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Riflettiamo ora su cos’è la matematica. Di per sé è un sistema astratto,
un’invenzione dello spirito umano, che come tale nella sua purezza non

esiste. E’ sempre realizzato approssimativamente, ma - come tale - è un
sistema intellettuale, e una grande, geniale invenzione dello spirito umano.
La cosa sorprendente è che questa invenzione della nostra mente umana è
veramente la chiave per comprendere la natura, che la natura è realmente

strutturata in modo matematico e che la nostra matematica, inventata dal
nostro spirito, è realmente lo strumento per poter lavorare con la natura,

per metterla al nostro servizio, per strumentalizzarla attraverso la tecnica.
Papa Benedetto XVI

(Colloquio con i giovani di Roma, 6 aprile 2006)

Let us now reflect on what mathematics is: in itself, it is an abstract
system, an invention of the human spirit which as such in its purity does

not exist. It is always approximated, but as such is an intellectual system, a
great, ingenious invention of the human spirit. The surprising thing is that

this invention of our human intellect is truly the key to understanding
nature, that nature is truly structured in a mathematical way, and that our

mathematics, invented by our human mind, is truly the instrument for
working with nature, to put it at our service, to use it through technology.

Pope Benedict XVI
(Meeting with youth of Rome, 6 April 2006)
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Introduction

The purpose of this study is to analyse the regularity of a distinguished
differential operator, the so-called Kohn Laplacian 2b, in two settings: on
the Heisenberg group Hn and on manifolds for which Hn is a model, that is,
the strongly pseudo-convex CR manifolds.

Our work begins with the presentation of Hn and of its properties. The
Heisenberg group is defined as Cn × R with the product

(z, t) ∗ (z′, t′) = (z + z′, t+ t′ + 2 Im(zz′))

and it can be seen in two different ways: as a Lie group and as the boundary
of the Siegel Upper-Half Space. In this last definition, Hn is an embedded
manifold and 2b can be seen as the restriction to Hn of a differential oper-
ator on Cn+1. On the other hand, looking at the Lie Group, we can view
2b as a sum of squares of the vector fields ReZ1, ImZ1, . . . ,ReZn, ImZn,
where Z1, . . . , Zn, T form a left-invariant (complex) vector fields basis for the
complexified tangent bundle CT (Hn).

On Hn there exists “the CR complex” ∂b, defined as

∂bf =

′∑
|J |=q+1

 ′∑
|I|=q,k=1,...,n

εJkIZkfI

 dzJ ,

where f is a (0, q)-form f =
∑′

|I|=q fIdz
I and dzI = dzi1∧, . . . ,∧dziq . We can

also define its adjoint ∂
∗
b with respect to the L2(dV ) inner product, where

dV is the Lebesgue measure in Cn × R. It can be written as

∂
∗
bf =

′∑
|J |=q−1

− ′∑
|I|=q,k=1,...,n

εIkJZkfI

 dzJ .

Then we can form the operator 2b = ∂b∂
∗
b + ∂

∗
b∂b. It turns out that, on

(0, q)-forms, 2b acts diagonally, that is,

2b

 ′∑
|I|=q

fIdz
I

 =
′∑

|I|=q

(Ln−2qfI) dz
I ,
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8 INTRODUCTION

where Lα is a scalar differentiable operator of order two:

Lα = −1

2

∑
k=1,...,n

(
ZkZk + ZkZk

)
+ iαT.

Thus, for studying 2b, it suffices to study Lα. For these operatos we study
the local solvability, hypoellipticity and regularity in Lp, Hölder and Sobolev
norms.

In order to obtain the main estimates for 2b and its inverse, we study
the fundamental solution of Lα on Hn. To investigate its hypoellipticity,
again, we first study the solvability and hypoellipticity of Lα, that is true
when α is “admissible”, namely α 6= ±(n + 2k) ∀k ∈ N. That enables us
to find solvability and hypoellipticity for 2b. Finally, to be able to state Lp

and Hölder estimates for Lα, we take some time to talk about homogeneous
distributions on the Heisenberg group.

In the second part we start working mainly with a manifold M of real
dimension 2n + 1. We say that M is a Cauchy Riemann manifold (of hy-
persurface type) if there exists a subbundle, that we denote to be T 1,0(M),
of the complex tangent bundle CT (M) such that the complex dimension of
T 1,0(M) is n, T 1,0(M)∩T 1,0(M) = {0} and where the integrability condition
is true. More, we say that a CR manifold M is strongly pseudo-convex if the
Levi form defined on M is positive defined.

Since we will show that the Heisenberg group is a model for the strongly
pseudo-convex CR manifolds, we study how to extend to them the conclu-
sions we found for Hn. In particular, we look for an osculating Heisenberg
structure in a neighborhood of a point in M , and we want this structure
to change smoothly from a point to another. In order to do so, we define
Normal Coordinates and we study their properties. More, we also exami-
nate different Normal Coordinates in the case of a real hypersurface with an
induced CR structure.

In the final part, we define again the tangential CR complex, its adjoint
and the 2b operator on M . Then we start studying these new operators
showing some subelliptic estimates; first for ∂b and ∂

∗
b , then for the 2b. To

find this conclusions, we don’t assume M to be pseudo-complex anymore,
but we ask less, that is, the Z(q) and the Y (q) conditions on the eigenvalues
of the Levi form of the defining function of M . This also provides local
regularity theorems for 2b and show its hypoellipticity on M .



Chapter 1

Preliminaries

Goal. In this chapter we want to give some definitions and results as a first
view at the Cauchy–Riemann world. We will show some versions of the
Hartogs Extension Theorem and we will talk about the Levi pseudocovexity
in the complex space. Then we will also provide fundamental defintions, such
as the notion of the CR manifolds, the CR tangent complex ∂b and of the
Levi form for CR manifolds.

1.1 CR-operators and Hartogs Theorem

Definition 1.1.1.
Let M be an open set in Cn. Let p ∈ M and let U ∈ Up, i.e, U is a
neighborhood of p.
We say that M is a Ck real hypersurface in Cn, with k ∈ N, if ∃ρ ∈ Ck(U,R)
(namely, a defining function) such that

M ∩ U = {z ∈ U /ρ(z) = 0} and dρ(z) 6= 0 on M ∩ U.

Observation 1.1.2. M so defined divides U into U+ := {z ∈ U /ρ(z) > 0}
and U− := {z ∈ U /ρ(z) < 0}.

Definition 1.1.3.
With the same notations, we now call Tangential Cauchy–Riemann operator
a (0,1)-vector field on M,L, such that

L =
n∑
j=1

aj(z)
∂

∂zj
on M ∩ U

where aj’s satisfy

9



10 1. Preliminaries

n∑
j=1

aj(z)
∂ρ

∂zj
(z) = 0, that is, Lρ(z) = 0.

We also call Lu = 0 the Tangential Cauchy–Riemann equation.

Notation 1.1.4. Given U an open set, take O(U) as the set of the holomor-
phic function on U .

Observation 1.1.5. If f ∈ C1(U−)∩O(U−) then, by continuity, Lf = 0 on
M ∩ U .
This tells us that the restiction of a holomorphic function f to a hypersurface
will automatically satisfy Lf = 0.

Definition 1.1.6.
Let M be a C1 hypersurface in Cn, n ≥ 2.
f ∈ C1(M,C) is called a CR-function if f satisfies the homogeneous tangen-
tial Cauchy–Riemann equation:

n∑
j=1

aj
∂f

∂zj
(z) = 0

∀a = (a1, . . . , an) ∈ C with
∑n

j=1 aj
∂ρ
∂zj

(z) = 0, z ∈ M , and where ρ is a

C1 defining function for M .

Observation 1.1.7. From observation 1.1.5, we can now say that the restic-
tion of a holomorphic function f to a hypersurface is a CR-function.

Is the opposite true? Namely, Given any CR-function f on M , can one
extend f holomorphically into one side of M? In general the answer is no.

Example 1.1.8. Let M be the hypersurface defined by {y1 = 0} in Cn:

M := {z ∈ Cn / y1 = 0}.

Consider f ∈ C∞(M,R), f(x1, z2, . . . , zn) = f(x1) in U ∈ U0. Suppose f(x1)
is not real analytic at the origin and note that, by hypothesis, ∂f

∂zj
= 0 for

j = 2, . . . , n.
Then f is a CR manifold on M , still f can’t be holomorphically extended to
some neighborhood of the origin, or to just one side of the hypersurface M .

Now we give a result about the so-called inhomogeneous Cauchy–Riemann
equation ∂u = f and then about the extension theorems. The basic ∂ in Cn

is defined in 1.5[1].
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Theorem 1.1.9.
Let f =

∑n
j=1 fjdzj and fj ∈ Ck

0 (Cn) with n ≥ 2, j = 1, . . . , n and k ≥ 1
such that the compatibility conditions are satisfied, namely

∂fj
∂zi

=
∂fi
∂zj

∀i, j : 1 ≤ i < j ≤ n.

Then there exists a function u ∈ Ck
0 (Cn) such that ∂u = f .

Proof. Set

u(z) =
1

2πi

∫
C

f1(ζ, z2, . . . , zn)

ζ − z1

dζ ∧ dζ =
1

2πi

∫
C

f1(ζ + z1, z2, . . . , zn)

ζ
dζ ∧ dζ.

Then, from differentation under the integral sign, u ∈ Ck(Cn). And since f
is compactly supported, u(z) = 0 when |z2| + · · · + |zn| is sufficiently large.
By the properties of the Cauchy Integral Formula (2.1.2[1]), we have

∂u

∂z1

(z) = f1(z).

Using again the Cauchy Integral Formula (2.1.1[1]), we have

fj(z) =
1

2πi

∫
C

∂fj
∂ζ

(ζ, z2, . . . , zn)

ζ − z1

dζ ∧ dζ

and, on the other hand,

∂u

∂zj
(z) =

∂

∂zj

1

2πi

∫
C

f1(ζ, z2, . . . , zn)

ζ − z1

dζ∧dζ =
1

2πi

∫
C

∂f1
∂zj

(ζ, z2, . . . , zn)

ζ − z1

dζ∧dζ.

Using the compatibilty condition for j > 1, ∂f1
∂zj

=
∂fj
∂z1

, we obtain

∂u

∂zj
(z) = fj(z) ∀j = 1, . . . , n.

Hence ∂u = f .
In particular, u is holomorphic on an unbounded component of the comple-
ment of the support of f (by definition of holomorphy). Since we already
know that u ≡ 0 when |z2| + · · · + |zn| is sufficiently large, then u must be
zero on the unbounded component of (suppf)c (Identity Theorem 2.1.10[1]).
Thus u is compactly supported and that proves the theorem.
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Theorem 1.1.10 (Hartogs Extension Theorem).
Let D be a bounded domain in Cn, n ≥ 2, and K ⊂⊂ D such that D \K is
connected.
Then f ∈ O(D \K) =⇒ f ∈ O(D).

Notation 1.1.11. By f ∈ Ck
(p,q)(D) we mean that f is a (p, q)-form in D

with Ck coefficients.

Proof. Let χ ∈ C∞0 (D) be a cut-off function such that χ ≡ 1 in some neigh-
borhood of K. Then we have that −f(∂χ) ∈ C∞(0,1)(Cn). This function has
compact support and satisfies the compatibility condition. Thus, by the pre-
vious theorem, ∃u ∈ C∞0 (Cn) such that ∂u = −f(∂χ) and u = 0 in some
open neighborhood of Cn \D.
We now define F := (1− χ)f − u. We see that F is the extension of f and
it’s holomorphic:

∂F = ∂f · (1− χ)− f∂χ− ∂u = ∂f · (1− χ) = 0.

That proves the theorem.

Another version of the same theorem is:

Theorem 1.1.12.
Let f ∈ C(D), D ∈ Cn, n ≥ 2, D domain. Let S be a smooth real hyper-
surface in Cn.
Then f ∈ O(D \ S) =⇒ f ∈ O(D). Namely, f can be extended holomorphi-
cally to D.

Proof. In order to prove this statement, it would be enough to show that f is
holomorphic near each p ∈ D ∩S. We will do it assuming p to be the origin.
In this case, we can write S as a graph, S = {z ∈ Cn/ y1 = φ(x1, z

′)} where
z = (z1, . . . , zn) ∈ Cn, zj = xj + iyj, for j = 1, . . . , n, and φ is a smooth
function such that φ(0) = 0 and dφ(0) = 0.
Hence ∀β > 0 ∃δβ > 0 and exists a polydisc Uβ in Cn−1 centered at the
origin such that |φ(x1, z

′)| < β ∀x ∈ R : |x| < δβ and ∀z′ ∈ Uβ.
Let now β1 > 0 sufficiently small and β2 > β1 sufficiently close to β1 such
that we can assume {|x1| < δβ1 , β1 < y1 < β2} × Uβ1 ≡ V0 × Uβ1 ⊆ D \ S
(x1 and z′ can approch zero while y1 can’t, so the set is not too close to S).
Thus, by hypothesis, f ∈ O(V0 × Uβ1).
Next, if we fix z′ ∈ Uβ1 , f(z1, z

′) is continuous on V = {z1 ∈ C/ |x1| <
δβ1 , |y1| < β2} and holomorphic on V except for the smooth curve {z ∈
C/ y1 = φ(x1, z

′)}.
Then, by Morera’s Theorem in C, f(z1, z

′) is holomorphic on V ⊂ C.
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Now we choose a contour of integration Γ in Uβ1 , Γ = Γ2 × · · · × Γn, where
Γ = {zj ∈ C/ |zj| = rj} for j = 2, . . . , n and such that Γ ⊂ Uβ1 .
Now we define F : Cn → C:

F (z1, z
′) =

1

(2πi)n−1

∫
Γ

f(z1, ζ
′)

(ζ2 − z2) · · · (ζn − zn)
dζ2 · · · dζn.

If, for every j = 2, . . . , n, we call Dj = {zj ∈ C/|zj| < rj} and U = D2 ×
· · · × Dn, then F is holomorphic on V × U . More, for (z1, z

′) ∈ V0 × U ,
F (z1, z

′) = f(z1, z
′) (Cauchy Integral Formula for Polydiscs, 2.1.7[1]).

Then, by the Identity Theorem (2.1.10[1]), f is holomorphic on V × U and
that completes the proof.

Without giving the proofs, for whose we refer to 3.2[1], here we state a
generalized version of the Hartogs Theorem.

Lemma 1.1.13. Let M be a hypersurface and r its Ck defining function.
Let f be a CR-function of class Ck on M .
Then f can be extended to a Ck−1 function f̃ in some open neighborhood
on M such that ∂f̃ = 0 on M .

Theorem 1.1.14.
Let D be a bounded domain in Cn, n ≥ 2, with connected C1 boundary. Let
f be a CR-function of class C1 on ∂D.
Then ∀ε > 0 small, f extends holomorphically to a function F ∈ C1−ε(D) ∩
O(D) such that F|∂D = f .

1.2 Levi form and Levi Pseudoconvexity in

Cn

We will now see how a local one-side extension is related to the Levi Form of
the Domain. Then we will define the pseudoconvexity in Cn and we are now
going to state some results. However, since we’ll not use them in the future,
we’ll not provide complete proofs of them, but the proofs are avaiable in 3.3
and 3.4[1].

Definition 1.2.1.
Let D be a bounded domain ⊆ Cn, n ≥ 2, and r its C2 defining function.
Let p ∈ ∂D. The Hermitian form:

Lp(r, t) :=
n∑

j,k=1

∂2r

∂zj∂zk
(p)tjtk,
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defined ∀t = (t1, . . . , tn) ∈ Cn with
∑n

j=1
∂r
∂zj

(p)tj = 0, is called the Levi form

of the function r at the point p.

Observation 1.2.2. The Levi form is independent of the defining function
up to a positive factor.
Then the number of positive or negative eigenvalues of the Levi form is
independet of the choice of the defining function.

Proof. Let ρ be another C2 defining function for D. Then ρ = hr, with
h ∈ C1(∂D), h > 0.
Hence

Lp(ρ, t) =
n∑

j,k=1

∂2ρ

∂zj∂zk
(p)tjtk =

n∑
j,k=1

∂r

∂zj
(p)

∂h

∂zk
(p)tjtk +

n∑
j,k=1

∂h

∂zj
(p)

∂r

∂zk
(p)tjtk + h(p)

n∑
j,k=1

∂2r

∂zj∂zk
(p)tjtk =,

since the first and the second sum are exactly the same,

= h(p)
n∑

j,k=1

∂2r

∂zj∂zk
(p)tjtk = h(p)Lp(r, t).

Notation 1.2.3. For p ∈ ∂D we call

T 1,0
p (∂D) :=

{
t ∈ Cn /

n∑
j=1

∂r

∂zj
(p)tj = 0

}
,

that is the space of (1, 0) vector fields which are tangent to ∂D at p.

Theorem 1.2.4 (Local, one-side, Extension Theorem for CR-functions).
Let M be a hypersurface, p ∈ M , r be a C2 defining function for M in
U ∈ Up. Let Lp(r, t) < 0 for some t ∈ T 1,0

p (M).

Then ∃ U ′ ⊂ U such that ∀f ∈ C2(M ∩U ′), f CR-function, ∃ F ∈ C0(U ′+),
where U ′+ = {z ∈ U ′ / r(z) ≥ 0}, such that{

F|M∩U′ = f

∂F = 0 on U ′+ = {z ∈ U ′ / r(z) > 0}
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Proof. By assuming p = 0 and via three changes of variables near it, we can
write the Taylor expansion of r at 0 as:

r(z1, 0, . . . , 0) =
∂2r

∂z1∂z1

(0)|z1|2 +O(|z1|3).

That will help us define a suitable set U ′ (and then U ′− and U ′+) and, using
lemma 1.1.13, find the right extention.

Observation 1.2.5. If Lp(r, t) has eigenvalues of opposite signs, then f can
be extended holomorfocally to both sides (say F+ and F− respectively) such
that F+|M = F−|M = f . Hence, F+ and F− can be patched together to form
a holomorphic function defined in some open neighborhood of p.

Definition 1.2.6.
Let D be a bounded domain in Cn, n ≥ 2, r ∈ C2 his defining function.

• D is called pseudoconvex, or Levi pseudoconvex, at p ∈ ∂D if:

Lp(r, t) ≥ 0 ∀t ∈ T 1,0(∂D).

• D is strictly (or strongly) pseudoconvex at p if

Lp(r, t) > 0 ∀t ∈ T 1,0(∂D), t 6= 0.

• D is a (strictly) pseudoconvex domain if D is (strictly) pseudoconvex
∀p ∈ ∂D.

Definition 1.2.7.
Let D be an open set in Cn, n ≥ 2. φ : D → [−∞,+∞) is pluriharmonic if

1. φ is upper semicontinuous, i.e., lim sup
z→z0

φ(z) ≤ φ(z0) with z, z0 ∈ D.

2. ∀z ∈ D, ∀w ∈ Cn, whenever {z + τw/ τ ∈ C} ⊂ D, φ(z + τw) is
subharmonic in τ , i.e., φ is continuous and the integral mean inequality
holds.

Theorem 1.2.8 (Characterization theorem).
Let D be a bounded domain in Cn, n ≥ 2.
φ : D → R, φ ∈ C2. φ is (strictly) plurisubharmonic ⇔

n∑
j,k=1

∂2φ

∂zj∂zk
(z)tjtk ≥ 0 (> 0) ∀t ∈ Cn, ∀z ∈ D
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Theorem 1.2.9.
Let D be a bounded strongly pseudoconvex domain in Cn, n ≥ 2 with r ∈ Ck

his defining function, k ≥ 2.
Then there exists a Ck strictly plurisubharmonic defining function for D.

Corollary 1.2.10. Let D be a bounded pseudoconvex domain with C2

boundary in Cn, n ≥ 2.
D is strongly pseudoconvex ⇔ D is locally biholomorphically equivalent to
a strictly convex domain near every boundary point.

1.3 CR-manifolds

In this paragraph we give the definition of CR manifold, that is one of the
main objects that we’ll study in this paper. Once we describe the space, we’ll
be able to work on it and we’ll start doing so with the definition of tangential
CR complex, in the next paragraph.

Definition 1.3.1.
Let M be a real smooth manifold of dimension 2n+ 1, n ≥ 2.
We denote its tangent bundle as

T (M) :=
⋃
x∈M

Tx(M),

where Tx(M) is a tangent space of x ∈M .
Then we also denote its complex tangent bundle as

CT (M) := T (M)⊗R C.

Observation 1.3.2. Since dimRM = 2n+1, then also dimRTp(M) = 2n+1.
Locally we choose a chart, so we can write a basis of Tp(M) as{

∂

∂x1

, . . . ,
∂

∂xn
,
∂

∂y1

, . . . ,
∂

∂yn

}
.

More, we can write

T (M) = {(p,X)/ p ∈M, X ∈ Tp(M)}

and

CT (M) = {(p,X)⊗ a+ (q, Y )⊗ ib/ a, b ∈ R, (p,X), (q, Y ) ∈ T (M)},

whose real-dimension is 4n+ 2 (complex-dimension is 2n+ 1).
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Definition 1.3.3. Let M be a real smooth manifold of dimension 2n + 1,
n ≥ 1, and let T 1,0(M) be a subbundle of CT (M).
Let us take U ⊂M , open. We say that

Γ(U, T 1,0(M))

is the space of all smooth sections of T 1,0(M) over U .

Definition 1.3.4 (Cauchy–Riemann Manifold).
Let M be a real smooth manifold of dimension 2n+1, n ≥ 1 and let T 1,0(M)
be a subbundle of CT (M).
(M,T 1,0(M)) is a Cauchy–Riemann manifold with the CR-structure T 1,0(M)
if:

1. dimCT
1,0(M) = n

2. T 1,0(M) ∩ T 0,1(M) = {0} where T 0,1(M) = T 1,0(M)

3. the integrability condition stands

where the integrability condition says that

∀X1, X2 ∈ Γ(U, T (1,0)(M))⇒ [X1, X2] ∈ Γ(U, T 1,0(M)).

Observation 1.3.5. One can note that in the case n = 1, the third condition
in void.

Example 1.3.6. The most natural CR-manifold are those defined by smooth
hypersurface in Cn.
Let ρ : Cn → R smooth, with dρ 6= 0 on M = {z ∈ Cn/ρ(z) = 0}. Then M
is a smooth manifold with dimR = 2n+ 1.
Take T 1,0(Cn) as a subbundle of CT (Cn); if we define T 1,0(M) := T 1,0(Cn)∩
CT (M), subbundle of CT (M), then (M,T 1,0(M)) is a CR manifold with the
CR structure induced from Cn.

Definition 1.3.7.
Let (M,T 1,0(M)) and (N, T 1,0(N)) be two CR manifolds. Let ϕ : M → N
be a smooth function and ϕ∗ : T 1,0(M)→ T 1,0(N) its pushforward operator.

• We say that ϕ is a CR mapping if ϕ∗L is a smooth section of T 1,0(N)
∀L smooth section of T 1,0(M).

• If ϕ−1 exists and is also a CR mapping, then we say that (M,T 1,0(M))
is CR diffeomorphic to (N, T 1,0(N)).
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Lemma 1.3.8. Let (M,T 1,0(M)) be a CR manifold and N a manifold.
If ϕ : M → N is diffeomorphic, then ϕ induces a CR structure on N :
T 1,0(N) := ϕ∗T

1,0(M).
Therefore ϕ becomes a CR diffeomorphism.

Proof. The first and second point of the definition of CR manifold are easly
satisfied. To check the compatibiliy condition is also easy. Indeed:
if X1, X2 ∈ T 1,0(M), then [X1, X2] ∈ T 1,0(M) and ϕ∗X1, ϕ∗X2 ∈ T 1,0(N).
So [ϕ∗X1, ϕ∗X2] = ϕ∗[X1, X2] ∈ T 1,0(N) by definition of ϕ∗. That proves the
lemma.

Definition 1.3.9.
A smooth function g defined on a CR manifold (M,T 1,0(M)) is called a CR
function if Lg = 0 ∀L smooth sections in T 0,1(M).

1.4 The tangential CR complex, ∂b

We now want to discuss the definition of the tangential CR complex ∂b.
There are two ways to start:

• if M is a hypersurface sitting in Cn+1, ∂b can be defined extrinsically
via the ambient complex structure ∂.

• if M is a CR manifold, we can define ∂b intrinsically without referring
to the ambient space.

1.4.1 Extrinsic approach

Notation 1.4.1. Let M be a smooth hypersurface on Cn+1 and r a defining
function for M .
We take U open neighborhood ofM and Ip,q ideal in Λp,q(Cn+1), 0 ≤ p, q ≤, n,
s.t ∀z ∈ U , the fiber Ip,qz is generated by r and ∂r, i.e., Ip,qz = {rH1+∂r∧H2},
where H1 is a smooth (p, q)-form and H2 a smooth (p, q − 1)-form.

Definition 1.4.2.
As we denote by Λp,q(Cn+1)|M and Ip,q |M the restrictions of Λp,q(Cn+1) and
Ip,q respectively to M , we can define

Λp,q(M) := the orthogonal complement of Ip,q |M in Λp,q(Cn+1)|M

and
Ep,q(M) := space of smooth sections of Λp,q(M) over M
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i.e. Ep,q(M) = Γ(M,Λp,q(M)).
Before heading on, we give another definition that we will use soon enough.
We define a map

τ : Λp,q(Cn+1)→ Λp,q(M)

by restricting a (p, q)-form φ in Cn+1 to M , then projecting the restriction
to Λp,q(M).

Observation 1.4.3.

• Note that, with this definition Λp,q(M) is not intrinsic on M .

• One can also note that Ep,n(M) = {0}.

Definition 1.4.4.
Now we can define the tangential Cauchy–Riemann operator as

∂b : Ep,q(M)→ Ep,q+1(M)

φ 7→ τ∂φ1

where φ1 is a (p, q)-form in Cn+1 such that τφ1 = φ.
So we can write

∂bφ = ∂bτφ1 := τ∂φ1.

Observation 1.4.5. It’s good to note that the definition is indipendent by
the choice of φ1.

Proof. Let φ1, φ2 be (p, q)-forms in Cn+1 such that τφ1 = φ and τφ2 = φ.
Then φ1− φ2 = rg+ ∂r ∧ h, for some (p, q)-form g and (p, q− 1)-form h and
∂(φ1−φ2) = r∂g+∂r∧g−∂r∧∂h. Hence, by the definition of τ , τ∂(φ1−φ2) =
0 and this completes the proof.

Observation 1.4.6. As a final observation we see that the followings hold

• ∂2

b = 0

• 0→ Ep,0(M)
∂b−→ Ep,1(M)

∂b−→ ...
∂b−→ Ep,n−1(M)→ 0

1.4.2 Intrinsic approach

Notation 1.4.7. Let now (M,T 1,0(M)) be an orientable CR manifold with
dimR = 2n + 1, n ≥ 1. Note that a real smooth manifold is said orientable
if there exists a non-vanishing top degree form on it.
Here we assume M to be equipped with a Hermitian metric <,> on CT (M)
such that T 1,0(M) orthogonal to T 0,1(M).
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Definition 1.4.8.
With these notations, we define:

η(M) := orthogonal complement of T 1,0(M)⊕ T 0,1(M).

It comes immediately that η(M) is a line bundle over M .
We also denote:

T 1,0(M)∗ := dual bundle of T 1,0(M)

and
T 0,1(M)∗ := dual bundle of T 0,1(M).

Observation 1.4.9. By definition, it means that forms in T 1,0(M)∗ annihi-
late vectors in T 0,1(M)⊕ η(M).

Definition 1.4.10.
Now, taken 0 ≤ p, q ≤ n, we define

Λp,q(M) := Λp(T 1,0(M)∗)⊗ Λq(T 1,0(M)∗).

Λp,q(M) can be identified with a subbundle of Λp,qC(T (M))∗.

