisfies the involution condition

s∗ ◦ s = 1A. (3.70)

It follows from this definition that s and s∗ are mutually inverse morphisms,
since applying the conjugation functor to the involution condiction gives
s ◦ s∗ = 1A∗ .

We also note that for any such involution monoid s : A→ A∗ and s∗ : A→ A∗

are parallel morphism, but they are not necessarily the same.

Definition 3.35 In a monoidal †-category with duals, given involution monoids
(A,m, u, sA),(B,m, v, sB) a morphism f : A → B is a homomorphism of
involution monoids if it is a morphism of monoids, and if it satisfies the
involution preservation condition

A
f−−−→ B

sA

y ysB
A∗

f∗−−−→ B∗

(3.71)

i.e.

sB ◦ f = f ◦ sA.

If an object B is self-dual, it is possible for the involution sB : B → B to be
the identity. Let (B,m, v, 1B) be such an involution monoid . In the case, it
is sometimes possible to find an embedding : (A,m, u, sA) ↪→ (B,m, v, 1B) of
involution monoids event whe the sA is not trivial .

Definition 3.36 In a monoidal category, for an object H with a dual H∗ ,
the endomorphism monoid End(H) is defined by

End(H) := (H∗ ⊗H,H∗ ⊗ ηH ⊗H, εH). (3.72)

The following lemma describes a well-known connection between categorical
duality and Frobenius structures.
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3.3 The Monoidal Category of FdHilb

Proposition 3.37 Let H,K be two finite-dimensional Hilbert spaces on C,
the vector tensor product H⊗C K is an Hilbert space.

Proof.Let n = dim(H) and m = dim(K) . Denote by ei ⊗ fi the i-th
orthonormal basis vector of H⊗C K and let {

∑
i a

n
i ei ⊗ fi }n∈N be a Cauchy

sequence . Then, by Parseval theorem we have

||
∑
i

ani ei ⊗ fi −
∑
j

amj ej ⊗ fj||2 =
∑
i

|a(n)
i − a

(n)
i |2 (3.73)

This show that {a(n)
i }n∈N is a Cauchy sequence for each 1 ≤ i ≤ nm. Hence

for each i we have ai := limn→∞a
(n)
i . Now thanks to the finiteness and the

linearity of the limit we have :

limn→∞

{∑
i

ani ei ⊗ fi

}
=
∑
i

(limn→∞a
n
i ) ei ⊗ fi =

∑
i

aiei ⊗ fi (3.74)

thus H⊗C K is complete .

2

This proposition makes working with the tensor a lot more simple. This is
because elements in H⊗C K are in general converging sequences of elements
in the vector tensor product, this means we are dealing with objects of the
form

|ψ〉 ⊗ |φ〉 =
∑
ij

ψi|i〉 ⊗ φj|j〉, i = 1, ..., n j = 1, ...,m

where we have used the Dirac notation .
Definition 3.38 Given two morphisms f : H → H′ and g : K → K′ we
define

⊗(f, g) = f ⊗ g : H⊗K → H⊗K′ (3.75)

⊗(f, g)(h⊗ k) = f |ψ〉 ⊗ g|φ〉. (3.76)

Composition is also defined component wise and therefore we have a functor.
To complete the structure we need a unit. Because we used the complex
tensor, it will come as no surprise that C satisfies the necessary properties.
The remaining details on the natural isomorphisms are given in the following
proposition.
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Proposition 3.39 (FdHilb. ⊗,C) is a symmetric monoidal category .

Proof.We have already seen that

⊗ : FdHilb× FdHilb→ FdHilb

is a functor . Thus Proof. We have already seen that ⊗ is a functor, thus
we only need to prove the existence of the four natural isomorphisms . Let
H,K,L ∈ FdHilb :
the morphism

a : H⊗ (K ⊗ L)→ (H⊗K)⊗ L
is defined by

|h〉 ⊗ (|k〉 ⊗ |l〉) 7→ (|h〉 ⊗ |k〉)⊗ |l〉 (3.77)

It is easy to see that this is well defined and linear. By definition of the inner
product we have

||a(h⊗ (k ⊗ l))||2 = 〈|h〉 ⊗ (|k〉 ⊗ |l〉)|(|h〉 ⊗ |k〉)⊗ |l〉〉2

= 〈h|h〉〈k|k〉〈l|l〉
= ||h||2||k||2||l||2 (3.78)

Therefore it is bounded and hence a morphism in Hilb. Moreover because ⊗
is defined component wise on functions it is natural. The inverse is obvious
so a is a natural isomorphism. Next we define the transformation

λ : ⊗(C, •)→ 1FdHilb (3.79)

λ(c⊗ |h〉) = c|h〉.
This is also well defined, linear, bounded and natural. It has an inverse
defined by

λ−1(h) = 1⊗ h
for

λ−1λ(c⊗ h) = λ−1(ch) = 1⊗ ch = c⊗ h
λ−1λ(h) = λ(1⊗ h) = h

Hence, λ is a natural isomorphism. The definition of the transformation ρ is
given by

h⊗ c 7→ ch.

While the commutative transformation γ has the obvius definition

h⊗ k 7→ k ⊗ h.

The commutativity of diagrams is straightforward.

2
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3.3.1 A dagger on FdHilb

Being monoidal is a start but we need FdHilb to be a symmetric dagger
monoidal category. This means we have to define a dagger. We use Riesz
Representation Theorem which states that for each bounded linear functional

f : H → C

there exists a unique vector |h0〉 ∈ H such that

f |h〉 = 〈h|h0〉 (3.80)

for all |h〉 ∈ H and || |h0〉|| = ||f ||.

Now let

f : H → K fix |k〉 ∈ K.

Consider the function

Fk : K → C (3.81)

Fk|h〉 := 〈(f |h〉)|k〉.

This is clearly linear and bounded , ||Fk|h〉||2 = |〈(f |h〉)|k〉|2

|〈(f |h〉)|k〉|2 ≤ 〈(f |h〉)|(f |h〉)〉〈k|k〉 ≤ ||(f |h〉)||2|| |k〉||2 ≤ ||f ||2|| |k〉||2|| |h〉||2
(3.82)

Hence by the Riesz Representation Theorem there is a unique |hk〉 such that

〈(f |h〉)|k〉 = 〈h|hk〉. (3.83)

Now define

f † : H → K

by

f †|k〉 = |hk〉 (3.84)

then we have the following :

Lemma 3.40 Let f : H → K ∈ FdHilb then

• i) f † is linear

• ii)f † is bounded
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Proof.i) Let |k1〉, |k2〉 ∈ K, |h〉 ∈ H and c1, c2 ∈ C then

〈h|(|c1f
†|k1〉+ c2f

†|k2〉)〉 = c1〈h|f †|k1〉+ c2〈h|f †|k2〉 (3.85)

= 〈c1h|f †|k1〉+ 〈c2h|f †|k2〉
= 〈fc1h|k1〉+ 〈fc2h|k2〉
= 〈(f |h〉)|(c1|k1〉+ c2|k2〉)

Hence by uniqueness f †(c1|k1〉+ c2|k2〉) = c1f
†|k1〉+ c2f

†|k2〉.
ii) Let |k〉 ∈ K, |h〉 ∈ H , then by calculation we did earlier

||Fk|| ≤ ||f |||| |k〉|| (3.86)

and hence by Riesz Rapresentation Theorem

||f †|k1〉|| = ||Fk|| ≤ ||f |||| |k〉|| (3.87)

so f † is bounded.

2

This lemma proves that f † is a morphism in FdHilb. Next we show that it
satisfies the conditions of dagger .

Lemma 3.33 Let f : H → K and g : K → L be morphisms in FdHilb then
:

• i)1† = 1

• (f †)† = f

• (gf)† = f †g†

Notation f |h〉 = |fh〉

Proof.Recall that by lemma 3.32 f †, g† are morphisms in FdHilb .

i) Is trivial .

ii) Take |h〉 ∈ H, |k〉 ∈ K

〈k|fh〉 = 〈fh|k〉 = 〈h|f †k〉 = 〈f †k|h〉 (3.88)

hence by uniqueness (f †)† = f .

iii)Take |h〉 ∈ H, |l〉 ∈ L then

〈h|f †g†l〉 = 〈fh|g†l〉 = 〈gfh|l〉 (3.89)

so again by uniqueness (gf)† = f †g†
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2

The above considerations and lemmas are summarized in the following defi-
nition:

Definition 3.41 . Define the functor

† : FdHilbop → FdHilb

as the identity on and on morphisms f : H → K by defining f †|k〉 to be
unique element in H, such that

〈h|f †k〉 = 〈fh|k〉

for all |h〉 ∈ H .

Lemma 3.32 together with lemma 3.33 say that † is well defined and a dagger
on FdHilb, remains to show that it preserve the monoidal structure but we
need a lemma :

Lemma 3.42. Let f ∈ HomFdHilb(H,K) then

i) f † ◦ f = 1H ⇐⇒ 〈h|h′〉 = 〈fh|fh′〉 for all |h〉, |h′〉 ∈ H

ii) f ◦ f † = 1K ⇐⇒ 〈k|k′〉 = 〈f †k|f †k′〉 for all |k〉, |k′〉 ∈ K

Proof.
Suppose f † ◦ f = 1H then

〈h|h′〉 = 〈h|f †fh′〉 = 〈fh|fh′〉.

Now suppose
〈h|h′〉 = 〈h|f †fh′〉 = 〈fh|fh′〉.

for all |h〉, |h′〉 ∈ H.
Then

〈h|h′〉 = 〈fh|fh′〉 = 〈h|f †fh′〉

and because of uniqueness it follows that

f †f |h′〉 = |h′〉 (3.90)

for all |h′〉 ∈ H.
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ii).
Suppose f ◦ f † = 1K then

〈k|k′〉 = 〈k|ff †k′〉 = 〈f †k|f †k′〉.

Now suppose
〈k|k′〉 = 〈f †k|f †k′〉

for all |k〉, |k′〉 ∈ K. Then

〈k|k′〉 = 〈f †k|f †k′〉 = 〈k|ff †k′〉

and because of uniqueness it follows that

ff †|k′〉 = |k′〉 (3.91)

for all |k′〉 ∈ K.

2

Proposition 3.43 FdHilb is a symmetric dagger monoidal category .

Proof.We have already shown that FdHilb is a symmetric monoidal cat-
egory and that is has a dagger. What remains to prove is that the dagger
and the tensor commute and the four structure morphisms a, l, r and c are
unitary.
Given two morphisms f : H → H′ and g : K → K′ in FdHilb, then

(〈h| ⊗ 〈k|)|f † ⊗ g†(h′ ⊗ k′)〉 = 〈h|f †h′〉〈k, g†k′〉
= 〈fh|h′〉〈gk, k′〉
= 〈f ⊗ g(h⊗ k)|(|h′〉 ⊗ |k′〉) (3.92)

so by uniqueness
(f ⊗ g)† = f † ⊗ g†

which proves that
†⊗ = ⊗†. (3.93)

We’ll prove that lX is unitary, the prove for the other transformations are
similar :

〈c⊗ h|λ−1h〉 = 〈c⊗ h|1⊗ h〉 = 〈ch|h〉 = 〈ch|h〉 = 〈(c⊗ h)|h〉 (3.94)

hence
λ−1 = λ†. (3.95)

2
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Two key maps in FdHilb

In FdHilb we define

ηH ⊗H : H ⊗H∗ ⊗H → C⊗H ∼= H

by setting
|ψ〉 ⊗ 〈w| ⊗ |ϕ〉 7→ 〈ψ|w〉|ϕ〉. (3.96)

Just by imposing that this diagram

H H

H ⊗H∗ ⊗H

1H

H ⊗ εH ηH ⊗H

.

