
Alma Mater Studiorum · Università di
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Introduction

The Hilbert transform is a linear operator defined as follows:

Definition 0.1. The Hilbert transform of a function f ∈ Lp(R), 1 ≤ p <∞
is:

H(f)(x) =
1

π
PV

∫
R

f(y)

x− y
dy

The integral is an extension of the Riemann definition of integral, called

the Cauchy principal value.

As we will see in Chapter 3, the Hilbert transform arises from the study

of the Fourier transform. In particular David Hilbert first noticed that the

transform relates the image of the real line of a harmonic conjugate pair of

functions. This tool was first introduced by Hilbert to solve a special case

of the Riemann-Hilbert problem for holomorphic functions in 1905. Only

in 1928 Marcel Riesz proved that the Hilbert transform is well-defined for

functions in Lp(R), 1 ≤ p <∞.

Aside this, the other main field of application of this tool is signal processing.

As the complex notation of the harmonic wave form in electrical engineering

is

eiωt = cos(ωt) + i sin(ωt)

the Hilbert transform is the π
2

phase-shift operator that describes, along

with the original function, the so called strong analytic signal. The following

example shows this.
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iv INTRODUCTION

Example 0.1.

H{sin(x)} =
1

π
PV

∫ ∞
−∞

sin(y)

x− y
dy

Applying the change of variables y = x+ t

= − 1

π
PV

∫ ∞
−∞

sin(x+ t)

t
dt = −sin(x)

π
PV

∫ ∞
−∞

cos(t)

t
dt−cos(x)

π
PV

∫ ∞
−∞

sin(t)

t
dt

from the odd property of cos(t)
t

it follows

PV

∫ ∞
−∞

cos(t)

t
dt = 0

Hence

H{sin(x)} = −cos(x)

π
PV

∫ ∞
−∞

sin(t)

t
dt = −cos(x)

π

∫ ∞
−∞

sin(t)

t
dt

This is one of the Dirichlet integrals, therefore as the integral value is π it

becomes

H{sin(x)} = − cos(x)

Only lately the Hilbert tranform has been used in finance. As a matter

of fact in 2008 Feng and Linetsky proposed that the fast Hilbert transform

method could be used to describe the price of barrier and Bermudan style

options. This method was actually proposed as an improvement to the fast

Fourier method. In the latter method we consider pricing a discrete path de-

pendent options. It is possible that the form of the density function may not

be readily available. Hence the characteristic function of the process, that

is the Fourier transform of the density function, generally admits analytical

closed form representation provided the process is a Lévy process. Therefore

after the Fourier time-stepping integration across successive monitoring in-

stants, one has to perform Fourier inversion back to the price of the options.

This permits to check if the options should be exercised or not. Hence the

fast Hilbert transform could solve this computational inconvenience. Indeed

in Section 1.6 we will prove that:

F(sgn · f)(ξ) = −2iHf̂(ξ)
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As a consequence of this fact, one can prove a similar equation for the indi-

cator function ([3], Kwok and Zeng, 2013). This help us because multiplying

a function by the indicator function is associated with the barrier feature.

Thus we can compute a sequence of Hilbert transforms (instead of the Fourier

inversion) at all discrete monitoring instants to check for the knock-out or the

exercise condition of the options and we have to apply the Fourier inversion

only at the last step to obtain the option price.





Chapter 1

Some properties of the Hilbert

transform

We used in the definition of Hilbert transform the principal value integral,

that is defined as follows.

Definition 1.1 (Cauchy principal value). Consider a function f that has a

singularity in the interval over which the integral is evaluated. The Cauchy

principal value is hence defined as

PV

∫ b

a

f(x)dx = lim
ε→0

[ ∫ t−ε

a

f(x)dx+

∫ b

t+ε

f(x)dx

]
where f(x) has a singularity at x = t.