Observation 1.4.11. According to this definition, note that Λp,q(M) is in-
trinsic to M (different from the extrinsic approach).

Definition 1.4.12.
Exactly as in the extrinsic case, we also define

Ep,q(M) := space of smooth sections of Λp,q(M) over M,

i.e. Ep,q(M) = Γ(M,Λp,q(M)).

Definition 1.4.13.
Now we define the tangential Cauchy–Riemann operator ∂b,

∂b : Ep,q(M)→ Ep,q+1(M)

as follows.

• If φ ∈ Ep,0(M), then

< ∂bφ, (V1 ∧ · · · ∧ Vp)⊗ L >= L < φ, V1 ∧ · · · ∧ Vp >

∀ V1, . . . , Vp ∈ T 1,0(M), L ∈ T 0,1(M).
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• Then ∂b is extended to Ep,q(M), q > 0, as a derivation. Namely, if
φ ∈ Ep,q(M), then

< ∂bφ, (V1 ∧ · · · ∧ Vp)⊗ (L1 ∧ · · · ∧ Lq+1) >=

=
1

q + 1

{
q+1∑
j=1

(−1)j+1Lj < φ, (V1 ∧ · · · ∧ Vp)⊗ (L1 ∧ · · · ∧ L̂j ∧ · · · ∧ Lq+1) >

}
+

+
1

q + 1

{∑
i<j

(−1)i+j < φ, (V1 ∧ · · · ∧ Vp)⊗ ([Li, Lj] ∧ L1 ∧ · · · ∧ L̂i · · · ∧ L̂j ∧ · · · ∧ Lq+1) >

}

Observation 1.4.14. If we define the projection

πp,q : Λp,qC(T (M))∗ ↪→ Λp,q(M),

then ∂b = πp,q ◦ d, where d is the exterior derivative of M .

Observation 1.4.15. Again we can say that the followings hold

• ∂2

b = 0

• 0→ Ep,0(M)
∂b−→ Ep,1(M)

∂b−→ ...
∂b−→ Ep,n−1(M)→ 0

Observation 1.4.16. Note that p plays no role in the definition of ∂b. So
it suffices to consider the action of ∂b on (0, q)-forms, 0 ≤ q ≤ n− 1.
As final observation, when (M,T 1,0(M)) is embedded as a smooth hypersur-
face in Cn+1 with the CR structure T 1,0(M) induced from the ambient space,
then ∂b can be defined both ways and the definition are isomorphic.

Observation 1.4.17. We can now consider the inhomogeneous ∂b equation

∂bu = f

where u is a (0, q)-form and f is a (0, q+1)-form. Since ∂
2

b = 0, it’s necessary
that ∂bf = 0, that is called compatibily condition.
This problem is not easy since we change the space from E0,q(M) to E0,q+1(M)
and we have to satisfy the compatibility condition.
We’ll give a solution of this problem in observation 3.3.5.
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1.5 Levi Form and Levi Pseudoconvexity for

CR manifolds

In this paragraph, finally, we will talk about pseudoconvexs CR manifolds.
These are the manifold that can resemble the Heisenberg group, as we will
see in the next chapter.

Notation 1.5.1. Let (M,T 1,0(M)) be an orientable CR manifold with dimRM =
2n+ 1, n ≥ 1.
Let L1, . . . , Ln be a local basis for smooth sections of T 1,0(M) over U ⊂ M ,
U open. Then L1, . . . , Ln is a local basis for T 0,1(M) over U .
We now choose a local section T of CT (M) such that L1, . . . , Ln, L1, . . . , Ln, T
span CT (M) over U (we assume T is purely immaginary).
Then we can write CT (M) =< L1, . . . , Ln, L1, . . . , Ln, T >.

Definition 1.5.2.
We say that the Hermitian matrix (cij)i,j=1,...,n defined by the condition

[Li, Li] = cijT mod T 1,0(M)⊕ T 0,1(M)

is called the Levi form associated with the given CR structure.

Observation 1.5.3. Chosen p ∈ M and a system of local coordinates
∂
∂z1
, . . . , ∂

∂zn
, note that cij(p) = cp(

∂
∂zi
, ∂
∂zj

) where cp is an Hermitian inner

product in T 1,0
p (M).

Observation 1.5.4. The number of not-zero eigenvalues and |sign(cij)i,j|
(absolute value of the signature of the matrix) are independent of the choice
of L1, . . . , Ln, L1, . . . , Ln and T .
Then, after eventually changing T to −T , it makes sense to consider whether
(cij)i,j is positive definite.

Definition 1.5.5.

• The CR structure is called (strictly) pseudoconvex at p ∈ M if the
matrix (cij(p))i,j is positive (definite) semidefinite after an appropiate
choice of T .

• If the CR structure is (strictly) pseudoconvex at every point of M , then
M is called a (strictly) pseudoconvex CR manifold.

• If the Levi form vanishes completely on an open set U ⊂M , i.e. cij = 0
on U for 1 ≤ i, j ≤ n, then M is called Levi flat.
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Theorem 1.5.6.
Let D ⊂ Cn+1, n ≥ 1, a bounded domain with C∞ boundary.

Then

• D is (strictly) pseudoconvex ⇔ M := ∂D is a (strictly) pseudoconvex
CR manifold.

• locally, a CR manifold in Cn+1 is pseudoconvex ⇔ it is the boundary
of a smooth pseudoconvex domain from one side.

Proof. Let r be a defining funcion for D and p ∈ ∂D. We can assume
∂r
∂zn

(p) 6= 0, hence we define

Lk :=
∂r

∂zn

∂

∂zk
− ∂r

∂zk

∂

∂zn
, for k = 1, . . . , n

Then L1, . . . , Ln is a local basis for the tangential (1, 0) vector fields near p
on the boundary.
If now

L =
n+1∑
j=1

aj
∂

∂zj

is another tangential (1, 0) vector fields near p, then

L(r) =
n+1∑
j=1

aj
∂r

∂zj
= 0.

We can rewrite it as

n∑
j=1

aj
∂r

∂zj
= −an+1

∂r

∂zn+1

. (∗)

Moreover, we can easily see that

L =

(
∂r

∂zn+1

) n∑
j=1

ajLj;

it is done writing down this expression and using the previous equality in
this form .
Now we set η = ∂r − ∂r =

∑n
j=1( ∂r

∂zj
− ∂r

∂zj
) and we compute:

n∑
i,j=1

cijaiaj =
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using the definition of cij given in 1.5.2,

=
n∑

i,j=1

< η, [Li, Lj] > aiaj =

=
n∑

i,j=1

(Li < η,Lj > −Lj < η,Li > −2 < dη, Li ∧ Lj >)aiaj =

since the first two terms cancel

=
n∑

i,j=1

4 < ∂∂r, Li ∧ Lj > aiaj =

and by (∗)

= 4

∣∣∣∣ ∂r

∂zn+1

∣∣∣∣2 < ∂∂r, L ∧ L >= 4

∣∣∣∣ ∂r

∂zn+1

∣∣∣∣2 n+1∑
i,j=1

∂2r

∂zi∂zj
aiaj.

Finally, looking at the two definitions, it’s now clear that one implies the
other.

We complete now this section with the next Corollary.

Corollary 1.5.7. Any compact strongly pseudoconvex CR manifold (M,T 1,0(M))
is orientable.

Proof. Let L1, . . . , Ln, T (T chosen such that the Levi form is positive defi-
nite) defined as above and let the dual one forms be ω1, . . . , ωn, η. Then we
consider the 2n+ 1 form η ∧ ω1 ∧ · · · ∧ ωn ∧ ω1 ∧ · · · ∧ ωn.
Note that, if we change basis, the form will differ only by a positive function.
Now a partion of unity argument will give the desired not-vanishing 2n + 1
form on M. That proves the lemma.



Chapter 2

The Heisenberg Group Hn

Goal. In this capther we are going to present the Heisenberg group, that is
the main example of speudoconvex CR manifolds. The ideas, the methods
and the results here used will be useful to understand the behaviour of the
more general speudoconvex CR manifolds.

2.1 Definition and Lie structure of Hn

2.1.1 Definition of Hn

Definition 2.1.1.
We define the Heisenberg Group, Hn, as

Hn := (Cn × R, ∗)

where ∗ is the following product:

(z, t) ∗ (z′, t′) := (z + z′, t+ t′ + 2Im(zz′))

and where zz =
∑n

j=1 zjzj.
If we write z = x + iy and z′ = x′ + iy′ ∈ Cn, it comes immediately that
zz = (x+iy)(x′+iy′) = xx′+yy′−i(xy′−x′y) and so Im(zz′) = −(xy′−x′y).
Then we can rewrite the product as

(z, t) ∗ (z′, t′) = (z + z′, t+ t′ − 2(xy′ − x′y))

Again, if we identify Cn×R = R2n×R and write the product just with real
variables, we get

(x, y, t) ∗ (x′, y′, t′) = (x+ x′, y + y′, t+ t′ − 2(xy′ − x′y)).

25
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Observation 2.1.2. We can easily see that

• Hn is a non-commutative group.

• The neutral element is (0, 0).

• The inverse of (z, t) is (−z,−t).

• The center of the group, namely the elements that commute with all
the elements of the group, is {(0, t) ∈ Cn × R}.

Proof. With an easy computation, we’ll just prove the third and fourth state-
ments.
For the third one we have,

(z, t)(−z,−t) = (z − z, t− t+ 2Im(z(−z))) = 0

because

z(−z) = (x+iy)(−x− iy) = (x+iy)(−x+iy) = −x2−y2+i(xy−xy) = −x2−y2.

On the other hand

(−z,−t)(z, t) = (−z + z,−t+ t+ 2Im(−zz)) = 0,

so (−z,−t) is the inverse of (z, t).
For the last one, let (z0, t0) be in the center of the group. ∀(z, t) ∈ Hn:

(z, t)(z0, t0) = (z0, t0)(z, t)⇔ xy0 − x0y = x0y − xy0 ⇔ 2xy0 = 2x0y ⇔

⇔ xy0 = x0y ⇔ y0 = x0 = 0

since (z, t) is generic. Then the center of the group is exactly the set of
elements of this type: (0, t) ∈ Cn × R. And the proof is complete.

Definition 2.1.3.
On Hn there exists two different groups of automorphisms.

• The first one is the group of the anisotropic dilatations δr, with r ∈ R+.

δr : Hn → Hn

(x, y, t) 7→ (rx, ry, r2t)

These functions form a 1- parameter subgroup of the set of automor-
phisms Aut(Hn). They will play a fundamental role in the study of CR
analysis.
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• The second one is the sympletic group Sp(2n,R), the group of linear
maps that preserve the sympletic form ω((x, y), (x′, y′)) := xy′ − x′y,
i.e.,

∀A ∈ Sp(2n,R), ω(A(x, y), A(x′, y′)) = ω((x, y), (x′, y′)).

Observation 2.1.4. First we note that, if we write (x, y) = z and (x′, y′) =
z′, then ω((x, y), (x′, y′)) = xy′ − x′y = Im(zz′).
If now, with an abuse of notation, we set A(x, y, t) := (A(x, y), t), then we
have A((x, y, t) ∗ (x′, y′, t′)) = A(x, y, t) · A(x′, y′, t′) ∈ Cn × R.

Proof.

A((x, y, t) ∗ (x′, y′, t′)) = A(x+ x′, y + y′, t+ t′ − 2(xy′ − x′y)) =

by definition

= (A(x+x′, y+y′), t+t′−2(xy′−x′y)) = (A(x, y)+A(x′, y′), t+t′−2(xy′−x′y)) =

by hypothesis

= (A(x, y) + A(x′, y′), t+ t′ − 2ω(A(x, y), A(x′, y′))) =

calling A(x, y) = z and A(x′, y′) = z′

= (z + z′, t+ t′ − 2ω(z, z′)) = (z + z′, t+ t′ + 2Im(zz′)) =

= (z, t) ∗ (z′, t′) = (A(x, y), t) ∗ (A(x′, y′), t′) = A(x, y, t) · A(x′, y′, t′)

2.1.2 Lie structure of Hn

We will now show that the Heisenberg group is, in fact, a Lie group; this will
lead to important conseguences in the study of its structure.

Recall 2.1.5. G ≡ (G, ∗) is a Lie Group if

• G is a differentiable manifold,

• g1, g2 7→ g1 ∗ g2 = g1g2 is differentiable,

• g1 7→ g−1
1 is differentiable.
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In this case, ∀g, g′ ∈ G the left-invariant operator τg is the operator such
that

τg : C∞(G)→ C
τg(f)(g′) := f(g−1g′).

Then we also have the following property: τg2τg1 = τg2g1 .

Proof.

τg2(τg1(f))(g) = τg1(f)(g−1
2 g) = f(g−1

1 g−1
2 g) = f((g2g1)−1g) = τg2g1(f)(g)

Definition 2.1.6.
It will be useful only later, but we can already give the definition of right-

invariant operator τ g, g ∈ G, in the same way:

τ g : C∞(G)→ C
τ g(f)(g′) := f(g′g−1).

And we also introduce the reflection operator J as

J : C∞(G)→ C
J(f)(g) = f(g−1).

Definition 2.1.7.
We say that a vector field X on a Lie group G is left-invariant if X commutes
with τg, i.e.,

∀f ∈ C∞(G), ∀g, g′ ∈ G, we have X(τg(f))(g′) = τg(X(f))(g′)

Definition 2.1.8.
Now we are ready to define a basis {X1, . . . , Xn, Y1, . . . , Yn, T} for the tangent
space T (Hn) of left invariant vector fields so that it is
{∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn , ∂t} at the origin.
We define it as: 

Xj = ∂xj + 2yj∂t for j = 1, . . . , n

Yj = ∂yj − 2xj∂t for j = 1, . . . , n

T = ∂t
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Observation 2.1.9. This definition is made so that the following property
is true ∀(x, y, t) ∈ Hn:

Xjf(x, y, t) = τ(x,y,t)−1(Xjf)(0, 0, 0) for j = 1, . . . , n

Yjf(x, y, t) = τ(x,y,t)−1(Yjf)(0, 0, 0) for j = 1, . . . , n

Tf(x, y, t) = τ(x,y,t)−1(Tf)(0, 0, 0)

Proof. ∀j = 1, . . . , n. Since Xj is left invariant:

τ(x,y,t)−1(Xjf)(0, 0, 0) = Xj(τ(x,y,t)−1f)(0, 0, 0) = Xj(f((x, y, t)∗(x′, y′, t′)))|(z′,t′)=0
=

Note that here (x′, y′, t′) = z′ are temporary variables. By definition of Xj

at the origin

= ∂x′j(f((x, y, t)∗(x′, y′, t′)))|(z′,t′)=0
= ∂x′j(f(x+x′, y+y′, t+t′−2(xy′−yx′)))|(z′,t′)=0

=

∂xj(f(. . . ))|(z′,t′)=0
+ 2y∂t(f(. . . ))|(z′,t′)=0

= ∂xj(f(x, y, t)) + 2y∂t(f(x, y, t))

Repeating the same argument for Yj and T completes the proof.

Observation 2.1.10. The only non-trivial commutators of the vector fields
Xj, Yj and T are

[Xj, Yj] = −4T for j = 1, . . . , n.

This immediately tells us that all the higher-order commutators are zero.

Proof. ∀j = 1, . . . , n

[Xj, Yj] = [∂xj + 2yj∂t, ∂yj − 2xj∂t] = [∂xj , ∂yj ]− 2[∂xj , xj∂t] + 2[yj∂t, ∂yj ]+

−4[yj∂t, xj∂t] = ∂xjyj − ∂yjxj − 2∂xj(xj∂t) + 2xj∂txj + 2yj∂tyj − 2∂yj(yj∂t)+

−4yj∂t(xj∂t) + 4xj∂t(yj∂t) =

cancelling the two terms at the beginning and at the end of the line,

= −2∂t − 2xj∂xjt + 2xj∂txj + 2yj∂tyj − 2∂t − 2yj∂yjt = −4∂t = −4T.

Proposition 2.1.11.
If we look at the complexified tangent bundle, CT (Hn), it’s easy to prove
that we can obtain a basis of left-invariant vector fields:

{Z1, . . . , Zn, Z1, . . . , Zn, T}

where Zj := 1
2
(Xj − iYj) and Zj := 1

2
(Xj + iYj).

If we want to compute them exactly, we find:

Zj = ∂zj + izj∂t and Zj = ∂zj − izj∂t
where zj = xj + iyj ∈ C.
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Observation 2.1.12. In this case the only non-trivial commutators of these
vector fields are

[Zj, Zj] = −2iT for j = 1, . . . , n.

And the proof is the same of observation 2.1.10.

Proposition 2.1.13.
Let us name L := span{Z1, . . . , Zn} =< {Z1, . . . , Zn} >. L is a subbundle
of CT (Hn).
Then (Hn,L) is a (strongly pseudoconvex) CR manifold of CR dimension n.

Proof. In order to prove that (Hn,L) is a CR manifold, we should satisfy the
three conditions of definition 1.3.4.

1. dimCL = 1
2
(dimCHn + 1) = 1

2
(2n) = n

2. L ∩ L = {0} where L =< {Z1, . . . , Zn} >

3. [Zi, Zj] = 0 ∀i, j = 1, . . . , n.

Finally, to prove that Hn is strongly pseudoconvex, it will be enough to use
theorem 1.5.6 and prove that the Siegel Upper-Half space, that we will define
soon, is a strongly pseudoconvex domain. We will prove it in proposition
2.2.8.

Definition 2.1.14.
Let us now endow the tangent bundle T (Hn) with a scalar multiple of the
standard inner product in R2n+1:

< V, V ′ >:= c
2n+1∑
j=1

VjV
′
j for j = 1, . . . , n

with c chosen such that {Z1, . . . , Zn, Z1, . . . , Zn, T} is an orthonormal basis
in CT (Hn).

Observation 2.1.15. With this product we can define a norm in the obvious
sense and we have that

|Zj| :=< Zj, Zj >= 1 and |Xj| = |Yj| =
√

2

for j=1,. . . ,n.
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Observation 2.1.16. The vector fields {X1, . . . , Xn, Y1, . . . , Yn} (as well as
{Z1, . . . , Zn, Z1, . . . , Zn}) are homogeneous of order 1 with respect to the
dilatation δr, r ∈ R+, i.e.,

V (f ◦ δr) = rV (f) ◦ δr

for V any of the vector fields above.
On the other hand, the vector field T is homogeneous of order 2:

T (f ◦ δr) = r2T (f) ◦ δr.

Definition 2.1.17.
We now define T (Hn)∗ as the dual bundle of T (Hn), which inherits an inner
product from the one in T (Hn).

Proposition 2.1.18.
For T (Hn)∗ we need a dual basis of 1-forms {ω1, . . . , ω2n+1}, i.e., we ask

< ωj, Vk >= δjk

for Vk an element of the basis and for j, k = 1, . . . , n.
Then it comes that the dual basis of {Z1, . . . , Zn, Z1, . . . , Zn, T} is given by

{dz1, . . . , dzn, dz1, . . . , dzn, θ}

where

θ = dt+ i
n∑
j=1

(zjdzj − zjdzj) = dt+ 2
n∑
j=1

(xjdyj − yjdxj).

2.2 Siegel Upper-Half Space

Now that we know the Heisenberg group, we will see that it can be obtained
as an embedded CR manifold in Cn+1; more precisely, as the bound of a
domain.

Definition 2.2.1.
Let Un+1 be the Siegel upper-half space:

Un+1 :=
{

(z, w) ∈ Cn × C/ Imw > |z|2
}

If we define ρ(z, w) = Imw − |z|2 (that is called his defining function), then

Un+1 = {(z, w) ∈ Cn × C/ ρ(z, w) > 0}
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Observation 2.2.2. We can note that Un+1 is biholomorphic to the unit
ball in Cn+1 via the Caley transform:

C : Bn+1 → Un+1

C(z, w) =

(
z

1− w
, i

1 + w

1− w

)
Notation 2.2.3. We can now consider the boundary of the Siegel upper-half
space, ∂Un+1:

∂Un+1 =
{

(z, w) ∈ Cn × C/ Imw = |z|2
}

= {(z, w) ∈ Cn × C/ ρ(z, w) = 0}

Definition 2.2.4.
In order to study ∂Un+1, we want to parametrize it. We write its elements
as [z, t] ∈ Cn × R, [z, t] = (z, t+ i|z|2).
For every point on the boundary, (z′, t′ + i|z′|2) ∈ ∂Un+1, we can also define
a function:

F(z′,t′+i|z′|2) : Un+1 → Un+1

F(z′,t′+i|z′|2)(z, w) :=
(
z + z′, w + t′ + i|z′|2 + 2iz · z′

)
where z · z′ =

∑n
j=1 zj · z′j.

The function F(z′,t′+i|z′|2) is a biholomorphic map.

Observation 2.2.5. We can parametrize the points in Un+1 as:

(z, t+ i|z|2 + ih)

where h ≥ 0.
Note that the following identity holds:

h = ρ(z, t+ i|z|2 + ih).

At this point we can say that F(z′,t′+i|z|2)(z, w) preserve ρ in the following
way:

ρ
(
F(z′,t′+i|z′|2)(z, t+ i|z|2 + ih)

)
= h = ρ(z, t+ i|z|2 + ih)

Proof. First we prove that h = ρ(z, t+ i|z|2 + ih) is true. Indeed

ρ(z, t+ i|z|2 + ih) = Im(t+ i|z|2 + ih)− |z|2 = |z|2 + h− |z|2 = h.

For the second equality:

ρ
(
F(z′,t′+i|z′|2)(z, t+ i|z|2 + ih)

)
= ρ(z+z′, t+ i|z|2 + ih+ t′+ i|z′|2 +2izz′) =

= |z|2 + h+ |z′|2 + 2Re(zz′)− |z + z′|2 = h.
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Definition 2.2.6.
Finally we can define a product on ∂Un+1 using the function F(z′,t′+i|z|2):

[z′, t′] ∗ [z, t] := F(z′,t′+i|z′|2)(z, t+ i|z|2)

Proposition 2.2.7.
The previous product can be written as

[z′, t′] ∗ [z, t] = [z + z′, t+ t′ + 2Im(zz′)]

That shows us that we re-obtained the Heisenberg group and it is (∂Un+1, ∗)
Now that we know this fact, we leave the notation “[z, t]” and we will use
only the notation “(z, t)” of definition 2.1.1.

Proof. First we recall

|z + z′|2 = |z|2 + |z′|2 + 2Re(zz′) and zz′ = Re(zz′) + iIm(zz′).

Then

i|z|2 + i|z′|2 + 2izz′ = i|z + z′|2 − 2iRe(zz′) + 2izz′ = i|z + z′|2 − 2Im(zz′).

Now

[z′, t′]∗ [z, t] = F(z′,t′+i|z′|2)(z, t+ i|z|2) = (z+ z′, t+ i|z|2 + t′+ i|z′|2 + 2izz′) =

=
(
z + z′, t+ t′ + i|z + z′|2 − 2Im(zz′)

)
=

since Im
(
zz′
)

= −Im
(
zz′
)

= −Im (z′z)

= [z + z′, t+ t′ + 2Im(z′z)]

Now that we proved this, we have to cancel the debt of proposition 2.1.13,
so:

Proposition 2.2.8.
We will now prove that Un+1 is a strictly pseudoconvex domain.
Then, from theorem 1.5.6, it comes that Hn = ∂Un+1 is a strongly pseudo-
convex CR manifold. So the debt is paid.
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Proof. We know that the defining function of Un+1 is ρ(z, w) = Imw − |z|2,
with (z, w) ∈ Cn×C. Just for the time of this proof, we’ll change the notation
and write

ρ(z) = ρ(z̃, zn+1) = Imzn+1 − |z̃|2,

with z = (z̃, zn+1) ∈ Cn × C.
Recalling definition 1.2.1, can calculate the double derivatives of ρ.
For k = n+ 1,

∂ρ

∂zn+1

=
∂Imzn+1

∂zn+1

− ∂|z̃|2

∂zn+1

=
∂Imzn+1

∂zn+1

=
1

2

(
∂yn+1

∂xn+1

+ i
∂yn+1

∂yn+1

)
=
i

2

Then, ∀j = 1, . . . , n+ 1, we get:

∂2ρ

∂zj∂zn+1

= 0

Now, for k 6= n+ 1,

∂ρ

∂zk
=
∂Imzn+1

∂zk
− ∂|z̃|2

∂zk
= −∂|z̃|

2

∂zk
= −∂(|z1|2 + . . .+ |zn|2)

∂zk
=

= −∂(z1z1 + . . .+ znzn)

∂zk
= zk

Then ∀j = 1, . . . , n+ 1; j 6= k,

∂2ρ

∂zj∂zk
= 0

and
∂2ρ

∂zk∂zk
= 1 > 0.

So the proof is complete.

2.3 Integration on Hn

Here we want to add information on Hn giving definitions about norm, metric,
topology, measure, integrals. We’ll use them starting chapter 3.

Definition 2.3.1.
We define a homogeneous norm on Hn by setting

|(z, t)| :=
(
(|z|4 + t2

) 1
4
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with (z, t) ∈ Cn × R. We can write it as

|(x, y, t)| =
(
(x2 + y2)2 + t2

) 1
4

with (x, y, t) ∈ Rn × Rn × R.

Observation 2.3.2. This norm satisfies the following properties:

1. |(z, t)| ≤ 0, |(z, t)| = 0⇔ (z, t) = 0

2. |(z, t) ∗ (z′, t′)| ≤ |(z, t)|+ |(z′, t′)|

3. δr (|(z, t)|) = r|(z, t)|
Namely, the norm is homogeneous of degree 1 w.r.t. δr.

where δr has been defined in 2.1.3.

Observation 2.3.3. During this study, while we almost always use the ho-
mogeneous norm, we shall occasionally use the euclidean norm

||u|| = ||(x, y, t)|| = (|x|2 + |y|2 + t2)
1
2 .

When we do, we also shall denote the vector addition by +.
We can write down the following obvious inequality:

||u|| ≤ |u| ≤ ||u||
1
2 when |u| ≤ 1.

Observation 2.3.4. [Triangle inequality]
There exists a constant c ≥ 1 such that, ∀u, v ∈ Hn,

|u+ v| ≤ c(|u|+ |v|)

Proof. By homogeneity, we may assume that |u| + |v| = 1. Then the set of
pairs (u, v) ∈ Hn ×Hn satisfying this equation is compact, so we can take c
to be the larger of the maximums values of |u+ v| on this set.

Observation 2.3.5. We also notice that the topology induced by the metric

d ((z, t), (z′, t′)) :=
∣∣(z, t) ∗ (z′, t′)−1

∣∣ = |(x− x′, y − y′, t− t′ + 2(xy′ − x′y))|

is equivalent to the Euclidean topology on R2n × R.
Hn becomes, then, a locally compact topological group. As such, it has the
right-invariant and the left-invariant Haar measure.

Recall 2.3.6. We call a measure µ the right-invariant or left-invariant Haar
measure, on a locally compact Hausdorff topological groupG, if the followings
are satisfied:
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• µ is left-invariant: µ(gE) = µ(E) ∀E ⊆ G, g ∈ G, gE = {ga/ a ∈ E}
or
µ is right-invariant: µ(Eg) = µ(E) ∀E ⊆ G, g ∈ G, Eg = {ag/ a ∈ E}

• µ(K) <∞ ∀K ⊂⊂ G

• µ is outer regular: µ(E) = inf{µ(U)/ E ⊆ U ⊆ G,U open} ∀E ⊆ G

• µ is inner regular: µ(E) = sup{µ(U)/ K ⊆ E ⊆ G,K compact} ∀E ⊆
G

Proposition 2.3.7.
The ordinary Lebesgue measure on R2n+1 is invariant under both left and
right translations on Hn. In other words, the Lebesgue measure is both a left
and right invariant Haar measure on Hn.

