
ALMA MATER STUDIORUM - UNIVERSITY OF BOLOGNA

Department of Computer Science and Engineering

Master Degree in Computer Engineering

ENHANCING QUALITY OF SERVICE

IN SOFTWARE-DEFINED NETWORKS

Supervisor: Professor Antonio CORRADI

Correlator: Professor Mario GERLA

Correlator: Professor Eduardo CERQUEIRA

Correlator: Doctor Luca FOSCHINI

Master’s Thesis of:

Francesco ONGARO

Academic Year 2013–2014

Session I





A mia mamma Rita, mio papà Angelo e mio fratello Luca

« Senza entusiasmo,

non si è mai compiuto niente di grande. »

RALPH WALDO EMERSON





Acknowledgements

« What lies behind us and what lies ahead of us,

are tiny matters compared to what lies within us. »

RALPH WALDO EMERSON

« Stay hungry, stay foolish. »

STEVE JOBS

Anche se apparentemente i ringraziamenti sembrano casa di poco conto se

comparati con l’intera tesi, alle volte richiedono uno sforzo di pensiero e medi-

tazione notevole. Non si vorrebbe far dispetto a nessuno, ma si è perfettamente

consapevoli di quali sono state le persone importanti e i momenti salienti che

hanno contraddistinto questi anni di sacrificio. Seguendo questo percorso im-

pegnativo, ora si è arrivati ad un momento conclusivo ed emozionante ma al

contempo misterioso e fondamentale per ciò che verrà dopo. Un po’ come scol-

linare a poco a poco una vetta dopo lunghe ore di intensa camminata, con vari

momenti di apparente cedimento, ma con la forza e la voglia di arrivare in ci-

ma per godersi lo spettacolo, rafforzato da quella sensazione di stanchezza e

spossatezza tipiche dopo una lunga scarpinata.

“Time flies” i miei compagni alla UCLA mi dicevano diverse volte, e io dice-

vo a loro con un velo di amarezza per l’avvicinarsi del momento del ritorno. Sì,

partirei proprio dall’ultima esperienza, passata all’University of California, Los

Angeles (UCLA) perché è il ricordo più fresco che ho in mente dato che sono

v



vi

passate appena una manciata di settimane dal mio rientro. Questa affascinante

esperienza, inizialmente misteriosa ma rivelatasi poi estremamente positiva e

costruttiva, è stata resa possibile grazie al supporto della mia famiglia e del-

le persone che mi sono state vicine prima e durante i mesi di permanenza a

Los Angeles. Il Professor Antonio Corradi, a cui va un sentito ringraziamento

per il supporto fornito prima e durante la tesi, ha inoltre reso possibile questa

esperienza grazie ai numerosi contatti personali e al prestigio che l’Università

di Bologna, seppur piccola confrontata con altri campus universitari, può van-

tare ed essere orgogliosa di avere (oltre alla invidiata millenaria fondazione).

Grazie inoltre al Professor Paolo Bellavista per i preziosi consigli e il suppor-

to che immancabilmente mi ha fornito anche a 10.000 km di distanza. Grazie

all’Ingegner Luca Foschini, che ha contribuito alla tesi con interessanti spunti

e consigli. All’interno della UCLA, un doveroso e sentito ringraziamento va al

Professor Mario Gerla che mi ha ospitato come Visiting Researcher Scholar all’in-

terno del proprio laboratorio, il Network Research Laboratory (NRL), rendendo la

mia permanenza veramente piacevole e stimolante sotto il profilo accademico.

Da Lui, così come dal Professor Leonard Kleinrock che ho avuto la fortuna

di incontrare, ho imparato che si può essere “grandi” senza bisogno di dover

dimostrare di esserlo. Durante la mia permanenza alla UCLA, ho avuto il pia-

cere di essere inoltre seguito dal Professor Eduardo Cerqueira, che non solo si

è dimostrato di notevole aiuto e supporto per la ricerca inerente alla tesi, ma

ha contribuito allo svolgimento di numerosi meeting utili alla ricerca, nonché

ha reso possibile l’instaurarsi di piacevoli momenti di aggregazione, sfociati

in un vero e sentito rapporto personale di amicizia. Grazie anche al Professor

Giovanni Pau che mi ha sempre fornito utili consigli e suggerimenti con una

franchezza che poche persone hanno.

Ma la fine di questo percorso, contraddistinto dall’esperienza passata alla

UCLA, non può scindersi da ciò che è venuto prima. E’ infatti vero e indiscuti-

bile che, se si è arrivati sin qui, doverosamente si è dovuti passare per una serie

di momenti e situazioni, piacevoli e dure allo stesso tempo, che tuttavia hanno

reso possibile il raggiungimento di questo importante e gratificante traguar-

do. Dice la guida alpina e scalatore M. Confortola: « se per cacciare un sogno

e raggiungerlo servono forza, determinazione, costanza e un istinto infallibi-



vii

le, è altrettanto vero che in montagna, come nella vita e nel lavoro, in vetta si

arriva poco alla volta, campo base dopo campo base, rispettando i tempi e le

fasi di acclimatamento ». Ecco quindi che i ringraziamenti li voglio dedicare

nuovamente alla mia famiglia, che proprio in quegli anni mi ha continuamente

supportato, spronato e aiutato, affinché potessi avvicinarmi ed arrivare in “vet-

ta”. Lunghe e fondamentali passeggiate e chiacchierate con mio fratello Luca,

che ben sa cosa vuol dire affrontare questo percorso universitario, mi hanno

inoltre sempre aiutato, come un faro per i natanti, a mantenere costantemente

la prua puntata nella giusta direzione, anche in difficili e burrascose situazioni.

Sento inoltre dal profondo di ringraziare Giulia che in quegli anni mi è sempre

stata vicina e immancabilmente ha creduto in me. Giulia è stata di grande aiuto

affinché non gettassi mai la spugna ma, anzi, cercassi di arrivare fino alla fine

del match.

Gli amici, anche se in tanti momenti ho purtroppo dovuto centellinare il

tempo con loro per poter arrivare fin qui, è d’obbligo ringraziarli. Grazie per i

momenti passati assieme e per gli aperitivi che hanno contraddistinto e scan-

dito alcune nostre serate. Un abbraccio in particolare a Mattia, la cui amicizia e

stima si perpetua da molti anni senza mai scolorire ma, anzi, impreziosendosi

come un buon vino fa’ nella botte. Grazie inoltre a Gabri, France, Corne e Mo-

ne per l’amicizia che ci lega da anni. Nonostante le diverse scelte di vita e la

distanza che alle volte per mesi ci tiene distanti, riusciamo a trovare il tempo di

incontrarci e condividere le nostre diverse esperienze. Credo che questa diver-

sità sia un valore aggiunto per tutti noi. Inoltre, e ne sono orgoglioso, altre ami-

cizie con ragazzi di diverse parti del Mondo sono nate all’interno dell’NRL alla

UCLA. Dunque un particolare grazie va all’amico Paul-Louis, al mitico “big”

Vince, a Ronedo, a Jerrid e agli altri ragazzi, per aver trascorso preziosi minuti

in compagnia davanti a un buon caffè (italiano) o seduti ad un tavolo a gustare

piatti messicani o burger americani. “Last but not least”, sento di ringraziare

l’Ingegner Giulia Mauri, che negli ultimi mesi alla UCLA mi ha aiutato nella

stesura della tesi con preziosi consigli e correzioni. Ritengo, inoltre, che Giulia

abbia contribuito a rendere unica e irripetibile questa esperienza oltreoceano.

Giusto poche parole sulle due frasi citate in alto. La frase di Ralph Waldo

Emerson, filosofo e scrittore statunitense dell’ottocento, penso sia emblematica



viii

e, personalmente, la condivido appieno: « ciò che abbiamo alle spalle e quello

che ci sta di fronte, sono cose di poco conto rispetto a ciò che sta dentro di

noi ». Essa evidenzia che la persona che siamo diventati e quindi ciò che si

ha dentro, la si deve alle innumerevoli scelte, azioni ed esperienze che si sono

fatte durante la propria vita. Questo “patrimonio” dunque, ci suggerisce Ralph

Waldo Emerson, ha un valore inestimabile ed è unico in ognuno di noi. Esso

ci dà la forza di guardare al futuro, anche se pieno di difficoltà e incertezze, e

al contempo di sorridere al passato, che sicuramente sarà stato caratterizzato

da sfide e ostacoli, con fierezza e fermezza. Dunque ciò che abbiamo dovuto

affrontare in passato e quello che il futuro ci riserverà, sono cose di poco conto

(“tiny”) rispetto alla ricchezza che abbiamo maturato dentro di noi.

Riprendo inoltre la celebre frase di Steve Jobs pronunciata ai neolaureati

dell’Università di Stanford durante la cerimonia di laurea : « siate affamati, sia-

te folli ». Essa si riferisce all’approccio che si dovrebbe avere alla propria vita,

cercando di viverla e spremerla affinché si riesca a trovare la propria strada

senza che nessuno possa imporci le proprie ideologie o limitare la nostra crea-

tività e il nostro essere. Personalmente, ritengo questo aspetto di fondamentale

importanza nella propria vita.

Francesco







Sommario

La gestione delle risorse è problema di primaria importanza nelle reti di

calcolatori e rimane tuttora un aspetto non risolto e da tenere in considerazio-

ne. Sfortunatamente, mentre la tecnologia e l’innovazione evolvono, la nostra

infrastruttura di rete è rimasta praticamente nella stessa condizione per de-

cenni, dando origine a quello che comunemente viene definito fenomeno di

“ossificazione di Internet”.

Il Software-Defined Networking (SDN) è un paradigma emergente nel cam-

po delle reti di calcolatori e consente di controllare, tramite un software centra-

lizzato a livello logico, il comportamento dell’intera rete.

Tale gestione è resa possibile attraverso il disaccoppiamento tra la logica di

controllo che governa la rete e l’infrastruttura fisica sottostante di switch e rou-

ter adibiti all’instradamento del traffico. Il meccanismo che permette al piano

di controllo di poter comunicare con il piano dei dati è OpenFlow. Gli operatori

che si occupano delle reti sono dunque in grado di scrivere programmi di alto

livello per il controllo del comportamento dell’intera rete. Inoltre, la centraliz-

zazione del piano di controllo permette di definire complesse operazioni da

eseguire sulle reti, relative ad esempio alla sicurezza o alla gestione e controllo

delle risorse, attraverso un unico strumento.

Oggigiorno, l’esplosione delle applicazioni usufruite in tempo reale che

hanno delle caratteristiche limitanti di Qualità di Servizio (QoS), porta i pro-

grammatori delle reti a dover progettare protocolli che garantiscano adeguate

prestazioni. La tesi sfrutta le SDNs e l’utilizzo di OpenFlow per gestire nelle reti

xi



xii

servizi differenziati con una elevata QoS. Inizialmente abbiamo definito un’ar-

chitettura per la gestione e l’orchestrazione della QoS che permetta di gestire

la rete modularmente. Inoltre, viene fornita una integrazione tra l’architettura

presentata e il paradigma definito dalle SDN, mantenendo la separazione tra il

piano di controllo e quello dei dati.

Il nostro lavoro rappresenta una prima fase di configurazione della rete

presso la UCLA (University of California, Los Angeles) in grado di offrire ser-

vizi differenziati e stringenti requisiti di QoS. Abbiamo inoltre pianificato di

sfruttare la nostra soluzione per gestire l’handoff tra differenti tecnologie di

rete, i.e., Wi-Fi e WiMAX. Infatti, il modello può essere eseguito utilizzando di-

versi parametri, dipendenti dal protocollo di comunicazione usato, ed è in gra-

do di fornire risultati ottimali che possono essere direttamente implementati in

una rete di campus universitario.



Abstract

Resource management is of paramount importance in network scenarios

and it is a long-standing and still open issue. Unfortunately, while technol-

ogy and innovation continue to evolve, our network infrastructure system has

been maintained almost in the same shape for decades and this phenomenon

is known as “Internet ossification”.

Software-Defined Networking (SDN) is an emerging paradigm in computer

networking that allows a logically centralized software program to control the

behavior of an entire network. This is done by decoupling the network control

logic from the underlying physical routers and switches that forward traffic

to the selected destination. One mechanism that allows the control plane to

communicate with the data plane is OpenFlow. The network operators could

write high-level control programs that specify the behavior of an entire net-

work. Moreover, the centralized control makes it possible to define more spe-

cific and complex tasks that could involve many network functionalities, e.g.,

security, resource management and control, into a single framework.

Nowadays, the explosive growth of real time applications that require strin-

gent Quality of Service (QoS) guarantees, brings the network programmers

to design network protocols that deliver certain performance guarantees. This

thesis exploits the use of SDN in conjunction with OpenFlow to manage differ-

entiating network services with an high QoS. Initially, we define a QoS Man-

agement and Orchestration architecture that allows us to manage the network

in a modular way. Then, we provide a seamless integration between the archi-

xiii



xiv

tecture and the standard SDN paradigm following the separation between the

control and data planes.

This work is a first step towards the deployment of our proposal in the

University of California, Los Angeles (UCLA) campus network with differen-

tiating services and stringent QoS requirements. We also plan to exploit our

solution to manage the handoff between different network technologies, e.g.,

Wi-Fi and WiMAX. Indeed, the model can be run with different parameters,

depending on the communication protocol and can provide optimal results to

be implemented on the campus network.



Contents

1 Introduction 2

2 Background 6

2.1 Software-Defined Network paradigm . . . . . . . . . . . . . . . 6

2.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1.1 “Classical” switch . . . . . . . . . . . . . . . . . 7

2.1.2 Early Programmable Networks . . . . . . . . . . . . . . . 8

2.1.2.1 Intelligent Network . . . . . . . . . . . . . . . . 8

2.1.2.2 OPENSIG . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2.3 GSMP . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2.4 Active Network . . . . . . . . . . . . . . . . . . 11

2.1.2.5 4D architecture . . . . . . . . . . . . . . . . . . . 12

2.1.2.6 NETCONF . . . . . . . . . . . . . . . . . . . . . 13

2.1.2.7 ForCES . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2.8 Ethane . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 SDN Architecture . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3.1 Logical layers . . . . . . . . . . . . . . . . . . . . 15

2.1.3.2 SDN switch . . . . . . . . . . . . . . . . . . . . . 16

2.2 OpenFlow protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.1 Operating principles . . . . . . . . . . . . . . . . . . . . . 18

2.2.1.1 “Instruction Set” . . . . . . . . . . . . . . . . . . 19

2.2.2 Flows based operation . . . . . . . . . . . . . . . . . . . . 20

xv



CONTENTS xvi

2.2.3 Evolution summary . . . . . . . . . . . . . . . . . . . . . 20

2.2.4 Switch components . . . . . . . . . . . . . . . . . . . . . . 22

2.2.4.1 Pipeline processing . . . . . . . . . . . . . . . . 24

2.2.4.2 Packet matching . . . . . . . . . . . . . . . . . . 24

2.2.4.3 Table miss . . . . . . . . . . . . . . . . . . . . . . 25

2.2.4.4 Flow Entry . . . . . . . . . . . . . . . . . . . . . 26

2.3 Control models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.1 Flows insertion . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.2 Control plane distribution . . . . . . . . . . . . . . . . . . 28

2.4 SDN weaknesses and challenges . . . . . . . . . . . . . . . . . . 28

2.5 Floodlight SDN Controller . . . . . . . . . . . . . . . . . . . . . . 30

2.5.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Dealing with SDN 34

3.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.1 How to Monitor Network Parameters with OpenFlow . 35

3.1.2 SDN to improve Quality of Service and Quality of Expe-

rience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Mininet Network Emulator . . . . . . . . . . . . . . . . . . . . . 41

4 The QoS-aware Mathematical Model 44

4.1 Enhanced QoS Architecture . . . . . . . . . . . . . . . . . . . . . 48

4.2 Multi-Criteria Approach . . . . . . . . . . . . . . . . . . . . . . . 51

4.2.1 Multi-Commodity Flow Problem . . . . . . . . . . . . . . 51

4.2.2 Constrained Shortest Path Problem . . . . . . . . . . . . 53

4.2.3 Our Multi-Commodity Flow and Constrained Shortest

Path Model . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Implementation and Experimental Results 60

5.1 Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Network Topology . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Mininet Configuration . . . . . . . . . . . . . . . . . . . . . . . . 64

5.4 Mininet Hybrid Configuration . . . . . . . . . . . . . . . . . . . 65

5.4.1 Network Services and Tools . . . . . . . . . . . . . . . . . 67

5.4.2 Stress the Network . . . . . . . . . . . . . . . . . . . . . . 68



CONTENTS xvii

5.5 Mapping the Network . . . . . . . . . . . . . . . . . . . . . . . . 69

5.6 Inserting the Path . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.7 Network Metric Measurement . . . . . . . . . . . . . . . . . . . . 70

5.7.1 Available Bandwidth . . . . . . . . . . . . . . . . . . . . . 71

5.8 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusion 88

6.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A Python Code 94

A.1 Network Topology Configuration . . . . . . . . . . . . . . . . . . 94





List of Figures

2.1 “Classical” switch components . . . . . . . . . . . . . . . . . . . 8

2.2 Intelligent Network Conceptual Model [1] . . . . . . . . . . . . . 9

2.3 4D Project Architecture . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 ForCES Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5 Ethane Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 SDN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.7 SDN switch components . . . . . . . . . . . . . . . . . . . . . . . 16

2.8 OpenFlow switch specification [3] . . . . . . . . . . . . . . . . . 17

2.9 Packets treatment by the switches OpenFlow-enabled . . . . . . 19

2.10 OpenFlow Instruction Set [2] . . . . . . . . . . . . . . . . . . . . 20

2.11 OpenFlow evolution summary . . . . . . . . . . . . . . . . . . . 21

2.12 OpenFlow switch components [4] . . . . . . . . . . . . . . . . . . 23

2.13 Pipeline packets matching [4] . . . . . . . . . . . . . . . . . . . . 24

2.14 Packet flow matching [4] . . . . . . . . . . . . . . . . . . . . . . . 25

2.15 Floodlight architecture [5] . . . . . . . . . . . . . . . . . . . . . . 30

3.1 The model of an OpenFlow switch . . . . . . . . . . . . . . . . . 36

3.2 The functional architecture of the latency monitoring application 37

3.3 OpenFlow-assisted QoE Fairness Framework . . . . . . . . . . . 39

4.1 Streaming quality and packet loss rate (in percentage) for differ-

ent content types [6] . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 QoS Management & Orchestration architecture (red dashed line) 49

xix



LIST OF FIGURES xx

5.1 Delay in a real packet-switched network [7] . . . . . . . . . . . . 61

5.2 Network topology model . . . . . . . . . . . . . . . . . . . . . . 63

5.3 Mininet hybrid topology network . . . . . . . . . . . . . . . . . . 66

5.4 Floodlight QoS Advisor v.0.2a . . . . . . . . . . . . . . . . . . . . . 68

5.5 Throughput measurement using Iperf tool in the different sce-

narios (100Mbps network). . . . . . . . . . . . . . . . . . . . . . 73

5.6 Throughput measurement using both the Iperf tool and our mod-

ule with no packet loss . . . . . . . . . . . . . . . . . . . . . . . . 74

5.7 Throughput measurement using both Iperf tool (server side) and

our module with 4% of packet loss . . . . . . . . . . . . . . . . . 74

5.8 Bandwidth usage during the video streaming service. . . . . . . 75

5.9 Temporary network congestion during the video streaming ser-

vice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.10 Video streaming and file transfer throughputs during a tempo-

rary link congestion. . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.11 Video streaming and file transfer throughputs during a perma-

nent link congestion. . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.12 Video steaming and file transfer paths in a network without QoS. 77

5.13 Warnings due to a under-threshold throughput. . . . . . . . . . 79

5.14 The “Watch Dog” Flow Chart . . . . . . . . . . . . . . . . . . . . 80

5.15 Path changing by the QoS architecture during a permanent link

congestion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.16 Video streaming throughput during a permanent link conges-

tion in a network managed by the QoS architecture. . . . . . . . 81

5.17 Multiple path changing by the QoS architecture during a multi-

ple link congestion. . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.18 Video streaming throughput during a multiple permanent link

congestion in a network managed by the QoS architecture. . . . 82

5.19 Path changing by the QoS architecture during a permanent link

congestion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.20 Multi-Commodity Flow throughput during a permanent link

congestion in a network managed by the QoS architecture. . . . 83

5.21 Different types of video quality. . . . . . . . . . . . . . . . . . . . 86



List of Tables

2.1 Flow entry fields [4] . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.1 Application quality requirements . . . . . . . . . . . . . . . . . . 44

4.2 Mean Opinion Score levels [8] . . . . . . . . . . . . . . . . . . . . 45

4.3 Voice connectivity total delay (one-way) [9] . . . . . . . . . . . . 46

4.4 End-To-End delay in the network gaming [10] . . . . . . . . . . 46

4.5 QoS requirements of VoIP, Interactive-Video, and Streaming-Video

[11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Conversion between our mathematical model cost and the MOS

levels related to the video streaming . . . . . . . . . . . . . . . . 84

xxi





Chapter 1
Introduction

The currently used network infrastructure system has been maintained al-

most in the same form for decades, while technology continues to evolve. Re-

source management is of paramount importance in network scenarios and it is

a long-standing and still open issue. Moreover, in this scenario, the main issue

to deal with is the decoupling of the network control logic from the data plane

of the network, i.e., the physical routers and switches that forward traffic from

sources to destinations. Since there are a lot of emerging network paradigms

that are trying to find an efficient alternative to the classical Internet archi-

tecture, only a few of them are widespread and successful. In this contest,

the Software-Defined Networking (SDN) [2] paradigm is one of the best and

most attractive solutions for improving the Internet with more flexibility and

adaptability issues. This emerging networking paradigm allows a centralized

software program to control the behavior of the whole network by separat-

ing the routing decision plane from the forwarding layer. The SDN paradigm

needs a mechanism to make the communications between the control and data

plane possible. This functionality is obtained by means of an emergent pro-

tocol, OpenFlow [3]. SDN, in conjunction with OpenFlow, allows us to write

high-level control programs that specify the behavior of the network compo-

nents. These programs can take care of various network tasks, e.g., security,

routing, and resource management.

