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Sommario

Dopo una breve presentazione nel primo capitolo della struttura di gruppo

di Lie omogeneo indotta da un’equazione di Kolmogorov, nel secondo capitolo

definiamo dei polinomi di Taylor e degli spazi di Holder intrinseci e compariamo

la nostra definizione con altre note in letteratura. Nel terzo capitolo dimostriamo

l’analogo della formula di Taylor cioè una stima del resto in termini della metrica

omogenea.

Abstract

After briefly discuss the natural homogeneous Lie group structure induced

by Kolmogorov equations in chapter one, we define an intrinsic version of Taylor

polynomials and Holder spaces in chapter two. We also compare our definition

with others know in literature. In chapter three we prove an analogue of Taylor

formula, that is an estimate of the remainder in terms of the homogeneous

metric.





Introduction

Since their introduction in 1934 to formalize the evolution of a probability

density Kolmogorov equations have been used in a variety of different fields from

diffusion theory to kinetic models to mathematical finance in particular pricing

Asian options.

The main aim of this dissertation is to prove a Taylor formula for function

regular with respect to a geometry induced by the particular equation. We will

essentially require an Hölder type regularity along integral curves of a set of

vector fields given by the equation that generate a Lie algebra of full dimension.

For function with such regularity we will define a Taylor polynomial different

from the Euclidean one and prove an estimate of the remainder.

The structure of this dissertation is quite simple. In the first chapter we in-

troduce some basic terminology and state our main assumption. First of all we

report the definition of Kolmogorov operators in great generality, their use and

some assunction as the Hörmander condition and homogeneity with respect to a

particular type of anisotropic dilatations. We also introduce a non commutative

group law with respect to the constant coefficients operators are left-translations

invariant. Togheter the law and the dilatations give the space the structure of

an homogeneous Lie group. Its property and geometry are discussed in the sec-

ond section, in particular a quasi metric left invariant wrt the law is introduced.

In the second chapter we define suitable Hölder spaces for the underlying

homogeneous structure and prove some inclusions between them. Both local

and global versions of the spaces are provided. In section two we define the

intrinsic Taylor polynomials and state our main results and its corollaries. In

section three we use the stated propositions to compare our definition of intrin-

sic Hölder regularity to others know in literature.
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viii Introduction

Chapter three is dedicated to the proof of the main theorem. The demon-

stration is carried by induction but is divided into four steps in order to deal

with the different difficulties that arises as the order increases. Essentially, in

the first steps we have to prove that some of the derivatives appearing in the

Taylor polynomials exist.



Chapter 1

The intrisic geometry

In this chapter we study the structure of R1+d given by a Kolmogorov Op-

erator. Precisely, in the first section we introduce such operators and state our

main assumptions. In section two we define a Lie group structure on R1+d as

well as a relative quasi-metric and study their properties.

1.1 Kolmogorov equations

The term Kolmogorov operators (KOs). refers to a large class of second

order differential ultra parabolic operators L of the form

L =

p0∑
i,j=1

aij(t, x)∂xixj +

p0∑
i=1

ai(t, x)∂xi + 〈Bx,∇x〉+ ∂t, (1.1)

with x = (x1, · · · , xd) ∈ Rd, t ∈ R and 1 ≤ p0 ≤ d. Furthermore,

A = (aij(t, x))1≤i,j≤p0
is a symmetric matrix with variable real entries, pos-

itive semidefinite for any (t, x) ∈ R×Rd, and B = (bij)1≤i,j≤d is a matrix with

constant real entries.

The simpliest (forward version) of such operators is

n∑
i=1

∂2
xi +

n∑
i=1

xi∂xn+i
− ∂t (1.2)

which was introduced by Kolmogorov in [K] in 1934 in order to describe the

probability density of a system with 2n = d degree of freedom. The 2n-

dimensional space is the phase space, (x1, . . . , xn) is the velocity and

(xn+1, . . . , x2n) the position of the system. By choosing

A = In B =

(
0 0

In 0

)

1



2 The intrisic geometry

where In and 0 denote respectively the identity and the null n × n matrices,

operator (1.2) can be written in form 1.1. We also recall that (1.2) is a prototype

for a family of evolution equations arising in the kinetic theory of gases that

take the following general form

Y u = J (u).

Here R2n 3 x 7→ u(x, t) ∈ R is the density of particles which have velocity

(x1, . . . , xn) and position (xn+1, . . . , x2n) at time t,

Y u = −
n∑
i=1

xi∂xn+i
+ ∂t

is the so called total derivative of u and J (u) describes some kind of collisions.

This last term can take different form, either linear or non linear. For instance,

in the usual Fokker-Planck equation, we have

J (u) =

n∑
i,j=1

ai,j∂xi,xju+

n∑
i=1

ai∂xiu+ au.

where aij , ai and a are functions of (t, x).

For the description of wide classes of stochastic processes and kinetic models

leading to equations of the previous type, we refer to the classical monographies

[C], [DM] and [CC]. In the last decades mathematical models involving linear

and non linear Kolmogorov type equations have also appeared in finance [ADK],

[Ba], [DHW]. We explicitly mention the equation

s2∂sV + (log s)∂τV + ∂tV, s > 0, t, τ ∈ R, (1.3)

which arises in the problem of pricing geometric average Asian options, typically

a Caychy problem with final datum the payoff function. (1.3) can be reduced to

the Kolmogorov equation (1.2) with n = 1 by means of an elementary change of

variables (see [FPP]). Considering the more frequently used arithmetic average

Asian options leads to a more general equation than (1.3) with the second order

coefficient dependant also on t. In [FPP] the authors gives a numerical method

to approximate solutions of such equations using a Taylor series expansion of

the coefficients following the ideas in [LPP] but prove no bound on the errors

altough by numerical tests the convergence seems to be quite fast.

Error bounds for small times can be found using the Euclidean regularity

of the payoff function however, using the intrinsic notion of regularity for the

operator (1.1) can lead to higher order of convergence. This thesis, in which we

define explicitly the notion of intrinsic regularity, the relative Taylor expansion
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and prove a conseguent error bound represents the first step to demonstrate a

better error bounds than the ones presently know.

We assume the following structural hypothesis to hold:

(H.1) the matrix (aij(x))1≤i,j≤p0
is uniformly positive definite in Rp0 , i.e. there

exists a positive constant M > 0 such that

M−1|ξ|2 ≤
p0∑

i,j=1

aij(t, x)ξiξj ≤M |ξ|2, ξ ∈ Rp0 , (t, x) ∈ R× Rd.

(H.2) the matrix B = (bij)1≤i,j≤d takes the form

B =



∗ ∗ · · · ∗ ∗
B1 ∗ · · · ∗ ∗
0 B2 · · · ∗ ∗
...

...
. . .

...
...

0 0 · · · Br ∗


, (1.4)

where each Bj is a pj × pj−1 matrix with rank pj , with

p0 ≥ p1 ≥ · · · ≥ pr ≥ 1,

r∑
j=0

pj = d,

and the ∗-blocks are arbitrary.

The structural hypothesis (H.1)-(H.2) represent a corner stone in the study

of the existence of the fundamental solution of the operator L . It is well

known that, in case the of constant coefficients KOs (aij(t, x) ≡ aij , ai(t, x) ≡
ai, a(x) ≡ a), such hypothesis are equivalent to the Hormander condition (see

[H]):

(H.C) Let gz := Lie(X1, · · · , Xp0
, Y ) be the Lie algebra generated by the vector

fields

Xi = ∂xi , i = 1, · · · , p0, Y ≡ Y (x) = 〈Bx,∇x〉+ ∂t, (1.5)

at the point z = (t, x) ∈ R× Rd, then

rank gz = d+ 1, ∀z ∈ R× Rd.

Moreover, it can be show that

gz = span{X1, . . . , Xp0
}︸ ︷︷ ︸

=:W0

⊕ span{Y }︸ ︷︷ ︸
=:W1

⊕ [W0,W1]︸ ︷︷ ︸
=:W2

⊕ · · · ⊕ [W0,Wr]︸ ︷︷ ︸
=:Wr+1

, (1.6)
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with is a gradation i.e [Wi,Wj ] ⊂ Wi+j for every i, j = 0, . . . , r (set Wi = 0 if

i > r) with dimW0 = p0, dimW1 = 1 and dimWi = pi−1 for i = 2, . . . , r + 1.

Therefore, we can hope that opportune regularity wrt the vector fields

X1, . . . , Xp0
, Y implies regularity wrt the other vector fields in (1.6). This will

be proved in chapter three.

1.2 Intrinsic geometry of R× Rd

Definition 1.1. We now introduce the non-commutative law ◦ on R×Rd given

by

(t, x) ◦ (s, ξ) = (t+ s, E(s)x+ ξ), (t, x), (s, ξ) ∈ R× Rd,

where

E(t) = etB , t ∈ R.

(R×Rd, ◦) is then a Lie group with identity element Id = (0, 0) and inverse

(t, x)−1 = (−t,−E(−t)x), (t, x) ∈ R×Rd. The group law first appeared in [GL]

and then in [LP].

It is important to observe that constant coefficients KOs are invariant to the

left translations with respect to ◦, i.e.(
L u(s,ξ)

)
(t, x) = (L u)

(
(s, ξ) ◦ (t, x)

)
, (t, x), (s, ξ) ∈ R× Rd,

where

u(s,ξ)(t, x) = u((s, ξ) ◦ (t, x))

Definition 1.2. We also introduce the family of dilations (D(λ))λ≥0 on R×Rd

given by

D(λ)(t, x) = diag
(
λ2, λIp0

, λ3Ip1
, · · · , λ2r+1Ipr

)
(t, x), (t, x) ∈ R× Rd,

where Ipj are pj × pj identity matrixes.

We esplicitely remark that, if the (formal) degree of the vector fields Xi

is one for i = 1, . . . , p0 and the formal degree of Y is set 2 as usual when

dealing with parabolic equations then the Wi (of dimension pi−1) appearing in

the gradation (1.6) are spaces of vector fields of (formal) degree 2(i − 1) + 1

(except for W1 = span{Y }), in accordance with the degree of the dilatation of

the corresponding block.

It is easy to check that, if (and only if) the ∗-blocks in (1.4) are null as well

as the first order coefficients ai, then the constant coefficients KO L is also
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homogeneous of degree two with respect the dilations D(λ), i.e.(
Lu(λ)

)
(t, x) = λ2(L u)

(
D(λ)(t, x)

)
, λ > 0, (t, x) ∈ R× Rd,

where

u(λ)(t, x) = u(D(λ)(t, x))

Hereafter we will always suppose such condition i.e. the matrix B takes the

following form:

B =



0p0×p0
0p0×p1

· · · 0p0×pr−1
0p0×pr

B1 0p1×p1
· · · 0p1×pr−1

0p1×pr

0p2×p0 B2 · · · 0p2×pr−1 0p2×pr
...

...
. . .

...
...

0pr×p0
0pr×p1

· · · Br 0pr×pr


, (1.7)

where 0pi×pj is a pi × pj null block.

Definition 1.3. We say that G ≡ (RN , ◦, δ(λ)) is an homogeneous Lie group

if the following facts hold: (RN , ◦) is a Lie group and δ(λ)λ>0 is a family of

dilatation i.e.

δ(λ)(x1, . . . , xN ) = (λσ1x1, . . . , λ
σNxN ) σi ≥ 1;

witch are also group-homomorphism.

Definition 1.4. We observe that the matrix B in (1.7) univocally identifies

an homogeneous Lie group GB ≡ (R × Rd, ◦, D(λ)) called Kolmogorov-type Lie

group.

We now denote by D0(λ)λ>0 the restriction of the dilations D(λ) on Rd:

D0(λ)x = diag
(
λIp0 , λ

3Ip1 , · · · , λ2r+1Ipr
)
x, x ∈ Rd.

Next we decompose Rd in a direct sum of vector subspace according to

the behaviour of the different variables in the dilatations D0(λ) and show how

powers of the matrix B link the previous subspace.

Let

p̄−1 = 0, p̄k = p0 + p1 + · · ·+ pk, 0 ≤ k ≤ r.

For any x = (x1, . . . , xd) ∈ Rd and n = 0, . . . , r, we define x[n] ∈ Rd as the

projection of x on {0}p̄n−1 × Rpn × {0}d−p̄n , i.e.

x
[n]
k =

xk for p̄n−1 < k ≤ p̄n,

0 otherwise.
(1.8)
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Thus Rd is the direct sum

Rd =

r⊕
n=0

Vn, Vn := {x[n] | x ∈ Rd}, n = 0, . . . , r.

Definition 1.5. Given an index i ∈ {1, . . . , d} we will say that the variable xi

is of level k if ei ∈ Vk where ei is the i-th vector of the canonical basis of Rd. In

this case we will also say that the derivative ∂xi is of level k and set its B-order

to be 2k + 1.

Note that for i = 1, . . . , p0 that is, for level zero derivatives, the B-order

coincides with the usual (Euclidean) one.

