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Sommario

Lo scopo del presente lavoro è di illustrare alcuni temi di geometria simplettica, i
cui risultati possono essere applicati con successo al problema dell’integrazione dei
sistemi dinamici.
Nella prima parte si formalizza il teorema di Noether generalizzato, introducendo il
concetto dell’applicazione momento, e si dà una descrizione dettagliata del processo
di riduzione simplettica, che consiste nello sfruttare le simmetrie di un sistema fisico,
ovvero l’invarianza sotto l’azione di un gruppo dato, al fine di eliminarne i gradi di
libertà ridondanti.
Nella seconda parte, in quanto risultato notevole reso possibile dalla teoria suesposta,
si fornisce una panoramica dei sistemi di tipo Calogero-Moser: sistemi totalmente
integrabili che possono essere introdotti e risolti usando la tecnica della riduzione
simplettica.
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Symplectic Geometry

1 Preliminary Notions

1.1 Derivative of a mapping

Let M and N be differentiable manifolds and let f be a mapping

f : M → N

which is differentiable, in the sense that f gives rise, when expressed in local coordi-
nates of M and N , to differentiable functions.

Definition 1.1. The derivative of the differentiable function f : M → N in x ∈M
is the linear map between tangent spaces

f∗x : TMx → TNf(x)

defined as follows. Given a curve ϕ : R → M, ϕ(0) = x with velocity vector
dϕ
dt

∣∣
t=0

= v, then f∗xv is the velocity vector of the curve f ◦ ϕ : R→ N , thus

f∗xv
.
=

d

dt

∣∣∣
t=0
f(ϕ(t)). (1.1)

We will often use the equivalent notation : f∗ ≡ df .

Remark 1.1. f∗xv does not depend on the curve ϕ(t) but only on the vector v, and
indeed, given any curve γ, with dγ

ds

∣∣
s=0

= v, we obtain, in local coordinates xi on M :

f∗xv =
d

ds

∣∣∣
s=0

f(γ(s)) =
∂f

∂xi
dxi

ds
=
∂f

∂xi
vi;

f∗x : TMx → TNf(x) is manifestly linear, since d/dt is a linear operator.
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1.2 Pullback defined by a Mapping

The dual mapping to the one we just introduced is called pullback and is described
as follows.

Definition 1.2. LetM andN be differentiable manifolds and let f be a differentiable
mapping between them

f : M → N.

Given a one-form α, defining for any p ∈ N a linear map of the tangent space to N
at p

αp : TpN → R,

we define the pullback of α through f onto M as the map acting, at a given x ∈M ,
as:

(f ∗α)x(v)
.
= αf(x)(dfx(v)). (1.2)

The generalization to a k−form β is straightforward:

(f ∗α)x(v1,v2, . . . ,vk)
.
= αf(x)(dfx(v1), dfx(v2), . . . , dfx(vk)). (1.3)

2 Symplectic Manifolds

2.1 Symplectic Forms

Let V be an m-dimensional vector space over R, and let Ω : V ×V → R be a bilinear
map. The map Ω is skew-symmetric if Ω(u, v) = −Ω(v, u), for all u, v ∈ V .

Theorem 2.1. Let Ω be a skew-symmetric bilinear map on V . Then there is a basis
u1, . . . , uk, e1, . . . , en, f1, . . . , fn of V such that

Ω(ui, v) = 0, for all v ∈ V,
Ω(ei, ej) = Ω(fi, fj) = 0,

Ω(ei, fj) = δij.

Such base, even though not unique, is often called a “canonical” basis.
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Proof. Let U
.
= {u ∈ V |Ω(u, v) = 0 for all v ∈ V }.Choose a basis u1, . . . , uk of U

and choose a complementary space W to U in V :

V = U ⊕W.

Take any nonzero e1 ∈ W . Then there is f1 such that Ω(e1, f1) 6= 0 and by rescaling
we can obtain Ω(e1, f1) = 1. Let

W1 = Span{e1, f1}
WΩ

1 = {w ∈ W |Ω(w, v) = 0 for all v ∈ W1 }.

First we observe that W1 ∩WΩ
1 = {0}.

Indeed, suppose that v = ae1 + bf1 ∈ W1 ∩WΩ
1 , then 0 = Ω(v, e1) = −b and also

0 = Ω(v, f1) = a.

Furthermore W = W1 ⊕WΩ
1 .

This holds because, given v ∈ W , with Ω(v, e1) = h, Ω(v, f1) = k, we can expand
it as

v = (−hf1 + ke1)︸ ︷︷ ︸
∈W1

+ (v + hf1 − ke1)︸ ︷︷ ︸
∈WΩ

1

.

To move one step forward, consider e2 ∈ WΩ
1 , e2 6= 0. We can find f2 ∈ WΩ

1 such
that Ω(e2, f2) = 1, then we consider W2 = span{e2, f2} and so forth.

This process eventually comes to an end since dimV is finite.

Consider now the map Ω̃ defined by

Ω̃ : V → V ∗, Ω̃(v)( ) = Ω(v, ). (2.1)

Its kernel is the set where Ω is “degenerate” since

KerΩ̃ = {v ∈ V | for all u ∈ V, Ω(v, u) = 0}.

Remark 2.1. k
.
= dim KerΩ is an invariant of (V,Ω); thus, since k + 2n = dimV ,

also n is an invariant of (V,Ω), called sometimes rank of Ω.

Definition 2.1. A skew-symmetric bilinear map Ω is symplectic or non degener-
ate if Ω̃ is bijective, i.e. KerΩ̃ = {0}. The map Ω is then called a linear symplectic
structure on V , and (V,Ω) is called a symplectic vector space.
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Here we list some immediate properties of a linear symplectic structure Ω:

• Duality: the map Ω̃ : V
'−→ V ∗ is a bijection.

• k = 0, so dimV = 2n is even.

• By Theorem 2.1 a symplectic vector space (V,Ω) has a basis e1, . . . , en, f1, . . . , fn
satisfying

Ω(ei, fj) = δij and Ω(ei, ej) = Ω(fi, fj) = 0.

Such basis is called a symplectic basis of (V,Ω).

The last property tells us that any symplectic vector field is isomorphic to (R2n,Ω0)
where ei = (. . . δij . . .), fi = (. . . δi(j−n) . . .) is a symplectic basis. This is the prototype
of a symplectic vector space.

Definition 2.2. A symplectomorphism ϕ between symplectic vector spaces (V,Ω)

and (V ′,Ω′) is a linear isomorphism ϕ : V
'−→ V ′ such that

ϕ∗Ω′ = Ω,

where (ϕ∗Ω′)(u, v) = Ω′(ϕ(u), ϕ(v)). If V and V ′ are linked by a symplectomorphism,
they are said to be symplectomorphic.

The relation of being symplectomorphic is an equivalence relation among all even-
dimensional symplectic vector spaces.
Moreover, by Theorem 2.1 every 2n-dimensional symplectic vector space is sym-
plectomorphic to the prototype (R2n,Ω0): finding the suitable symplectomorphism
amounts to finding a symplectic basis.

2.2 Subspaces

Let (V,Ω) be a symplectic vector space.

• A subspace W ⊂ V is called symplectic if the restriction Ω|W is nondegener-
ate.

• A subspace W ⊂ V is called isotropic if Ω|W ≡ 0.

We can also look at these properties by introducing the notion of symplectic orthog-
onal.
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Given a linear subspace Y of (V,Ω), its symplectic orthogonal Y Ω is the linear
subspace defined by

Y Ω = {v ∈ V |Ω(v, u) = 0, for all u ∈ Y }.

Some properties:

1. dimY + dimY Ω = dimV ;

2. (Y Ω)Ω = Y ;

3. If Y and W are subspaces, then Y ⊆ W ⇐⇒ WΩ ⊆ Y Ω;

Proof. Property 1 is immediate, once we notice that the linear map

Ω̃|Y : V → Y ∗

v 7→ Ω(v, )|Y

satisfies: KerΩ̃|Y = Y Ω and ImΩ̃|Y = Y ∗.

Property 2: v ∈ (Y Ω)Ω means Ω(u, v) = 0 for all u such that Ω(u, v′) = 0 for all
v′ ∈ Y ; so, clearly if v ∈ Y then v ∈ (Y Ω)Ω. However dim(Y Ω)Ω = dimV −dimY Ω =
dimV − dimV + dimY = dimY. Therefore we have Y = (Y Ω)Ω.

Property 3: Consider y ∈ Y ⊆ W , and let u ∈ WΩ, i.e. Ω(u, v′) = 0 for all
v′ ∈ W ; then u ∈ Y Ω: given y ∈ Y , Ω(u, y) = 0 since y ∈ W as well.
Viceversa assume WΩ ⊆ Y Ω; then for the previous argument (Y Ω)Ω ⊆ (WΩ)Ω, which
for property 2 means Y ⊆ W .

We call the subspace Y :

• a symplectic subspace if

Ω|Y×Y is nondegenerate ⇐⇒ Y ∩ Y Ω = {0} ⇐⇒ Y ⊕ Y Ω = V ;

• an isotropic subspace if

Ω|Y×Y ≡ 0 ⇐⇒ Y ⊆ Y Ω;

• a coisotropic subspace if
Y Ω ⊆ Y ;

• a lagrangian subspace if

Y is isotropic and dimY =
1

2
dimV ⇐⇒ Y is isotropic and coisotropic ⇐⇒ Y = Y Ω.
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2.3 From symplectic spaces to symplectic manifolds

Let ω be a two-form on a manifold M : for each p ∈ M , ωp : TpM × TpM → R is a
skew-symmetric, bilinear form, and ω depends smoothly on the point p.
ω is closed if it satisfies the differential equation dω = 0, d denoting the exterior
derivative.