These tasks are among the most important aspects in all network scenarios,

2



CHAPTER 1. INTRODUCTION 3

since the main Internet services are generally still based on the classic Best-

Effort paradigm. On the one hand, the Best-Effort service is simple and its

simplicity has been the most important factor which has determined its world-

wide success. On the other hand, unfortunately, the Best-Effort service does not

provide any guarantee on bandwidth, end-to-end delay, and packet loss. Fur-

thermore, nowadays the demand of quality associated to the transport of data

and media is growing both in academia and industry. This need represents a

very hard challenge and it requires a significant effort towards a QoS-enabled

network.

Traditionally, the QoS is defined in terms of availability, i.e., the percentage

of time in which the reference system is available and working. In this way, the

Service Level Agreements (SLAs) have been defined as a function of percentage

availability, e.g., 99.999%, known as “five nines”, that implies a downtime of

5.26 minutes per year. The downtime is the amount of time required to identify

and repair a fault in the connection or in the equipment. Furthermore, it is very

important to understand that each type of service has different SLA require-

ments, not only based on availability. Hence, the advanced SLA has to take

into account the packet delay and the packet loss parameters in addition to the

availability. It follows that the quality of some types of applications depends

on delay and/or packet loss (e.g., real-time applications or multimedia trans-

missions). On the one hand, the telephony services (e.g., VoIP) have strict delay

requirements for the packet and codec. In these applications, if a packet reaches

its destination after a given delay threshold, the service becomes useless. For

the real-time applications, the retransmission of lost packets is also worthless.

On the other hand, we have other types of applications that are called elastic.

In general, these services are more robust than real-time applications related to

packet loss. In fact, they typically allow retransmission, usually accomplished

in an end-to-end fashion through the TCP mechanisms. For instance, the File

Transfer Protocol (FTP) services and more generally (even if not always) the

data transfer applications are referred to as elastic.

It is not easy to guarantee QoS requirements in the traditional Best-Effort

networks. Regarding this, the Internet Engineering Task Force (IETF) [12] has

proposed different QoS architectures, such as IntServ [13] and DiffServ [14], in



CHAPTER 1. INTRODUCTION 4

the last decades. However, these proposals have not been very successful or

implemented in a wide scale, because they require some fundamental changes

on Internet design. In the current Internet architecture, there is also a severe

lack of information about the available network resources from the end-to-end

point of view. A partial solution came from the Multiprotocol Label Switch-

ing (MPLS) and the Border Gateway Protocol (BGP) techniques [15] that are

defined to solve these problems. Unfortunately, these solutions lack the real-

time reconfigurability and adaptivity. In this scenario, the SDN paradigm can

be a fundamental key to overcome the current Best-Effort limitations explained

above.

This thesis exploits the use of OpenFlow in SDNs to manage differentiating

network services with a high QoS. In particular, we consider a Video Streaming

service and a Data Transfer service. Firstly, we define a QoS Management and

Orchestration architecture that allows us to manage the network in a modular

way. Secondly, we provide a seamless integration between the architecture and

the standard SDN paradigm following the separation between the control and

data planes.

Then, we give an Integer Linear Programming (ILP) formulation of the

problem of guaranteeing a good QoS in terms of packet loss and delay, taking

into account the constraints of the network, i.e., maximum acceptable packet

loss and delay for each type of service and available bandwidth on the links.

Specifically, our model defines a Multi-Commodity Flow Constrained Shortest

Path (MCFCSP) problem and takes advantage of both the well known prob-

lems derived from Operation Research: the Multi-Commodity Flow Problem

(MFP) and the Constrained Shortest Path (CSP). Given the optimal solution of

the problem, we integrate the results with an emulated network by means of

Mininet [16]. Thus, it is possible to map the different network flows on a real

network based on the optimal solution from the model. Moreover, we define

various levels of QoS, according to the MOS system [8] for the services that we

are considering. Finally, we found a connection between the optimal solution

provided by the model and the MOS levels. We used these results to provide

evidence of the effectiveness of our model compared to the traditional solu-

tion given by the emulator. Then, changing the network conditions, it is easy



CHAPTER 1. INTRODUCTION 5

to find the new optimal routes between source and destination by means of the

model. It is also possible to dynamically map the routes into the network and,

most important, to guarantee the QoS necessities.

This work is a first step towards the deployment of our proposal in the

University of California, Los Angeles (UCLA) campus network with differen-

tiating services and stringent QoS requirements.

Thesis Outline

This thesis describes a new architecture that allows enhanced QoS in SDN

networks. The architecture is composed of several modules that give us the

possibility to retrieve information about the network status and manage the

switches according to our mathematical model. The remainder of the thesis is

structured as follows:

• Chapter 2 provides an overall view about the SDN paradigm, starting

from the early solutions that laid the foundation for SDN and then focus-

ing on the OpenFlow protocol characteristics. The SDN weaknesses and

the Floodlight controller are also presented.

• Chapter 3 gives an overview of the state of the art and presents Mininet,

an emulated environment suitable for dealing with SDN.

• Chapter 4 describes our novel architecture that makes an enhanced QoS

model in SDN networks possible. This chapter also details the mathe-

matical model in depth, based on the Multi-criteria approach, which is

the core of our architecture.

• Chapter 5 provides the implementation of the proposed architecture and

also the performance assessment and the numerical evaluation.

• Chapter 6 lists open research problems and provides the conclusions.



Chapter 2
Background

2.1 Software-Defined Network paradigm

Sofware-Defined Networking (SDN) was conceived at the UC Berkeley and

Stanford University in 2008. The Open Networking Foundation (ONF)

[17], a non-profit industry consortium founded in 2011, is dedicated to the

promotion and adoption of SDN through open standards development like as

OpenFlow™ protocol. The purpose of this chapter is to give a brief overview

of the SDN architecture, paradigm, and protocol.

2.1.1 Motivation

The term Internet ossification [18] expresses the difficulty of the Internet to

evolve in terms of both its physical infrastructure as well as its protocols and

performance. The Internet is considered part of our society critical infrastruc-

ture and it has a huge deployment base (like as in transportation, power grids,

water supply, etc.) that makes its evolution not simple. Furthermore, it is im-

perative that the Internet would be able to evolve to address new challenges as

represented by new applications and services that are becoming increasingly

more complex and demanding.

With a more detailed view, in current networks, it is very hard to deploy

new protocols, services, resources optimization, and traffic differentiation, be-

cause the routers and the switches are usually “closed” systems, often with

6



CHAPTER 2. BACKGROUND 7

limited functionalities and vendor-specific control interfaces. Furthermore, the

lack of a common control interface to the various network devices may require

high efforts for the configuration or the policy enforcement of them. Thus, it

is more difficult for the network infrastructure to evolve, once it has been de-

ployed and in production. Nevertheless, “middleboxes” like as firewalls, Intru-

sion Detection Systems, and Network Address Translators, were used to over-

come, in a “workaround way”, these limitations and circumvent the network

ossification effect.

The network infrastructure ossification issues are largely attributed to the

tight coupling between the control logic and the forwarding hardware which

means that the decisions about the data flowing through the network are taken

directly on-board from each “classical” network device.

2.1.1.1 “Classical” switch

In a classical router or switch, the fast packet forwarding (data plane) and

the high level routing decisions (control plane) occur on the same device, as

depicted in Figure 2.1. In this figure, the main components respectively are:

1. The forwarding elements are generally Application-Specific Integrated

Circuits (ASIC), network-processors, or general-purpose processor-based

devices that handle data path operations for each packet. They are de-

signed to perform very quickly one particular function: to forward frames

and packets at wire speed (line-rate). Furthermore, they are able to in-

crease the lookup functions using very specialized memory resources like

as Content Addressable Memory (CAM) or Ternary Content Address-

able Memory (TCAM) to hold the forwarding information.

2. The control elements in general are based on general-purpose processors

that provide control functionalities, like routing and signaling protocols.

The main difference between a “classical” switch and a switch able to work

on an SDN network, is the architecture, as explained further below. However,

before explaining the details of the SDN architecture, we focus on pioneer

works that had provided inspiration for the SDN. In these works, the funda-

mental keys had been the decoupling of control plane from data plane and the



CHAPTER 2. BACKGROUND 8

Figure 2.1: “Classical” switch components

network programmability, as explained in the next section.

2.1.2 Early Programmable Networks

The following chapter discusses the “early programmable networks”, start-

ing from the Eighties to nowadays. In the 1980s, the idea of centralized and

decoupled control network started in the telecommunication field with the In-

telligent Network architecture. Then, in the mid 1990s, the programmable net-

work principles were established with some projects, precursors of the current

SDN paradigm.

2.1.2.1 Intelligent Network

The Intelligent Network (IN) was an architectural concept, introduced by

the Bell Communications Research group, that was applied to the develop-

ment of new services in wireline telephone. IN enables the real-time execution

of network services and customer applications in a distributed environment.

Through separation between the software that controls the basic switch func-

tionalities and the software that controls the call progression, the main goal

was the rapid development of differentiating services. Furthermore, the main

components of the IN architecture are depicted in Figure 2.2 and they rep-

resents a framework called Intelligent Network Conceptual Model (INCM).

Specifically, the INCM model is composed of four planes, as described in [19]:

1. The Service Plane (SP) describes services from the user prospective. It

consists of one or more Service Features (SF) that represent a service



CHAPTER 2. BACKGROUND 9

Figure 2.2: Intelligent Network Conceptual Model [1]

component. Furthermore, a service component can be a complete service

or part of a service. This composition principle can make the services cus-

tomization by the subscribers instead of the telco operators possible.

2. The Global Functional Plane (GFP) deals with service creation and mod-

els the network as a unique and global virtual machine. This plane con-

tains the Service Independent Building Blocks (SIB) that are a set of

standard and reusable capabilities used to build features and services.

Furthermore, the Basic Call Process (BCP) is a SIB from which a service

is launched. In this plane, a service consists of a chain of SIBs which can

be viewed as a script.

3. The Distributed Functional Plane (DFP) defines the functional architec-

ture. It is composed of a set of Functional Entities (FE) that realize the

network functionalities. The main functions of this plane are:

a. The Service Control Function (SCF) that contains the service logic

and controls the execution of the service.



CHAPTER 2. BACKGROUND 10

b. The Service Switching Function (SFF) that provides a standardized

interface between the SCF and the switch, allowing the control of

them.

c. The Specialized Resource Function (SRF) that performs user inter-

action functions through established connections.

d. The Service Data Function (SDF) which performs related data pro-

cessing function used to update and retrieve user information.

e. The Service Management Function (SMF) that handles the activi-

ties related to the service deployment, service control, service mon-

itoring, service provisioning, and service billing.

f. The Service Creation Environment Function (SCEF) which allows

the service definition, development, and testing on the network.

4. The Physical Plane (PP) corresponds to the physical architecture of the

IN and it is composed of the Physical Entities (PE) and the interfaces

among them. Furthermore, the FE entities of the DFP plane are directly

implemented into the PE in the PP plane and the interactions among

different PEs are possible through the Intelligent Network Application

Protocol (INAP).

Thus, the IN architecture is based on a centralized control and the service con-

trol is completely separated from call control as happens in the SDN networks.

The Open Signaling Working Group also presented an architecture to make the

network programmability possible, as explained in the next section.

2.1.2.2 OPENSIG

At the beginning, the Open Signaling Working Group (OPENSIG), pro-

posed a solution based on an open and programmable network interface to

access the network hardware. The motivation originally came from the obser-

vation that monolithic and complex control architectures could be restructured

as a minimal set of layers. By means of this partition and by using an open

interface, it became possible to easily access the services located in each layer.

This approach was used to introduce programmability in the control plane of

the telecommunication networks based on ATM [20]. Furthermore, an IETF



CHAPTER 2. BACKGROUND 11

group understood the need to define a common protocol, called GSMP, suit-

able for the network device management.

2.1.2.3 GSMP

Starting from the programmable network interface idea, an IETF working

group developed the General Switch Management Protocol (GSMP), a pro-

tocol specifically designed for the management of the switches by external

components. Furthermore, the protocol allows the external controller to get

network statistic information, manage connections, ports, and resources of the

switches [21]. GSMP v. 3 is the last version of the protocol, published in June

2002. Another important networking group, Active Network, also defined a

novel architecture to improve the network programmability, as detailed above.

2.1.2.4 Active Network

Around 1997, the Active Networking Group proposed an innovative pro-

grammable network architecture approach, named Active Network, in which

the switches perform customized operations on the data messages flowing

through them [22]. The main objective was to decouple network services from

the hardware allowing the loading of new services into the infrastructure by

need. The network is considered “active” in the sense that the switches can

perform computation on the packet contents. Moreover, there are two different

approaches to build active networks that are respectively considered “discrete”

(out-of-band) and “integrated” (in-band) [23]:

1. The “programmable switch” approach is based on the injection of cus-

tomized programs into the active nodes (switches or routers). Through

the examination of the message header, the specific programs can pro-

cess the packets and perform computations like as: modify, store or redi-

rect the data. In the Internet based on the Active Network architecture,

it is possible to dynamically load code into the nodes through a “back

door”, achieving a router extensibility purpose. It follows that the main

goal of this approach is focused on the separation between the injection

programs and the processing of the messages.



CHAPTER 2. BACKGROUND 12

2. The “capsules” approach is based on the possibility to embed a program

fragment and data into every packet (called capsule). Therefore, when a

capsule reaches an active node, the node is able to evaluate and process

the embedded code.

These approaches aim to make the basic network services selectable on a per

packet basis, reducing the deployment time and allowing the network pro-

grammability. Moreover, about ten years ago, another architecture was devel-

oped to reach a flexible network programmability by decoupling the data plane

and control plane, as described below.

2.1.2.5 4D architecture

In the mid of 2000, the 4D architecture [24] was developed with a clear

separation between the routing decision logic and the protocols governing the

interaction with the network elements. As depicted in Figure 2.3, the network

control functions are divided into 4 planes: decision, dissemination, discovery,

and data.

Figure 2.3: 4D Project Architecture

In the 4D architecture, each plane has a clear task:

1. The decision plane is responsible for the network configuration through

the management of the router Forwarding Information Base.

2. The dissemination plane is accountable for the network state informa-

tion gathering such as link up/down information.

3. The discovery plane enables devices to discover their directly connected

neighbors.



CHAPTER 2. BACKGROUND 13

4. The data plane is responsible for the network traffic forwarding.

This architecture provides direct inspiration for later works such as NOX

(Network Operating System), which proposed an “operating system for net-

works” that provides an uniform and centralized programmatic interface to

the entire network [25]. Moreover, the IETF Network Configuration Working

Group presented a protocol to make the network configuration possible.

2.1.2.6 NETCONF

In 2006, the IETF Network Configuration Working Group proposed the

NETCONF Configuration Protocol [26]. NETCONF protocol was not designed

for enabling direct control of the switches, but as a management protocol for

modifying the configuration of the network devices by means of API. Unfortu-

nately, in this solution there is no separation between the data and the control

plane. However, the ForCES IETF group developed an architecture and a pro-

tocol to separate the forwarding plane from the routing plane.

2.1.2.7 ForCES

The IETF Forwarding and Control Element Separation (ForCES) Work-

ing Group defined the architectural framework and the associated protocols to

standardize the exchange of information between the control and forwarding

plane [27]. This approach, drawn in Figure 2.4, aims to improve the interoper-

ability and flexibility enabling a rapid innovation in the control and forwarding

planes. Since 2003, the ForCES protocol has been undergoing standardization.

The next section also present the Ethane architecture that is considered as

the predecessor of the OpenFlow protocol, laid the foundation for what SDN

would become.

2.1.2.8 Ethane

The Ethane project [28] defines a new network architecture for enterprise

networks, started around 2006. The network is composed of the Ethane swit-

ches, that include the flow tables, and the controller. By means of a secure chan-

nel, the controller can communicate with the switches and can decide whether



CHAPTER 2. BACKGROUND 14

Figure 2.4: ForCES Architecture

a packet should be forwarded or not. As depicted in Figure 2.5, the Ethane

architecture is composed of an external and centralized controller that can in-

teract with the Ethane switches for managing policy and security.

Figure 2.5: Ethane Architecture

As we can clearly see in Figure 2.5, the Ethane architecture makes the sepa-

ration between the control plane and the data plane possible. This is an impor-

tant aspect that is the core of the SDN architecture, as detailed above.

2.1.3 SDN Architecture

In the following section, we are interested in explaining the main compo-

nents of the SDN architecture. The SDN architecture represents a new network-



CHAPTER 2. BACKGROUND 15

ing paradigm that decouples the control plane from the data plane, facilitat-

ing the network evolution, interoperability, and scalability. This decoupling,

that is the SDN “core”, is possible through the switch components separation,

as explained further in Section 2.1.3.2. Furthermore, the main differences be-

tween the “classical” network and the new networking paradigm are described

through three different logical layers as detailed below.

2.1.3.1 Logical layers

The SDN architecture can be represented by three different logical layers

[2], as shown in Figure 2.6.

Figure 2.6: SDN Architecture

Specifically, each tier has different functionalities:

1. The data plan tier portrays the network infrastructure composed of phys-

ical devices (e.g., switches and routers).

2. The controller tier represents the “network intelligence” and it is logi-

cally centralized in the SDN controller, virtually located in this layer. This

solution allows the controller to maintain a global view of the network,

placed in the infrastructure layer.

3. The application tier represents the layer where network operators and

administrators can operate. By centralizing the network state in the con-

troller tier, at the application layer it is possible to configure, manage,



CHAPTER 2. BACKGROUND 16

secure, and optimize network resources via dynamic, automated SDN

programs. Moreover, the network operators can directly write and de-

ploy customized programs themselves without waiting for the vendors

releases that could take long time.

Hence, the layers abstraction described above facilitates the programmers to

operate on a network abstraction layer instead of thousands of different phys-

ical devices, through Application Programming Interfaces (APIs). However,

this abstraction is possible only if the under layer infrastructure makes the in-

teraction with itself possible. To reach this goal, the SDN architecture requires

physical devices with different characteristics compared with the “classical”

switch, as explained in the next section.

2.1.3.2 SDN switch

On the one hand, by means of the SDN architecture, the network becomes a

“simple” packets forwarding element. On the other hand, the high-level rout-

ing decisions and state information are centralized in an external and separate

server controller, instead of enforcing policies and running protocols on a con-

volution of scattered devices, as shown in Figure 2.7.