(3.97)

is commutative i.e.
1H = (ηH ⊗H) ◦ (H ⊗ εH). (3.98)

It is possible to proof that εH : C→ H∗ ⊗H is

1 7→
n∑
i=1

〈i| ⊗ |i〉 (3.99)

Proof.The most general εH : C→ H∗ ⊗H is

|ψ〉 ⊗ 〈w| ⊗ |ϕ〉 =
n∑

i,j,k=1

ψkw
∗
iϕj|k〉 ⊗ 〈i| ⊗ |j〉 (3.100)

⇓

(ηH ⊗H)(
n∑

i,j,k=1

ψkw
∗
iϕj|k〉 ⊗ 〈i| ⊗ |j〉) =

n∑
i,j,k=1

ψkw
∗
iϕjδik|j〉 (3.101)

⇓

(ηH ⊗H)(
n∑

i,j,k=1

ψkw
∗
iϕj|k〉 ⊗ 〈i| ⊗ |j〉) =

n∑
i,j=1

ψiw
∗
iϕj|j〉. (3.102)

Now we impose the commutativity

|ψ〉 =
n∑
t=1

ψt|t〉 =
n∑

i,j=1

ψiw
∗
iϕj|j〉. (3.103)
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Then we have

w∗iϕj =

{
1 i = j

0 i 6= j
(3.104)

hence

εH : C→ H∗ ⊗H

1 7→
n∑
i=1

〈i| ⊗ |i〉. (3.105)
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3.4 Yang-Baxter equation and braided cate-

gories

One of the main properties of a braided monoidal category is stated in the
following theorem which may be considered as the categorical version of
Yang-Baxter equation.[19]

Theorem 3.44 Let U, V,W ∈ C be objects in a braided monoidal category,
then the dodecagon

cU,V ⊗W aU,V,W

aV,U,W U ⊗ cU,W

a−1
U,W,V

cU,W ⊗ V

aW,U,V

aW,U,V

V ⊗ cU,W

a−1
V,W,U

cV,W ⊗ U

cV,W ⊗ U

(U ⊗ V )⊗W

U ⊗ (V ⊗W )

U ⊗ (W ⊗ V )

V ⊗ (U ⊗W )

(V ⊗ U)⊗W

V ⊗ (W ⊗ U) (U ⊗W )⊗ V

(V ⊗W )⊗ U (W ⊗ U)⊗ V

(W ⊗ V )⊗ U W ⊗ (U ⊗ V )

W ⊗ (V ⊗ U)

commutes .

Proof.We cut the dodecagon in two hexagon and a square : the clockwise
composition of the morphisms in the dodecagon starting from (U ⊗ V )⊗W
and ending at W⊗(U⊗V ) is equal to cU⊗V,W . Similarly the counterclockwise
composition of the morphisms from (V ⊗ U)⊗ to W ⊗ (V ⊗ U) is equal to
cV⊗U,W .
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It remains to check the commutativity of the square

(U ⊗ V )⊗W )
cU⊗V,W−−−−→ W ⊗ (U ⊗ V )

cU,V ⊗W
y yW⊗cU,V

(V ⊗ U)⊗W
cV⊗U,W−−−−→ W ⊗ (V ⊗ U)

(3.106)

but this is a special case of the commutative square (3.28) expressing the
functoriality of the braiding where f is replaced by cU,V and g by 1W .

This theorem implies that if the category is strict :

X ⊗ (Y ⊗ Z) = (X ⊗ Y )⊗ Z (3.107)

and
X ⊗ 1 = X = 1⊗X (3.108)

the commutativity of dodecagon diagram is

(cV,W ⊗U) ◦ (V ⊗ cU,W ) ◦ (cU,V ⊗W ) = (W ⊗ cU,V ) ◦ (cU,V ⊗ V ) ◦ (U ⊗ cV,W )
(3.109)

the Yang-Baxter equation.

Resuming

In this chapter we have seen some tools of category theory , which the most
important in our work are the monoidal categories(e.g. FdHilb ) and braided
categories. The latter give us the possibility to define a categorical notion of
YBE. In next chapter we will see the quantum groups and how are connected
to the Hopf algebras.
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Chapter 4

Hopf algebras, quantum groups
and algebraic quantum field
theory

The notion of deformation is very familiar to the physicist. In this connection,
quantum mechanics may be considered as a deformation (the deformation
parameter being ~) of classical mechanics and relativistic mechanics is, to a
certain extent, another deformation (with 1/c as deformation parameter) of
classical mechanics. Although a sharp distinction should be established be-
tween deformations and quantized universal enveloping algebras or quantum
algebras, the concept of a quantum algebra is more easily introduced in the
parlance of deformations. The concept of a quantum algebra (or quantum
group) goes back to the end of the seventies. It was introduced, under dif-
ferent names, by Kulish, Reshetikhin, Sklyanin, Drinfeld (from the Faddeev
school) and Jimbo in terms of a quantized universal enveloping algebra or
an Hopf bi-algebra and, independently, by Woronowicz in terms of a com-
pact matrix pseudo-group. Among the various motivations that led to the
concept of a quantum group, we have to mention the quantum inverse scat-
tering technique, the solution of the quantum Yang-Baxter equation and,
more generally, the study of exactly solvable models in statistical mechanics.
Some applications of quantum algebras concern : 1+1 conformal field theo-
ries ; quantum dynamical systems ; quantum optics ; nuclear spectroscopies
; condensed matter physics ; knot theory, theory of link invariants and braid
groups ;The concept of a quantum group is a basic tool in non-commutative
geometry.
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4.1 Hopf algebras

4.1.1 Algebras and Coalgebras

Definition 4.1 Let K be a field. A K-algebra is a K-vector space with two
linear maps

m : A⊗K A→ A

u : K→ A

satisfying the associativity and the unit axioms .

Definition 4.2 A K-coalgebra is a K-vector space C with two linear maps

∆ : C → C ⊗K C

u : C → K

such that the coassociativity and the counit axioms are verified.

Definition 4.3 Let A and B be K-algebras. A linear map ψ : A → B is a
algebra homomorphism if the diagrams

A⊗ A ψ⊗ψ−−−→ B ⊗B
mA

y ymB
A

ψ−−−→ B

(4.1)

and

K 1K−−−→ K

uA

y yuB
A

ψ−−−→ B

(4.2)

commute.

Definition 4.4 Let C and D be K-coalgebras. A linear map φ : C → D is a
coalgebra homomorphism if the diagrams

C
φ−−−→ C

∆C

y y∆D

C ⊗ C φ⊗φ−−−→ D ⊗D

(4.3)
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and

C
φ−−−→ D

εC

y yεD
K 1K−−−→ K

(4.4)

commute.

Definition 4.5 Let A be an K-algebra. The opposite algebra Aop is the same
vector space with a multiplication

mop : A⊗ A→ A :: mop((v, w)) = m((w, v)) (4.5)

where m is the multiplication map on A.
Similarly, if C is a coalgebra the opposite algebra Cop is the same vector space
with a comultiplication defined by

∆op(v) := σ ◦∆(v) (4.6)

where σ is the permutation map.
Example 4.6 A K-vector space V with basis B is a coalgebra if we set

∆(v) = v ⊗ v, ∀v ∈ B

ε(v) = 1, ∀v ∈ B.
Example 4.7 Now consider the polynomial algebra

A(X) = C[x11, x12, x21, x22].

As a vector space, it’s basis is

{xi11, x
j
12, x

k
21, x

l
22 : i, j, k, l ∈ Z+},

and examples of elements of A(X)

x11x22 − 3x11x22 + x11

x11x12 − x22x21.

If we think of

X =

[
x11 x12

x21 x22

]
then we can think of the polynomials of A(X) as functions from M(2,C) to
C. They are in fact often called the regular functions of M(2,C) .
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We define the comultiplication and counit maps on A(X)

∆(xij) = xi1xj1 + xi2xj2

ε(xij) = δij.

We extend the action of ∆ to the rest of A(X) by defining it to be a algebra
homomorphism

∆(xijxkl) = ∆(xij)∆(xkl)

then A(X) is a coalgebra.

Definition 4.8 A bialgebra is a quintuple (B,∆, ε, µ, η) where (B,∆, ε)
is a coalgebra, (B, µ, η) is an algebra and either of the following equivalent
conditions is true:

• ∆ and ε are algebra morphisms,

• µ and η are coalgebra morphisms.

Example 4.9 Consider the K-vector space Mn(K) of n × n matrices with
coefficient in K. It has a monoid structure with respect to the multiplication,
since not all elements are invertible. Let O(Mn(K)) be the commutative
algebra over K generated by the elements

{Xij : 1 ≤ i, j ≤ n}. (4.7)

As algebra, it is simply the commutative ring of polynomials in n2 variables

O(Mn(K)) = K[Xij : 1 ≤ i, j ≤ n]. (4.8)

Moreover O(Mn(K)) is a subalgebra of the algebra of functions

{f : Mn(K)→ K}

on Mn(K) where Xij is the function defined by matrix coefficient

Xij(A) = aij ∀A = (aij)1≤i,j≤n ∈Mn(K. (4.9)

If we denote by Eij the matrix with a 1 in the entry (i, j) and 0 in all
others position, the set {Eij}1≤i,j≤n is a linear basis of Mn(K) and the set
{Xij}1≤i,j≤n is the corresponding dual basis with

〈Xij, Ekl〉 = δikδjl.

Therefore, O(Mn(K)) is the algebra of regular functions on Mn(K) .
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O(Mn(K)) is a bialgebra with the coalgebra determined by

∆(Xij) =
n∑
i=1

Xik ⊗Xkj, ε(Xij) = δij ∀1 ≤ i, j ≤ n. (4.10)

Indeed, since O(Mn(K)) is generated as a free algebra by the elements {Xij :
1 ≤ i, j ≤ n}, to define the algebra maps ∆ and ε, it suffices to define them
on the generators. Moreover, since both maps are uniquely determined by
their values on the generators, it is enough to check the coassociativity and
the counit axioms on them.
For the coassociativity we have

[∆⊗ 1O(Mn(K))]∆(Xij) = [∆⊗ 1O(Mn(K))]

(
n∑
i=1

Xik ⊗Xkj

)

=
n∑
i=1

∆(Xik)⊗Xkj

=
n∑
i=1

Xil ⊗Xlk ⊗Xkj (4.11)

[1O(Mn(K)) ⊗∆]∆(Xij) = [1O(Mn(K)) ⊗∆]

(
n∑
i=1

Xil ⊗Xlj

)

=
n∑
i=1

Xil ⊗∆(Xlj)

=
n∑
i=1

Xil ⊗Xlk ⊗Xkj, (4.12)

∀1 ≤ i, j ≤ n . Thus, ∆ is coassociative. For the counit we have

m(ε⊗ 1O(Mn(K)))∆(Xij) = m(ε⊗ 1O(Mn(K)))

(
n∑
i=1

Xil ⊗Xlj

)

= m

(
n∑
i=1

ε(Xik)⊗Xkj

)

= m

(
n∑
i=1

δik ⊗Xkj

)
= m(1⊗Xij) = Xij (4.13)
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m(1O(Mn(K)) ⊗ ε)∆(Xij) = m(ε⊗ 1O(Mn(K)))

(
n∑
i=1

Xik ⊗Xkj

)

= m

(
n∑
i=1

Xik ⊗ ε(Xkj)

)

= m

(
n∑
i=1

Xik ⊗ δkj

)
= m(Xij ⊗ 1) = Xij, (4.14)

∀1 ≤ i, j ≤ n; which proves that ε is a counit and thus O(Mn(K)) is a
bialgebra.
Definition 4.10.(Convolution) Given an algebra (A, µ, η), a coalgebra(C,∆, ε)
and two linear maps f, g : C → A then the convolution of f and g is the linear
map

f ∗ g : C → A (4.15)

defined by

(f ∗ g)(c) = µ ◦ (f ⊗ g) ◦∆(c), c ∈ C. (4.16)

Definition 4.11 Let (H,∆, ε, µ, η) be a bialgebra . An endomorphism S of
H is called an antipode for the bialgebra H if

1H ∗ S = S ∗ 1H = η ◦ ε. (4.17)

A Hopf algebra is a bialgebra with an antipode.

Example 4.12. Let U(g) be the universal enveloping algebra of the Lie
algebra g .

∆(g) = g ⊗ 1 + 1⊗ g, ∀g ∈ g (4.18)

ε(g) = 0, ∀g ∈ g (4.19)

S(g) = g−1 (4.20)

U(g) is an Hopf algebra. It is remarkable that under the same definition the
tensor algebra on a vector space is a Hopf algebra.
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Example 4.13. Recall from Example 2.11 that for n = 2 the algebra
O(M2(K)) has a bialgebra structure. O(SL2) is the subalgebra generated
by X11, X12, X21, X22 satisfying the relation

X11X22 −X12X21 = 1.

It is possible that O(SL2) inherits the bialgebra structure of O(M2(K)) .
O(SL2) is a Hopf algebra with the antipode map given by

S(X11) = X22, S(X12) = −X12, S(X21) = −X21, S(X22) = −X22. (4.21)

to define an antipode on a bialgebra it is enough to define S on the generators
such that

S : B → Bop

is an algebra homomorphims and (4.17) holds for all the elements of the
basis. Since S(1) = 1 and

S(X11X22 −X12X21) = S(X22)S(X11)− S(X21)S(X12) (4.22)

= X11X22 − (−X12)(−X21)

= X11X22 −X12X21

it follows that S is well-defined algebra homorphims. To check equation
(4.17) for the generators is equivalent to prove the following matrix equality(

X11 X12

X21 X22

)(
S(X11) S(X12)
S(X21) S(X22)

)
= (4.23)(

S(X11) S(X12)
S(X21) S(X22)

)(
X11 X12

X21 X22

)
=(

εX11 εX12

εX21 εX22

)(
1 0
0 1

)
(4.24)

which follows from the equality X11X22 −X12X21 = 1.

There is no universally accepted definition for the term quantum group. I
would prefer to use the term for quasi-triangular Hopf algebras. Some
authors use it as a synonym for Hopf algebras, some for certain subclasses of
quasi-triangular Hopf algebras.