For any n ≤ r we have

Bn =



0p̄n−1×p0
0p̄n−1×p1

· · · 0p̄n−1×pr−n 0p̄n−1×(p̄r−p̄r−n)
n∏
j=1

Bj 0pn×p1
· · · 0pn×pr−n 0pn×(p̄r−p̄r−n)

0pn+1×p0

n+1∏
j=2

Bj · · · 0pn+1×pr−n 0pn+1×(p̄r−p̄r−n)

...
...

. . .
...

...

0pr×p0 0pr×p1 · · ·
r∏

j=r−n+1

Bj 0pr×(p̄r−p̄r−n)


, (1.9)

where
n∏
j=1

Bj = BnBn−1 · · ·B1.

Note that such products are non commutative. Moreover Bn = 0 for n > r, so

that

eδB = Id +

r∑
h=1

Bh

h!
δh. (1.10)

where Id is the d× d identity matrix.

Remark 1.6 We have

v ∈ V0 =⇒ Bnv ∈ Vn, n = 0, . . . , r. (1.11)

In particular, we have

Bnv = B̄nv,

with

B̄n =


0p̄n−1×p0

0p̄n−1×(r−p0)
n∏
j=1

Bj 0pn×(r−p0)

0(p̄r−p̄n)×p0
0(p̄r−p̄n)×(r−p0)

 ,
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where, by Hypothesis (H.2),
n∏
j=1

Bj is a pn × p0 matrix with (rows) full rank.

Therefore, the linear applications B̄n : V0 → Vn are surjective, but not neces-

sary injective. Nevertheless, it is possible to define, for any n = 0, · · · , r, the

subspaces V0,n ⊂ V0 as

V0,n := {x ∈ V0|xj = 0 ∀j /∈ ΠB,n},

with ΠB,n being the set of the indexes corresponding to the first pn linear inde-

pendent columns of
n∏
j=1

Bj. It is now trivial that the linear maps B̄n : V0,n → Vn

are also injective, and thus bijective. By trivial linear algebra arguments it is

possible to show that

V0,r ⊂ V0,r−1 ⊂ · · · ⊂ V0,1 ⊂ V0,0 = V0. (1.12)

Example 1.7. Denote the points of R×R2 by z = (t, x1, x2) and consider the

simpliest KO

K = ∂x1,x1
+ x1∂x2

+ ∂t = ∂x1,x1
+ 〈B(x1, x2)t,∇〉+ ∂t

where

B =

(
0 0

1 0

)
.

In this case we have

R2 = V0 ⊕ V1 = span{e1} ⊕ span{e2}, V0,0 = V0,1 = span{e1}.

The dilatations D(λ), D0(λ) take the following explicit form

D(λ)(t, x1, x2) = (λ2t, λx1, λ
3x2) D0(λ)(x1, x2) = (λx1, λ

3x2);

and, as

etB

(
x1

x2

)
= (I + tB)

(
x1

x2

)
=

(
x1

x2 + tx1

)
,

the group law ◦ and its inverse become

ζ ◦ z = (s, ξ1, ξ2) ◦ (t, x1, x2) = (s+ t, x1 + ξ1, x2 + ξ2 + tξ1)

z−1 = (−t,−x1,−x2 + tx1).

The group law ◦ together with the dilations D(λ) induce a geometry different

from the Euclidean one. It is natural to define new norms on Rd and in R×Rd

which are homogeneous of degree one with respect to the dilations D0(λ) and

D(λ).
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Definition 1.8.

|x|B =

N∑
j=1

|xj |1/qj , ‖(t, x)‖B = |t|1/2 + |x|B t ∈ R, x ∈ Rd

where (qj)1≤j≤d are integers such that

D(λ) = diag
(
λ2, λq1 , · · · , λqd

)
.

The proprieties of the norm ‖·‖B are listed in the next proposition. For its

proof we refer to [BCM].

Proposition 1.9 The following statements hold for all z, ζ ∈ R × Rd and

λ > 0:

i. ||D(λ)z||B = λ||z||B;

ii. ||z + ζ||B ≤ ||z||B + ||ζ||B;

iii. ||z ◦ ζ||B ≤ cB (||z||B + ||ζ||B);

iv. 1
cB
||z||B ≤ ||z−1||B ≤ cB ||z||B.

Here cB ≥ 1 is a constant that depends only on B.

Definition 1.10. Combining the norm ‖·‖B together with the group law ◦ we

can define a functional dB as

dB(z, ζ) :=
∥∥ζ−1 ◦ z

∥∥
B
.

For the Example 1.7 we have

|(x1, x2)|B = |x1|+ |x2|
1
3 , ‖(t, x1, x2)‖B = |t| 12 + |x1|+ |x2|

1
3 ;

dB((t, x1, x2), (t, ξ1, ξ2)) = |t− s| 12 + |x1 − ξ1|+ |x2 − ξ2 − (t− s)ξ1|
1
3 .

Lemma 1.11 The functional dB is a quasimetric on R × Rd i.e. for all

z, ζ ω ∈ R× Rd it holds

1. dB(z, ζ) ≥ 0;

2. dB(z, ζ) = 0 iff z = ζ ;

3. dB(z, ζ) ≤ cB (dB(z, ω) + dB(ω, ζ)) ;

4. dB(z, ζ) ≤ cB dB(ζ, z).

Here cB is the same constant that appears in Proposition 1.9. Moreover for

every bounded subset Ω of R× Rd there exists a constant CΩ > 0 such that

dB(z, ζ) ≤ CΩ|z − ζ|
1

2r+1 , z, ζ ∈ Ω. (1.13)
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Proof. Properties 1 and 2 follow directily from the definition. Regarding 3,

using (iii) of Proposition 1.9 we get

dB(z, ζ) =
∥∥ζ−1 ◦ z

∥∥
B

=
∥∥(ζ−1 ◦ ω) ◦ (ω−1 ◦ z)

∥∥
B
≤ cB(dB(ω, ζ) + dB(z, ω)).

In order to obtain 4 just use the right side of (iv). Finally, to prove (1.13) we

suppose z = (t, x), ζ = (s, ξ) and so

dB(z, ζ) =
∥∥(s, ξ)−1 ◦ (, x)

∥∥
B

= |t− s| 12 + |x− e(t−s)Bξ|B

=|t− s| 12 +

d∑
i=1

|(x− e(t−s)Bξ)i|
1
qi .

Since Ω is bounded we get |t− s| 12 ≤ C|t− s|
1

2r+1 ≤ C|z − ζ|
1

2r+1 and, if i is an

index of level say j by (1.9), (1.10)

(x−e(t−s)Bξ)i = xi−ξi−(t−s)l.c.{ξ1, . . . , ξp0
}+· · ·−(t−s)j−1l.c.{ξ1, . . . , ξp̄j−1

},

where l.c{. . . } stands for linear combination. Then as qj ≤ 2r + 1 we obtain

|(x− e(t−s)Bξ)i|
1
qi ≤ C(|ζ|, B)|z − ζ|

1
2r+1 ≤ CΩ|z − ζ|

1
2r+1 .

Next we study how higher level derivatives can be obtained commutating

the vector fields Y and X1, . . . , Xp0
.

We use the following notations:

∇ = (∂x1 , . . . , ∂xd) , ∇ · v = 〈∇, v〉 =

d∑
i=1

vi∂xi , v ∈ Rd.

Next we set

Y (k)
v := [· · · [[∇ · v, Y ], Y ] · · · , Y ]︸ ︷︷ ︸

k

, k = 0, . . . , r v ∈ V0. (1.14)

Lemma 1.12 Let u ∈ C∞(R× Rd), v ∈ V0. Then we have Y
(0)
v = ∇ · v and

Y (k)
v u = 〈Bkv,∇〉u k ≥ 1. (1.15)

Proof. The statement can be directly verified for k = 0 and k = 1. Let us notice

that, by definition, Y
(k)
v = [Y

(k−1)
v , Y ] for k ≥ 1. Now, we assume (1.15) to hold

for k ≥ 1 and prove it for k + 1. Expanding the commutator and using the

inductive hypothesis we get
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Y (k+1)
v u =Y (k)

v Y u− Y Y (k)
v u = 〈Bkv,∇〉Y u− Y 〈Bkv,∇〉u

=〈Bkv,∇〉〈x,B>∇〉u− 〈x,B>∇〉〈Bkv,∇〉u.

The statement then stems from the identity:

〈a,∇〉〈x,C∇〉 = 〈a,C∇〉+ 〈x,C∇〉〈a,∇〉, x ∈ Rd,

for any a ∈ Rd, C ∈ Rd×d, and by setting a = Bkv, C = B>.

By (1.11) Y
(k)
v is a linear combination of derivatives of level k and B-order

2k + 1 i.e. each time we commute ∇ · v with the vector field Y we obtain an

operator of one level greater and whit B-order increased by two, coerently whit

the fact that the B-order of Y equals two.

In particular if v
(n)
i ∈ V0,n is the (unique) vector such that Bnv(n)i = e

(n)
i ,

the i-th vector of the canonical basis of Vn (see Remark 1.6), we have

∂xp̄n−1+i
u = Y

(n)

v(n)i
u.

In chapter three we will establish an intrinsic Taylor expansion for a class

of functions regular only wrt X1, . . . , Xp0
, Y but with none a priori regularity

wrt other vector fields. The above formula is then of particular interest since

indicate how to recover the lacking regularity.

Next we show how to approximate integral curves of the commutators Y
(k)
v

using a rather classical technique from control theory. We use the notation

esX(z) to indicate the integral curve starting at z of the vector field X evaluated

at the time s i.e. the solution ofγ̇(s) = (Xγ)(s);

γ(0) = z.

Note that solving such systems for the vector fields Xi and Y in (1.5) we obtain

eδXi(t, x) = (t, x+ δei) eδY (t, x) = (t+ δ, eδBx),

for any (t, x) ∈ R× Rd and δ ∈ R.

In the Example 1.7 we obtain

eδX1(t, x1, x2) = (t, x1 + δ, x2),

eδY (t, x1, x2) = (t+ δ, x1, x2 + δx1).
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For any z ∈ R × Rd, δ ∈ R and v ∈ Rd, we define iteratively the family of

trajectories
(
γ

(k)
v,δ (z)

)
k=0,...,r

as

γ
(0)
v,δ(z) = eδ∇·v(z) = (t, x+ δv), (1.16)

γ
(k+1)
v,δ (z) = e−δ

2Y
(
γ

(k)
v,−δ

(
eδ

2Y
(
γ

(k)
v,δ (z)

)))
. (1.17)

Lemma 1.13 We have

γ
(k)
v,δ (t, x) = (t, x+ Sk(δ)v) , k = 0, . . . , r, (1.18)

where

S0(δ) = δId, and Sk(δ) := (−1)k
∑
h∈Nk
|h|≤r

(−B)|h|

h!
δ2|h|+1, k = 1, . . . , r.

with |h| = h1 + · · ·+ hk and h! = h1! · · ·hk!.

Proof of Lemma 1.13. We proceed by induction on k. The case k = 0 is trivial.

Now, assuming (1.18) as inductive hypothesis and noting that Sk(−δ) = −Sk(δ),

we have

γ
(k+1)
v,δ (t, x) = e−δ

2Y
(
γ

(k)
v,−δ

(
eδ

2Y
(
γ

(k)
v,δ (t, x)

)))
= e−δ

2Y
(
γ

(k)
v,−δ

(
eδ

2Y (t, x+ Sk(δ)v)
))

= e−δ
2Y
(
γ

(k)
v,−δ

(
t+ δ2, eδ

2B (x+ Sk(δ)v)
))

= e−δ
2Y
(
t+ δ2, eδ

2B (x+ Sk(δ)v)− Sk(δ)v
)

=
(
t, e−δ

2B
(
eδ

2B (x+ Sk(δ)v)− Sk(δ)v
))

=
(
t, x+ Sk(δ)v − e−δ

2BSk(δ)v
)
.

On the other hand, by (1.10) we have

x+ Sk(δ)v − e−δ
2BSk(δ)v = x+ Sk(δ)v −

(
Id +

r∑
h=1

(−B)h

h!
δ2h

)
Sk(δ) =

x+ Sk+1(δ)v,

and this concludes the proof.

In general, for n ∈ 0, · · · , r, z ∈ R × Rd, δ ∈ R and v ∈ Rd, we define

iteratively the family of trajectories
(
γ

(n,k)
v,δ (z)

)
k=n,...,r

as

γ
(n,n)
v,δ (z) = eδ

2n+1Y (n)
v (z) =

(
t, x+ δ2n+1Bnv

)
,

γ
(n,k+1)
v,δ (z) = e−δ

2Y
(
γ

(n,k)
v,−δ

(
eδ

2Y
(
γ

(n,k)
v,δ (z)

)))
, n ≤ k ≤ r − 1.
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We have the analogous of Lemma 1.13 whose proof is identical to the one just

showed and is then left.