Proof. For the right translation:∫
Hn
f ((x, y, t)(x′, y′, t′)) dxdydt =

=

∫
Hn
f (x+ x′, y + y′, t+ t′ − 2(xy′ − x′y)) dxdydt =

by the obvious change of variables, we have that the Jacobian is equal to∣∣∣∣∣∣
1 0 −2y′

0 1 2x′

0 0 1

∣∣∣∣∣∣ = 1,

then

=

∫
Hn
f(x, y, t)dxdydt.

Observation 2.3.8. It’s easy to see that, denoting

B(0, r) := {(z, t) ∈ Hn/ |(z, t)| < r}

the ball of radius r > 0, we have

|B(0, r)| =
∫
B(0,r)

dxdydt = r2n+2

∫
B(0,1)

dxdydt = r2n+2|B(0, 1)|.

2n+ 2 is called the homogeneous dimension of Hn.
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Observation 2.3.9. Since < dxj, dxj >=< dyj, dyj >= 1
2

for j = 1, . . . , n,
the volume element is

dV =
1

2n
dxdydt = 2−ndxdydt.

Definition 2.3.10.
Given f, g ∈ L1(Hn), we also define the convolution f ∗ g as

f ∗ g(x, y, t) :=

∫
Hn
f(x, y, t)g((x, y, t)−1(x′, y′, t′))dx′dy′dt′

Observation 2.3.11. The following property is easy to check:

f ∗ g(x, y, t) =

∫
Hn
f(x, y, t)g((x, y, t)−1(x′, y′, t′))dx′dy′dt′ =

=

∫
Hn
f((x, y, t)(x′, y′, t′)−1)g(x′, y′, t′)dx′dy′dt′ =

=

∫
Hn
f(x− x′, y − y′, t− t′ − 2(xy′ − x′y))g(x′, y′, t′)dx′dy′dt′.

Observation 2.3.12. If we set ǧ(x, y, t) := g((x, y, t)−1), we can also prove
that∫

Hn
(f ∗ g)(x, y, t)h(x, y, t)dxdydt =

∫
Hn
f(x, y, t)(h ∗ ǧ)(x, y, t)dxdydt

provided that both sides make sense.

2.4 CR operators on Hn

We are now going to define the operators we will work with in the future:
the tangent complex ∂b, its formal adjoint ∂

∗
b , the Kohn Laplacian 2b,q and

the operator Lα.

2.4.1 The tangential CR complex ∂b on Hn and its for-
mal adjoint ∂

∗
b

Notation 2.4.1. We denote:

• dzI := dzi1 ∧ · · · ∧ dziq a (0, q)-form, where I = (i1, . . . , iq) is a strictly
increasing multi-index.
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•
∑′

I the summation restricted to strictly increasing multi-indices.

• C∞(0,q)(Hn), L2
(0,q)(Hn), . . . the spaces of (0, q)-forms with coefficients

smooth, L2, etc.

Definition 2.4.2.
Now we remind that {Z1, . . . Zn, Z1, . . . Zn, T} is an orthonormal basis of

CT (Hn) and we take a (0, q)-form φ =
∑′

|I|=q φIdz
I , φI ∈ C∞(Hn). We

define the tangential CR complex ∂b on Hn as:

∂bφ :=
′∑

|I|=q

n∑
k=1

Zk(φI)dzk ∧ dzI

Observation 2.4.3. We can rewrite it as

∂bφ =
′∑

|J |=q+1

 ′∑
k=1,...,n
|I|=q

εJkIZk(φI)

 dzJ

where

εJkI =


0, if J 6= {k} ∪ I
parity of the permutation that rearranges (k, i1, . . . , iq)

in increasing order, if J = {k} ∪ I.

Definition 2.4.4.
Let now dzdt denote the left-invariant Haar measure on Hn defined in recall

2.3.6. On the space L2
(0,q)(Hn) we consider the inner product:

< φ,ψ >L2
(0,q)

=

∫
Hn

(φ(z, t), ψ(z, t))dzdt, φ, ψ ∈ L2
(0,q)(Hn)

This is, in fact, the integral of the inner product

(φ(z, t), ψ(z, t)) =
∑
|I|=q

(
φI(z, t)ψI(z, t)

)
.

Definition 2.4.5.
Take a (0, q)-form φ =

∑′

|I|=q φIdz
I , φI ∈ C∞(Hn) and g a (0, q − 1)-form

g =
∑′

|J |=q−1 gJdz
J and gJ ∈ C∞0 (Hn).

The formal adjoint ∂
∗
b of ∂b is defined as the operator such that

< ∂
∗
bφ, g >=< φ, ∂bg > .
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Proposition 2.4.6.
We can actually compute ∂

∗
b and find that, for a (0, q)-form φ =

∑′

|I|=q φIdz
I ,

φI ∈ C∞(Hn), we get:

∂
∗
b(φ) = ∂

∗
b

 ′∑
|I|=q

φIdz
I

 =

′∑
|J |=q−1

−
′∑

k=1,...,n
|I|=q

εIkJZk(φI)

 dzJ

Proof. With a (0, q)-form φ =
∑′

|I|=q φIdz
I , φI ∈ C∞(Hn) and g a (0, q− 1)-

form g =
∑′

|J ′|=q−1 gJ ′dz
J ′ and gJ ′ ∈ C∞0 (Hn), we get:

< ∂
∗
bφ, g >=< φ, ∂bg >=<

′∑
|I|=q

φIdz
I ,

′∑
|J |=q

 ′∑
k=1,...,n
|J ′|=q−1

εJkJ ′Zk(gJ ′)

 dzJ >=

computing the inner product

=

′∑
|I|=q

∫
Hn
φI

 ′∑
k=1,...,n |J ′|=q−1

εIkJ ′Zk(gJ ′)

dzdt
 =

=

′∑
|I|=q

 ′∑
k=1,...,n |J ′|=q−1

εIkJ ′

∫
Hn
φIZk(gJ ′)dzdt

 =

integrating by parts

=

′∑
|I|=q

 ′∑
k=1,...,n |J ′|=q−1

εIkJ ′

∫
Hn
−(ZkφI)gJ ′dzdt

 =

=

′∑
|J ′|=q−1

∫
Hn

− ′∑
k=1,...,n|I|=q

εIkJ ′ZkφI

 gJ ′dzdt

 =

=<

′∑
|J |=q−1

 ′∑
k=1,...,n
|I|=q

εIkJZkφI

 dzJ ,

′∑
|J ′|=q−1

gJ ′dz
J ′ >=
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=<

′∑
|J |=q−1

 ′∑
k=1,...,n
|I|=q

εIkJZkφI

 dzJ , g >

And the proof is complete.

2.4.2 The operator 2b,q and the operators Lα
Definition 2.4.7.
We can finally define the equivalent of the laplacian for the Heisenberg group,
the Kohn Laplacian for (0, q)-forms:

2b,q := ∂b∂
∗
b + ∂

∗
b∂b.

In order to study the Kohn Laplacian, it will be very useful to define imme-
diately another operator:

Lα := −1

2

n∑
k=1

(ZkZk + ZkZk) + iαT

for α ∈ C.

Proposition 2.4.8.
With respect to the fixed orthonormal basis {dz1, . . . , dzn, dz1, . . . , dzn, θ}
on CT (Hn)∗ (see proposition 2.1.18) and given φ =

∑′

|I|=q φIdz
I a smooth

(0, q)-form, the operator 2b,q is given by

2b,q(φ) =
′∑

|I|=q

Ln−2qφIdz
I

Observation 2.4.9. 2b,q is diagonal on the space of (0, q)-forms with respect
to the basis {dzI}.

2b,q

fi1...
fin

 =

Ln−2qfi1
...

Ln−2qfin


i.e.

2b,q =

Ln−2q

. . .

Ln−2q

 = Ln−2qI
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Proof. We now prove the proposition.
Take f =

∑′

|K|=q fKdz
K , fK ∈ C∞(Hn) a (0, q)-form. From proposition 2.4.6

we get:

∂b(∂
∗
bf) = ∂b

∂∗b
 ′∑
|K|=q

fKdz
K

 = ∂b

 ′∑
|J |=q−1

− ′∑
k=1,...,n|K|=q

εKkJZkfK

 dzJ

 =

using observation 2.4.3 for a (0, q−1)-form (and with different names for the
indices)

=
′∑

|L|=q

 ′∑
l=1,...,n
|J |=q−1

εLlJZ l

− ′∑
k=1,...,n|K|=q

εKkJZkfK


 dzL =

= −
′∑

|L|=q

 ′∑
k=1,...,n |K|=q
l=1,...,n |J |=q−1

εKkJε
L
lJZ l (ZkfK)

 dzL

On the other hand, using 2.4.3 and then 2.4.6 again,

∂
∗
b(∂bf) = ∂

∗
b

 ′∑
|H|=q+1

 ′∑
j=1,...,n|K|=q

εHjKZj(fK)

 dzH

 =

= −
′∑

|L|=q

 ′∑
j=1,...,n |K|=q
i=1,...,n |H|=q+1

εHjKε
H
iLZi

(
ZjfK

) dzL

Hence

2b,qf = ∂b∂
∗
bf + ∂

∗
b∂bf =

= −
′∑

|L|=q

′∑
|K|=q

 ′∑
l, k, |J |=q−1

εKkJε
L
lJZ lZk +

′∑
i, j, |H|=q+1

εHjKε
H
iLZiZj

 fKdz
L =

and we write it as

= −
′∑

|L|=q

′∑
|K|=q

(−2LK) fKdz
L =

′∑
|L|=q

′∑
|K|=q

(2LK) fKdz
L.
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Then we need to evaluate

2LK = −

 ′∑
l, k, |J |=q−1

εKkJε
L
lJZ lZk +

′∑
i, j, |H|=q+1

εHjKε
H
iLZiZj

 .

We defined the coefficient ε’s in observation 2.4.3. We remind

εKkJε
L
lJ 6= 0⇔ K = {k} ∪ J and L = {l} ∪ J

and that |J | = q − 1, |K| = |L| = q.
Moreover,

εHjKε
H
iL 6= 0⇔ H = {j} ∪K and H = {i} ∪ L

and |H| = q + 1.

Step I
Let’s consider for a second what happens when εKkJε

L
lJ 6= 0 and εHjKε

H
iL 6= 0.

In this case we can say that

K = L⇔ k = l, i = j.

Indeed, if K = L, then εKkJ 6= 0 forces K = {k} ∪ J and εLlJ 6= 0 forces
L = {k} ∪ J . Thus k = l.
In the same way εHjK 6= 0 and εHiL 6= 0 force H = {j} ∪K and H = {i} ∪ L.
Hence i = j.
The reverse arrow is absolutely trivial.

Step II
First we suppose K = L. By hypothesis we know that, when the coefficient
ε’s are not zero, than we know k = l, i = j.
We also observe that εKkJε

K
kJ = 1 and εHjKε

H
jK = 1. So we can write:

2KK = −

 ′∑
k∈L

ZkZk +
′∑

j /∈L

ZjZj

 =

using the same index k

= −1

2

n∑
k=1

(
ZkZk + ZkZk

)
− 1

2

(
′∑

k∈L

[Zk, Zk] +
′∑

k/∈L

[Zk, Zk]

)
=

using [Zk, Zk] = −2iT

= −1

2

n∑
k=1

(
ZkZk + ZkZk

)
− 1

2
(2iqT − 2i(n− q)T ) =



2.4 CR operators on Hn 43

= −1

2

n∑
k=1

(
ZkZk + ZkZk

)
+ i(n− 2q)T = Ln−2q

This proves the statement for the terms along the diagonal.

Step III
Therfore we are left to prove that the remaining off-diagonals terms are all
zero. In order to do so, we suppose K 6= L.
Again, when at least some coefficient ε’s are not zero, we know something:
k 6= l and j 6= i but still {k, j} = {l, i}. So k = i and l = j. Also, it tells us
that |K ∩ L| = q − 1.

Indeed, if |K ∩ L| = q, then K = L, that is impossible here. And
|K ∩ L| < q − 1 is also impossible because K and L have J in common and
|J | = q − 1.
Notice that, given K and L, J , k and l are uniquely determined.
Hence

2LK = −
′∑

l, k, |J |=q−1

εKkJε
L
lJZ lZk −

′∑
i, j, |H|=q+1

εHjKε
H
iLZiZj =

the summations disappear because all the indices are determined,

= −εKkJεLlJZ lZk − εHjKεHiLZiZj = −εKkJεLlJZ lZk − εHlKεHkLZkZ l.

And, using again the definition in observation 2.4.3, we observe that

εKkJε
L
lJ = −εHlKεHkL.

Finally we get that, since k 6= l

2LK = ±[Zk, Z l] = 0.

That completes the proof.
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Chapter 3

Study on the Lα and 2b
operators on Hn

Goal. Now that we know the operators 2b and Lα, we want informations
about their behaviors. So we are going to study them and, via the funda-
mental solutions for L0 and Lα, show that they are hypoelliptic on Hn.

3.1 Fundamental Solution for L0

Recall 3.1.1. Remind that D(Hn) and D′(Hn) are, respectively, the set of
smooth function on Hn and the set of distributions on Hn.
We say that E ∈ D′(Hn) is a fundamental solution for an operator P if

PE = δ

in the distribution sense. That is,

< PE, φ >=< δ, φ >= φ(0) ∀φ ∈ D(Hn)

where δ is the Dirac distribution.

Definition 3.1.2.
As an example, we’ll start studying the operator

L0 = −1

2

n∑
k=1

(ZkZk + ZkZk).

In general, this second order term is called the sub-Laplacian on the stratified
Lie group Hn.

45
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Recall 3.1.3. A Lie group g = (G, ∗) is stratified if

• it is nilpotent (namely, it possesses a central series)

• it is simply connected (informally, without holes)

• g admits a vector space decomposition

g = V1 ⊕ · · · ⊕ Vm

such that [V1, Vj] = Vj+1 for 1 ≤ j < m and [V1, Vm] = {0}.

Observation 3.1.4. In our case, we observe that Hn is a step-two stratified
nilpotent Lie group; namely the Lie algebra is stratified with m = 2 where

V1 =< Z1, . . . , Zn, Z1, . . . , Zn > and V2 =< T > .

Observation 3.1.5. By theorems 8.2.3 and 8.2.5[1] about hypoellipticity
and estimates of sums of squares of vector fields, it follows immediately that
L0 satisfies a subelliptic estimate of order 1

2
and is hypoelliptic.

We now want to construct an explicit fundamental solution ϕ0 for L0.

Observation 3.1.6. Recalling the definitions of nonisotropic dilatation δr
in 2.1.3 and of norm |(z, t)| in 2.3.1, we can say that L0 is homogeneous of
degree 1 with respect to δr.
It is also reasonable to guess that a fundamental solution ϕ0 for L0 should
be given by some homogeneous function.

In fact,

Theorem 3.1.7.
Set

ϕ0 := |(z, t)|−2n = (|z|4 + t2)−
n
2

and let δ be the Dirac distribution. Then

L0ϕ0 = c0δ

where

c0 = n2

∫
Hn

((|z|2 + 1)2 + t2)−
n
2
−1dzdt.

Therefore c−1
0 ϕ0 is a fundamental solution for L0.
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Proof. For ε > 0 we define

ϕ0,ε(z, t) := ((|z|2 + ε2)2 + t2)−
n
2

A simple calculation shows that

L0ϕ0,ε(z, t) = n2ε2((|z|2 + ε2)2 + t2)−
n
2
−1 =

= n2ε2

((∣∣∣z
ε

∣∣∣2 ε2 + ε2
)2

+ t2

)−n
2
−1

=

= n2ε2

((∣∣∣z
ε

∣∣∣2 + 1

)2

ε4 +

(
t

ε

)2

ε4

)−n
2
−1

=

= n2ε2

((∣∣∣z
ε

∣∣∣2 + 1

)2

+

(
t

ε

)2
)−n

2
−1

ε−2n−4 =

= n2ε−2n−2

((∣∣∣z
ε

∣∣∣2 + 1

)2

+

(
t

ε

)2
)−n

2
−1

=

defining φ(z, t) := n2
(

(|z|2 + 1)
2

+ t2
)−n

2
−1

= ε−2n−2φ

(
1

ε
(z, t)

)
.

Then ∫
Hn
L0ϕ0,ε(z, t)dzdt =

∫
Hn
ε−2n−2φ

(
1

ε
(z, t)

)
dzdt =

with the change of variables (z′, t′) = 1
ε
(z, t), dz′dt′ = ε−2n−2dzdt

=

∫
Hn
φ ((z′, t′)) dz′dt′ ≡ c0.

Hence
lim
ε→0
L0ϕ0,ε = c0δ in the distribution sense.

On the other hand,

lim
ε→0
L0ϕ0,ε = L0ϕ0 in the distribution sense.

Then
L0ϕ0 = c0δ

and the theorem is proved.
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3.2 Fundamental Solution for Lα
We now proceed to search for an explicit fundamental solution in Hn for the
operator

Lα = −1

2

n∑
k=1

(ZkZk + ZkZk) + iαT, α ∈ C.

Observation 3.2.1. Observe that Lα has the same homogeneity properties
as L0 with respect to δr on Hn and that Lα is invariant under unitary trasfor-
mations in the z-variable (since the norms ask just for |z|).
Then we can expect that the fundamental solution will have other similar
important properties.

From these observations, we intend to look for a fundamental solution
ϕα(z, t) of the form

ϕα(z, t) = |(z, t)|−2nf(t|(z, t)|−2)

After a routine, but lenghty, calculation, in order for ϕα to be a solution
of Lαϕα = 0 away from the pole, we see that f must satisfy the following
ordinary second order differential equation:

(1− ω2)
3
2f ′′(ω)− ((n+ 1)ω(1− ω2)

1
2 + iα(1− ω2))f ′(ω) + inαωf(ω) = 0

where ω = t|(z, t)|−2.
By setting ω = cosθ, we get f(ω) = g(θ), 0 ≤ θ ≤ π. Then the equation is
reduced to (

senθ
d

dθ
+ ncosθ

)(
d

dθ
+ iα

)
g(θ) = 0

which has two linear indipendent solutions:

• g1(θ) = e−iαθ

• g2(θ) = e−iαθ
∫ π

0
eiαθ

(senθ)n
dθ

The only bounded solutions for 0 ≤ θ ≤ π are g(θ) = ce−iαθ with c ∈ C. It
follows that

f(ω) = c
(
ω − i

√
1− ω2

)α
= c

(
t− i|z|2

|(z, t)|2

)α
If c = iα, then we get:
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ϕα(z, t) = |(z, t)|−2niα
(
t− i|z|2

|(z, t)|2

)α
= |(z, t)|−2niα

(t− i|z|2)α

|(z, t)|2α
=

= |(z, t)|−2(n+α)
(
i(t− i|z|2)

)α
= |(z, t)|−2(n+α)

(
|z|2 + it

)α
=

since |(z, t)|2 = (|z|4 + it2)
1
2 = ((|z|2 + it)(|z|2 − it))

1
2 ,

=
(
|z|2 + it

)α (
(|z|2 + it)(|z|2 − it)

)−(n+α) 1
2 =

=
(
|z|2 + it

)α
(|z|2 + it)−

n+α
2 (|z|2 − it)−

n+α
2 = (|z|2 + it)−

n−α
2 (|z|2 − it)−

n+α
2 .

Definition 3.2.2.
Then, for α ∈ C, we define

ϕα : Hn → C

ϕα(z, t) := (|z|2 − it)−
n+α
2 (|z|2 + it)−

n−α
2

and, for ε > 0,

ϕα,ε : Hn → C

ϕα,ε(z, t) := (|z|2 + ε2 − it)−
n+α
2 (|z|2 + ε2 + it)−

n−α
2

Observation 3.2.3. We observe that

• ϕα ∈ C∞(Hn \ {0}) and locally integrable in Hn (and hence it defines
a distribution)

• ϕα,ε ∈ C∞(Hn)

Proof. Here we prove that ϕα is locally integrable. First we observe that

|ϕα(z, t)| =

∣∣∣∣∣(|z|2 − it)−n2 (|z|2 + it)−
n
2 (|z|2 − it)−

α
2

(
1

|z|2 + it

)−α
2

∣∣∣∣∣ =

=

∣∣∣∣∣(|z|4 + it2)−
n
2

(
|z|2 − it
|z|2 + it

)−α
2

∣∣∣∣∣ =

since
∣∣∣ |z|2−it|z|2+it

∣∣∣ = 1,

=
∣∣(|z|4 + it2)−

n
2

∣∣ =
∣∣|z|4 + it2

∣∣−n2 = |(z, t)|−2n .

Now, given B(0, 1) the unit ball with respect to the distance given by the
nonisotropic norm on Hn, we can integrate on B(0, 1), switch to polar coordi-
nates and find out that the integrate is finite. That completes the proof.
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Observation 3.2.4. Moreover, using the Lebesgue’s dominated convergence
theorem, we see that ϕα,ε converges in the distribution sense to ϕα. That is,∫

Hn
ϕα,ε(z, t)ψ(z, t)dzdt→

∫
Hn
ϕα(z, t)ψ(z, t)dzdt, ∀ψ ∈ C∞0 (Hn).

Definition 3.2.5. We recall the Euler Γ function as

Γ : C \ N−0 → R

Γ(s) :=

∫ ∞
0

e−tts−1dt

where N−0 = {0,−1,−2, . . . }.
It’s possible to show that this function satisfy the property Γ(s) = sΓ(s−1).

Theorem 3.2.6.
We are now ready to state that, for α ∈ C,

Lαϕα = cαδ0

where

cα =
24−2nπn

Γ(n+α
2

)Γ(n−α
2

)

Then Φα := c−1
α ϕα is a fundamental solution for Lα

Remark 3.2.7. Notice that cα 6= 0⇔ the denominator doesn’t have a pole,
i.e., α 6= ±(n+ 2k), k ∈ N ∪ {0}.
Therefore we will call the numbers ±(n+ 2k) non-admissible values.

Proof of remark. Let k ∈ N ∪ {0}

n± α
2
6= −k ⇔ n± α 6= −2k ⇔ ±α 6= −n− 2k ⇔

⇔ α 6= ±(−n− 2k) ⇔ α 6= ±(n+ 2k).

Proof of theorem. Set ζε(z, t) := |z|2 + ε2 − it for ε > 0. Then ϕα,ε(z, t) =

ζ
−n+α

2
ε ζ

−n−α
2

ε .
Recalling that Zj = ∂zj + izj∂t and that Zj = ∂zj − izj∂t, for 1 ≤ j ≤ n, all
the following properties are true:

• Zjζaε = 2azjζ
a−1
ε and Zjζ

a

ε = 2azjζ
a−1

ε
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• Zjζ
a

ε = 0 and Zjζ
a
ε = 0

• Tζaε = −iaζa−1
ε and Tζ

a

ε = iaζ
a−1

ε

We check the first property of every point:

Zjζ
a
ε = (∂zj + izj∂t)(zz + ε2 − it)a = aζa−1

ε (zj − i2zj) = aζa−1
ε 2zj

Zjζ
a

ε = (∂zj + izj∂t)(zz + ε2 + it)a = aζa−1
ε (zj + i2zj) = 0

Tζaε = ∂t(zz + ε2 − it)a = aζa−1
ε ∂t(zz + ε2 − it) = −iaζa−1

ε .

We also note that

ϕα,ε(z, t) = (|z|2 + ε2 − it)−
n+α
2 (|z|2 + ε2 + it)−

n−α
2 =

=

((∣∣∣z
ε

∣∣∣2 + 1− i t
ε2

)
ε2
)−n+α

2
((∣∣∣z

ε

∣∣∣2 + 1 + i
t

ε2

)
ε2
)−n−α

2

=

=

(∣∣∣z
ε

∣∣∣2 + 1− i t
ε2

)−n+α
2

ε−n−α
(∣∣∣z
ε

∣∣∣2 + 1 + i
t

ε2

)−n−α
2

ε−n+α =

= ε−2n
(
ϕα,1 ◦ δ 1

ε

)
(z, t) .

Since Lα is an homogeneous operator of order −2 with respect to | · |, we
have that

Lαϕα,ε(z, t) = Lα
(
ε−2n

(
ϕα,1 ◦ δ 1

ε

))
(z, t) = ε−2n−2Lα

(
ϕα,1 ◦ δ 1

ε

)
(z, t)

Therefore, for ψ ∈ C∞0 (Hn),

< Lαϕα(z, t), ψ >= lim
ε→0+

< Lαϕα,ε(z, t), ψ >=

= lim
ε→0+

∫
Hn
Lαϕα,ε(z, t)ψ(z, t)dV =

= lim
ε→0+

ε−2n−2

∫
Hn
Lα
(
ϕα,1 ◦ δ 1

ε

)
(z, t)ψ(z, t)dV =

with the change of variables (z̃, t̃) = δ 1
ε
(z, t),

= lim
ε→0+

∫
Hn
Lαϕα,1

(
z̃, t̃
)

(ψ◦δε)(z̃, t̃)dV = lim
ε→0+

∫
Hn
Lαϕα,1 (z, t) (ψ◦δε)(z, t)dV =
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since we have uniformly convergence on φ domain, we compute the limit as
ε→ 0 under the integral sign and we get

= ψ(0, 0)

∫
Hn
Lαϕα,1 (z, t) dV = cαψ(0, 0),

if we call

cα :=

∫
Hn
Lαϕα,1 (z, t) dV.

Now it only remains to compute cα.
A straightforward calculation show that

Lαϕα,1(z, t) = (n2 − α2)(|z|2 + 1− it)−
n+α+2

2 (|z|2 + 1 + it)−
n−α+2

2 .

Then

cα =

∫
Hn
Lαϕα,1 (z, t) dV =

1

2n

∫
Hn
Lαϕα,1 (z, t) dzdt =

=
1

2n

∫
Hn

(
n2 − α2

)
(|z|2 + 1− it)−

n+2+α
2 (|z|2 + 1 + it)−

n+2−α
2 dxdydt =

by setting a = n+2+α
2

and b = n+2−α
2

,

=
1

2n

∫
Hn

(
n2 − α2

)
(|z|2 + 1− it)−a(|z|2 + 1 + it)−bdxdydt =

=
n2 − α2

2n

∫
Cn

(|z|2 + 1)−n−1dxdy

∫
R
(1− it)−a(1 + it)−bdt.

Let’s compute the two integral separately. The first integral is∫
Cn

(|z|2 + 1)−n−1dxdy =

using polar coordinates and reminding |S(0, 1)| = 2πn

Γ(n)
,

=
2πn

Γ(n)

∫ ∞
0

r2n−1

(1 + r2)n+1
dr =

t = 1 + r2, dt
2

= dr

=
πn

Γ(n)

∫ ∞
1

t−n−1(1− t)n−1dt =
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s = t−1

=
πn

Γ(n)

∫ 1

0

(1− s)n−1ds =

by the definition of Γ(n)

=
πn

Γ(n+ 1)
.

To compute the second integral, we start with some assumptions. We assume
that −n ≤ α ≤ n. So we have that

n+ α ≥ 0⇒ n+ 2 + α ≥ 2⇒ a =
n+ 2 + α

2
≥ 1

and

n− α ≥ 0⇒ n+ 2− α ≥ 2⇒ b =
n+ 2− α

2
≥ 1.

Given s ∈ C, if Re(s) > 0 the following formula is true:∫ ∞
0

e−xsxb−1dx = Γ(b)s−b.

Set s = 1 + it, then we define the function

f̂(t) := Γ(b)(1 + it)−b =

∫ ∞
0

e−x(1+it)xb−1dx =

∫ ∞
0

e−xe−ixtxb−1dx.

This function is the Fourier transform of

f(x) =

{
e−xxb−1 , for x > 0

0 , for x ≤ 0.