Definition 4.14. Let H be a Hopf algebra. H is quasi-cocommutative if
there exists an invertible element R ∈ H⊗H such that

∆op(v) = R∆(v)R−1, ∀v ∈ H. (4.25)
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Definition 4.15. Let H be a quasi-cocommutative Hopf algebra. H is
quasi-triangular Hopf algebra if

(H⊗∆)(R =
∑
i

hi⊗ki) = (
∑
i

hi⊗1⊗ki)(
∑
i

hi⊗ki⊗1) = R13R12 (4.26)

(∆⊗H)(R =
∑
i

hi⊗ki) = (
∑
i

hi⊗1⊗ki)(
∑
i

1⊗hi⊗ki) = R13R23. (4.27)

Theorem 4.16. Let H be a quasi-triangular Hopf algebra, then R satisfies
the Yang-Baxter equation:

R13R12R23
(TH)
= R23R13R12 (4.28)

Proof.

[(σ ◦∆)⊗H]R = (∆op ⊗H)R

=
∑
i

∆op ⊗Hhi ⊗ ki

=
∑
i

∆op(hi)⊗ ki

=
∑
i

R12∆(hi)R−1
12 ⊗ ki

= R12

(∑
i

∆(hi)⊗ ki

)
R−1

12

= R12[(∆⊗H)R]R−1
12

= R12R13R23R−1
12 . (4.29)

[(σ ◦∆)⊗H]R = (∆op ⊗H)R
= σ12(∆⊗H)R
= σ12R13R23

= R23R13. (4.30)

.

R12R13R23R−1
12 = R23R13

R12R13R23R−1
12R12 = R23R13R12

R12R13R23 = R23R13R12. (4.31)

.

2
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4.2 Quantum groups

Definition 4.17. Let K a algebraically closed field of characteristic zero
and let q ∈ K : q2 6= 1. Oq(M2(K)) is the algebra generated by elements
X11, X12, X21, X22 satisfying the relations

qX11X12 = X22X21 X22X12 = qX12X22 X21X11 = qX11X21 (4.32)

and

X22X21 = qX21X22 X12X21 = X21X12 X11X22−X22X11 = (q−1−q)X12X21.
(4.33)

To make the notation not so heavy we write from now

x = X11, y = X12, z = X21, k = X22

Theorem 4.18. The algebra homomorphisms

∆ : Oq(M2(K))→ Oq(M2(K))⊗Oq(M2(K)) (4.34)

ε : Oq(M2(K))→ K (4.35)

are uniquely determined by

∆(x) = x⊗ x+ y ⊗ z, ∆(y) = x⊗ y + y ⊗ k (4.36)

∆(z) = z ⊗ x+ k ⊗ z, ∆(k) = z ⊗ y + k ⊗ k (4.37)

ε(x) = ε(k) = 1, ε(y) = ε(z) = 0. (4.38)

In order to prove that ∆ and ε are well-defined algebra maps, it is enough
to show that the relations (4.32) and (4.33) hold under ∆ and ε, e.g.

∆(yx)
(TH)
= q∆(x)∆(y) (4.39)

Proof.

∆(yx) = ∆(y)∆(y) = x2 ⊗ yx+ xy ⊗ yz + yx⊗ kx+ y2 ⊗ kz (4.40)

q∆(xy) = qx2 ⊗ xy + qxy ⊗ xk + qyx⊗ zy + qy2 ⊗ zk
= x2 ⊗ qxy + yx⊗ (kx+ (q−1 − q)yz) + qxy ⊗ yz + y2 ⊗ qzk
= x2 ⊗ yx+ yx⊗ kx+ q−1yx⊗ yz − qyx⊗ yz + qyx⊗ yz + y2 ⊗ kz
= x2 ⊗ yx+ xy ⊗ yz + yx⊗ kx+ y2 ⊗ kz. (4.41)
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analogously, one can prove that ∆(ky) = q∆(yk),∆(zx) = q∆(xz),∆(kz) =
q∆(zk),∆(yz) = q∆(zy) and ∆(xk − kx) = (q−1 − q)∆(yz). For ε it is
completely analogus,

ε(yx) = ε(y)ε(x) = 0 = qε(xy) = qε(x)ε(y)

ε(ky) = ε(k)ε(y) = 0 = qε(yk) = qε(y)ε(k)

ε(yz) = ε(y)ε(z) = 0 = ε(zy) = ε(z)ε(y)

ε(kz) = ε(k)ε(z) = 0 = qε(zy) = qε(z)ε(k)

ε(zx) = ε(z)ε(x) = 0 = qε(xz) = ε(x)ε(z)

ε(xk − kx) = ε(x)ε(k)− ε(k)ε(x) = 0 = (q−1 − q)ε(yz) = (q−1 − q)ε(y)ε(z).

2

corollary 4.19 (Oq(M2(K)),∆, ε) is a bialgebra .

Proof.Since the coalgebra structure defined on (Oq(M2(K)),∆, ε) is the same
as the one defined on (O(M2(K)),∆, ε), it follows that (Oq(M2(K)),∆, ε) is
a coalgebra, that is, ε is a counit and ∆ is associative. Since both maps are
algebra maps, it follows that (Oq(M2(K)),∆, ε) is indeed a bialgebra. It is
not commutative if q 6= 1 and it not cocommutative since

∆(x) = x⊗ x+ y ⊗ z 6= x⊗ x+ z ⊗ y = σ ◦∆(x). (4.42)

2

Definition 4.20. Let z be a coalgebra and let z ∈ z. We say that z is a
group-like element if

∆(z) = z ⊗ z, ε(z) = 1. (4.43)

We denote the set of group-like elements by G(z). If c has a bialgebra struc-
ture, then G(z) is a group under the multiplication.

Theorem 4.21. If detq = xk−q−1yz = kx−qyz, then ∆(detq) = detq⊗detq
and ε(detq) = 1, that is, detq is a group-like element in Oq(M2(K)).

Proof.

∆(detq) = ∆(x)∆(k)− q−1∆(y)∆(z)

= (x⊗ x+ y ⊗ z)(z ⊗ y + k ⊗ k)− q−1(x⊗ y + y ⊗ k)(z ⊗ x+ k ⊗ z)

= xz ⊗ xy + xk ⊗ xk + yz ⊗ zy + yk ⊗ zk − q−1yz ⊗ kx− q−1yk ⊗ kz−
q−1xz ⊗ yxq−1xk ⊗ yz

(4.44)
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= xz ⊗ xy + xk ⊗ (xk − q−1yz) + yz ⊗ zy + yk ⊗ zk − q−1yz ⊗ kx− yk ⊗ q−1kz

− xz ⊗ q−1yx

= xz ⊗ xy + xk ⊗ (xk − q−1yz) + yz ⊗ zy + yk ⊗ zk − q−1yz ⊗ kx− yk ⊗ zk − xz ⊗ xy
= xk ⊗ (xk − q−1yz) + yz ⊗ zy − q−1yz ⊗ kx
= xk ⊗ (xk − q−1yz) + yz ⊗ zy − q−1yz ⊗ (xk − (q−1 − q)yz)

= xk ⊗ (xk − q−1yz) + yz ⊗ zy − q−1yz ⊗ xk + q−2yz ⊗ yz − yz ⊗ yz
= xk ⊗ (xk − q−1yz)− q−1yz ⊗ (xk − q−1yz)

= (xk − q−1yz)⊗ (xk − q−1yz) = detq ⊗ detq. (4.45)

2

Corollary 4.22. detq = xk − q−1yz = kx − qyz beyond to the center of
algebra Oq(M2(K)).
Proof.To prove the thesis it is enough to verify it on the generators:

detqx = (xk − q−1yz)x = xkx− q−1yzx

= x(xk − (q−1 − q)yz)− q−1q2xyz

= x(xk − q−1yz) + qxyz − qxyz = xdetq,

detqy = (xk − q−1yz)y = xky − q−1yzy

= q−1qyxk − byz = y(xk − q−1yz)

= ydetq,

detqz = (xk − q−1yz)z = xkz − q−1yzz

= q−1qyxk − zyz = z(xk − q−1yz) = zdetq,

detqk = (xk − q−1yz)k = xkk − q−1yzk

= (kx+ (q−1 − q)yz)k − q−1yzk

= kxk + q−1yzk − qyzk − q−1yzk

= kxk − qq−2kyz = kdetq

(4.46)

2

Definition 4.23. We define Oq(SL2(K)) as the K algebra given by the
quotient

Oq(SL2(K)) = Oq(M2(K))/(detq − 1) (4.47)

where (detq−1) is the two-sided ideal of Oq(M2(K)) generated by the element
(detq − 1).
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In other words, the algebra Oq(SL2(K)) can be presented as the K algebra
generated by the elements x, y, z, ksatisfying the relations (4.33).
Since detqis a central group-like element, the ideal (detq − 1) of Oq(M2(K))
is indeed a bi-ideal and thus Oq(SL2(K)) is a bialgebra with the comultipli-
cation and counit defined on the generators as in Oq(M2(K)).

Theorem 4.24.Oq(SL2(K)) is a Hopf algebra with the antipode determined
by (

S(x) S(y)
S(z) S(k)

)
=

(
k −qy

−q−1z x

)
. (4.48)

Proof.
First we have to prove thatS : Oq(SL2(K))→ Oq(SL2(K))op is a well-defined
algebra map:

S(yx) = S(x)S(y)

= k(−qy) = −qky = −q2yk

= qS(y)S(x)

= qS(xy)

(4.49)

S(ky) = S(y)S(k)

= (−qy)x = −q2xy

= qS(k)S(y)

= qS(yk)

(4.50)

S(zx) = S(x)S(z)

= k(−q−1z) = −q−1kz = −zk
= qS(z)S(x) = qS(xz)

(4.51)

S(kz) = S(z)S(k)

= (−q−1z)x = −xz
= qS(k)S(z)

= qS(zk)

(4.52)
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S(yz) = S(z)S(y) = (−q−1z)(−qy) = zy

= yzS(y)S(z)

= S(zy)

(4.53)

S(xk − kx) = S(xk)− S(kx) = S(k)S(x)− S(x)S(k)

= xk − kx = (q−1 − q)yz
= (q−1 − q)zy
= (q−1 − q)S(z)S(y)

= (q−1 − q)S(yz)

(4.54)

S(xk − q−1yz) = S(xk)− q−1S(yz)

= S(k)S(x)− q−1S(z)S(y)

= xk − q−1q−1qzy = xk − q−1zy

= xk − q−1yz = 1 = S(1).

(4.55)

To prove that S defines an antipode for Oq(SL2(K) , we have to check equa-
tion(4.17) for the generators. as for the case of O(SL2(K) , this is equivalent
to prove the following matrix equality

(
x y
z k

)(
S(x) S(y)
S(z) S(k)

)
= (4.56)(

S(x) S(y)
S(z) S(k)

)(
x y
z k

)
=(

ε(x) ε(y)
ε(z) ε(k)

)(
1 0
0 1

)
(4.57)

which follows from the defining relations of Oq(SL2(K)).

2
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4.2.1 Uq(sl2)

The quantum group we introduce in this section corresponds to the deforma-
tion in one parameter of the enveloping algebra U(sl)2 of sl2 . The deforma-
tion uses the classification of semisimple Lie algebras over an algebraically
closed field of characteristic zero, done by Cartan and Killing. Thus, the field
K is an arbitrary field with these properties. The origins of the subject of
quantum groups lie in mathematical physics, where the term quantum comes
from. The starting point of the study of this subject lies in the Quantum
Inverse Scattering Method, with the aim of solving certain integrable quan-
tum systems. A key ingredient in this method is the Quantum Yang-Baxter
Equation (QYBE).

The Lie algebra of matrices 2× 2 traceless is

sl(2,K) = spanK

{
H =

(
1 0
0 −1

)
;E =

(
0 1
0 0

)
;F =

(
0 0
1 0

)}
(4.58)

from this we can find [H,E] = 2E, [H,F ] = −2F [E,F ] = H.