Lemma 1.14 For any n ∈ {0, · · · , r}, we have

γ
(n,k)
v,δ (t, x) = (t, x+ Sn,k(δ)v) , k = n, . . . , r,

where

Sn,n(δ) = δ2n+1Bnv,

and

Sn,k(δ) := (−1)k−nδ2n+1Bn
∑

h∈Nk−n
|h|≤r−n

(−B)|h|

h!
δ2|h|, k = n+ 1, . . . , r.

with |h| = h1 + · · ·+ hk and h! = h1! · · ·hk!.

Remark 1.15 Since

Sn,k(δ) = δ2k+1Bk + S̃n,k(δ), n ≤ k ≤ r

with

S̃n,n(δ) := 0

and

S̃n,k(δ) := (−1)k−nδ2n+1Bn
∑

h∈Nk−n
k−n<|h|≤r−n

(−B)|h|

h!
δ2|h|, k = n+ 1, . . . , r,

(note that S̃n,r(δ) = 0), then we deduce from (1.18) that

γ
(n,k)
v,δ (z) =

(
t, x+ δ2k+1Bkv

)
+
(
0, S̃n,k(δ)v

)
, n ≤ k ≤ n. (1.19)

If v ∈ V0 then the remainders S̃n,k(δ)v have the following important properties:

first of all, as a remarkable consequence of (1.11), we have that

S̃n,k(δ)v ∈
r⊕

j=k+1

Vj , k = n, . . . , r. (1.20)

Moreover, using notation (1.8), for any k = n, . . . , r we have∣∣∣(S̃n,k(δ)v
)[j]∣∣∣ ≤ cB |δ|2j+1|v|, j = k + 1, . . . , r, (1.21)

where the constant cB depends only on the matrix B. If |v| = 1 this also implies∥∥(γ(n,k)
v,δ (z)

)−1 ◦ z
∥∥
B

=
∥∥∥((t, x+ δ2k+1Bkv) + (0, S̃n,k(δ)v)

)−1 ◦ (t, x)
∥∥∥
B

=
∥∥∥(0,−δ2k+1Bkv − S̃n,k(δ)v

)∥∥∥
B

= | − δ2k+1Bkv − S̃n,k(δ)v|B ≤ cB |δ|. (1.22)
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We also set:

γ
(−1,k)
v,δ (z) ≡ γ(k)

v,δ (z), 0 ≤ k ≤ r.

If v ∈ V0 equation (1.19) togheter with (1.20) say that the function γ
(n,k)
v,δ

modifies the spatial components of level greater or equal to k but left untouched

the others. Moreover since the maps

Bk : V0,k −→ Vk

are bijective, choosign conveniently the vector v we can make the increment in

the level k arbitrary. Exploiting such features of the trajectories γ
(n,k)
v,δ we can

connect two arbitrary point in R× Rd.

Proposition 1.16 Given any two points z, ζ ∈ R×Rd there exists a continuos

path

γζ,z : [0, 1] −→ R1+d; γζ,z(0) = ζ, γζ,z(1) = z,

such that γζ,z is a concatenation of integral curves of either Y or ∇ · v for

suitable vectors v ∈ V0.

Moreover there exists a constat C > 0 depending only on B such that, setting

R = dB(ζ, z), the support of the curve γz,ζ is contained in the set B̄(ζ, CR) =

{ω ∈ R× Rd | dB(ζ, ω) ≤ CR}, the closed dB-ball of centre ζ and radious CR.

Proof. Let z = (t, x), ζ = (s, ξ). The first step consist in adjusting the temporal

component moving along eτY . Set

z−1 = (t, x−1) = e(t−s)Y (ζ) = (t, e(t−s)Bξ)

Next we adjust the spatial components. We define recursively the sequence

of points
(
zk = (t, xk)

)
k=0,··· ,r as follows. For k = 0 we set

v0 =
(x− e(t−s)Bξ)[0]∣∣(x− e(t−s)Bξ)[0]

∣∣ , δ0 =
∣∣(x− e(t−s)Bξ)[0]

∣∣, (1.23)

and

z0 := γ
(0)
v0,δ0

(z−1) = (t, x
[0]
−1 + δ0v0, x

[1]
−1, . . . , x

[r]
−1) = (t, x[0], x

[1]
−1, . . . , x

[r]
−1).

For k = 1, . . . , r we consider the unique (see Remark 1.6) unitary vector vk ∈
V0,k ⊂ V0 defined as vk = wk

|wk| where wk ∈ V0,k is such that

Bkwk = (e(t−s)Bξ)[k] − x[k]
k−1.

We also set

zk = γ
(k)
vk,δk

(zk−1), δk = |wk|
1

2k+1 .
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and γζ,z the concatenation of [0, t− s] 3 τ → eτY (ζ) with the trajectories

[0, δk] 3 τ −→ γ(k)
vk,τ

(zk−1) k = 0, . . . , r.

Here we suppose t ≥ s, if not just take the interval [t − s, 0]. We can

reparametrize such path and therefore suppose that it is defined in [0, 1]. By

construction zr = z and, since by definitions the trajectories γ
(k)
vk,δk

, are them-

selves composition of integral curves, also γζ,z it is. This prove the first part of

the proposition.

In order to prove the second part we prove a bound for the δk in terms

of
∥∥ζ−1 ◦ z

∥∥
B

. In the following cB will denote any constant greater than zero

depending only on B.

We begin with the first piece of the curve.

dB(ζ, eτY (ζ)) =
∥∥(eτY (ζ))−1 ◦ ζ

∥∥
B

= ‖(−τ, 0)‖B = |τ | 12 .

In particular dB(ζ, z−1) = |t− s| 12 ≤ dB(z, ζ) so that

eτY (ζ) ∈ B̄(ζ,R), τ ∈ [0, t− s]. (1.24)

By Remark 1.6, it is easy to prove that

δk ≤ cB |(e(t−s)Bξ)[k] − x[k]
k−1|

1
2k+1 . (1.25)

Moreover, by (1.21) we get

|x[j]
k − x

[j]
k−1| ≤ cB |δk|

2j+1, j = k + 1, . . . , r. (1.26)

Now we prove by induction that, for any k = 0, . . . , r, we have

δk ≤ cB |x− e(t−s)Bξ|B ≤ cB(|t− s| 12 + |x− e(t−s)Bξ|B) = cBdB(z, ζ). (1.27)

For k = 0, the thesis follows immediately from the definition of δ0 in (1.23).

Assuming that the estimate holds for any h ≤ k, by (1.25) we have

δk+1 ≤ cB |(e(t−s)Bξ)[k+1] − x[k+1]
k |

1
2(k+1)+1

≤ cB |e(t−s)Bξ)[k+1] − x[k+1]|
1

2(k+1)+1 + cB

k∑
h=1

|x[k+1]
h − x[k+1]

h−1 |
1

2(k+1)+1

(by (1.26))

≤ cB |(e(t−s)Bξ)[k+1] − x[k+1]
k |

1
2(k+1)+1 + cB

k∑
h=1

δh,
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and the thesis follows assuming the inductive hypothesis

δh ≤ cB |x− e(t−s)Bξ|B , h = 0, . . . , k.

Equation (1.24) proves that the first piece of γζ,z is contained in the closed

dB-ball B(ζ,R) while equations (1.22),(1.27) prove that

γ(k)
vk,τ

(zk−1) ∈ B̄(zk−1, cBδk) ⊂ B̄(zk−1, cBR), τ ∈ [0, δk].

Setting C0 the maximum between the constants cB in the above formula, the

constant in Lemma 1.11 and 1 we have

dB(ζ, eτY (ζ)) ≤ |τ | 12 ≤ C0R τ ∈ [0, t− s]

dB(ζ, γ(0)
v0,τ (z−1)) ≤ C0(dB(ζ, z−1) + dB(z−1, γ

(0)
v0,τ (z−1)))

≤ C2
0R+ C2

0δ0 ≤ (C2
0 + C3

0 )R τ ∈ [0, δ0]

dB(ζ, γ(1)
v1,τ (z0)) ≤ C0(dB(ζ, z0) + dB(z0, γ

(1)
v1,τ (z0)))

≤ C0((C2
0 + C3

0 )R+ C0δ0) ≤ (C4
0 + 2C3

0 )R τ ∈ [0, δ1]

. . .

dB(ζ, γ(r)
vr,τ (zr−1)) ≤ C0(dB(ζ, zr−1) + dB(z0, γ

(1)
vr,τ (zr−1)))

≤ (Cr+2
0 + 2Cr+1

0 + Cr0 + · · ·+ C3
0 )R τ ∈ [0, δr]

and the thesis follows setting C = Cr+2
0 + 2Cr+1

0 + Cr0 + · · ·+ C3
0 .





Chapter 2

Intrinsic Hölder spaces and

Taylor polynomials

In this chapter we define some intrinsic Hölder spaces for the study of Kol-

mogorov Operators. For function in such spaces we state a Taylor-type formula

whose proof is posponed in chapter three. We also compare our definitions with

others note in literature.

2.1 Hölder spaces

In order to specify the notions of B-intrinsic regularity for a function f , we

need to make use of the integral (or characteristic) curves of the vector fields

X1, · · · , Xp0 , Y as defined in (1.5). Precisely, for a given vector field on R×Rd

X ≡ X(z) = a0(z)∂t +

d∑
i=1

ai(z)∂xi , z ∈ R× Rd (2.1)

with Lipshitz continous coefficients (ai)i=1,...,d the characteristic curve

γX,z : R→ R× Rd is defined as the unique solution ofγ̇X,z(δ) = X
(
γX,z(δ)

)
,

γX,z(0) = z.

To simplify the notation, in the sequel we will often write eδX(z) to indicate

γX,z(δ). By solving the system of linear ODEs related to the fieldsX1, · · · , Xp0
, Y

we easily obtain

γXi,z(δ) = eδXt(z) = z+ δei, i = 1, · · · , p0, γY,z(δ) = eδY (z) = (t+ δ, eδBx),

17
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for any z = (t, x) ∈ R× Rd.

Definition 2.1. Let X be a Lipschitz vector field on R × Rd and f a real

valued function defined in a neighborhood of z ∈ R × Rd. We say that f is

X-differentiable in z if the function δ 7→ f
(
eδX(z)

)
is differentiable in 0. We

call

(Xf)(z) := lim
δ→0

f
(
eδX(z)

)
− f(z)

δ
,

the Lie derivative of f wrt the vector field X in z.

Remark 2.2 Note that if f ∈ C1 i.e. f has continuos Euclidean derivatives

and X is as in (2.1) then

(Xf)(z) = a0(z)∂tf(z) +

d∑
i=1

ai(z)∂xif(z), z ∈ R× Rd.

However there exist functions with continuos Lie derivative wrt a Lipschitz

vector field which have no Euclidean partial derivatives. For example consider

the homogeneous structure introduced in Example 1.7 and the related vector

field Y (t, x1, x2) = x1∂x2 − ∂t. Its integral curve act as eδY (t, x1, x2) = (t +

δ, x1, x2 + δx1) and therefore the function

u(t, x1, x2) = |tx1 − x2|

is constant along such integral curves. this in turn implies that has Lie deriva-

tives identically zero despite having no partial derivatives. More explicitely for

any of the derivatives ∂x1 , ∂x2 , ∂t there exist a point (in fact infinitely many) in

R×Rd in which the function u is not derivable. Moreover they can be choosen

arbitrary close to (0, 0, 0).

Definition 2.3. Let X be a Lipschitz vector field on R × Rd, m > 0 a formal

degree associated to X and Ω an open subset of R × Rd. Then, for α ∈ ]0,m],

we say that f ∈ CαX(Ω) if

‖f‖CαX(Ω) := sup

∣∣f (eδX(z)
)
− f(z)

∣∣
|δ| αm

<∞.

Here the sup is taken over all the z ∈ Ω and the δ ∈ R r {0} such that

the integral curve esX(z) lies in Ω for |s| ≤ |δ|. Note that ‖·‖CαX(Ω) is only a

seminorm.

We also say that f ∈ CαX,loc(Ω) if, for any z ∈ Ω, there exists δz > 0 such

that the integral curve esX(z) lies in Ω for |s| ≤ |δz| and

sup
|δ|<δz, δ 6=0

∣∣f (eδX(z)
)
− f(z)

∣∣
|δ| αm

<∞.
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Coerently with the discussion in chapter one we set the formal degree of the

vector field Y to be two and the formal degree of Xi to be one,i = 1, . . . , p0.

Definition 2.4. Let α ∈ ]0, 1] and k ∈ N with k ≥ 2. Then

i) u ∈ C0,α
B (Ω) if u is bounded in Ω, u ∈ CαY (Ω) and u ∈ Cα∂xi (Ω) for any

i = 1, . . . , p0. For any u ∈ C0,α
B (Ω) we define

‖u‖C0,α
B (Ω) := sup

z∈Ω
|u(z)|+ ‖u‖CαY (Ω) +

p0∑
i=1

‖u‖Cα∂xi (Ω) .

ii) u ∈ C1,α
B (Ω) if u is bounded in Ω, u ∈ C1+α

Y (Ω) and ∂xiu ∈ C
0,α
B (Ω) for

any i = 1, . . . , p0. For any u ∈ C1,α
B (Ω) we define

‖u‖C1,α
B (Ω) := sup

z∈Ω
|u(z)|+ ‖u‖C1+α

Y (Ω) +

p0∑
i=1

‖∂xiu‖C0,α
B (Ω) .

iii) u ∈ Ck,αB (Ω) if u is bounded in Ω, Y u ∈ Ck−2,α
B (Ω) and ∂xiu ∈ C

k−1,α
B (Ω)

for any i = 1, . . . , p0. For any u ∈ Ck,αB we define

‖u‖Ck,αB (Ω) := sup
z∈Ω
|u(z)|+ ‖Y u‖Ck−2,α

B (Ω) +

p0∑
i=1

‖∂xiu‖Ck−1,α
B (Ω) .