Similarly we obtain that

ĝ(t) = Γ(a)(1−it)−a =

∫ ∞
0

e−x(1−it)xa−1dx =

∫ ∞
0

e−xeixtxa−1dx =

∫ 0

−∞
e−|x|e−ixt|x|a−1dx

is the Fourier transform of

g(x) =

{
0 , for x ≥ 0

e−|x||x|a−1 , for x < 0.

Hence,

Γ(a)Γ(b)

∫ ∞
−∞

(1 + it)−b(1− it)−adt =

∫ ∞
−∞

f̂(t)ĝ(t)dt =
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by the Plancherel theorem (Parseval identity)

= 2π

∫ ∞
−∞

f(x)g(−x)dx = 2π

∫ ∞
−∞

e−2xxa+b−2dx =

changing y = 2x and using a+ b− 2 = n

=
πΓ(n+ 1)

2n
.

This implies∫ ∞
−∞

(1 + it)−b(1− it)−adt =
2−nπΓ(n+ 1)

Γ(a)Γ(b)
(∗)

for −n ≤ α ≤ n.
In fact, the left-hand side of this equality defines an entire function of α from
the following equality:∫ ∞

−∞
(1 + it)−b(1− it)−adt =

∫ ∞
−∞

(1 + it)−
n+2
2 eiα tan−1 tdt.

Thus (∗) holds for all α ∈ C.
Hence,

cα =
n2 − α2

2n

∫
Cn

(|z|2 + 1)−n−1dxdy

∫
R
(1− it)−a(1 + it)−bdt =

=
n2 − α2

2n
πn

Γ(n+ 1)

2−nπΓ(n+ 1)

Γ(n+2+α
2

)Γ(n+2−α
2

)
=

πn+12−2n

Γ(n+α
2

)Γ(n−α
2

)
.

That completes the proof of the theorem.

3.3 Hypoellipticity of Lα and 2b

Now, using theorem 3.2.6, we show that Lα and 2b are, in fact, hypoelliptic.

Definition 3.3.1.
Recalling definition 2.3.10 and observations 2.3.11 and 2.3.12 about the

convolution, if α 6= ±(n+ 2k) ∀k ∈ N ∪ {0}, we define

Kαf := f ∗ Φα ∀f ∈ C∞0 (Hn).

Observation 3.3.2. We can immediately say that Kαf ∈ C∞(Hn).
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Theorem 3.3.3.
If f ∈ C∞0 (Hn) and α 6= ±(n+ 2k) ∀k ∈ N ∪ {0}, then

LαKαf = KαLαf = f

Proof. Since Lα is left-invariant (see definition 2.1.7), we have

LαKαf = Lα(f ∗ Φα) = f ∗ LαΦα = f ∗ δ = f.

On the other hand, we can take g ∈ C∞0 (Hn).
Note that −α 6= ±(n + 2k) ⇔ α 6= ±(n + 2k). Then we just saw that
L−αK−αf = f and we say∫

Hn
g(u)f(u)dV (u) =

∫
Hn

(L−αK−αg) (u)f(u)dV (u) =

by integration by parts,

=

∫
Hn
K−αg(u)Lαf(u)dV (u) =

∫
Hn

(g ∗ Φ−α) (u)Lαf(u)dV (u) =

by observation 2.3.12

=

∫
Hn
g(u)(Lαf ∗ Φ̌−α)(u)dV (u) =

and since Φ̌−α ≡ Φα (that comes immediately by the definition of ϕα and
cα),

=

∫
Hn
g(u)(Lαf ∗ Φα)(u)dV (u) =

∫
Hn
g(u)KαLαf(u)dV (u).

Then f = KαLαf and the proof is complete.

Theorem 3.3.4.

Lα is hypoelliptic ⇔ α 6= ±(n+ 2k) ∀k ∈ N ∪ {0}
In particular,
2b is hypoelliptic on Hn for (0, q)-forms when 1 ≤ q < n.

Proof.
[⇒]
If α = ±(n + 2k), k ∈ N ∪ {0}, the function ϕα(z, t) defined in 3.2.2 has a
pole and then is a nonsmooth solution of Lαϕα = 0. This proves the first
arrow.
[⇐]
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On the other hand, if α 6= ±(n+ 2k), we take f ∈ D′(Hn) such that Lαf = g
is smooth on some open set U ∈ C. We want to prove that f is also smooth.
Let V ⊂ U be an open set relatively compact in U . Let also take a cut-off
function ζ ∈ C∞0 (U), ζ = 1 in some open neighborhood of V .
Then ζg is smooth and, by the theorem 3.3.3, LαKα(ζg) = ζg. Hence, to
show that f is smooth on V , it’s enough to show that h := ζ(f −Kα(ζg)) is
smooth on V .
Since h is a distribution with compact support, we can say, using 3.3.3 again,
that LαKαh = h. Then, on V (where ζ ≡ 1), we have:

Lαh = Lαf − LαKα(ζg) = g − ζg = g − g = 0.

The fact that Φα is just singular at the origin garantees that LαKαh =
Lαh ∗ Φα is smooth on V . Then h is smooth on V and then f is so.
The hypoellipticity of 2b on (0, q)-forms when 1 ≤ q < n follows immediately
from proposition 2.4.8:

2b(φ) =
′∑

|I|=q

Ln−2qφIdz
J .

This proves the theorem.

Observation 3.3.5. We finish this chapter giving a solution for the problem
stated in observation 1.4.17, namely finding a solution for the inhomogeneous
∂b equation.
At the beginning the problem was stated in the form ”Solve ∂bu = f where
u is a (0, q)-form and f is a (0, q + 1)-form”.
To find a suitable u is difficult because f and u don’t belong to the same
space and, more, we have to satisfy the compatibiliy condition ∂bf = 0.
Hence, it’s easier to handle the operator 2b that goes from (0, q)-forms to
(0, q)-forms and doesn’t have a compatibily condition. Since we already
studied the 2b operator, now we can state the following theorem and solve
the problem.

Theorem 3.3.6.
Let f ∈ C0(0,q)(Hn), 1 ≤ q < n.

If ∂bf = 0 in the distribution sense, then u := ∂
∗
bKn−2qf satisfies ∂bu = f

and u ∈ C
1
2

(0,q)(Hn, loc).

Moreover, if f ∈ Ck
0(0,q)(Hn), k ∈ N, then u ∈ Ck+ 1

2

(0,q) (Hn, loc).



Chapter 4

The Generalized Heisenberg
Group Hn,k

Goal. In this chapter we define the generalized Heisenberg group Hn,k, an
extension of Hn, and we provide a short presentation of the exetended results.

4.1 Extended definitions and results

Definition 4.1.1.
For 1 ≤ k ≤ n, let

Ωn,k :=
{

(z′, zn+1) ∈ Cn × C/ Imzn+1 > |z1|2 + . . .+ |zk|2 − |zk+1|2 − . . .− |zn|2
}

The boundary of Ωn,k is identified with the generalized Heisenberg group
Hn,k := Cn × R by

π : ∂Ωn,k → Hn,k(
z′, t+ i

(
k∑
j=1

|zj|2 −
n∑

j=k+1

|zj|2
))
7→ (z′, t)

i.e., identifying ∂Ωn,k ≡ Hn,k, we write

(z′, t) ≡

(
z′, t+ i

(
k∑
j=1

|zj|2 −
n∑

j=k+1

|zj|2
))

.

Proposition 4.1.2.
Let (z, t), (w, u) ∈ Hn,k.
The group structure of Hn,k is defined by

(z, w)∗(w, u) = (z, w)(w, u) :=

(
z + w, t+ u+ 2Im

(
k∑
j=1

zjwj −
n∑

j=k+1

zjwj

))

57
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Observation 4.1.3. One can verify immediately that

Zj = ∂zj + izj∂t, for 1 ≤ j ≤ k

Zj = ∂zj − izj∂t, for k + 1 ≤ j ≤ n

T = ∂t

are left-invariant vector fields on Hn,k such that

[Zj, Zj] =

{
−2iT, for 1 ≤ j ≤ k

2iT, for k + 1 ≤ j ≤ n

and that all the other commutators vanish.

Proposition 4.1.4.
From observation 4.1.3, it follows that the Zj’s define a non-degenerate CR

structure on Hn,k such that the Levi form (defined in 1.5.2) has k positive
eigenvalues and n− k negative eigenvalues.

Definition 4.1.5.
Without loss of generality, we can assume k ≥ n

2
and we shall call a CR

structure as in 4.1.4 k-strongly pseudoconvex.

Observation 4.1.6. As we did for Hn, we can fix a left-invariant metric on
Hn,k which makes the basis Z1, . . . , Zn, Z1, . . . , Zn, T orthonormal.
Its dual basis is given by

{dz1, . . . , dzn, dz1, . . . , dzn, τ}

where dzj = xj + iyj, 1 ≤ j ≤ n and

τ = dt+ 2
k∑
j=1

(xjdyj − yjdxj)− 2
n∑

j=k+1

(xjdyj − yjdxj).

More, as in observation 2.3.9, the volume element is

dV =
1

2n
dxdydt.

Definition 4.1.7.
Now we calculate 2b on Hn,k.
Let K = {1, . . . , k} and K ′ = {k + 1, . . . , n}. ∀J , such that |J | = q, we set

αJ := |K \ J |+ |K ′ ∩ J | − |K ∩ J | − |K ′ \ J |
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Proposition 4.1.8.
Hence, if f =

∑′
|J |=q fJdz

J ∈ C∞0(0,q)(Hn,k) is a (0, q)-form with compact
support on Hn,k, we get:

2bf =
(
∂b∂

∗
b + ∂b ∗ ∂b

) ′∑
|J |=q

fJdz
J

 = −
′∑

|J |=q

((∑
m 6=J

ZmZm

∑
m∈J

ZmZm

)
fJ

)
dzJ =

=
′∑

|J |=q

((
−1

2

n∑
m=1

(ZmZm + ZmZm) + iαJT

)
fJ

)
dzJ .

Observation 4.1.9. Note that −n ≤ αj ≤ n and that

αJ = n⇔ J = K ′ and αJ = −n⇔ J = K.

Theorem 4.1.10.
2b is hypoelliptic for (0, q)-forms, 0 ≤ q ≤ n, on Hn,k if q 6= k and q 6= n− k.
The conclusion of theorem 3.3.6 also holds for Hn,k when q 6= k and q 6= n−k.

The proof of the first statement of the theorem follows from theorem 3.3.4
changing the coordinates zj, k + 1 ≤ j ≤ n, to zj. The proof of the second
statement is the same as in theorem 3.3.6.
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Chapter 5

Estimates for Lα on Hn

Goal. The goal of this chapter is to show some regularity theorems for Lα
on Hn. In order to prove them, we need a lot of additional results. However,
since some of them will rely on Calderón-Zygmund results and principal
values theory, we will sometimes skip the details of the proofs. Every proof
can be found in sections 8, 9 and 10[6].
In section 5.1 we’ll just prepare our devices, then we’ll arrive to state Lp and
Hölder estimates for Lα.

5.1 Homogeneous and PV Distributions on

Hn

We already gave the definitions of left and right invariant operators and of
the reflection operator in 2.1.6. Using them, we now define:

Definition 5.1.1.
Let f ∈ C∞0 (Hn) and G ∈ D′(Hn), then we can define the functions

(G ∗ f)(u) : Hn → C
((G ∗ f)(u)) (v) := (G(Jτuf))(v) = G(Jf(u−1v)) = G(f(v−1u))

and

(f ∗G)(u) : Hn → C
((f ∗G)(u))(v) := (G(Jτuf))(v) = G(Jf(uv−1)) = G(f(vu−1))

We can think at this “ ∗ ” as an extention of the convolution where, instead
of two functions, we have a function and a distribution.

61
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Observation 5.1.2. We can observe immediately that (G∗f)(u), (f∗G)(u) ∈
C∞(Hn).

Definition 5.1.3.
We already know X1, . . . , Xn, Y1, . . . , Yn, T is an orthonormal basis for left
invariant vector fields and that, in a neighborhood of the origin, it is equal
to ∂x1 , . . . , ∂xn , ∂y1 , . . . , ∂yn , ∂t.
In the same way, we define a orthonormal basis for right invariant vector
fields and we call it R1, . . . , R2n+1.
It will also be useful to denote {Xj, Yj, 1 ≤ j ≤ n} as {Lj, 1 ≤ j ≤ 2n}.

Observation 5.1.4. The operator Kα : C∞0 (Hn) → C∞(Hn) (defined in
3.3.1) is continuous and can be extended as an operator Kα : E ′(Hn) →
D′(Hn). We can do the same for Lα, Lj and Rj see (p.444 [6]).

Observation 5.1.5. So we have that Xj, Yj commute with τu, ∀j = 1, . . . , n,
and Rj commutes with τu, ∀j = 1, . . . , 2n.

Definition 5.1.6.
We also define the distribution Dθ ∈ E ′(Hn), where θ is a general tangent
vector at the origin, by

Dθ(f) := − < df(0), θ >= − <
n∑
j=1

(
∂f

∂xj
(0) +

∂f

∂yj
(0)

)
+
∂f

∂t
(0), θ > .

It is a diretional derivative calculated in zero.

Notation 5.1.7. In particular, for 1 ≤ j ≤ 2n, we set

Dj :=

{
D∂xj , if j = 1, . . . , n

D∂yj , if j = n+ 1, . . . , 2n

They are the diretional derivatives, calculated in zero, in the directions given
by the coordinates.

Observation 5.1.8. If f ∈ C∞0 (Hn), we have the following properties:

• Rjf = Dj ∗ f

• Ljf = f ∗Dj

Definition 5.1.9.
If F ∈ D′(Hn) is a distribution, we also define

• Dj ∗ F := RjF
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• F ∗Dj := LjF

Since we want to talk about homogeneity, we define:

Definition 5.1.10.
If f : Hn → R, we define

fr(u) := f(ru) ∀u ∈ Hn, ∀r > 0

and
f r(u) := r−2n−2f(r−1u) ∀u ∈ Hn, ∀r > 0.

Definition 5.1.11.
Given this notation, we obviously say that f is homogeneous of degree λ ⇔

fr(u) ≡ f(ru) = rλf(u) ∀u ∈ Hn, ∀r > 0.

This notion extends naturally to distributions: F ∈ D′(Hn) is homogeneous
of degree λ ⇔

F (gr) = rλF (g) ∀g ∈ C∞0 (Hn), ∀r > 0.

Example 5.1.12. δ is an homogeneous distribution of degree −2n− 2.

Proof.

δ(f r) = δ(r−2n−2f(r−1u)) = r−2n−2f(0) = r−2n−2δ(f).

Proposition 5.1.13.
Let F ∈ D′(Hn) be a homogeneous distribution of degree λ, then

LjF, RjF are homogeneous of degree λ− 1, ∀j : 1 ≤ j ≤ 2n.

Proof. The proposition is proved with a straightforward computation.

Lemma 5.1.14. If f is a homogeneous function of degree λ, λ ∈ R, f ∈
C1(Hn \ {0}), then there exists a constant C > 0 such that

|f(u)− f(v)| ≤ C|u− v||u|λ−1, if |u− v| ≤ 1

2
|u|,

and

|f(uw)− f(u)| ≤ C|w||u|λ−1, if |w| ≤ 1

2
|u|.
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Proof. We may assume, by homogeneity, that |u| = 1. Then |u − v| ≤ 1
2

and so v is bounded away from zero. So, by the mean value theorem and by
observation 2.3.3 respectively, we get

|f(u)− f(v)| ≤ C||u− v|| ≤ C|u− v|.

The same argument in the second case yields

|f(uw)− f(u)| ≤ C||uw − u|| ≤

since w 7→ uw is smooth

≤ ||uw − u|| ≤ C||w|| ≤ C|w|.

We shall now be particularly concerned with functions and distributions
which are homogeneous of degree −2n− 2, since 2n+ 2 is the homogeneous
dimension of Hn (see observation 2.3.8). We start with the notion of ”mean
value”.

Proposition 5.1.15.
Let f : Hn → C be an homogeneous function of degree −2n− 2 and locally
integrable away from the origin.
Then there exists a constant µf , that we name mean value, such that∫

Hn
f(u)g(|u|)dV (u) = µf

∫ ∞
0

g(r)r−1dr

∀g : (0,+∞)→ R measurable so that either integral is defined.
Note that, strickly speaking, the mean value should be µf divided by |B(0, 1)|.
This is a mean value kind of theorem.

Proof. We set

Af (r) =

{∫
1≤|u|≤r f(u)dV (u), for r ≥ 1

−
∫
r≤|u|≤1

f(u)dV (u), for 0 < r < 1.

Af (r) is a continuous function on (0,∞) and it’s possible to see that

Af (rs) = Af (r) + Af (s).

Hence there exists a constant µf such that Af (r) = µf log r. Without loss of
generality, we suppose r ≥ 1 and 1 ≤ a ≤ b ≤ r.
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Taking g = χ(a, b), where χ(a, b) is the characteristic function of (a, b), we
should prove that ∫

a≤|u|≤b
f(u)dV (u) = µf

∫ b

a

r−1dr;

that is true because it is exactly Af (r) = µf log r restricted on (a, b). So the
proposition is proved when g is the characteristic function of an interval.
Then the proof is completed by forming linear combinations and passing to
limits to obtain general g’s.

Example 5.1.16. As a trivial example, we can denote µf = c0 and take
f(u) = |u|−2n−2 and g(u) = rλχ(a, b), 0 < a < b <∞.
Then we have∫

a≤|u|≤b
|u|λ−2n−2dV (u) =

{
c0

1
λ
(bλ − aλ), for λ 6= 0

c0 log b
a
, for λ = 0.

Definition 5.1.17.
If f : Hn → C is a homogeneous function of degree −2n−2, continuous away
from the origin and its mean value µf is zero, then f defines the distribution:

(PV f) : C∞0 (Hn)→ C

(PV f)(g) := PV

∫
Hn
f(u)g(u)dV (u) ≡ lim

ε→0+

∫
|u|≥ε

f(u)g(u)dV (u)

and we will prove that the limit exists.

Proof. Since µf = 0, we have∫
Hn
f(u)h(|u|)dV (u) = 0

for all measurable h. We take h(u) = χ(ε ≤ |u| ≤ 1) and we multiply
everything for g(0). Then we have∫

ε≤|u|≤1

f(u)g(0)dV (u) = 0.

So

(PV f)(g) =

∫
|u|≥1

f(u)g(u)dV (u)+

+ lim
ε→0+

(∫
ε≤|u|≤1

f(u)g(u)dV (u)−
∫
ε≤|u|≤1

f(u)g(0)dV (u)

)
=
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=

∫
|u|≥1

f(u)g(u)dV (u) + lim
ε→0+

∫
ε≤|u|≤1

f(u) (g(u)− g(0)) dV (u) =

since g(u)− g(0) = O(|u|), the integral is absolutely convergent

=

∫
|u|≥1

f(u)g(u)dV (u) +

∫
|u|≤1

f(u) (g(u)− g(0)) dV (u)

and we are done.

Observation 5.1.18. From the definition it’s evident that PV f is homoge-
neous of degree −2n− 2.

Definition 5.1.19.
A distribution F ∈ D′(Hn) is said to be regular if there exists f ∈ C∞(Hn \
{0}) such that

F (g) =

∫
Hn
f(u)g(u)dV (u) ∀g ∈ C∞0 (Hn \ {0}) .

If that happens, we say that F agrees with f .

Proposition 5.1.20.
Let us take F ∈ D′(Hn) a regular homogeneous distribution of degree λ which
agrees with f ∈ C∞(Hn \ {0}).
Then

1. f is homogeneous of degree λ

2. if λ > −2n− 2 ⇒ f ∈ D′(Hn \ {0}) and F = f

3. if λ = −2n− 2 ⇒ µf = 0 and F = (PV f) + cδ

Proof. 1.
The first point is obvious from the definition.
2.
For the second point, we observe that, since f is homogeneous of degree
λ > −2n− 2, then f is locally integrable and thus define a distribution (that
we will call “f” as well). So F − f is a distribution supported at 0, that is,
a linear combination of δ and its derivatives.
But δ is homogeneous of degree −2n − 2 and then we see that for any g ∈
C∞0 (Hn), with (F − f)(g) 6= 0, we have both

(F − f)(gr) = O(r−2n−2) as r →∞
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and, by hypothesis,

(F − f)(gr) = rλ(F − f)(g),

which is a contradiction. Hence F − f = 0.
3.
If µ = 0, then F −PV f is homogeneous of degree −2n− 2 ans supported at
the origin, hence is a multiple of δ.
For the case µ 6= 0, we just give the idea of the proof. If we set β =

µf
C0

,

where C0 is the mean value of the function | · |−2n−2, then it’s possible to
prove that both the distributions

F ′(h) := F (h)− PV (f − β| · |−2n−2)(h)

and

G(h) := β

∫
|u|≤1

(h(u)− h(0))|u|−2n−2dV (u) + β

∫
|u|>1

h(u)|u|−2n−2dV (u)

agree with β| · |−2n−2 away from the origin. Hence F ′ = G+H where H is a
linear combination of δ and its derivatives. From this we find a contradiction
using the same homogeneity argument of point 2.

The third point of this proposition allows us to give the following defini-
tion:

Definition 5.1.21. We call PV distribution a regular homogeneous distri-
bution of degree −2n− 2 and we include δ among the PV distributions.

PV distributions play the role of the classical singular integral kernels on
Hn and here we have the analogue of the Calderón-Zygmund theorem:

Proposition 5.1.22.
If F ∈ D′(Hn) is a PV distribution, then the mapping

C∞0 (Hn)→ C∞(Hn)

g 7→ g ∗ F

extends to a bounded transformation on Lp(Hn), 1 < p <∞.

Proof. We refer to [8] for the case p = 2, and to [9] or [3] for the extension
to the other values of p. In section 15 of [6] there is also the proof of a
generalization of this theorem.

A similar result is avaialable for kernels of higher homogeneity:
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Proposition 5.1.23.
If F ∈ D′(Hn) is a regular homogeneous distribution of degree λ, with −2n−
2 < λ < 0.
Then the mapping

C∞0 (Hn)→ C∞0 (Hn)

g 7→ g ∗ F

extends to a bounded transformation from Lp(Hn) to Lq(Hn), 1 < p, q <∞,
where

1

q
=

1

p
− λ

2n+ 2
− 1.

The same mapping also extends from L1(Hn) to L
− 2n+2

λ
−ε

loc (Hn), ∀ε > 0.

Proof. This proposition is proved in the 15th section of [6].

Before proceeding, we need to make some remarks about the right-invariant
version of the operator L0. We first note that L0 = −1

4

∑n
j=1(X2

j + Y 2
j ) =

−1
4

∑2n
j=1 L

2
j , so the corresponding right-invariant operator isR0 = −1

4

∑2n
j=1R

2
j

Lemma 5.1.24. We can recognize that

R0Φ0 = δ

where Φ0 is the fundamental solution of Lαf = δ.

Proof. This comes from theorem 3.3.3. Indeed, if D0 = −
∑2n

j=1 Dj ∗ Dj is
the distribution kernel of L0, then L0Φ0 = Φ0 ∗ D0 and R0Φ0 = D0 ∗Φ0 and
both of these expressions are equal to δ.

More, since we can write R0Φ0 = D0 ∗Φ0 = −
∑2n

j=1Dj ∗Dj ∗Φ0, we get:

−
2n∑
j=1

Dj ∗Dj ∗ Φ0 = δ

We now come to the deepest new result of this section, which provides
us in effect with a set of ”noncommutative Riesz transforms” with which to
manipulate derivatives.

Theorem 5.1.25.
If F ∈ D′(Hn) is a PV distribution, there exist regular homogeneous distri-
butions F1, . . . , F2n of degree −2n− 1 such that

F =
2n∑
j=1

Dj ∗ Fj
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Proof. Since this proof is quite long, we are going to skip some details.
Using lemma 5.1.24 we may formally write

F = −
2n∑
j=1

Dj ∗Dj ∗ Φ0 ∗ F

and thus call Fj := −Dj ∗ Φ0 ∗ F . Therefore, to prove the theorem we have
to show that Φ0 ∗ F can be defined as a regular homogeneous distribution
of degree −2n with the property that R0(Φ0 ∗ F ) = F . If we do that, we’ll
have that Fj is a regular homogeneous distribution of degree −2n − 1 and
then the thorem will be proved.
From now on, we’ll divide the proof in steps.

Step a) If F = δ, we have immediately that Φ0 ∗ F = Φ0 ∗ δ = Φ0 is regular,
homogeneous of degree −2n and the property holds.

Step b.i) Thus, by the third point of proposition 5.1.20, we may assume that
F = PV f for some f with µf = 0.
Given v0 6= 0, we choose ε > 0 small such that {u ∈ Hn : |u| < ε and |v0u

−1| <
ε} = ∅. Then, setting w = v0u

−1, we may define

Φ0 ∗ F (v0) := PV

∫
Hn

Φ0(v0u
−1)f(u)dV (u) =

and using the same argument of 5.1.17, we get

=

∫
|u|<ε

(Φ0(v0u
−1)− Φ0(v0))f(u)dV (u)+

+

∫
|w|<ε

Φ0(w)f(w−1v0)dV (u) +

∫
|u|≥ε,|w|≥ε

Φ0(v0u
−1)f(u)dV (u).

All these three integrals are absolutely convergent. The same formula, with
v instead of v0 but where still w = v0u

−1, can be used to define Φ0 ∗F (v) for
any v close to v0 so that vu−1 6= 0 when |v| < ε and w−1u 6= 0 when |w| < ε.
Thus, differentiating under the integral sign, we can conclude that Φ0 ∗ F
is C∞ away from the origin and, with a straightforward calculation, that is
homogeneous of degree −2n.

Step b.ii) Now we are left to prove that R0(Φ0 ∗ F ) = F and this can be
done with an approximation argument. Using the same ideas of section 3.2,
we can define a function Φ0,ε such that

R0,εΦ0,ε → δ as ε→ 0.
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We can also define a C∞ function Φ0,ε ∗ F (v) like the one above.
The main point is now to show that

Φ0,ε ∗ F → Φ0 ∗ F when ε→ 0

as distributions; that would prove the theorem. By the Lebesgue dominated
convergence theorem, it will suffice to show that |Φ0,ε ∗ F (v)| ≤ C|v|−2n. To
prove that we would need a lot of calculation and the lemmas we previously
stated. We skip this part.

5.2 Lp Estimates for Lα
We now introduce some Sobolev-type spaces which differ from the classical
ones in that they take into account the characteristic splitting of directions
on Hn. Then we’ll use them to provide our estimates.

Definition 5.2.1.
Let A be the algebra of all the left-invariant operators on Hn.

Observation 5.2.2. Since {X1, . . . , Xn, Y1, . . . , Yn} = {L1, . . . , L2n} gener-
ate the Lie algebra of Hn, together with the identity operator I, they generate
A and induce a filtration A0 ⊂ A1 ⊂ A2 ⊂ . . . on A.
Namely, for k ∈ N ∪ {0}, we define

Bk := {La1La2 · · ·Lai · · ·Laj / 1 ≤ ai ≤ 2n, i = 1, . . . , j, j ≤ k};

e.g. B1 = {L1, L2, . . . , L2n} and B2 is the set of all pairs of kind LiLj.
We also define

Ak :=< Bk ∪ {I} >C,

so Ak is the linear span of Bk ∪ {I} over C.

Definition 5.2.3.
For 1 ≤ p ≤ ∞, we now define our Sobolev-type spaces:

Sk,p(Hn) := {f ∈ Lp(Hn) s.t. Df ∈ Lp(Hn) ∀D ∈ Ak}.

Observation 5.2.4. We can immediately state some properties about Sk,p(Hn).

• Sk,p(Hn) is a Banach space under the norm

||f ||k,p := ||f ||p +
∑
D∈Bk

||Df ||p
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• C∞0 (Hn) ⊆ Sk,p(Hn) where C∞0 (Hn) is dense on Sk,p(Hn).