The Poincaré - Birkhoff - Witt theorem say that a basis for

U(sl(2)) =
T (sl(2))H ⊗ E − E ⊗H − 2E

H ⊗ F − F ⊗H + 2F
E ⊗ F − F ⊗ E −H

 (4.59)

is {
Hh, Ex, F y, h, x, y ∈ Z+

}
. (4.60)

Definition 4.25. Let K a algebraically closed field of characteristic zero and
let q ∈ K : q2 6= 1. We define Uq(sl2)as the algebra generated by the elements
E,F,K,K−1satisfying the relations

KK−1 = K−1K = 1, KEK−1 = q2E, KFK−1 = q−2F, (4.61)

EF − FE =
K −K−1

q − q−1
. (4.62)

Theorem 4.26. There exist algebra maps

∆ : Uq(sl2)→ Uq(sl2)⊗ Uq(sl2) (4.63)

ε : Uq(sl2)→ K (4.64)
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∆(K) = K ⊗K, ∆(K−1) = K−1 ⊗K−1, (4.65)

∆(E) = 1⊗ E + E ⊗K, ∆(F ) = K−1 ⊗ F + F ⊗ 1, (4.66)

ε(K) = ε(K−1) = 1, ε(E) = ε(F ) = 0. (4.67)

Proof.We first show that ∆ defines an algebra map. For this it is enough
to check that the ideal of relations is a coideal, or equivalently, that the
following equalities hold

∆(KK−1) = ∆(K−1K) = 1⊗ 1 = ∆(1) (4.68)

∆(KFK−1) = q−2∆(F ) (4.69)

∆(KEK−1) = q2∆(E) (4.70)

∆(EF − FE) = ∆

(
K −K−1

q − q−1

)
(4.71)

The first relations are clear since

∆(KK−1) = ∆(K)∆(K−1)

= (K ⊗K)(K−1 ⊗K−1)

= KK−1 ⊗KK−1 = 1⊗ 1. (4.72)

For the others we have

∆(KEK−1) = (K ⊗K)(1⊗ E + E ⊗K)(K−1 ⊗K−1)

= (K ⊗KE +KE ⊗K2)(K−1 ⊗K−1)

= 1⊗KEK−1 +KEK−1 ⊗K
= 1⊗ q2E + q2E ⊗K = q2∆(E). (4.73)

The relation for F is completely analogous and we leave it as exercise for the
reader. For the last relation we have ∆(EF−FE) = ∆(E)∆(F )−∆(F )∆(E)

∆(E)∆(F )−∆(F )∆(E) =
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= (1⊗ E + E ⊗K)(K−1 ⊗ F + F ⊗ 1)− (K−1 ⊗ F + F ⊗ 1)(1⊗ E + E ⊗K)

= K−1 ⊗ EF + F ⊗ E + EK−1 ⊗KF + EF ⊗K −K−1 ⊗ FE −K−1E ⊗ FE−
F ⊗ E − FE ⊗K
= K−1 ⊗ (EFdfdf − FE) + (EF − FE)⊗K + EK−1 ⊗KF −K−1E ⊗ FK
= K−1 ⊗ (EF − FE) + (EF − FE)⊗K + q2q−2K−1E ⊗ FK −K−1E ⊗ FK
= K−1 ⊗ (EF − FE) + (EF − FE)⊗K

= K−1 ⊗
(
K −K−1

q − q−1

)
+

(
K −K−1

q − q−1

)
⊗K

=
1

q − q−1
(K−1 ⊗K −K ⊗K−1 +K ⊗K −K ⊗K−1)

=
1

q − q−1
(K ⊗K −K−1 ⊗K−1)

= ∆

(
K −K−1

q − q−1

)
. (4.74)

Now we check that ε is a well-defined algebra map by showing that the
equalities in the relations hold after applying ε:

ε(KK−1) = ε(K)ε(K−1) = ε(1) = ε(K−1)ε(K) = ε(K−1K) (4.75)

ε(KEK−1) = ε(K)ε(E)ε(K−1) = 0 = q2ε(E) (4.76)

ε(KFK−1) = ε(K)ε(F )ε(K−1) = 0 = q−2ε(F ) (4.77)

ε(EF − FE) =

ε(E)ε(F )− ε(F )ε(E) = 0 = ε

(
K −K−1

q − q−1

)
=
ε(K)− ε(K−1)

q − q−1
. (4.78)

2

Corollary 4.27. With these morphisms, Uq(sl2) is a bialgebra which is
non-commutative and non-cocommutative.
Proof.
To prove that Uq(sl2) is a bialgebra, we need to show that (Uq(sl2),∆, ε) is a
coalgebra, since by theorem 4.26 , we know that ∆ and ε are algebra maps.
We prove that ε is a counit and ∆ is coassociative by checking the equalities

m ◦ (ε⊗ Uq(sl2)) ◦∆ = m ◦ (Uq(sl2 ⊗ ε) ◦∆ = 1Uq(sl2) (4.79)

and
(∆⊗ Uq(sl2)) ◦∆ = (Uq(sl2)⊗∆) ◦∆ (4.80)
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on the generators.

We begin by the counit:

m(ε⊗ Uq(sl2))∆(K) = m(ε⊗ Uq(sl2)(K ⊗K)

= m(ε(K)⊗K) = m(1⊗K) = K (4.81)

and

m(Uq(sl2)⊗ ε)∆(K) = m(Uq(sl2 ⊗ ε)(K ⊗K)

= m(K ⊗ ε(K)) = m(K ⊗ 1) = K (4.82)

m(Uq(sl2)⊗ ε)∆(E) = m(Uq(sl2)⊗ ε)(1⊗ E + E ⊗K)

= m(1⊗ ε(E) + E ⊗ ε(K))

= m(E ⊗ 1)

= E (4.83)

m(ε⊗ Uq(sl2)∆(E) = m(ε⊗ Uq(sl2)(1⊗ E + E ⊗K)

= m(ε(1)⊗ E + ε(E)⊗K)

= m(1⊗ E) = E (4.84)

m(ε⊗ Uq(sl2)∆(F ) = m(ε⊗ Uq(sl2)(K−1 ⊗ F + F ⊗ 1)

= m(ε(K−1)⊗ F + ε(F )⊗ 1)

= m(1⊗ F )

= F (4.85)

m(Uq(sl2⊗)ε)∆(F ) = m(Uq(sl2)⊗ ε)(K−1 ⊗ F + F ⊗ 1)

= m(K−1 ⊗ ε(F ) + F ⊗ ε(1))

= m(F ⊗ 1) = F (4.86)

m(Uq(sl2 ⊗ ε)∆(K−1) = m(Uq(sl2 ⊗ ε)(K−1 ⊗K−1)

= m(K−1 ⊗ ε(K−1))

= m(K−1 ⊗ 1) = K−1 (4.87)
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m(ε⊗ Uq(sl2))∆(K−1) = m(ε⊗ Uq(sl2))(K−1 ⊗K−1)

= m(ε(K−1)⊗K−1) = m(1⊗K−1) = K−1.
(4.88)

For the coassociativity we have

(∆⊗ Uq(sl2))∆(K) = (∆⊗ Uq(sl2))(K ⊗K) = ∆(K)⊗K = K ⊗K ⊗K,
(4.89)

(Uq(sl2)⊗∆)∆(K) = (Uq(sl2)⊗∆)(K ⊗K) = K ⊗∆(K) = K ⊗K ⊗K.
(4.90)

(∆⊗ Uq(sl2))∆(K−1) = (∆⊗ Uq(sl2))(K−1 ⊗K−11)

= ∆(K−11)⊗K−1

= K−1 ⊗K−1 ⊗K−1 (4.91)

(Uq(sl2)⊗∆)∆(K−1) = (Uq(sl2)⊗∆)(K−1 ⊗K−1)

= K−1 ⊗∆(K−1)

= K−1 ⊗K−1 ⊗K−1 (4.92)

(∆⊗ Uq(sl2))∆(E) = (∆⊗ Uq(sl2))(1⊗ E + E ⊗K)

= ∆(1)⊗ E + ∆(E)⊗K
= 1⊗ 1⊗ E + 1⊗ E ⊗K + E ⊗K ⊗K

(4.93)

(Uq(sl2)⊗∆)∆(E) = (Uq(sl2)⊗∆)(1⊗ E + E ⊗K)

= 1⊗∆(E) + E ⊗∆(K)

= 1⊗ 1⊗ E + 1⊗ E ⊗K + E ⊗K ⊗K (4.94)

(∆⊗ Uq(sl2))∆(F ) = (∆⊗ Uq(sl2))(K−11⊗ F + F ⊗ 1)

= ∆(K−11)⊗ F + ∆(F )⊗ 1

= K−11⊗K−11⊗ F +K−11⊗ F ⊗ 1 + F ⊗ 1⊗ 1
(4.95)
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(Uq(sl2)⊗∆)∆(F ) = (Uq(sl2)⊗∆)(K−11⊗ F + F ⊗ 1)

= K−11⊗∆(F ) + F ⊗∆(1)

= K−11⊗K−11⊗ F +K−11⊗ F ⊗ 1 + F ⊗ 1⊗ 1.
(4.96)

Thus ∆ is coassociative and clearly Uq(sl2) is not cocommutative since σ◦∆ 6=
∆ because

∆(E) = 1⊗ E ⊗ F + E ⊗K 6= E ⊗ 1 +K ⊗ E = σ ◦∆. (4.97)

2

Lemma 4.28.

S : Uq(sl2)→ Uq(sl2)op

determined by

S(E) = −EK−1, S(F ) = −KF, S(K) = K−1 S(K−1) = K (4.98)

is a algebra homomorphism.

Proof. To show that S defines an algebra map, we have to verify that the
equalities of the relations hold when appying S , but using the opposite
multiplication, for example

S(KEK−1) = S(K−1)S(E)S(K) = q2S(E) (4.99)

but

S(KEK−1) = S(K−1)S(E)S(K)

= K(−EK−1)K−1

= −KEK−1K−1

= −q2EK−1

= q2S(E). (4.100)

Clearly it holds forKand K−1and the computation for F is completely anal-
ogous to the computation above. For the last relation we have
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S(EF − FE) = S(F )S(E)− S(E)S(F )

= (−KF )(−EK−1)− (−EK−1)(−KF )

= KFEK−1 − EF = KFq2K−1E − EF
= q−2q2KK−1FE − EF
= FE − EF

= −K −K
−1

q − q−1
= −S(K)− S(K−1)

q − q−1
= S

(
−K −K

−1

q − q−1

)
(4.101)

Theorem 4.29. In light lemma 4.28 S : Uq(sl2)→ Uq(sl2)op is a well-defined
algebra map then :

m ◦ (1Uq(sl2) ⊗ S) ◦∆
(TH)
= u ◦ ε(TH)

= m ◦ (S ⊗ 1Uq(sl2)) ◦∆ (4.102)

Proof.

m(Uq(sl2)⊗ S)∆(K) = m(Uq(sl2)⊗ S)(K ⊗K)

= m(K ⊗ S(K)) = m(K ⊗K−1) = 1 (4.103)

m(S ⊗ Uq(sl2))∆(K) = m(S ⊗ Uq(sl2))(K ⊗K)

= m(S(K)⊗K) = m(K−1 ⊗K)

= 1 (4.104)

m(Uq(sl2)⊗ S)∆(F ) = m(Uq(sl2)⊗ S)(K−1 ⊗K) + F ⊗ 1)

= m(K−1 ⊗ S(F ) + F ⊗ S(1))

= m(K−1 ⊗ (−KF ) + F ⊗ 1)

= K−1(−KF ) + F = 0

(4.105)

m(S ⊗ Uq(sl2))∆(F ) = m(S ⊗ Uq(sl2))K−1 ⊗ S(F ) + F ⊗ S(1))

= m(S(K−1 ⊗ F + S ⊗ 1)

= m(K ⊗ SF + (−KF )⊗ S1)

= KF −KF = 0

(4.106)

The equalities for K−1 and E are again completely analogous .

2
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4.3 Integrable Systems and Quantum Groups

An important direction of research opened by the introduction of the tetra-
hedron Zamolodchikov algebra is the investigation of the three dimensional
integrable structures in the context of the AdS/CFT correspondence. Specif-
ically, one finds a natural object in Shastry’s construction, referred to as S in
this section, which obeys the tetrahedron Zamolodchikov equation,[23]. The
AdS/CFT correspondence was first proposed by Juan Maldacena in 1997
provide a powerful tool.