Figure 2.7: SDN switch components

SDN, by separating the control plane from the data plane, can offer a flexi-

ble network automation and management framework. This framework makes

the development of tools for automating tasks (that are done manually today)

possible. These automation tools can reduce operational overhead decreasing

network instability introduced by operator error. Unfortunately, the vendors



CHAPTER 2. BACKGROUND 17

software environments is typically proprietary and closed and they do not

make the management and tweaking of the network easy. However, the SDN

architecture can facilitate innovation and enable simple programmatic control

of the network data-path giving rise to the idea of programmable networks.

This is an important aspect that allows to lower the barrier to the entrance for

new ideas.

Clarified the architecture, described further in Section 2.2.4, the next section

explains how it is possible to communicate among the different layers.

2.2 OpenFlow protocol

OpenFlow™ is an open standard protocol, specifically designed for the

SDN networks, that allows the communication between the control and data

planes and permits the manipulation of the latter. As illustrated in Figure 2.8,

the OpenFlow switches and the controller can communicate via the OpenFlow

protocol over a secure channel. The protocol defines different messages such as

packet-received, send-packet-out, modify-forwarding-table, and get-stats, that

can be exchanged between the switch and the controller.

Figure 2.8: OpenFlow switch specification [3]

At the beginning, the OpenFlow protocol was developed at the Stanford

University around 2008 for enabling researchers to run experimental proto-



CHAPTER 2. BACKGROUND 18

cols in the campus networks [3]. Presently, OpenFlow is added as a feature to

commercial network devices and it provides a standardized vendor-agnostic

interface to access the Ethernet switches, routers and wireless access points.

Moreover, these devices, called “OpenFlow-enabled”, allow the access without

requiring vendors to expose the internal workings of their products. Thus, the

OpenFlow protocol makes the deployment of innovative routing and switch-

ing protocols easy. Furthermore, it can be used for applications such as virtual

machine mobility, high-security networks and next generation IP-based mobile

networks.

The next sections describe the OpenFlow operativeness in depth, starting

from a general overview, proceeding with the protocol evolution summary and

reaching the protocol details according to the newest specification [4].

2.2.1 Operating principles

The following section aims to provide a first general overview of the in-

teractions among the switches and the controller. When an OpenFlow Switch

receives a packet that it has never seen before and for which it has no matching

flow entries, it sends this packet, called packet-in to the controller as in Figure

2.9a. Then, the controller takes a decision on how to handle this packet. It can

drop the packet, or add a flow entry directing into the switch. In case of flow

entry insertion, the switch learns how to forward similar packets in the future,

as shown in Figure 2.9b.

While additional details of these interactions are further described below,

by now it is interesting to figure out a parallelism between the steps described

above and the cache interaction of a Central Processing Unit (CPU). In particu-

lar, when a cache miss occurs, the actions typically taken by a CPU are compara-

ble to the OpenFlow protocol interactions in case of no match against the Flow

entries. In fact, when a CPU needs a specific data, the first step is to search

it into the cache (starting from the nearest one, e.g., L1 layer cache), like the

lookup phase into the switch. If the data is in the cache, a cache hit occurs and

the CPU is able to continue with the next instruction. Otherwise, the CPU has

to manage a cache miss retrieving the data somewhere else (e.g., from the L2

layer cache or directly from the RAM or, if necessary, from the disk). This ap-



CHAPTER 2. BACKGROUND 19

(a) Former the switch sends the first un-

known coming packet up to the controller.

(b) Later the next packets are forwarded di-

rectly to the host by the switch.

Figure 2.9: Packets treatment by the switches OpenFlow-enabled

proach is similar to the steps done into the switch in case of no matching flow

entries.

A further interesting comparison can be made between the OpenFlow pro-

tocol and the functionalities (i.e., Instruction Set) of a CPU.

2.2.1.1 “Instruction Set”

The features offered by the OpenFlow protocol can be assimilated to the

Instruction Set Architecture (ISA) of a CPU, as drawn in Figure 2.10. Since the

instruction set allows to access the internal architecture of a CPU (memory,

registry, etc.), the OpenFlow protocol provides to the external software appli-

cation the primitives that can be used to program the forwarding plane of the

network devices.

The main actions that the protocol can take are based on the data flows

setting inside the switches, as explained below.



CHAPTER 2. BACKGROUND 20

Figure 2.10: OpenFlow Instruction Set [2]

2.2.2 Flows based operation

The OpenFlow protocol widely uses the concept of “flows” to identify net-

work traffic based on pre-defined matching rules that can be statically or dy-

namically programmed by the SDN control software. Not only OpenFlow per-

mits the network programming on a per-flow basis, but also provides a gran-

ular control of the data flows, enabling the network to dynamically adapt the

resources by need. However, this per-flow control is generally not possible in

the current IP-based routing schemes. In fact, in that case, all flows between

two end points must follow the same path through the network, regardless of

their different requirements.

Before going in depth into the last OpenFlow specifications, a look at the

protocol evolution summary can give us the idea of the improvements that

have been done, as detailed in the next section.

2.2.3 Evolution summary

The first OpenFlow protocol release, the 1.0 version, was conceived on De-

cember 2009. Then, passing through intermediate protocol evolution, the Open-

Flow protocol has reached the recent and stable 1.4 version, as summarized in

Figure 2.11.

Specifically, the main functionalities of the first OpenFlow 1.0 version [29]



CHAPTER 2. BACKGROUND 21

Figure 2.11: OpenFlow evolution summary

are:

1. The single logical table for the implementation of the flow rules. More-

over, this aspect limits the full utilization of hardware ASIC capabilities.

2. The groups for the creation of group ports, similar to link aggregation in

legacy networks. This is suitable for multipathing or redundancy.

3. The virtual LAN (VLAN) suitable for a coarse tag supporting.

4. The virtual ports that extend OpenFlow beyond physical ports enabling

OpenFlow to be used to implement network virtualization for multi-

tenancy at scale.

5. The connection interruption management useful in case of connection

loss. Generally, when the controller connection fails or is terminated and

cannot connect to a backup controller, the switch goes into “emergency

mode” and immediately resets the current TCP connection. In this state,

the matching process is dictated by the emergency flow table entries (mar-

ked with the emergency bit), whereas any other entries are deleted. The

switch continues to operate in OpenFlow mode until it reconnects to a

controller.

However, several new features have been built in the last OpenFlow 1.4.0 spec-

ification [4]. The most important protocol improvements are the following:

1. The Type-Length-Value (TLV) format improvement to enhance proto-

col extensibility. The TLV structure is suitable for supporting additional

future experimentation.



CHAPTER 2. BACKGROUND 22

2. The multi-controller support makes an enforced interaction and syn-

chronization among controllers possible. Specifically, the flow monitor-

ing allows a controller to identify in a switch the changes made by other

controllers. In addition, when a group table or meter table switch are up-

dated, the controllers associated with that device are notified.

3. The atomic execution of a bundle of instruction to avoid intermediate

states. In particular, a controller should not receive any notification re-

sulting from the partial application of the bundle (bundle fails).

4. The fine-grained rule capacity for helping the controller to manage its

capacity limitations for storing rules. Specifically, in case of table full, the

switches can proactively evict rules according to the importance of the

entries. If the rule tables are filling up, some “vacancy events” can also be

used as early detection system to warn the controller.

5. The optical port support allows us to deal with fiber-optic networking,

by managing frequency and power involved in optical communication.

The next section explains in depth the main characteristics of the protocol, ac-

cording to the OpenFlow 1.4.0 specification.

2.2.4 Switch components

As discussed in Section 2.1.3.2, the OpenFlow switch is a fundamental part

of SDN. Each switch, which is represented as basic forwarding hardware ac-

cessible via an open interface, comes in two varieties:

1. The “pure” OpenFlow switches have no legacy features or on-board con-

trol, and completely rely on a controller for forwarding decisions.

2. The “hybrid” switches support OpenFlow in addition to the traditional

operation and protocols, making backwards compatibility possible (most

commercial switches available today are hybrids).

Furthermore, each switch is composed internally of three different compo-

nents, as sketched in Figure 2.12.

As illustrated in Figure 2.12, the main parts of a switch are the following:



CHAPTER 2. BACKGROUND 23

Figure 2.12: OpenFlow switch components [4]

1. An OpenFlow channel that allows the communication and management

between the external controller and the switch via the OpenFlow proto-

col.

2. One or more flow tables that store the flow entries for performing packet

lookup and forwarding.

3. The group table, a special kind of table designed to perform operations

that are common across a set of flows. This approach enables complex

forwarding actions such as multipath and link aggregation.

The OpenFlow channel is the interface that connects each OpenFlow switch

to a controller. By means of this interface, the controller can manage several

switches sending and receiving messages from them, according to the Open-

Flow protocol. The OpenFlow channel also allows a secure communication

among the switches and the controller using the Transport Layer Security (TLS)

cryptographic protocol (by the way, the communication may be run directly

over TCP).

Since the OpenFlow tables are considered the core of OpenFlow, a detailed

analysis is required. Specifically, the OpenFlow tables are composed of some

fundamentals mechanisms. As described in the next section, the most impor-

tant are: the packet matching, that extracts the packet header and executes ac-

tions associated to its, and the pipeline processing, that allows the switches to

forward and process a packet through the table chain.



CHAPTER 2. BACKGROUND 24

2.2.4.1 Pipeline processing

Every OpenFlow switch can contains multiple flow tables, that are gener-

ally composed of several flow entries, as explained in Section 2.2.4. The pipeline

processing mechanism specifies how the packets have to interact with each

flow table, as depicted in Figure 2.13.

Figure 2.13: Pipeline packets matching [4]

As illustrated in Figure 2.13, each packet is matched against the flow en-

tries starting at the first flow table, called flow table 0. Then, depending on the

outcome of the previous match, the pipeline processing can continue, going

forward to the next subsequent flow table for further processing.

For each table, a packet matching can occur and, consequently, some spe-

cific actions can be taken by the switch. Since the packet matching is the first

entry point consulted for the lookup procedure, more details concerning this

mechanism are necessary.

2.2.4.2 Packet matching

When a packet arrives at the Flow Table, the packet match fields, that can

be different according to the packet type, are extracted from the packet header

and they are used for the table lookup. Moreover, the matches can be per-

formed against the information related to the ingress port and, in case, the

metadata fields, that can be also used to pass information between tables. Thus,

if a matching entry is found, the switch executes the instruction set associated

with the matched flow entry. These instructions typically can contain actions

(like as packet forwarding, packet modification, and group table) or they can

modify the pipeline processing. Furthermore, if some actions are applied dur-

ing the pipeline processing, the modifications are reflected in the packet match



CHAPTER 2. BACKGROUND 25

fields, which represent the current packet state. In any case, when the instruc-

tion set associated with a matching flow entry does not specify a next table, the

pipeline processing stops. Only at that time, the packet is processed with its

associated actions set and usually forwarded, as shown in Figure 2.14

Figure 2.14: Packet flow matching [4]

However, if the lookup phase does not match any entry, a so-called table-

miss event occurs, as explained in the section below.

2.2.4.3 Table miss

When no packet match is found during a lookup phase, a table-miss event

occurs. Each flow table must support a table-miss flow entry to process table

misses, according to the specification. In case of table miss, the switch can take

some actions according to the instruction set defined at the table-miss flow entry.

These instructions can specify to forward the packet to the controller, or to drop

it, or to simply continue to the next subsequent flow table. However, if the

table-miss flow entry does not exist, the packets unmatched by flow entries are

discarded by default.

The next section describes in detail the flow entry element which is the

fundamental part of the flow table.



CHAPTER 2. BACKGROUND 26

2.2.4.4 Flow Entry

As asserted in Section 2.2.4, the flow table is one of the main components

that each OpenFlow switch must have (at least one), according to the specifi-

cation. Each flow table consists of a set of flow entries that have some specific

fields, as illustrated in Table 2.1.

Match Fields Priority Counters Instructions Timeouts Cookie

Table 2.1: Flow entry fields [4]

Specifically, the flow entry fields are the following:

1. Match fields, consist of the ingress port, packet headers, and optionally

metadata specified by a previous table. The packet header information

of the incoming packets is compared with the match field of each flow

entry and if there is a match, the packet is processed according to the

action contained by that entry.

2. Priority, useful to specify a matching precedence of the flow entry.

3. Counters, used to collect statistics for a particular flow or port or queue,

such as number of received packets or bytes and duration of the flow.

4. Instructions, used to modify the action set or the pipeline processing.

5. Timeouts, suitable for specifying the maximum amount of time or idle

time before the flow is expired by the switch.

6. Cookie, can be used by the controller to filter flow statistics. Furthermore,

they are useful to recognize a specific flow.

Each flow table entry is uniquely identified by its match fields and priority.

The entry which has all field omitted and priority equal 0, is called table-miss

flow entry, as previously detailed in Section 2.2.4.3.

The next section discusses the different control models that characterize

OpenFlow and consequently the network behavior.



CHAPTER 2. BACKGROUND 27

2.3 Control models

In the SDN, the behavior of the network is partly regulated by the controller

that represents the main SDN component, and also it allows us to maintain a

general view of the network and to manage the conduct of the switches. Fur-

thermore, the decoupling of the control and data layer allows the controller to

provide a programmatic interface to the network, where applications can be

written to perform management tasks and various functionalities. Moreover,

two important aspects in a SDN network are the scalability and the perfor-

mance of the network controller. They depend, in part, on the control models

related to the OpenFlow controllers. Thus, the target of the following sections

is to give us a general overview of the control models that can be used for

managing a SDN network.

2.3.1 Flows insertion

In general, there are three different approaches for the insertion of the flows

into the switches OpenFlow-enabled:

1. In the reactive approach, after the first packet arrival to the switch, if

there are not matching flow entries in the flow table, the packet is for-

warded to the controller. The controller can make some decisions (e.g.,

drop or forward the packet) and, in case, insert the flow entry into the

switch. Then, the next packets related to that specific flow, will be man-

aged directly by the switch according to the flow entries.

2. In the proactive mode, before the packets arrival, the controller can proac-

tively insert the flow entries into the switches. In that case, when the

packets arrive, the switches know how to manage those flows without

interactions with the controller.

3. The predictive behavior uses the historical data regarding the network

performance to make the adjustment of the routes and flows possible.

It follows that the amount of the packets exchanged between the switches

and the controller is reduced in the proactive approach. Furthermore, the proac-

tive mode makes the “make-before-break” approach possible. In other words,



CHAPTER 2. BACKGROUND 28

retrieving information related to the network status is useful to understand

what is going on and to prevent a down link by finding a new path.

One other important aspect regards the control plane distribution, which

is directly correlated to both the scalability and the availability of the network

controller.

2.3.2 Control plane distribution

The distribution of the control plane is not specified by the OpenFlow pro-

tocol, as well as the controller-to-controller communication. The controller can

be implemented as a single centralized or a distributed server. In case of a

distributed solution, different schemes can be implemented (e.g., one main

controller and some back-up controllers updated by a hot/cold copy model).

However, any type of distribution or redundancy in the control plane can be

useful to enforce the availability and scalability of the controller.

The main weaknesses and challenges related to SDNs are explained in Sec-

tion 2.4, according to the control models above mentioned.

2.4 SDN weaknesses and challenges

The focus of this section concerns the weaknesses and challenges of dealing

with the SDN networks and the OpenFlow protocol. SDN and OpenFlow offer

a way to make simple the prototyping, deployment, and management of the

network elements. However, we must also take into consideration some inter-

esting aspects that can lead the network in an unsafe or unavailable condition

[30] [31], as follows:

1. The availability of the controller is the main aspect that is necessary to

consider. The tight dependence between the switches and the controller

whenever a modification of the rules is necessary, could become a prob-

lem. Moreover, if the network design takes into account only one central-

ized controller, it could become a “single point of failure”. A distributed

approach could be implemented to guarantee the availability and avoid

a potential undesirable failure. In addition, some redundancy or backup

solution could be used for enforcing the robustness.



CHAPTER 2. BACKGROUND 29

2. The security is also important. In SDN, the controller is a component with

a critical knowledge of the network and this aspect exposes the controller

to possible attacks and threats. Additionally, the channels among the con-

troller and the switches could be vulnerable. According to the OpenFlow

specification, it is possible to use a secure communication by means of the

TLS protocol, but its usage depends on the design of the network since it

is not required.

3. The consistency of the flow tables is also a potential issue. Since several

controllers can manage the same flow tables, for instance, a production

hardware controller and some other experimental controllers, it follows

that the latter will be the “weakest link in the chain”. Consequently, they

could be subject to lower security controls, leading the flow tables in an

inconsistent state. An implementation of the flow visor can be suitable

for avoiding these potential threats.

4. The scalability of the network also depends on the controller, that po-

tentially can become a “bottleneck”. In case too many packets reach the

controller, performance issues can occur in the network. It follows that

it is important to take into account the distribution of the control plane,

presented in Section 2.3.2, for avoiding these undesirable problems.

5. The performance of the network can also be related to the control model

adopted. Since the flow table size is limited, the management of a very

large number of flows is still a strong challenge. However, a well de-

signed network could reduce performance issues through a proactive

approach. In fact, as previously analyzed in Section 2.3.1, the proactive

approach reaches better performance than the reactive mode because it

limits the amount of messages exchanged among the controller and the

switches.

The aspects described above have been taken into consideration by the

community researchers and represent the future challenges for the SDNs.

The last section of this chapter presents one of the most widespread con-

troller, Floodlight, suitable for dealing with SDNs.



CHAPTER 2. BACKGROUND 30

2.5 Floodlight SDN Controller

Many SDN controllers have been developed since the introduction of SDN

[18]. However, one of the most widespread OpenFlow controller is Floodlight

[32]. Floodlight is a Java-based open source software based on the Beacon con-

troller implementation developed at the Stanford University [33], that works

with physical and virtual OpenFlow switches. The last release of Floodlight is

the version 0.90 and, the following section explains the architecture and the

main characteristics of the Floodlight.

2.5.1 Architecture

The Floodlight controller realizes a set of common functionalities to control

and inquire an OpenFlow network. As shown in Figure 2.15, the Floodlight ar-

chitecture is modular and it is clear the relationship among the controller, the

applications built as Java modules compiled with Floodlight, and the applica-

tions built over the Floodlight REST API.

Figure 2.15: Floodlight architecture [5]

As depicted in Figure 2.15, the main modules related to the controller core

are the following:



CHAPTER 2. BACKGROUND 31

1. The Link Discovery is responsible for discovering and maintaining the

status of links in the OpenFlow network by means of the Link Layer Dis-

covery Protocol (LLDP) and the Broadcast Domain Discovery Protocol

(BDDP). Furthermore, the controller periodically commands through the

Link Discovery module the switches to flood LLDP and BDDP packets

to all their ports. A discovery protocol packet typically contains the Data

Path Identifier (DPID) of the sender switch together with the port of the

switch which the message originates from. Thus, the controller discovers

the direct and indirect connections between the switches. Specifically, a

direct link will be established if a LLDP is sent out to one port and the

same LLDP is received on another port. It follows that the ports are di-

rectly connected. On the opposite side, thanks to the BDDP protocol, it is

possible to find indirect connections by means of a flooding approach. In

this case, if a BDDP packet is sent out to a port and received on another,

a broadcast link is created. It means that there is another layer 2 switch

that is not under the control of the controller between these two ports.

Further, the controller is also able to verify the connection liveliness with

periodical checks.

2. The Topology Manager is designated to maintain the topology informa-

tion updated for the controller, as well as to find routes in the network.

The topologies are computed by means of the link information retrieved

from the Link Discovery service. All the information about the current

topology is stored in an immutable data structure called the topology

instance. Thus, the controller can determine the shortest path (using the

Dijkstra algorithm) from a source switch port to a destination switch port,

equipped with the knowledge of the network topology.

3. The Device Manager tracks devices, through the packet-in requests, con-

nected to the network and defines the destination device for a new flow.

By default, the module uses the MAC address and the VLAN to identify

uniquely a device. Furthermore, the Device Manager learns about other

important pieces of information such as IP addresses as well permits to

know the device attachment points. In that case, if a packet-in is received

on a switch, an attachment point will be created for that device. Finally,



CHAPTER 2. BACKGROUND 32

this component also ages out attachment points, IPs, and devices them-

selves. It exploits the last seen timestamps to keep control of the aging

process.