• Since T = [Ln+1, L1] ∈ A2,

Sk,p(Hn) ⊆ {f ∈ Lploc(Hn) / Df ∈ Lploc(Hn) ∀D ∈ Aj, 0 ≤ j ≤ k}.

Notation 5.2.5. Let’s suppose that the distributions we’ll use in this chapter
will always be regular. That is, we’ll always have a function that agrees with
the distribution.

Definition 5.2.6.
If U ⊆ Hn is an open set, we define

Sk,p(U, loc) := {F ∈ D′(Hn) s.t. ϕF ∈ Sk,p(Hn) ∀ϕ ∈ C∞0 (U)}

where we say that a regular distribution F is Lp if the function that agrees
with F is Lp.

Observation 5.2.7. It follows immediately that

Sk,p(Hn) ⊆ Sk,p(Hn, loc)

Moreover, if U =
⋃∞
j=1 Vj, where Vj ⊆ Hn open, then

Sk,p(U, loc) =
∞⋂
j=1

Sk,p(Vj, loc).

However, the virtue of the spaces Sk,p(Hn) becomes evident in the follow-
ing proposition:

Proposition 5.2.8.
If F ∈ D′(Hn) is a PV distribution, then the mapping

C∞0 (Hn)→ C∞(Hn)

g 7→ g ∗ F

extends to a bounded operator on Sk,p(Hn), 1 < p <∞, k ∈ N ∪ {0}.

Proof. For each fixed p, we prove the proposition by induction on k. The
case k = 0 is the proposition 5.1.22. Suppose now that the assertion is true
for k. Let g ∈ C∞0 and h = g ∗ F . Then, by the definition of norm for
Sk,p(Hn),

||h||k+1,p ≤ ||h||k,p +
2n∑
j=1

||Ljh||k,p ≤
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by the boundness in the inductive hypothesis ||h||k,p ≤ C||g||k,p, so

≤ C||g||k,p +
2n∑
j=1

||Ljh||k,p ≤

and by the definition of norm again

≤ C||g||k+1,p +
2n∑
j=1

||Ljh||k,p

By theorem 5.1.25, we may rewrite F =
∑2n

l=1 Dl ∗ Fl, whence
Ljh = h∗Dj = g∗F ∗Dj =

∑2n
l=1 g∗(Dl∗Fl)∗Dj =

∑2n
l=1(g∗Dl)∗(Fl∗Dj) =

=
∑2n

l=1(Llg) ∗ (LjFl). By proposition 5.1.13, LjFl is a PV distribution, so
by inductive hypothesis,

||Ljh||k+1,p ≤
2n∑
l=1

Cl||Llg||k,p ≤ C||g||k+1,p.

The proof is complete.

Finally, after these preliminares, we are ready to return to the operator
Lα and its fundamental solution Φα.

Proposition 5.2.9.
Suppose α is admissible, that is α 6= ±(n + 2k) with k ∈ N ∪ {0}, and let
f ∈ C∞0 (Hn). Then

1. The mapping

C∞0 (Hn)→ C∞(Hn)

f 7→ Kαf = f ∗ Φα

extends to a bounded mapping Lp(Hn)→ Lq(Hn), where 1 < p < q <
∞ and 1

q
= 1

p
− 1

n+1
.

The same mapping also extends to a bounded mapping

L1(Hn)→ L
n+1
n−ε
loc (Hn) ∀ε > 0.

2. The mappings

C∞0 (Hn)→ C∞(Hn)

f 7→ LjKαf = f ∗ Φα ∗Dj, 1 ≤ j ≤ 2n

extend to bounded mappings from Lp(Hn) → Lr(Hn), where 1 < p <
r <∞ and 1

r
= 1

p
− 1

2n+2
.
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3. The mappings

C∞0 (Hn)→ C∞(Hn)

f 7→ LiLjKαf = f ∗ Φα ∗Dj ∗Di, 1 ≤ i, j ≤ 2n

extend to bounded mappings on Sk,p(Hn) for 1 < p < ∞ and k ∈
N ∪ {0}.

Proof. This proposition follows immediately from propositions 5.1.13, 5.1.22
and 5.1.23, since Φα is a regular homogeneous function of degree −2n.

As a consequence, we obtain the following estimates for Lα:

Theorem 5.2.10.
If α is admissible, 1 < p <∞ and k ∈ N ∪ {0}, then

||f ||k+2,p ≤ ck,p (||Lαf ||k,p + ||f ||p) ∀f ∈ C∞0 (Hn)

Proof. By theorem 3.3.3 we have that f = KαLαf and so, by point 3. in
proposition 5.2.9 applied to Lαf ,

||LiLjKα(Lαf)||k,p ≤ ck,p||Lαf ||k,p

and so
||LiLjf ||k,p ≤ ck,p||Lαf ||k,p.

But we have that ||f ||k+2,p ≤ ||f ||p +
∑2n

j=1 ||Ljf ||p +
∑2n

i,j=1 ||LiLjf ||k,p. So,
to conclude, it suffices to show that

||Ljf ||p ≤ cj(||L2
jf ||k,p + ||f ||p).

And this can be done by applying the Taylor’s theorem to f(uγ(t)) where γ(t)
is a one-parameter subgroup generated by Lj and then using the translation
invariance of || · ||p and Minkowski’s inequality.

Now we are going to state the main Lp regularity theorem, that will be
complemented by theorem 5.3.10.

Theorem 5.2.11.
Let’s take α admissible and F,G ∈ D′(Hn) such that LαF = G on U ⊂ Hn.

• If G ∈ Sk,p(U, loc), then F ∈ Sk+2,p(U, loc)

• If G ∈ Lploc(U) and 1
q

= 1
p
− 1

n+1
> 0, then{

F ∈ Lq(U, loc), if p > 1

F ∈ Lq−ε(U, loc) ∀ε > 0, if p = 1.
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Proof.
I)
Given any V ⊂⊂ U , choose ϕ ∈ C∞0 (U) with ϕ = 1 on V and set H :=
Kα(ϕG). Then if G ∈ Sk,p(U, loc), we have by point 3. in proposition 5.2.9
that LiLjH ∈ Sk,p(V ), with 1 ≤ i, j ≤ 2n.
We claim that also LjH and H are in Lp(V ), and hence H ∈ Sk+2,p(V ).
Once it is shown, we have to note that Lα(F − G) = G(1 − φ) = 0 on V .
So, since Lα is hypoelliptic, F − H ∈ C∞(V ). Hence F ∈ Sk+2,p(V ) for all
V ⊂⊂ U and we are done.
II)
The second case is proved exactly in the same way, taking G ∈ Lploc(U) and
finding out that, with an assumpition on p, H ∈ Lq(V ) or H ∈ Lq−ε(V ).
After the same claim we arrive to say that F ∈ Lq(V ) or F ∈ Lq−ε(V ).
To prove the claim, let

W := {v−1u : v ∈ suppϕ, u ∈ V }.

W is bounded, therefore we may choose ψ ∈ C∞0 (U), with ψ = 1 on W .
Then, for u ∈ V ,

H(u) = (ϕG) ∗ (ψΦα)(u) and LjH(u) = (ϕG) ∗ (ψΦα ∗Dj)(u)

and so H and LjH are in Lp(V ), being convolutions of Lp and L1 functions.
That completes the claim and, hence, the proof.

5.3 Hölder Estimates for Lα
Since here we want to talk about Hölder estimates, it is natural to introduce
a family Γβ(Hn) of Lipschitz and Hölder spaces on the Heisenberg Group

which are defined in terms of the norm |u| = |(z, t)| = (|z|4 + t2)
1
2 instead of

the Euclidean norm || · ||. We’ll then show the estimates.

Definition 5.3.1.
We define the spaces:

• for 0 < β < 1

Γβ(Hn) :=

{
f ∈ L∞(Hn) ∩ C0(Hn) s.t. sup

u,v∈Hn

|f(vu)− f(v)|
|u|β

<∞
}
,

• for β = 1

Γ1(Hn) :=

{
f ∈ L∞(Hn) ∩ C0(Hn) s.t. sup

u,v∈Hn

|f(vu) + f(vu−1)− 2f(v)|
|u|

<∞
}
,
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• for β = k + β′ where k ∈ N and 0 < β′ < 1

Γβ(Hn) :=
{
f ∈ L∞(Hn) ∩ C0(Hn) s.t. Df ∈ Γβ

′
(Hn) ∀D ∈ Ak

}
.

If f ∈ Γβ(Hn), we’ll call f a Hölder function.1

Observation 5.3.2. The spaces Γβ(Hn) are Banach spaces, respectively,
under the norms:

• for 0 < β < 1

||f ||β := ||f ||∞ + sup
u,v∈Hn

|f(vu)− f(v)|
|u|β

,

• for β = 1

||f ||1 := ||f ||∞ + sup
u,v∈Hn

|f(vu) + f(vu−1)− 2f(v)|
|u|

,

• for β = k + β′ where k ∈ N and 0 < β′ < 1

||f ||β := ||f ||∞ +
∑
D∈Bk

||Df ||β′ .

The first theorem of this section says essentially that the convolution with
a PV distribution is a bounded operator on Γβ(Hn) ∀β, 0 < β <∞.

Theorem 5.3.3.
If K0 ∈ D′(Hn) is a PV distribution and f ∈ Γβ(Hn), 0 < β < ∞, has
compact support, then

f ∗K0 ∈ Γβ(Hn).

The proof will be accomplished by some results. For the purpose of the
demostration, we call K the function which agrees with K0 away from zero
and we may assume K0 = PV (K).

Lemma 5.3.4. If f ∈ Γβ(Hn) with compact support, 0 < β < 1, then

f ∗K0 ∈ Γβ(Hn)

1Futher notions about these spaces and their relationship with the standard Hölder
spaces can be found in [6], chapter 20.
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Proof of the Lemma. We call g := f ∗K0. Then we have, with u ∈ Hn

g(v) = f ∗K0(v) = PV (K)
(
f
(
vu−1

))
= PV

∫
u∈Hn

f(vu−1)K(u)dV (u) =

= lim
ε→0

∫
ε≤|u|≤1

f(vu−1)K(u)dV (u) +

∫
|u|>1

f(vu−1)K(u)dV (u) =

using exactly the same argument of 5.1.17,

= lim
ε→0

∫
ε≤|u|≤1

(f(vu−1)− f(v))K(u)dV (u) +

∫
|u|>1

f(vu−1)K(u)dV (u) =

and then the limit disappear by definition of Γβ(Hn),

=

∫
|u|≤1

(f(vu−1)− f(v))K(u)dV (u) +

∫
|u|>1

f(vu−1)K(u)dV (u).

Hence, if we suppose that Wv is the support of the function u 7→ f(vu−1),

|g(v)| ≤ C

∫
|u|≤1

|u|β|u|−2n−2dV (u) + C||f ||∞
∫
|u|>1,u∈Wv

|u|−2n−2dV (u).

Using example 5.1.16 and the fact that, for large v, Wv is contained in a set
of the form a1|v| ≤ |u| ≤ a2|v|, with a1, a2 > 0, we see that the right-hand
side is bounded uniformly in v, so that g is bounded.
Next we have, given w ∈ Hn and from the definition of PV ,

g(v) = PV

∫
|u|≤B|w|

f(vu−1)K(u)dV (u) +

∫
|u|>B|w|

f(vu−1)K(u)dV (u) ≡

≡ gw(v) + gw(v).

where B ≥ 2. Now we can write

|gw(v)| =
∣∣∣∣∫
|u|≤B|w|

(
f(vu−1)− f(v)

)
K(u)dV (u)

∣∣∣∣ ≤
≤ C

∫
|u|≤B|w|

|u|β−2n−2dV (u) ≤ C(B|w|)β.

Thus, since v is arbitrary, we have

|gw(vw)− gw(v)|
|w|β

≤ CBβ.
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On the other hand, we can set

Kω(u) :=

{
K(u), if |u| > B|ω|
0, if |u| ≤ B|ω|

and use the fact that µK = 0 to have

gw(vw)− gw(v) =

∫
Hn
f(vwu−1)Kw(u)dV (u)−

∫
Hn
f(vu−1)Kw(u)dV (u) =

=

∫
Hn

(
f(vwu−1)− f(vw)

)
Kw(u)dV (u)−

∫
Hn

(
f(vu−1)− f(vw)

)
Kw(uw)dV (u)+

+

∫
Hn

(
f(vu−1)− f(v)

)
(Kw(uw)−Kw(u)) dV (u).

The first two integrals cancel each other by a change of variables and we
divide the third one as∫

|u|≥B|w|,|uw|≥B|w|
+

∫
|u|≥B|w|,|uw|≤B|w|

+

∫
|u|≤B|w|,|uw|≥B|w|

≡ I1 + I2 + I3.

To estimate them we take B large enough so that the region of I2 (respectively
I3) is contained in a set of the form {B|w| ≤ |u| ≤ B′|w|} (respectively
{b|w| ≤ |u| ≤ B|w|}) with B′, b > 0. This is possible by lemma 2.3.4.
By example 5.1.16 and lemma 5.1.14, we have

|I1| ≤
∫
|u|≥B|w|

∣∣(f(vu−1)− f(v)
)

(K(uw)−K(u))
∣∣ dV (u) ≤

≤ C

∫
|u|≥B|w|

|u|β−2n−3|w|dV (u) ≤ C|w| (B|w|)β−1 ≤ C|w|β.

And

|I2| ≤
∫
B|w|≤|u|≤B′|w|

∣∣(f(vu−1)− f(v)
)
K(u)

∣∣ dV (u) ≤

≤ C

∫
B|w|≤|u|≤B′|w|

|u|β−2n−2dV (u) ≤ C|w|β.

I3 can be estimated likewise, since |K(uw)| ≤ C|w|−2n−2 over his region of
integration.
All together we get

|gw(vw)− gw(v)|
|w|β

≤ C

and that completes the proof.
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Lemma 5.3.5. If f ∈ Γβ(Hn), 1 < β < 2, then

f ∗K0 ∈ Γβ(Hn)

Proof of the Lemma. We call g := f ∗K0 again and, thanks to lemma 5.3.4,
we already know that g ∈ Γβ−1(Hn). So we just have to prove that Ljg ∈
Γβ−1(Hn), 1 ≤ j ≤ 2n.
Using theorem 5.1.25, we can write K0 =

∑2n
j=1Dj ∗Kj, where Kj is a regular

homogeneous distribution of degree −2n− 1. Then

Ljg = f ∗K0 ∗Dj =
2n∑
l=1

f ∗Dl ∗Kl ∗Dj =
2n∑
l=1

Llf ∗ LjKl.

Since LjKl is a PV distribution and Llf ∈ Γβ−1(Hn), by lemma 5.3.4 we
conclude that Ljg ∈ Γβ−1(Hn).

Proof of the Theorem. If we can show that f ∈ Γ1(Hn) implies f ∗ K0 ∈
Γ1(Hn), then the theorem will follow by induction on the greatest integer in
β, by the argument in the proof of the last lemma.
But this boundness on Γ1(Hn) will follow immediately from the last two lem-
mas together with the following proposition that provides a characterization
of Γ1(Hn).

Proposition 5.3.6.
The following holds:

f ∈ Γ1(Hn)⇐⇒

∀τ ≥ 1 ∃f1 ∈ Γ
1
2 (Hn) and ∃f2 ∈ Γ

3
2 (Hn)

with ||f1|| 1
2
≤ Cτ−1 and ||f2|| 3

2
≤ Cτ, C indipendent of τ,

such that f = f1 + f2.

For the proof of this proposition we need two other lemmas:

Lemma 5.3.7. If f ∈ Γβ(Hn), 1 < β < 2, then

sup
v,w∈Hn

|f(vw) + f(vw−1)− 2f(v)|
|w|β

<∞.

Proof of the Lemma. Applying a uniformly smooth partition of unity, we
may assume that f has compact support. We use theorem 5.1.25 to write

f = f ∗ δ = f ∗

(
2n∑
j=1

Dj ∗Hj

)
=

2n∑
j=1

gj ∗Hj
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where gj = f ∗ Dj = Ljf ∈ Γβ−1(Hn) and Hj is a regular homogeneous
distribution of degree −2n− 1.
If we set Φw

j (u) := Hj(uw) + Hj(uw
−1) − 2Hj(u), with u,w ∈ Hn, we can

say that

f(uw) + f(vw−1)− 2f(v) =
2n∑
j=1

∫
Hn
gj(vu

−1)Φw
j (u)dV (u).

By the same homogeneity argument as in the proof of observation 2.3.4, we
have

|Φw
j (u)| ≤ C|w|2|u|−2n−3, if |w| ≤ 1

2
|u|.

In particular Φw
j ∈ L1(Hn).

It’s also possible to prove that∫
Hn

Φw
j (u)dV (u) = 0.

In fact it would be obvious if Hj ∈ L1(Hn). As it is, we consider Hjχr, where
χr is the characteristic function of {u ∈ Hn / |u| < r}. Since Hjχr ∈ L1(Hn),∫

Hn

[
Hjχr(uw) +Hjχr(uw

−1)− 2Hjχr(u)
]
dV (u) = 0

and
Hjχr(uw) +Hjχr(uw

−1)− 2Hjχr(u)→ Φw
j (u), as r →∞.

By the Lebesgue dominated convergence theorem, we conclude that∫
Hn Φw

j (u)dV (u) = 0.
That enables us to write

f(uw) + f(vw−1)− 2f(v) =
2n∑
j=1

∫
Hn

(
gj(vu

−1)− gj(v)
)

Φw
j (u)dV (u) =

=

∫
|u|≤2|w|

+

∫
|u|>2|w|

≡ I1 + I2.

Applying our estimate about |Φw
j (u)|, we get

|I2| =
∣∣∣∣∫
|u|>2|w|

∣∣∣∣ ≤ C

∫
|u|>2|w|

|u|β−1|ω|2|u|−2n−3dV (u) ≤

≤ C|w|2(2|w|)β−1 ≤ C|w|β.
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On the other hand

|I1| =
∣∣∣∣∫
|u|≤2|w|

∣∣∣∣ ≤ C(2|w|)β−1

∫
|u|≤2|w|

|Φw
j (u)|dV (u) ≤

and, since |u| ≤ 2|w| implies that |uw| ≤ B|w| and |uw−1| ≤ B|w| for some
large B (see observation 2.3.4),

≤ 4C|w|β−1

∫
|u|≤B|w|

|Hj(u)|dV (u) ≤ C|w|β−1

∫
|u|≤B|w|

|u|−2n−1dV (u) ≤

≤ C|w|β−1(B|w|) ≤ C|w|β.

That proves the lemma.

Lemma 5.3.8. If g ∈ C1(Hn), then

sup
u,v∈Hn

|g(vu)− g(v)|
|u|

< C
2n∑
j=1

||Ljg||∞.

Proof of the Lemma. Assume first u = (z, 0), z ∈ Cn. If L is the normalized
generator of the one-parameter subgroup through u, then, by the mean value
theorem, |g(vu)− g(v)| ≤ C||u|| ||Lg||∞. Since ||u|| = |u| for u = (z, 0), the
lemma is proved in this case.
In general we have u = (z, t). We choose z0 ∈ Cn and write u = u0u1u2u

−1
1 u−1

2 ,
where u0 = (z, 0), u1 = (1

2
iz0

√
t, 0) and u2 = (1

2
iz0

√
t, 0). Since |u0| = |z| ≤

|u| and |u1| = |u2| = |t|1/2 ≤ |u|, we can write g(vu) − g(v) as a five-fold
collapsing sum and paaly the the result we just established.

Proof of the Proposition.
[⇐] Set

∆2
wf(v) := f(vw) + f(vw−1 − 2f(v)).

We suppose that, ∀τ ≥ 1,

f = f1 + f2, where ||f1||1/2 ≤ Cτ−1 and ||f2||3/2 ≤ Cτ.

Then we have ||∆2
wf1||∞ ≤ 2C|w|1/2τ−1 and, by lemma 5.3.7, ||∆2

wf2||∞ ≤
C|w|3/2τ .
Hence

||∆2
wf2||∞ ≤ C(|w|1/2τ−1 + |w|3/2τ),

so we can take τ = |w|−1/2 and conclude that f ∈ Γ1(Hn).
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[⇒] Conversely, we suppose f ∈ Γ1(Hn). We choose ϕ ∈ C∞0 supported in
|v| ≤ 1 and satisfying ϕ(v) = ϕ(v−1) and

∫
Hn ϕ = 1. Set ϕk ∈ B(0, 1

2k
),

ϕk(v) := 2(2n+2)kϕ(2kv).

So
∫
Hn ϕk = 1 ∀k and {ϕk} is an approximation to the delta.

Set fk := f ∗ϕk and gk := fk−fk−1. Since f is uniformly continuous, fk ⇒ f
uniformly, and we can write f = f0 +

∑∞
k=1 gk.

It’s long but possible to prove that ∃C > 0 indipendent of k such that

||gk||∞ ≤ C2−k, ||Ljgk||∞ ≤ C and ||LiLjgk||∞ ≤ C2k

with 1 ≤ i, j ≤ 2n.
From that and from lemma 5.3.8 we get that ||gk||1/2 ≤ C2−k/2 and ||gk||3/2 ≤
C2k/2.
Therefore we write f = (f0 +

∑N
k=1 gk) +

∑∞
k=N+1 gk ≡ f1 + f2 where

||f1||3/2 = ||f0 +
N∑
k=1

gk||3/2 ≤ C
N∑
k=1

2k/2 ≤ C2N/2

and

||f2||1/2 = ||
∞∑

k=N+1

gk||1/2 ≤ C
∞∑

k=N+1

2−k/2 ≤ C2−N/2.

This provides a decompotition of f for τ = 2N/2, N ∈ N and the proposition
5.3.6 follows immediately.

We prove now a theorem on kernels with homogeneity higher then−2n−2.
This result complements proposition 5.1.23.
For simplicity, we consider only integral degrees of homogeneity, which suf-
fices for the applications.

Theorem 5.3.9.
Let K be a regular homogeneous distribution of degree k − 2n − 2, k ∈ N,
and let f be a function of compact support. Then

1. if f ∈ Γβ(Hn), 0 < β <∞, then f ∗K ∈ Γβ+k
loc (Hn)

2. if f ∈ Lp(Hn), β = k − 2n+2
p

> 0, then f ∗K ∈ Γβloc(Hn)

where

Γβloc(Hn) :=
{
f ∈ C(Hn) s.t. ϕf ∈ Γβ(Hn) ∀ϕ ∈ C∞0 (Hn)

}
.
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Proof. As usual we call g = f ∗K. If we take D ∈ Bk \ Bk−1, then

Dg = D(f ∗K) = f ∗DK

and DK is a PV distribution (because its degree is exactly −2n− 2).
Hence, by theorem 5.3.3, Dg ∈ Γβ(Hn) ∀D ∈ Bk \ Bk−1; so g ∈ Γβ+k

loc (Hn)
and the first point is proved.
To prove the second point we take

k0 = min{k ∈ N such that k > (2n+ 2)/p}

and

β0 = k0 − (2n+ 2)/p.

Note that 0 < β0 ≤ 1.
As above, by considering derivatives on the kernel K, it suffices to prove the
assertion for k0 and β0. Now we can divide the proof in two cases: β0 = 1
and 0 < β0 < 1. Anyway, the second case is done as in the first case making
a similar estimate.
So now we suppose β0 = 1. Then 1 = k0 − (2n+ 2)/p. We have

|g(vw)−g(vw−1)−2g(v)−2g(v)| ≤ ||f ||p
(∫

Hn
|K(uw) +K(uw−1)− 2K(u)|p′dV (u)

) 1
p′

with 1
p

+ 1
p′

= 1.
By the same homogeneity argument as in the proof of lemma 5.1.14, we get

|K(uw) +K(uw−1)− 2K(u)| ≤ C|w|2|u|k−2n−4.

Hence (∫
|u|≥2|w|

|K(uw) +K(uw−1)− 2K(u)|p′dV (u)

) 1
p′

≤

≤ C|w|2
(∫
|u|≥2|w|

|u|(k−2n−4)p′du

) 1
p′

= C|w|2|w|k−2n−4+(2n+2)/p′

whenever k − 2n− 4 + (2n+ 2)/p′ < 0. However, since 1 = k0 − (2n+ 2)/p,
it follows that k − 2n− 4 + (2n+ 2)/p′ = −1 < 0.
Thus (∫

|u|≥2|w|
|K(uw) +K(uw−1)− 2K(u)|p′dV (u)

) 1
p′

≤ C|w|.
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Since |u| ≤ 2|w| implies |uw| ≤ B|w|, and |uw−1| ≤ B|w| for some B ≥ 2,
by observation 2.3.4(∫

|u|≤2|w|
|K(uw) +K(uw−1)− 2K(u)|p′dV (u)

) 1
p′

≤

≤ 4

(∫
|u|≤B|w|

|K(u)|p′dV (u)

) 1
p′

≤

≤ C

(∫
|u|≤B|w|

|u|(k−2n−2)p′dV (u)

) 1
p′

= C|w|k−2n−2+(2n+2)/p′

if k − 2n− 2 + (2n+ 2)/p′ > 0 (and it is actually 1). So, at the end,(∫
Hn
|K(uw) +K(uw−1)− 2K(u)|p′dV (u)

) 1
p′

≤ C|w|.

The proof is complete.

We can now state the Lipschitz regularity theorem for Lα:

Theorem 5.3.10.
α admissible and F,G ∈ D′(Hn) satisfy LαF = G on U ⊂ Hn.

• If G ∈ Γβloc(U), with 0 < β <∞, then F ∈ Γβ+2
loc (U).

• If G ∈ Lploc(U), with β = 2− 2n+2
p

> 0, then F ∈ Lβloc(U).

Proof. The proof proceeds just like the proof of theorem 5.2.11, using theo-
rem 5.3.9.
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Chapter 6

CR-manifolds

Goal. In this chapter our goal is to define the coordinates that will allow
us to see some CR manifolds as generalizations of the Heisenberg group.
The purpose of doing so is to generalize to the CR manifolds the results we
already found for the Heisenberg group about the Kohn Laplacian. We start
defining our tools for the case of k-strongly pseudoconvex manifolds, then we
will define the so-called Normal Coordinates for general pseudoconvex CR
manifolds and in the specific case of an hypersurface. Finally, we will provide
an example.

6.1 ∂b, ∂
∗
b and 2b on k-strongly speudoconvex

CR Manifolds

To define 2b on some CR manifolds, we must impose a Hermitian metric on
M . We want to restrict ourselves to a class of metrics with respect to which
the eigenvalues of the Levi form are ±1.
In the first chapter we stated the general definition of Levi form. Here we
see how to costruct a metric with this property on the eigenvalues. For that,
we’ll need two lemmas.

Definition 6.1.1.
Let us remind the definition of CR manifold at 1.3.4 and of Levi form at
1.5.2 and let M be a CR manifold of real dimension 2n+ 1.
We can also say that the Levi form on T 1,0(M), namely <,>L, can be defined
by:

< Z,W >L:= −i < dτ, Z ∧W >

∀Z,W ∈ T 1,0(M) and where τ is a nonvanishing real one-form which anni-
hilates T 1,0(M)⊕ T 0,1(M).

85
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Observation 6.1.2. The Levi form can be written as

< Z,W >L=
1

2
i < τ, [Z,W ] >

∀Z,W ∈ T 1,0(M).

Definition 6.1.3.
Let M be a CR manifold of real dimension 2n+ 1.
We say that M is nondegenerate if its Levi form, namely <,>L, is nonde-
generate for every point,
i.e.,

@Z ∈ T 1,0(M) s.t. < Z, Z ′ >L= 0 ∀Z ′ ∈ T 1,0(M).