4.3.1 The free fermion model

We start our journey by writing down the free fermion model using oscillators
and by describing the tetrahedron Zamolodchikov algebra. We define the
fermionic creation operator c†j as well as the the annihilation operators cj
where j ∈ Z labels the lattice site. The operators obey to the canonica
anti-commutation relations

{ĉj, ĉ†i} = δij, i, j ∈ Z. (4.107)

We define two compound operators also

n̂j = ĉ†j ĉj m̂i = ĉj ĉ
†
j. (4.108)

By these definitions the R-matrix for XXZ model become

Rjk(A) = −an̂jn̂k − ibn̂jm̂k − icm̂jm̂k + ĉ†j ĉk + ĉ†kĉj (4.109)

where

A =

(
a b
c d

)
∈ SL(2,B). (4.110)

This choice is known as the free fermionic condition. The free fermionic
model is quantum integrable, as its R-matrix satisfies the Yang-Baxter equa-
tion. Without using operators in the construction, the representation of R12

as a 4× 4 matrix would look like the following:

R12(A) =


a 0 0 0
0 ib 1 0
0 0 ic 0
0 0 0 d

 . (4.111)

By choosing a curve in SL(2,K) we can obtain the hamiltonian density of
spin chain in other words making A depend on a parameter u ∈ C such that
for u = u0 the coefficient a = d = 1 and b = c = 0 implying the relation

Rjk(A(u0)) = Pjk. (4.112)
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The map Pjk sends sj ⊗ sk in sk ⊗ sj where si is a sping operator. For the
sake of simplicity, we can represent si in a two dimensional vector space.
This would be useful in connecting Pjk to the matricial form of Rjk. Since
Pjk(sj ⊗ sk) = sk ⊗ sj we can obtain the form of Pjk

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 . (4.113)

We can recognise this matrix as R12 when a = b = 1, b = c = 0. So in terms
of fermionic operators

Pjk = −n̂jn̂k + m̂jm̂k + ĉ†j ĉk + ĉ†kĉj. (4.114)

The monodromy matrix is constructed in terms of the R-matrix by taking
the product of Rjk(u) in all possible index k

Tj(u) = RjN(u)RjN−1(u)...Rj1(u). (4.115)

We have used the R-matrix instead of the Lax operator because they are both
representation of the same algebra. Now we can compute the hamiltonian
density by

H =
d

du
ln TrjTj((u))

∣∣∣
u=u0

. (4.116)

A natural choice for the curve is a = d = cosu,b = c = sinu. This way we
obtain the XX model

H =
n∑
j=1

ĉ†j ĉj+1 + ĉ†j+1ĉj. (4.117)

4.3.2 The quantum affine Uq(sl2)

The affine extension of any algebra is the vector space spanned by several
copies of the generators of the algebra. In the case of Ui(sl2) we will denote
this affine extension by Ui(sl2) which is the algebra generated by

kr, fr, kr and k−1
r for r = 0, 1.

that for q = i obey the relations

[kr, ks] = 0, {kr, es} = 0, {krfs} = 0, [er, fs] = δrs
kr − k−1

r
(4.118)
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together with the Serre relations that we have omitted. Impressively, we can
use the elements of the free fermion model R-matrix to write an expression
for its generators. Studying the commutation and anticommutation relations
of the generators of Ui(sl2) we realize kr can be interpreted as bosonic gen-
erators and er, fr as fermionic generators. This gives us a hint on how to
construct the a family two dimensional representations: kr must be a linear
combination of m̂, n̂ and the fermionic ones must be proportional to ĉ, ĉ†. We
shall ingnore the lattice index for simplicity.

Then it is quite easy to check that

k0 = λ−1(m̂− n̂), e0 = ϕx−1ĉ†, f0 = ϕxĉ h0 = µ− m̂− n̂ (4.119)

k1 = λ(m̂− n̂), e0 = ϕx−1ĉ†, f0 = ϕxĉ h0 = µ− m̂− n̂ (4.120)

where λ, µ, x and y are complex parameters. We have introduced the element
ϕ through the equation

ϕ2 =
λ− λ−1

2i
.

By kr = qhr the parameter λ is fixed by λ = i−µ−1. We may name this family
of 2-dimensional representations Vµ;x,y

An intertwiner is a map between two representations of the same algebra
which is invariant under the action of the algebra itself. S-matrices are them-
selves a type of intertwiners. We need to find a S-matrix for a Ui(sl2)-invariant
theory. After we must to check if is possible to obtain Rjk by similarity trans-
formations. In order to do so we define the coproduct for each element in
Ui(sl2).
As done in [23] :

∆(kr) = kr⊗kr, ∆(Z) = Z⊗Z, ∆(F ) = F⊗F, ∆(hr) = hr⊗I+I⊗hr.
(4.121)

Where are introduced two operators

F = m̂− n̂, a grading operator and Z a central element . (4.122)

While for the non-diagonal element

∆(e0) = e0 ⊗ Z + k0F ⊗ e0, ∆(e1) = e1 ⊗ I + Zk1F ⊗ e1, (4.123)

∆(f0) = f0 ⊗ k−1Z−1 + F ⊗ f0, 0∆(f1) = f1 ⊗ k−1 + Z−1F ⊗ f1. (4.124)

The intertwiner map R12 is acting on Vµ1;x1,y1⊗Vµ2;x2,y2 because if the system
is integrable, the S- matrix of any process can be decomposed into 2-body
S-matrix.
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This kind of intertwined map must fulfills

R12∆(X)R−1
12 = ∆op(X), X ∈ Ui(sl2). (4.125)

The solution to the previous symmetry constraints is

R12 = (x1y1λ1λ2x2y2)n̂1n̂2 + z−1(x2y2λ1x1y1λ2)n̂1m̂2+ (4.126)

+z(x− 2y2λ2x1y1λ1)m̂1n̂2 + (x1y1x2y2λ1λ2)m̂1m̂2+

−
√

(λ1 − λ−1
1 )(λ2 − λ−1

2 )(x1y2λ2c
†
2c1 + x2y1λ1c

†
1c2).

where z is the eigenvalue of the operator Z and physically represents the value
of a conserved charge.
As noted in [23] the solution contain (n̂1 + m̂1)(n̂2 + m̂2) factor with differ-
ent coefficients in each compound operator combination, and the c†2c1 + c†1c2

factor.
If there exists an R-matrix which is invariant under the action of a algebra
A, then it must be related by a similarity transformation to an intertwiner
such algebra which acts on spaces of representations , provided the central
charges of the representations are conserved through such map. Although it
is not obvious at first sight, the operator R12 fulfills the YBE. This will be
clear if we study the relation between R12 and R12 . To find this connection,
as well as is done in [23], we define an operator by settings

Kj = m̂j +

√
yj
xj
λjn̂j (4.127)

and we obtain

R12 = − K−1
1 K−1

2 R12K1K2√
(λ1 − λ−1

1 )(λ2 − λ−1
2 )x1y1x2y − 2λ1λ2

. (4.128)

The relation is correct if the parameters a, b, c and d of A has been adjusted as
function of x, y, λ and z, [23]. This means that R12 intertwiner of and hence
it has a Ui(sl2) symmetry and in conclusion it is an appropriate R-matrix for
a theory Ui(sl2)-invariant.
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4.3.3 Tetrahedron Zamolodchikov equation

Let us consider the quantum group W that is generated by the k0, e0, f0 and
h . We denote a representation given by restricting the generators as Vµr .
In this case the space of solution to the equation

∆op(W )R12 = R12∆(W ), W ∈W (4.129)

is two-dimensional since

Vµ1 ⊗ Vµ2 ∼= Vµ1+µ2+1 ⊕ Vµ1+µ2−1 (4.130)

decomposes into two irreducible subspace . A basis for this space is given by
the set {R12,R

′
12} where R12 is the operator solution to the symmetry con-

straints (4.125) . R′12 it is also solution of (4.125) but for Vµ1;x1,x1⊗Vµ2;x2,−x2 .

The following tensor product

Vµ1 ⊗ Vµ2 ⊗ Vµ3 (4.131)

decompose generically as

Vµ1+µ2+µ3+2 ⊕ 2Vµ1+µ2+µ3 ⊕ Vµ1+µ2+µ3−2. (4.132)

Now we want to describe the space of W-intertwiners of the tensor product
Vµ1 ⊗ Vµ2 ⊗ Vµ3 . To do this we define a new basis, in [23] it is possible to
find the transformations leads to the basis operators W-invariant . R12,R′12

with

R12(A1, A2) = R12(A2A
−1
1 ), R′12(A1, A2) = R12(A2σ3A

−1
1 σ3) (4.133)

where σ3 = diag(1, 1) and the Ai are elements of SL(2,C). We want to use
these two operators to describe the space of W-invariant intertwiners on the
the tensor product of three Vµr . The 16 operatorsRα

12R
β
13R

γ
23 andRα

23R
β
13R

γ
12

for α, β, γ ∈ {0,1} are W-invariant thanks to the invariance properties of
R12,R′12.
The dimension of the space of such invariant intertwiners is 6 therefore at
most six of them can be linearly independent. The relationships between the
various intertwiners is described by the

• Tetrahedron Zamolodchikov algebra

• the linear dependence equations.
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In order to write theme it turns out to be useful to perform a change of basis
to light-cone operators

R± =
1

2
(R0 ±R1) (4.134)

explicitly written using oscillators as

R+(Aj, Ak) = (akn̂j + ickm̂j)(djn̂k + ibjm̂k) + ĉ†ĉk (4.135)

R−(Aj, Ak) = (bkn̂j + idkm̂j)(cjn̂kiajm̂k) + +ĉ†ĉk (4.136)

where ak, bk, ck, dk are the free fermion parameters. The tetrahedron Zamolod-
chikov algebra in this basis is then defined as the set of relations

Rα
23R

β
13R

γ
12 =

∑
α′,β′,γ′=±

Sαβγα′β′γ′(ak, bk, ck, dk)R
α′

12R
β′

13R
γ′

23, k = {0, 1, 2, 3}

(4.137)
where the coefficients Sαβγα′β′γ′(ak, bk, ck, dk) are given in [23]. Since this shows
a relation between 8 generators, and there should only be 6 linearly indepen-
dent ones, there exist two linear dependence equations:∑

α,β,γ=±

Kαβγ
α′β′γ′(ak, bk, ck, dk)R

α
12R

β
13R

γ
23 = 0, i = 1, 2. (4.138)

The coefficients Kαβγ are not unique in fatc

(S′)αβγα′β′γ′ = Sαβγα′β′γ′ +
2∑
i=1

cαβγi Ki
αβγ (4.139)

will obey the tetrahedron Zamolodchikov algebra for any cαβγi ∈ C. If we
consider now the product of six R-matrices in lattice order, the Tetrahedron
Zamolodchikov equations can be obtained by gauging elements of the algebra
suitably:

S′123S′124S′134S′234 = S′234S′134S′124S′123. (4.140)

This equation should be interpreted as an equation in End((C2)⊗6). Let us
introduce 2× 2 units eij and define

e
(12)
ij = eij ⊗ 1⊗5, e

(13)
ij = 1⊗ eij ⊗ 1⊗4, e

(23)
ij = 1⊗2 ⊗ eij ⊗ 1⊗3 (4.141)

e
(14)
ij = 1⊗3 ⊗ eij ⊗ 1⊗2, e

(24)
ij = 1⊗4 ⊗ eij ⊗ 1, e

(34)
ij = 1⊗5 ⊗ eij. (4.142)

Then the tensors in tetrahedron Zamolodchikov equations are defined by

S′ijk =
∑

l,m,n,p,q,r=±

(S′ijk)lmnpqr e
(ij)
nr e

(ik)
mq e

(jk)
nr . (4.143)

102



Tetrahedron Zamolodchikov equation is the corresponding of the Yang Bax-
ter equation and its associated algebra for 1+2 dimensional physics: the
Yang Baxter equation corresponds to the equality of two scattering matrices
of a 3-body process in a bidimesional lattice. The Tetrahedron Zamolod-
chikov equation corresponds to this equality in a three dimensional lattice
and generates integrable three dimensional quantum field theories.

4.4 Categorical approach to quantum field the-

ory

This new approach is due to Romeo Brunetti, Klaus Fredenaghen and Rein
Verch . This section is part of [2] .
”The main feature of this new approach is to incorporate in a local sense
the principle of general covariance of general relativity, thus giving rise to
the concept of a locally covariant quantum field theory. Such locally co-
variant quantum field theories will be described mathematically in terms of
covariant functors between the categories, on one side, of globally hyperbolic
spacetimes with isometric embeddings as morphisms and, on the other side,
of *-algebras with unital injective * -endomorphisms as morphisms.
Moreover, locally covariant quantum fields can be described in this framework
as natural transformations between certain functors. The usual Haag-Kastler
framework of nets of operator-algebras over a fixed spacetime background-
manifold, together with covariant automorphic actions of the isometry-group
of the background spacetime, can be regained from this new approach as
a special case. Examples of this new approach are also outlined. In case
that a locally covariant quantum field theory obeys the time-slice axiom, one
can naturally associate to it certain automorphic actions, called ”relative
Cauchy-evolutions”, which describe the dynamical reaction of the quantum
field theory to a local change of spacetime background metrics. The func-
tional derivative of a relative Cauchy-evolution with respect to the spacetime
metric is found to be a divergence-free quantity which has, as will be demon-
strated in an example, the significance of an energy-momentum tensor for the
locally covariant quantum field theory. Furthermore, we discuss the functo-
rial properties of state spaces of locally covariant quantum field theories that
entail the validity of the principle of local definiteness. ”
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Definition 4.30 Man : This category consists of a class of objects Obj(Man)
formed by all four- dimensional, globally hyperbolic spacetimes (M, g) which
are oriented and time-oriented. Given any two such objects (M1, g1)and
(M2, g2), the morphism

ψ : (M1, g1)→ (M2, g2)

an isometric embedding in other words, ψ is a diffeomorphism onto its range
ψ(M1) i.e. the map ψ : M1 → ψ(M1) ⊂M2 is a diffeomorphism and ψ is an
isometry, that is ψ∗g1 = g2 � ψ(M1). With the additional constraints that
i)if γ : [a, b]→M2 is any causal curve and γ(a), γ(b) ∈ ψ(M1) then the whole
curve must be in the image ψ(M1), i.e. γ(t) ∈ ψ(M1), ∀t ∈ (a, b) ; ii) the
isometric embedding preserves orientation and time-orientation of the embed-
ded spacetime. The composition rule for any ψ ∈ HomMan((M1, g1)(M2, g2))
and ψ′ ∈ HomMan((M2, g2)(M3, g3)) is to define its composition ψ′ ◦ψ as the
composition of maps.