4. The Storage service realizes a storage based on a NoSQL style. It also

supports a notification mechanism for changes in the database.

Furthermore, as also depicted in Figure 2.15, some other important appli-

cation modules are:

1. The Forwarding component, loaded by default, makes the forwarding

of packets between two devices possible, realizing a reactive forwarding

approach. It is designed to work in networks that contain both switches

OpenFlow-enabled and “regular” switches. However, it works correctly

only if loops among groups of switches OpenFlow-enabled and groups

of the “regular” switches do not exist. Moreover, the Forwarding module

individually handles each packet, and severely limits the performance.

2. The Learning Switch implements a behavior similar to the “regular” L2

learning switch. Thus, the module detects and learns about new devices

based on their MAC addresses. When the controller detects a new flow,

the Learning Switch identifies the input and the output switches, as well

as all other switches on the shortest path between the start and the end

point. Once a path has been found, the module installs the appropriate

OpenFlow rules for handling the new flows on all participating switches.

3. The Static Flow Entry Pusher allows a user to manually insert flows into

an OpenFlow-enabled switch through REST API. Thus, in practice, this

module realizes a proactive forwarding approach.

4. The PortDown Reconciliation, when a port or a link goes down, rec-

onciles flows across a network. Following a link discovery update, the

module discovers and deletes flows directing traffic towards the downed

port. Then, it re-evaluates the path that the traffic has to take according

to the updated topology. It follows that if this module is not enabled, the

persistent traffic continues to be routed to a downed port.



CHAPTER 2. BACKGROUND 33

5. The Firewall module implements a generic reactive firewall software that

enforces the Access Control List (ACL) rules on the OpenFlow-enabled

switches. Specifically, the ACL rules are sets of conditions that allow or

deny a traffic flow at its ingress switch. Furthermore, the first packet(s)

of a traffic flow is matched against the set of the existing firewall rules

through the monitoring of each packet-in triggered by. The rules are also

sorted based on assigned priorities and are matched against the packet-in

header fields.

On top of both the controller core modules and the application modules is

placed the REST API layer. This tier allows the modules to expose their REST

APIs over HTTP realizing a flexible architecture.

Floodlight supports both the forwarding approaches (argued in Section

2.3.1) by means of the Forwarding and the Static Flow Entry Pusher modules

described above. The controller has also a separate module system to load the

modules. It is possible to enable/disable the loading of some modules, and

consequently the behavior of the controller, simply by means of an editable

properties file. This approach permits to swap out implementations of mod-

ules without modifying modules that depend upon them. Hence, the modu-

lar architecture and the REST API service supply an adaptable and extendible

framework for dealing with SDNs, enforcing the code modularity.

However, some limitations are still present. Firstly, at the moment, Flood-

light supports only the OpenFlow 1.0 specification and the timeline for support

of 1.2/1.3 is currently unknown. Secondly, since Floodlight stores the data in

the volatile memory, all states will be lost when the controller is turned off. Fi-

nally, there is no isolation of data enforced. It means that if a module creates a

table, another module could potentially overwrite this data creating inconsis-

tency.

The next chapter discusses some important related works in the SDN field

and an interesting network emulator, Mininet, suitable for dealing with SDNs.



Chapter 3
Dealing with SDN

The following chapter provides an overview of the main related works

about SDN and OpenFlow. Specifically, we present several important pa-

pers that deal with the Quality of Service (QoS) and the Quality of Experience

(QoE) in SDN. A few interesting works related to the network monitoring and

resource management are also described in the next section. Finally, we dis-

cuss a widespread network emulator, called Mininet, often used for dealing

with SDN.

3.1 Related work

Recently, SDN in conjunction with OpenFlow have attracted the attention

of both academia and industry. They allows the software-based controller to

manage the forwarding information in the switches. Furthermore, the switches

OpenFlow-enabled become “simple” forwarders that route the network traffic

according to the rules set by the controller. Hence, SDN enables the researchers

to test new ideas (e.g., novel algorithms, different protocols, or customized ar-

chitecture) in a production environment by decoupling the control and data

planes. In addition, the network status monitoring is of utmost importance for

managing the resources and making an enhanced QoS possible. The next sec-

tion details some interesting works related to the network monitoring in SDN.

34



CHAPTER 3. DEALING WITH SDN 35

3.1.1 How to Monitor Network Parameters with OpenFlow

Even if many papers focus on the problem of network management, moni-

toring and control to improve the QoS perceived by the customers, only some

provide solutions for measuring network performance, e.g., latency, through-

put, and packet loss.

The authors in [34] implement OpenNetMon to monitor latency, through-

put and packet loss in OpenFlow networks. OpenNetMon is a POX OpenFlow

controller module that monitors per-flow QoS metric. This application allows

to determine on-line whether the end-to-end QoS parameters are satisfactory.

Then, the application sends the data relative to throughput, delay and packet

loss to the controllers for Traffic Engineering (TE) purposes. The throughput

and packet loss are obtained from polling flow source and destination swit-

ches. The OpenNetMon regularly sends polling messages to the switches to

retrieve Flow Statistics. Then, it receives the amount of bytes sent and the

duration of each connection from which is possible to measure the through-

put. Notice that the polling is done for every path between every node pair

to be monitored. Moreover, the polling is adaptively changed based on new

flows arrivals and changes. Per-flow packet loss is calculated by subtracting

the increase of the packet counter of the source switch with that of the des-

tination switch. While, the latency is harder to measure. It is derived by in-

jecting probe packets into the switch data planes on the same path of each

flow. Then, the controller can measure the delay by computing the difference

between the packets departure and arrival times, subtracting with the esti-

mated switch-to-controller (Round Trip Time) RTT, using the following for-

mula: tdelay = (tarrival − tsent − 1/2(RTTs1 + RTTs2)). This paper presents

also some implementation specific details that are useful for the research com-

munity [34]. The main drawback is that the authors do not suggest how the

controller can find the new paths based on the real-time data.

Another way to measure network parameters is to use an analytical model.

Indeed, [35] presents such a model to evaluate the forwarding speed and block-

ing probability of an OpenFlow network. The model is based on the queuing

theory and then tested on an OpenFlow switch and controller by means of a

simulation: authors assume that the OpenFlow architecture can be viewed as



CHAPTER 3. DEALING WITH SDN 36

a feedback oriented queuing system model divided into two systems. The first

is a forwarding queuing system of a type M/GI/1 with a M/M/1 Markovian

server. While the second is a feedback queuing system of the delay-loss type

M/GI/1 − S with a M/M/1 − S server. Then, the controller is modeled as the

feedbackM/M/1−S queuing system. The following Figure 3.1 shows the com-

plete model of the forward and feedback queuing systems. The performance

Figure 3.1: The model of an OpenFlow switch

parameters are the total sojourn time of a packet through the system and the

probability of dropping a packet. The results show that the sojourn time de-

pends on the processing speed of the controller. Thus, it can be deduced that

the controller performance limits the installation of new flows on the network.

The main advantage of using an analytical model is that it can provide results

in less time than using a simulation. However, the paper does not exploit the

fact that the measurements can be used to improve the QoS.

One of the most important metric in network evaluation is network latency.

The paper [36] suggests a way to measure the link latency from an OpenFlow

controller. The idea is to send a special packet on the link from the controller

and back and measuring the amount of time it requires to do so. The Figure 3.2

depicts the functional architecture for the latency monitoring. To do so, the con-

troller c sends a request to a switch s1 to being forwarded through a particular

port. The second switch s2 sends back the packet to the controller. Then, it can

be deduced from the received time and the Timestamp how long the packet

took to complete its trip. Finally, it is necessary to subtract the time spent in

the links and in the switches. Thus, the link latency is computed as follows:



CHAPTER 3. DEALING WITH SDN 37

Figure 3.2: The functional architecture of the latency monitoring application

Latency(s1, s2) = Ttotal −
RTTc→s1

2 −
RTTc→s2

2 − C. Where C is the calibration

value of the controller. This solution is implemented on an OpenFlow testbed

showing the effectiveness. The paper only miss to use latency measurements

for providing new network capabilities.

The next section presents some interesting works focused on improving the

QoS and the QoE in SDN.

3.1.2 SDN to improve Quality of Service and Quality of Expe-

rience

SDN decouples control and forwarding layers of routing, as an efficient

way to provide new QoS architectures over OpenFlow networks.

A solution for scalable video streaming over Open Flow network is pre-

sented in [37]. The authors suggest and solve two optimization problems for

controller design. The solutions provide new routing path for lossless and lossy

QoS flows. The results show that the average quality of video stream is im-

proved by 14% by rerouting the base layer, and it can also be improved by

another 6.5% by rerouting the enhancement layer.

OpenQoS [38] is a proposal for multimedia delivery with end-to-end QoS

support. The routes of the multimedia traffic are optimized dynamically to re-

spect the QoS requirements, such as packet loss and latency. The paper sug-



CHAPTER 3. DEALING WITH SDN 38

gests a dynamic QoS routing for QoS flows while other flows remain on their

shortest path. The results show that the solution can guarantee seamless video

delivery with little or no video artifacts experienced by the end users. More-

over, they show that the service does not have adverse effect on other types of

traffic.

Moreover, the paper [39] also design a QoS architecture based on Open-

Flow, suggesting an optimization framework. The scheme is exploited for en-

hancing QoS-enabled streaming of scalable encoded videos with two level of

QoS: the base layer and the enhancement layer. The problem is posed as a Con-

strained Shortest Path (CSP) problem and then solved. The results show that

there is a significant improvement in the quality of scalable video streaming.

The rerouting of base layer video only is sufficient to get important improve-

ment over streaming scalable or non-scalable video with best effort quality.

The dynamic rerouting of the enhancement layer is useful when the network

congestion is high and the base layer bit rate is low.

Another optimization problem for QoS flow routing is suggested in [40].

The paper describes an architecture to support QoS flows in an OpenFlow

environment with a centralized controller. The problem formulation provides

routes for QoS flows that are translated into flow tables for QoS traffic. More-

over, the authors setup an environment of the controller, to receive a QoS con-

tract, to configure forwarders for QoS flows, to monitor the network and to

switch-over to an alternate route under congestion or failure.

The topic of QoE is considered in many works, [41] proposes an OpenFlow-

assisted QoE Fairness Framework (QFF) to improve the QoE of multiple clients.

By exploiting the SDNs and OpenFlow, the paper suggests a way to optimize

the QoE for all video streaming devices in a network, considering also the de-

vice and network requirements. The main characteristic of QFF is to dynami-

cally adapt the video flow in order to guarantee network-wide QoE fairness.

The QFF has been implemented and evaluated by means of MPEG-DASH and

OpenFlow. Exploiting OpenFlow, QFF monitors the status of all DASH video

application in the network. Then, QFF can accordingly take some decisions

about how to allocate the network resources. The following Figure 3.3 depicts

an high-level view of the QFF.



CHAPTER 3. DEALING WITH SDN 39

Figure 3.3: OpenFlow-assisted QoE Fairness Framework

The architecture is composed by an OpenFlow Module (OM), that runs on

the OpenFlow controller of the network and is responsible of managing the

main QFF functionalities. The inputs to the OM are the Network Inspector and

the MPD Parser, that provide the network and clients status. While, the out-

puts are the Flow Tables Manger and the DASH Plug-in, that ensure that the

decisions are propagated to the network. Finally, there are the Utility Func-

tions and the Optimization Function that dynamically optimize the QoE fair-

ness interacting with the OM. The QFF is evaluated in a home networking

scenario. The results show that QFF provides network stability and optimizes

video streaming QoE among different devices in a network. The main draw-

back of this approach, as stated by the authors, is that the Utility Function de-

pends on the characteristic of the test video source. The Utility Function should

be more flexible and adaptive to various video contents, for instance to add the

possibility to measure some metrics related to the improvement of QoE.

Then, the paper [42] suggest a scheme for HTTP video quality optimization

exploiting SDN. It proposes a HTTP video content delivery scheme in the SDN

scenario. The SDN paradigm increases the network intelligence and scalability

and, also allows user to obtain video resource from the nearest storage router

providing better video quality and user QoE. Then, the authors test by means

of five experiments the video quality in presence of different round trip time

delay depending on round trip delay results of HTTP video access in SDN and

actual network. Finally, the user QoE of the video is computed and compared



CHAPTER 3. DEALING WITH SDN 40

for all the experiments. The results show that the video quality is substantially

improved with SDN scheme and the QoE achieve more than a good level.

The paper [43] presents QoSFlow to improve the flexibility of QoS control.

The aim of QoSFlow is to allow the control of multiple packet schedulers. Thus,

it brings the Linux traffic control into the Open Flow networks. The authors

analyze the performance in terms of response time of the packet scheduler op-

erations running on data path level, maximum bandwidth capacity, hardware

resource utilization rate, bandwidth isolation and QoE.

We also consider the proposal of [44], where the QoE measurement is inves-

tigated. The authors suggest three approaches: subjective, objective and hybrid

approach. The first one depends on the quality score given by humans accord-

ing to their point of view and perception but it is very expensive in terms of

manpower. The objective approach is based on algorithms and metrics already

defined in the literature, the most common metric is the Peak Signal-to-Noise

Ratio (PSNR). However, the PSNR is not a real-time mechanism because it re-

quires to reconstruct the image at the receiver before computing the PSNR. Fi-

nally, the hybrid approach works in real-time and it is based on statistic learn-

ing. The latter gains advantages from the other approaches because it is more

accurate. It is very important to define a method to measure the QoE for man-

aging network resources and provide efficient services.

While, the paper [45] suggests SWAN (Software-driven WAN), an efficient

system that allows inter-Data Center WANs to carry more traffic. In particu-

lar, it globally coordinates the sending rates of different services and, centrally

allocates network paths. Thus, SWAN dynamically chooses how much traffic

each service can send and manages the network data plane to carry the traffic.

The main problem is the congestion that can be caused by the frequent updates

to the network data plane. However, the authors suggest to leave a “scratch”

capacity at each link to enable a congestion-free plan to update the data plane.

Then, they develop SWAN and test it finding that their system can carry 60%

more traffic than the current practice with no update overhead and, showing

that the changes to the network paths are quick.

Unfortunately, often it is expensive and not simple to configure and test an

SDN environment composed of real devices, especially if the network is very



CHAPTER 3. DEALING WITH SDN 41

large. However, a few SDN network emulators have been developed to make

these tasks simple. One of the most widespread SDN emulators is Mininet and

it is presented in the next section.

3.2 Mininet Network Emulator

Mininet is an open source project for rapidly prototyping large networks on

the constrained resources of a single device e.g., a laptop [16]. More specifically,

it is a network emulator that permits to deal with SDN networks. This emu-

lated environment can be executed in a Virtual Machine (VM) (e.g., VirtualBox

or VMware) or directly on a native Linux distribution. Mininet is able to run

a collection of virtual end-hosts, switches, routers, and links on a single Linux

kernel. Furthermore, it allows us to create many custom topologies and emu-

late some link parameters like a real Ethernet interface, e.g., link speed, packet

loss, and delay. Thus, by means of Mininet, it is possible to create an emulated

network that reproduces a hardware network, or a hardware network that re-

sembles a Mininet network, and run the same binary code and applications on

either platform. Specifically, it is possible to create a customized network by

using Python APIs or directly build some simple network topologies through

the Command-Line Interface (CLI). The CLI also provides some useful com-

mands suitable for retrieving topology information, debugging the network,

or testing the connectivity. Mininet can also work with several different SDN

controllers, e.g., Floodlight, as described in Chapter 2.

However, some restrictions exist. Since Mininet permits to emulate a large

network in a single device, it follows that the performance of the emulator

directly depends on the available resources supplied by the host. On the one

hand, this feature allows the researchers to rapidly test new algorithms and

protocols in a built-in environment. On the other hand, an experiment con-

ducted in a device with limited computational resources could alter the net-

work behavior. In fact, since Mininet is an emulator which does not have a

strong notion of virtual time (unlike a simulator), it does not allows us to cor-

rectly emulate high link speed. Currently, Mininet does not perform a Net-

work Address Translation (NAT) out of the box, thus the nodes cannot be di-



CHAPTER 3. DEALING WITH SDN 42

rectly connected to the Internet. This aspect is further explained in Section 5.4

of Chapter 5. Moreover, all the Mininet hosts share the host file system and the

Process ID (PID) space. It follows that the Mininet processes are not completely

isolated, consequently, they could interfere with some other daemon processes

that are running in the same space.

The next Chapter describes our architecture to enhance QoS in SDNs in

depth and presents the mathematical model based on the Multi-Commodity

Flow Problem and the Constrained Shortest Path Problem.





Chapter 4
The QoS-aware Mathematical

Model

The QoS is of paramount importance in a SDN scenario, as explained in the

previous chapters. Furthermore, it is very important to take into account

the relation between the type of applications (e.g., real-time vs. file transfer

data) and the network parameters as available bandwidth, packet loss, delay,

and jitter. In Table 4.1 are summarized few examples of quality requirements

of a set of relevant applications. Specifically, the loss tolerance indication is

APPLICATION CHARACTERISTICS LOSS TOL. DELAY TOL. JITTER TOL.

Network control Mostly inelastic Low Low Yes

Telephony Inelastic, low rate Very low Very low Very low

Signaling Short packets, delay critical Low Low Yes

Multimedia conferencing Reacts to loss Low medium Very low Low

Real-time interactive Inelastic, variable bit rate Low Very low Low

Multimedia streaming Elastic, variable bit rate Low medium Medium Yes

Broadcast video Inelastic, non variable bit rate Very low Medium Low

Low latency data Elastic, variable bit rate Low Low medium Yes

OAM Both elastic and inelastic Low Medium Yes

High throughput data Elastic Low Medium high Yes

Low-priority data Elastic High High Yes

Table 4.1: Application quality requirements

related to the application resilience in case of packet dropping (that typically

occurs when the network is congested). Moreover, the delay tolerance refers

to the application robustness when the packet delivery is prone to the latency.

44



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 45

Finally, the jitter tolerance indicates the application strength in the event of

variation in packet delivery delay. Thus, the application quality requirements

give us a general idea of the correlation between the application type and the

network parameters.

However, we are interested in finding a map between the network param-

eters described above and a general reference scale. This mapping is useful

to have a connection between the network status and the QoS from the user

point of view. To make it possible, we have taken into account the well known

Mean Opinion Score (MOS) model, that is a metric (conceived in telephony

networks) to measure the users satisfaction level. It has been standardized by

the Telecommunication Standardization Sector (ITU-T) [46] group in the ITU-T

P.800 standard [8] and it is composed of five different levels (fractional values

are admitted), as sketched in Table 4.2. It follows that a MOS score level equal

MOS QUALITY IMPAIRMENT

5 Excellent Imperceptible

4 Good Perceptible but not annoying

3 Fair Slightly annoying

2 Poor Annoying

1 Bad Very annoying

Table 4.2: Mean Opinion Score levels [8]

to 5 corresponds to completely satisfied users, while a MOS level equal to 1 cor-

responds to a population of unsatisfied users. At the beginning, the model was

exploited to retrieve the average MOS value of classic PCM fixed telephony,

that amounts to 4.3 (used as a reference to judge the MOS value of a telephone

system).

Moreover, the ITU-T group has also defined, in the recommendation G.114

[9], some delay ranges in the telephone field. The recommendation document

suggests that the total delay (called “one-way” or “mouth-to-ear”) in a voice

connectivity should be less than 400ms, as indicated in Table 4.3. However, the

same recommendation specifies that the total delay in a VoIP call should be less

than 100 − 150ms.

Nowadays, a lot of papers in different fields refer to this classification. Fur-

thermore, the MOS score level is often used as a reference point for defining



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 46

DELAY(ms) QUALITY

< 150 Acceptable

150 - 400 Acceptable but not desirable

> 400 Unacceptable

Table 4.3: Voice connectivity total delay (one-way) [9]

some parameters range. It follows that for each type of application, there ex-

ist many different mappings between the MOS classification and the network

parameters depending on the amount of packet loss, delay, jitter, or a combina-

tion of few of them. For instance, the delay value is very important in network

gaming, as depicted in Table 4.4. As detailed in the paper [10], the quality per-

DELAY(ms) MOS QUALITY

< 50 5 Excellent

30 - 100 4 Good

100 - 150 3 Fair

150 - 200 2 Poor

> 200 1 Bad

Table 4.4: End-To-End delay in the network gaming [10]

ceived from the user’s point of view is intolerable if the delay is greater then

200ms. However, if the delay is less then 100ms, the user experience becomes

good or excellent.