Notation 6.1.4. We say that M is strongly pseudoconvex if the matrix
generetad by the Levi form is positive definite.
We say that M is k−strongly pseudoconvex if the matrix generetad by the
Levi form has k eigenvalues bigger than zero.

Lemma 6.1.5. Suppose M is a k-strongly pseudoconvex CR manifold, with
k < n.
Then there exist smooth subbundles E+(M) and E−(M) of T 1,0(M) such
that

• T 1,0(M) = E+(M)⊕ E−(M)

• The Levi form is positive definite on E+(M) and negative definite on
E−(M)

• E+(M)⊥E−(M) with respect to the Levi form, i.e.,

< e+, e− >L= 0 ∀e+ ∈ E+(M), ∀e− ∈ E−(M).

Proof. Choose an arbitrary Hermitian metric <,> on T 1,0(M). The Levi
form determines, for each ξ ∈ M , a linear transformation Aξ : T 1,0(ξ) →
T 1,0(ξ) which is selfadjoint with respect to <,> by the equation

< Z,AξW >=< Z,W >L, ∀Z,W ∈ T 1,0(ξ).

Aξ is non singular, has k positive and n − k negative eigenvalues for each ξ
and varies smoothly with ξ.
Now we define the fiber of E+(M) at ξ, namely E+(ξ), to be the space
spanned by the eigenvectors of Aξ with positive eigenvalues and E−(ξ) to
be the orthogonal complement of E+(ξ) with respect to the Levi form (not
<,>). It is clear that <,>L is positive definite on E+(ξ) and negative definite
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on E−(ξ).
Once we have them, we can build the fiber bundle E+(M) as

⋃
ξ∈M E+(ξ)

if we know that E+(ξ) varies smoothly with ξ; then we can do the same for
E−(M).
To check the smoothness, we fix ξ0 ∈ M and we choose a neighborhood V
of ξ0 such that, ∀ξ ∈ V , the positive eigenvalues of Aξ lie in some fixed
interval (a, b), with 0 < a < b < ∞. We may then define a projection
Pξ : T 1,0

ξ (M)→ E+(ξ) for ξ ∈ V by

Pξ =
1

2πi

∫
γ

(z − Aξ)−1dz

where γ is a contour in the right half-plane enclosing (a, b). Pξ varies smoothly
with ξ, so E+(ξ) does ([10]).

Lemma 6.1.6. Suppose M is a k-strongly pseudoconvex CR manifold, with
k ≤ n.
Then there exists an Hermitian metric <,> on T 1,0(M) such that

∀ξ ∈M, ∃ a basis Z1, . . . , Zn for T 1,0(M) near ξ so that

< Zi, Zj >= δij and < Zi, Zj >L= εiδij

where εi =

{
1, i ≤ k

−1, i > k
.

From the proof it’s clear that we can write the metric explicitely.

Proof. If k = n, εi ≡ 1 and we simply take <,>=<,>L.
If k < n, by lemma 6.1.5 we choose a plitting T 1,0(M) = E+(M) ⊕ E−(M)
and define <,> on T 1,0

ξ (M) for each ξ ∈M by

< Z,W >=< Z+,W+ >L − < Z−,W− >L

where Z,W ∈ T 1,0
ξ (M) and Z = Z+ + Z− and W = W+ + W− are the

splittings fo Z and W .
Then we obtain a basis Z1, . . . , Zn by choosing Z1, . . . , Zk to be an or-
thonormal basis for E+(M) and Zk+1, . . . , Zn to be an orthonormal basis
for E−(M).

Observation 6.1.7. From now on we will consider the class of Hermitian
metrics <,> on CT (M) such that

1. <,>|T1,0(M)
satisfies the conditions in lemma 6.1.6
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2. <,>|T1,0(M)
determines<,>|T0,1(M)

by the equation< Z,W >= < Z,W >

3. T 1,0(M)⊥T 0,1(M) with respect to <,>

4. < τ, τ >= 1 in the induced metric on CT (M)∗.

This metric can be found by fixing τ , choosing the splitting T 1,0(M) = E+⊕
E− if k < n and choosing an orthogonal complement for T 1,0(M)⊕T 0,1(M).
We assume that M is equipped with a metric satisfying these propersties.

Notation 6.1.8. We denote by T the vector field dual to τ .
Then Z1, . . . , Zn, Z1, . . . , Zn, T is an orthonormal basis for CT (M).
We also denote the dual basis on CT (M)∗ by ω1, . . . , ωn, ω1, . . . , ωn, τ .
That also means that every (0, q)-form φ can be written as

φ =
∑
|J |=q

φJω
J

where φJ are complex valued functions on M .
Finally, we denote the volume element as d(·).

Definition 6.1.9.
Suppose M is a k-strongly pseudoconvex CR manifold, with k ≤ n. We now
introduce the notation E for error terms. In the following propositions we
will use it to regroup lower-order forms so to focus on the higher-order one.
If φ =

∑
|J |=q φJω

J is a smooth (0, q)-form on M , then E will denote an
expression of the form

E(φ) ∼=
∑

|J |=q,|K|=q

aJKφJω
K

with aJK ∈ C∞(M).
More, if Z ∈ T 1,0(M),

E(Zφ) ∼=
∑

|J |=q,|K|=q
l=1,...,n

aJKl(ZlφJ)ωK

with aJKl ∈ C∞(M).
Similar expressions can be written for E(Zφ) and E(Tφ).
Finally we denote

E(A,B) := E(A) + E(B).
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Example 6.1.10. For example, using observation 6.1.2, the equation <
Zi, Zj >L= εiδij at lemma 6.1.6 can be written as

[Zi, Zj]f = −2iεiδijTf + E(Zf, Zf)

with Z ∈ T 1,0(M) and f ∈ C∞(M).

Notation 6.1.11. Let J, l be such that |J | = q and l = 1, . . . , n.

ωlyω
J =

{
0, if l /∈ J
(−1)i−1ωj1 ∧ · · · ∧ ωji−1

∧ ωji+1
∧ · · · ∧ ωjq , if l = ji.

Observation 6.1.12. It’s easy to see that we also have

ωly(ωl ∧ ωJ) =

{
ωJ , if l /∈ J
0, if l ∈ J

and

ωl ∧ (ωlyω
J) =

{
ωJ , if l ∈ J
0, if l /∈ J.

In the next three propositions we’ll use the same arguments and ideas of
paragraph 2.4.2.

Proposition 6.1.13.
Suppose M is a k-strongly pseudoconvex CR manifold, with k ≤ n. Remind-
ing the definition of CR complex ∂b given in paragraph 1.4.2, we compute it.
If f ∈ C∞(M), we have

∂bf =
n∑
j=1

(Zjf)ωj

Hence, if φ =
∑
|J |=q φJω

J is a smooth (0, q)-form, then

∂bφ =
∑
|J |=q
l=1,...,n

(Z lφJ)ωl ∧ ωJ +
∑
|J |=q

φJ∂b(ω
J) =

=
∑
|J |=q
l=1,...,n

(Z lφJ)ωl ∧ ωJ + E(φ)
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Definition 6.1.14.
Let us take a smooth (0, q)-form φ and a smooth (0, q − 1)-form ψ.

We now define the formal adjoint ∂
∗
b of ∂b as the operator such that

< ∂
∗
bφ, ψ >=< φ, ∂bψ > .

Now we can even define the self-adjoint Kohn Laplacian 2b on (0, q)-forms
as

2b := ∂b∂
∗
b + ∂

∗
b∂b.

Proposition 6.1.15.
Suppose M is a k-strongly pseudoconvex CR manifold, with k ≤ n. Now

we can compute the complex adjoint and say that, ∀φ smooth (0, q)-form,

∂
∗
bφ = −

∑
|J |=q
l=1,...,n

(ZlφJ)ωlyω
J + E(φ).

Proposition 6.1.16.
Suppose M is a k-strongly pseudoconvex CR manifold, with k ≤ n. We also

have that, ∀φ ∈ C∞(0,q)(M),

∂
∗
b∂bφ = −

∑
|J |=q, l=1,...,n

i=1,...,n

(ZlZiφJ)ωly(ωi ∧ ωJ) + E(Zφ, φ)

and

∂b∂
∗
bφ = −

∑
|J |=q, l=1,...,n

i=1,...,n

(ZiZlφJ)ωi ∧ (ωlyω
J) + E(Zφ, φ).

Finally, we compute 2b and we obtain

2bφ =
∑
|J |=q

[(
−1

2

∑
l=1,...,n

(ZlZ l + Z lZl) + iαJ,kT

)
φJ

]
ωJ + E(Zφ,Zφ, ϕ).

where αJ,k = |{1, . . . , k} \ J |+ |{k + 1, . . . , n} ∩ J | − |{1, . . . , k} ∩ J | − |{k +
1, . . . , n} \ J |.

Observation 6.1.17. We note that 2b is expressed by the same formula as
on Hn modulo lower order error terms.
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6.2 Normal Coordinates on Strongly Pseudo-

convex CR Manifolds

Although it would be possible to speak about normal coordinates for k-
strongly pseudoconvex (or nondegenerate) CR manifolds, from now on we
will consider only the case k = n. That is, we’ll talk about strongly pseudo-
convex CR manifolds.
Our object here will be to find, for every point in M , an “osculating Heisen-
berg structure” to M at the point; i.e., ∀ξ0 ∈M , we want to find coordinates
z1, . . . , zn, t for M near ξ0 such that they vary smoothly with ξ0 and

Zj =
∂

∂zj
+ izj

∂

∂t
, j = 1, . . . , n and T =

∂

∂t

modulo suitably small error terms near ξ0.

6.2.1 Definition of Normal Coordinates

Notation 6.2.1. Reminding lemma 6.1.6, we write

Xj := Zj + Zj and Yj := i(Zj − Zj).

We also write

Ξj := Xj, Ξj+n := Yj, for j = 1, . . . , n,

and
Ξ0 := T.

In this way, when we consider the set {Xj, Yj, T / j = 1, . . . , n}, we will just
write it as {Ξj / j = 0, . . . , 2n}.
Accordingly, we denote its dual basis by {σj / j = 0, . . . , 2n}. It follows that

ωj = σj + iσj+n,

j = 1, . . . , n, and
τ = σ0.

Further, we will write the standard coordinates on R2n+1 as (x1, . . . , xn, y1, . . . , yn, t) =
(u1, . . . , u2n, u0) = u and zj = xj + iyj = uj + iuj+n.

Remark 6.2.2. We take a function γ : [0, 1] → M , X ∈ T (M) and XI is
the column matrix of the coefficients of X with respect to a basis of T (M).
We call integral curve the solution γ of the following Cauchy Problem:{

γ̇(s) = XI (γ(s))

γ(0R) = ξM
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Definition 6.2.3.
Suppose M is a strongly pseudoconvex CR manifold, fix ξ ∈ M and take
u ∈ Ũξ ⊂ R2n+1, where Ũξ is a starshaped neighborhood of 0.
We define the exponential map Eξ as

Eξ : Ũξ →M

u 7→ Eξ(u)

so that Eξ(u) is the endpoint η(1) of the integral curve η(s), 0 ≤ s ≤ 1, of
the vector field

∑2n
j=0 ujΞj with η(0) = ξ.

Observation 6.2.4. Wa can say that

• Eξ ∈ C∞(Ũξ)

• dEξ : T (Ũξ)→ T (M) and (dEξ)
(

∂
∂uj

)
|0

= Ξj|ξ .

So Eξ is a diffeomorphism
Eξ : Uξ → Vξ,

where Uξ ⊂ Ũξ is a neighborhood of 0 which can be assumed starshaped,
while Vξ is a neighborhood of ξ. It follows also that E−1

ξ : Vξ → Uξ is a
coordinate mapping on Vξ.

Definition 6.2.5.
With the same notation of observation 6.2.4, we call Normal Coordinates the
coordinates induced from E−1

ξ : Vξ → Uξ.

Definition 6.2.6.
Take f a function on Vξ. For this function we define the Heisenberg-type
order as follows.
We say that f is O1, and we write f = O1, ⇔

f = O

(
n∑
j=1

(|xj(η)|+ |yj(η)|) + |t(η)|
1
2

)
as η → ξ, η ∈M.

Inductively f = Ok ⇔ f = O(O1 ·Ok−1).

Observation 6.2.7. If f ∈ C∞(Vξ), then

f = O1 ⇔ f = O

(
n∑
j=1

(|xj(η)|+ |yj(η)|) + |t(η)|

)
and

f = O2 ⇔ f = O

(
n∑
j=1

(|xj(η)|2 + |yj(η)|2) + |t(η)|

)
.
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Theorem 6.2.8.
Suppose M is a strongly speudoconvex CR manifold and the previous nota-

tions hold.
With respect to the coordinates u = (x, y, t) on Vξ defined by E−1

ξ , we have:

Xj =
∂

∂xj
+ 2yj

∂

∂t
+

n∑
i=1

(
O1 ∂

∂xi
+O1 ∂

∂yi

)
+O2 ∂

∂t
,

Yj =
∂

∂yj
− 2xj

∂

∂t
+

n∑
i=1

(
O1 ∂

∂xi
+O1 ∂

∂yi

)
+O2 ∂

∂t
,

for j = 1, . . . , n. And

T =
∂

∂t
+

n∑
i=1

(
O1 ∂

∂xi
+O1 ∂

∂yi

)
+O1 ∂

∂t
,

The proof of this theorem is composed of three parts.

First step of the proof of the Theorem.
Let us write generally

Ξj =
2n∑
k=0

Bjk
∂

∂uk

with j = 0, . . . , 2n and where Bjk are functions on M .
Since we already noted that Bjk(0) = δjk (see observation 6.2.4), we only
need to verify that Bj0 = 2uj+n+O2 and B(j+n)0 = −2uj +O2 for 1 ≤ j ≤ n.
The idea we’ll use is borrowed by chapter V of [2]. Let (Ajk)jk be the inverse
transpose of (Bjk)jk, that is,

(Ajk)jk = (Bjk)
−H
jk .

Thus, reminding that E∗ξ goes from A1(Uξ) to A1(Vξ) and that σj ∈ A1(Uξ)
({σj}j is the dual basis of {Σj}j, see notation 6.2.1) and duk ∈ A1(Vξ),
j = 1, . . . , 2n, we have that E∗ξσj =

∑2n
k=1 Ajkduk.

Lemma 6.2.9. If u ∈ Uξ and s ≤ 1, then

n∑
k=1

Ajk(su)uk = uj.
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Proof of the Lemma. For u ∈ Uξ, consider the mapping µu : [−1, 1] → Uξ
defined by µu(s) = su. Then, by definition of Eξ, we have

d (Eξ ◦ µu)
(
∂

∂s

)
|s

=
2n∑
j=1

ujΞj|Eξ(su)

and, dually,
(Eξ ◦ µu)∗ (σj)|Eξ(su) = ujds|s .

On the other hand, by definition of µu, µ
∗
u(duk) = ukds and, since E∗ξσj =∑2n

k=1Ajkduk, the lemma follows immediately.

Second step of the proof of the Theorem.
Let us now define the functions cjkm : Uξ → C by

[Ξj,Ξk] =
2n∑
m=0

cjkmΞm,

with j, k,m = 0, . . . , 2n.
Since 2dσj(X ∧ Y ) = Xσj(Y ) − Y σj(X) − σj([X, Y ]), we have the dual
equation

dσm = −1

2

2n∑
j,k=0

cjkmσj ∧ σk. (∗)

For u ∈ Uξ and −1 ≤ s ≤ 1, we also define the matrices A(s, u) and Γ(s, u)
by

Ajk(s, u) := sAjk(su)

and

Γkm(s, u) :=
2n∑
j=0

cjmk(su)uj

Lemma 6.2.10. For u ∈ Uξ and −1 ≤ s ≤ 1,

∂A
∂s

(s, u) = I − Γ(s, u)A(s, u)

Proof of the Lemma. Define µ : (−1, 1)× Uξ → Uξ by µ(s, u) := µu(s) = su
and set σ

′
j = (Eξ ◦ µ)∗σj. By lemma 6.2.9 we can say,

σ
′

m|(s,u) =
2n∑
l=0

Aml(s, u)(ulds+ sdul) =
2n∑
l=0

Aml(s, u)dul + umds. (∗∗)
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On the other hand, since exterior multipliction and differentiation are func-
tional, (∗) implies that

dσ
′

m|(s,u) = −1

2

2n∑
j,k=0

cjkm(su)(σ
′

j ∧ σ
′

k)|(s,u) . (∗ ∗ ∗)

Substituting (∗∗) in (∗∗∗) and collecting the coefficients of ds∧dul, we have

∂Aml
∂s
− δml = −1

2

(
2n∑

j,k=0

cjkmAkluj −
2n∑

j,k=0

cjkmAjluk

)

and, since cjkm = −ckjm

∂Aml
∂s

= δml −
2n∑
k=0

ΓmkAkl.

This proves the lemma.

Third and final step of the proof of the Theorem.
Now we have, by Taylor’s theorem,

B(su) = I + sB(1)(u) + s2B(2)(u) + . . .

since B(0) = I and where B(1), B(2), . . . are certain matrices.
It is clear that B(u) = I + B(1)(u) + O2 as u → 0, thus it will suffice to

determine B
(1)
j0 , 1 ≤ j ≤ 2n.

But we may also write

A(su) = I + sA(1)(u) + s2A(2)(u) + . . .

and the equation BAH = I implies that B(1) = −(A(1))H . Moreover,

A(su) = sI + s2A(1)(u) + s3A(2)(u) + . . .

and, if we write Γ(s, u) = Γ(0)(u) + sΓ(1)(u) + . . . , lemma 6.2.10 implies that
A(1) = −1

2
Γ(0).

Hence B(1) = 1
2
(Γ(0))H or, since Γ

(0)
jk =

∑2n
m=0 cmkj(0)um and u0 = t = O2,

B
(1)
(j0) =

1

2

2n∑
m=0

cmj0(0)um =
1

2

2n∑
m=1

cmj0(0)um +O2. (?)
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Therefore, it only remains to determinate the coefficients cmj0(0), with 1 ≤
m, j ≤ 2n.
Now, by definition of c,

4[Zj, Zk] = [Xj, Xk]− [Yj, Yk]− i[Xj, Yk]− i[Yj, Xk] =

=
2n∑
l=0

(cjkl − c(j+n)(k+n)l − icj(k+n)l − ic(j+n)kl)Ξl

But C∞(T 1,0(M)) is closed under brackets, so the coefficient of Ξ0 = T must
vanish. Hence cjk0 = c(j+n)(k+n)0 and cj(k+n)0 = −c(j+n)k0. Likewise,

4[Zj, Zk] =
2n∑
l=0

(cjkl + c(j+n)(k+n)l + icj(k+n)l − ic(j+n)kl)Ξl

and, by the equation in example 6.1.10, the coefficient of Ξ0 = T in this
expression is −8iδjk. Hence here we have cjk0 = −c(j+n)(k+n)0 and cj(k+n)0 −
c(j+n)k0 = −8δjk.
Solving these equations, we find that, for 1 ≤ j, k ≤ n,

cjk0 = c(j+n)(k+n)0 = 0 and c(j+n)k0 = −cj(k+n)0 = 4δjk.

Substituting in (?) for 1 ≤ j ≤ n, we see that

Bj0 = B
(1)
j0 +O2 = 2uj+n +O2 and B(j+n)0 = B

(1)
(j+n)0 +O2 = −2uj +O2,

and this completes the proof of the theorem.

Corollary 6.2.11. With the same hypothesis of the theorem, we can easly
say

Zj =
∂

∂zj
+ izj

∂

∂t
+

n∑
i=1

(
O1 ∂

∂zi
+O1 ∂

∂zi

)
+O2 ∂

∂t
,

for j = 1, . . . , n.

6.2.2 Smooth Behaviour of the Normal Coordinates

We now investigate what happens when the base poin ξ varies.

Definition 6.2.12.
We define the set

Ω := {(ξ, η) ∈M × Vξ}

and we remind that Vξ is a neighborhood of ξ in M .
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Observation 6.2.13. Ω is a neighborhood of the diagonal in M ×M .

Definition 6.2.14.
Further, reminding from observation 6.2.4 that E−1

ξ : Vξ ⊂ M → Uξ ⊂
R2n+1 = Hn, we denote by Θξ the coordinate mapping Eξ:

Θξ : Vξ → Uξ ⊂ R2n+1 ≡ Hn

η 7→ Θξ(η) := E−1
ξ (η),

Then we set

Θ : Ω→ R2n+1 = Hn

(ξ, η) 7→ Θ(ξ, η),

where
Θ(ξ, η) := Θξ(η) ∈ Uξ ⊂ R2n+1 = Hn.

We call Θ our Normal Coordinate Map.

Observation 6.2.15. Note that, if M = Hn, then we have Θ(ξ, η) = ξ−1η.

Notation 6.2.16. Accordingly with notation 6.2.1, we denote the coordi-
nates Θ(ξ, η) ∈ Hn as u(ξ, η) = (x(ξ, η), y(ξ, η), t(ξ, η)).
We also set ρ(ξ, η) = |Θ(ξ, η)|, | · | being the Heisenberg norm.

We show the importance of this coordinates in the following theorem

Theorem 6.2.17.
Suppose M is a strongly pseudoconvex CR manifold. We have that all the
following properties hold:

1. Θ(ξ, η) = −Θ(η, ξ) = Θ(η, ξ)−1 ∈ Hn.

2. Θ ∈ C∞(Ω,Hn).

3. Θ∗ξ : A1(Uξ)→ A1(Vξ),
Θ∗ξ(dV )|ε is the volume element on M at ε.

4. Suppose ξ, η and ζ vary over a compact set inM so that (ξ, η), (ξ, ζ), (η, ζ) ∈
Ω and ρ(ξ, ζ) ≤ 1 and ρ(ξ, η) ≤ 1.
Then there exist C1, C2 > 0 constants such that

|Θ(ξ, η)−Θ(ζ, η)| ≤ C1(ρ(ξ, ζ) + ρ(ξ, ζ)
1
2ρ(ξ, η)

1
2 )

and
ρ(ζ, η) ≤ C2(ρ(ξ, ζ) + ρ(ξ, η)).



98 6. CR-manifolds

Proof. The first three points are easy to prove: 1. comes directly from the
definition and 2. follows form theorems of ordinary differential equations on
smooth dependance of solutions on parameters.
3. follows form the fact that Θ∗ξ maps the orthonormal basis ω1, . . . , ωn, ω1, . . . , ωn, τ
of CTξ(M)∗ to the orthonormal basis dz1, . . . , dzn, dz1, . . . , dzn, dt of CTξ(Hn)∗.
For 4., we first note that we can regard ξ as a function of ζ ∈ M and u ∈
Uξ ⊂ Hn by the equation ξ = Eζ(u). Hence we may write Θ(ξ, η) = f(η, ζ, u),
where f(η, ζ, 0) = Θ(ζ, η).
We now expand f in a Taylor series at 0: in coordinates we have

uj(ξ, η) = uj(ζ, η) +
2n∑
k=0

ajk(η, ζ)uk(ξ, ζ) +O

(
2n∑
k=0

|uk(ξ, ζ)|2
)

where the ajk are smooth functions which vanish for η = ζ.
Hence, by the mean value theorem and observation 2.3.3, we have that

|u0(ξ, η)− u0(ζ, η)| ≤ Cρ(η, ζ)ρ(ξ, ζ) (∗)

and

|uj(ξ, η)− uj(ζ, η)| ≤ Cρ(ξ, ζ), for 1 ≤ j ≤ 2n. (∗)

On the other hand, for any u ∈ Hn, we have |uk| ≤ |u|, for 1 ≤ k ≤ 2n, and

|u0| ≤ |u|2; conversely |u| ≤ (2n+ 1) max{|u0|
1
2 , |u1|, . . . , |u2n|}.

In particular,

|Θ(ξ, η)−Θ(ζ, η)| ≤

≤ (2n+1) max{|u0(ξ, η)−u0(ζ, η)|
1
2 , |u1(ξ, η)−u1(ζ, η)|, . . . , |u2n(ξ, η)−u2n(ζ, η)|}.

Substituting (∗) here, we can say that

|Θ(ξ, η)−Θ(ζ, η)| ≤ C1(ρ(ξ, ζ) + ρ(ξ, ζ)
1
2ρ(ξ, η)

1
2 )

and the first inequality is proved.
To prove the second one it suffices to show that, if ρ(ξ, ζ) ≤ ε and ρ(ξ, η) ≤ ε,
then ρ(ζ, η) ≤ C2ε. To prove that, we write Θ(ζ, η) = (Θ(ζ, η) − Θ(ξ, η)) +
Θ(ξ, η) and we use the first inequality and observation 2.3.4 to get (c is a
constant),

ρ(ζ, η) ≤ c(|Θ(ζ, η)−Θ(ξ, η)|+ ρ(ξ, η)) ≤

≤ cC1(ρ(ζ, ξ) + ρ(ζ, ξ)
1
2ρ(ξ, η)

1
2 ) + cρ(ξ, η) ≤ C2ε.

That completes the proof.
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6.3 Normal Coordinates on a Hypersurface

Now we are going to talk about the special case in which M is an hyper-
surface embedded in a complex manifold. In this case we’ll show a different
construction for the normal coordinate map Θ(ξ, η) on M.

Definition 6.3.1.
Suppose V is a strongly pseudoconvex complex manifold with dimCV = n+1,
and M is a real hypersurface with the induced CR structure.
We assume that there exist a real valued defining function r defined on a
neighborhood of M so that M = {u ∈ V / r(u) = 0} and dr 6= 0 on M .

Definition 6.3.2.
Following the path of section 6.1, we give here other definitions.

• Reminding the way we defined a general Levi form in definition 6.1.1,
here we choose an explicit nonvanishing one-form

τ := i(∂ − ∂)r

annihilating T 1,0(M) ⊕ T 0,1(M), in term of which our Levi form is
defined (we can replace r by −r if necessary to make the Levi form
positive).

• Then, using lemma 6.1.6, we choose a metric <,> on M so that the
four conditions at observation 6.1.7 are satisfied.

• Finally we take T as the vector field dual to τ with respect to the
metric.

Notation 6.3.3. Let V0 be a coordinate chart on V with complex coordi-
nates ω0, . . . , ωn such that, on M0 := M ∩ V0, there is an orthonormal basis
Z1, . . . , Zn for T 1,0(M).

From now on we will construct normal coordinates for the region M0 with
respect to the basis Z1, . . . , Zn, Z1, . . . , Zn, T .

Definition 6.3.4.
Let

J : CT (V )→ CT (V )

be the almost-complex structure tensor on V (that is, a differentiable endo-
morphism such that J2 = −1); and let

P : CT (V )→ T 1,0(V )

P :=
1

2
(I − iJ)
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be the projection onto the holomorphic tangent bundle T 1,0(V ).
Now we define

Z0 := P (T ),

so Z0, . . . , Zn form a basis for T 1,0(V ) along M0.

Notation 6.3.5. For 0 ≤ j ≤ n, we may write

Zj =
n∑
k=0

cjk
∂

∂ωk
,

where (cjk)j,k=0,...,n is a smooth nonsingular matrix of functions on M0.
Let (djk)jk := (cjk)

−H
j,k be its inverse transpose, which is also smooth on M0.

Definition 6.3.6.
We now fix ξ ∈M0 and, for η ∈ V0, we define

ζj :=
n∑
k=0

djk(ξ)(ωk(η)− ωk(ξ)), 0 ≤ j ≤ n.

Then
{ζj}j=0,...,n = {ζ0, . . . , ζn}

is a holomorphic coordinate system for V0 centered at ξ and, for 0 ≤ j ≤ n,

∂

∂ζj |ξ
=

n∑
k=0

cjk(ξ)
∂

∂ωk |ξ
= Zj|ξ

We now need a couple of lemmas.