Definition 2.3. The 2-form ω is symplectic if ω is closed and ωp is symplectic for
all p ∈M .

If ω is symplectic, then dimTpM = dimM must be even.

Definition 2.4. A symplectic manifold is a manifold M , equipped with a sym-
plectic form ω and denoted (M,ω).

Example 2.2. (R2n, ω0), where in linear coordinates ω0 =
∑n

i=1 dxi ∧ dyi, is sym-
plectic and its symplectic basis is{(

∂

∂x1

)
p

, . . . ,

(
∂

∂xn

)
p

,

(
∂

∂y1

)
p

, . . . ,

(
∂

∂yn

)
p

}
.

Example 2.3. (S2, ω) where S2 is identified with the set of unit vectors in R3 and

ωp(u, v)
.
= 〈p, u× v〉, u, v ∈ TpS2 = {p}⊥.

is symplectic.

Definition 2.5. Let (M1, ω1) and (M2, ω2) be 2n-dimensional symplectic manifolds,
and let ϕ : M1 →M2 be a diffeomorphism. ϕ is a symplectomorphism if

ϕ∗ω2 = ω1.

The theorem below, of which we do not provide a proof (see for instance [1]) states
that the only local invariant of symplectic manifolds up to symplectomorphisms is
their dimension.

Theorem 2.2 (Darboux). Let (M,ω) be a 2n-dimensional symplectic manifold, let
p be any point in M . Then there is a coordinate chart, called a Darboux chart,
(U , x1, . . . , xn, y1, . . . , yn) centered at p such that on U :

ω =
n∑
i=1

dxi ∧ dyi.

The Darboux theorem asserts that locally any symplectic manifold of dimension
2n “looks like” (R2n, ω0).
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3 Isotopies and Vector Fields

Let M be a manifold and ρ : M × R→M a map, where we set ρt(p) = ρ(p, t).

Definition 3.1. The map ρ is an isotopy if, for each t, ρt : M →M is a diffeomor-
phism and ρ0 = idM .

Given an isotopy, we obtain a time-dependent vector field vt, that is a family of
vector fields vt, t ∈ R, which at p ∈M satisfy:

vt(p) =
d

ds

∣∣∣
s=t
ρs(q), q = ρ−1

t (p), (3.1)

or in other words
dρt
dt

= vp ◦ ρt. (3.2)

On the other hand, given a time-dependent vector field vt, under the hypothesis
that M is compact or that the vt’s are compactly supported, we can find a suitable
isotopy ρ satisfying the ordinary differential equation (3.1).

Definition 3.2. Given a time-independent vector field v, the associated isotopy ρ
is called exponential map or flow of v and is denoted etv.
Thus {etv : M →M, t ∈ R} is the unique smooth family of diffeomorphisms satisfy-
ing:

etv
∣∣
t=0

= idM and
d

dt

(
etvp

)
= v

(
etvp

)
(3.3)

Definition 3.3. The Lie derivative is the operator

Lv : Ωk(M)→ Ωk(M)

Lvω
.
=

d

dt

∣∣∣
t=0

((etv)∗ω). (3.4)

In case the vector field vt does depend on time, we can still define a corresponding
isotopy ρ, by Picard’s theorem. Therefore, in the neighborhood of any point p ∈M
and for sufficiently small t there is a one-parameter family of local diffeomorphisms
given by:

dρt
dt

= vp ◦ ρt ρ0 = idM . (3.5)

And the Lie derivative with respect to a time-dependent field is therefore:

Lvt : Ωk(M)→ Ωk(M)
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Lvtω
.
=

d

dt

∣∣∣
t=0

(ρ∗tω). (3.6)

The following formulas prove useful in such a variety of cases that they are definitely
worth mentioning.

Proposition 3.1. Cartan magic formula

Lvω = ıvdω + dıvω. (3.7)

For a time-dependent vector field vt and its local isotopy ρ:

d

dt
ρ∗tω = ρ∗tLvtω; (3.8)

and finally for a smooth family ωt, t ∈ R, of d-forms:

d

dt
ρ∗tωt = ρ∗t

(
Lvtωt +

dωt
dt

)
. (3.9)

Proof. For (3.7) and (3.8) we can observe the following facts. First, they both hold
for 0-forms f ∈ Ω0(M) = C∞(M):

(Lvf) (p) =
d

dt

∣∣∣
t=0
f(etvp) = vf |p = dfp(v) = ıvdfp;

d

dt
(ρ∗tf)(p) =

d

dt
f(ρt(p)) = (Lvtf)(ρt(p)) = ρ∗t (Lvtf) (p).

Then we notice that both sides of (3.7) and (3.8) commute with the exterior derivative
d, essentially because the pullback ∗ commutes with it:

d(Lvω) = d

[
d

dt
(ρ∗tω)

]
=

d

dt
(ρ∗tdω) = Lv(dω); d (ıvdω + dıvω) = dıvdω = ıvddω+dıvdω;

d

[
d

dt
ρ∗tω

]
=

d

dt
ρ∗tdω; d (ρ∗tLvtω) = ρ∗tLvtdω.

Both sides are derivation of the algebra (Ω∗(M),∧), i.e.

Lv (ω ∧ α) = (Lvω) ∧ α + ω ∧ (Lvα)
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since the Lie derivative operator is a derivation itself. This concludes the proof, since
for any chart U , Ω•(U) is generated by functions and their differentials.

Formula (3.9) is a consequence of (3.8) via chain rule:

d

dt
ρ∗tωt =

d

dα

∣∣∣
α=t

ρ∗αωt︸ ︷︷ ︸
ρ∗tLvtωt

+
d

dβ

∣∣∣
α=t

ρ∗tωβ︸ ︷︷ ︸
ρ∗t

dωt
dt

= ρ∗t

(
Lvtωt +

dωt
dt

)
.

4 Hamiltonian Mechanics

4.1 Hamiltonian and Symplectic Vector Fields

Let (M,ω) be a symplectic manifold, and let H : M → R be a smooth function.
Since ω is non-degenerate, there exists a unique vector field XH satisfying:

ıXHω = dH. (4.1)

Definition 4.1. The vector field XH is called hamiltonian vector field and H is
referred to as Hamilton function.

Supposing M is compact, or that XH is complete, we can define, by integration,
a one-parameter family of diffeomorphisms ρt : M →M , t ∈ R, as

ρ0 = id

dρt
dt
◦ ρ−1

t = XH .

(4.2)

Claim. ∀t, ρt preserves the symplectic structure ω.

Proof. By (3.8) we have: d
dt

(ρ∗tω) = ρ∗tLXHω = ρ∗t (d ıXHω︸ ︷︷ ︸
dH

+ıXH dω︸︷︷︸
=0

) = 0.

Remark 4.1. This shows that, for each t, ρt is a symplectomorphism; notice however
how this proof involved both the non-degeneracy and the closedness of ω.

Remark 4.2 (Energy conservation). H is preserved along the trajectories of XH :

d

dt
(ρ∗tH)(x) =

d

dt
H(ρtx) = LXHH = ıXHdH = ıXH ıXHω = 0.

Which means: (ρ∗tH)(x) = H(ρtx), ∀t.
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Definition 4.2. A vector field X on (M,ω) is called a symplectic vector field
whenever LXω = 0.

The following are equivalent:

• X is a symplectic vector field

• LXω = 0

• ρ∗tω = ω, ∀t

• ıXω is closed

However the condition necessary for XH to be a symplectic hamiltonian vector
field is stronger:

• ∃H such that ıXHω = dH.

Since the form ıXω is closed, such a function H exists in a neighborhood of every
point, by Poincaré lemma. The existence of a global function H requires some
supplementary hypothesis of topological type on the variety under consideration. For
instance, if the variety is simply connected, then every symplectic field is hamiltonian.

4.2 Classical Mechanics

Let us consider the euclidean space R2n, with coordinates (q1, . . . , qn, p1, . . . , pn),
equipped with the canonical symplectic structure ω0 =

∑
i dqi ∧ dpi. The integral

curves of hamiltonian vector field for the Hamilton function H are described by
Hamilton Equations. Indeed

ıXHω0 = dH

however

XH =
∑
i

(
dqi
dt

∂

∂qi
+
dpi
dt

∂

∂pi

)
, dH =

∑
i

(
dH

dqi
dqi +

dH

dpi
dpi

)
;

hence: 
dqi
dt

=
∂H

∂pi

dpi
dt

= −∂H
∂qi

.

(4.3)
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For n = 3, these equations describe the motion of a particle of mass m subject to a
potential V (q) in the three dimensional space R3 with coordinates q = (q1, q2, q3).
Newton’s second law

m
d2q

dt2
= −∇V (q)

can be rewritten by introducing the momenta pi = mdqi
dt

and the hamilton function
(energy) H(p, q) = 1

2m
p2 + V (q). Considering now T ∗R3 = R6 with coordinates

(q,p), Newton’s second law in R3 is equivalent to the Hamilton equations in R6.

4.3 Brackets

For a function f ∈ C∞(M) and a vector field X, we define:

Xf = df(X) = LXf.