Even the authors of the paper [6] have taken into account the connection

between the packet loss and the quality defined by means of the MOS score,

as depicted in Figure 4.1. Specifically, it has been evaluated the packet loss that

can occur in different content types, such as news, film trailer, football, and

music video. As illustrate in Figure 4.1, the multimedia services have various

packet loss range depending on the different content types (with bit rate values

from 24 kbps to 256 kbps). There exists a strong correlation between the packet

loss and the quality from the user’s point of view, as clearly illustrated in Figure

4.1. Specifically, when the amount of packet loss is approximately equal to 5%,

the QoS perceived by the users is poor (according to the MOS model).

Even CISCO has brought to light [11] some reference point about the QoS

needed for VoIP, Interactive-Video (IP Videoconferencing) and Streaming-Video,

as summarized in Table 4.5.



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 47

Figure 4.1: Streaming quality and packet loss rate (in percentage) for different content types [6]

APPLICATION DELAY PACKET LOSS JITTER BANDWIDTH

VoIP 6 150 ms * 61 % < 30 ms * 21-320 kbps

Interactive-Video 6 150 ms * 61 % 630 ms * n.a.

Streaming-Video 6 4-5 s * 6 5 % n.a. n.a.
* “one-way” value

Table 4.5: QoS requirements of VoIP, Interactive-Video, and Streaming-Video [11]

We provide a few comments about the values indicated in Table 4.5:

1. VoIP is not tolerant of packet loss (ideally, there should be no packet loss

for VoIP) especially if it uses a compressed codec.

2. The maximum video streaming delay depends on video application buffer-

ing capabilities, thus it can be less than the value indicated.

3. The acceptable jitter is not a fundamental parameter in video streaming

applications, thus there are no significant jitter requirements.

4. The streaming video bandwidth requirement is related to the encoding

format and the rate of the video stream, hence it is not a fixed value.

Furthermore, both in multimedia and telephony applications, the QoS can

also depend on the codec type used, the error recovery mechanism, and the

content bit rates. It follows that it is not simple to have an accurate measure

of the quality from the user’s point of view because it is necessary to take into

account a lot of different variables. In our proposal, we have primarily taken



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 48

into account the available bandwidth, the packet loss, and the delay. Neverthe-

less, our mathematical model can be easily extended to satisfy more constraints

related to other network or service parameters.

Moreover, the purpose of this chapter is to describe in depth our proposed

enhanced QoS architecture for SDN networks. To reach this goal, it is very im-

portant to continuously supervise the network conditions, make the right de-

cisions, and accordingly manage the devices. Then, the subsequent section ex-

plains our mathematical model, based on the multi-criteria approach, that im-

plements the “brain” of the network. Finally, we have defined different thresh-

olds of QoS and we have put in relation the values supplied by the mathemat-

ical model with the MOS model described above.

4.1 Enhanced QoS Architecture

This section describes our proposed architecture, indicated with a red dashed

line in Figure 4.2. Our proposal aims to reach an enhanced QoS in SDNs by

means of several functionalities. On the one hand, the architecture continu-

ously retrieves the network parameters to improve the awareness of the net-

work status. On the other hand, the presented solution calculates the best path

according to the specific flow constrains. It reaches this goal by exploiting the

multi-criteria approach, as explained in Section 4.2. Specifically, the architec-

ture is composed of the following logical modules:

a. The Network Topology Mapper incessantly retrieves information about

the real network topology (links and nodes) and maps it into a structure,

i.e., the Link Connection. The mapping of these information is useful for

the Static Path Inserter and the Path Finder module for running algo-

rithms on the structure and finding offline the best path.

b. The Static Path Inserter inserts the flow entries into the switches, through

the Floodlight REST API, to configure the paths when a manual config-

uration is required. This static insertion is suitable for configuring the

paths according to some external decisions, e.g., overloading some par-

ticular links instead of others or forcing specific paths in such a way to



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 49

Figure 4.2: QoS Management & Orchestration architecture (red dashed line)

avoid some switches. The module uses also the Link Connection to get

the correct ports involved in the path.

c. The Network Status Collector continuously collects information about

the network status (e.g., the available bandwidth, the packet loss, and

the latency of the network links). These information are stored in the

Weighted Map structure to allow the Path Finder module to find the

best path. The reliability of the measurements depends on the quality of

the data stored in the switch OpenFlow-enabled. However, the current

Floodlight version (that supports OpenFlow version 1.0) does not offer

the possibility to retrieve these informations as a “built-in” feature. Thus,

we have implemented these specific functionalities as described in Chap-

ter 5.

d. The Dynamic Path Inserter injects the flow entries into the switches to



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 50

set the best path found by the Path Finder module. On the one hand,

the module exploits the Path Finder for calculating the best path. On the

other hand, the Dynamic Path Inserter uses the Floodlight REST API for

deploying the rules into the devices. Thus, this component is the “actua-

tor” of the architecture.

e. The Path Finder implements the mathematical model for finding the best

path according to both the flow requirements and the network status. The

model uses the multi-criteria approach, as detailed in Section 4.2. Specif-

ically, the Path Finder exploits the information stored in the Weighted

Map and decides which is the best path for each flow. This module sup-

plies the new path to the Dynamic Path Inserter when required.

f. The Watch Dog module is responsible for the triggering of the path chang-

ing. It continuously analyzes the network information collected by the

Network Status Collector and decides when it is necessary to trigger

a path changing. In this case, the Watch Dog directly commands the

Path Finder to retrieve the best path according to the network condi-

tions stored into the Weighted Map. Consequently, the module uses the

Dynamic Path Inserter for putting the flow entries into the switches in-

volved in the new path.

g. The QoS Management & Orchestration is the proposed architecture core

and uses all the modules for the network management. Specifically, this

“wrapper” module has to dynamically analyze the network status, de-

cide when it is necessary to redefine a new path for a specific flow, find

which is the best path for that flow, and insert the rule in the switches (in

the form of flow entry). Moreover, by using the Dynamic Path Inserter,

we are able to achieve the “make-before-break” approach, described in

the Chapter 2, and offer the best QoS as possible.

The modular design of the proposal in conjunction with the flexibility sup-

plied by the Floodlight REST API interface, provides a flexible architecture that

can be easily extended to operate with different controllers or to realize addi-

tional functionalities.



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 51

The next section describes in depth the main modules of the architecture.

Specifically, it is presented the multi-criteria approach and the mathematical

model, exploited by the architecture, to enhance the QoS in SDNs.

4.2 Multi-Criteria Approach

The multi-criteria approach is the core of our proposal and it allows us to

assign a flows to a specific path taking into account both the link parameters

(e.g., packet loss, latency, and available bandwidth) involved in the path and

the flow requirements. To reach this goal, the proposed architecture has to con-

tinuously monitor the network parameters to adapt the resources by need. The

architecture is also able to find the best path (or more than one best path in case

of multiple flows) that can satisfy the flow necessities by means of our mathe-

matical model. The mathematical model is based on two well known problems

that have been addressed by Operations Research: the Multi-Commodity Flow

Problem and the Constrained Shortest Path Problem, as further described be-

low. The target of our architecture is to enhance the QoS in SDNs.

4.2.1 Multi-Commodity Flow Problem

The Multi-Commodity Flow Problem (MFP) is a particular network flow

problem where multiple “commodities”, i.e., different traffic flows (demand-

s/services), should be sent from various sources to distinct destination nodes.

In particular, we suppose to have a network of interconnected nodes where

each link has a particular capacity, i.e., bandwidth, and a cost associated to it.

Moreover, the flowing traffic along the links between each pair of nodes con-

sumes an amount of bandwidth. The goal is to find the optimal set of routes

through the network for each of those commodities with the minimum total

flow cost. The constraint is that the total flow on a link should not exceed the

link capacity.

Thus, we define the mathematical notation for the MFP. The network is

represented by an oriented graph G = (N,A), where N is the set of nodes and

A is the set of arcs between each pair of nodes. The arcs E are bi-directional and

they have associated the available bandwidth bij and the cost per unit of flow



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 52

cij. The set of different traffic flows to be routed on the graph is represented by

K. For each flow, three parameters are given:

i. the source node sk;

ii. the destination/terminal node tk;

iii. the amount of flow fk to be sent from the source node to the destination

node.

Notice that we assume that there exists no pair of flows with the same origin

and destination.

In the following, we provide the ILP formulation for the MFP problem. The

optimization objective is to route all the flows in the network with the mini-

mum cost.

Sets:

• Nodes: n ∈ N

• Arcs: (i, j) ∈ A

• Edges: (i, j) ∈ A ∪ (j, i) ∈ A

Variables:

• xkij > 0: amount of the flow corresponding to the service k routed on the

link (i, j).

Parameters:

• bij > 0: available bandwidth on the link (i, j);

• cij > 0: cost of the link (i, j);

• sk ∈ N: source of the flow k;

• tk ∈ N: destination of the flow k;

• fk > 0: amount of the flow k to be sent from the source to the destination.



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 53

Objective Function:

min :
∑

(i,j)∈A

∑
k∈K

cijx
k
ij (4.1)

Constraints:

∑
(i,j)∈A

xkij −
∑

(j,i)∈A

xkji =


fk if i = sk,

−fk if i = tk,

0 if i 6= sk, tk

∀i ∈ N,∀k ∈ K (4.2)

∑
k∈K

xkij 6 bij ∀(i, j) ∈ A (4.3)

xkij > 0 ∀(i, j) ∈ A,∀k ∈ K (4.4)

The objective function 4.1 represents the cost minimization that depends

on the cost of the used links. The first constraint 4.2 is related to the flow bal-

ancing. It takes into account the well known Flow Conservation Law that ex-

plains that the total flow incoming into each vertex is equal to the total flow

outgoing from the same vertex, with the exception of the source and the termi-

nal. Equation 4.3 refers to the arch capacity constraint and imposes a limit on

the available bandwidth of each link. Finally, the Equation 4.4 defines the vari-

ables domain and guarantees that the decision variable is positive. About the

problem size, we notice that the number of variables is |A||K| and the number

of constraints is |N||K|+ |A|. This problem is NP-complete [47].

4.2.2 Constrained Shortest Path Problem

The Constrained Shortest Path problem (CPS) is an extension of the Short-

est Path (SP) problem and it calculates a shortest path fulfilling a set of con-

straints. In particular, we have a network of nodes where each link is defined

by various parameters, e.g., in our case the delay and the packet loss. More-

over, each link has a cost associated to it. The goal is to find the optimal path

between a source and a destination with the minimum cost after pruning those



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 54

links that violate a given set of constraints. In our case, the constraints are that

the delay and the packet loss do not exceed the maximum acceptable values.

However, a lot of constraints can be considered, e.g., the bandwidth per link,

the number of links traversed, the number of included or excluded nodes, de-

pending on the network.

Thus, we define the mathematical notation for the CSP. The network is rep-

resented by an oriented graph G = (N,A), where N is the set of nodes and A

is the set of arcs between each pair of nodes. The arcs E are bi-directional and

they have associated the delay dij, the packet loss pi,j, and the cost cij. The

flow is routed on the graph from the source node s to the destination node t.

We define above the ILP formulation for the CSP problem. The optimization

objective is to route a flow in the network along the shortest path.

Sets:

• Nodes: n ∈ N

• Arcs: (i, j) ∈ A

• Edges: (i, j) ∈ A ∪ (j, i) ∈ A

Variables:

• xij ∈ {0, 1}: boolean variable that is 1 if the flow is routed on the link (i, j),

0 otherwise.

Parameters:

• cij > 0: cost of the link (i, j);

• s ∈ N: source of the flow;

• t ∈ N: destination of the flow;

• Pmax > 0: maximum acceptable value for the packet loss;

• pij > 0: packet loss on the link (i, j);

• Dmax > 0: maximum acceptable value for the delay;

• dij > 0: delay on the link (i, j);



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 55

Objective Function:

min :
∑

(i,j)∈A

cijxij (4.5)

Constraints:

∑
(i,j)∈A

xij −
∑

(j,i)∈A

xji =


1 if i = s,

−1 if i = t,

0 if i 6= s, t

∀i ∈ N (4.6)

∑
(i,j)∈A

pijxij 6 Pmax (4.7)

∑
(i,j)∈A

dijxij 6 Dmax (4.8)

xij ∈ {0, 1} ∀(i, j) ∈ A (4.9)

The objective function 4.5 represents the cost minimization that depends

on the cost of the used links. The first constraint 4.6 is related to the flow bal-

ancing as explained in Section 4.2.1. Equations 4.7 and 4.8 refer to the max-

imum acceptable value for the packet loss and the delay, respectively and

Pmax, Dmax impose the limit. Finally, the Equation 4.9 defines the variables

domain and guarantees that the decision variable is 0 or 1. We notice that,

about the size of the problem, the number of variables is |A| and the number of

constraints is |N|. This problem is NP-complete [47].

4.2.3 Our Multi-Commodity Flow and Constrained Shortest

Path Model

Our model takes into account the MFP and CSP problems, we call it Multi-

Commodity Flow and Constrained Shortest Path (MCFCSP). The MCFCSP

model permits to find for each service the related shortest path according to

the given set of constraints. We suppose to have a network of nodes where

each link has an associated delay, packet loss, and bandwidth. Moreover, each



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 56

link has a cost associated to it that is computed as the weighted sum of the

delay and packet loss. Furthermore, we take into account multiple flows that

correspond to different services and that should be sent from various sources

to distinct destinations. Our goal is to find the optimal set of routes through

the network for each of the commodities with the minimum flow cost subject

to some constraints. Our constraints are the maximum acceptable delay and

packet loss, and the available bandwidth on the links.

Thus, we define the mathematical notation for the MCFCSP. The network

is represented by an oriented graph G = (N,A), where N is the set of nodes

andA is the set of arcs between each pair of nodes. The arcs E are bi-directional

and they have associated the available bandwidth bij, the delay dij, the packet

loss pi,j, and the cost per unit of flow cij. Specifically, we compute the cost cij

as follows:

cij = αdij + βpij ∀(i, j) ∈ A (4.10)

Where α and β are the scale factors. This computation allows to weight the

cost based on the importance of the delay and the packet loss for a particular

flow. Thus, we can manage these parameters according to the requirements of

the type of service. For example, the Interactive Multimedia Applications have

strict end-to-end delay requirements, so we can put α = 1 and β = 0 in order

to take into account only the delay. Otherwise, a Medical Data Applications do

not allow high value of packet loss. The set of different traffic flow to be routed

on the graph is represented by K. For each flow, five parameters are given:

i. the source node sk;

ii. the destination/terminal node tk;

iii. the amount of flow fk to be sent from the source node to the destination

node;

ix. Pkmax the acceptable value of the packet loss for each service;

x. Dk
max the acceptable value of the delay for each service;

In the following, we also provide the ILP formulation for the MCFCSP

problem. The optimization objective is to route all the flows in the network

along the shortest path, with the minimum cost.



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 57

Sets:

• Nodes: n ∈ N

• Arcs: (i, j) ∈ A

• Edges: (i, j) ∈ A ∪ (j, i) ∈ A

Variables:

• xkij > 0: amount of the flow corresponding to the service k routed on the

link (i, j).

Parameters:

• bij > 0: available bandwidth on the link (i, j);

• cij > 0: cost of the link (i, j), computed as αdij + βpij;

• α > 0: scale factor for the delay;

• β > 0: scale factor for the packet loss;

• sk ∈ N: source of the flow k;

• tk ∈ N: destination of the flow k;

• fk > 0: amount of the flow k to be sent from the source to the destination.

• Pkmax > 0: maximum acceptable value for the packet loss;

• pij > 0: packet loss on the link (i, j);

• Dk
max > 0: maximum acceptable value for the delay;

• dij > 0: delay on the link (i, j);

• Bk > 0: bandwidth required by the service k;

Objective Function:

min :
∑

(i,j)∈A

∑
k∈K

cijx
k
ij (4.11)



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 58

Constraints:

∑
(i,j)∈A

xkij −
∑

(j,i)∈A

xkji =


fk if i = sk,

−fk if i = tk,

0 if i 6= sk, tk

∀i ∈ N, ∀k ∈ K (4.12)

∑
(i,j)∈A

pijx
k
ij 6 P

k
max ∀k ∈ K (4.13)

∑
(i,j)∈A

dijx
k
ij 6 D

k
max ∀k ∈ K (4.14)

∑
k∈K

Bkxkij 6 bij ∀(i, j) ∈ A (4.15)

xkij ∈ {0, 1} ∀(i, j) ∈ A,∀k ∈ K (4.16)

The objective function 4.11 represents the cost minimization that depends

on the delay and packet loss of the used links. The first constraint 4.12 is re-

lated to the flow balancing as explained in Section 4.2.1. Equations 4.13 and

4.14 refer to the maximum acceptable value for the packet loss and the de-

lay, respectively and Pkmax,Dk
max impose the limit for each service k. Equation

4.15 refers to the arch capacity constraint and imposes a limit on the available

bandwidth of each link considering all the flows k. Finally, the Equation 4.16

defines the variables domain and guarantees that the decision variable is 0 or

1. About the problem size, we notice that the number of variables is |A||K| and

the number of constraints is |N||K|+ |A|+ |K|. This problem is NP-complete [47].

The mathematical model also allows us to define the maximum acceptable

value for the packet loss and delay, respectively indicated by Pmax and Dmax,

for each k-th commodity flow. The maximum acceptable values are fundamen-

tal keys to respect specific flow type requirements, according to Table 4.1, Table

4.5, and Figure 4.1. We can also exploit the α and β scale factors of Equation

4.10 to dynamically tweak the weighted cost in accordance with the impor-

tance of the delay and the packet loss for a particular flow. It follows that, on

the one hand, we can assign a maximum acceptable value of packet loss and



CHAPTER 4. THE QOS-AWARE MATHEMATICAL MODEL 59

delay and, consequently, obtain both the path that satisfy all the constraints

and the correlated minimum cost. On the other hand, we can modify the maxi-

mum acceptable values and, incidentally, verify the cost minimization function

for guaranteeing a specific QoS level, according to the Table 5.1.

The next chapter presents the implementation and the experimental results

taking into account the presented architecture and the mathematical model de-

fined above. Chapter 5 also discusses the correlation between the QoS level

(using the MOS model as a reference for the QoS) and the cost minimization

function that we found during the experiments.



Chapter 5
Implementation and

Experimental Results

This chapter proposes the implementation of our novel architecture and its

core that is embodied in the MCFCSP model, based on the multi-criteria

approach described in Section 4.2. The mathematical model is realized as an

external module on top of the Floodlight controller, presented in Section 2.5.

Furthermore, the module is implemented in Java and it uses AMPL (A Mathe-

matical Programming Language) [48] pairs with the CPLEX solver [49] to solve

the ILP problem related to the path finding. Specifically, AMPL is an algebraic

modeling language for describing high-complexity problems, e.g., optimiza-

tion and scheduling problems, while CPLEX is the optimization engine, de-

veloped by IBM, for solving ILP problems. Hence, in practice, through our

MCFCSP mathematical model and the interface with the solver, we are able

to continuously check if a new best path exists. If a better solution is found,

the module can decide to insert the flow entries into the switches involved

with the new path. To make the testing of our mathematical model possible,

we developed a network topology in the Mininet network emulator, presented

in Section 3.2. The testing codes allows us to compare different solutions given

by the MCFCSP model and evaluate the QoS.

Furthermore, in a real packet-switched network, a few delay times can oc-

cur due to queuing, processing, transmission, and propagation, as depicted in

60



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 61

Figure 5.1.

Figure 5.1: Delay in a real packet-switched network [7]

Hence, we can calculate the total delay as follows:

dnodal = dproc + dqueue + dtrans + dprop (5.1)

The dnodal delay in Equation 5.1 is the latency at a specific router and it is

composed of the following different delays [7]:

1. dproc is the delay time to process the packet and, in high-speed routers,

is typically on the order of µs (microseconds) or less. However, in a SDN

network, we have to take into account the time for the processing by the

external Controller (in general only for the first packet flow).