Next theorem will be proved in Chapter 2:

Theorem 1.0.1 (Riesz inequality). For 1 < p <∞∫ ∞
−∞
|Hf(x)|pdx ≤ {Rp}p

∫ ∞
−∞
|f(x)|pdx

where Rp is a constat depending only on p.

.
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2 1. Some properties of the Hilbert transform

Moreover this inequality proves that the Hilbert transform of an Lp func-

tion is still in Lp for 1 < p < ∞. Even though this does not hold for p = 1,

it will be proved in the same chapter that the Hilbert transform of an L1

function is anyway well defined almost everywhere.

Hence from now on we will consider the Hilbert transform of Lp functions

with 1 ≤ p <∞.

1.1 Inversion property

The following theorem will be proved in Chapter 3.

Theorem 1.1.1 (Hilbert Inversion Theorem). Given f ∈ Lp(R), 1 < p <∞:

H(f)(x) =
1

π
PV

∫
R

f(y)

x− y
dy

f(x) = − 1

π
PV

∫
R

H(f)(y)

x− y
dy

It is not possible to consider the case p = 1 as in general the Hilbert transform

of f ∈ L1(R) is not integrable.

Hence the following result arises from the application of Theorem 1.1.1

H2f(x) = H(Hf)(x) = −f(x), a.e.

This is true given the assumption of f ∈ Lp for p > 1 as the Riesz inequality

insures that we can apply the second Hilbert transform.

1.2 Linear scale changes

Let us consider g(x) = Hf(x), then:

• If a > 0

Hf(ax) =
1

π
PV

∫
R

f(at)

x− t
dt
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with the change of variables s = at

Hf(ax) =
1

aπ
PV

∫
R

f(s)

x− s/a
ds =

1

π
PV

∫
R

f(s)

ax− s
ds = g(ax)

• If a > 0

Hf(−ax) =
1

π
PV

∫ ∞
−∞

f(−at)
x− t

dt

with the change of variables s = −at

Hf(−ax) = − 1

aπ
PV

∫ −∞
∞

f(s)

x+ s/a
ds = − 1

π
PV

∫
R

f(s)

−ax− s
ds = −g(−ax)

• If a, b ∈ R

Hf(ax+ b) =
1

π
PV

∫ ∞
−∞

f(at+ b)

x− t
dt

with the change of variables s = at+ b

Hf(ax+ b) =

{
1
aπ
PV

∫∞
−∞

f(s)
x−(s−b)/ads if a > 0

− 1
aπ
PV

∫∞
−∞

f(s)
x−(s−b)/ads if a < 0

= ± 1

π
PV

∫ ∞
−∞

f(s)

ax+ b− s
ds = sgn(a)g(ax+ b)

1.3 Translation, dilation and reflection

As usual we set g = Hf . What follows comes directly from the results above.

• The translation operator is defined as

τaf(x) = f(x− a), a ∈ R

Thus

H(τaf)(x) = H(f)(x− a) = g(x− a) = τaHf(x)

Hence the Hilbert transform is a translation-invariant operator.
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• The dilation operator is defined as

Saf(x) = f(ax), a > 0

Thus

H(Saf)(x) = H(f)(ax) = g(ax) = SaHf(x)

Hence also the dilation operator commutes with the transform.

• The reflection operator is defined as

Rf(x) = f(−x)

Thus

H(Rf)(x) = H(f)(−x) = −g(−x) = −RHf(x)

This operator anti-commutes with the Hilbert transform.

1.4 Derivatives

The Hilbert transform commutes with the differential operator. To prove this

we first need the following theorem that is a consequence of the dominated

convergence theorem.

Theorem 1.4.1. Given f : A × I −→ R, with A ⊂ RN measurable and

I = (a, b) ⊂ R real interval. Suppose then

(i) f(t, x) is integrable as a function of t in A for every x ∈ I;

(ii) f(t, x) is differentiable with respect to x in I for almost every t ∈ A;

(iii) exists g integrable in A such that∣∣∣∣∂f∂x (t, x)

∣∣∣∣ ≤ g(t)

for almost every t ∈ A, for every x ∈ I.
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Hence the function

φ : I −→ R, φ(x) :=

∫
A

f(t, x)dt

is differentiable and

φ′(x) =

∫
A

∂f

∂x
(t, x)dt

for every x ∈ I.