Given two vector fields X, Y , there exists a unique vector field W
.
= [X, Y ], called

Lie Bracket of X and Y , satisfying the condition:

L[X,Y ]f = LXLY f − LYLXf = [LX ,LY ]f. (4.4)

Lemma 4.1. For any form α

ı[X,Y ]α = LXıY α− ıY LXα = [LX , ıY ]α. (4.5)

Proof. Both sides behave as anti-derivations with respect to the wedge product;
indeed let α and β be a p- and q-form respectively, then:

ı[X,Y ](α ∧ β) = (ı[X,Y ]α) ∧ β + (−1)qα ∧ (ı[X,Y ]β),

by definition of ∧,

LXıY (α ∧ β)− ıYLX(α ∧ β) =

= LX
(
ıY α ∧ β + (−1)qα ∧ ıY β

)
− ıY

(
LXα ∧ β + α ∧ LXβ

)
=

= (LXıY α) ∧ β + (−1)qα ∧ (LXıY β)− (ıYLXα) ∧ β − (−1)qα ∧ (ıYLXβ),

by skew-symmetry of ∧ with respect to contraction ı and by the Leibnitz rule for L
(the cross terms, therefore, cancel out!).

Thus, it is sufficient to check the formula on local generators of the exterior
algebra of forms. For a function f , both sides vanish identically.
For an exact one form df :

ı[X,Y ]df = X(Y f)− Y (Xf) = LXıY df − ıYLXdf

since df(X) ≡ Xf ≡ LXf .
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Proposition 4.2. Given two symplectic vector fields, X, Y , on a symplectic mani-
fold (M,ω), then [X, Y ] is hamiltonian and its hamilton function is ω(Y,X):

H[X,Y ] = ω(Y,X). (4.6)

Proof. Using Cartan magic formula (3.7):

ı[X,Y ]ω =LXıY ω − ıYLXω
=dıXıY ω + ıX dıY ω︸ ︷︷ ︸

0

−ıY dıXω︸ ︷︷ ︸
0

−ıY ıX dω︸︷︷︸
0

.

=d (ω(Y,X)) .

Definition 4.3. A Lie algebra is a vector space g together with a Lie bracket [ , ],
i.e. a bilinear map

[ , ] : g× g→ g

satisfying:
[x, y] = −[y, x], ∀x, y ∈ g; (antisymmetry)

[x, [y, z]] + [y, [z, x]] + [z, [x, y]], ∀x, y, z ∈ g. (Jacobi Identity)

Definition 4.4. A Poisson algebra is a commutative algebra A together with a
Poisson bracket { , }, defining a map

{ , } : A× A→ A

which is a derivation:{f, gh} = {f, g}h+ g{f, h}.

On a symplectic manifold (M,ω), we can actually give a Poisson bracket and
define the Poisson structure (C∞(M), { , }) by introducing the formula:

{f, g} .= ω(Xf , Xg), (4.7)

where Xf and Xg denote the hamiltonian vector fields with f , respectively g as
hamilton functions.

Claim. Our { , } is indeed a Poisson bracket since

{f, gh} = {f, g}h+ g{f, h}
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Proof. He have
{f, gh} = ω(Xf , Xgh);

however Xgh is defined by

d(gh) = dg h+ g dh = ıXghω

therefore

ω(Xf , Xgh) = dg(Xf ) h+g dh(Xf ) = ω(Xf , Xg)h+gω(Xf , Xh) = {f, g}h+g{f, h}.

Remark 4.3. We have X{f,g} = −[Xf , Xg] since X{f,g} = Xω(Xf ,Xg) = [Xg, Xf ],
where in the last passage we used equation (4.6).

Proposition 4.3. { , } satisfies Jacobi Identity:

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.

Proof. By the last Remark we have {f, {g, h}} = ω(Xf , X{g,h}) = −ω(Xf , [Xg, Xh]),
thus our identity follows from Jacobi Identity for the Lie bracket of vectors.

To sum up, we have shown that on a symplectic manifold (M,ω) we have a Poisson
algebra (C∞(M), { , }); and moreover we have a Lie algebra anti-homomorphism
between the Lie algebra of vector fields (χ(M), [ , ]) and the Lie algebra of functions
(C∞(M), { , })

C∞(M) −→ χ(M)

H 7−→ XH

{ , }  − [ , ].

One can also define, in parallel with the notion of symplectic manifold, the weaker
notion of Poisson manifold.

Definition 4.5. A smooth manifold M is a Poisson manifold if (C∞(M), { , }) is
a Poisson algebra.

And of course, similarly to symplectomorphisms for the former, for the latter we
have:

Definition 4.6. A Poisson map is a regular map ϕ : M → N between two Poisson
manifolds (M, { , }M), (N, { , }N) which defines a homomorphism of Poisson algebras,
i.e. given f, g ∈ C∞(N):

ϕ∗{f, g}N = {ϕ∗f, ϕ∗g}M ∈ C∞(M).
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From a general point of view, one can proceed with the notion of Poisson structure
on a manifold M only, and define:

{f, g} .= (df ⊗ dg)(Π), f, g ∈ C∞(M). (4.8)

Then, we can define the corresponding of a symplectic structure:

Definition 4.7. A Poisson structure on a smooth manifold M is defined by a
Poisson bivector i.e. a bivector on M Π ∈ Γ(M,Λ2TM) such that its Shouten
bracket with itself is zero: [Π,Π] = 0.

The Shouten bracket mentioned above is just the extension to p-vectors (in this
case bivectors) of the usual Lie bracket of vector fields [ , ].

Following this more abstract path, leads to a straightforward definition of Hamil-
tonian vector field of a given function H ∈ C∞(M) that exploits the following homo-
morphism between the Lie algebra of functions and the Lie algebra of vector fields
χΠ(M) preserving the Poisson structure:

v : C∞(M) −→ χΠ(M) (4.9)

H 7−→ vH = {H, }. (4.10)

4.4 Integrable Systems

Definition 4.8. A hamiltonian system is a triple (M,ω,H), where (M,ω) is
a symplectic manifold and H ∈ C∞(M ;R) is the hamiltonian function of the
system.

Here we have our first version of Noether theorem.

Theorem 4.4. We have {f,H} = 0 if and only if f is constant along the integral
curves of the hamiltonian field XH .

Proof. Let ρt be the flow of XH . Then

d

dt
(ρ∗tf) = ρ∗tLXHf = ρ∗t ıXHdf = ρ∗t ıXH ıXfω

= ρ∗tω(Xf , XH) = ρ∗t{f,H}.

A function which is constant along the trajectories of motion is called an integral
of motion (or a first integral). Given n functions f1, . . . , fn they are said to be
independent if their differentials (df1)p, . . . , (dfn)p are linearly independent at all
points p in some open dense subset of M .
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In a loose sense, a hamiltonian system is integrable if it has enough commuting
integrals of motion, where commutativity is with respect to the Poisson bracket.
This means that:

ω(Xfi , Xfj) = {fi, fj} = 0,

so we are requesting that the set of hamiltonian fields (Xf1)p, . . . , (Xfn)p generates
an isotropic subspace of TpM for each p. By symplectic linear algebra, then, n can
be at most half the dimension of M .

Theorem 4.5. (Arnold-Liouville) Let (M,ω,H) be an integrable system of di-
mension 2n with integrals of motion f1 = H, f2, . . . , fn. Let c ∈ Rn be a regular
value of f

.
= (f1, . . . , fn). The corresponding level f−1(c) is a lagrangian subman-

ifold of M.

(a) If the flows of Xf1 , . . . , Xfn starting at a point p ∈ f−1(c) are complete, then
the connected component of f−1(c) containing p is a homogeneous space for
the group Rn. There are affine coordinates ϕ1, . . . , ϕn on this component,
known as angle coordinates, with respect to which the flows of the vector
fields Xf1 , . . . Xfn are linear, where by affine coordinates we mean that the
action of the group Rn is by translations.

(b) There are coordinates I1, . . . , In known as action coordinates, comple-
mentary to the angle coordinates such that the Ii’s are integrals of motion
and φ1, . . . , φn, I1, . . . , In give a Darboux chart.
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Moment Maps

The concept of moment map is a generalization of that of Hamilton function. The
notion of a moment map associated to a group action on a symplectic manifold
formalizes the Noether principle, which associates to every symmetry in a mechanical
system a conserved quantity.

5 Actions

5.1 One-parameter subgroups

Let M be a manifold and let X be a complete vector field on M . Consider now
the one-parameter family of diffeomorphisms ρt : M → M, t ∈ R, generated by X,
which satisfies: 

ρ0(p) = p

dρt(p)

dt
= X(ρt(p)).

Claim. The family ρt can be regarded as a one-parameter group of diffeomor-
phisms, denoted ρt = etX , since it meets the requirements:

• ρt ◦ ρs = ρt+s;

• ρ0 = id;

• ρ−t = ρ−1
t .

So the map R→ Diff(M), t 7→ ρt is a group homomorphism.
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Proof. Let ρs(q) = p and reparametrize as ρ̃t(q) = ρt+s(q). Then we have:
ρ̃0(q) = ρs(q) = p

dρ̃t(q)

dt
=
dρt+s(q)

dt
= X(ρt+s(q)) = X(ρ̃t(q)),

i.e. ρ̃t is an integral curve of X through p. By uniqueness: ρ̃t(q) = ρt(p), hence
ρt+s(q) = ρt(ρs(q)).

5.2 Lie Groups

Definition 5.1. A Lie group is a manifold G equipped with a group structure
where the group operations

G×G→ G (a, b) 7→ a · b
G→ G a 7→ a−1

are smooth maps.