2. dqueue is the amount of time that a packet has to wait for the trans-

mission along the link. The queuing delay of a specific packet depends

on the number of other packets in the queue, thus, the delay of a given

packet can vary significantly from packet to packet. On the one hand, if

the queue is empty and no other packet is currently being transmitted,

the packet queuing delay is approximately zero. On the other hand, if the

traffic is heavy and many other packets are also waiting to be transmit-

ted, the queuing delay will be long. Queuing delays can be on the order

ofms (milliseconds) to µs in practice.

3. dtrans is the transmission delay, also called the “store-and-forward” de-

lay. It represents the amount of time required to transmit all the packet

bits along the link. For instance, if L is the length of the packet (in bits), R

is the transmission rate of the link (typically in Mbps), it follows that the

transmission delay is L/R. Transmission delays are typically on the order

ofms or less in practice.



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 62

4. dprop is the delay due to the propagation speed of the link. The propa-

gation speed depends on the physical link (e.g., twisted-pair copper wire

or multi-mode fiber) and is in the range of 2 ∗ 108 or 3 ∗ 108 m/s, thus it

almost equal to the speed of the light. Hence, if d is the distance between

two routers and s is the propagation speed, it follows that the propaga-

tion delay is d/s. In general, the propagation delays are on the order of

ms in wide-area networks.

Thus, we consider into our emulated environment an average delay of 10ms

for each link, according to the Equation 5.1. Then, we increment these values

from 10ms to 100ms for each link during the simulation to check the results

of our model. We also consider the amount of packet loss, according to the de-

tails given in Chapter 4. In general, a correlation between the fraction of packet

loss and traffic intensity exists. In fact, if the congestion increases the packet

loss becomes more intense. Specifically, if a link has a total packet loss of 1%, it

means that for every one thousand packets transmitted from the source to the

destination, ten packets are dropped.

We want to demonstrate, in the sections below, that without a proactive

approach the network can rapidly become congested reaching, incidentally, a

very poor QoS.

5.1 Hardware Configuration

Since Mininet runs into our laptop, the performance of the network em-

ulator depends on the hardware characteristics. Furthermore, we use Mininet

v.2.0 in a VM ritualized with the Oracle VirtualBox (version 4.3.2) software. The

laptop characteristics used for the tests are:

• Processor: Intelr Core™2 Duo T9300 @ 2.50 GHz x 2

• Memory: Corsair SODIMM DDR2 2 x 2 GBytes @ 667MHz

• Disc: Solid State Disk 250 GBytes

• O.S.: Debian 7.5 (Wheezy) 64-bit with the Kernel Linux 3.2.0-4-amd64



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 63

The hardware constraints are very important especially if it is required to emu-

late a network with a large number of nodes or with a large links capacity (e.g.,

Gigabit Ethernet). Moreover, for conducting our experiments in the “hybrid”

scenario, as explained in Section 5.4, we use a wireless router (a D-Link DSL-

G604T, 54Mbps) and real devices such as Android smartphones and laptops

with different Operations Systems.

The next section details the network topology configuration used for the

testing of our proposal.

5.2 Network Topology

For our tests, we consider a network topology composed of a video stream-

ing server, a medical server, and two different clients, as drawn in Figure 5.2.

Figure 5.2: Network topology model

Specifically, we want to study in an emulated environment the feasibility

of a real network scenario at the UCLA campus in which different flow types

(e.g., some general multimedia contents and some medical information related

to the hospital patients) can share the same physical infrastructure and inciden-

tally can be treated in different ways. This different treatments will depend on

the specific QoS requirements connected to the flow type, i.e., a medical data

is more important than a generic multimedia data. As detailed in Section 5.4.1,

we define the different flows as follows:

1. The multimedia flow is composed of a video streaming data that comes



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 64

from the video streaming server.

2. The medical flow is modeled as a general file transfer data that comes

from an FTP server.

Moreover, the particular topology shape depicted in Figure 5.2 ensures path di-

versity and gave us the possibility to test our mathematical model with multi-

commodity flows, as discussed in Chapter 4.

The next section describes the implementation of the network topology in

the Mininet emulator.

5.3 Mininet Configuration

In this section we present the configuration of the Mininet emulator, ac-

cording to the network topology shown in Figure 5.2. To make the implemen-

tation of the emulated network topology possible, we use the Python script file

detailed in Appendix A.1. In particular, by means of the functions addHost,

addSwitch, and addLink, we can add to the Mininet topology the network

elements such as HOST , SWITCH, and LINK respectively.

1 net = Mininet( controller=RemoteController, link=TCLink)

2 net.addController(’c0’, ip=’192.168.2.252’, port=6633)

3 HOST = net.addHost(’host’, mac=’aa:aa:aa:aa:aa:01’)

4 SWITCH = net.addSwitch(’switch’, listenPort=6634)

5 net.addLink(HOST, SWITCH, delay=’1ms’, loss=0, bw=10)

Furthermore, as specified in the script above, we set the network parameters

such as packet loss, delay, and bandwidth available, according to the consid-

erations made at the beginning of this chapter. In practice this piece of Python

code creates a link between HOST and SWITCH with 10ms of delay, 0% of

packet loss, and 10Mbits of available bandwidth.

During our tests, we change the link parameters to check the network be-

havior using our proposal. Incidentally, it is possible to verify that the packet

loss and delay values are consistent with the network parameters defined by

means of the Python script, using the Mininet CLI as follows:

1 root@mininet-vm:/# ping -f -c 1000 10.0.0.1

2 PING 10.0.0.1 (10.0.0.1) 56(84) bytes of data.



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 65

3 --- 10.0.0.1 ping statistics ---

4 1000 packets transmitted, 840 received, 16% packet loss, time 13258ms

5 rtt min/avg/max/mdev = 80.906/83.784/228.861/11.655 ms, pipe 18, ipg/ewma

13.271/82.736 ms

The ping shell command above gives us the RTT statistics about 1000 ICMP

packets from the client H3 to the server H1, as depicted in Figure 5.2. In that

case, we define a packet loss of 2% and a delay of 10ms in our Python script.

The average delay found is approximately 84ms because, according to the

topology depicted in Figure 5.2, the packets have to pass through 4 links (3

hops distance) to reach the destination, and they have to come back. Thus, if

each link has a delay of 10ms, the RTT is approximately 10 ∗ (4 ∗ 2)ms = 80ms

(4 links in each direction). The same approach gives us the total packet loss.

In fact, if each link has a packet loss of 2%, the total loss is approximately

2 ∗ (4 ∗ 2)% = 16% (4 links in each direction).

Moreover, we use the Floodlight SDN controller version 0.90, explained in

Chapter 2, that runs into our Eclipse IDE. On top of the controller we imple-

ment our architecture detailed in Chapter 4. We also test our proposal in a

particular scenario, that we call “hybrid”, composed of the Mininet emulator

and a few real devices, as explained in Section 5.4.

5.4 Mininet Hybrid Configuration

In this section, we suggest a Mininet configuration useful to the communi-

cation between the network emulator and a few real devices, such as smart-

phones/laptops, as depicted in Figure 5.3. In particular, the devices are con-

nected to the workstation (where Mininet is executed) by means of a Wi-Fi

router. The nodes inside Mininet have private addresses, hence, to make the

interaction between the nodes inside and outside Mininet possible, it is neces-

sary to realize a NAT in S1, as depicted in Figure 5.3. It is also compulsory to

define a set of rules into the IPTable structure (for the Linux kernel firewall con-

figuration) to forward the traffic from the public to the private network. Thus,

setting the NAT and the IPTable rules, the system can act as a gateway and pro-

vide Internet access to multiple hosts on a local network using a single public

IP address. We use a Python configuration script (based on the script nat.py,



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 66

Figure 5.3: Mininet hybrid topology network

supplied with the software Mininet v.2.0 [50]). The IPTable configuration de-

fined above allows the NAT to forward the traffic from the network outside

Mininet to the servers inside, i.e., video streaming server (bound on port 1234)

and the medical server (bound on port 21) respectively.

1 iptables -t nat -A PREROUTING -p tcp --dport 1234 -i eth0 -j DNAT

--to-destination 10.0.0.1:1234

2 iptables -t nat -A PREROUTING -p ICMP -i eth0 -j DNAT --to-destination 10.0.0.2

3 iptables -t nat -A PREROUTING -p tcp --dport 21 -i eth0 -j DNAT --to-destination

10.0.0.2:21

4 iptables -t nat -A PREROUTING -p tcp --dport 5001 -i eth0 -j DNAT

--to-destination 10.0.0.2:5001

As we can see in the code above, we define an additional rule for ICMP mes-

sages forwarding (e.g., used by the ping command) to the medical server. This

rule is useful to verify the Round Trip Time (RTT) between the clients and the

medical server, as explained in Section 5.3. The last IPTable rule regards the for-

warding of the traffic data generated by the Iperf command to overload the

network, as explained in Section 5.4.2.



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 67

5.4.1 Network Services and Tools

For the video streaming flow, on the server side, we use a VLC media player

[51], as a video streaming server, configured as follows:

1 cvlc -vvv file_video.ogg input_stream --sout

’#standard{access=http,mux=ogg,dst=10.0.0.1:1234}’

As we can see above, we used the cvlc command (that allows us to use the

media player without graphical interface) with the arguments for defining the

http protocol and the port 1234 where we want to bind the streaming service.

Relative to the video content, we use the “Big Buck Bunny” open movie [52],

encoded in ogg format with a resolution of 1280x720 pixel (HD). On the client

side, we also use the VLC media player to receive the network video stream.

For the file transfer flow, on the server side, we employ a simple FTP server

based on the Apache FtpServer Java project [53] and bound on port 21. On the

client side, we use the wget Linux command below to download a general file

from the FTP server.

1 wget --no-passive-ftp

ftp://USERNAME:PASSWORD@SERVER_IP:SERVER_PORT/FILE_TO_DOWNLOAD

We specify the −−no−passive− ftp parameter to avoid the use of alternative

ports by the wget command, since the FTP server is behind a NAT.

Moreover, we collect network informations by means of our architecture

module, as detailed in Section 5.7, and also through the bmon and ntop Linux

commands.

1 bmon -o ascii -p INTERFACE -r 0.4

The bmon command give us the bandwidth usage related to a specific interface

by means of the −p parameter. With the −r argument we are able to set the

reading interval in which the input module will be called. In practice, these

tools allow us to get an additional general view of the bandwidth usage for

each interface into the emulated network. Another simple tool such as the ping

command, also gives us an idea about the network status, as mentioned in

Section 5.3.



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 68

Moreover, we develop a graphical tool, called Floodlight QoS Advisor that

helps us during the network management, as illustrated in Figure 5.4. The cur-

rently Floodlight QoS Advisor is an “alpha” version. It allows us to inspect the

switches for retrieving statistic information, as illustrated in the Snoop tab. The

tool also gives us the possibility to modify or delete flow entries by means of

the Modify tab and it makes the throughput measurement of several ports pos-

sible through the RealTime tab.

Figure 5.4: Floodlight QoS Advisor v.0.2a

The next section explains the configuration that we use to stress the net-

work.

5.4.2 Stress the Network

We use a few Loader servers, connected to the switches, to make the net-

work overloading (congestion) possible. Incidentally, we measure the network



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 69

status (e.g., the available bandwidth) and verify the quality of the services (for

instance, the file transfer and the multimedia video streaming) to find a re-

lation between them. The Loader server uses the Iperf Linux command (in a

server mode) to inject flow into the network. Moreover, we put another Loader

server (in a client mode) to make the overloading between two nodes possible.

The Loaders are connected to different switches, for instance, S1 and S3, to re-

alize a network congestion on the links between S1 and S2 and between S2

and S3. We try different network congestion configurations simply attaching

the Loader servers to various switches.

1 iperf -s

2 iperf -c [SERVER IP] -t [OVERLOADING DURATION] -d

As we can see above, we have to run the Iperf command in a server mode (−s

argument) and in a client mode (−c parameter) respectively into the different

Loader servers. With the −d argument we define the bidirectional traffic flow

for a specific duration (−t).

5.5 Mapping the Network

The topology mapping can be realized in different manners, e.g., exploiting

the information stored in the Floodlight or through the REST API. We map

the network topology into a simple binary file to make the operations easy.

However, the architecture modularity gives us the possibility to develop this

part at a later stage. In the structure we store, for each switch, the connected

ports and the next hop reachable by following these ports. This file is inspected

by the Dynamic Path Inserter module to find the specific ports involved in the

path given by the Path Finder. Then, the Dynamic Path Inserter uses the retrieved

ports to set the flow entries in the switches, as described in the next section.

5.6 Inserting the Path

The Dynamic Path Inserter module is in charge of path insertion into the

switches, as detailed in Section 4.1 of Chapter 4. In practice, it is an actuator

of the path found by the Path Finder. The module has to inquire the topology



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 70

map, defined in Section 5.5, for finding the ports involved in the path and thus

finalize the insertion path operations, as follows:

1 public static void putFlowForward(String controller, String sw, String

portService, String destPort) {

2 ...

3 putFlow(controller, sw, flowName, cookie, priority, portService, destPort,

destMac);

4 ...

5 }

6

7 public static void putFlowBackward(String controller, String sw, String

portService, String destPort) {

8 ...

9 putFlow(controller, sw, flowName, cookie, priority, portService, destPort,

srcMac);

10 ...

11 }

In the code above, we define in the putFlowForward method a rule for the

traffic from a client to a server (e.g., video streaming server). The rule above de-

fines, for each packet with a destination MAC address (destMac of the server)

and a specific port (portService e.g., 1234 port), to forward the traffic to a spe-

cific switch destination port (destPort argument). We also define a method,

called putFlowBackward, to insert the flows in the opposite direction (from a

server to a client). In this case, we have to forward the traffic that comes from

the source server (srcMac) to the client through a different destination port

(destPort). The cookie and priority parameters allow us to specify a cookie

ID and a flow priority respectively.

The next section presents the measurement of the network parameters, in

particular the available bandwidth.

5.7 Network Metric Measurement

As explained in the Chapter 2, the network parameters are fundamental

aspects because they allow us to understand the status of the network and

consequently take the right decisions. Thus, by means of those values, we are

able to build a weighted map and consequently find the best path by means

of our multi-criteria approach, as explained in the Section 4.2. The weighted



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 71

map is a binary file where the amount of bandwidth, packet loss, and latency

between every switch are stored. This structure is used as input data by the

mathematical model that is the Path Finder core, as described in Section 4.1 of

Chapter 4.

The following section explains how it is possible to retrieve the available

bandwidth values through the OpenFlow protocol.

5.7.1 Available Bandwidth

We retrieve the available bandwidth related to a specific link by means of

the amount of packets passed through the switch port connected to it. Specifi-

cally, the amount of bytes transmitted or received from/to a port are related to

the low-level data transmission (i.e., throughput, not the goodput). Our archi-

tecture allows us to continuously sample, for each switch port, the transmitted

or received bytes with a specific frequency. Hence, comparing the retrieved

values in two different instants, it is possible to approximately know which is

the bandwidth usage of the link connected to that port. The throughput com-

putation is detailed below:

1 int lastPacketsCounted = 0;

2 int PacketsCounted = 0;

3 float bandwidth = 0;

4 float bandwidthKBps = 0;

5 float bandwidthMBps = 0;

6 float bandwidthMbps = 0;

7 float freq = 1000; //milliseconds

8 boolean status = true; //to block the sampling

9 String str = null;

10 String type = "port";

11

12 public void run() {

13 try {

14 while(status) {

15 ...

16 // Getting the statistics about the port from a specific switch

17 str = FlowInfo.getCounterStatisticsSwitch(IPs.getControllerIP(), sw, type );

18 // Retrieving the "receiveBytes" value by means of the Java Regex (Regular

Expressions)

19 packetsCounted = StringAttributeValueExtractor.retrieveAttributeValue(str,

port, "receiveBytes");

20 bandwidth = (packetsCounted - lastPacketsCounted) / (freq/1000);

21 bandwidthKBps = bandwidth / 1024; //KiloByte / sec



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 72

22 bandwidthMBps = bandwidth / (1024*1024); //MegaByte / sec

23 bandwidthMbps = bandwidthMBps * 8; //Megabit / sec

24 // Updating the last value of bytes

25 lastPacketsCounted = packetsCounted;

26 // Collecting the statistics

27 writer.println( timeLaps + "\t" + String.format( "%1.2f", bandwidthMbps ) +

"\t" + String.format( "%1.2f", bandwidthMbps2 ) + "\t" + String.format(

"%1.2f", bandwidthMbps3 ));

28 Thread.sleep((long) freq); //milliseconds

29 }

30 } catch(Exception e) {

31 System.out.println(e.getMessage());

32 }

33 }

As we can see in the code above, the Java class involved in bandwidth measure-

ment continuously retrieves statistics information from a specific switch (sw)

by means of the retrieveAttributeValue method. This method calls a flood-

light REST API to directly get the information from the devices. We update the

values of the new and last received bytes to make the bandwidth computation

possible. Then, the method stores the found values into a weighted map, as de-

tailed in Section 5.7, to allow the Path Finder module to compute the new path

with fresh data.

The next section presents the results of the thesis with a focus on the dif-

ference in terms of service throughput and QoS between a scenario with and

without a QoS management.

5.8 Results

In this section, we provide simulation results about our proposal. The first

step is to simply measure the maximum reachable throughput (bandwidth con-

sumption) by means of the Iperf tool in the two different scenarios, depicted in

Figures 5.2 and 5.3 and called respectively “regular” and “hybrid” in Figure

5.5 below. At the beginning, we set the Mininet network with a 100Mbps of

link capacity, 1ms of delay, and 0% of packet loss for each connection. To make

it possible, we used the Iperf Linux command to inject a flow into the network.

In one case, we measure the throughput between the Loader server connected

to S1 and the server H2, in the other case, we retrieved the throughput values



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 73

from the same serverH2 to a laptop located outside Mininet (H4), as illustrated

in Figure 5.3.

10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

80

100

Time (s)

Th
ro

ug
hp

ut
(M
b
p
s)

regular

hybrid

Figure 5.5: Throughput measurement using Iperf tool in the different scenarios (100Mbps net-

work).

As we can see in Figure 5.5, although our Wi-Fi has a theoretical 56Mbps

of bandwidth, the maximum reachable throughput outside Mininet (i.e., the

“hybrid” trend) is about 20Mbps. This value is due to some well known Wi-Fi

limitations, e.g., channel interference, signal degradation (the Wi-Fi router is

behind a thin wall and about 10 meters far from the testbed), and so on. We

decide to use for our tests a 10Mbps of Mininet link capacity to avoid the “bot-

tleneck” limitation related to the Wi-Fi interface. Hereafter, we only consider

the “hybrid” network topology configuration, detailed in Section 5.4, because

it represents a scenario more close to a real environment.

We are also interested in comparing the values given by the Iperf tool with

the values supplied by our module (called Network Status Collector in Figure 4.2

in Chapter 5) to verify the reliability of our measures. To reach this goal, we try

two different network configurations and we compare the values retrieved in

both scenarios. The test are done using both the Iperf tool (collecting the statis-

tics given by the Iperf server connected to H2) and our Network Status Collector

module (getting the values from the switch S6 that is directly connected to the

server H2). The sampling is done every 2ms for 60s. Specifically, in the first

experiment the network topology is set with a 0% of packet loss, 1ms of delay

for each link, and 10Mbps of maximum available bandwidth. The trends are

illustrated in Figure 5.6.

We also repeat the experiment above with a total packet loss of 4%, 1ms of



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 74

10 15 20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

Time (s)

Th
ro

ug
hp

ut
(M
b
p
s)

our module

iperf server

Figure 5.6: Throughput measurement using both the Iperf tool and our module with no packet loss

latency for each link, and 10Mbps of link capacity. The trends are depicted in

Figure 5.7.

10 15 20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

Time (s)

Th
ro

ug
hp

ut
(M
b
p
s)

our module

iperf server

Figure 5.7: Throughput measurement using both Iperf tool (server side) and our module with 4%

of packet loss

As clearly shown in Figure 5.7, with a total packet loss of 4%, the through-

put is around 5Mbps and it has an oscillatory behavior. We notice in both Fig-

ure 5.6 and Figure 5.7 that the values retrieved by the Iperf tool and through

the Network Status Collector module are very similar. Thus, we can assert that

the values retrieved by our module are reliable. Moreover, from here on, we

show our results based on values retrieved through our module.