Lemma 6.3.7. With all the previous notations, we have that

dr|ξ = −Im
(
dζ0|ξ

)
Proof. First we note that

dr = ∂r + ∂r = ∂r + ∂r = 2Re∂r

since r is real.
So we have that

dr|ξ = 2Re
n∑
j=0

∂r

∂ζj
(ξ)dζj(ξ) =
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using the last equality of definition 6.3.6,

= 2Re
n∑
j=0

(Zjr)(ξ)dζj|ξ =

since Zj is tangential to M , for j = 1, . . . , n,

= 2Re
(
(Z0r)(ξ)dζ0|ξ

)
.

Since Z0 = 1
2
(T − iJT ) and T is tangential, Re(Z0r) = 0. Hence, it’s clear

that

2Re ((Z0r)dζ0) = 2Re(Z0r)Re(dζ0)−2Im(Z0r)Im(dζ0) = −2Im(Z0r)Im(dζ0).

On the other hand, with a straighforward calculations,

2Im(Z0r) = 2Im < dr, Z0 >= − < dr, JT >=

= − < J∗dr, T >=< i(∂ − ∂)r, T >=< τ, T >= 1.

Thus
dr|ξ = −2Im(Z0r0|ξ)Im(dζ0|ξ) = −Im

(
dζ0|ξ

)
and the proof is complete.

In particular, ζ1, . . . , ζn,Re (ζ0) form a coordinate system for a neighbor-
hood of ξ in M0, which is a first approximation to normal coordinates.

Lemma 6.3.8. Again, with the previous notations, we can say

∂2r

∂ζj∂ζk
(ξ) = δjk, for 1 ≤ j, k ≤ n.

Proof. Using again definition 6.3.6 and the fact that r is real, we can say

∂2r

∂ζj∂ζk
(ξ) = 2 < ∂∂r, Zj ∧ Zk > (ξ) =< d(∂ − ∂)r, Zj ∧ Zk > (ξ) =

= −i < dτ, Zj ∧ Zk > (ξ) = δjk

by definition of Levi form, since the Zk’s are orthonormal. This prove the
proposition.

Proposition 6.3.9.
From lemmas 6.3.7 and 6.3.8, we see that the Taylor expansion of r at ξ in
the coordinates {ζj}j=0,...,n is

r = −Imζ0 +
n∑
j=1

|ζj|2 + Re
n∑

j,k=0o1

∂2r

∂ζj∂ζk
(ξ)ζjζk +O(|ζ0||ζ|+ |ζ|3)
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Definition 6.3.10.
We now define new coordinates z0, . . . , zn near ξ using the so called Levi
Procedure. We set

zj := ζj, for 1 ≤ j ≤ n,

and

z0 := ζ0 − i
n∑

j,k=1

∂2r

∂ζj∂ζk
(ξ)ζjζk.

Observation 6.3.11. With the last definition, we can write that

∂

∂zj |ξ
=

∂

∂ζj |ξ
= Zj|ξ , for all j = 0, . . . , n.

In particular we have that det
(
∂zj
∂ζk

(ξ)
)
j,k=0,...,n

= 1; so {zj}j=0,...,n =

{z0, . . . , zn} in fact form a coordinate system near ξ.

Proposition 6.3.12.
Moreover, using proposition 6.3.9 and the new coordinates, r now has the
Taylor expansion

r = −Imz0 +
n∑
j=1

|zj|2 +O(|z0||z|+ |z|3) = −Imζ0 +
n∑
j=1

|zj|2 +O3

while O3 has the same meaning as in definition 6.2.6, with z0 repleacing t.

Observation 6.3.13. The significance of proposition 6.3.12 is that M is
highly tangent at ξ to the hypersurface {z ∈ Cn+1 / Imz0 =

∑n
j=1 |zj|2},

which is the geometric model for the Heisenberg group (see chapter 2.2).

Definition 6.3.14.
If we define xj and yj, j = 1, . . . , n, by

zj = xj + iyj, j = 1, . . . , n,

and
t := Rez0,

then
{x1, . . . , xn, y1, . . . , yn, t}

form a coordinate system for a neighborhood of ξ on M . They will be our
Normal Coordinates.
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Now we proceed to show that they have the desired properties.

Notation 6.3.15. As in proposition 6.3.12, we use the notation Ok for func-
tions on either M or V , with the understanding that z0 replaces t in the latter
case. We note that with this convention the restriction of an Ok function on
V to M is again Ok.

Theorem 6.3.16.
We are finally ready to write

Zj =
∂

∂zj
+ izj

∂

∂t
+

n∑
k=1

O1 ∂

∂zk
+O2 ∂

∂t

and

T =
∂

∂t
+

n∑
k=1

O1 ∂

∂zk
+

n∑
k=1

O1 ∂

∂zk
+O1 ∂

∂t

Proof. The assertion about T is simply that

T|ξ =
∂

∂t |ξ
,

which is true since

∂

∂t |ξ
= 2Re

(
∂

∂z0 |ξ

)
= 2Re

(
Z0|ξ

)
= T|ξ .

To prove the assertion about Zj, we wish to construct a local basis {Z̃1, . . . , Z̃n}
for T 1,0(M) near ξ such that

Z̃j =
∂

∂zj
+ izj

∂

∂t
+O2 ∂

∂t
.

If we can do it, we’ll have

Z̃j|ξ =
∂

∂zj |ξ
= Zj|ξ

and hence

Zj = Z̃j +
n∑
k=1

Z̃k

and the theorem follows.
What is left now is to actually construct such a basis. In order to find vector
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fields which are both holomorphic and tangent to M , we introduuce the (non-
holomorphic) coordinate system (x1, . . . , xn, y1, . . . , yn, t, r) for V near ξ.
In these coordinates, M is the hiperplane {r = 0}, so the vector fields ∂

∂xj
,

∂
∂yj

and ∂
∂t

restricted to M are identical with the vector fields ∂
∂xj

, ∂
∂yj

and
∂
∂t

on M in the normal coordinates (x1, . . . , xn, y1, . . . , yn, t) on M . We can
also say that a vector field on V is tangent to M ⇔ the coefficients of ∂

∂r

in it is zero. The almost-complex structure J is given in terms of the old
coordinates of definition 6.3.10 (z0, . . . , zn) = (x0, . . . , xn, y0, . . . , yn) by the
matrix

J0 =



0 −1 0 . . . . . . 0

1 0 −1
. . .

...

0 1
. . . . . . . . .

...
...

. . . . . . . . . −1 0
...

. . . 1 0 −1
0 . . . . . . 0 1 0


.

Therefore, in the new (non-holomorphic) coordinate, it’s given by AJ0A
−1,

whereA is the Jacobian matrix of the transformation (x0, . . . , xn, y0, . . . , yn)→
(t, r, x1, . . . , xn, y1, . . . , yn).
Since t = x0 and r = −y0 +

∑n
j=1(x2

j + y2
j ) +O3, a straightforward calcutal-

ion shows that the projection P = 1
2
(I − iJ) onto the holomorphic vectors is

given by

P

(
∂

∂t

)
=

1

2

(
∂

∂t
+ i

∂

∂r

)
+O1 ∂

∂t
+O1 ∂

∂r
,

P

(
∂

∂r

)
=

1

2

(
∂

∂r
− i ∂

∂t

)
+O1 ∂

∂t
+O1 ∂

∂r
,

P

(
∂

∂xj

)
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
+ i

(
xj
∂

∂t
− yj

∂

∂r

)
+O2 ∂

∂t
+O2 ∂

∂r
,

P

(
∂

∂yj

)
=

1

2

(
∂

∂yj
+ i

∂

∂xj

)
+ i

(
yj
∂

∂t
− xj

∂

∂r

)
+O2 ∂

∂t
+O2 ∂

∂r
,

for j = 1, . . . , n. We denote the coefficients of ∂
∂r

in P
(
∂
∂r

)
by a. Then, near

ξ,

a−1 = 2 +O1 6= 0

and

a−1P

(
∂

∂r

)
=

∂

∂r
− a−1

(
1

2
i+O1

)
∂

∂t
.
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Also we can compute

1

2
P

(
∂

∂xj
− i ∂

∂yj

)
=

1

2

(
∂

∂xj
− i ∂

∂yj

)
+

1

2

(
(ixj + yj)

∂

∂t
+ (−iyj + xj)

∂

∂r

)
+

+O2 ∂

∂t
+O2 ∂

∂r
=

∂

∂zj
+

1

2
i(zj +O2)

∂

∂t
+

1

2
i(zj +O2)

∂

∂r

for all j = 1, . . . , n. We call b the coefficients of ∂
∂r

in this expression: b =
1
2
i(zj +O2).

Now we set

Z̃j :=
1

2
P

(
∂

∂xj
− i ∂

∂yj

)
− ba−1P

(
∂

∂r

)
.

Then we can compute

Z̃j =
∂

∂zj
+

1

2
i(zj +O2)

∂

∂t
+ ba−1(

1

2
i+O1)

∂

∂t
=

=
∂

∂zj
+

1

2
i(zj +O2)

∂

∂t
+

1

2
i(zj +O2)(2 +O1)(

1

2
i+O1)

∂

∂t
=

=
∂

∂zj
+ izj

∂

∂t
+O2 ∂

∂t
.

Thus Z̃j is tangent to M , has the required form and lies in T 1,0(M) by
construction. Then the claim, and so the theorem, is proved.

As in paragraph 6.2.2, we wish now to let the base point ξ vary to study
the regularity of these coordinates.

Notation 6.3.17. Exactly as in paragraph 6.2.2, taken (ξ, η) ∈M ×M , we
denote the coordinates (z1, . . . , zn, t) of η with respect to ξ by

Θ(ξ, η) = (z1(ξ, η), . . . , zn(ξ, η), t(ξ, η)).

Again, we call Θ our Normal Coordinate Map.

Observation 6.3.18. Looking back at the four properties of theorem 6.2.17,
it’s clear from the construction that Θ depends smoothly on (ξ, η) ∈M ×M
(property 2.). Moreover, properties 3. and 4. of Θ in 14.10 are still valid,
with the same proof. Property 1. is not quite true, but we have the following
subsitute result.

Theorem 6.3.19.

zj(ξ, η) = −zj(η, ξ) +O2
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and
t(ξ, η) = −t(η, ξ) +O3

where Ok means “Ok of η with respect to ξ” or viceversa; the same proof
works both ways.

Proof. We refer to the definitions of zj and t in terms of the original coordi-
nates {ωj}j=0,...,n on V0 (see notation 6.3.3). First, by the definition of ζj at
6.3.6, we have

zj(ξ, η) + zj(η, ξ) =
n∑
k=0

(djk(ξ)− djk(η))(ωk(η)− ωk(ξ)), 0 ≤ j ≤ n.

which is O2 in the sense that it vanishes to second order in all directions as
η approches ξ. That proves the first equality.
Next, by definition 6.3.10, we write

z0(ξ, η) = ζ0(ξ, η)− i
n∑

j,k=1

∂2r

∂ζj∂ζk
(ξ)ζj(ξ, η)ζk(ξ, η) =

adding the case j, k = 0,

= ζ0(ξ, η)− i
n∑

j,k=0

∂2r

∂ζj∂ζk
(ξ)ζj(ξ, η)ζk(ξ, η) +O3(ξ, η) =

using the fact that the quadratic form given by second derivatives is invariant
under linear changes of coordinates,

=
n∑
k=0

d0k(ξ)(ωk(η)−ωk(ξ))−i
n∑

j,k=0

∂2r

∂ωj∂ωk
(ξ)(ωj(η)−ωj(ξ))(ωk(η)−ωk(ξ))+O3(ξ, η).

Therefore we get

z0(ξ, η) + z0(η, ξ) =
n∑
k=0

(d0k(ξ)− d0k(η))(ωk(η)− ωk(ξ))+

−i
n∑

j,k=0

(
∂2r

∂ωj∂ωk
(ξ) +

∂2r

∂ωj∂ωk
(η)

)
(ωj(η)−ωj(ξ))(ωk(η)−ωk(ξ)) +O3(ξ, η)

and we call this equality (∗). Next, by lemma 6.3.7,

dr|ξ = −Imdζ0|ξ = −Im
n∑
k=0

d0k(ξ)dωk|ξ =
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=
1

2i

n∑
k=0

(
d0k(ξ)dωk − d0k(ξ)dωk

)
k|ξ
,

which implies that

d0k(ξ) = −2i
∂r

∂ωk
(ξ), k = 0, . . . , n.

But this is valid for any ξ, so

d0k = −2i
∂r

∂ωk
, k = 0, . . . , n.

Expanding d0k in a Taylor series at ξ, we have then

d0k(η)− d0k(ξ) = −2i
n∑
j=0

∂2r

∂ωk∂ωj
(ξ)(ωj(η)− ωj(ξ))+

−2i
n∑
j=0

∂2r

∂ωk∂ωj
(ξ)(ωj(η)− ωj(ξ)) +O2(ξ, η).

On the other hand, expanding d0k at η, we get

d0k(ξ)− d0k(η) = −2i
n∑
j=0

∂2r

∂ωk∂ωj
(ξ)(ωj(ξ)− ωj(η))+

−2i
n∑
j=0

∂2r

∂ωk∂ωj
(ξ)(ωj(η)− ωj(ξ)) +O2(η, ξ).

But here the errorO2(η, ξ) is second order in all directions,so it’s alsoO2(ξ, η).
Therefore, subtracting the first from the second and divinding by 2, we obtain

d0k(η)− d0k(ξ) = i
n∑
j=0

(
∂2r

∂ωk∂ωj
(ξ) +

∂2r

∂ωk∂ωj
(η)

)
(ωj(η)− ωj(ξ))+

+i
n∑
j=0

(
∂2r

∂ωk∂ωj
(ξ) +

∂2r

∂ωk∂ωj
(η)

)
(ωj(η)− ωj(ξ)) +O2(ξ, η).

Substituting the last result in (∗), we have immediately

z0(ξ, η) + z0(η, ξ) =

i

n∑
j,k=0

(
∂2r

∂ωk∂ωj
(ξ) +

∂2r

∂ωk∂ωj
(η)

)
(ωk(η)− ωk(ξ))(ωj(η)− ωj(ξ)) +O3(ξ, η)

But this sum is real, so

t(ξ, η) + t(η, ξ) = Re (z0(ξ, η) + z0(η, ξ)) = O3(ξ, η).

This completes the proof.
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6.4 An Example of Normal Coordinates

In this paragraph we want to show an explicit simple example about how
we find our Normal Coordinates and how we use them to rewrite a basis of
T (M) in the form that resemble the Heisenberg group (see theorem 6.2.8).

Here we take n = 1 and M = R3. So we have that

(x, y, θ) ∈M

is a coordinate system and

∂x, ∂y, ∂θ ∈ T (M)

is a basis of T (M).
We fix a point ξ0 = (x0, y0, θ0) ∈ M . Locally, close to ξ0, we take another
basis for T (M):

X1 = (− cos θ0 + (θ − θ0) sin θ0)∂x − (sin θ0 + (θ − θ0) cos θ0)∂y

X2 = ∂θ

X3 = 1
4

sin θ0∂x − 1
4

cos θ0∂y

X1, X2 are obviously linearly indipendent and X3 = −1
4
[X1, X2].

In fact,

[X1, X2] = X1X2−X2X1 = (− cos θ0 + (θ − θ0) sin θ0) ∂2
xθ−(sin θ0+(θ−θ0) cos θ0)∂2

yθ+

−∂θ(− cos θ0∂x + (θ − θ0) sin θ0∂x − sin θ0∂y − (θ − θ0) cos θ0∂y) =

= − cos θ0∂
2
xθ + (θ − θ0) sin θ0∂

2
xθ − sin θ0∂

2
yθ − (θ − θ0) cos θ0∂

2
yθ+

+ cos θ0∂
2
θx−sin θ0∂x−(θ−θ0) sin θ0∂

2
θx+sin θ0∂

2
θy+cos θ0∂y+(θ−θ0) cos θ0∂

2
θy =

= − sin θ0∂x + cos θ0∂y = −4X3.

Thus {X1, X2, X3} is a basis for T (M).

We want an explicit calculation of the exponential map

Eξ0 : Ũξ0 ⊂ R3 →M

u = (a, b, c) 7→ Eξ0(u) = Eξ0(a, b, c)

where Eξ0(a, b, c) = γ(1) and γ(s), 0 ≤ s ≤ 1, is the integral curve of the
vector field X = aX1 + bX2 + cX3 with γ(0) = ξ0.
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In order to compute it, first we have to solve the Cauchy Problem.
So now we look for the integral curve γ : [0, 1]→M , that is the solution of:{

γ̇(s) = XI (γ(s))

γ(0R) = ξ0

where

XI =

a(− cos θ0 + (θ − θ0) sin θ0) + c
4

sin θ0

−a(sin θ0 + (θ − θ0) cos θ0)− c
4

cos θ0

b

 .

We denote γ(s) = (γ1(s), γ2(s), γ3(s)). So

γ̇(s) = XI (γ(s))⇔

⇔


γ̇1(s) = −a cos θ0 + a(γ3(s)− θ0) sin θ0 + c

4
sin θ0

γ̇2(s) = −a sin θ0 − a(γ3(s)− θ0) cos θ0 − c
4

cos θ0

γ̇3(s) = b

using the boundary conditions,

⇒


γ3(s) = bs+ θ0

γ1(s) = −as cos θ0 + a bs
2

2
sin θ0 + cs

4
sin θ0 + x0

γ2(s) = −as sin θ0 − a bs
2

2
cos θ0 − cs

4
cos θ0 + y0.

Then, for s = 1 we have

(∗)


x = γ1(1) = x0 − a cos θ0 + 1

2
ab sin θ0 + c

4
sin θ0

y = γ2(1) = y0 − a sin θ0 − 1
2
ab cos θ0 − c

4
cos θ0

θ = γ3(1) = b+ θ0

.

At the end we really found

Eξ0(a, b, c) = γ(1) = (x, y, θ) ∈M.

We know that there exist Uξ0 ⊂ R3 and Vξ0 ⊂M such that

Eξ0 : Uξ0 → Vξ0

is a diffeomorphism.
It follows also that

E−1
ξ0

: Vξ0 → Uξ0

Eξ0(a, b, c) 7→ (a, b, c)
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is a coordinate mapping on Vξ0 and (a, b, c) are our Normal Coordinates. So
we invert the system to see (a, b, c) explicitly.
From the system (∗), note that b = θ − θ0, we get{

x− x0 = −a cos θ0 + 1
2
a(θ − θ0) sin θ0 + c

4
sin θ0

y − y0 = −a sin θ0 − 1
2
a(θ − θ0) cos θ0 − c

4
cos θ0

⇒
(
x− x0

y − y0

)
=

(
− cos θ0 + 1

2
(θ − θ0) sin θ0

1
4

sin θ0

− sin θ0 − 1
2
(θ − θ0) cos θ0 −1

4
cos θ0

)(
a
c

)
and we name

A =

(
− cos θ0 + 1

2
(θ − θ0) sin θ0

1
4

sin θ0

− sin θ0 − 1
2
(θ − θ0) cos θ0 −1

4
cos θ0

)
.

Then

detA =
1

4
cos2 θ0−

1

8
(θ−θ0) sin θ0 cos θ0+

1

4
sin2 θ0+

1

8
(θ−θ0) cos θ0 sin θ0 =

1

4

and so

A−1 =

(
− cos θ0 − sin θ0

4 sin θ0 + 2(θ − θ0) cos θ0 −4 cos θ0 + 2(θ − θ0) sin θ0

)
.

Thus we have that (
a
c

)
= A−1

(
x− x0

y − y0

)
⇔

⇔
(
a
c

)
=

(
− cos θ0 − sin θ0

4 sin θ0 + 2(θ − θ0) cos θ0 −4 cos θ0 + 2(θ − θ0) sin θ0

)(
x− x0

y − y0

)

⇒


a = − cos θ0(x− x0)− sin θ0(y − y0)

b = θ − θ0

c = (4 sin θ0 + 2(θ − θ0) cos θ0) (x− x0) + (−4 cos θ0 + 2(θ − θ0) sin θ0) (y − y0)

.

Now that we found the normal coordinates, we want to show how X1, X2, X3

react when we write them using the new coordinates.
So we take f : R3 → C, f(a, b, c) = f(a(x, y, θ), b(x, y, θ), c(x, y, θ)) and close
to ξ0 we can write

(?)


∂xf(a, b, c) = − cos θ0∂af(a, b, c) + (4 sin θ0 + 2(θ − θ0) cos θ0) ∂cf(a, b, c)

∂yf(a, b, c) = − sin θ0∂af(a, b, c) + (−4 cos θ0 + 2(θ − θ0) sin θ0) ∂cf(a, b, c)

∂θf(a, b, c) = ∂bf(a, b, c) + (2 cos θ0(x− x0) + 2 sin θ0(y − y0)) ∂cf(a, b, c)

.
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Then we find 
X1f(a, b, c) = (∂a + 2b∂c) f(a, b, c)

X2f(a, b, c) = (∂b − 2a∂c) f(a, b, c)

X3f(a, b, c) = ∂cf(a, b, c)

that actually is the basis of T (Hn) (see definition 2.1.8 and theorem 6.2.8).

In fact,

X1f(a, b, c) = (− cos θ0+(θ−θ0) sin θ0)∂xf(a, b, c)−(sin θ0+(θ−θ0) cos θ0)∂yf(a, b, c).

Substituting from (?), this expression has now terms in ∂a and in ∂c. We
isolate them and deal with them separately.
∂a)

(− cos θ0 + (θ− θ0) sin θ0)(− cos θ0)∂a− (sin θ0 + (θ− θ0) cos θ0)(− sin θ0)∂a =

= (cos2 θ0 − (θ − θ0) sin θ0 cos θ0 + sin2 θ0 + (θ − θ0) cos θ0 sin θ0)∂a = ∂a

∂c)
(− cos θ0 + (θ − θ0) sin θ0) (4 sin θ0 + 2(θ − θ0) cos θ0) ∂c+

−(sin θ0 + (θ − θ0) cos θ0) (−4 cos θ0 + 2(θ − θ0) sin θ0) ∂c =

=
(
−4 cos θ0 sin θ0−2(θ−θ0) cos2 θ0+4(θ−θ0) sin2 θ0+2(θ−θ0)2 sin θ0 cos θ0+

+4 sin θ0 cos θ0−2(θ−θ0) sin2 θ0+4(θ−θ0) cos2 θ0−2(θ−θ0)2 sin θ0 cos θ0

)
∂c = +2b∂c.

Then
X1f(a, b, c) = (∂a + 2b∂c) f(a, b, c).

The second one is

X2f(a, b, c) = ∂θf(a, b, c) = ∂bf(a, b, c)+(2 cos θ0(x− x0) + 2 sin θ0(y − y0)) ∂cf(a, b, c).

Firse we compute

2 cos θ0(x− x0) = 2 cos θ0

(
−a cos θ0 +

1

2
ab sin θ0 +

c

4
sin θ0

)
=

= −2a cos2 θ0 + ab cos θ0 sin θ0 +
1

2
c cos θ0 sin θ0,

and

2 sin θ0(y − y0) = 2 sin θ0

(
−a sin θ0 −

1

2
ab cos θ0 −

c

4
cos θ0

)
=
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= −2a sin2 θ0 − ab cos θ0 sin θ0 −
1

2
c sin θ0 cos θ0.

Then we get
X2f(a, b, c) = (∂b − 2a∂c) f(a, b, c).

Finally we look at X3.

X3f(a, b, c) =
1

4
sin θ0∂xf(a, b, c)− 1

4
cos θ0∂yf(a, b, c).

Substituting again from (?), we have terms in ∂a and in ∂c. As for X1, we
isolate them and deal with them separately.
∂a)

1

4
sin θ0(− cos θ0)∂a −

1

4
cos θ0(− sin θ0)∂a = 0

∂c)

1

4
sin θ0 (4 sin θ0 + 2(θ − θ0) cos θ0) ∂c−

1

4
cos θ0 (−4 cos θ0 + 2(θ − θ0) sin θ0) ∂c =

=

(
sin2 θ0 +

1

2
(θ − θ0) sin θ0 cos θ0 + cos2 θ0 −

1

2
(θ − θ0) cos θ0 sin θ0

)
∂c = ∂c.

Then
X3f(a, b, c) = ∂cf(a, b, c)

and that completes the exericise.



Chapter 7

Subelliptic Estimates for 2b on
M

Goal. In this final chapter we want to study the ∂b-Laplacian 2b on a CR
manifold M . The ∂b-Laplacian is not elliptic, since it has a one-dimensional
characteristic set. However, under certain conditions, it is possible to estabish
a 1

2
-estimate for the 2b operator and also to prove its hypoellipticity. At last,

we will also show the existence and regularity theorems of the ∂b equation.

7.1 Subelliptic Estimates for Qb

Recall 7.1.1. Let (M,T 1,0(M)) be a compact orientable CR manifold of real
dimension 2n+ 1 with n ≥ 1. We already described its structure and defined
the tangent ∂b operator in sections 1.3, 1.4 and 1.5. Then, in paragraph 6.1,
we studied ∂b and we defined it’s adjoint ∂

∗
b and the 2b operator in the case

of k-strongly pseudoconvex CR manifolds.

Observation 7.1.2. Although here we are not asking for the k-strongly
pseudoconvexity, we can think about our operators as in definition 6.1.14
and propositions 6.1.15 and 6.1.16. In short we’ll introduce a condition even
weaker than the k-strongly pseudoconvexity.

Definition 7.1.3.
In order to give subelliptic estimates, we restrict ∂b to the Hilbert spaces of
L2

0,q(M) of (0, q)-forms with L2 coefficients.

Then we can write the domain of ∂b as

Dom(∂b) :=
{
φ ∈ L2

0,q(M) / ∂bφ ∈ L2
0,q+1(M)

}
.

113
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We can now define ∂
∗
b in the standard way (as in definition 6.1.14) and we

say that

Dom(∂
∗
b) :=

{
φ ∈ L2

0,q(M) / ∃g ∈ L2
0,q−1(M) s.t. < g, ψ >=< φ, ∂bψ >

∀ψ ∈ Dom(∂b), ψ (p, q − 1)− form
}
.

Finally the classical definition of 2b := ∂b∂
∗
b +∂

∗
b∂b yields that the Laplacian

is defined on

Dom(2b) :=
{
φ ∈ L2

0,q(M) / φ ∈ Dom(∂b) ∩Dom(∂
∗
b),

∂bφ ∈ Dom(∂
∗
b) and ∂

∗
bφ ∈ Dom(∂b)

}
.

Notation 7.1.4. We denote W s(U), s > 0, the Sobolev space defined by

W s(U) = {u ∈ L2(U) / |û(ξ)|(1 + |ξ|2)
s
2 ∈ L2(U)}

that is an Hilbert space with the norm

||u||s = ||û(ξ)(1 + |ξ|2)
s
2 ||L2 .

Accordingly, we call W s
0,q(U) the space of (0, q)-forms with coefficients in

W s(U).

Definition 7.1.5.
We define an Hermitian form Qb on smooth (0, q)-forms by

Qb(φ, ψ) := (∂bφ, ∂bψ) + (∂
∗
bφ, ∂

∗
bψ) + (φ, ψ) = ((2b + I)φ, ψ)

for φ, ψ ∈ E0,q(M) (we recall this notation from chapter 1.4).

Recall 7.1.6. Locally we can assume we have an orthonormal basis
{L1, . . . , Ln, L1, . . . , Ln, T} for CT (M), and its dual basis on CT (M)∗

{ω1, . . . , ωn, ω1, . . . , ωn, τ}.
Then we can express a smooth (0, q)-form φ as

φ =
′∑

|J |=q

φJω
J

where φJ ’s are smooth functions.
We remind, from proposition 6.1.13, that a direct computation yields

∂bφ =
′∑

|J |=q

∑
j=1,...,n

(LjφJ)ωj ∧ ωJ + E(φ)
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and, from proposition 6.1.15,

∂
∗
bφ = −

′∑
|K|=q−1

∑
j=1,...,n

(LjφjK)ωK + E(φ).