Alg : This is the category whose class of objects Obj(Alg) is formed by all
C∗- algebras possessing unit elements, and the morphisms are faithful unit-
preserving *-homomorphisms. The composition is again defined as the com-
position of maps. The unit element for any A ∈ Obj(Alg) given by the
identical map on A.

Requirement (i) on the morphisms of Man is introduced in order that the
induced and intrinsic causal structures coincide for the embedded space-time
ψ(M1) ⊂ M2. Condition (ii) might, in fact, be relaxed; the resulting struc-
ture, allowing also isometric embeddings which reverse spatial- and time-
orientation.

Definition 4.31. A locally covariant quantum field theory is a co-
variant functor A between the two categories Man and Alg i.e. writing αψ
for Aψ, in diagrammatic form :

(M, g)
φ−−−→ (M ′, g′)

A

y yA
A(M, g)

αψ−−−→ A(M ′, g′)

(4.144)

together with covariance properties

αψ ◦ αψ′ = αψ◦ψ′ , α1M = 1A(M), (4.145)
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for all ψ ∈ HomMan((M1, g1)(M2, g2)) and ψ′ ∈ HomMan((M2, g2)(M3, g3))
and all (M, g) ∈ Obj Man.

Definition 4.32. A locally covariant quantum field theory described by a
covariant functor A is called causal if the following holds :

whenever there are morphisms ψj ∈ HomMan((Mj, gj)(M, g)), j = 1, 2 so that
the sets ψ(M1) and ψ(M2) are causally separated in (M, g), the one has

[αψ1(A(M1, g1)), αψ2(A(M2, g2))] = {0}, (4.146)

where [A.B] = {AB − BA : A ∈ A, B ∈ B for any pair of C∗ − algebras A
and B.

Definition. We say that a locally covariant quantum field theory given by
the functor A obeys the time-slice axiom if

αψ(A(M, g)) = A(M ′, g′) (4.147)

holds for all ψ ∈ HomMan((M, g)(M ′, g′)) such that ψ(M) contains a Cauchy
surface for (M ′, g′). Thus, a locally covariant quantum field theory is an
assignment of C∗-algebras to all globally hyperbolic spacetimes so that the
algebras are identifyable when the spacetimes are isometric, in the indicated
way. Note that we use the term local in the sense of geometrically local in
the definition which should not be confused with the meaning of locality in
the sense of Einstein causality.

Causality means that the algebras αψ1(A(M1, g1)) and αψ2(A(M2, g2)) com-
mute element wise in the larger algebraA(M, g)when the sub-regions ψ1(M1)and
ψ2(M2) ofM are causally separated (with respect to g). This property is ex-
pected to hold generally for observable quantities which can be localized in
certain subregions of spacetimes. The time slice axiom (iii), also called strong
Einstein causality, or existence of a causal dynamical law, says that an alge-
bra of observables on a globally hyperbolic spacetime is already determined
by the algebra of observables localized in any neighbourhood of a Cauchy-
surface.

”We consider again the category Man, and introduce the category TAlg
consist- ing of topological *-algebras (with unit elements) as objects, and
of continuous *-endomorphisms as morphisms (i.e., ∈ HomTAlg(A1, A2) is a
morphism of TAlg if : A1 → A2 is a continuous, unit-preserving, injective
*-morphism). In addition, we consider another category Test which is the
category containing as objects all possible test-function spaces over Man,
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that is, the objects consist of all spaces C∞0 (M) of smooth, compactly sup-
ported test-functions on M , for (M, g) ranging over the objects of Man,
and the morphisms are all possible push-forwards ψ of isometric embeddings
ψ : (M1, g1) → (M2, g2). The action of any push-forward ψ on an element
of a test-function space has been defined above, and it clearly satisfies the
requirements for morphisms between test-function spaces. ”

Now let a locally covariant quantum field theory A be defined as a functor
in the same manner as in Def. 2.1, but with the category TAlg in place of
the category Alg , and again following the convention to denote A (ψ)by
ψ whenever ψis any morphism in Man. Moreover, let D be the covariant
functor between Man and Test assigning to each (M, g) ∈ Obj(Man) the
test-function space D(M, g) = C∞0 (M), and to each morphism ψ of Man
its push-forward: D(ψ) = ψ . We regard the categories Test and TAlg as
subcategories of the category of all topological spaces Top, and hence we are
led to adopt the following :
A locally covariant quantum field Φ is a natural transformation between
the functors D and A , i.e. for any object (M, g) in Man there exists a
morphism Φ(M,g) : D(M, g) → A(M, g) in Top such that for each given
morphism ψ ∈ HomMan((M1, g1)(M2, g2)) the following diagram

D(M1, g1)
Φ(M1,g1)−−−−−→ A(M1, g1)

ψ∗

y yαψ
D(M2, g2)

Φ(M2,g2)−−−−−→ A(M2, g2)

(4.148)

commutes.
The commutativity of the diagram means that

αψ ◦ Φ(M1,g1) = Φ(M2,g2) ◦ ψ∗ (4.149)

i.e., the requirement of covariance for fields.
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Chapter 5

New structures for Physics

We show that an orthogonal basis for a finite-dimensional Hilbert space can
be equivalently characterised as an abelian †-Frobenius monoid in the cat-
egory FdHilb, which has finite-dimensional Hilbert spaces as objects and
bounded linear maps as morphisms, and tensor product for the monoidal
structure. The basis is normalised exactly when the corresponding commu-
tative †-Frobenius monoid. Hence orthogonal and orthonormal bases can be
formulated in terms of composition of operations and tensor product only,
without any explicit reference to the underlying vector spaces.
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5.1 A new description of orthogonal bases

We recall an important definition : in a monoidal category, a monoid is an
ordered triple (A,m, u) consisting

• an object A

• a moltiplication morphism m : A⊗ A→ A

• a unit morphism u : 1→ A

which satisfy associativity and unit equations :

A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C (5.1)

1⊗ A ∼= A ∼= A⊗ 1. (5.2)

Now we introduce the key structure of our work : Frobenius monoid
Definition 5.1. A Frobenius monoid in a symmetric monoidal category is
a quintuple (H,m, u, δ, ε) consisting in a internal monoid

1
u−−−→ H

m←−−− H ⊗H (5.3)

and an internal comonoid

1
ε←−−− H

δ−−−→ H ⊗H (5.4)

which together satisfy the Frobenius condition : the following diagrams must
be commutative

X ⊗X X⊗δ−−−→ X ⊗X ⊗X

m

y ym⊗X
X

δ−−−→ X ⊗X

(5.5)

(m⊗X) ◦ (X ⊗ δ) = δ ◦m

X ⊗X m−−−→ X

δ⊗X
y yδ

X ⊗X ⊗X X⊗m−−−→ X ⊗X

(5.6)

(δ ⊗X) ◦ (X ⊗m) = δ ◦m.
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Definition 5.2. A Frobenius monoid is commutative if

σ ◦ δ = δ (5.7)

where σ is the braiding map .

Definition 5.3. A Frobenius monoid is a †−Frobenius monoid

m† = δ, u† = ε. (5.8)

5.1.1 Turning an orthogonal basis into a commutative
†−Frobenius monoids

Why †−Frobenius monoids? The key property of †−Frobenius monoids
which makes them so useful is contained in the following observation, due to
Coecke, Pavlovic and J. Vicary [5].
Given a finite dimensional Hilbert space H with dimH = n and relative
orthonormal basis {|i〉}i=1,...,n we can always define the linear maps

δ : H → H ⊗H (5.9)

|i〉 7→ |i〉 ⊗ |i〉 (5.10)

ε : H → C (5.11)

|i〉 7→ 1 (5.12)

Proposition 5.4.δ(|ψ〉) = |ψ〉 ⊗ |ψ〉 TH
==⇒ |ψ〉 ≡ |i〉

Proof.

|ψ〉 =
n∑
i=1

ci|i〉1⇒ δ(|ψ〉) =
n∑
i=1

ciδ(|i〉) =
n∑
i=1

ci|i〉 ⊗ |i〉 (5.13)

|ψ〉 ⊗ |ψ〉 =

(
n∑
i=1

ci|i〉

)
⊗

(
n∑
j=1

cj|j〉

)
=

n∑
i,j=1

cicj|i〉 ⊗ |j〉 (5.14)

Now we use the hypothesis (5.13) = (5.14)

n∑
i,j=1

cicj|i〉 ⊗ |j〉 −
n∑
i=1

ci|i〉 ⊗ |i〉 = 0 (5.15)

this is a linear combination of the H ⊗ H hence are linearly independent.
This implies the following

ci − cicj = 0, i, j = 1, ..., n (5.16)
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if i = j ⇒ ci − c2
i = 0⇒ ci = 1,∀i = 1, ..., n

if i 6= j ⇒ ci − cicj = ci(1− cj) = 0⇒ cj = 1, ∀j = 1, ..., n

2

Then we see that from δ we can recover the basis of H.
Definition 5.5 We define δ† by setting

δ† : H ⊗H → H (5.17)

|i〉 ⊗ |j〉 7→

{
|i〉 i = j

0 i 6= j
(5.18)

. On a generic element |ψ〉 ⊗ |ϕ〉 =
∑n

i,j=1 ψiϕj|i〉 ⊗ |j〉

δ†(|ψ〉 ⊗ |ϕ〉) =
n∑

i,j=1

ψiϕjδ
†|i〉 ⊗ |j〉

=
n∑

i,j=1

ψiϕjδij|j〉

=
n∑
i=1

ψiϕi|i〉

(5.19)

To see that δ† and δ obey the Frobenius condition it suffices to note that

|i〉 ⊗ |j〉 δ†7−→

{
|i〉 i = j

0 i 6= j

δ7−→

{
|i〉 ⊗ |i〉 i = j

0 i 6= j
(5.20)

and

|i〉 ⊗ |j〉 H⊗δ7−−→ |i〉 ⊗ |j〉 ⊗ |j〉 δ†⊗H7−−−→

{
|i〉 ⊗ |i〉 i = j

0 i 6= j
(5.21)

As a consequence, by linearity,

δ ◦ δ† = (δ† ⊗H) ◦ (H ⊗ δ). (5.22)

That (H, δ, ε) is a comonoid is verified.
The unit of the corresponding monoid is defined by setting

ε† : C→ H (5.23)
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1 7→
n∑
i=1

|i〉. (5.24)

Hence is possible turning an orthogonal basis into a commutative -Frobenius
monoid .

5.1.2 Turning a commutative †-Frobenius monoid into
an orthogonal basis

We start denoting elements of H as linear maps Hom(C, H) :

α : C→ H (5.25)

1 7→ |α〉 (5.26)

and as kets = α(1) . Taking the adjoint of α gives us

α† : H → C (5.27)

|ψ〉 7→ 〈α|ψ〉 (5.28)

and hence 〈α| = α† ∈ H∗ .
Let (H,m = δ†, u) be a commutative †-Frobenius monoid.
Given such a commutative †-Frobenius monoid any α ∈ H induces a linear
map :

R|α〉 = m ◦ (H ⊗ α) : H → H (5.29)

on any element |ψ〉 ∈ H

R|α〉 : H ⊗ C ∼= H
H⊗α−−−→ H ⊗H m−→ H (5.30)

|ψ〉 ⊗ 1 7→ |ψ〉 ⊗ |α〉 7→
n∑
i=1

ψiαi|i〉 (5.31)

⇓

R|α〉|i〉 = αi|i〉. (5.32)

Definition 5.6 Let H be a Hilbert space . Let O : H → H be a bounded
linear operator . Then the adjoint of O is a operator O† : H → H satisfying

〈O†ψ|ϕ〉 = 〈ψ|Oϕ〉,∀|ϕ〉, |ψ〉 ∈ H (5.33)
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Existence and uniqueness of this operator follows from the Riesz representa-
tion theorem.
Proposition 5.7 If (H,m, u) is a commutative †-Frobenius monoid in a
symmetric monoidal †-category then

R†|α〉 = R|α′〉 for α′ = (H ⊗ α†) ◦m† ◦ u : C→ H (5.34)

Proof.

u = ε† : C→ H (5.35)

1 7→
n∑
i=1

|i〉 (5.36)

m† = δ : H → H ⊗H (5.37)

m†(〈α|ψ〉|ϕ〉) = δ(〈α|ψ〉|ϕ〉)