Definition 5.2. A representation of a Lie group G on a vector space V is a group
homomorphism G→ GL(V ), which is also a map of differentiable manifolds.

5.3 Smooth Actions

Definition 5.3. An action of the Lie group G on the manifold M is a group homo-
morphism:

ψ : G→ Diff(M)

g 7→ ψg.

The evaluation map associated with an action ψ : G→ Diff(M) is

evψ : M ×G→M

(p, g) 7→ ψg(p).

The action is said to be smooth if its evaluation map is smooth.

It follows from our previous considerations that there is a one-to-one correspon-
dence between smooth actions of R on M and complete vector fields on M given
by:

X 7→ etX

Xp =
dψt(p)

dt

∣∣∣
t=0
← ψ.
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5.4 Orbit Spaces

Let ψ : G→ Diff(M) be any action.

Definition 5.4. The orbit of G through p ∈M is {ψg(p)|g ∈ G}.
The stabilizer of p ∈M is the subgroup Gp

.
= {g ∈ G|ψg(p) = p}.

Furthermore we can describe an action by the characterizing the properties of its
orbits.

Definition 5.5. The action of G on M is:

• transitive if there is just one orbit,

• free if all stabilizers are trivial,

• locally free if all stabilizers are discrete.

Let now ∼ be the equivalence relation that identifies two points in the same orbit:
p, q ∈M,

p ∼ q ⇐⇒ p, q are in the same orbit.

The space of orbits M/∼ = M/G is called the orbit space.
The natural projection π is the one associating a point to the G-orbit through it:

π : M −→M/G

p 7−→ orbit through p.

5.5 Symplectic and Hamiltonian actions

Let (M,ω) be a symplectic manifold, and G a Lie group acting on it through a
smooth action ψ : G→ Diff(M).

Definition 5.6. The action ψ is a symplectic action if

ψ : G→ Sympl(M,ω) ⊂ Diff(M).

This means that ψ gives rise to symplectomorphisms.

The general definition of hamiltonian action, which we are going to inspect in a
moment, requires the notion of moment map.
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5.6 Lie algebra of a Lie group

Let G be a Lie group. Given g ∈ G let

Lg : G→ G

a→ g · a
be the left multiplication by g.
Consider now a vector field X on G. Such field is called left-invariant if

(Lg)∗X = X

for every g ∈ G. Since the Lie bracket of two left-invariant vector fields is again left
invariant we may give the following:

Definition 5.7. Let g be the vector space of all left-invariant vector fields on G.
Together with the Lie bracket [ , ] of vector fields, g forms a Lie algebra, called the
Lie algebra of the Lie group G.

Claim. The map

g −→ TeG

X 7−→ Xe

where e denotes the identity element of the Lie group G, is an isomorphism of vector
spaces.

Proof. Given a vector field X ∈ g, we associate to X its corresponding vector in the
identity element Xe; clearly we have, for two distinct fields X, Y :

(αX + βY )e = αXe + βYe

where α, β are constant coefficients for the linear combinations.
Conversely it is clear that any element Xe ∈ TeG defines a unique left-invariant

vector field through the relation Xg
.
= (Lg)∗eXe: indeed given another h ∈ G,

(Lh)∗gXg = (Lh)∗g ◦ (Lg)∗eXe = (Lh)∗g
d

dt

∣∣∣
t=0

(g · etXe) =

=
d

dt

∣∣∣
t=0

(h · g · etXe) = (Lh·g)∗eXe = Xh·g.

Finally [X, Y ] in g corresponds to [X, Y ]e ≡= [Xe, Ye] in TeG, while we have:

(Lg)∗e[X, Y ]e = (Lg)∗e
d

dt

∣∣∣
t=0

(etXetY−etY etX) =
d

dt

∣∣∣
t=0
g(etXetY−etY etX) = [X, Y ]g.

We observe that the last claim means we can plainly identify the Lie algebra of a
Lie group with its tangent space in the identity element, which is just the way many
authors actually define it.
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6 Adjoint and Coadjoint representations

Let G be a Lie Group and g its Lie Algebra, i.e. its tangent space at the identity
element, provided with a commutator operation [ , ].

Given g ∈ G, a group element, we have the left and right translations, which
are diffeomorphisms through which the group acts on itself:

Lg : G→ G, h ∈ G 7→ Lgh = gh ∈ G (6.1)

Rg : G→ G, h ∈ G 7→ Rgh = hg ∈ G. (6.2)

6.1 Adjoint Representation

The derivatives (def.1.1) of the diffeomorphisms described above are:

Lg∗ : TGh → TGgh (6.3)

Rg∗ : TGh → TGhg (6.4)

The conjugation Rg−1 ◦ Lg acts as follows:

Rg−1 ◦ Lg : G→ G, h ∈ G 7→ ghg−1. (6.5)

It is an inner automorphism of the group G. In particular, it fixes the unit ele-
ment e, since Rg−1 ◦ Lg(e) = g e g−1 = g g−1 = e.

Its derivative in the unit element, which we shall denote Adg, constitutes a linear
map of the Lie algebra g to itself:

Adg = (Rg−1 ◦ Lg)∗e, Adg : g→ g. (6.6)

Therefore, interpreting such procedure as a map

Ad : G→ GL(g), g 7→ Adg (6.7)

we define the adjoint representation of the group G on its Lie algebra g.
We can show that Adg is a homomorphism for the algebra, i.e. it preserves the

structure of the Lie bracket

Adg[X, Y ] = [AdgX,AdgY ], X, Y ∈ g, (6.8)

and furthermore that Adg has indeed the properties of a representation

Adgh = AdgAdh, g, h ∈ G. (6.9)
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Proof. Let AdgX = v, AdgY = u we have:

[AdgX,AdgY ] = [v,u] =
d

dt

∣∣∣
t=0

(
etvetu − etuetv

)
= (vu− uv) =

=
d

ds

∣∣∣
s=0

(gesXg−1)
d

ds

∣∣∣
s=0

(gesY g−1)− d

ds

∣∣∣
s=0

(gesY g−1)
d

ds

∣∣∣
s=0

(gesXg−1) =

=
d

dτ

∣∣∣
τ=0

g(eτY eτX − eτXeτX)g−1 = Adg[X, Y ].

Given X ∈ g,

AdghX = Adgh
d

dt

∣∣∣
t=0
etX =

d

dt

∣∣∣
t=0

(
(gh)etX(gh)−1

)
=

=
d

dt

(
ghetXh−1g−1

) ∣∣∣
t=0

= Adg
(
hetXh−1

) ∣∣∣
t=0

= AdgAdhX.

Let us once more consider the map from the group into the space of linear oper-
ators on the algebra given by Ad:

Ad : G→ GL(g), g 7→ Adg ∈ GL(g) (6.10)

its derivative in the unit element of G is a linear map from the Lie algebra g into the
space of linear operators on g itself; we shall denote this by ad in the following way:

Ad∗e = ad, ad : g→ End(g), X ∈ g→ adg ∈ End(g). (6.11)

Given a 1-parameter subgroup etX , X ∈ g, then, by definition we get:

adX =
d

dt

∣∣∣
t=0
AdetX ; (6.12)

and we can finally express ad in terms of the Lie algebra only:

adXY = [X, Y ]. (6.13)

Proof.

adXY =
d

dt

∣∣∣
t=0
AdetXY =

d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0

(
etXesY e−tX

)
=

=
d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0

(1 + sY + tX + tsXY − tsY X + . . .) = [X, Y ].
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Example 6.1. For matrix groups G (i.e. subgroups of GL(n;R), where we have

Adg(Y ) = gY g−1, ∀g ∈ G, ∀Y ∈ g

and
[X, Y ] = XY − Y X ∀X, Y ∈ g,

we can check directly that (6.13) holds.

adXY = [X, Y ] ∀X, Y ∈ g.

6.2 Coadjoint Representation

Now we are about to express some properties of the action of the Lie Group onto
itself which are dual to those presented in the previous paragraph.

Let g∗ be the dual to the Lie algebra g, namely the vector space T ∗Ge of linear
functions on g. We will express the contraction between a vector and a one-form
with angle brackets 〈 , 〉: 〈ω,X〉 ∈ R where ω ∈ g∗, X ∈ g.

Left and right translations induce, beside the mappings between tangent spaces
defined above, also mappings between cotangent spaces:

L∗g : TG∗h → TG∗gh (6.14)

R∗g : TG∗h → TG∗hg (6.15)

defined as dual maps of Lg∗ and Rg∗, namely
〈
L∗gω,X

〉
= 〈ω, Lg∗X〉 for a vector

X ∈ g and analogously for R∗g.

Again we have the dual operator to Adg, which is denoted Ad∗g:

Ad∗g : g∗ → g∗,
〈
Ad∗gω,X

〉
= 〈ω,Adg−1X〉 . (6.16)

Again we can consider:

Ad∗ : G→ GL(g∗), g 7→ Ad∗g (6.17)

as a representation, called coadjoint representation. Indeed:

Ad∗gh = Ad∗gAd
∗
h. (6.18)
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Proof.〈
Ad∗ghω,X

〉
=
〈
ω,Ad(gh)−1X

〉
= 〈ω,Adh−1g−1X〉 =

= 〈ω,Adh−1Adg−1X〉 = 〈Ad∗hω,Adg−1X〉 =
〈
Ad∗gAd

∗
hω,X

〉
.