Notation 7.1.7. We also abbreviate ||φ||L2 with ||φ|| and write

||φ||2L :=
∑
k,J

||LkφJ ||2 + ||φ||2

and
||φ||2

L
:=
∑
k,J

||LkφJ ||2 + ||φ||2.

Recalling theorem 1.5.6, we first state a general result.

Definition 7.1.8.
Let D be a relatively compact subset with C∞ boundary in a complex Her-
mitian manifold of complex dimension n+ 1, with n ≥ 1.
D is said to satisfy the condition Z(q), 1 ≤ q ≤ n, if the Levi form associated
with D has

at least n+ 1− q positive eigenvalues

or
at least q + 1 negative eigenvalues

at every boundary point.

Observation 7.1.9. Obviously condition Z(q) is satisfied for all q with 1 ≤
q ≤ n on any strongly pseudoconvex domain.

Theorem 7.1.10.
Let D be a relatively compact subset with C∞ boundary in a complex Her-
mitian manifold of complex dimension n + 1, with n ≥ 1. Suppose that
condition Z(q) holds for some q, 1 ≤ q ≤ n.
Then we have ∫

∂D

|f |2dσ ≤ C
(
||∂f ||2 + ||∂∗f ||2 + ||f ||2

)
for f ∈ E0,q(D) ∩Dom(∂

∗
).

Furtheremore we have that

||f || 1
2
≤ C

(
||∂f ||+ ||∂∗f ||+ ||f ||

)
for f ∈ Dom(∂) ∩Dom(∂

∗
), where C > 0 is independent of f .
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Proof. Let ρ be a defining function for D, let x0 ∈ D be a boundary point
and let U be an open neighborhood of x0. For any f ∈ E0,q(D) ∩ Dom(∂

∗
),

with support in U , the proof of proposition 5.3.3[1] (with φ ≡ 0) shows that

Qb(f, f) =
′∑

|J |=q

∑
k=1,...,n

||LkfJ ||2 +
′∑

|J |=q

∑
j,k=1,...,n

∫
∂D∩U

ρjkfjJfkJdσ+

+O
((
||∂f ||+ ||∂∗f ||

)
||f ||+ ||f ||L||f ||

)
.

We may assume that the Levi form is diagonal at x0, namely ρjk(x) = λjδjk+
bjk(x) for 1 ≤ j, k ≤ n, where λj’s are the eigenvalues of the Levi form at x0,
δjk is the Kronecker delta and bjk(x0) = 0.
If follows that

′∑
|J |=q

∑
j,k=1,...,n

∫
∂D∩U

ρjkfjJfkJdσ =
′∑

|J |=q

(∑
k∈J

λj

)∫
∂D

|fJ |2dσ+cO

 ′∑
|J |=q

∫
∂D

|fJ |2dσ


where c > 0 can be made arbitrary small if U is chosen sufficiently small.
Integration by parts also shows

||LkfJ ||2 = −
(
[Lk, Lk]fJ , fJ

)
+ ||LkfJ ||2 +O (||f ||L||f ||) ≥

≥ −λk
∫
∂D

|fJ |2dσ − c
∫
∂D

|fJ |2dσ +O
(
||f ||L||f ||+ ||f ||2

)
.

Hence, if condition Z(q) holds on ∂D, then for each fixed J either there
is k1 ∈ J such that λk1 > 0 or there is k2 /∈ J such that λk2 < 0. Then, for
ε > 0 we have two cases:

Qb(f, f) ≥ ε

′∑
|J |=q

∑
k=1,...,n

||LkfJ ||2 + ε

′∑
|J |=q

( ∑
k∈J,λk<0

λk

)∫
∂D

|fJ |2dσ+

+
′∑

|J |=q

(
(λk1 − c)

∫
∂D

|fJ |2dσ
)

+O
((
||∂f ||+ ||∂∗f ||

)
||f ||+ ||f ||L||f ||+ ||f ||2

)
or

Qb(f, f) ≥ ε

′∑
|J |=q

∑
k=1,...,n

||LkfJ ||2 + ε

′∑
|J |=q

( ∑
k∈J,λk<0

λk

)∫
∂D

|fJ |2dσ+
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+(1− ε)
′∑

|J |=q

(
(−λk2 − c)

∫
∂D

|fJ |2dσ
)

+O
((
||∂f ||+ ||∂∗f ||

)
||f ||+ ||f ||L||f ||+ ||f ||2

)
Then, choosing ε and c small enough and using small and large constants,
we obtain the first statement. The second one follows by a partition of unity
argument.

Now we return to the subelliptic estimate for 2b on (0, q)-forms on M .

Observation 7.1.11. If the CR manifold M is embedded as the boundary
of a complex manifold D, topologically one can’t distinguish whether M is
the boundary of D or M is the boundary of the complement of D.
Thus, in order to obtain a subelliptic estimate for (0, q)-forms on M similar
to theorem 7.1.10, we shall assume that condition Z(q) holds on both D
and its complement Dc. That’s equivalent to say that conditions Z(q) and
Z(n− q) hold on D.

Now we write this condition formally in terms of eigenvalues and we call
it Y (q).

Definition 7.1.12.
Let M be an oriented CR manifold of real dimension 2n+ 1, with n ≥ 1.
M is said to satisfy the condition Y (q), 1 ≤ q ≤ n, if the Levi form associated
with M has at least either

max{n+ 1− q, q + 1} eigenvalues of the same sign

or

min{n+ 1− q, q + 1} pairs of eigenvalues of opposite sign

at every point of M .

Observation 7.1.13. It follows that condition Y (q) holds on any strongly
pseudoconvex CR manifold M when 1 ≤ q ≤ n − 1 (they satisfy the first
condition). On the other hand Y (n) is violated on any CR manifold.

Observation 7.1.14. From here to the end of this chapter we’ll suppose
almost everywhere that condition Y (q), for some q with 1 ≤ q ≤ n, holds
on a compact, oriented, CR manifold (M,T 1,0(M)) of real dimension 2n+ 1,
n ≥ 1.
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Theorem 7.1.15.
Under the hypothesis of observation 7.1.14, we have

||φ||21
2
≤ CQb(φ, φ)

uniformly ∀φ ∈ E0,q(M), C > 0.

Proof. Since condition Y (q) implies that the vector fields L1, . . . , Ln, L1, . . . , Ln
and their Lie brackets span the whole complex tangent space, using a parti-
tion of unity, the proof is a consequence of 8.2.5[1] in case m = 2, and of the
following theorem.

Theorem 7.1.16.
Under the hypothesis of observation 7.1.14, for any x0 ∈M there is a neigh-
borhood Vx0 of x0 s.t.

||φ||2L + ||φ||2
L

+
∑
|J |=q

|Re(TφJ , φJ)| ≤ CQb(φ, φ)

uniformly ∀φ ∈ E0,q(M) with support contained in Vx0 , C > 0.

Proof. From recall 7.1.6 we take φ =
∑′
|J |=q φJω

J with φJ ∈ C∞(Vx0).
That yields

∂bφ =
′∑

|J |=q

∑
j=1,...,n

(LjφJ)ωj ∧ ωJ + E(φ).

Then

||∂bφ||2 =
′∑

|J |=q

∑
j /∈J

||LjφJ ||2 +
′∑

|J |,|L|=q

∑
j,l=1,...,n

εjJlL < LjφJ , LlφL > +

+O(||φ||L||φ||).

where

εjJlL :=


0, if l ∈ L or j ∈ J or {j} ∪ J 6= {l} ∪ L

sign of the permutation

(
jJ

lL

)
, otherwise

(see also definition 2.4.3).
Using this fact, we rearrange the estimate:

||∂bφ||2 =
′∑

|J |=q

∑
j=1,...,n

||LjφJ ||2 −
′∑

|K|=q−1

∑
j,k=1,...,n

< LjφkK , LkφjK > +
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+O(||φ||L||φ||).

Using integration by parts, we have

< LjφkK , LkφjK >=< −LkLjφkK , φjK > +O(||φ||L||φ||) =

=< LkφkK , LjφjK > + < [Lj, Lk]φkK , φjK > +O(||φ||L||φ||+ ||φ||L||φ||).

Hence, using recall 7.1.6 again, we obtain

||∂bφ||2 =
′∑

|J |=q

∑
j=1,...,n

||LjφJ ||2−||∂
∗
bφ||+

′∑
|K|=q−1

∑
j,k=1,...,n

< [Lj, Lk]φjK , φkK > +

+O(||φ||L||φ||+ ||φ||L||φ||).

To handle the commutator term, we assume the the Levi form is diagonal
at x0 and that c11(x0) 6= 0 (see definition 1.5.2), thanks to condition Y (q). It
follows that c11(x0) = 1

C
> 0 for x0 ∈ Vx0 , if Vx0 is chosen to be small enough.

Now, if f is a smooth function with f(x0) = 0 on M , we have

|Re < TφJ , fφL > | ≤
∣∣∣∣Re <

1

c11

[L1, L1]φJ , fφL >

∣∣∣∣+O(||φ||L||φ||)

≤ C sup
Vx0

|f |
(
||φ||2L + ||φ||2

L

)
+O(||φ||L||φ||).

Thus, if we denote the eigenvalues of the Levi form at x0 by λ1, . . . , λn, we
can write

Qb(φ, φ) =
′∑

|J |=q

∑
j=1,...,n

||LjφJ ||2 +
′∑

|J |=q

∑
j∈J

λj Re < TφJ , φJ > +

+cO(||φ||2L + ||φ||2
L
) +O(||φ||L||φ||) (∗)

where c = supVx0 |f | > 0 can be made arbitrary small, if necessary, by
shrinking Vx0 .
Now we integrate by parts to get

||LjφJ ||2 = ||LjφJ ||2 − λj Re < TφJ , φJ > +

+cO(||φ||2L + ||φ||2
L
) +O(||φ||L||φ||+ ||φ||L||φ||).

Next, we set

σ(J) := {j / λj > 0 if Re(< TφJ , φJ >) > 0 ∨ λj < 0 if Re(< TφJ , φJ >) < 0} .
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It follows that, for any small ε > 0, we have

||φ||2
L
≥ ε||φ||2

L
+ (1− ε)

′∑
|J |=q

∑
j∈σ(J)

||LjφJ ||2 ≥

≥ ε||φ||2
L
− (1− ε)

′∑
|J |=q

∑
j∈σ(J)

λj Re < TφJ , φJ > −c(||φ||2L + ||φ||2
L
)− C||φ||2.

Substituting what we just found in (∗), we obtain

Qb(φ, φ) ≥ ε||φ||2
L
− (1− ε)

′∑
|J |=q

∑
j∈σ(J)

λj Re < TφJ , φJ > +

+
′∑

|J |=q

∑
j∈J

λj Re < TφJ , φJ > −c(||φ||2L + ||φ||2
L
)−O(||φ||L||φ||) =

= ε||φ||2
L

+
′∑

|J |=q

aJ Re < TφJ , φJ > −c(||φ||2L + ||φ||2
L
)−O(||φ||L||φ||),

where
aJ =

∑
j∈J\σ(J)

λj − (1− ε)
∑

j∈σ(J)\J

λj + ε
∑

j∈J∩σ(J)

λj.

Note that, since Y (q) holds at x0, one of the following three cases must hold:

1. If the Levi form has max(n+ 1− q, q+ 1) eigenvalues of the same sign,
then there exists a j ∈ J and k /∈ J so that λj and λk are of the same
sign which may be assumed to be positive, if necessary, by replacing T
by −T .

2. If the Levi form has min(n+1−q, q+1) pairs of eigenvalues of opposite
signs, then there are j, k /∈ J so that λj > 0 and λk < 0.

3. If the Levi form has min(n+1−q, q+1) pairs of eigenvalues of opposite
signs, then there are j, k ∈ J so that λj > 0 and λk < 0.

Then it’s not too hard to verify that, by choosing ε > 0 to be small enough,
aj can have the same sign of Re < TφJ , φJ > (when Re < TφJ , φJ >6= 0).
Then we get,

Qb(φ, φ) ≥ C

||φ||2
L

+
′∑

|J |=q

|Re < TφJ , φJ > | − (sc)||φ||2L − (lc)||φ||2
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where (sc) is a small consant and (lc) is a large one.
Since

||LjφJ ||2 ≤ C
(
||LjφJ ||2 + |Re < TφJ , φJ > |+ cO(||φ||2L + ||φ||2

L
) +O(||φ||L||φ||)

)
,

we can choose c and (sc) sufficiently small to obtain

||φ||2L + ||φ||2
L

+
∑
|J |=q

|Re(TφJ , φJ)| ≤ CQb(φ, φ)

The proof is complete.

Corollary 7.1.17 (Corollary of Theorem 7.1.15).
Under the hypotesis of observation 7.1.14, Qb is compact with respect to
L2

0,q(M).

Proof. Using Friedrichs’ lemma (see D.1[1]) and theorem 7.1.15, we obtain

Qb(φ, φ) ≥ C||φ||21
2

for φ ∈ Dom(∂b) ∩ Dom(∂
∗
b). In particular, Qb is compact with respect to

L2
0,q(M).

7.2 Subelliptic Estimates for 2b + I and 2b

We now focus on the operator 2b + I. It’s easy to see that it’s injective on
L2

0,q(M). We give here a Lemma and then an important theorem.

Lemma 7.2.1. Under the hypothesis of observation 7.1.14, let U be a local
coordinate neighborhood and let {ζk}k=1,...,∞ be a sequence of real smooth
functions supported in U such that ζ = 1 on the support of ζk+1 for all k.
Then, if k = 1, we have

||ζ1φ||21
2
≤ C||(2b + I)φ||2

and, ∀k > 1,

||ζkφ||2k
2

≤ C||ζ1(2b + I)φ||2k−2
2

+ ||(2b + I)φ||2

uniformly ∀φ ∈ E0,q(M) supported in U , with C > 0.
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Proof. The lemma will be proved by induction. Here we identify the function
ζ1 with the operator of the product with ζ1. For k = 1, by theorem 7.1.15,
we have the inequality

||ζ1φ||21
2
≤ CQb(ζ1φ, ζ1φ) = ||∂bζ1φ||2 + ||∂∗bζ1φ||2 + ||ζ1φ||2.

Reminding definition 2.4.4, we estimate the first piece on the right-hand side
as follows:

||∂bζ1φ||2 =< ∂bζ1φ, ∂bζ1φ >=

=< ζ1∂bφ, ∂bζ1φ > + < [∂b, ζ1]φ, ∂bζ1φ >=

=< ∂bφ, ∂bζ
2
1φ > + < ∂bφ, [ζ1, ∂b]ζ1φ > + < [∂b, ζ1]φ, ∂bζ1φ >=

=< ∂
∗
b∂bφ, ζ

2
1φ > + < ∂bζ1φ, [ζ1, ∂b]φ > + < [ζ1, ∂b]φ, [ζ1, ∂b]φ > + < [∂b, ζ1]φ, ∂bζ1φ > .

We can also calculate and note that

Re
(
< ∂bζ1φ, [ζ1, ∂b]φ > + < [∂b, ζ1]φ, ∂bζ1φ >

)
= 0.

A similar argument holds for ||∂∗bζ1φ||2.
Thus we have

||ζ1φ||21
2
≤ CQb(ζ1φ, ζ1φ) ≤ C Re < (2b + I)φ, ζ2

1φ > +O(||φ||2) ≤

≤ C||(2b + I)φ|| · ||φ||+O(||φ||2) ≤

since ||φ||2 ≤ ||(2b + I)φ||,

≤ C||(2b + I)φ||2.

This establishes the initial step.
Let us assume that the assertion is true for all integers up to k − 1, then we
prove it for k. With an pseudodifferential operator argument, we can find

||ζkφ||2k
2

≤ C
(
||ζ1(2b + I)φ||2k−2

2

+ ||ζk−1φ||2k−1
2

)
≤

then, by induction hypothesis,

≤ C
(
||ζ1(2b + I)φ||2k−2

2

+ ||ζ1(2b + I)φ||2k−3
2

+ ||(2b + I)φ||2
)
≤

≤ C
(
||ζ1(2b + I)φ||2k−2

2

+ ||(2b + I)φ||2
)
.

This completes the proof.
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Theorem 7.2.2.
Under the hypothesis of observation 7.1.14, given α ∈ L2

0,q(M), let φ ∈
Dom(2b) be the unique solution of (2b + I)φ = α.
If U ⊂M and α|U ∈ E0,q(U), then φ|U ∈ E0,q(U).
Moreover, if ζ and ζ1 are two cut-off functions supported in U such that
ζ1 = 1 on the support of ζ, then ∀s > 0 there is a constant Cs such that

||ζφ||2s+1 ≤ Cs
(
||ζ1α||2s + ||α||2

)
.

Proof. If α|U is smooth then the estimate follows from lemma 7.2.1. There-
fore it only remains to show that α|U ∈ E0,q(U).
Since Qb is not elliptic, we shall here apply the technique of elliptic regular-
ization to Qb. The sketch of this proof can be found at 8.4.2[1], while the
details about the elliptic regularization are at 5.2.1-5.2.5[1] (pages from 93
to 103). In order to prove the theorem, we will also need A.7 and A.8[1].

A few consequences follow immediately from this theorem.

Theorem 7.2.3.
Suppose the hypothesis of observation 7.1.14, given α ∈ L2

0,q(M), let φ ∈
Dom(2b) be the unique solution of (2b + I)φ = α. Let U ⊂M and let ζ and
ζ1 be two cut-off functions supported in U such that ζ1 = 1 on the support
of ζ.
If α|U ∈ W s

0,q(U) for some s > 0, then ζφ ∈ W s+1
0,q (U) and

||ζφ||2s+1 ≤ C
(
||ζ1α||2s + ||α||2

)
,

with C > 0.

Proof. Let ζ0 be a cut-off function supported in U such that ζ0 = 1 on the
support of ζ1. Choose sequences of smooth (0, q)-forms {βn}n and {γn}n with

suppβn ⊂ suppζ0 and suppγn ⊂ supp(1− ζ0)

such that

βn → ζ0α in W s
0,q(M) and γn → (1− ζ0)α in L2

0,q(M).

Hence αn := βn + γn → α in L2
0,q(M) and ζ1αn → ζ1α in W s

0,q(M).
Let φn ∈ Dom(2b) be the solution of (2b+I)φn = αn, so φn → φ in L2

0,q(M).
Then, theorem 7.2.2 shows

||ζ(φn − φm)||s+1 ≤ C||ζ1(αn − αm)||s + ||αn − αm||s.

It follows that ζφn is Cauchy in W s+1
0,q (M) and limn→∞ ζφn = ζφ in W s+1

0,q (M).
Hence we have

||ζφ||s+1 ≤ C (||ζ1α||s + ||α||) .
This proves the theorem.
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Theorem 7.2.4.
Suppose the hypothesis of observation 7.1.14, given α ∈ L2

0,q(M), let φ ∈
Dom(2b) be the unique solution of (2b + I)φ = α. Let U ⊂M and let ζ and
ζ1 be two cut-off functions supported in U such that ζ1 = 1 on the support
of ζ.
If ζ1α ∈ W s

0,q(M) for some s > 0, and if φ satisfies (2b + λI) = α for some

constant λ, then ζφ ∈ W s+1
0,q (M).

In other words, 2b + λI is hypoelliptic for every λ. Moreover, all the eigen-
forms of 2b are smooth.

Proof. Let α′ := α+(1−λ)φ, then (2b+ I) = α′. The assertion follows from
theorem 7.2.3 and an induction argument.

Theorem 7.2.5.
Suppose the hypothesis of observation 7.1.14 and φ ∈ Dom(2b).

If (2b + I)φ = α, with α ∈ W s
0,q(M), s ≥ 0, then φ ∈ W s+1

0,q (M) and

||φ||s+1 ≤ C||α||s

where the constant C is independent of α.

Here there are some important conseguences:

Corollary 7.2.6. Suppose the hypothesis of observation 7.1.14.
The operator (2b + I)−1 is compact.

Proof. Since (2b + I)−1 is a bounded operator from L2
0,q(M) into W 2

0,q(M),
s ≥ 0, the assertion follows from Rellich’s lemma (see A.8[1]).

Corollary 7.2.7. Suppose the hypothesis of observation 7.1.14.
The operator 2b + I has a discrete spectrum with no finite limit point, and
each eigenvalues occurs with finite moltiplicity. All eigenvalues are smooth.
In particular, Ker(2b) is of finite dimension and consists of smooth forms.

Proof. By corollary 7.2.6, the spectrum of (2b + I)−1 is compact and count-
able with zero as its only possible limit point. Since (2b + I)−1 is injective,
zero is not an eigenvalue of (2b + I)−1 and each eigenvalue has finite molti-
plicity. Also λ is an eigenvalue of 2b + I if and only if λ−1 is an eigenvalue
of (2b + I)−1. This proves the corollary.

Proposition 7.2.8.
Suppose the hypothesis of observation 7.1.14 and let φ ∈ Dom(2b).
2b is hypoelliptic. Moreover, if 2bφ = α with α ∈ W s

0,q(M), s ≥ 0, we have

||φ||2s+1 ≤ C
(
||α||2s + ||φ||2

)
where the constant C > 0 is independent of α.
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Proof. We show the estimate by an induction on s. If s = 0, theorem 7.2.5
implies

||φ||21 ≤ C||(2b + I)φ||2 ≤ C
(
||α||2 + ||φ||2

)
.

In general, if we assume the assertion holds up to step s − 1, we have φ ∈
W s

0,q(M).
We apply theorem 7.2.5 again and, using the induction hypothesis, get

||φ||2s+1 ≤ C||(2b + I)φ||2s ≤ C
(
||2bφ||2s + ||φ||2s

)
≤ C

(
||α||2s + ||φ||2s

)
.

7.3 Solvability and Regularity for the ∂b-Equation

Now that we found the hypoellipticity of 2b, we will use it to study the ∂b-
equation on M and finish this chapter as we did in observation 3.3.5.

Definition 7.3.1.
Let Hb

0,q(M) denote the space of harmonic forms on M , i.e.,

Hb
0,q(M) = Ker(2b).

Thus Hb
0,q(M) consists of smooth harmonic (p, q)-forms and is of finite di-

mension.

Observation 7.3.2. Using corollary 7.2.7, 2b is bounded away from zero on

the orthogonal complement
(
Hb

0,q(M)
)⊥

, namely,

||2bφ|| ≥ λ1||φ||

for all φ ∈ Dom(2b) ∩
(
Hb

0,q(M)
)⊥

, where λ1 is the smallest positive eigen-
value of 2b.

It follows from theorem 7.2.3 and lemma 4.1.1[1] that the range of 2b,
R(2b), is closed. Also the following strong Hodge type decomposition holds
on L2

0,q(M):

Proposition 7.3.3.
Suppose the hypothesis of observation 7.1.14.
L2

0,q(M) admits the strong orthogonal decomposition

L2
0,q(M) = R(2b)⊕Hb

0,q(M) =

= ∂b∂
∗
b (Dom(2b))⊕ ∂

∗
b∂b (Dom(2b))⊕Hb

0,q(M).

where R(2b) denotes the range of 2b.
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Proof. Since R(2b) =
(
Hb

0,q(M)
)⊥

and R(∂b∂
∗
b)⊥R(∂

∗
b∂b), the decomposi-

tion follows.

Definition 7.3.4.
We can thus define the boundary operator as follows

Nb : L2
0,q(M)→ Dom(2b)

If α ∈ Hb
0,q(M), we set

Nbα := 0

If α ∈ R(2b),
Nbα := φ

where φ is the unique solution of 2bφ = α with φ⊥Hb
0,q(M).

Then we extend Nb by linearity.

Observation 7.3.5. It’s easily seen that Nb is a bounded operator.

Notation 7.3.6. Let Hb denote the orthogonal projection from L2
0,q(M) into

Hb
0,q(M).

Theorem 7.3.7.
Suppose the hypothesis of observation 7.1.14.
Then there exists an operator

Nb : L2
0,q(M)→ L2

0,q(M)

such that

1. Nb is a compact operator.

2. for any α ∈ L2
0,q(M), α = ∂b∂

∗
bNbα + ∂

∗
b∂bNbα +Hbα.

3. NbH
b = HbNb = 0.

Nb2b = 2bNb = I −Hb on Dom(2b).

4. If Nb is also defined on L2
p,q+1(M), then Nb∂b = ∂bNb on Dom(∂b).

If Nb is also defined on L2
p,q−1(M), then Nb∂

∗
b = ∂

∗
bNb on Dom(∂

∗
b).

5. Nb(E0,q(M)) ⊂ E0,q(M) and, for each positive integer s, the estimate

||Nbα||s+1 ≤ C||α||s

holds uniformly for all α ∈ W s
0,q(M).
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Proof. 1. follows from proposition 7.2.8 and Rellich lemma (see A.8[1]).
2. is just a restatement of proposition 7.3.3.
3. follows immediately from the definition of Nb.
For 4., if α ∈ Dom(∂b), we use both properties 2. and 3. to get

Nb∂bα = Nb∂b(∂b∂
∗
bNb + ∂

∗
b∂bNb)α = Nb∂b(∂

∗
b∂bNb)α =

= Nb(∂b∂
∗
b)∂bNbα = Nb(∂b∂

∗
b + ∂

∗
b∂b)∂bNbα = Nb2b∂bNbα =

Using point 3.,
= ∂bNbα.

A similar equation holds for ∂
∗
b .

For 5., if α ∈ E0,q(M), then α−Hbα ∈ E0,q(M) and we have

2bNbα = α−Hbα.

Using proposition 7.2.8, 2b is hypoelliptic and then Nbα ∈ E0,q(M). More,
we have

||Nbα||s+1 ≤ C (||2Nbα||s + ||Nbα||) ≤

≤ C
(
||α||s + ||Hbα||s + ||α||

)
≤

≤ C||α||

where in the last step we use that Hb
0,q(M) is of finite dimension to conclude

||Hbα||s ≤ Cs||Hbα|| ≤ Cs||α||.

Corollary 7.3.8. Suppose the hypothesis of observation 7.1.14.
Ran(∂b) is closed on Dom(∂b) ∩ L2

p,q−1(M).

Proof. Since R(∂b)⊥Ker(∂
∗
b), we have R(∂b) = ∂b∂

∗
b (Dom(2b)).

Definition 7.3.9.
Let M be a compact orientable CR manifold. The Szegö projection S on
M is defined to be the orthogonal projection S = Hb from L2(M) into
Hb(M) = Hb

0,0(M).

Theorem 7.3.10.
Let M be a compact orientable CR manifold that satisfy condition Y (1).
Then the Szegö projection S on M is given by

S = I − ∂∗bNb∂b.

Proof. According to theorem 7.3.7, there exists an operator Nb on L2
0,1(M).

The conclusion comes easily.
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Theorem 7.3.7 gives the following solvability and regularity theorem for
∂b.

Theorem 7.3.11.
Let M be a compact orientable CR manifold that satisfy condition Y (1).
For any α ∈ L2

0,q(M) with ∂bα = 0 and Hbα = 0, there is a unique solution

φ of ∂bφ = α with φ⊥Ker(∂b).
If α ∈ E0,q(M), then φ ∈ Ep,q−1(M).

Furthermore, ∀s ≥ 0, if α ∈ W s
0,q(M), then φ ∈ W s+ 1

2
0,q (M) and

||φ||s+ 1
2
≤ C||α||s.

Proof. By point 2. of theorem 7.3.7 we have here α = ∂b∂
∗
bNbα. Then we

simply take φ := ∂
∗
bNbα and φ is unique by the condition φ⊥Ker(∂b). The

smoothness of φ follows from point 5. of theorem 7.3.7.
The estimate can be proved with a partial of unity and pseudodifferential
operator argument.
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