=
n∑
i=1

α∗iψiϕi|i〉 ⊗ |i〉 (5.38)

H ⊗ α† : H ⊗H → H ⊗ C ∼= H (5.39)

|ψ〉 ⊗ |ϕ〉 7→ 〈α|ψ〉|ϕ〉 =
n∑
i=1

α∗iψiϕi|i〉 (5.40)

hence if
|ψ〉 ⊗ |ϕ〉 = |i〉 ⊗ |i〉 ⇒ ψi = ϕi = 1 (5.41)

⇓

α′(1) =
n∑
i=1

α∗i |i〉 = |α′〉 (5.42)

⇓

R|α′〉|ψ〉 = m(|ψ〉 ⊗ |α′〉)
= δ†(|ψ〉 ⊗ |α′〉)

=
n∑
i=1

ψiα
∗
i |i〉

(5.43)
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〈R|α′〉ψ| =
n∑
i=1

ψ∗i αi〈i| (5.44)

⇓

〈R|α′〉ψ|ϕ〉 =
n∑
i=1

ψ∗i αi〈i|ϕ〉 =
n∑
i=1

ψ∗i αi〈i|
n∑
j=1

ϕj|j〉 (5.45)

⇓

〈R|α′〉ψ|ϕ〉 =
n∑

i,j=1

ψ∗i αiϕj〈i|j〉

=
n∑

i,j=1

ψ∗i αiϕjδij

=
n∑
i=1

ψ∗i αiϕi (5.46)

|R|α〉ϕ〉 = R|α〉|ϕ〉

=
n∑
i=1

ϕiR|α〉

=
n∑
i=1

ϕiαi|i〉

(5.47)

⇓

〈ψ|R|α〉ϕ〉 =
n∑
i=1

ψ∗i αiϕi (5.48)

⇓

〈ψ|R|α〉ϕ〉 = 〈R|α′〉ψ|ϕ〉 (5.49)

hence by uniqueness R†|α〉 we conclude that

R†|α〉 = R|α′〉 (5.50)

2
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Proposition 5.8

(−)′ : Hom(C, H)→ Hom(C, H)

α 7→ α′ = (H ⊗ α†) ◦m† ◦ u

then (−)′ is an involution :

(α′)′
(TH)
= α. (5.51)

Proof.If

α′ = (H ⊗ α†) ◦m† ◦ u⇒ (α′)′ = (H ⊗ (α′)†) ◦m† ◦ u (5.52)

where
(α′)† = u† ◦m ◦ (H ⊗ α†)†. (5.53)

By proposition 3.36 FdHilb is a symmetric dagger monoidal category hence

(α′)† = u† ◦m ◦ (H ⊗ α) (5.54)

(α′)† : H ⊗ C ∼= H
H⊗α−−−→ H ⊗H m−→ H

u†−→ C

|ψ〉 7→ |ψ〉 ⊗ |α〉 7→
n∑
i=1

αiψi|i〉 ⊗ |i〉 7→
n∑
i=1

αiψi (5.55)

⇓

H ⊗ (α′)† : H ⊗H ⊗ C ∼= H ⊗H → H ⊗H ⊗H → H ⊗H → H

|ψ〉 ⊗ |ϕ〉 7→ |ψ〉 ⊗ |ϕ〉 ⊗ |α〉 7→ |ψ〉 ⊗
n∑
i=1

αiϕi|i〉 7→
n∑
i=1

αiϕiψi|i〉 (5.56)

⇓

(α′)′ : C u=ε†−−−→ H
δ=m†−−−→ H ⊗H H⊗(α′)†−−−−−→ H

1 7→
n∑
i=1

|i〉 7→
n∑
i=1

|i〉 ⊗ |i〉 7→
n∑
i=1

αi|i〉 = |α〉 (5.57)

2
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5.1.3 The embedding

In FdHilb we define a morphism

Λ : FdHilb(C, H) = H ↪→ FdHilb(H,H) = F (H,H)

|ψ〉 7−→ R|ψ〉 (5.58)

then is an involution preserving monoid embedding when endowing
FdHilb(C,H) and FdHilb(H,H) with the monoid structure of the internal
monoid .
Lemma 5.9. H∗ ⊗H ∼= FdHilb(H,H)
Proof.We define two maps

H∗ ⊗H ϕ−→ FdHilb(H,H)

〈z| ⊗ |w〉 7−→ h : H → H

|v〉 7→ 〈z|v〉|w〉.
(5.59)

FdHilb(H,H)
ψ−→ H∗ ⊗H

h : H → H 7→
n∑
i=1

〈i| ⊗ h|i〉

(5.60)

(ψ ◦ ϕ)(〈z| ⊗ |w〉) = ψ(|i〉 7→ 〈z|i〉|w〉)

=
n∑
i=1

〈i| ⊗ 〈z|i〉|w〉 = 〈z| ⊗ |w〉 (5.61)

[(ϕ ◦ ψ)h]|j〉 = [ϕ(
n∑
i=1

〈i| ⊗ h|i〉)]|j〉

=
n∑
i=1

〈i|j〉h|i〉

= h|j〉 (5.62)

then we have
ψ ◦ ϕ = 1H∗⊗H and ϕ ◦ ψ = 1FdHilb(H,H) (5.63)

2
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Theorem 5.10. (F (H,H),mF , uF : C → F (H,H) :: 1 7→ 1H) is an involu-
tion monoid .
Proof.First we prove that (F (H,H),mF , uF : C→ F (H,H) :: 1 7→ 1H) is a
monoid.

• We needs to show that this diagram

(F (H,H)⊗ F (H,H))⊗ F (H,H)

F (H,H)⊗ (F (H,H)⊗ F (H,H))

F (H,H)⊗ F (H,H) F (H,H)

F (H,H)⊗ F (H,H)

a

F (H,H)⊗mF

mF

mF

mF ⊗ F (H,H)

(5.64)

is commutative in other words

mF ◦ (mF ⊗ F (H,H)) ◦ a = mF ◦ (F (H,H)⊗mF ) (5.65)

where mF = ◦ .

a(h⊗ (k ⊗ t)) = (h⊗ k)⊗ t. (5.66)

mF ⊗ F (H,H)((h⊗ k)⊗ t) = (h ◦ k)⊗ t (5.67)

mF ((h ◦ k)⊗ t) = (h ◦ k) ◦ t (5.68)

and

F (H,H)⊗mF (h⊗ (k ⊗ t)) = h⊗ (k ◦ t) (5.69)

mF (h⊗ (k ◦ t)) = h ◦ (k ◦ t) (5.70)

◦ is associative ⇒ h ◦ (k ◦ t) = (h ◦ k) ◦ t. (5.71)
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• lF
(TH)
= (uF ⊗ F (H,H)) ◦mF

lF : C⊗ F (H,H)→ F (H,H)

λ⊗ h 7→ h (5.72)

: C⊗ F (H,H)→ F (H,H)⊗ F (H,H)→ F (H,H)

λ⊗ h 7→ 1H ⊗ h 7→ 1H ◦ h = h (5.73)

• rF
(TH)
= (F (H,H)⊗ uF ) ◦mF

rF : F (H,H)⊗ C→ F (H,H)

h⊗ λ 7→ h (5.74)

: F (H,H)⊗ C→ F (H,H)⊗ F (H,H)→ F (H,H)

h⊗ λ 7→ h⊗ 1H 7→ h ◦ 1H = h. (5.75)

An involution monoid (A,m, u; s) is a monoid equipped with a morphims
s : A→ A∗ called linear involution, which is a morphism of monoids with
respect to monoid structure (A∗,m∗, u∗) on A∗, and which satisfies the invo-
lution condition s∗◦s = 1A. Now we have (A,m, u; s) = (F (H,H),mF , uF :
C→ F (H,H) :: 1 7→ 1H ; sF ) and (A∗,m∗, u∗) = (F (H,H)∗,mF ∗ , uF ∗) . The
question is if sF : F (H,H)→ F (H,H)∗ is morphism of monoids with respect
to monoid structure (A∗,m∗, u∗) on A∗. In other words if these diagrams

F (H,H)⊗ F (H,H)
mF (H,H)=mF−−−−−−−−→ F (H,H)

sF⊗sF

y ysF
F (H,H)∗ ⊗ F (H,H)∗

mF (H,H)∗=mF∗−−−−−−−−−→ F (H,H)∗

. (5.76)

X Y

1

f

u

u′

.

(5.77)

are commutative otherwise if

sF ◦mF
(TH)
= sF ⊗ sF ◦mF ∗ .
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and if
sF ◦ uF

(TH)
= uF ∗ .

In light Lemma 5.9 H∗ ⊗H ∼= FdHilb(H,H) the diagram (5.81) become

H∗ ⊗H ⊗H∗ ⊗H
mF (H,H)=mF−−−−−−−−→ H∗ ⊗H

sF⊗sF

y ysF
H ⊗H∗ ⊗H ⊗H∗

mF (H,H)∗=mF∗−−−−−−−−−→ H ⊗H∗.

(5.78)

Where
mF : H∗ ⊗H ⊗H∗ ⊗H → H∗ ⊗H

is defined by
〈ψ| ⊗ |w〉 ⊗ 〈ϕ| ⊗ |v〉 7→ 〈ψ| ⊗ 〈ϕ|w〉|v〉 (5.79)

mF ∗ : H ⊗H∗ ⊗H ⊗H∗ → H ⊗H∗

is defined by
|ψ〉 ⊗ 〈w| ⊗ |ϕ〉 ⊗ 〈v| 7→ 〈ψ| ⊗ 〈w|ϕ〉|v〉 (5.80)

and
sF = sH∗⊗H : H∗ ⊗H → H ⊗H∗

by
〈ψ| ⊗ |w〉 7→ |ψ〉 ⊗ 〈w|. (5.81)

Now the diagrams (5.77) and (5.78) are straightforwardly commutative.

2
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Proposition 5.11 Λ is injective in other words that if

Λ|ψ〉 = Λ|ϕ〉

then

|ψ〉(TH)
= |ϕ〉. (5.82)

Proof. We observe that

C u=ε†−−−→ H
R|α〉−−→ H

1 7→
n∑
i=1

|i〉 7→ R|α〉

n∑
i=1

|i〉 =
n∑
i=1

R|α〉|i〉 = |α〉 (5.83)

hence

R|α〉 ◦ u = α. (5.84)

If

Λ|ψ〉 = Λ|ϕ〉 ⇒ R|ψ〉 = R|ϕ〉 (5.85)

⇓

R|ψ〉 ◦ u = R|ϕ〉 ◦ u (5.86)

⇓ by (5.85)

|ψ〉 = |ϕ〉. (5.87)

2

Theorem 5.12. Λ is a monoid morphism in other words the following dia-
grams

H ⊗H m=δ†−−−→ H

Λ⊗Λ

y yΛ

F (H,H)⊗ F (H,H)
mF−−−→ F (H,H)

(5.88)

C H

F (H,H)

u

uF Λ

.
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(5.89)

are commutative.
Proof. By the first diagram we have

[mF ◦ (Λ⊗ Λ)]|i〉 ⊗ |j〉(TH)
= (Λ ◦mF )|i〉 ⊗ |j〉. (5.90)

The left hand side of (5.91) is

[mF ◦ (Λ⊗ Λ)]|i〉 ⊗ |j〉 = R|i〉 ◦R|j〉 (5.91)

⇓

R|i〉 ◦R|j〉)|t〉 = R|i〉(R|j〉)|t〉)
= R|i〉(〈t|j〉|t〉)
= 〈t|j〉R|i〉|t〉
= 〈t|j〉〈t|i〉|i〉 (5.92)

〈t|j〉〈t|i〉|i〉 = δtjδti|i〉. (5.93)

The right hand side

(Λ ◦mF )|i〉 ⊗ |j〉 = Λ(δij|i〉) = R|i〉δij (5.94)

⇓

R|i〉δij|t〉 = 〈t|j〉〈t|i〉|i〉
= δtiδij|t〉
= δtiδij|i〉 (5.95)

then we have the thesis . By the second diagram we have

(Λ ◦ u)(1C)
(TH)
= 1H ⇒ (Λ ◦ u)(1C)|i〉(TH)

= |i〉. (5.96)

(Λ ◦ u)(1C)|i〉 = Λ

(
n∑
j=1

|j〉

)
=

n∑
j=1

R|j〉|i〉

=
n∑
j=1

〈j|i〉|i〉 = |i〉. (5.97)

2
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Theorem 5.13. Λ is a involution monoid morphism i.e. the following dia-
gram

H
Λ−−−→ F (H,H)

sH

y ysF
H∗

Λ∗−−−→ [F (H,H)]∗

(5.98)

is commutative.
Proof.We define

sF : F (H,H)→ F (H,H)∗

by setting
|i, j〉 7→ 〈i, j| (5.99)

|i, j〉 ∈ Mn(C) is the matrix with 1 in the entry (i, j) and 0 in all others
position hence |i, j〉 is a basis in F(H,H) .