The derivative of Ad∗g with respect to g in the identity element is a linear map of
the Lie algebra g∗ onto the space of linear operators acting upon the dual space g∗,
and we will denote it ad∗ in the following manner:

ad∗ : g→ End(g∗), X ∈ g→ ad∗X ∈ End(g∗) (6.19)

ad∗X : g∗ → g∗, ω ∈ g→ ad∗Xω ∈ g∗. (6.20)

ad∗X turns out to be dual to adX as well, i.e. for any ω ∈ g∗ and Y ∈ g:

〈ad∗Xω, Y 〉 = 〈ω, adXY 〉. (6.21)

If we make use of the expression of ad in terms of the Lie bracket [ , ] given above
we obtain:

〈ad∗Xω, Y 〉 = 〈ω, [Y,X]〉, X, Y ∈ g, ω ∈ g∗. (6.22)

Proof. 〈ad∗Xω, Y 〉 = 〈 d
dt

∣∣∣
t=0
Ad∗etXω, Y 〉 = d

dt

∣∣∣
t=0
〈ω,Ade−tXY 〉 =

= −〈ω, adXY 〉 = 〈ω, [Y,X]〉

7 Hamiltonian Actions

7.1 Moment and Comoment Maps

Let (M,ω) be a symplectic manifold, G a Lie group and ψ a smooth symplectic
action of G on M(See definition 5.6). As usual we denote the Lie algebra of G as g
and its dual as g∗.

Definition 7.1. The action ψ is a hamiltonian action if there exists a map

µ : M → g∗

satisfying:
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1. For each X ∈ g, let

• µX : M → R, µX(p)
.
= 〈µ(p), X〉 be the component of µ along X,

• X] be the vector field on M generated by the one-parameter subgroup
etX ⊆ G.

Then µX is the hamiltonian function for the vector field X]

dµX = ıX]ω.

2. µ is equivariant with respect to the given action ψ ofG onM and the coadjoint
action Ad∗ of G on g∗:

µ ◦ ψg = Ad∗gµ , for all g ∈ G

i.e. the following diagram

M
ψg−−−→ Myµ yµ

g∗
Ad∗g−−−→ g∗

commutes.

In such case (M,ω,G, µ) is called a hamiltonian G-space and µ is called a moment
map.

For connected Lie groups, hamiltonian actions can be defined using the equivalent
concept of comoment map:

µ∗ : g −→ C∞(M) , (7.1)

where

1. µ∗(X)
.
= µX is a hamiltonian function for the vector field X] ,

2. µ∗ is a Lie algebra homomorphism

µ∗[X, Y ] = {µ∗(X), µ∗(Y )}

where { , } is the Poisson bracket on C∞(M). Or, using the homomorphism of
Lie algebras defined in eq. (4.9)

vµ∗(X) = X], X ∈ g.

Remark 7.1. In cases G = R, S1,Tn, which are abelian groups, the coadjoint action
is trivial and therefore equivariance becomes mere invariance.
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7.2 Some classical examples

Translation:
Consider R6 with canonical positions and momenta x1, x2, x3, y1, y2, y3 as coordinates,
equipped with the canonical symplectic form ω =

∑
i dxi ∧ dyi. Let G = R3 act on

M = R6 by translation:

~a ∈ R3 7−→ ψ~a ∈ Sympl(R6, ω)

ψ~a(~x, ~y) = (~x+ ~a, ~y).

Here g ' R3, therefore letting X = ~a ∈ g ' R3, we have X] = a1
∂
∂x1

+ a2
∂
∂x2

+ a3
∂
∂x3

and
µ : R6 −→ R3, µ(~x, ~y) = ~y

is a moment map; the hamiltonian function for X] = ~a is:

µ~a(~x, ~y) = 〈µ(~x, ~y),~a〉 = ~y · ~a,

since

ıX]ω =

(∑
i

dxi ∧ dyi

)(∑
i

ai
∂

∂xi

)
=
∑
i

aidyi = dµ~a(~x, ~y).

It is now clear that the momentum vector ~y is the generator of translation in
euclidean 3-space.

Rotation: Let G = SO(3), i.e. the set of A ∈ GL(3;R) satisfying AtA = Id and
detA = 1. We know that g = so(3;R) is the set of 3 × 3 skew-symmetric matrices,
which can be identified with R3 as follows:

A =

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 7−→ ~a =

 a1

a2

a3


[A,B] = AB −BA 7−→ ~a×~b.

We can now check that the adjoint and coadjoint actions are, under the identifications
g, g∗ ' R3, the usual SO(3)-action on R3 by rotations. Indeed, consider the matrix
O of rotation about the z axis by angle θ and let ω be in g, i.e. a skew-symmetric
matrix:

O =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 ;
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We can now compute

AdOω = OωOt
1 =

 0 −ω3 cos θω2 + sin θω1
ω3 0 sin θω2 − cos θω1

− cos θω2 − sin θω1 − sin θω2 + cos θω1 0

 .

We see that in our dictionary this corresponds to a usual rotation of the vector ~ω
about the zeta axis by angle θ:

~ω =

 ω1

ω2

ω3

 7−→ O~ω =

 − sin θω2 + cos θω1

cos θω2 + sin θω1
ω3

 .

We can proceed with analogous calculations for rotations about the x and y axis as
well to complete the argument, but it is now clear that the coadjoint action really
induces ordinary rotations of vectors.

We can actually lift the SO(3)-action on R3 to a symplectic action on the cotan-
gent bundle R6 as follows. The infinitesimal version of this action is:

~a ∈ R3 7−→ dψ(~a) ∈ χsympl(R6)

dψ(~a)(~x, ~y) = (~a× ~x,~a× ~y);

then
µ : R6 → R3, µ(~x, ~y) = ~x× ~y

is a moment map, whereas the hamiltonian function for X], X = ~a is

µ~a(~x, ~y) = 〈µ(~x, ~y),~a〉 = (~x× ~y) · ~a.

Indeed X] = (~a× ~x,~a× ~y),

ıX]ω =

(∑
i

dxi ∧ dyi

)
(~a× ~x,~a× ~y) =

(∑
i

dxi ∧ dyi

)(∑
ijk

εijkaixj
∂

∂xk
+
∑
ijk

εijkaiyj
∂

∂yk

)
=∑

ijk

εijkaixjdyk −
∑
ijk

εijkaiyjdxk = ~x× ~dy · ~a+ ~dx× ~y · ~a = d (~x× ~y · ~a) = dµ~a(~x, ~y).

We have given a precise sense to the common claim that angular momentum is
the generator of rotations.

28



7.3 The Noether principle

Theorem 7.1 (Nöther). Let (M,ω,G, µ) be a hamiltonian G-space; if the function

f : M → R

is G-invariant, then µ is constant on the trajectories of the hamiltonian vector field
with hamilton function f .

Proof. Denote by vf the hamiltonian vector field of f : df = ıvfω. Letting X ∈ g and
µX = 〈µ,X〉 : M → R we have:

LvfµX = ıvfdµ
X = ıvf ıX]ω = −ıX]ıvfω = −ıX]df = −LX]f

where the last term is zero since f is G-invariant.

In order to give a precise sense to the Nöther principle, we can set the following
definitions.

Definition 7.2. A G-invariant function f : M → R is called an integral of motion
of (M,ω,G, µ).
If µ is constant on the trajectories of a hamiltonian vector field vf , then the cor-
responding one-parameter group of diffeomorphisms etvf is called a symmetry of
(M,ω,G, µ).

The Nöther principle asserts that there is a one-to-one correspondence between
symmetries and integrals of motion.

8 The Kostant-Kirillov and Lie-Poisson structures

8.1 Coadjoint Orbits and Symplectic Structure

In this paragraph we explain how the orbits of the coadjoint representation of G on
g∗ can be endowed with a natural symplectic structure.

Definition 8.1. Let’s define ωξ, where ξ ∈ g∗ as follows:

ωξ(X, Y ) = 〈ξ, [X, Y ]〉, X, Y ∈ g (8.1)

We are now going to see how this leads indeed to the symplectic structure we are
looking for.
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Lemma 8.1. The set Kerωξ = {X ∈ g|ωξ(X, Y ) = 0 ∀Y ∈ g} is precisely the Lie
algebra gξ of the stabilizer of ξ for the coadjoint representation of G on g∗.

Proof. Let X ∈ Kerωξ, then 0 = 〈ξ, [X, Y ]〉 ∀Y ∈ g; however, for the properties of
ad∗, we have:

0 = 〈ξ, [X, Y ]〉 = 〈ad∗Y ξ,X〉, ∀Y ∈ g,

since 〈 , 〉 is non-degenerate this can only mean: ad∗Y ξ = 0, i.e.

d

dε

∣∣∣
ε=0

Ad∗eεY ξ = 0⇒ d

dt

∣∣∣
t=t0

Ad∗etY ξ = lim
t→t0

Ad∗etY ξ − Ad
∗
et0Y

ξ

t− t0
=

= lim
t→t0

Ad∗
et0Y e(t−t0)Y ξ − Ad∗et0Y ξ

t− t0
= Ad∗et0Y lim

∆t→0

Ad∗e∆tY ξ − ξ
∆t

=

= Ad∗et0Y

(
d

dε

∣∣∣
ε=0

Ad∗eεY ξ

)
= 0.

Therefore Ad∗etY ξ = ξ, ∀t ∈ R, which means etY ∈ Gξ and finally ξ ∈ gξ.