Definition 2.5. Let α ∈ ]0, 1] and k ∈ N with k ≥ 2. Then

i) u ∈ C0,α
B,loc(Ω) if u ∈ CαY,loc(Ω) and u ∈ Cα∂xi ,loc(Ω) for any i = 1, . . . , p0;

ii) u ∈ C1,α
B,loc(Ω) if u ∈ C1+α

Y,loc(Ω) and ∂xiu ∈ C
0,α
B,loc(Ω) for any i = 1, . . . , p0;

iii) u ∈ Ck,αB,loc(Ω) if Y u ∈ Ck−2,α
B,loc (Ω) and ∂xiu ∈ Ck−1,α

B,loc (Ω) for any i =

1, . . . , p0.

Example 2.6. There exist functions that exhibit a more regular behaviour

under an homogeneous structure that under the Euclidean one. For example

consider the structure introduced in 1.7 and the function

u : Ω→ R, u(t, x1, x2) = |x2|.

Here Ω is a bounded neighbourhood of zero. The function is only Lipschitz in

the euclidean sense but, in fact, is C1,1
B (Ω). To see that just note that ∂x1

u ≡ 0

and

|u(eδY (t, x1, x2))− u(t, x1, x2)| = |u(t+ δ, x1, x2 + δx1)− u(t, x1, x2)|

= ||x2 + δx1| − |x2|| ≤ C|δ|.

Therefore u ∈ C2
Y (Ω).
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Proposition 2.7 For any k ≥ 0, the following relations holds:

Ck,αB,loc(Ω) ⊂ Ck−1,α
B,loc (Ω) ⊂ · · · ⊂ C0,α

B,loc(Ω)

Ck,αB (Ω) ⊂ Ck−1,α
B (Ω) ⊂ · · · ⊂ C0,α

B (Ω) (2.2)

Moreover, we have

Ck,αB (Ω) ⊂ Ck,αB,loc(Ω), k ≥ 0. (2.3)

Proof. We prove the first claim by induction on k. Let u ∈ C1,α
B,loc(Ω). By

Definition 2.5 we have u ∈ C1+α
Y,loc(Ω) so that for any z ∈ Ω there exist a constant

C(z) and a δz > 0 such that

|u
(
eδY (z)

)
− u(z)| ≤ C(z)|δ|

1+α
2 ≤ C(z)|δz|

1
2 |δ|α2 , |δ| ≤ δz.

Since δz depends only on z it follows that u ∈ CαY,loc(Ω) . For the same

reason, for a suitable δ̄ ≤ δ,

|u(t, x+ δei)− u(t, x)| =
∣∣∂xiu(t, x+ δ̄ei)

∣∣ |δ|α|δ|1−α ≤ C(z)|δ|α, (2.4)

for i ∈ {1, . . . , p0}. Therefore

C1,α
B,loc(Ω) ⊂ CαY,loc(Ω) ∩ CαX1,loc(Ω) ∩ · · · ∩ CαXp0

,loc(Ω) = C0,α
B,loc(Ω). (2.5)

Next suppose u ∈ C2,α
B,loc(Ω). Then by definition Y u exists and it is in

C0,α
B,loc(Ω) and we can proceed as in (2.4). Precisely

|u
(
eδY (z)

)
− u(z)| =

∣∣∣Y u(eδ̄Y (z))
∣∣∣ |δ| 1+α

2 |δ|1−
1+α

2 ≤ C(z)|δ|
1+α

2 ,

and so u ∈ C1+α
Y,loc(Ω). By Definition 2.5 and equation (2.5) we get

∂xiu ∈ C
1,α
B,loc(Ω) ⊂ C0,α

B,loc(Ω), i = 1, . . . , p0.

Therefore u ∈ C1,α
B,loc(Ω).

Now we suppose the thesis true for k ≥ 2 and we prove it for k + 1.

u ∈ Ck+1,α
B,loc (Ω) =⇒

Y u ∈ C
k−1,α
B,loc (Ω) ⊂ Ck−2,α

B,loc (Ω)

∂xiu ∈ C
k,α
B,loc(Ω) ⊂ Ck−1,α

B,loc (Ω) i = 1, . . . , p0.

i.e. u ∈ Ck,αB,loc(Ω).

Next we prove (2.2). As in the previuos case we prove the thesis directly

for k = 1, 2 and then use induction to conclude. The key ingredient is the

boundness of the function and its derivatives.
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Let u ∈ C1,α
B (Ω). We have

|u(t, x+ δei)− u(t, x)| ≤

sup |∂xiu||δ|α, if δ < 1,

2 sup |u||δ|α, if δ ≥ 1.

Hence u ∈ CαXi(Ω). Similarly,

|u
(
eδY (z)

)
− u(z)| ≤

‖u‖C1+α
Y (Ω) |δ|

α
2 , if δ < 1,

2 sup |u||δ|α2 , if δ ≥ 1,

and u is also in u ∈ CαY (Ω). Being bounded it follows u ∈ C0,α
B (Ω). Now, if

u ∈ C2,α
B (Ω) by the inclusion just proved we get ∂xiu ∈ C

0,α
B (Ω). What is left

is to prove that u ∈ C1+α
Y (Ω). This is done arguing just in the previous case, in

fact

|u
(
eδY (z)

)
− u(z)| ≤

sup |Y u||δ| 1+α
2 , if δ < 1,

2 sup |u||δ| 1+α
2 , if δ ≥ 1.

The induction step can be carried as in the proof for the local version of the

spaces. Eventually, the inclusions in (2.3) are a straightforward conseguence of

the definitions.

2.2 The main Theorem

In the very general setting of an homogeneous Lie group G ≡ (RN , ◦, δ(λ))

(see Definition 1.3) we say that a function f at the point x0 has Taylor polyno-

mial Tnf(x0, ·) if Tnf(x0, ·) is a polynomial and

f(x) = Tnf(x0, x) +O(|x−1
0 ◦ x|

n+ε
G ) as |x−1

0 ◦ x|G → 0.

for some ε > 0 and some | · |G δλ-homogeneous norm.

Existence and uniqueness of such polynomials were proven in [FS] and an

(exact) integral expression of the remainder was given in [Bo]. However, in both

works the authors assume a global Euclidean regularity, (functions continuosly

differentiable up to order n+ 1) which in our case seems excessive since, as we

shall see, not all the derivatives are needed to define the Taylor polynomials.

In order to state our main result, we need to introduce some further notation.

Definition 2.8. For any multi-index β = (β1, · · · , βd) ∈ Nd0 we define:

- the length |β| :=
∑d
j=1 βj , and the factorial β! :=

∏d
j=1 βj !;
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- for any i = 0, · · · , r, the multi-index β[i] ∈ Nd0 as

β
[i]
k =

βk for p̄n−1 < k ≤ p̄n,

0 otherwise;

- the B-length |β|B :=
∑r
i=0(2i+ 1)

∣∣β[i]
∣∣;

- for any x ∈ R× Rd, the product xβ := xβ1

1 · · ·x
βd
d ;

- the operator ∂β = ∂βx := ∂β1
x1
· · · ∂βdxd .

We are now ready to state our main result and two simple corollaries. All

the statements will be proven in chapter three.

Theorem 2.9 Let u ∈ Cn,αB,loc(R × Rd) with α ∈]0, 1] and n ∈ N0. Then, we

have:

1. there exist the derivatives

Y k∂βxu ∈ C
n−2k−|β|B ,α
B,loc (R× Rd), 0 ≤ k ≤

⌊n
2

⌋
, |β|B ≤ n− 2k;

2. for any ζ = (s, ξ) ∈ R × Rd, it is well defined the n-th order B-Taylor

polynomial of u around ζ:

Tnu(ζ, z) :=

bn2 c∑
k=0

∑
|β|B≤n−2k

1

k!β!
Y k∂βxu(ζ)(t− s)k

(
x− e(t−s)Bξ

)β
,

z = (t, x) ∈ R× Rd, for which the following estimate holds:

u(z) = Tnu(ζ, z) +O
(
‖ζ−1 ◦ z‖n+α

B

)
, as ‖ζ−1 ◦ z‖B → 0. (2.6)

3. if u ∈ Cn,αB (R× Rd), then we have

Y k∂βxu ∈ C
n−2k−|β|B ,α
B (R× Rd) 0 ≤ k ≤

⌊n
2

⌋
, |β|B ≤ n− 2k,

and∣∣u(z)− Tnu(ζ, z)
∣∣ ≤ cB‖u‖Cn,αB

‖ζ−1 ◦ z‖n+α
B , z, ζ ∈ R× Rd, (2.7)

where cB is a positive constant that depends on B and n.

Remark 2.10 If R×Rd is replaced with a generic open subset Ω the bound in

(2.7) does not holds, in general, for all z, ζ ∈ Ω but it do holds if the points are

sufficiently close each others.



2.2. The main Theorem 23

In fact, in order to obtain the estimaties we have to connect z and ζ with

integral curves of Y and X1, . . . , Xp0 in a similar way of that used in 1.16. Such

curves must lie in Ω and this is, generally speaking, false an example being a

disconnected set Ω.

Definition 2.11. We say that Ω′ ⊂ Ω is well contained in Ω if for every

z, ζ ∈ Ω′ the integral curves above connecting them lies in Ω.

Arguing as in Proposition 1.16 it can be show that the support of the curves

is contained in an open ball whose radius depends only on the distance ‖ζ ◦ z‖B .

Therefore if Ω′ is a subset of Ω whose diameter is small enough then Ω′ is well

contained in Ω.

A straightforward corollary of the theorem is the following:

Corollary 2.12 If u ∈ C0,α
B,loc(Ω) then u is in fact locally Hölder continuos of

order α wrt the intrinsic distance dB of R × Rd, in particular u is continuos.

More explicitly

|u(z)− u(ζ)| ≤ C‖ζ−1 ◦ z‖αB

for every z, ζ in a well contained subset of Ω. If u ∈ C0,α
B (R × Rd) then u is

globally Hölder continuos of order α.

A less obvious corollary regards the existance of the time derivative for func-

tions in Cn,αB,loc(Ω)

Corollary 2.13 If u ∈ C2r+1,α
B,loc (Ω) then there exists ∂tu(z) for every z ∈ Ω,

∂tu ∈ C0,α
B,loc(Ω) and

∂tu(t, x) = Y u(t, x)− 〈∇u(t, x), Bx〉.

In particular if u ∈ C2r+1,α
B (Ω) then ∂tu ∈ C0,α

B (Ω).

For the homogeneous structure presented in Example 1.7 the first B-Taylor

polynomials are

T0u(ζ, z) =u(ζ);

T1u(ζ, z) =T0u(ζ, z) + ∂x1
u(ζ)(x1 − ξ1);

T2u(ζ, z) =T1u(ζ, z) +
1

2!
∂x1,x1u(ζ)(x1 − ξ1)2 + Y u(ζ)(t− s)u

T3u(ζ, z) =T2u(ζ, z) +
1

3!
∂3
x1
u(ζ)(x1 − ξ1)3 + Y ∂x1u(ζ)(x1 − ξ1)2(t− s)

+ ∂x2
u(ζ)(x2 − ξ2 − (t− s)ξ1);

T4u(ζ, z) =T3u(ζ, z) +
1

4!
∂4
x1
u(ζ)(x1 − ξ1)4 +

1

2!
Y ∂2

x1
u(ζ)(x1 − ξ1)2(t− s)

+
1

2!
Y 2u(ζ)(t− s)2 + ∂x2∂x1u(ζ)(x1 − ξ1)(x2 − ξ2 − (t− s)ξ1);
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T5u(ζ, z) =T4u(ζ, z) +
1

5!
∂5
x1
u(ζ)(x1 − ξ1)5 +

1

3!
Y ∂3

x1
u(ζ)(x1 − ξ1)3(t− s)

+
1

2!
Y 2∂x1u(ζ)(x1 − ξ1)(t− s)2

+
1

2!
∂x2

∂2
x1
u(ζ)(x1 − ξ1)2(x2 − ξ2 − (t− s)ξ1)

+ Y ∂x2
u(ζ)(x2 − ξ2 − (t− s)ξ1)(t− s);

T6u(ζ, z) = . . .

The proof of Theorem 2.9 is postponed to chapter three.