Now it is possible to prove that

Theorem 1.4.2. If f ∈ Lp, p > 1 and it is differentiable with f ′ ∈ Lq, q ≥ 1,

then

H
{
df(x)

dx

}
=

d

dx
Hf(x)

Proof. We start from Definition 0.1

H(f)(x) =
1

π
PV

∫
R

f(y)

x− y
dy

If we subsitute y with x− t

H(f)(x) =
1

π
PV

∫
R

f(x− t)
t

dt

Thus we apply the derivative of x on both sides

d

dx
H(f)(x) =

d

dx

(
1

π
PV

∫
R

f(x− t)
t

dt

)
Now we check that it is possible to apply Theorem 1.4.1 to the right-hand

side of the equation.

(i) f(x−t)
t

is integrable as a function of t in R for every x ∈ R, in fact

PV

∫
R

f(x− t)
t

dt = PV

∫
R

f(y)

x− y
dy = H(f)(x)

that is well defined for every x ∈ R as a consequence of the Riesz

inequality.
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(ii) f(x−t)
t

is differentiable with respect to the variable x as for almost every

t as it is an hypothesis in the theorem.

(iii) As we chose f ′ ∈ Lq, q ≥ 1, we can do the same as in (i)

PV

∫
R

∣∣∣∣f ′(x− t)t

∣∣∣∣dt = PV

∫
R

∣∣∣∣ f ′(y)

x− y

∣∣∣∣dy = H(f ′)(x)

that is well defined for every x ∈ R, hence it makes
∣∣f ′(x−t)

t

∣∣ integrable

itself.

Now applying Theorem 1.4.1

d

dx
H(f)(x) =

1

π
PV

∫
R

d

dx

(
f(x− t)

t

)
dt

=
1

π
PV

∫
R

f ′(x− t)
t

dt

In conclusion, applying the proper substitution, we get

H
{
df(x)

dx

}
=

d

dx
Hf(x)

The generalization for the n-derivatives is straightforward:

H
{
dnf(x)

dxn

}
=

dn

dxn
Hf(x)

with the same assumptions on the higher derivatives.

1.5 Convolution property

The convolution property can be stated as follows

Theorem 1.5.1. Given f ∈ Lp and h ∈ Lq

H{f ∗ h}(x) = {Hf ∗ h}(x) = {f ∗ Hh}(x) (1.1)
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Proof. Thanks to Young’s Inequality, the convolution of an Lp function with

an Lq function is an Lr function with 1
p

+ 1
q

= 1 + 1
r
.

Therefore from the left-hand side of Eq.(1.1)

H{f ∗ h}(x) =
1

π
PV

∫ ∞
−∞

1

x− s

∫ ∞
−∞

f(u)h(s− u)duds

From the right-hand side we get

{Hf ∗ h}(x) =
1

π

∫ ∞
−∞

(
PV

∫ ∞
−∞

f(s)

u− s
ds

)
h(x− u)du

Applying the change of variable s′ = s − u + x, u′ = u, it follows that

the Jacobian of the matrix of the change of variables has value 1. Hence it

becomes

{Hf ∗ h}(x) =
1

π

∫ ∞
−∞

PV

∫ ∞
−∞

f(u′ − x+ s′)

x− s′
h(x− u′)ds′ du′

then changing the order of integration1:

=
1

π
PV

∫ ∞
−∞

∫ ∞
−∞

f(u′ − x+ s′)

x− s′
h(x− u′)du′ ds′

using the change of variables µ = u′ − x+ s′, ν = s′ that has Jacobian 1

{Hf ∗ h}(x) =
1

π
PV

∫ ∞
−∞

1

x− ν

∫ ∞
−∞

f(µ)h(ν − µ)dµ dν = H{f ∗ h}(x)

In a similar way we get the equality with {f ∗ Hh}(x).