Viceversa supposing X ∈ gξ, then, for any Y ∈ g:

ωξ(X, Y ) = 〈ξ, [X, Y ]〉 = 〈ad∗Y ξ,X〉

where the left term of the contraction is zero by definition.
Hence: ωξ(X, Y ) = 0, ∀Y ∈ g.

Let ξ be an element of g∗ and let Oξ ⊆ g∗ be its coadjoint orbit. We have the
“evaluation at ξ”map:

G→ Oξ ⊆ g∗

sending g ∈ G to Ad∗g(ξ). It is surjective by definition, and so is its derivative at ξ

TeG(' g)→ TξOξ ⊆ Tξg
∗.

Thus, every tangent vector v ∈ TξOξ can be represented as the velocity vector at
the point ξ of some curve, which is the coadjoint representation of a 1-parameter
subgroup etX of G, where X ∈ g, therefore:

v =
d

dτ

∣∣∣
τ=0

Ad∗eτXξ = ad∗Xξ, X ∈ g, ξ ∈ g∗. (8.2)

Notice that the element X ∈ G is determined only up to a vector which is tangent
to the stabilizer of ξ.
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Definition 8.2. We define the form Ω as follows: given two vectors v1, v2 ∈ TξOξ,
expressed in terms of the corresponding X1, X2 ∈ g;
then

Ωξ(v1,v2) = ωξ(X1, X2) = 〈ξ, [X1, X2]〉, ξ ∈ g∗, Xi ∈ g. (8.3)

Remark 8.1. We shall examine in detail why Ωξ(v1,v2) indeed does not depend on
the choice of the representative elements X1, X2, which are of course not unique, in
theorem 8.4.

Lemma 8.2. Ωξ defines a non-degenerate two-form on the tangent space at ξ to the
coadjoint orbit through ξ, denoted TξOξ.

Proof. By contradiction, assume there is v ∈ TξOξ such that Ωξ(v,u) = 0, ∀u ∈
TξOξ. Looking at the definition of Ω, this leads to a corresponding relation between
the representative elements in g: ωξ(X, Y ) = 0, ∀Y ∈ g, thus X ∈ Kerωξ. However,
from Lemma 8.1, X ∈ gξ, the Lie algebra of the stabilizer of ξ which means AdetXξ =
ξ for all t ∈ R and finally v = d

dt

∣∣
t=0
AdetXξ = d

dt

∣∣
t=0
ξ = 0, which shows the non-

degeneracy of Ωξ.

Lemma 8.3. Ωξ defines a closed 2-form on the orbit of ξ in g∗.

Proof. Clearly from Definition 8.2 Ωξ is a 2-form: it is bilinear and skew-symmetric
since ad∗ and [ , ] possess these properties.
To show the closedness of Ωξ we can consider a general property: for a generic
two-form ω, its exterior derivative dω satisfies

dω(X, Y, Z) = Xω(Y, Z) + Y ω(Z,X) + Zω(X, Y )+

− ω([X, Y ], Z)− ω([Y, Z], X)− ω([Z,X], Y ). (8.4)

In our case we can apply this identity to the generators of TξOξ, which are of course

vectors of the form X]
ξ = d

dt

∣∣
t=0
Ad∗etXξ, X ∈ g; for arbitrary X]

ξ , Y
]
ξ , Z

]
ξ get

dΩξ(X
]
ξ , Y

]
ξ , Z

]
ξ) = dωξ(X, Y, Z) = Xωξ(Y, Z) + Y ωξ(Z,X) + Zωξ(X, Y )+

− ωξ([X, Y ], Z)− ωξ([Y, Z], X)− ωξ([Z,X], Y ).

The first three terms vanish:

〈ad∗etXξ, [Y, Z]〉+ 〈ad∗etY ξ, [Z,X]〉+ 〈ad∗etZξ, [X, Y ]〉 =

= 〈ξ, ade−tX [Y, Z]〉+ 〈ξ, ade−tY [Z,X]〉+ 〈ξ, ade−tZ [X, Y ]〉 =

= −〈ξ, [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ]︸ ︷︷ ︸
=0 by Jacobi Identity

〉 = 0
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The last three terms, on the other hand, can be regrouped as

〈ξ, [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ]〉

and vanish thanks to Jacobi Identity all the same.

Theorem 8.4.
Ω constitutes a well-defined symplectic structure on the coadjoint orbits Oξ,

ξ ∈ g∗.
This canonical symplectic form is also known as the Lie-Poisson or Kostant-
Kirillov symplectic structure.

Proof. From the previous Lemmas 8.2 and 8.3 we can conclude that Ωξ is indeed
bilinear, skew-symmetric, non-degenerate and closed.
We are now to verify that Ωξ(v,u), v,u ∈ TξOξ ' g∗ does not depend on the choice
of the representative elements X, Y ∈ g such that ad∗Xξ = v, ad∗Y ξ = u. Indeed,
consider X,X ′, both satisfying ad∗Xξ = ad∗X′ξ = v; therefore

ωξ(X, Y ) = 〈ξ, [X, Y ]〉 = 〈ξ, adXY 〉 =

= 〈ad∗Xξ, Y 〉 = 〈ad∗X′ξ, Y 〉 = 〈ξ, ad′XY 〉 = 〈ξ, [X ′, Y ]〉 = ωξ(X
′, Y ).

8.2 Coadjoint Orbits and Poisson Structure

The Lie Algebra structure of g also defines a canonical Poisson structure on g∗.

Definition 8.3. The Poisson bracket of two functions on g∗ can be taken to be:

{f, g}(ξ) .
= 〈ξ, [dfξ, dgξ]〉, ξ ∈ g∗, f, g ∈ C∞(g∗). (8.5)

The use of the 〈 , 〉 contraction notation is justified by the fact that dfξ : Tξg
∗ ' g∗ →

R and it can therefore be identified with an element of g ' g∗∗.

Lemma 8.5. { , } satisfies the Leibnitz rule: {f, gh} = {f, g}h+ g{f, h}.

Proof. {f, gh}(ξ) = 〈ξ, [dfξ, d(gh)ξ]〉 = 〈ξ, [dfξ, (dgξ)hξ+gξ(dhξ)]〉 = 〈ξ, [dfξ, dgξ]〉hξ+
gξ〈ξ, [dfξ, dhξ] = ({f, g}h+ g{f, h}) (ξ).
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Lemma 8.6. The jacobiator

J(f, g, h) = {{f, g}, h}+ {{g, h}, f}+ {{h, f}, g}

is a trivector field, that is to say a skew-symmetric, trilinear map

C∞(g∗)× C∞(g∗)× C∞(g∗)→ C∞(g∗)

which is a derivation in each argument.

Proof. Skew-symmetry and bilinearity are granted by the fact that [ , ] is skew-
symmetric and bilinear, whereas < ,> is bilinear in its argument.
The property of being a derivation amounts to the Leibnitz rule from Lemma 8.5.

Lemma 8.7. J ≡ 0, i.e. { , } satisfies the Jacobi Identity.

Proof. This is trivial since the Jacobi identity for [ , ] is indeed valid.
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Symplectic Reduction

Dynamical systems that exhibit properties of symmetry allow the introduction of a
reduced phase space, provided with a natural symplectic structure, as the quotient
manifold between the invariant level manifolds of the first integrals defined by those
symmetries and the 1-parameter subgroups operating on those manifolds.

9 The Marsden-Weinstein-Meyer Theorem

9.1 Statement

Theorem 9.1 (Marsden-Weinstein-Meyer). Let (M,ω,G, µ) be a hamilto-
nian G-space for a compact Lie group G. Let i : µ−1(0) ↪→ M be the inclusion
map. Assume that G acts freely on M . Then

• the orbit space Mred = µ−1(0)/G is a manifold,

• π : µ−1(0)→Mred is a principal G-bundle and

• there is a symplectic form ωred on Mred satisfying

i∗ω = π∗ωred.

The pair (Mred), ωred is often called reduction of (M,ω).
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9.2 Ingredients

1. Let gp be the Lie algebra of the stabilizer of p ∈ M . Then we have for dµp :
TpM → g∗ the following properties:

Ker dµp = (TpOp)ωp

Im dµp = g0
p,

where Op is the G-orbit through p and g0
p is the annihilator of gp, i.e. the set

{ξ ∈ g∗ | 〈ξ,X〉 = 0, for all X ∈ gp.}

Proof. The first fact follows from

v ∈ Ker dµp ⇐⇒ dµp(v) = 0

⇐⇒ 0 = 〈dµp(v), X〉 = ωp(X
]
p, v) ∀X ∈ g

⇐⇒ v ∈ (TpOP )ωp .

As for the second, it is easy to show that Im dµp ⊆ g0
p, since letting ξ = dµp(v)

for some v ∈ TpM one has:

∀X ∈ gp, 〈ξ,X〉 = 〈dµp(v), X〉 = ωp(X
]
p, v) = ωp(0, v) = 0,

where we used X] = d
dt

∣∣
t=0
ψetXp ≡ 0 because etX ∈ Gp, Gp being the stabilizer

of p.
To prove that actually only the equality holds, we can count dimensions as
follows: dim M = dim TpM = 2n, dim TpOp = g − s where g = dim G
and s = dim Gp. For symplectic linear algebra, a subspace and its symplectic
orthogonal have dimensions that add to the dimension of the whole space:
dim (TpO)ωp = dim Ker dµp = 2n−g+s. Finally dim Ker dµp+dim Im dµp =
dim TpM , thus dim Im dµp = 2n− (2n− g + s) = g − s.
On the other hand clearly dim g0

p = dim g− dim gp = g − s.