2.3 Other Hölder spaces

Suitable Hölder spaces for the operator 1.1 were used in the works of Man-

fredini [M], Di Francesco and Polidoro [DP] and Frentz and others [Fo] to obtain

Shauder-type estimates. In the first two papers only the analogue of our spaces

C0,α
B and C2,α

B were defined while in [Fo] also an analogue of the space C1,α
B was

used.

All the various definitions of the authors coincide for the space of order zero

that we will call Cα(Ω, B) following the notations in [M]. For functions defined

in an open subset Ω of R×Rd they require the boundness and Hölder condition

of order α wrt the underlying homogeneous structure. Equivalently the norm

| · |α,B,Ω defined as

|u|α,B,Ω := sup
z∈Ω
|u(z)|+ sup

z,ζ∈Ω
z 6=ζ

|u(z)− u(ζ)|
‖ζ−1 ◦ z‖αB

, (2.8)

must be finite.

Proposition 2.14 We have the following inclusions:

1. Cα(Ω, B) ⊂ C0,α
B (Ω);

2. C0,α
B (Ω) ⊂ Cα(Ω′, B).

Here Ω′ is any well contained subset of Ω. In particular

C0,α
B (R× Rd) = Cα(R× Rd, B).

Proof. Suppose u ∈ Cα(Ω, B) i.e. u is bounded and Hölderian in Ω. If in (2.8)

we choose z = eδXi(ζ) and z = eδY (ζ) we immediatly see that u ∈ CαXi(Ω) and

u ∈ CαY (Ω) and therefore it is in C0,α
B (Ω). This follows from

‖(eδXi(ζ))−1 ◦ z‖αB = |δ|α, ‖(eδY (ζ))−1 ◦ z‖αB = |δ|α2 . (2.9)

The content of the second claim is part of Corollary 2.12.
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We point out that by equations (2.9) the requirements u ∈ CαY (Ω) and

CαXi(Ω) are in fact an Hölder condition along the integral curves of Y, Xi, i =

1, . . . , p0. The main theorem then say that regularity along such integral curves

is sufficient to recover full (local) Hölderianity.

We explicitly remark that, for functions in Cα(Ω, B) Theorem 2.9 is a

straightforward consequence of the definition (2.8). The estimate in the main

theorem for intrinsic Taylor polynomials of order one is also built-in in the

definition of the space C1+α(Ω, B) in [Fo].

A function u is in C1+α(Ω, B) if the norm

|u|1+α,B,Ω := |u|α,B,Ω +

p0∑
i=1

|∂xiu|α,B,Ω + sup
z,ζ∈Ω
z 6=ζ

|u(z)− T1u(ζ, z)|
‖ζ−1 ◦ z‖1+α

B

(2.10)

is finite.

Proposition 2.15 We have the following inclusions:

1. C1+α(Ω, B) ⊂ C1,α
B (Ω);

2. C1,α
B (Ω) ⊂ C1+α(Ω′, B) if Ω′ is a well contained subset of Ω.

Proof. We first prove part 1. By the definition of (2.10) it follows that functions

in C1+α(Ω, B) are bounded and their derivatives wrt the first p0 spatial variables

are in Cα(Ω, B) which, by Proposition 2.14 is contained in C0,α
B (Ω). We are left

to prove that such functions are also in C1+α
Y (Ω).

If in (2.10) we choose z = eδY (ζ) by (2.9) we get

|u(eδY (ζ))− T1u(ζ, eδY (ζ))| ≤ |u|1+α,B,Ω|δ|
1+a

2

and because the integral curves of Y do not act on the first p0 spatial variables

we have T1u(ζ, eδY (ζ)) = u(ζ) and the thesis follows. To prove part 2 let Ω′ be

an open well contained subset of Ω. By Definition 2.4 and Propositions 2.14,

2.7 we get

∂xiu ∈ C
0,α
B (Ω) ⊂ Cα(Ω′, B), u ∈ C1,α

B (Ω) ⊂ C0,α
B (Ω) ⊂ Cα(Ω′, B).

This say that the first two terms in the definition of | · |1+α,B,Ω′ are bounded.

Finally, by Theorem 2.9, also the third term is bounded since Ω′ is well contained

in Ω.

Various analogues of the space C2,α
B (Ω) are used in the literature. In [M]

Manfredini essentially requires bounded Hölder continuos second order deriva-

tives while Di Francesco and Polidoro in [DP] and Frentz and others in [Fo]
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requires also the function and its first p0 spatial derivatives to be Hölder con-

tinuos. Precisely the norms used were

|u|(M)
2+α,B,Ω := sup

Ω
|u|+

p0∑
i=1

sup
Ω
|∂xiu|+

p0∑
i,j=1

|∂xi,xju|α,B,Ω + |Y u|α,B,Ω (2.11)

(here M stands for Manfredini) and

|u|2+α,B,Ω := |u|α,B,Ω +

p0∑
i=1

|∂xiu|α,B,Ω +

p0∑
i,j=1

|∂xi,xju|α,B,Ω + |Y u|α,B,Ω. (2.12)

The norm | · |(M)
2+α,B,Ω is more aderent to the classical Euclidean definition of the

Hölder space C2,a.

While our spaces C0,α
B (Ω), C1,α

B (Ω) were greater than the analogue spaces

used for C2,α
B (Ω) this inclusion is reversed. Essentially the problem relies in the

function ∂xiu. If the norm |u|(M)
2+α,B,Ω is finite we deduce that ∂xiu is bounded

and has partial derivatives wrt to first p0 variables Hölder continuos but we

can not deduce Hölderianity along the integral curves of Y which act on the

others directions. In the case of the norm |u|2+α,B,Ω instead the problem is

more deceitful. We do know that ∂xiu is Hölder but the order is wrong. We

have ∂xiu ∈ CαY while we would need ∂xiu ∈ C1+α
Y .

Precisely we have

|∂xiu(eδY (z))− ∂xiu(z)| ≤ C1|δ|
a
2 
 C2|δ|

1+a
2 as δ → 0.

However the other inclusion still stand.

Proposition 2.16 We have the following inclusions:

1. C2,α
B (Ω) ⊂ C2+α(Ω′, B)(M);

2. C2,α
B (Ω) ⊂ C2+α(Ω′, B).

Here Ω′ is any well contained subset of Ω, C2+α(Ω′, B) is the space defined by

the norm in (2.12) and C2+α(Ω′, B)(M) the one defined by (2.11).

Proof. By definition all the derivatives that appear in (2.11) and (2.12) are

bounded in Ω. Moreover since

∂xi,xju, Y u ∈ C
0,α
B (Ω) i, j = 1, . . . , p0

by the first inclusion in Propositon 2.14 we get

p0∑
i,j=1

|∂xi,xju|α,B,Ω′ + |Y u|α,B,Ω′ <∞

for any well containde subset Ω′ of Ω and this conclude part 1. Since C1,α
B (Ω) ⊂

C0,α
B (Ω), part 2 follows.



Chapter 3

Proof of the main Theorem

In this chapter we prove the main theorem 2.9 and its corollaries stated

in chapter two. In order to avoid to confine ourselves with points of a well-

contained subset Ω′ of Ω we deal only whit the case Ω = R× Rd and hereafter

omit it in the spaces Cn,αB,loc, Cn,αB , see Remark 2.10. The proof given still works

for general Ω.

Theorem 2.9 will be proved by induction on n, through the following steps:

• Step 1: Proof for n = 0;

• Step 2: Induction from 2n to 2n+ 1 for any 0 ≤ n ≤ r;

• Step 3: Induction from 2n+ 1 to 2(n+ 1) for any 0 ≤ n ≤ r − 1;

• Step 4: Induction from n to n+ 1 for any n ≥ 2r + 1.

In order to prove the main theorem we need to state two complementary results

which will be proved according to the steps above along with Theorem 2.9.

Proposition 3.1 Let u ∈ Cn,αB,loc with α ∈]0, 1] and n ∈ N0, n ≤ 2r+ 1 and set

s = max{
⌊
n
2

⌋
− 1, 0}. Then, for any s ≤ k ≤ r and v ∈ V0,k with |v| = 1, we

have:

u
(
γ

(s,k)
v,δ (z)

)
= Tnu

(
z, γ

(s,k)
v,δ (z)

)
+O

(
|δ|n+α

)
, as δ → 0. (3.1)

In particular, if u ∈ Cn,αB , then for all z = (t, x) ∈ R × Rd and δ ∈ R we also

have: ∣∣∣u(γ(s,k)
v,δ (z)

)
− Tnu

(
z, γ

(s,k)
v,δ (z)

)∣∣∣ ≤ cB‖u‖Cn,αB
|δ|n+α, (3.2)

where cB is a positive constant that only depends on B.

27
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Proposition 3.2 Let u ∈ Cn,αB,loc with α ∈]0, 1] and n ∈ N0. Then, for any

0 ≤ k <
⌊
n
2

⌋
we have:

u(t, x) = Tnu
(
(t, ξ), (t, x)

)
+O

(
|x− ξ|n+α

B

)
, as |x− ξ|B → 0,

for any x, ξ ∈ Rd such that ξ[i] = x[i] for any i > k. In particular, if u ∈ Cn,αB ,

then we also have:∣∣u(t, x)− Tnu
(
(t, ξ), (t, x)

)∣∣ ≤ cB‖u‖Cn,αB
|x− ξ|n+α

B , t ∈ R, x, ξ ∈ Rd,

where cB is a positive constant that only depends on B.

N.B. Hereafter, in the following proofs, we will denote by cB any positive

constant that only depends on B.

A brief explanation is needed: the proof of Theorem 2.9 can not be carried

in a single induction because of the qualitative differences in the polynomials

for different orders. For example suppose the theorem true for n = 2 and take

a function u ∈ C3,α
B,loc. By the inclusion

C3,α
B,loc ⊂ C

2,α
B,loc

we get that

Y k∂βxu ∈ C
2−2k−|β|B ,α
B,loc , 2k + |β|B ≤ 2,

but T3u contains also derivatives of B-order 3. These are exactly

∂xi,xj ,xku, Y ∂xiu, ∂xlu, 1 ≤ i, j, k ≤ p0, p0 < l ≤ p̄1.

While the first two kinds exists by definitions of C3,α
B,loc we have no a priori

information on ∂xl and must prove its existence. Such problem arises for all

orders of the type 2k + 1, k = 1, . . . , r i.e. when derivatives wrt a higher level

variables appear and this explain the difference between Step 2 and Step 3.

If n ≥ 2r+1 we have derivatives wrt all the variables and no further problems.

This explains step 4.

Propositions 3.1 and 3.2 are particular cases of the main theorem and are

preparatory to its proof. Precisely, in the case n = 0, having estimates only

along the integral curves of the vector fields Y and ∂xi for i = 1, . . . , p0 to

estimate u(z)−u(ζ) we must connect the points z, ζ using such integral curves:

this lead to the functions γ
(k)
v,δ and to Propositions 3.1.

As n increase derivatives wrt higher level variables become avaible. There-

fore we can estimate directly u(t, x)− Tnu(t, ξ) if the only non-zero increments

are those relative to such derivatives: this is the content of Proposition 3.2.

Otherwise we rely on the functions γ
(n,k)
v,δ and Proposition 3.1.
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We will prove Proposition 3.1 and Theorem 2.9 directily for n = 0 in step

1. Then, assuming the main theorem true for 0 ≤ i ≤ 2n (respectively 0 ≤
i ≤ 2n + 1), we will prove the complementary propositions for 2n + 1 (resp.

2n + 2) and use them to prove the theorem for the same order in step 2 (resp.

3). Accordingly with the previous discussion the proof of the main theorem in

step 4 (order greater than 2r + 1) will have no need of Proposition 3.1.

3.1 Step 1

Here we prove Proposition 3.1 and Theorem 2.9 for n = 0. Note that:

T0u
(
z, ζ
)

= u(z), z, ζ ∈ R× Rd.

Proof of Propostion 3.1 for n = 0.

We prove the thesis by induction on k. For k = 0 the estimate (3.1) (and

(3.2)) trivially follows from (1.16), along with the assumptions v ∈ V0, |v| = 1,

and since u ∈ Cα∂xi ,loc (or respectively u ∈ Cα∂xi ) for any i = 1, . . . , p0.

Assume now the thesis to hold for k ≥ 0, and we prove it for k+1. We recall

(1.17) and set

z0 = z, z1 = γ
(k)
v,δ (z0), z2 = eδ

2Y (z1) ,

z3 = γ
(k)
v,−δ(z2), z4 = e−δ

2Y (z3) = γ
(k+1)
v,δ (z).

Now, by the triangular inequality we get

∣∣u(γ(k+1)
v,δ (z)

)
− u(z)

∣∣ ≤ 4∑
i=1

|u(zi)− u(zi−1)| ,

and thus, (3.1) and (3.2) for k+1 follow from the inductive hypothesis and from

the assumptions u ∈ CαY,loc and u ∈ CαY respectively.

We are now ready to prove Theorem 2.9 for n = 0.

Proof of Theorem 2.9 for n = 0.