1.6 Hilbert transform of a Fourier transform

The following statement can be proved and it relates Hilbert and Fourier

transforms. Given f ∈ Lp(R)

F(sgn · f)(ξ) = −2iHf̂(ξ) (1.2)

1Changing the order of integration is not obvious as one of the integral is a principal

value integral. Anyway it can be proved using the dominated convergence and Fubini’s

theorems that this holds.
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where

F(f)(ξ) = f̂(ξ) =

∫ ∞
−∞

f(x)e−ixξdx

is the Fourier transform of f . One can prove that the Fourier transform is

well-defined for functions in Lp(R) for 1 ≤ p ≤ 2, although it is not in general

well-defined for other values of p. Hence we consider the definition of Fourier

transform in generalized sense (tempered distributions).

To prove Eq. (1.2) we need few results.

Theorem 1.6.1 (Fourier Convolution theorem). Given f ∈ Lp, g ∈ Lp′:

F{f ∗ g} = F{f}F{g}

Proof. As in Theorem 1.5.1 the convolution is well defined given the condition

on p and p′. Now we apply the definition of convolution, and then the

definition of Fourier transform to the left-hand side to get

F{f(x)∗ g(x)} = F
{∫ ∞

−∞
f(t)g(x− t)dt

}
=

∫ ∞
−∞

∫ ∞
−∞

f(t)g(x− t)dt e−isxdx

Hence we subsitute a new variable u for x − t, while we do not make any

change on the variable t. Hence the Jacobian of the matrix of the change of

variables is 1 and we can write:

F{f(x) ∗ g(x)} =

∫ ∞
−∞

∫ ∞
−∞

f(t)g(u)e−is(u+t)dt du =

=

∫ ∞
−∞

∫ ∞
−∞

f(t)e−istg(u)e−isudt du =

∫ ∞
−∞

f(t)e−istdt

∫ ∞
−∞

g(u)e−isudu =

= F{f(x)}F{g(x)}

renaming t and u as x.

Proposition 1.6.2. Consider f, g as before, then

F{f · g} = F{f} ∗ F{g}
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Proof. We first define the following operator as the inverse Fourier transform:

F−1{g}(ξ) =

∫
R
g(x)eixξdx

It follows that

F−1{g}(ξ) = F{g}(−ξ) (1.3)

Hence from Theorem 1.6.1

F{f ∗ g} = F{f}F{g}

Now we write

F = Ff, G = Fg =⇒ f = F−1(F ), g = F−1(G)

Therefore the convolution theorem equation can be re-written as

F ·G = F{F−1(F ) ∗ F−1(G)}

Finally if we apply the inverse operator on both sides we get

F−1{F ·G} = F−1(F ) ∗ F−1(G)

Using Eq.(1.3)

F−1{F ·G}(ξ) = {F−1(F )∗F−1(G)}(ξ) =⇒ F{F ·G}(−ξ) = {F(F )∗F(G)}(−ξ)

That actually proves the initial statement.

Observation 1. We also need the following fact

F{sgn}(ξ) =
2

iξ

Proof. Consider the following function:

fα(t) =

{
e−αt t > 0

−eαt t < 0
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for α > 0. Hence

lim
α→0

fα(t) = sgn (t)

Computing the Fourier transform of fα gives

F{fα}(ξ) =

∫ ∞
−∞

fα(t)e−itξdt =

=

∫ ∞
0

e−t(iξ+α)dt−
∫ 0

−∞
e−t(iξ−α)dt =[

− 1

iξ + α
e−t(iξ+α)

]→∞
t=0

−
[
− 1

iξ − α
e−t(iξ−α)