The previous properties imply that, if the action is locally free at p, which
means gp = {0}, then dµp is surjective, which means that p is a regular point.
In particular if µ(p) = 0, then 0 is a regular value of µ and the level set µ−1(0) is
a closed submanifold of M of codimension equal to dimG. Assume furthermore
G act freely on µ−1(0); then Tpµ

−1(0) = Kerdµp for p ∈ µ−1(0) and the pre-
vious statement ensures that TpOp and Tpµ

−1(0) are symplectically orthogonal.
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This line of thought leads to conclude that TpOp, where p ∈ µ−1(0) is an
isotropic subspace of TpM , hence orbits in µ−1(0) are isotropic. To convince
ourselves of this fact, we can verify it directly; let X, Y ∈ g and p ∈ µ−1(0):

ωp(X
]
p, Y

]
p ) = H[Y ],X]](p) = H[Y,X]](p) = µ[Y,X](p) = 0.

2. The existence of such isotropic subspaces hints to the presence of redundant
degrees of freedom. To eliminate them, we need the following lemma from
linear algebra:

Lemma 9.2. Let (V, ω) be a symplectic vector space. Suppose that I is an
isotropic subspace of V , i.e. ω|I ≡ 0. Then ω induces a canonical symplectic
form on Iω/I.

Proof. Let u, v ∈ Iω and [u], [v] ∈ Iω/I. We set: Ω([u], [v]) = ω(u, v).
First we notice that Ω is well-defined since ∀i, j ∈ I we have

ω(u+ i, v + j) = ω(u, v) + ω(u, j)︸ ︷︷ ︸
0

+ω(v, i)︸ ︷︷ ︸
0

+ω(i, j)︸ ︷︷ ︸
0

.

Furthermore Ω is nondegenerate; indeed letting u ∈ Iω has ω(u, v) = 0 for all
v ∈ Iω implies u ∈ Iωω ≡ I. But then [u] = 0.

3. As a third preliminary fact, we need a statement concerning the regularity of
the objects we are dealing with.

Theorem 9.3. If a compact Lie group G acts freely on a manifold M , then
M/G is a manifold and π : M →M/G is a principal G-bundle.

A thorough proof of this fact can be found in both [4] and [2]; a sketch of the
reason why it holds goes as follows.
That the quotient space, endowed with the quotient topology, is Hausdorff
and second-countable is a general fact from point-set topology. We just sketch
how one can construct a differentiable atlas: Given a point p ∈ M one can
construct a local slice Σp for the action, i.e. a subvariety passing through p and
transversally intersecting the orbit Op, with the property that, for every q ∈ Σ,
we have Oq ∩ Σp = {q} (this statement is sometimes called “Slice” theorem).
Then, coordinates on Σ give coordinates for a neighborhood of π(p) in M/G.
The coordinate-change maps are given by identifying points on different slices
by using the action of the group G.
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9.3 Proof of the Marsden-Weinstein-Meyer theorem

For the first ingredient, since G acts freely on µ−1(0), then dµp is surjective for all
p ∈ µ−1(0), 0 is a regular value and µ−1(0) is a submanifold of codimension dimG.
Now the third ingredient, applied to the free action of G on µ−1(0), yields the first
two assertions of the theorem.

The second ingredient (Lemma 9.2) gives a canonical symplectic structure on
the quotient Tpµ

−1/TpOp, TpOp being an isotropic vector subspace for p ∈ µ−1(0).
However, [p] ∈ Mred has tangent space T[p]Mred ' Tpµ

−1/TpOp, hence our Lemma
defines a nondegenerate 2-form ωred on Mred as well. ωred is well defined because ω
is G-invariant. By construction i∗ω = π∗ωred where

µ−1(0)
i−−−→ Myπ

Mred;

hence π∗dωred = dπ∗ωred = di∗ω = i∗dω = 0. The closeness of ωred follows from the
injectivity of π∗. We notice that the relation also ensures that ωred is smooth, by the
construction of an atlas for M/G out of local slices for the action of G on M which
was sketched above.

10 Applications

10.1 Elementary theory of reduction

Given the 2n-dimensional hamiltonian system (M,ω,H), if we can spot a symmetry
in this system, i.e. invariance under the action of a group, we can simplify the prob-
lem by solving the reduced (2n− 2)-dimensional system (Mred, ωred, Hred).

To give a more precise idea of this, we can consider local Darboux coordinates
for the open set U of M : x1, . . . , xn, ξ1, . . . , ξn, where ξn is the integral of motion
corresponding to the symmetry mentioned above.
So we have ξn = constant = c, which means

{ξn, H} = 0 = − ∂H
∂xn

;
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then H = H(x1, . . . , xn−1, ξ1, . . . , ξn−1, c). The Hamilton equations read:

dx1

dt
=
∂H

∂ξ1

(x1, . . . , xn−1, ξ1, . . . , ξn−1, c)

...

dxn−1

dt
=

∂H

∂ξn−1

(x1, . . . , xn−1, ξ1, . . . , ξn−1, c)

dξ1

dt
= − ∂H

∂x1

(x1, . . . , xn−1, ξ1, . . . , ξn−1, c)

...

dξn1

dt
= − ∂H

∂xn−1

(x1, . . . , xn−1, ξ1, . . . , ξn−1, c).

and

dxn
dt

=
∂H

∂ξn
dξn
dt

= 0.

Therefore, switching to the reduced manifold means to set ξn = c, and to work on
this hyperplane. In case we manage to solve the reduced problem, by finding the
trajectories x1(t), . . . , xn−1(t), ξ1(t), . . . , ξn−1(t), we can also reconstruct the solution
to the original problem by direct integration:

xn(t) = xn(0) +

∫ t

0

∂H

∂ξn
dt

ξn(t) = c.

10.2 Reduction at Other Levels

Let a compact Lie group G act on a symplectic manifold (M,ω) in a hamiltonian
way and let µ : M → g∗ be the moment map of such action.
Up to now we have only considered the reduction at the level zero, µ−1(0); given an
arbitrary value ξ ∈ g∗, we would like now to reduce at the level ξ of µ; to do so we
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need µ−1(ξ) to be preserved by G.
Since G is equivariant:

G preserves µ−1(ξ) ⇐⇒ G preserves ξ

⇐⇒ Ad∗gξ = ξ, ∀g ∈ G.

Consistently with the above considerations, se see now that 0 is always preserved

10.3 Hamiltonian reduction along an orbit

Let’s take O to be the coadjoint orbit of ξ ∈ g∗, equipped with the Konstant-Kirillov
symplectic form ωO which was discussed before.
Denote O− the same orbit equipped with the symplectic structure defined by −ωO;
now the natural product action of G on M × O− is hamiltonian with moment map
µO(p, ξ) = µ(p)− ξ, since this shifted map satisfies µ−1

O (0) = µ−1(ξ) by construction.

Now, if we can verify the hypothesis of the Marsden-Weinstein-Meyer theorem
for M × O−, then we obtain the reduced space with respect to G along the
coadjoint orbit O, µ(O)/G ≡ R(M,G, O).

Lemma 10.1. If the action of µ−1(O) is free, then R(M,G, O) is a symplectic
manifold of dimension

dimM − 2dimG+ dimO.

Proof. We obtain O by imposing dimG − dimO constraints, therefore we have
dimµ−1(O) = dimM − (dimG − dimO). Finally, since G acts freely, thus all the
stabilizers are discrete,

dimR(M,G, O) = dimµ−1(O)− dimG = dimM − 2dim G+ dimO.

This procedure will prove to be of chief interest in the next section.
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Introduction to Calogero-Moser
Systems

In this final section we describe and solve the hamiltonian system of Calogero-Moser
type, which was originally introduced in the work of F. Calogero.

Here we are going to deal with complex quantities: manifolds are going to be
complex manifolds, rather than real manifolds which we dealt with in the previous
sections, and also symplectic forms are going to be holomorphic symplectic forms.

11 The Calogero-Moser system

11.1 The hamiltonian G-space

In order to build the Calogero-Moser space, we are going to require the following
elements:

• Let M
.
= T ∗Matn(C).

Since this is a linear space, we can identify TpMatn(C) ' Matn(C) and TMatn(C) '
Matn(C)×Matn(C). Thus dimM = n2 + n2 = 2n2.

Provided we have a nondegenerate bilinear form Γp on TpMatn(C), we can
further identify T ∗pMatn(C) ' TpMatn(C) in the usual way:

X ∈ TpMatn(C) 7−→ Γp(X, ) ∈ T ∗pMatn(C).

So we can regard M as the set of pairs of matrices:

M = T ∗Matn(C) ' TMatn(C) ' Matn(C)×Matn(C) = {(X, Y )|X, Y ∈ Matn(C)}.
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• Consider also the trace form

ω
.
= tr (dY ∧ dX) = tr [(dYij) ∧ (dXlm)] = tr

(∑
k

dYik ∧ dXkm

)
=
∑
h,k

dYhk∧dXkh,

which is really nothing more than our usual canonical symplectic form dp∧ dq.
The pair (M,ω) constitutes a symplectic manifold.

• Now let G
.
= PGLn(C) = GLn(C)/C∗Id, where:

GLn(C) = {M ∈ Matn(C)|detM 6= 0},

C∗ = C \ {0}.
This is the formal way of saying that we want to consider all nonsingular ma-
trices after identifying those which can be written in the form: A,A′, where
A = λA′, λ 6= 0.