The SDN paradigm in conjunction with OpenFlow protocol also gives us

the possibility to measure the values directly from each switch OpenFlow-

enabled, not only between the end points as generally the network tools do

(e.g., Iperf ).

The second step is to analyze the network behavior during a link congestion



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 75

to verify the need of a QoS management. Initially, we measure the bandwidth

usage during the video streaming without network congestion, as illustrated

in Figure 5.8.

10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

5

Time (s)

Th
ro

ug
hp

ut
(M
b
p
s) video

UB

LB

Figure 5.8: Bandwidth usage during the video streaming service.

As we can see in Figure 5.8, the video streaming throughput is approxi-

mately between a lower bound (LB) of 2Mbps and an upper bound (UB) of

3Mbps. These values are related to the video characteristics, e.g., resolution,

format, and compression. In this case the video content is a ogg file with HD

resolution, as specified in Section 5.4.1 above.

Then, starting from the scenario explained above, we temporary overload

the network for verifying the throughput trend in case of link congestion. Specif-

ically, to make it possible, we use the Loader servers 1 and 2 that are directly

connected to the switches S1 and S2 respectively, as in Figure 5.3. The conges-

tion is temporary done during the video streaming service and the situation is

depicted in Figure 5.9.

10 15 20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

Time (s)

Th
ro

ug
hp

ut
(M
b
p
s) loader

video

Figure 5.9: Temporary network congestion during the video streaming service.



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 76

As shown in Figure 5.9, during the network congestion (forced from ap-

proximately the instant 22s to 42s), the video streaming throughput decreases

under the critical threshold of 2Mbps. It follows that, in case of a short link

congestion, the video is blocked just only for a few seconds by lack of sufficient

available bandwidth. This issue is limited in part by the video player buffer.

Unfortunately, this unwanted situation could become even worse if the con-

gestion window is longer than the last scenario, as illustrate in Figure 5.10.

10 15 20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

Time (s)

Th
ro

ug
hp

ut
(M
b
p
s)

loader

video

Figure 5.10: Video streaming and file transfer throughputs during a temporary link congestion.

As in Figure 5.10, when the network overloading starts, the video streaming

falls below the critical threshold (2Mbps) approximately after 10 seconds. Con-

sequently, in case of long network congestion, the video is completely blocked

and the buffering cannot be useful to limit this issue.

We also overload the network during the execution of both the video stream-

ing and file transfer services (we limit the maximum throughput to 4Mbps to

emulate a real scenario during the tests), as represented in Figure 5.11.

10 15 20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

Time (s)

Th
ro

ug
hp

ut
(M
b
p
s)

loader

video

FTP

Figure 5.11: Video streaming and file transfer throughputs during a permanent link congestion.



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 77

It goes without saying that while a lack of sufficient bandwidth impacts

negatively on the video streaming service, the file transfer just only slow down

during the network congestion. However, the total amount of time required

for a file transfer proportionally increases with the decreasing of the available

bandwidth. Thus, it is necessary to find a tradeoff and it depends on the type

of service “behind” the file transfer.

The first important consideration is that if it was possible to analyze the

network status, it would be feasible to define the network paths to avoid the

link congestion and, consequently, provide strict bandwidth guarantees to the

video streaming service. Unfortunately, neither the Mininet switches (that are

just packet forwarders) nor the Floodlight controller are aware of the network

status. Specifically, the natural approach of SDN controllers (without QoS such

as Floodlight) is to choose the paths by means of Dijkstra algorithm. However,

the shortest path is calculated without taking into account the network status,

e.g., packet loss, latency, or available bandwidth. Moreover, the defined paths

are generally kept over time. It follows that, in case of multi-commodity flows

(as in our scenario), the SDN controller could assign the same entire path (in

the worst case) or a part of it (e.g., a few links) to each flow, as sketched in

Figure 5.12.

Figure 5.12: Video steaming and file transfer paths in a network without QoS.

Thus, the video steaming and file transfer services have to share the same

available bandwidth. This aspect has a strong impact on the network perfor-

mance proportionally to the increasing of the number of flows on the same

path and it could potentially lead to a congestion collapse of the network.

The third step is to evaluate the network behavior during the use of our

architecture to enhance the QoS. We want to illustrate the QoS reached by



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 78

means of our mathematical model and the network monitoring. We start to

consider that without awareness of the network available bandwidth, the con-

troller cannot know which are the overloaded links and, consequently, it is not

able to find the best path. Hence, under these considerations, a congestion situ-

ation can easily occur just only if a single path link is overloaded (that becomes

the network bottleneck). In addition, when it is necessary to deal with multi-

commodity flows, it is mainly important to take into account that the amount

of flows can be more than one at the same time. It follows that it is crucial

to efficiently assign the path to each flow, according to both the link available

bandwidth and the single flow throughput requirements. In practice, to make

this decision possible, we decide to set our architecture to retrieve and store

the amount of available bandwidth for each link, every 2 seconds. This task is

realized by the Network Status Collector module, as explained in Section 4.1 of

Chapter 4. Incidentally, we use the Path Finder module for discovering the best

path. The Path Finder uses the network status data, collected by the Network

Status Collector, as constraints in the MCFCSP problem formulated in Section

4.2.3 of Chapter 4. Furthermore, the specific bandwidth requirements for each

type of service (i.e., video streaming and file transfer) are added as constraints

to the ILP problem. The output of the model is the best path as possible for

each flow, according to the constraints.

Relative to the topology depicted above in Figure 5.3, the first test is to ver-

ify the Path Finder output. We set the flow bandwidth requirements to 4Mbps

and 3Mbps respectively for the file transfer service and the video streaming,

according to the results depicted in Figure 5.8. At the beginning we consider for

each link a delay of 1ms and an ideal packet loss equal 0%. Moreover, we define

a video streaming throughput threshold suitable to trigger the path changing

by means of the Watch Dog module, as described in Chapter 4. The threshold

value is related to the average throughput of the video streaming used in our

test (it depends on the format and video compression). Specifically, we take the

minimum throughput value, that is 2Mbps, as in Figure 5.8 and we subtract the

10% to avoid borderline throughput value. Hence, the Watch Dog module will

trigger the changing of the path, when the throughput falls below the thresh-

old of 1.8Mbps. However, during a regular video streaming, it is possible that



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 79

the value of the throughput cross the lower bound of 1.8Mbps, as depicted in

Figure 5.13.

10 15 20 25 30 35 40 45 50 55 60
0

1

2

3

4

5

warningwarning

Time (s)

Th
ro

ug
hp

ut
(M
b
p
s) video

threshold

Figure 5.13: Warnings due to a under-threshold throughput.

In this case, in general, the video player is able to manage the temporary

lack of bandwidth by means of its buffer. However, without a precaution, this

situation could lead to a frequent path changing. We call it a “false-positive”

warning, as depicted in Figure 5.13. To limit this unwanted behavior, we add to

the Watch Dog module the capacity to manage these warnings, as schematized

with the flow chart in Figure 5.14.

Specifically, the Watch Dog Flow Chart reasons as follows: if a warning oc-

curs for the first time, the Watch Dog does nothing and, incidentally, it updates

the counter. Then, if it does not occur another warning for a specified time,

e.g., 5 seconds, the warning is deleted, otherwise, it triggers the changing of

the path. This is a simple behavior that avoid some “false-positive” warning.

However, we can implement a bit more sophisticated behavior just only by

tweaking this module. It is clear, on the one hand, that if we delete the first

warning too quickly, the risk is to remove an important warning that indicate

an imminent congestion. On the other hand, if we wait for a long time before

deleting the first warning, it is possible to change the path when it is not nec-

essary. Thus, this aspect is a trade-off between a reactive behavior to prevent

congestion collapse and an useless network overloading due to a path chang-

ing when not necessary.

We start the first test with our QoS module to avoid the block of the video

due to a network congestion, as depicted in Figure 5.15.

As we can see in Figure 5.15b, through a dynamic changing of the path we



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 80

Figure 5.14: The “Watch Dog” Flow Chart

are able to avoid the link congestion between the switches S1 and S2. In this

case, the video streaming throughput does not significantly suffer from the

network congestion and it falls below the critical threshold just only for a short

time, as shown in Figure 5.16.

Fortunately, in general, the video player buffering is able to manage this

short lack of bandwidth and the result is a good video quality with a very

short block or no block at all.

Comparing the Figures 5.10 and 5.16 respectively with and without the QoS

module, it is clear that in the latter scenario the architecture is able to keep the

video steaming throughput higher than the former scenario. Since the video

streaming service needs a minimum amount of available bandwidth, the net-

work without a QoS mechanism is not able to guarantee the video streaming

requirements.

Starting from the last scenario, we also verify the network behavior in case



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 81

(a) Link congestion during the video stream-

ing service.

(b) New path followed by the video stream-

ing flow to avoid the link congestion.

Figure 5.15: Path changing by the QoS architecture during a permanent link congestion.

10 15 20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

Time (s)

Th
ro

ug
hp

ut
(M
b
p
s)

loader

video

Figure 5.16: Video streaming throughput during a permanent link congestion in a network man-

aged by the QoS architecture.

of multiple congestions, as depicted in Figure 5.17.

The QoS architecture is also able to identify the second link congestion,

between the switches S3 and S5 and, consequently, change the path again, as

in Figure 5.17.

Incidentally, the video steaming throughput keeps a fair QoS, falling under

the threshold just only for a few seconds, as illustrated in Figure 5.18.

In this case, there are two link congestions (between S1 and S2 and between

S3 and S5) at the same time. However, the QoS architecture is able to manage

the multiple path changing to keep the video streaming through as high as

possible.

Moreover, we test our architecture during a multi-commodity flow sce-

nario, as depicted in Figure 5.19.

As we can see in Figure 5.19b, the QoS architecture redirects the two differ-

ent flows, related to the video streaming and the file transfer, to different paths

(with a common link).



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 82

(a) New link congestion during the video

streaming service.

(b) Second new path followed by the video

streaming flow to avoid the new link con-

gestion.

Figure 5.17: Multiple path changing by the QoS architecture during a multiple link congestion.

10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

Time (s)

Th
ro

ug
hp

ut
(M
b
p
s)

1stloader

2ndloader

video

Figure 5.18: Video streaming throughput during a multiple permanent link congestion in a net-

work managed by the QoS architecture.

In figure 5.20 it is also depicted both the video streaming and file transfer

throughput.

It is quite clear that in this case the bandwidth management is better than

the scenario without the QoS module. Thus, with a QoS architecture, it is pos-

sible to keep an high throughput and consequently, a good quality.

At this point, we test our proposal putting into the simulation different val-

ues of packet loss evaluating the QoS. Incidentally, for each packet loss per-

centage, we calculate the value of the mathematical model giving to it the in-

put parameters about the network status. Then, the same procedure is repeated

using different values of delay. We also test several combinations of delay and

packet loss to observe the QoS behavior. Using this approach, and by exploit-

ing the Equation 4.11 of the MFPCSP model detailed in Chapter 4, we find a

correlation between the cost given by the objective function and the MOS score

levels, as detailed in Table 5.1.



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 83

(a) Link congestion during both the video

streaming and the file transfer.

(b) New path followed by the video stream-

ing and file transfer flows to avoid the link

congestion.

Figure 5.19: Path changing by the QoS architecture during a permanent link congestion.

10 15 20 25 30 35 40 45 50 55 60
0

2

4

6

8

10

Time (s)

Th
ro

ug
hp

ut
(M
b
p
s)

loader

vlc

ftp

Figure 5.20: Multi-Commodity Flow throughput during a permanent link congestion in a network

managed by the QoS architecture.

As we can see in Table 5.1, the connection between the value ranges given

by the mathematical model and the MOS levels indicates that, in case of cost

values greater than 80, the QoS becomes very low. It is also possible to iden-

tify some additional “bad” levels. For instance, we found that with a total cost

between 100 and 150 (i.e., 10% and 15% of packet loss respectively), it is pos-

sible to start the streaming but the video is completely blocked or it is blocked

every 2 − 3 seconds. The same situation occurs when the total delay is around

250 − 300ms. Finally, with a total packet loss of about 18% (cost value ≈ 150)

the video streaming does not start at all.

Moreover, we observe some other interesting characteristics about the rela-

tion between the cost function and the QoS. Starting from the Equation 4.10 in

Chapter 4, we can define the cost equation as follows:

cost = α ∗ delaytot + β ∗ packet losstot (5.2)



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 84

MODEL COST MOS QUALITY IMPAIRMENT

< 40 5 Excellent No block at all

40 - 55 4 Good No block or a sporadic very short block

56 - 69 3 Fair A couple of short blocks (1 − 2 s)

70 - 79 2 Poor Several blocks (2 − 4 seconds long)

> 80 1 Bad A lot of blocks (> 10) with long duration (7 − 10 s)

Table 5.1: Conversion between our mathematical model cost and the MOS levels related to the

video streaming

Thus, exploiting the α and β scale factors of Equation 5.2, it is possible to tweak

the weighted cost according to the delay and the packet loss requirements for a

particular flow. Specifically, we observe that if the delay is not present or very

small, e.g., 1ms, then we can take into account only the β scale factor and set it

to 10. Hence, the Equation 5.2 becomes:

cost = 10 ∗ packet losstot

In this case, for example, if the total packet loss is equal to 6% (with a very

small delay), the video streaming quality is quite fair, according the correla-

tions between the QoS and the cost function detailed in Table 5.1.

We also noticed that if the packet loss is equal to 0, then we can ignore it

and set the α scale factor to approximately 1.2. In this case the Equation 5.2

becomes:

cost = 1.2 ∗ delaytot

For instance, if the total delay is equal to 50ms (with 0% of packet loss), it

follows that the video streaming quality is fair, according to Table 5.1.

Furthermore, if both the packet loss and the delay occur, we notice that the

Equation 5.2 should take into account an additional scale factor equal to 2 as

follows:

cost = (1.2 ∗ delaytot + 10 ∗ packet losstot) ∗ 2

For example, if the total packet loss and the delay are respectively about 2%

and 12ms, than the Equation 5.8 gives us a value of 68. In this case, the quality

of the video streaming is quite fair, according to Table 5.1. This means that

when a video streaming is affected by a combination of delay and packet loss,

it is necessary to take into account an additional scale factor (equal to 2) to keep

actual the relation between the QoS and the cost function.



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 85

Relative to a file transfer, in general, there are not strict constraints about

the packet loss, delay, and available bandwidth. However, the increasing of

the packet loss and delay can considerably decrease the file transfer through-

put. For example, without specific file transfer bandwidth limitations we no-

tice that the maximum throughput is around 9.1Mbps (in our 10Mbps net-

work). In case of a total delay equal to 80ms, in general the file transfer starts

slowly and then it is able to reach an high throughput value, around 8Mbps.

Unfortunately, increasing the total delay until a significant value of 500ms, the

maximum throughput reachable is approximately 1.8Mbps with a very high

oscillatory behavior. The same situation occurs with about 8% of total packet

loss. However, increasing the packet loss to a value larger than 15%, the con-

nection is lost after a short time. If both the delay and the packet loss occur at

the same time, it is possible to verify that the file transfer service quality de-

creases rapidly. Specifically, with a 6% of packet loss and, incidentally, a total

delay of 80ms, the maximum throughput is approximately 0.25Mbps with a

very high oscillatory behavior.

The relations above are very important because allow us to define a map-

ping between the mathematical basics and the QoS in our hybrid environment.

It is clear that there are a lot of variables depending on the interferences, the

signal noise, and so on.

With our QoS architecture, that continuously inquires about the network

status and allocates the paths if necessary, we observed that it is possible to

avoid, or strongly reduce, the link congestion effects. As shown in several fig-

ures above, the QoS architecture gives us the possibility to keep a throughput

as high as possible and, consequently, the quality of the service. This aspect is

very important especially if the services require a minimum amount of avail-

able bandwidth. In this case, it is necessary to analyze the service throughput

for guaranteeing a good quality, in particular if the services are bandwidth-

sensitive such as video streaming or VoIP call. It is also fundamental to take

into account the amount of packet loss and delay to reach a good QoS, accord-

ing to the service type requirements. A lack of sufficient bandwidth as well as

high packet loss or delay, can impact very negatively on the video streaming

service, as we can see in Figure 5.21.



CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 86

(a) Good quality. (b) Fair quality.

(c) Poor quality. (d) Bad quality.

Figure 5.21: Different types of video quality.

The next chapter provides the conclusion and the future works.





Chapter 6
Conclusion

The “Internet Ossification” is a well known phenomenon that brings the

research community in exploring new network paradigms and solutions. In

a ever-changing world, where dynamic bandwidth needs are no longer nego-

tiable, network adds, moves, and changes are time-consuming and burden-

some. What is really needed is the ability to respond in real-time to the net-

work requirements, where an individual can supply the bandwidth by using

the power of abstraction. SDN and OpenFlow provide the framework required

to make this possible creating a programmable network involving both exist-

ing infrastructure and next-generation systems and making them substantially

more dynamic. Moreover, SDN can simplify the software needed to deliver ser-

vices, improving the use of the network and shortening delivery times, leading

to increased revenue.

The main problem of the today networks is the ability to manage differenti-

ating services guaranteeing the various QoS requirements. With this thesis, we

deeply analyzed the problem and showed that we are able to enhance the QoS

in a SDN scenario exploiting a novel QoS architecture. Moreover, we achieve a

better utilization of the the network resources by means of the multi-criteria ap-

proach and our Multi-Commodity Flow Constrained Shortest Path model. The

model takes into account the network requirements, i.e. bandwidth, packet loss

and delay, to find the shortest path between each couple of client and server

for each service. Our QoS architecture continuously inquires the network sta-

88



CHAPTER 6. CONCLUSION 89

tus and allocates new paths, if it is necessary, considering the constraints rel-

ative to packet loss, delay and bandwidth. The results show that it is possible

to avoid, or strongly reduce, the link congestion effects. Moreover, the QoS

architecture gives us the possibility to keep a good level of throughput and,

consequently, the needed quality of each service. This aspect is very important

especially if the services require a minimum amount of available bandwidth.

A lack of sufficient bandwidth as well as high packet loss or delay can impact

very negatively on the video streaming service. Furthermore, we are able to

map the results given by our MCFCSP model into a MOS scale to provide an

opinion score from the client point of view. The evidence of the MOS is pro-

vided through video streaming screenshots.

We can conclude that SDN and OpenFlow will most likely become perva-

sive technologies in the future networks, since they have an enormous poten-

tial contribution in a large number of different application fields, as explained

in the next section. The modular design of the proposal in conjunction with the

flexibility supplied by the Floodlight REST API interface, provides a flexible

architecture that can be easily extended to operate with different controllers

or to realize additional functionalities. Our model and evaluations are a first

step into the definition of a QoS enhanced architecture that can provide dif-

ferentiating services with some QoS guarantees. We notice that the bandwidth

calculator can sometimes give a little inaccurate values if the sampling is too

short. It depends on the possible delays that occur in the network, and, conse-

quently, the bandwidth calculation may be a bit overestimated. Thus, we think

to ameliorate this tracer in order to get better results. Furthermore, we can im-

prove the network mapping by using a dynamic structure or directly the data

stored inside the Floodlight controller. In our mathematical model we take into

account the available bandwidth, the packet loss, and the delay for calculating

the new path according to the network status. The available bandwidth pa-

rameter is continuously calculated for each switch and stored into the Weighted

Map structure, as explained in Chapter 4. Since it is not simple to get a precise

amount of packet loss and delay for each link, these values are predefined in

the Weighted Map for each test. Hence, it will be an interesting challenge to in-

tegrate in our architecture an additional module to continuously monitor and



CHAPTER 6. CONCLUSION 90

calculate both the packet loss and the delay of the network. Finally, this is the

starting point for the implementation into a real world scenario, such as the

UCLA campus.

6.1 Future Work

In this section, we want to highlight a few interesting challenges that con-

cern SDN and OpenFlow. Specifically, it is important to give a generic overview

about the possible integration between the SDN paradigm and other interest-

ing technologies.