]t=0

→−∞
=

=

(
1

iξ + α
+

1

iξ − α

)
= − 2iξ

ξ2 + α2

As α −→ 0

F{fα}(ξ) = − 2iξ

α2 + ξ2
−→ −2i

ξ
=

2

iξ

Thus it is possible to prove that2

lim
α→0
F{fα}(ξ) = F{lim

α→0
fα}(ξ)

Now the proof of Eq.(1.1) follows directly as we get

F(sgn · f)(ξ) = (F{sgn} ∗ F{f})(ξ)

from Proposition 1.6.2, hence

F(sgn · f)(ξ) = PV

∫
R

2f̂(t)

i(ξ − t)
dt

from the Observation. In conclusion, Eq.(1.2) arises from the definition of

Hilbert transform:

F(sgn · f)(ξ) = −2i PV

∫
R

f̂(t)

ξ − t
dt = −2iHf̂(ξ)

2The proof of this concerns some properties of the tempered distributions, that is not

proved here.



Chapter 2

Domain of the Hilbert

transform

It is important to verify for which set of functions the Hilbert transform is

well defined. It is possible to prove that the Hilbert transform is well defined

on Lp(R) for p ≥ 1.

Let us recall Theorem 1.0.1.

Theorem 2.0.3 (Riesz’s Inequality). Given f ∈ Lp(R), 1 < p <∞∫ ∞
−∞
|Hf(x)|pdx ≤ {Rp}p

∫ ∞
−∞
|f(x)|pdx

where Rp is a constat depending only on p.

Moreover this inequality proves that the Hilbert transform of an Lp function

is still in Lp.

Proof. The proof is divided into two parts. For 1 < p ≤ 2 we are going to

consider f ∈ Lp(R). Without loss of generality it can be considered a.e. po-

sitive as in the inequality the function f is with absolute value. Furthermore

observing that

Φ(z) =
1

iπ

∫ ∞
−∞

f(t)

z − t
dt (=(z) > 0)

11



12 2. Domain of the Hilbert transform

comes from an application to the Φ(z) in Theorem 3.0.9 (written as integral

of a(t) and b(t)) of Parseval’s relation∫ ∞
−∞
F{f(−t)}F{h(t)}dt =

∫ ∞
−∞

f(t)h(t)dt

it shows that f is the limit as y −→ 0 of the real part of Φ, that is holomorphic

in the upper-half of the complex plane. Let Φ(z) = u(x, y) + iv(x, y), thus

the following inequality holds:

|v|p ≤ Apu
p −Bp<(wp) , Ap, Bp > 0

To prove this fact, let us write w = Reit, then the inequality yields to

| sin θ|p ≤ Ap cosp θ −Bp cos pθ

For −π/2 ≤ θ ≤ π/2 and 1 < p ≤ 2 can be directly checked that the

inequality holds (for appropriate constants) as at least one of the two terms

in the right hand-side is positive. These values of θ correspond to a positive

u, matching what we supposed just above.

Furthermore w(z) is analytic for y > 0 and w(z) ∼ 1
z

as z −→∞. Hence

|v(x, y)|p ≤ Apu(x, y)p −Bp<(w(x+ iy)p)

and integrating over the real axis∫ ∞
−∞
|v(x, y)|pdx ≤ Ap

∫ ∞
−∞

u(x, y)pdx−Bp

∫ ∞
−∞
<(w(x+ iy)p)dx (2.1)

Now observe that the integral over the semicircular contour with center at iy

and diameter parallel to the x-axis of w(x + iy) is null as it is holomorphic

on the upper-half plane. Hence:∫ ∞
−∞

w(x+ iy)pdx = 0⇐⇒
∫ ∞
−∞
<(w(x+ iy)p) + i=(w(x+ iy)p)dx = 0

⇐⇒
∫ ∞
−∞
<(w(x+ iy)p)dx = 0 and

∫ ∞
−∞
=(w(x+ iy)p)dx = 0



13

Therefore Eq.2.1 simplifies to∫ ∞
−∞
|v(x, y)|pdx ≤ Ap

∫ ∞
−∞

u(x, y)pdx

As we will prove in Chapter 3

lim
y→0+

u(x, y) = f(x) a.e.

and

lim
y→0+

v(x, y) = Hf(x) a.e.