We only need to prove Part 2 and Part 3. We first consider the particular

case z = (t, x), ζ = (t, ξ), with x, ξ ∈ Rd. Precisely, we show that, if u ∈ C0,α
B,loc

we have

u(t, x) = u(t, ξ) +O
(
|x− ξ|αB

)
, as |x− ξ|B → 0, (3.3)

and that, in particular, if u ∈ C0,α
B we have

|u(t, x)− u(t, ξ)| ≤ cB‖u‖C0,α
B
|x− ξ|αB , t ∈ R, x, ξ ∈ Rd. (3.4)
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We define the sequence of points
(
zk = (t, xk)

)
k=0,··· ,r as in the proof of Propo-

sition 1.16. The proof of (3.3) (and (3.4)) can be easily concluded by using (3.1)

(and (3.2)) for n = 0

We now prove the general case. For any z = (t, x), ζ = (s, ξ) ∈ R × Rd, by

triangular inequality we get

|u(z)− u(ζ)| ≤|u(z)− u(e(t−s)Y (ζ))|+ |u(e(t−s)Y (ζ))− u(ζ)|

=|u(t, x)− u(t, e(t−s)Bξ)|+ |u(e(t−s)Y (ζ))− u(ζ)|. (3.5)

Now, to prove (2.6), we use (3.3) to bound the first term in (3.5), u ∈ CαY,loc to

bound the second one, and we obtain

|u(z)− u(ζ)| ≤ O
(
|e(t−s)Bξ|αB

)
+O

(
|t− s|α2

)
= O

(
‖ζ−1 ◦ z‖αB

)
,

as ‖ζ−1 ◦ z‖B → 0.

Eventually, to prove (2.7), we use (3.4) to bound the first term in (3.5),

u ∈ CαY to bound the second one, and we obtain

|u(z)− u(ζ)| ≤ cB‖u‖C0,α
B
‖ζ−1 ◦ z‖αB , z = (t, x), ζ = (t, ξ) ∈ R× Rd,

which concludes the proof.

3.2 Step 2

Here we fix n ∈ {0, · · · , r}, we assume Theorem 2.9 and Propositions 3.1,

3.2 to hold for any 0 ≤ i ≤ 2n, and we prove them to be true for 2n + 1. This

induction step has to be treated separately because we do not know a priori

that the euclidean derivatives wrt the n-th level variables,
(
∂p̄n−1+iu

)
1≤i≤pn

, do

exist.

We introduce the following alternative definition of (2n + 1)-th order B-

Taylor polynomial of u, which will be proved to be equivalent to T2n+1:

T̄2n+1u(ζ, z) :=

b 2n+1
2 c∑

k=0

∑
|β|B≤2n+1−2k

β2n+1=0

1

k!β!
Y k∂βxu(ζ)(t− s)k

(
x− e(t−s)Bξ

)β

+

pn∑
i=1

Y
(n)

v
(n)
i

u(ζ)
(
xp̄n−1+i − (eB(t−s)ξ)p̄n−1+i

)
, z = (t, x) ∈ R× Rd,

with
(
v

(n)
i

)
1≤i≤pn

being the family of vectors such that v
(n)
i ∈ V0,n with

Bnv
(n)
i = ep̄n−1+i.

More explicitely we will prove that, for a function u ∈ C2n+1,α
B,loc

Y
(n)

v
(n)
i

u(z) = ∂p̄n−1+iu(z), z ∈ R× Rd.
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Note that the polynomial is well defined i.e. all the derivatives appearing in

it exist for u ∈ C2n+1,α
B,loc and in particular for u ∈ C2n+1,α

B . This follows direc-

tily from the definition of C2n+1,α
B,loc for the operators Y

(n)

v
(n)
i

and by the inductive

hypothesis on the main theorem for the derivatives Y k∂βx since by Proposition

2.7 C2n+1,α
B,loc ⊂ C2n,α

B,loc.

Remark 3.3 We explicitly observe that, by Definition 2.4, u ∈ Cm,αB,loc implies

Y b
m
2 cu ∈ CαY,loc if m is even and Y b

m
2 cu ∈ C1+α

Y,loc if m is odd. In both cases, by

the euclidean mean value theorem along the vector field Y , for any z = (t, x) ∈
R× Rd and δ ∈ R small enough there exist δ̄ with |δ̄| ≤ |δ| such that

u
(
eδY (z)

)
− u(z)−

bm2 c∑
i=1

δi

i!
Y iu(z) =δ

bm2 c
(
Y
bm2 c

u
(
eδ̄Y (z)

)
− Y
bm2 c

u(z)

)

=

O(|δ|b
m
2 c+ 1+α

2 ), if m is odd;

O(|δ|b
m
2 c+α

2 ), if m is even,

where the bounds hold in a neighbourhood of zero. If in particular u ∈ Cm,αB

∣∣∣u(eδY (z)
)
− u(z)−

bm2 c∑
i=1

δi

i!
Y iu(z)

∣∣∣ ≤
cB‖u‖C

m,α
B
|δ|
bm2 c+ 1+α

2
, if m is odd;

cB‖u‖Cm,αB
|δ|
bm2 c+α

2
, if m is even.

Proof of Proposition 3.1 for 2n+ 1.

Here we prove Proposition 3.1 for T̄2n+1u by induction on k. We begin with

the local version, precisely we want to prove that for any max{
⌊

2n+1
2

⌋
− 1, 0} ≤

k ≤ r and v ∈ V0,k with |v| = 1, we have:

u
(
γ

(b 2n+1
2 c−1,k)

v,δ (z)
)

= T2n+1u
(
z, γ

(b 2n+1
2 c−1,k)

v,δ (z)
)

+O
(
|δ|2n+1+α

)
, (3.6)

as δ → 0.

Because of the particular definition of γ
(n,k)
v,δ we have to analyze separately

the cases n = 0, n = 1 and n > 1. We begin proving (3.6) directily for

k = max{
⌊

2n+1
2

⌋
− 1, 0}.

Case n = 0

We have k = 0 and equation 3.6 rewrites as

u(t, x+ δv) = u(t, x) +

p0∑
i=1

∂xiu(t, x)δvi +O
(
|δ|1+α

)
, as δ → 0.
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There exist, by the multidimensional mean value theorem, a family of vectors

(v̄i)i=1,...,p0 with v̄i ∈ V0 and |v̄i| ≤ 1 such that

u(t, x+ δv)− u(z)−
p0∑
i=1

∂xiu(t, x)δvi =δ

p0∑
i=0

(∂xiu(t, x+ δv̄i)− ∂xiu(t, x))vi

= δO(|δv|αB) as δ → 0 (u ∈ Cα∂xi)

=O(|δ|1+α) as δ → 0.

Case n = 1

Also in this case we have k = 0 but this time we have to prove that

u(t, x+ δv) = u(t, x) +

p0∑
i=1

∂xiu(t, x)δvi +
δ2

2!

p0∑
i,j=1

∂xixju(t, x)vivj+

δ3

3!

p0∑
i,j,l=1

∂xixjxlu(t, x)vivjvl +O
(
|δ|3+α

)
, as δ → 0.

Again, by the multidimensional euclidean mean-value theorem, there exist

(v̄i,j,k)1≤i,j,k≤p0
, with v̄i,j,k ∈ V0 and |v̄i,j,k| ≤ 1, such that

u(t, x+ δv)− T̄3u((t, x), (t, x+ δv))

=
δ3

3!

p0∑
i,j,k=1

(
∂xi,xj ,xku(t, x+ δv̄i,j,k)− ∂xi,xj ,xku(z)

)
vivjvk

= δ3O(|δv|αB) as δ → 0 (∂xi,xj ,xku ∈ C
0,α
B )

= O(|δ|3+α) as δ → 0.

Case n > 1

This time k = n − 1 > 0. We have to prove that for any v ∈ V0,k with

|v| = 1,

u(t, x+ δ2n−1Bn−1v) = u(t, x)+

δ2n−1

pn−1∑
i=1

∂xp̄n−2+i
u(t, x)(Bn−1v)p̄n−2+i +O

(
|δ|2n+1+α

)
, as δ → 0. (3.7)

Note that the derivatives in (3.7) are of level strictly greater than one and

exist thanks to the inductive hypothesis on Theorem 2.9 and not because of the

definition of the spaces C2n+1,α
B,loc as in the previous cases.
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By the multidimensional mean-value theorem, there exist a family of vectors

(v̄i)1≤i≤pn−1 , with v̄i ∈ V0,n−1 and |Bn−1v̄i| ≤ |Bn−1v| such that

u(t, x+δ2n−1Bn−1v)−u(t, x) =

pn−1∑
i=1

∂xp̄n−2+i
u(t, x+δ2n−1Bn−1v̄i)δ

n−1Bn−1vi.

Therefore

u
(
γ

(n−1,n−1)
v,δ (t, x)

)
− Tnu

(
z, γ

(n−1,n−1)
v,δ (t, x)

)
=

pn−1∑
i=1

(
∂xp̄n−2+iu(t, x+ δ2n−1Bn−1v̄i)− ∂xp̄n−2+iu(t, x)

)
δ2n−1(Bn−1v)i

= O(|δ|2+α)δ2n−1

pn−1∑
i=1

(Bn−1v)i as δ → 0

= O(|δ|2n+1+α) as δ → 0.

Where we have used Theorem 2.9 in the second line since

∂xp̄n−2+i
u(t, x) = T2∂xp̄n−2+i

u((t, x), (t, x+ δ2n−1Bn−1v̄i)).

Inductive Step

Now we suppose the thesis true for a fixed k ≥ max{
⌊

2n+1
2

⌋
− 1, 0} and we

prove it for k + 1. We set T̃2n+1u(ζ, z) = T̄2n+1u(ζ, z)− u(ζ) and

z0 = z, z1 = γ
(b 2n+1

2 c−1,k)
v,δ (z0), z2 = eδ

2Y (z1) ,

z3 = γ
(b 2n+1

2 c−1,k)
v,δ (z2), z4 = e−δ

2Y (z3) = γ
(b 2n+1

2 c−1,k+1)
v,δ (z),

where v ∈ V0,k+1, |v| = 1. Whit this notations we have

u(z4)− T̄2n+1u(z0, z4) = u(z4)− u(z3)−
n∑
i=1

(−δ2)i

i!
Y iu(z3)

+ u(z3)− u(z2)− T̃2n+1u(z2, z3)

+

n∑
i=1

(−δ2)i

i!
Y iu(z2) + u(z2)− u(z1)

+ T̃2n+1u(z1, z0) + u(z1)− u(z0)

+

n∑
i=1

(−δ2)i

i!

(
Y iu(z3)− Y iu(z2)

)
+ T̃2n+1u(z2, z3)− T̃2n+1u(z1, z0)− T̃2n+1u(z0, z4).

(3.8)
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By Remark 3.3 the first and the third term are O(|δ|2n+1+α) as δ → 0 and

the same bound for the second and the fourth term follows from the induc-

tive hypothesis (note that, by (1.12) V0,k+1 ⊂ V0,k). In order to estimate the

last terms we need once again to distinguish various cases depending on n and k.

Case n = 0

In this case the sums that appear in (3.8) are void and we are left whit the

estimate of the last term. Note that, by (1.20), T̃1u(z0, z4) ≡ 0 for all k while

T̃1u(z2, z3)− T̃1u(z1, z0) ≡ 0 only if k > 0. If k = 0 we have

T̃1u(z2, z3)− T̃1u(z1, z0) = −δ
p0∑
i=0

(∂xiu(z2)− ∂xiu(z1))vi

= O(|δ|1+α), as δ → 0,

since ∂xiu ∈ CαY,loc.

Case n = 1

First suppose k = 0. Since v ∈ V0,1 andBv
(1)
i = e

[1]
i , then v =

∑p1

i=1

(
Bv
)
i
v

(1)
i

and the sum of the last two terms in (3.8) equals F1 + · · · + F7 with each

Fj = O(|δ|3+α) as δ → 0. Precisely,

F1 = (−δ2)(Y u(z3)− T1Y u(z2, z3)) (Y u ∈ C1,α
B,loc)

F2 = δ3 ((∇ · v)Y u(z2)− (∇ · v)Y u(z1)) ((∇ · v)Y u ∈ CαY,loc)

F3 = −δ
(
(∇ · v)u(z2)− (∇ · v)u(z1)− δ2Y (∇ · v)u(z1)

)
(Y (∇ · v)u ∈ CαY,loc)

F4 =
δ2

2!

p0∑
i,j=1

(
∂xi,xju(z2)− ∂xi,xju(z1)

)
vivj (∂xi,xju ∈ C1+α

Y,loc)

F5 = −δ
3

3!

p0∑
i,j,l=1

(
∂xi,xj ,xlu(z2)− ∂xi,xj ,xlu(z1)

)
vivjvl (∂xi,xj ,xlu ∈ CαY,loc)

F6 = δ3 ((∇ · v)Y u(z1)− (∇ · v)Y u(z0)) ((∇ · v)Y u ∈ C0,α
B,loc)

F7 = δ3 (Y (∇ · v)u(z0)− Y (∇ · v)u(z1)) (Y (∇ · v)u ∈ C0,α
B,loc).