Many users have access to the Internet via wireless networks, especially in

a campus network. Thus, the size and complexity of wireless networks and

heterogeneous systems connected to them is constantly evolving and increas-

ing. However, since SDN and OpenFlow were conceived in a wired scenario,

it is important to have accurate network information and a good control of

the packet flow in a wireless scenario. Moreover, many other issues have to be

taken into account when we move from the wired to the wireless environment,

especially when different technologies such as Wi-Fi, WiMAX, and LTE need

to cooperate together. Hence, in this direction, the natural next step could be

the extension of the architecture presented in this thesis to deal with the new

challenges offered by Wireless SDN [54]. In this case, to manage the resources

and paths as best as possible, it is indispensable to continuously retrieve pre-

cise network information directly from the different wireless devices. When we

are able to collect these types of information, then it will be possible to decide

not only which the best path is that packet flows have to take, but also which

the best interface is that clients have to use at a given moment to reach the

best QoS. Therefore, OpenFlow can be exploited to trigger a seamless vertical

handoff, according to the Media-Independent Handover protocol, to achieve a

high-mobility connectivity. We plan to exploit our solution to manage the han-

dover between different network technologies. In this scenario, our model can

be run with different parameters, depending on the communication protocol,

and can provide optimal results to be implemented on the campus network.

It is also particularly interesting to analyze and try to solve new challenges



CHAPTER 6. CONCLUSION 91

in Vehicular Ad Hoc Networks (VANETs) by means of SDN and OpenFlow.

Some of the major challenges for communication in VANETs are very high mo-

bility, dynamically changing topology, sparsely located nodes and very short

duration of communication. SDN can work in conjunction with VANETs to

proactively set the best path to improve the communication among vehicles

and Access Points (APs) [55].

Moreover, since the Information Centric Networks (ICNs) paradigm is con-

sidered as the candidate replacement for the IP protocol, an integration be-

tween ICN and SDN [56] will probably be necessary to build the future net-

works.

In addition, the enormous growth in multimedia contents, that amount to

approximately 51% of all the consumers Internet traffic data in 2011 [57], is

likely to have a great impact on the network. This aspect implies further ef-

forts to achieve a good QoE in terms of bandwidth requirements, latency con-

straints, and packet losses. Especially the video streaming is an increasingly

popular way to consume media contents, and the Adaptive Video Streaming

is becoming an emerging delivery technology which aims to increase the user

satisfaction and maximize the connection utilization. By using a SDN technol-

ogy in conjunction with OpenFlow and exploiting the control plane to retrieve

information and manage the switch, it will be feasible to reach the best video

streaming QoE possible. Furthermore, we can use two different approaches to

reach the goal of enhancing the QoE, depending on the network capabilities.

The first approach, on the one hand, is to exploit the network side to verify

the possibility to change a specific flow path when the network is suffering

congestion or when there is a high packet loss. The new path is chosen ac-

cording to the particular type of video service that is streamed. Thus, to make

this approach viable, we can improve the Multi-criteria approach involved in

the presented architecture. The second solution, on the other hand, exploits

the user side when the network cannot find a better path. In this case, we can

communicate with the client to adjust the video streaming bit rate, by means

of MPEG DASH, to keep the quality of the video as high as possible from the

user point of view.







Appendix A
Python Code

A.1 Network Topology Configuration

1 #!/usr/bin/python

2

3 """

4 Example for creating the Mininet topology depicted below.

5 It is possible to customize the link parameters.

6

7 (multimedia client) h3------s1-------s2------s3-------h1 (video streaming server)

8 | \ / | \ / |

9 | \ / | \ / |

10 | \/ | \/ |

11 | /\ | /\ |

12 | / \ | / \ |

13 | / \ | / \ |

14 (medical client) h4------s4-------s5------s6-------h2 (medical server)

15

16 Francesco Ongaro, May 2014

17 francesco.ongaro@studio.unibo.it

18 www.ongarofrancesco.com

19 """

20

21 from mininet.cli import CLI

22 from mininet.net import Mininet

23 from mininet.node import RemoteController

24 from mininet.link import TCLink

25 from mininet.util import dumpNodeConnections

26 from mininet.log import lg

27

28

94



APPENDIX A. PYTHON CODE 95

29 if __name__ == ’__main__’:

30

31 lg.setLogLevel( ’info’)

32

33 net = Mininet( controller=RemoteController, link=TCLink) #listenPort is

necessary for adding flow entry

34 net.addController(’c0’, ip=’192.168.2.252’, port=6633) # wlan0 @ HOME

35

36 #HOST constructor

37 H1 = net.addHost(’h1’, mac=’aa:aa:aa:aa:aa:01’) #VIDEO STREAMING SERVER

38 H2 = net.addHost(’h2’, mac=’aa:aa:aa:aa:aa:02’) #MEDICAL SERVER

39 H3 = net.addHost(’h3’, mac=’aa:aa:aa:aa:aa:03’) #MULTIMEDIA CLIENT

40 H4 = net.addHost(’h4’, mac=’aa:aa:aa:aa:aa:04’) #MEDICAL CLIENT

41

42 #SWITCH constructor;

43 S1 = net.addSwitch(’s1’, listenPort=6634)

44 S2 = net.addSwitch(’s2’, listenPort=6635)

45 S3 = net.addSwitch(’s3’, listenPort=6636)

46 S4 = net.addSwitch(’s4’, listenPort=6637)

47 S5 = net.addSwitch(’s5’, listenPort=6638)

48 S6 = net.addSwitch(’s6’, listenPort=6639)

49

50 #LINK constructor

51 net.addLink(H3, S1, delay=’1ms’, loss=0, bw=10)

52 net.addLink(H4, S4, delay=’1ms’, loss=0, bw=10)

53

54 net.addLink(S1, S2, delay=’1ms’, loss=0, bw=10)

55 net.addLink(S1, S5, delay=’1ms’, loss=0, bw=10)

56 net.addLink(S1, S4, delay=’1ms’, loss=0, bw=10)

57 net.addLink(S4, S2, delay=’1ms’, loss=0, bw=10)

58 net.addLink(S4, S5, delay=’1ms’, loss=0, bw=10)

59

60 net.addLink(S2, S3, delay=’1ms’, loss=0, bw=10)

61 net.addLink(S2, S6, delay=’1ms’, loss=0, bw=10)

62 net.addLink(S2, S5, delay=’1ms’, loss=0, bw=10)

63 net.addLink(S5, S3, delay=’1ms’, loss=0, bw=10)

64 net.addLink(S5, S6, delay=’1ms’, loss=0, bw=10)

65

66 net.addLink(S3, H1, delay=’1ms’, loss=0, bw=10)

67 net.addLink(S3, S6, delay=’1ms’, loss=0, bw=10)

68 net.addLink(S6, H2, delay=’1ms’, loss=0, bw=10)

69

70 # Start network

71 net.start()

72

73 print "*** Dumping host connections"

74 dumpNodeConnections(net.hosts)

75

76 print "*** Testing network connectivity"

77 net.pingAll()



APPENDIX A. PYTHON CODE 96

78

79 print "*** Hosts are running"

80 print "*** Type ’exit’ or control-D to shut down network"

81

82 CLI( net )

83 net.stop()





Bibliography

[1] I. Faynberg, L. R. Gabuzda, T. Jacobson, and H.-L. Lu, “The develop-

ment of the wireless intelligent network (WIN) and its rela/tion to the

international intelligent network standards,” j-BELL-LABS-TECH-J, vol. 2,

pp. 57–80, Autumn 1997.

[2] Open Networking Foundation, “Software-Defined Networking: The New

Norm for Networks,” white paper, Open Networking Foundation, Palo

Alto, CA, USA, Apr. 2012.

[3] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,

J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation

in Campus Networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,

pp. 69–74, 2008.

[4] “OpenFlow Switch Specification Version 1.4.0.” https://www.

opennetworking.org.

[5] “Project Floodlight documentation.” http://www.

projectfloodlight.org/documentation/.

[6] J. Gustafsson, G. HeikkilÃd’, and M. Pettersson, “Measuring multimedia

quality in mobile networks with an objective parametric model.,” in ICIP,

pp. 405–408, IEEE, 2008.

[7] J. F. Kurose and K. W. Ross, Computer Networking: A Top-Down Approach.

USA: Addison-Wesley Publishing Company, 5th ed., 2009.

98

https://www.opennetworking.org
https://www.opennetworking.org
http://www.projectfloodlight.org/documentation/
http://www.projectfloodlight.org/documentation/


BIBLIOGRAPHY 99

[8] “ITU-T P.800. Methods for subjective determination of transmission qual-

ity - Series P: telephone transmission quality; methods for objective and

subjective assessment of quality,” Aug 1996.

[9] U. It, “ITU-T recommendation G.114,” tech. rep., International Telecom-

munication Union, 1993.

[10] J. Färber, “Network Game Traffic Modelling,” in Proceedings of the 1st

Workshop on Network and System Support for Games, NetGames ’02, (New

York, NY, USA), pp. 53–57, ACM, 2002.

[11] T. Szigeti and C. Hattingh, End-to-End QoS Network Design: Quality of Ser-

vice in LANs, WANs, and VPNs (Networking Technology). Cisco Press, 2004.

[12] “Internet Engineering Task Force.” http://www.ietf.org/.

[13] R. Braden, D. Clark, and S. Shenker, Integrated Services in the Internet Ar-

chitecture: An Overview. United States, 1994.

[14] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, An Ar-

chitecture for Differentiated Service. United States, 1998.

[15] E. Rosen and Y. Rekhter, BGP/MPLS VPNs. United States, 1999.

[16] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid Pro-

totyping for Software-defined Networks,” in Proceedings of the 9th ACM

SIGCOMM Workshop on Hot Topics in Networks, Hotnets-IX, (New York,

NY, USA), pp. 19:1–19:6, ACM, 2010.

[17] “Open Networking Foundation.” https://www.opennetworking.

org.

[18] B. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti, “A Sur-

vey of Software-Defined Networking: Past, Present, and Future of Pro-

grammable Networks,” Communications Surveys Tutorials, IEEE, vol. PP,

no. 99, pp. 1–18, 2014.

[19] K. Terplan and P. A. Morreale, The Telecommunications Handbook. A CRC

handbook, Taylor & Francis, 2000.

http://www.ietf.org/
https://www.opennetworking.org
https://www.opennetworking.org


BIBLIOGRAPHY 100

[20] A. T. Campbell, I. Katzela, K. Miki, and J. Vicente, “Open Signaling for

ATM, Internet and Mobile Networks (OPENSIG’98),” SIGCOMM Comput.

Commun. Rev., vol. 29, pp. 97–108, Jan. 1999.

[21] A. Doria, F. Hellstrand, K. Sundell, and T. Worster, “General Switch Man-

agement Protocol (GSMP) V3.” RFC 3292 (Proposed Standard), June 2002.

[22] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and G. Minden,

“A survey of active network research,” Communications Magazine, IEEE,

vol. 35, pp. 80–86, Jan 1997.

[23] D. L. Tennenhouse and D. J. Wetherall, “Towards an Active Network Ar-

chitecture,” SIGCOMM Comput. Commun. Rev., vol. 37, pp. 81–94, oct 2007.

[24] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,

H. Yan, J. Zhan, and H. Zhang, “A Clean Slate 4D Approach to Network

Control and Management,” SIGCOMM Comput. Commun. Rev., vol. 35,

pp. 41–54, Oct. 2005.

[25] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “NOX: Towards an Operating System for Networks,” SIG-

COMM Comput. Commun. Rev., vol. 38, pp. 105–110, July 2008.

[26] R. Enns, “NETCONF Configuration Protocol.” RFC 4741 (Proposed Stan-

dard), December 2006.

[27] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal,

and J. Halpern, “Forwarding and Control Element Separation (ForCES).”

RFC 5810 (Proposed Standard), March 2010.

[28] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,

“Ethane: Taking Control of the Enterprise,” in Proceedings of the 2007 Con-

ference on Applications, Technologies, Architectures, and Protocols for Computer

Communications, SIGCOMM ’07, (New York, NY, USA), pp. 1–12, ACM,

2007.

[29] “OpenFlow Switch Specification Version 1.0.0.” https://www.

opennetworking.org.

https://www.opennetworking.org
https://www.opennetworking.org


BIBLIOGRAPHY 101

[30] A. Lara, A. Kolasani, and B. Ramamurthy, “Network Innovation using

OpenFlow: A Survey,” Communications Surveys Tutorials, IEEE, vol. 16,

pp. 493–512, First 2014.

[31] M. P. Fernandez, “Comparing OpenFlow Controller Paradigms Scalabil-

ity: Reactive and Proactive,” 2013 IEEE 27th International Conference on Ad-

vanced Information Networking and Applications (AINA), vol. 0, pp. 1009–

1016, 2013.

[32] “Project Floodlight.” http://www.projectfloodlight.org/

floodlight.

[33] D. Erickson, “The Beacon Openflow Controller,” in Proceedings of the Sec-

ond ACM SIGCOMM Workshop on Hot Topics in Software Defined Network-

ing, HotSDN ’13, (New York, NY, USA), pp. 13–18, ACM, 2013.

[34] N. L. M. van Adrichem, C. Doerr, and F. A. Kuipers, “OpenNetMon: Net-

work monitoring in OpenFlow Software-Defined Networks,” in NOMS,

pp. 1–8, 2014.

[35] M. Jarschel, S. Oechsner, D. Schlosser, R. Pries, S. Goll, and P. Tran-Gia,

“Modeling and performance evaluation of an OpenFlow architecture,” in

Teletraffic Congress (ITC), 2011 23rd International, pp. 1–7, Sept 2011.

[36] K. Phemius and M. Bouet, “Monitoring latency with OpenFlow,” in Net-

work and Service Management (CNSM), 2013 9th International Conference on,

pp. 122–125, Oct 2013.

[37] H. Egilmez, B. Gorkemli, A. Tekalp, and S. Civanlar, “Scalable video

streaming over OpenFlow networks: An optimization framework for QoS

routing,” in Image Processing (ICIP), 2011 18th IEEE International Conference

on, pp. 2241–2244, Sept 2011.

[38] H. E. Egilmez, S. T. Dane, K. T. Bagci, and A. M. Tekalp, “OpenQoS:

An OpenFlow controller design for multimedia delivery with end-to-end

Quality of Service over Software-Defined Networks,” in Signal & Infor-

mation Processing Association Annual Summit and Conference (APSIPA ASC),

2012 Asia-Pacific, pp. 1–8, IEEE, Dec. 2012.

http://www.projectfloodlight.org/floodlight
http://www.projectfloodlight.org/floodlight


BIBLIOGRAPHY 102

[39] H. Egilmez, S. Civanlar, and A. Tekalp, “An Optimization Framework

for QoS-Enabled Adaptive Video Streaming Over OpenFlow Networks,”

Multimedia, IEEE Transactions on, vol. 15, pp. 710–715, April 2013.

[40] S. Civanlar, M. Parlakisik, A. Tekalp, B. Gorkemli, B. Kaytaz, and E. Onem,

“A QoS-enabled OpenFlow environment for Scalable Video streaming,”

in GLOBECOM Workshops (GC Wkshps), 2010 IEEE, pp. 351–356, Dec 2010.

[41] P. Georgopoulos, Y. Elkhatib, M. Broadbent, M. Mu, and N. Race, “To-

wards Network-wide QoE Fairness Using Openflow-assisted Adaptive

Video Streaming,” in Proceedings of the 2013 ACM SIGCOMM Workshop on

Future Human-centric Multimedia Networking, FhMN ’13, (New York, NY,

USA), pp. 15–20, ACM, 2013.

[42] H. Liu, Y. Hu, G. Shou, and Z. Guo, “Software Defined Networking for

HTTP video quality optimization,” in Communication Technology (ICCT),

2013 15th IEEE International Conference on, pp. 413–417, Nov 2013.

[43] A. Ishimori, F. Farias, E. Cerqueira, and A. Abelem, “Control of Multiple

Packet Schedulers for Improving QoS on OpenFlow/SDN Networking,”

in Software Defined Networks (EWSDN), 2013 Second European Workshop on,

pp. 81–86, Oct 2013.

[44] K. Piamrat, C. Viho, J. Bonnin, and A. Ksentini, “Quality of Experience

Measurements for Video Streaming over Wireless Networks,” in Informa-

tion Technology: New Generations, 2009. ITNG ’09. Sixth International Confer-

ence on, pp. 1184–1189, April 2009.

[45] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,

and R. Wattenhofer, “Achieving High Utilization with Software-driven

WAN,” in Proceedings of the ACM SIGCOMM 2013 Conference on SIG-

COMM, SIGCOMM ’13, (New York, NY, USA), pp. 15–26, ACM, 2013.

[46] “ITU Telecommunication Standardization Sector.” http://www.itu.

int/en/ITU-T/Pages/default.aspx/.

[47] R. M. Karp, “Reducibility Among Combinatorial Problems,” in Complexity

of Computer Computations (R. E. Miller and J. W. Thatcher, eds.), pp. 85–103,

Plenum Press, 1972.

http://www.itu.int/en/ITU-T/Pages/default.aspx/
http://www.itu.int/en/ITU-T/Pages/default.aspx/


BIBLIOGRAPHY 103

[48] “AMPL, A Mathematical Programming Language.” http://www.

ampl.com/.

[49] “IBM CPLEX Optimizer.” http://www-01.ibm.com/software/

commerce/optimization/cplex-optimizer/.

[50] “Mininet network emulator.” http://mininet.org/.

[51] “VLC Media Player.” http://www.videolan.org/vlc/.

[52] “Big Buck Bunny movie.” http://www.bigbuckbunny.org/.

[53] “Apache FtpServer.” http://mina.apache.org/

ftpserver-project/.

[54] C. Chaudet and Y. Haddad, “Wireless Software Defined Networks: Chal-

lenges and opportunities,” in Microwaves, Communications, Antennas and

Electronics Systems (COMCAS), 2013 IEEE International Conference on,

pp. 1–5, Oct 2013.

[55] I. Ku, Y. Lu, E. Cerqueira, R. Gomes, F. Ongaro, and M. Gerla, “Towards

Software-Defined VANET: Architectures and Services,” in Accepted for the

Med-Hoc-Net 2014, June 2014.

[56] S. Salsano, N. Blefari-Melazzi, A. Detti, G. Morabito, and L. Veltri, “Infor-

mation Centric Networking over SDN and OpenFlow: Architectural As-

pects and Experiments on the OFELIA Testbed,” Comput. Netw., vol. 57,

pp. 3207–3221, Nov 2013.

[57] CISCO, “The Zettabyte Era: Trends and Analysis,” 2012.

http://www.ampl.com/
http://www.ampl.com/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://mininet.org/
http://www.videolan.org/vlc/
http://www.bigbuckbunny.org/
http://mina.apache.org/ftpserver-project/
http://mina.apache.org/ftpserver-project/





	Introduction
	Background
	Software-Defined Network paradigm
	Motivation
	``Classical'' switch

	Early Programmable Networks
	Intelligent Network
	OPENSIG
	GSMP
	Active Network
	4D architecture
	NETCONF
	ForCES
	Ethane

	SDN Architecture
	Logical layers
	SDN switch


	OpenFlow protocol
	Operating principles
	``Instruction Set''

	Flows based operation
	Evolution summary
	Switch components
	Pipeline processing
	Packet matching
	Table miss
	Flow Entry


	Control models
	Flows insertion
	Control plane distribution

	SDN weaknesses and challenges
	Floodlight SDN Controller
	Architecture


	Dealing with SDN
	Related work
	How to Monitor Network Parameters with OpenFlow
	SDN to improve Quality of Service and Quality of Experience

	Mininet Network Emulator

	The QoS-aware Mathematical Model
	Enhanced QoS Architecture
	Multi-Criteria Approach
	Multi-Commodity Flow Problem
	Constrained Shortest Path Problem
	Our Multi-Commodity Flow and Constrained Shortest Path Model


	Implementation and Experimental Results
	Hardware Configuration
	Network Topology
	Mininet Configuration
	Mininet Hybrid Configuration
	Network Services and Tools
	Stress the Network

	Mapping the Network
	Inserting the Path
	Network Metric Measurement
	Available Bandwidth

	Results

	Conclusion
	Future Work

	Python Code
	Network Topology Configuration