(sF ◦ Λ)|i〉 = sF (R|i〉 = |i, i〉) = 〈i, i|. (5.100)

Since
Λ : H → F (H,H)

|i〉 7→ |i, i〉 (5.101)

then
Λ∗ : F ∗(H,H)→ H∗

〈i, j| 7→ δij〈i| (5.102)

⇓

(Λ∗)† : H∗ → F ∗(H,H)

|t〉 7→
n∑
ij

〈i, j|〈i|t〉δij =
n∑
ij

〈i, j|δitδij = 〈t, t| (5.103)

2

Theorem 5.15. Any †-Frobenius monoid in FdHilb is a C∗-algebra.

Proof. FdHilb(H,H) is the C∗-algebra of endomorphism on a Hilbert space,
see appendix A . By Lemma 5.9 it is easy to show that FdHilb(H,H) is an
†-Frobenius monoid.
By the embeddingΛ we know that

H ∼= FdHilb(C, H) ∼= R[FdHilb(C,H)] ⊆ FdHilb(H,H) (5.104)
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inherits algebra structure from FdHilb(H,H) . Now, since any finite di-
mensional involution-closed subalgebra of a C∗-algebra is also a C∗-algebra
it follows that any †-Frobenius monoid in FdHilb is a C∗-algebra, in partic-
ular, it can be given a C∗-algebra norm.

2

5.2 The spectral theorem for normal opera-

tors

The spectral theorem for normal operators, says that a normal operator on a
complex Hilbert space can be diagonalized. For complex Hilbert spaces this
follows from the spectral theorem for com- mutative C∗-algebras, since any
normal operator generates a commutative C∗-algebra and the spectrum of
this algebra performs the diagonalization. This will not necessarily be the
case in an arbitrary monoidal †-category, with C∗-algebras replaced by special
unitary †-Frobenius monoids. Jamie Vicary in [21] gives a direct categorical
description of diagonalization. We proceed as done in [21] by introducing
two different categorical properties which capture the geometrical essence of
the spectral theorem for normal operators, and then showing that they are
equivalent.
Definition 5.16. In a monoidal category, an endomorphism f : X → X is
compatible with a monoid (A,m, u) if the following equations hold:

m ◦ (f ⊗X) = f ◦m = m ◦ (X ⊗ f). (5.105)

Definition 5.17. In a braided monoidal †-category, an endomorphism f :
X → X is internally diagonalizable if it can be written as an action of an
element of a commuta- tive †-Frobenius algebra on X; that is, if it can be
written as

f = m ◦ (φf ⊗X), (5.106)

where m : X ⊗ X → X is the multiplication of a commutative †-Frobenius
algebra on X and φf : 1→ X is a state of X.
Lemma 5.18.f : X → X is internally diagonalizable ⇔

m ◦ (f ⊗H) = f ◦m = m ◦ (H ⊗ f) (5.107)

Proof.
(⇒ )
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HP) f = m ◦ (φf ⊗H)

m ◦ (f ⊗H)
(TH)
= f ◦m(TH)

= m ◦ (H ⊗ f). (5.108)

Proof.
Under the hyphotesis HP) we need to identify

φf : C→ H

φ(1) = |φf〉 =?.

φf : C→ H

φ(1) = |φf〉 =
n∑
k

ϕk|k〉. (5.109)

φ⊗H : C⊗H ∼= H → H ⊗H

1⊗ |ψ〉 ∼= |ψ〉 7→

(
n∑
k

ϕk|k〉

)
⊗

(
n∑
j=1

ψj|j〉

)
(5.110)

m

((
n∑
k=1

ϕk|k〉

)
⊗

(
n∑
j=1

ψj|j〉

))
=

n∑
i=1

ϕiψi|i〉 (5.111)

now we impose the hypothesis

f |ψ〉 =
n∑
i=1

ϕiψi|i〉 (5.112)

hence ∑
i=1

ψif |i〉 −
n∑
i=1

ϕiψi|i〉 = 0 (5.113)

∑
i=1

f |i〉 −
n∑
i=1

ϕi|i〉 = 0 (5.114)

then

f

(∑
i=1

|i〉

)
=

n∑
i=1

ϕi|i〉 = |φf〉. (5.115)

Where f |i〉 = ϕi|i〉, ∀i = 1, ..., n.

f ⊗H : H ⊗H → H ⊗H
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|i〉 ⊗ |j〉 7→ ϕi|i〉 ⊗ |j〉 (5.116)

m(ϕi|i〉 ⊗ |j〉) = ϕi|i〉 (5.117)

H ⊗H m−→ H
f−→ H

m(|i〉 ⊗ |j〉) = δij|i〉 (5.118)

f(δij|i〉) = ϕ|i〉 (5.119)

H ⊗ f : H ⊗H → H ⊗H

|i〉 ⊗ |j〉 7→ |i〉 ⊗ ϕj|j〉 (5.120)

m(|i〉 ⊗ ϕj|j〉) = δijϕj|j〉 = ϕ|i〉. (5.121)

(⇐)

HP) m ◦ (f ⊗H)
(TH)
= f ◦m(TH)

= m ◦ (H ⊗ f) .
TH) f = m ◦ (φf ⊗H)

I choose φf = f ◦ u with

u : C→ H :: 1 7→
n∑
i=1

|i〉

.
φf : C→ H

f−→ H

1 7→
n∑
i=1

|i〉 7→ f

(
n∑
i=1

|i〉

)
= |φf〉 (5.122)

m ◦ ((f ◦ u)⊗H) = m ◦ ((f ⊗H) ◦ (u⊗H))

= (m ◦ (f ⊗H)) ◦ (u⊗H)

= (f ◦m) ◦ (u⊗H)

= f ◦ (m ◦ u⊗H) (5.123)

C⊗H ∼= H
u⊗H−−−→ H ⊗H m−→ H

1⊗ |i〉 ∼= |i〉 7→
n∑
i=1

|i〉 ⊗ |i〉 7→ |i〉 (5.124)
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m ◦ u⊗H = 1H (5.125)

f ◦ (m ◦ u⊗H) = f (5.126)

2

Lemma 5.19. Let f be a morphism internally diagonalizable then

f ◦ f †(TH)
= f † ◦ f. (5.127)

Proof.If

f = m ◦ (φf ⊗H)⇒ f † = (φf ⊗H)† ◦m† = (φ†f ⊗H) ◦m† (5.128)

= (φ†f ⊗H) ◦ δ (5.129)

φ†f ⊗H : H ⊗H → C⊗H ∼= H

|i〉 ⊗ |j〉 7→ ϕi|j〉 (5.130)

|i〉 ⊗ |i〉 7→ ϕi|i〉 (5.131)

f † : H
δ−→ H ⊗H

φ†f⊗H−−−→ H

|i〉 7→ |i〉 ⊗ |i〉 7→ ϕi|i〉 (5.132)

hence
f † ◦ f = f ◦ f † : H → H

|i〉 7→ ϕ2
i |i〉 (5.133)

2

Theorem 5.19. In FdHilb any morphism f : H → H such that

f † ◦ f = f ◦ f †

f
(TH)
= m ◦ (φf ⊗H). (5.134)

Proof.As done in [21] we choose a set {ai ∈ Hom(C, H), i = 1, ..., n} such
that

f |ai〉 = λi|ai〉 (5.135)

and
a†i ◦ ai = δij1H . (5.136)
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This basis set is uniquely determined if and only if f is nondegenerate. We
use {ai ∈ Hom(C, H), i = 1, ..., n} to construct a monoid(H,m, u) on H as
follows

m :=
n∑
i=1

ai ◦ (a†i ⊗ a
†
i ) (5.137)

u :=
n∑
i=1

ai. (5.138)

ai : C→ H :: 1 7→ |ai〉
⇓

a†i : H → C (5.139)

such that
〈x|aiz〉 = a†i |x〉 · z (5.140)

|x〉 =
n∑
i=1

xi|i〉 ⇒ 〈x| =
n∑
i=1

x∗i 〈i| (5.141)

〈x|aiz〉 =
∑
j=1

x∗jz〈aj|ai〉 = x∗i z = a†i |x〉 · z (5.142)

⇓
a†i |x〉 = x∗i ⇒ a†i |ai〉 = δij1H (5.143)

hence

(a†i ⊗ a
†
i )(|ak〉 ⊗ |aj〉) =

{
1 if i = j, i = k

0 in the others cases .
(5.144)

It is straightforward to show that this monoid is in fact a †- Frobenius monoid,
which copies the chosen basis. Now we will proof the compatibility :

m ◦ (f ⊗X)
(TH)
= f ◦m(TH)

= m ◦ (X ⊗ f). (5.145)

f ⊗H : H ⊗H → H ⊗H
|ai〉 ⊗ |aj〉 7→ λi|ai〉 ⊗ |aj〉 (5.146)

⇓
m(λi|ai〉 ⊗ |aj〉) = λi|ai〉 (5.147)

(f ◦m)(|ai〉 ⊗ |aj〉) = λi|ai〉 (5.148)

(m ◦ f ⊗H)(|ai〉 ⊗ |aj〉) = m(λi|ai〉 ⊗ |aj〉) = λi|ai〉. (5.149)

By lemma 5.18 f is internally diagonalizable.

2

128



5.3 Conclusion

Statement of the main results
Defining two linear maps by settings

δ : H → H ⊗H (5.150)

|i〉 7→ |i〉 ⊗ |i〉

ε : H → C (5.151)

|i〉 7→ 1

and taking H ∈ FdHilb (H, δ, ε) is a commutative †-Frobenius monoid. In
proposition 5.4 we have saw that solving

δ(|ψ〉) = |ψ〉 ⊗ |ψ〉 (5.152)

it is possible recover the basis in H. A very important property of †-Frobenius
monoid is that we can map any element α ∈ H into the algebra of operators
on H by defining a right action

R|α〉 = m ◦ (H ⊗ α). (5.153)

In proposition 5.7 we have seen that the adjoint of R|α〉 for some α is

R†|α〉 = R|α′〉 for α′ = (H ⊗ α†) ◦m† ◦ u. (5.154)

We have seen also the proposition 5.8 which that the map

(−)′ : HomFdHilb(C, H) :: α 7→ α′ (5.155)

is an involution, (α′)′ = α.
In light of these results it is possible to define a powerful involution preserving
monoid embedding

Λ : FdHilb(C, H) ↪→ FdHilb(H,H).

α 7→ R|α〉. (5.156)

Since that we can say :

Any †-Frobenius monoid in FdHilb is in bijective correspondence to a
orthogonal basis set for H and viceversa. Every commutative †-Frobenius
monoid in FdHilb in is embedded in a C∗ algebra hence is a C∗ algebra.
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Appendix A

Some results in functional
analysis

Proposition Let X be a normed space and let Y be a Banach space. Let
B(X,Y) the bounded operator vector space between X and Y. then B(X,Y)
is a Banach space.
Proof.Let Tn be a Cauchy sequence bounded operators. This implies that

‖ Tnx− Tmx ‖≤‖ Tn − Tm ‖‖ x ‖

but Tn is Cauchy sequence hence forn,m ≥ N0 ∈ N

∃ ε̃ > ε

such that

‖ Tnx− Tmx ‖≤‖ Tn − Tm ‖‖ x ‖≤ ε ‖ x ‖≤ ε̃

In other words the sequence Tnx ∈ Y is Cauchy sequence in a Banach space
then admits a limit in Y :

Tx = limTnx.

We see that :

‖ Tx− Tmx ‖=‖ limTnx− Tmx ‖= lim ‖ Tnx− Tmx ‖≤ ε ‖ x ‖

but
‖ Tx ‖≤‖ Tx− Tmx ‖ + ‖ Tmx ‖≤ (ε+ ‖ Tm ‖) ‖ x ‖

i.e. T is bounded. Now we needs to proof that T is the the limit for Tn
squence. The following is hold

‖ Tnx− Tmx ‖≤ ε ‖ x ‖ ∀x
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then
‖ Tnx− Tx ‖≤ ε ‖ x ‖ ∀x

⇓

‖ Tn − T ‖≤ ε

2

PropositionB(X, Y ) is a C∗-algebra.
Proof.

‖ F ∗F ‖≤‖ F ∗ ‖‖ F ‖=‖ F ‖2 .

On other hand

‖ F ‖2 sup
‖x‖≤1

‖ Ax ‖2= sup
‖x‖≤1

〈Fx‖Fx〉 = sup
‖x‖≤1

〈x|F ∗Fx〉

but

sup
‖x‖≤1

〈x|F ∗Fx〉 ≤ sup
‖x‖≤1

‖ x ‖‖ F ∗Fx ‖≤ sup
‖x‖≤1

‖ F ∗Fx ‖=‖ F ∗F ‖

⇓

‖ F ‖2≤‖ F ∗F ‖,

both the inequalities are hold then we have :

‖ F ‖2=‖ F ∗F ‖ .

2
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