Next suppose k > 0. Then the fifth term in (3.8) is O(|δ|3+α) as δ → 0

because

−δ2(Y u(z3)− Y u(z2)) = −δ2(Y u(z3)− T1Y u(z2, z3)).
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Eventually the last term in (3.8) is identically zero if k > 1, otherwise, if k = 1,

it rewrites as F1 + F2 with each Fj = O(|δ|3+α) as δ → 0. Indeed,

F1 = −δ3 ((∇ · v)Y u(z2)− (∇ · v)Y u(z1)) ((∇ · v)Y u ∈ CαY,loc)

F2 = δ3 (Y (∇ · v)u(z2)− Y (∇ · v)u(z1)) (Y (∇ · v)u ∈ CαY,loc).

Case n > 1

We distinguish two sub-cases depending on k beign greater or equal of n−1.

In the first case we have that the last term in (3.8) is zero. Moreover, for

any i = 1, . . . , n

Y iu(z3)− Y iu(z2) = Y iu(z3)− T2(n−i)+1Y
iu(z2, z3) (3.9)

and the bound for the fifth term in (3.8) follows form the inductive hypothesis

on Theorem 2.9.

In the sub-case k = n equation (3.9) is true only for i > 1. Nevertheless, we

can write

Y u(z3)− Y u(z2) = Y u(z3)− T2(n−1)+1Y u(z2, z3)

+

pn−1∑
i=1

∂xp̄n−2+iY u(z2)(−δ)2n−1(Bn−1v)pn−2+i, (3.10)

and the difference in the right side can be estimed using Theorem 2.9 on Y u.

Now, ∂xp̄n−2+iu = Y
(n−1)

v
(n−1)
i

for i = 1, . . . , pn−1 by induction hypothesis on Theo-

rem 2.9 and, since v ∈ V0,n ⊂ V0,n−1

v =

pn−1∑
i=1

(Bn−1v)p̄n−2+iv
(n−1)
i =

pn∑
i=1

(Bnv)p̄n−1+iv
(n)
i

so that, by definition (1.14) and from Y
(n)
v = [Y

(n−1)
v , Y ], the term in the far

right of (3.10) plus the last line in (3.8) can be rewritten as F1 + · · ·+ F5 whit

each Fj = O(|δ|2n+1+α) as δ → 0. Precisely, if we set q = n− 1 we have

F1 = −δ2n−1
(
Y (q)
v u(z2)− Y (q)

v u(z1)− δ2Y Y (q)
v u(z2)

)
(Y Y (q)

v u ∈ CαY,loc)

F2 = −δ2n+1
(
Y Y (q)

v u(z2)− Y Y (q)
v u(z1)

)
(Y Y (q)

v u ∈ CαY,loc)

F3 = −δ2n+1
(
Y Y (q)

v u(z1)− Y Y (q)
v u(z0)

)
(Y Y (q)

v u ∈ C0,α
B,loc)

F4 = δ2n+1
(
Y (q)
v Y u(z2)− Y (q)

v Y u(z1)
)

(Y (q)
v Y u ∈ CαY,loc)

F5 = δ2n+1
(
Y (q)
v Y u(z1)− Y (q)

v Y u(z0)
)

(Y (q)
v Y u ∈ C0,α

B,loc).

If in particular u ∈ C2n+1,α
B the proof still works with minor changes.
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Proof of Proposition 3.2 for 2n+ 1.

We prove the thesis by induction on k. For k = 0 we have to prove that, for

any v ∈ V0

u(t, x+ v) = T2n+1u
(
(t, x), (t, x+ v)

)
+O

(
|v|2n+1+α

B

)
, as |v|B → 0.

We observe v ∈ V0 implies that T2n+1u contains only increments with respect to

the first p0 variables. By the multidimensional mean-value theorem, there exist

a family of vectors (v̄I)I∈I , with I = {1, . . . , p0}2n+1, v̄I ∈ V0 and |v̄I | ≤ |v|
such that

u(t, x+ v)− T2n+1u
(
(t, x), (t, x+ v)

)
=

1

(2n+ 1)!

∑
I∈I

(∂Ixu(t, x+ v̄I)− ∂Ixu(t, x))vI

= O(|v|α)
∑
I∈I

vI as |v|B → 0 ( ∂Ixu ∈ C
0,α
B,loc)

= O(|v|2n+1+α
B ) as |v|B → 0.

Now suppose k ≥ 0, ξ ∈
⊕k

j=0 Vj and v ∈ Vk+1. Then

u(t, x+ ξ + v)− T2n+1u
(
(t, x), (t, x+ ξ + v)

)
=

u(t, x+ ξ + v)− T2n+1u
(
(t, x+ v), (t, x+ ξ + v)

)
+

T2n+1u
(
(t, x+ v), (t, x+ ξ + v)

)
− T2n+1u

(
(t, x), (t, x+ ξ + v)

)
,

with the first differenze O(|ξ|2n+1+α
B ) = O(|ξ + v|2n+1+α

B ) as |ξ + v|B → 0 by

inductive hypothesis. Recalling notation 2.8 the second difference rewrites as∑
|β|B≤2n+1
βi=0 if i>p̄k

1

β!
∂βxu(t, x+ v)ξβ

−
∑

|β|B≤2n+1
βi=0 if i>p̄k

1

β!

2n+1−|β|B∑
|γ[k+1]|B=0

1

γ[k+1]!
∂γ

[k+1]

x ∂βxu(t, x)ξβvγ
[k+1]

=
∑

|β|B≤2n+1
βi=0 if i>p̄k

1

β!

∂βxu(t, x+ v)−
2n+1−|β|B∑
|γ[k+1]|B=0

1

γ[k+1]!
∂γ

[k+1]

x ∂βxu(t, x)vγ
[k+1]

 ξβ

=
∑

|β|B≤2n+1
βi=0 if i>p̄k

1

β!

(
∂βxu(t, x+ v)− T2n+1−|β|B∂

β
xu((t, x), (t, x+ v))

)
ξβ .

If |β|B ≥ 1 we can use Theorem 2.9 on ∂βxu. The corresponding term on the

summation are then O(|v|2n+1−|β|B+α
B )|ξ||β|BB = O(|ξ+v|2n+1+α

B ) as |ξ+v|B → 0.
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Eventually, it remains to estimate the term

u(t, x+ v)−
∑

|γ[k+1]|B≤2n+1

1

γ[k+1]!
∂γ

[k+1]

x u(t, x)vγ
[k+1]

.

By definition |γ[k+1]|B = (2(k+1)+1)|γ[k+1]| and we set l the maximum integer

such that (2k+ 3)l ≤ 2n+ 1. Applying the mean-value theorem as in the k = 0

step we can rewrite the above formula as

1

l!

∑
I∈Ilk+1

(
∂Ixu(t, x+ v̄I)− ∂Ixu(t, x)

)
vI .

where Ilk+1 = {p̄k + 1, . . . , p̄k+1}l and v̄I ∈ Vk+1 with |v̄I | ≤ |v|. As ∂Ixu ∈
C

2n+1−(2k+3)l,α
B,loc we can use Theorem 2.9 one more time. The thesis follows now

noticing that

|vI | ≤ cB |v|l ≤ cB |v|(2k+3)l
B .

If in particular C2n+1,α
B the proof still works with minor changes.

We are now ready to prove step 2 for Theorem 2.9. We only prove the local

version of the theorem being the proof for the particular case u ∈ C2n+1,α
B a

straightforward modification of the following one.

proof of Theorem 2.9 for 2n+ 1. First of all we consider the case z = (t, x),

ζ = (t, ξ) i.e. there is no increment in the temporal variable. Precisely we show

that, if u ∈ C2n+1,α
B,loc we have

u(t, x) = T̄2n+1u((t, ξ), (t, x)) +O(|x− ξ|2n+1+α
B ) as |x− ξ|B → 0. (3.11)

Define the point z̄ := (t, x̄) with

x̄[i] =

x[i], if i ≥ n,

ξ[i], if i < n.
(3.12)

Then,

u(t, x)− T̄2n+1u((t, ξ), (t, x)) = u(t, x)− T̄2n+1u((t, x̄), (t, x))

+ T̄2n+1u((t, x̄), (t, x))− T̄2n+1u((t, ξ), (t, x)).

Applying Proposition 3.2 on the first term we obtain the bound O(|x −
x̄|2n+1+α
B ) = O(|x − ξ|2n+1+α

B ) as |x − ξ|B → 0. Let us notice that, by (3.12),

we have
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(x− x̄)β =

(x− ξ)β if |β|B ≤ 2n+ 1, β[n] = 0,

0, if |β|B ≤ 2n+ 1, β[n] 6= 0.

Therefore,

T̄2n+1u((t, x̄), (t, x))− T̄2n+1u((t, ξ), (t, x)) =∑
|β|B≤2n+1

β[n]=0

1

β!

(
∂βxu(t, x̄)− ∂βxu(t, ξ)

)
(x− ξ)β −

pn∑
i=1

Y
(n)

v
(n)
i

u(t, ξ)(x− ξ)p̄n−1+i.

Each term of the first sum with |β|B > 0 is O(|x̄−ξ|2n+1+α−|β|B
B )|x−ξ||β| =

O(|x− ξ|2n+1+α
B ) as |x− ξ|B → 0 by the inductive hypothesis on Theorem 2.9.

What is left to estimate is just

u(t, x̄)− u(t, ξ)−
pn∑
i=1

Y
(n)

v
(n)
i

u(t, ξ)(x− ξ)p̄n−1+i.

Define the points

zn−1 = (t, ξ), zn = γ
(n−1,n)
δn,vn

(zn−1), . . . , zr = γ
(n−1,r)
δr,vr

(zr−1) ≡ z̄

similarly as in the proof of Theorem 2.9 for n = 0. To be more precise each time

we choose vi ∈ V0,i, |vi| = 1 and δi ∈ R such that the application of γ
(n−1,i)
δi,vi

corrects the i-th level spatial components of zi−1 to x̄[i]. Moreover, arguing as

in Step 1 it can be proven that

|δi| ≤ cB |x̄− ξ|B ≤ cB |x− ξ|B i = n, . . . , r. (3.13)

Therefore, we get T̄2n+1u(zi−1, zi) = u(zi−1) if i > n and, keeping this in

mind, it is clear that

u(t, x̄)− u(t, ξ)−
pn∑
i=1

Y
(n)

v
(n)
i

u(t, ξ)(x− ξ)p̄n−1+i = u(zr)− T̄2n+1u(zn−1, zn)

=

r∑
i=n+1

(u(zi)− T̄2n+1u(zi−1, zi)) +
(
u(zn)− T̄2n+1u(zn−1, zn)

)
,

and the thesis follows by Proposition 3.2 and (1.22), (3.13).

We are now able to prove part 1 and part 2 of Theorem 2.9.

Choosing x = ξ + δe
[n]
i in (3.11) ,where δ ∈ R and e

[n]
i is the i-th vector of

the canonical basis of Vn, we get

u(t, ξ + δe
[n]
i )− u(t, ξ)− δY (n)

v
(n)
i

u(t, ξ) = O(|δ|1+ α
2n+1 ),
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which can be rewritten as∣∣∣∣u(t, ξ + δe
[n]
i )− u(t, ξ)− δY (n)

v
(n)
i

u(t, ξ)

∣∣∣∣
|δ|

≤ C|δ|
α

2n+1 , 0 < |δ| < δ0,

with C and δ0 two costant greater than zero. This implies that ∂xp̄n−1+i
u(t, ξ)

exists and

∂xp̄n−1+iu(t, ξ) = Y
(n)

v
(n)
i

u(t, ξ) t ∈ R, ξ ∈ Rd, i = 1, . . . , pn.

Thus, as Y
(n)

v
(n)
i

u ∈0,α
B,loc, the proof of part 1 is completed.

Next we prove the general case z = (t, x), ζ = (s, ξ). By part 1 it is well

defined the B-Taylor polynomial T2n+1u(ζ, ·) and it equals T̄2n+1u(ζ, ·). Define

the point ζ1 := e(t−s)Y (ζ) = (t, e(t−s)Bξ) and, as usual, write

u(z)− T2n+1u(ζ, z) = u(z)− T2n+1u(ζ1, z) + T2n+1u(ζ1, z)− T2n+1u(ζ, z).

The first difference is O(|x− e(t−s)Bξ|2n+1+α
B ) = O(‖ζ−1 ◦ z‖2n+1+α

B ) as ‖ζ−1 ◦
z‖B → 0 thanks to the previous case while the second can be rewritten as

T2n+1u(ζ1, z)− T2n+1u(ζ, z) =∑
|β|B≤2n+1

1

β!
∂βxu(e(t−s)Y (ζ))(x− e(t−s)Bξ)β

−
∑

|β|B≤2n+1

⌊
2n+1−|β|B

2

⌋∑
k=0

1

β!k!
Y k∂βxu(ζ)(x− e(t−s)Bξ)β(t− s)k =

2n+1∑
|β|B=0

1

β!