Thus this proves the case for 1 < p ≤ 2 as the limit can pass into the integral

as a consequence of the dominated convergence theorem.

For p > 2 we have to first prove the following result.

Proposition 2.0.4. If f ∈ Lp(a, b), 1 ≤ p <∞, then{∫ b

a

|f(x)|pdx

}p−1

= sup
g

∣∣∣∣∣
∫ b

a

f(x)g(x)dx

∣∣∣∣∣
where all the g are like {∫ b

a

|g(x)|qdx

}q−1

≤ 1

and p, q are conjugate exponents.

Proof. Let us apply Holder’s inequality to the integral of the product of f

and g∣∣∣∣∣
∫ b

a

f(x)g(x)dx

∣∣∣∣∣ ≤
{∫ b

a

|f(x)|pdx

}p−1{∫ b

a

|g(x)|qdx

}q−1

≤

{∫ b

a

|f(x)|pdx

}p−1

Choosing

g0(x) =
|f(x)|p−1sgn f(x){∫ b
a
|f(x)|pdx

}(p−1)/p
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It is straightforward to show that g0 has q-norm equals to 1 and that∣∣∣∣∣
∫ b

a

f(x)g0(x)dx

∣∣∣∣∣ =

{∫ b

a

|f(x)|pdx

}p−1

and hence is the sup.

We accept without proof the following result∣∣∣∣∣
∫ ∞
−∞
Hf(x)g(x)dx

∣∣∣∣∣ =

∣∣∣∣∣
∫ ∞
−∞

f(x)Hg(x)dx

∣∣∣∣∣
Now using Holder’s inequality∣∣∣∣∣

∫ ∞
−∞

f(x)Hg(x)dx

∣∣∣∣∣ ≤
{∫ ∞

−∞
|f(x)|qdx

}q−1{∫ ∞
−∞
|Hg(x)|pdx

}p−1

≤

≤ Ap

{∫ ∞
−∞
|f(x)|qdx

}q−1{∫ ∞
−∞
|g(x)|pdx

}p−1

≤ Ap

{∫ ∞
−∞
|f(x)|qdx

}q−1

Observe that we are allowed to use Holder’s inequality as 1 < p ≤ 2 and

Riesz inequality is already proved for this case (hence Hg is still in Lp).

Finally this prove what we wanted:{∫ ∞
−∞
|Hf(x)|qdx

}q−1

= sup
g

∣∣∣∣∣
∫ ∞
−∞
Hf(x)g(x)dx

∣∣∣∣∣ = sup
g

∣∣∣∣∣
∫ ∞
−∞

f(x)Hg(x)dx

∣∣∣∣∣ ≤

≤ Ap

{∫ ∞
−∞
|f(x)|qdx

}q−1

Also
1

p
+

1

q
= 1⇐⇒ q =

p

p− 1
≥ 2 , 1 < p ≤ 2

that actually confirms the proof for q > 2.
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L1 case In general the Hilbert transform of an L1 function is not L1, but

it is anyway defined a.e.. To prove this, we need the following two theorems

from Titchmarsh (1948) (proofs omitted):

Theorem 2.0.5. Let f(x) ∈ L1(0, 1) and x−1f(x) ∈ L1(1,∞). Let v(x, y)

be as before, then

lim
y→0

{
v(x, y) +

1

π

∫ ∞
y

f(x+ t)− f(x− t)
t

}
= 0

for almost all values of x.

Theorem 2.0.6. If Ψ(z) is regular and bounded for y > 0 then Ψ(z) tends

to a finite limit as y −→ 0 for almost all x.

Thus

Theorem 2.0.7. If f ∈ L1(R) then

Hf(x) =
1

π

∫ ∞
0

f(x+ t)− f(x− t)
t

dt

is defined almost everywhere.

Proof. As in the proof of Riesz inequality we suppose that f(x) ≥ 0 and

we consider Φ(z) same as before (defined in the upper-half plane); again

u(x, y) ≥ 0. Now take

Ψ(z) = e−Φ(z) = e−u(x,y)−iv(x,y)

From the definition of complex exponential for a fixed z the module of Ψ(z) is

given by e−u(x,y). Hence |Ψ(z)| ≤ 1 and thanks to Theorem 2.0.6 Ψ(z) tends

to a finite limit for almost all x. Moreover as u(x, y) tends to the finite limit

f(x) a.e., Ψ(z) tends to a finite non-zero limit a.e. Therefore Ψ(z) tends to

a finite limit a.e. and consequentially v(x, y) does the same. Hypothesis of

Theorem 2.0.5 are verified as

f ∈ L1(R) =⇒ f ∈ L1(0, 1)
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f ∈ L1(R) =⇒
∫ ∞

1

∣∣∣∣f(x)

x

∣∣∣∣dx ≤ ∫ ∞
1

|f(x)|dx <∞ =⇒ x−1f(x) ∈ L1(1,∞)

Hence it follows that v(x, y) converges to a finite limit a.e. that is the Hilbert

transform of f(x).

If f ∈ L∞(R) then in general the Hilbert transform is an unbounded

operator.



Chapter 3

Derivation of the Hilbert

transform

Fourier transform and Hilbert transform are strictly related as it was first

noticed by Hilbert. To show how he derived the transform from the Fourier

transform we will use i slightly different definition of the latter ([1] Titch-

marsh, 1948).

Given f : R −→ C, f ∈ Lp, p ≥ 1 as:

f̂(ξ) =
1√
2π

∫ ∞
−∞

f(x)eiξxdx

Moreover the Fourier inversion theorem states that:

Theorem 3.0.8 (Fourier inversion theorem). Given f ∈ Lp(R), 1 ≤ p <∞

f(x) =
1√
2π

∫ ∞
−∞

f̂(ξ)e−ixξdξ

The Hilbert-Fourier relation arises in the proof of the inversion theorem

for the Hilbert transform.

Theorem 3.0.9 (Hilbert inversion theorem). Given f ∈ Lp(R), 1 ≤ p <∞:

f(x) = − 1

π
PV

∫
R

H(f)(y)

x− y
dy

17
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Proof. Using the Fourier Inversion theorem, we can re-write f as follows:

f(x) =
1√
2π

∫ ∞
−∞

f̂(ξ)e−ixξdξ =
1√
2π

∫ ∞
−∞

(
1√
2π

∫ ∞
−∞

f(µ)eiξµdµ

)
e−ixξdξ =

=
1

2π

∫ ∞
−∞

(∫ ∞
−∞

{
f(µ) cos(ξµ) + if(µ) sin(ξµ)

}
dµ

)(
cos(xξ)− i sin(xξ)

)
dξ

If we consider the case of real valued functions we get:

f(x) =
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(µ) cos(ξµ)dµ

)
cos(xξ)dξ

+
1

2π

∫ ∞
−∞

(∫ ∞
−∞

f(µ) sin(ξµ)dµ

)
sin(xξ)dξ

Thus we can finally write:

f(x) =

∫ ∞
0

{
a(ξ) cos(xξ) + b(ξ)sin(xξ)

}
dξ

Where:

a(ξ) =
1

π

∫ ∞
−∞

f(µ) cos(ξµ)dµ , b(ξ) =
1

π

∫ ∞
−∞

f(µ) sin(ξµ)dµ

Now we can define

u(x, y) =

∫ ∞
0

{
a(ξ) cos(xξ) + b(ξ)sin(xξ)