∂βxu(e(t−s)Y (ζ))−

⌊
2n+1−|β|B

2

⌋∑
k=0

(t− s)k

k!
Y k∂βxu(ζ)

 (x−e(t−s)Bξ)β .

Eventually, as ∂βxu ∈ C
2n+1−|β|B ,α
B,loc for any multi-index β such that |β|B ≤

2n+ 1, by Remark 3.3, we infer that the corresponding term of the sum is

O(|t−s|
2n+1+α−|β|B

2 |x−e(t−s)Bξ||β|BB ) = O(‖ζ−1◦z‖2n+1+α
B ) as ‖ζ−1◦z‖B → 0.

3.3 Step 3

Next we do Step 3 that is, we suppose the main theorem true for the orders

n = 0, . . . , 2n + 1 ≤ 2r + 1 and we prove it for functions u ∈ C2n+2,α
B,loc . As in
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the previous step we will use Propositions 3.1 and 3.2 to demostrate the main

theorem however, for the sake of brevity we prove only 3.1. The proof of 3.2 is

identical (just replace 2n + 1 with 2n + 2) to the one given in Step 2 and the

proof of 2.9 is easier since this time we don’t have to prove the existence of any

derivative.

As usual we prove only the local versions of the statements.

Proof of Proposition 3.1 for 2n+ 2.

Note that the condition max{
⌊

2n+2
2

⌋
− 1, 0} ≤ k ≤ r become n ≤ k ≤ r. We

want to prove that for any of such k and v ∈ V0,k with |v| = 1, we have:

u
(
γ

(n,k)
v,δ (z)

)
= T2n+2u

(
z, γ

(n,k)
v,δ (z)

)
+O

(
|δ|2n+2+α

)
, as δ → 0. (3.14)

We have to analyze separately the cases n = 0 and n > 0. We begin proving

(3.14) directily for k = n.

Case n = 0

We have k = 0 and equation 3.14 rewrites as

u(t, x+ δv) = u(t, x) +

p0∑
i=1

∂xiu(t, x)δvi+

δ2

2!

p0∑
i,j=1

∂xixju(t, x)vivj +O(|δ|2n+2+α) as δ → 0.

By the multidimensional euclidean mean-value theorem, there exist

(v̄i,j)1≤i,j≤p0
, with v̄i,j ∈ V0 and |v̄i,j | ≤ 1, such that

u(t, x+ δv)− T2u((t, x), (t, x+ δv))

=
δ2

2!

p0∑
i,j=1

(
∂xi,xju(t, x+ δv̄i,j)− ∂xi,xju(z)

)
vivj

= δ2O(|δv|αB) as δ → 0 (∂xi,xju ∈ C
0,α
B )

= O(|δ|2+α) as δ → 0.

Case n > 0

This time k > 0. We have to prove that for any v ∈ V0,k with |v| = 1,

u(t, x+ δ2n+1Bnv) = u(t, x)+

δ2n+1

pn∑
i=1

∂xp̄n−1+iu(t, x)(Bnv)p̄n−1+i +O
(
|δ|2n+2+α

)
, as δ → 0.
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This case differs from the precedent because this time we have no derivatives

of higher (Euclidean) order. By the multidimensional mean-value theorem, there

exist a family of vectors (v̄i)1≤i≤pn , with v̄i ∈ V0,n and |Bnv̄i| ≤ |Bnv| such that

u(t, x+ δ2n+1Bnv)− u(t, x) =

pn∑
i=1

∂xp̄n−1+i
u(t, x+ δ2n+1Bnv̄i)δ

2n+1Bnvi.

Therefore

u
(
γ

(n,n)
v,δ (t, x)

)
− Tnu

(
z, γ

(n,n)
v,δ (t, x)

)
=

pn∑
i=1

(
∂xp̄n−1+i

u(t, x+ δ2n+1Bnv̄i)− ∂xp̄n−1+i
u(t, x)

)
δ2n+1(Bnv)i

= O(|δ|1+α)δ2n+1

pn∑
i=1

(Bnv)i as δ → 0

= O(|δ|2n+2+α) as δ → 0.

Where we have used Theorem 2.9 in the second line since ∂xp̄n−2+iu(t, x) =

T2∂xp̄n−2+i
u((t, x), (t, x+ δ2n−1Bn−1v̄i)) and ∂xp̄n−1+i

u ∈ C1,α
B,loc)

Inductive Step

Now we suppose the thesis true for a fixed k ≥ n and we prove it for k + 1.

We set T̃2n+2u(ζ, z) = T2n+2u(ζ, z)− u(ζ) and

z0 = z, z1 = γ
(n,k)
v,δ (z0), z2 = eδ

2Y (z1) ,

z3 = γ
(n,k)
v,δ (z2), z4 = e−δ

2Y (z3) = γ
(n,k+1)
v,δ (z),

where v ∈ V0,k+1, |v| = 1. Whit this notations we have

u(z4)− T̄2n+2u(z0, z4) = u(z4)− u(z3)−
n+1∑
i=1

(−δ2)i

i!
Y iu(z3)

+ u(z3)− u(z2)− T̃2n+2u(z2, z3)

+

n+1∑
i=1

(−δ2)i

i!
Y iu(z2) + u(z2)− u(z1)

+ T̃2n+2u(z1, z0) + u(z1)− u(z0)

+

n+1∑
i=1

(−δ2)i

i!

(
Y iu(z3)− Y iu(z2)

)
+ T̃2n+2u(z2, z3)− T̃2n+2u(z1, z0)− T̃2n+2u(z0, z4).

(3.15)
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By Remark 3.3 the first and the third term are O(|δ|2n+2+α) as δ → 0 and

the same bound for the second and the fourth term follows from the inductive

hypothesis (note that, by (1.12) V0,k+1 ⊂ V0,k). In order to estimate the last

terms we need once again to distinguish various cases depending on n and k.

Case n = 0

In this case we have T̃2n+2u(z0, z4) ≡ 0 and

Y u(z3)− Y u(z2) = O(|δ|α), as δ → 0,

since Y u ∈ C0,α
B,loc. Regarding the difference T̃2n+2u(z2, z3)− T̃2n+2u(z1, z0) we

distinguish two cases. If k > 0 the two polynomials are identically zero and we

are done. If k = 0 the above difference rewrites as

T̃2u(z2, z3)− T̃2u(z1, z0) = −δ
p0∑
i=1

(∂xiu(z2)− ∂xiu(z1))vi

+
(−δ)2

2!

p0∑
i,j=1

(∂xi,xju(z2)− ∂xi,xju(z1))vivj .

Now, since ∂xiu ∈ C
1,α
B,loc ⊂ C1+a

Y,loc, ∂xi,xju ∈ C
0,α
B,loc ⊂ CaY,loc and z2 = eδ

2Y (z1)

we get

∂xiu(z2)− ∂xiu(z1) = O(|δ|1+α), as δ → 0

∂xi,xju(z2)− ∂xi,xju(z1) = O(|δ|α), as δ → 0.

and this conclude the case n = 0.

Case n > 0

For any i = 1, . . . , n+ 1

Y iu(z3)− Y iu(z2) =Y iu(z3)− T2(n−i)+1Y
iu(z2, z3)

=O(|δ|2(n−i+1)+α) as δ → 0,

and the bound for the fifth term in (3.15) follows form the inductive hypothesis

on Theorem 2.9.

Moreover, since the first increment in γ
(n,k+1)
v,d is at least of level n + 1 we

have T2n+2u(z0, z4) ≡ 0.

Now we analyze the difference T̃2n+2u(z2, z3)− T̃2n+2u(z1, z0). If k > n it is

identically zero for the same reason above. Otherwise, if k = n, it reduces to

p̄n∑
i=p̄n−1+1

(∂xiu(z2)− ∂xiu(z1)) δ2n+1(Bnv)i.

Because ∂xiu ∈ C
1,α
B,loc ⊂ C

1+a
Y,loc and z2 = eδ

2Y (z1) we get

T̃2n+2u(z2, z3)− T̃2n+2u(z1, z0) = O(|δ|1+α), as δ → 0.

and this conclude the proof.
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3.4 Step 4 and corollaries

Here we fix a certain n ≥ 2r+1, suppose Theorem 2.9 true for any 0 ≤ m ≤ n
and we prove it for n + 1. We will use Proposition 3.2 however its proof is

identical to the one given in the step 2 (just replace 2n+ 1 with n+ 1 and note

that the condition 0 ≤ k <
⌊
n+1

2

⌋
become 0 ≤ k ≤ r) and is thus omitted.

Proof of Theorem 2.9 for n+ 1.

Let z = (t, x), ζ = (s, ξ) ∈ R × Rd, define the point ζ1 := e(t−s)Y (ζ) =

(t, e(t−s)Bξ) and, as usual, write

u(z)− T2n+1u(ζ, z) = u(z)− T2n+1u(ζ1, z) + T2n+1u(ζ1, z)− T2n+1u(ζ, z).

The first difference is O(|x− e(t−s)Bξ|n+1+α
B ) = O(‖ζ−1 ◦ z‖n+1+α

B ) as

‖ζ−1 ◦ z‖B → 0 thanks to Proposition 3.2 while the second can be rewritten as

Tn+1u(ζ1, z)− Tn+1u(ζ, z) =∑
|β|B≤n+1

1

β!
∂βxu(e(t−s)Y (ζ))(x− e(t−s)Bξ)β

−
∑

|β|B≤n+1

⌊
n+1−|β|B

2

⌋∑
k=0

1

β!k!
Y k∂βxu(ζ)(x− e(t−s)Bξ)β(t− s)k =

n+1∑
|β|B=0

1

β!

∂βxu(e(t−s)Y (ζ))−

⌊
n+1−|β|B

2

⌋∑
k=0

(t− s)k

k!
Y k∂βxu(ζ)

 (x− e(t−s)Bξ)β .

Because ∂βxu ∈ C
n+1−|β|B ,α
B,loc for any multi-index β such that |β|B ≤ n + 1,

by Remark 3.3, we infer that each of the corresponding term of the sum is

O(|t−s|
n+1+α−|β|B

2 |x−e(t−s)Bξ||β|BB ) = O(‖ζ−1◦z‖n+1+α
B ) as ‖ζ−1◦z‖B → 0.

Now we prove Corollary 2.13.

Proof. We give two different proofs. the first is based on the euclidean mean

value theorem and Theorem 2.9 while the second only on the latter.

Under the hypothesis u ∈ C2r+1,α
B,loc (Ω) Theorem 2.9 and Corollary 2.12 as-

sures that all the (Euclidean) spatial derivatives ∂x1
, . . . , ∂xd exists and are

continuos functions. Therefore for small δ the function

[0, δ] 3 s 7−→ u(t+ δ, esBx), (t, x) ∈ Ω
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is C1 and we can apply the mean value theorem and infer that

u(t+ δ, x)− u(t+ δ, eδBx) = −〈∇u(t+ δ, eδ̄Bx), Beδ̄Bx〉δ.

for a suitable |δ̄| ≤ |δ|. It follows that

u(t+ δ, x)− u(t, x) =u(t+ δ, eδBx)− u(t, x) + u(t+ δ, x)− u(t+ δ, eδBx)

=u(t+ δ, eδBx)− u(t, x)− 〈∇u(t+ δ, eδ̄Bx), Beδ̄Bx〉δ.

Therefore, dividing both sides by δ and taking the limit as δ → 0 we deduce

that ∂tu exists and

∂tu(t, x) = Y u(t, x)− 〈∇u(t, x), Bx〉. (3.16)

This could also be derived directily from the main theorem taking ζ = (t, x),

z = (t+ δ, x) and noting that the spatial increments would become

x− eδBx =

r∑
i=1

(−δB)i

i!
x = −δBx+O(δ2) as δ → 0.

Thus,

u(z)−T2r+1u(ζ, z) = u(t+δ, x)−u(t, x)−δY u(t, x)+δ

d∑
i=1

(Bx)i∂xiu(t, x)+O(δ2)

as δ → 0 and the thesis follows since

‖ζ−1 ◦ z‖2r+1+α
B = ‖(δ, x− eδBx)‖2r+1+α

B = O(|δ|1+ α
2r+1 ) as δ → 0.

That δtu ∈ C0,α
B,loc(Ω) easily follows from (3.16) since, by the inclusions in

Proposition 2.7 all the derivatives are in C0,α
B,loc(Ω).

The same reasoning can be applyed for functions in C2r+1,α
B (Ω) to conclude

that the time-derivative is in C0,α
B (Ω).

The second proof shows that, generally speaking, the hypothesis

u ∈ C2r+1,α
B,loc (Ω) can not be weakened to lower orders since for n < 2r + 1 we

have

‖ζ−1 ◦ z‖n+α
B = ‖(δ, x− eδBx)‖n+α

B = O(|δ|
n+α
2r+1 ) as δ → 0.

and since n + α ≤ 2r + 1 we can not conclude that the time-derivative exists

even though the Lie derivative Y u do exists.
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