}
e−yξdξ

and it is easy to see that u(x, y) is well defined for y ≥ 0 and that it is the

real part of

Φ(z) =

∫ ∞
0

{a(ξ)− ib(ξ)}eizξdξ

where z = x+ iy. The imaginary part of Φ(z) is then

v(x, y) = −
∫ ∞

0

{b(ξ) cos(xξ)− a(ξ) sin(xξ)}e−yξdξ

Writing g(x) = −V (x, 0), we get

g(x) =

∫ ∞
0

{b(ξ) cos(xξ)− a(ξ) sin(xξ)}dξ =

=
1

π

∫ ∞
0

∫ ∞
−∞
{f(µ)

(
sin(µξ) cos(xξ)− cos(µξ) sin(xξ)

)
}dµdξ =
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=
1

π

∫ ∞
0

∫ ∞
−∞
{f(µ) sin(µ− x)ξ}dµdξ

This can be written as

g(x) = lim
λ→∞

1

π

∫ λ

0

∫ ∞
−∞
{f(µ) sin(µ− x)ξ}dµdξ

Solving for ξ gives

g(x) = lim
λ→∞

1

π

∫ ∞
−∞

[
f(µ)

(
− cos(µ− x)ξ

µ− x

)]ξ=λ
ξ=0

dµ =

= lim
λ→∞

1

π

∫ ∞
−∞

1− cos(µ− x)λ

µ− x
f(µ)dµ =

= lim
λ→∞

1

π

(∫ ∞
0

1− cos(µ− x)λ

µ− x
f(µ)dµ+

∫ ∞
0

1− cos(−µ′ − x)λ

−µ′ − x
f(−µ′)dµ′

)
Now using the changes of coordinates µ− x = t and µ′ + x = t′ it becomes

g(x) = lim
λ→∞

1

π

(∫ ∞
0

1− cosλt

t
f(x+ t)dt−

∫ ∞
0

1− cosλt′

t′
f(x− t′)dt′

)
=

= lim
λ→∞

1

π

∫ ∞
0

1− cosλt

t

(
f(x+ t)− f(x− t)

)
dt

Under certain conditions on f the part with cosλt will tend to 0, therefore

g(x) =
1

π

∫ ∞
0

f(x+ t)− f(x− t)
t

dt (3.1)

similarly for f

f(x) = − 1

π

∫ ∞
0

g(x+ t)− g(x− t)
t

dt (3.2)

Hilbert first noticed this relationship, given from the Fourier transform, be-

tween f and g. It is straight forward the equivalency between the first defini-

tion we gave of Hilbert transform and Eq.(3.1). Furthermore Eq.(3.2) leads

to the inversion property of the Hilbert transform:

f(x) = − 1

π
PV

∫
R

H(f)(y)

x− y
dy
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Observation 2. Another relationship arises between the Hilbert and Fourier

transform from the calculations above, indeed a(ξ) and b(ξ) can be written

as

a(ξ) =
1√
2π

(
f̂(ξ) + f̂(−ξ)

)
, b(ξ) =

1

i
√

2π

(
f̂(ξ)− f̂(−ξ)

)
Hence

g(x) =

∫ ∞
0

{b(ξ) cos(xξ)− a(ξ) sin(xξ)}dξ =

=
1

i
√

2π

∫
0∞

(
f̂(ξ)− f̂(−ξ)

)
cos(xξ)dξ− 1√

2π

∫
0∞

(
f̂(ξ)+ f̂(−ξ)

)
sin(xξ)dξ =

=
1

i
√

2π

(∫ ∞
0

f̂(ξ)e−ixξdξ −
∫ ∞

0

f̂(−ξ)eixξdξ

)
with the change of variable t = −ξ in the second integral it becomes

g(x) =
1

i
√

2π

∫ ∞
−∞

f̂(t) sgn(t) e−ixtdt

From the Fourier’s inversion theorem it follows

ĝ(t) = −if̂(t) sgn(t)

But g = Hf , hence formally

FHf(t) = −i sgn(t) Ff(t)
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