Thanks to this degree of freedom, we are able to satisfy the condition detλA = 1
in n different ways:

detλA = 1 ⇐⇒ λn =
1

detA
.

This gives the relation connecting PGLn(C) to SLn(C), where

SLn(C) = {M ∈ Matn(C)|detM = 1},

which is just:
PGLn(C) = SLn(C)/C∗Id ∩ SLn(C).

However the matrices in the form λId where λn = 1 are precisely n, so the
difference between the two groups amounts to a finite group. We have shown
that:

dim PGLn(C) = n2 − 1; (11.1)

pgln(C) = sln(C). (11.2)

• Let now G act on M by conjugation in the following sense.

Given A ∈ G

ψA : Matn(C)→ Matn(C) (11.3)

Q 7→ ψA(M) = A−1QA; (11.4)

this action lifts to an action on M = T ∗Matn(C).
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Claim. The action of G = PGLn(C) on M = T ∗Matn(C) by conjugation is
hamiltonian with moment map

µ(X, Y ) = [X, Y ] = XY − Y X, X, Y ∈ Matn(C).

Proof. We first have to compute the action of PGLn(C) on T ∗Matn(C) explicitly.
Since PGLn(C) acts on Matn(C) by conjugation, we have for any C ∈ PGLn(C):

ψC : M ∈ Matn(C) 7−→ C−1MC.

The corresponding action of TMatn(C) will be:

ψC : (M,V ) ∈ TMatn(C) 7−→ (C−1MC,C−1V C)

since we have M + εV 7−→ C−1(M + εV )C = C−1MC + εC−1V C or, more formally

V =
d(eV t)

dt

∣∣∣
t=0

=⇒ (ψC)∗V =
d

dt

∣∣∣
t=0

(C−1eV tC) = C−1V C.

We identify T ∗Matn(C) ' TMatn(C) using a convenient, conjugacy-invariant bilinear
form: given (M,N) ∈ T ∗Matn(C) and V ∈ TMatn(C)

(M,N)(V )
.
= Tr(NV );

now, as M 7→ C−1MC, we have that Tr(NV ) 7→ Tr(NCV C−1) since ψC is a group
homomorphism. Then:

Tr(NCV C−1) = Tr(C−1NCV )

which proves that

ψC : (M,N) ∈ T ∗Matn(C) 7−→ (C−1MC,C−1NC).

Our next task is to verify: dµA = ıA]ω, where A ∈ pgln(C), µ(M,N) = [M,N ],
µA = 〈µ,A〉, ω = Tr(dY ∧ dX). Now, using the Liouville one-form ω = dα and
Cartan magic formula 3.7 our condition simplifies to:

dµA = ıA]ω = ıA]dα = LA]α︸ ︷︷ ︸
=0

−dıA]α
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that is to say −ıA]α = µA. Indeed we have:

A](M,N) =
d

dt

∣∣∣
t=0

(eAt(M,N)) =
d

dt

∣∣∣
t=0

(e−AtMeAt, e−AtNeAt) = ([M,A], [N,A]);

− ıA]α = −ıA]Tr(NdM) =

= −Tr(N [M,A]) = Tr(−NMA+NAM) = Tr(−NMA+MNA) = Tr([M,N ]A).

On the other hand
µA(M,N) = Tr([M,N ]A),

which proves the statement.

11.2 The Calogero-Moser Space

Let O be the orbit of the matrix
−1 0 . . . 0
0 −1 . . . 0
...

...
. . .

...
0 0 . . . n− 1


The orbit admits a simple parametrization: in order to discuss let us recall that,
given a column vector v, and a row vector ϕ, we can form their tensor product
matrix

v ⊗ ϕ =

( )
( );

this matrix has rank one and Tr(v ⊗ ϕ) = ϕ(v) = 〈ϕ, V 〉. Viceversa, it is easy to see
that every rank one matrix is of this form. Furthermore such matrix is diagonalizable
if and only if ϕ(v) 6= 0, i.e. Tr(v ⊗ ϕ) 6= 0.

Lemma 11.1. The orbit O is the set of traceless matrices T such that T + Id has
rank one.

Proof. We have
Tr(C−1TC) = TrT = 0;

Rank(C−1TC+Id) = Rank(C−1TC+C−1IdC) = Rank(C−1(T+Id)C) = Rank(T+Id).
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On the other hand, if T is traceless, and T + Id has rank one, then T + Id = v ⊗ ϕ,
for appropriately chosen v and ϕ. Since Tr(T ) = 0, we have that Tr(T + Id) = n,
hence v ⊗ ϕ is diagonalizable and conjugate to

0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . n


and we conclude.

The Calogero-Moser space is the reduction of (M,ω,G) along the orbit O :

Cn
.
= R(M,G, O). (11.5)

Thus, Cn is the set space of conjugacy classes of pairs of n× n matrices (X, Y ) such
that the matrix XY − Y X + 1 has rank 1.

From the Marsden-Weinstein-Marsden theorem Cn is symplectic, and it can also
be shown to be connected.

From the discussion in the proof of Lemma 11.1, we see that any T ∈ O can be
written in the form

T = v ⊗ ϕ− Id

provided that 〈ϕ, V 〉 = Tr Id = n. Since v and ϕ live in an n-dimensional space, but
we have to take both the constraint 〈ϕ, V 〉 = n and the gauge degree of freedom
v 7→ λv, ϕ 7→ ϕ/λ into account, we see that:

dim O = 2n− 2. (11.6)

We are now in a position to show the following fact:

Claim. Tha Calogero-Moser space Cn is 2n-dimensional.

Proof. Applying the formula from lemma 10.1 we have exactly:

dim Cn = dim M − 2dim G+ dim O = 2n2 − 2(n2 − 1) + 2n− 2 = 2n.
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11.3 The Calogero-Moser System and Flow

Consider the functions

Hi = Tr(Y i), i = 1, 2, . . . , n, (11.7)

where (X, Y ) ∈M = T ∗Matn(C). These functions satisfy the following properties:

• they are invariant under conjugation, since trace is invariant under change of
basis;

• they are trivially in involution with each other, since {Hi, Hj} = 0 by skew-
symmetry of the Lie bracket; indeed they depend only on the Y component
of (X, Y ) ∈ M , and thus their Poisson bracket can be shown to be zero by
exploitation of {Y, Y } = 0;

• their differential are independent almost everywhere on M .

Let G = PGLn(C) act on M by conjugation and let O be the coadjoint orbit,
consisting of traceless matrices T such that T + Id has rank one, considered above.
Then the system H1, . . . , Hn descends to a system of functions in involution on the
Calogero-Moser space R(M,G, O) ≡ Cn. This is called the Calogero-Moser Sys-
tem.

The Calogero-Moser flow is, by definition, the Hamiltonian flow on Cn defined
by the Hamiltonian H

.
= H2 = Tr(Y 2). Thus this flow is integrable by Arnold-

Liouville Theorem 4.5, since it can be included in an integrable system: H1, . . . , Hn

provide n independent integrals of motion, whereas we have shown that Cn is exactly
2n-dimensional.
Therefore, in principle, its solutions can be found by quadratures using the induc-
tive procedure of reduction of order, according to the elementary theory of reduction.

However one may observe that on the former manifold M the Calogero-Moser
flow is just the motion of a free particle in the space of matrices, so it has the form:

ρt(X, Y ) = (X + 2Y t, Y ). (11.8)

It can be shown that the same formula is valid on Cn and that the other n− 1 flows
corresponding to Hi = Tr(Y i) have exactly the same form

ρ
(i)
t (X, Y ) = (X + iY i−1t, Y ).
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12 Coordinates on Cn and the explicit form of the

Calogero-Moser system

Let us restrict ourselves to the open dense subset Un ⊂ Cn consisting of conjugacy
classes of those pairs (X, Y ) for which X is diagonalizable with distinct eigenvalues.
Let P ∈ Un. Clearly, P can be represented by a pair (X, Y ) such that

x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn

 , xi 6= xj, i 6= j.

Now,

T
.
= XY−Y X =


0 (x1 − x2)y12 . . . (x1 − xn)y1n

(x2 − x1)y21 0 . . . (x2 − xn)y2n
...

...
. . .

...
(xn − x1)yn1 (xn − x2)yn2 . . . 0

 = ((xi − xj)yij) .

Now, as we saw T + Id has rank 1 and its entries κij can be written in the form
κij = viϕj for some appropriate v, ϕ :

T + 1 = v ⊗ ϕ


1 (x1 − x2)y12 . . . (x1 − xn)y1n

(x2 − x1)y21 1 . . . (x2 − xn)y2n
...

...
. . .

...
(xn − x1)yn1 (xn − x2)yn2 . . . 1

 =


v1ϕ1 v1ϕ2 . . . v1ϕn
v2ϕ1 v2ϕ2 . . . v2ϕn

...
...

. . .
...

vnϕ1 vnϕ2 . . . vnϕn

 .

By inspecting the last equation we have: vjϕj = 1, so ϕj = v−1
j and hence κij = viv

−1
j .

By conjugating (X, Y ) by the matrix
v1 0 . . . 0
0 v2 . . . 0
...

...
. . .

...
0 0 . . . vn
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we can reduce to the situation when vi = 1, κij = 1, so:

T =


0 1 . . . 1
1 0 . . . 1
...

...
. . .

...
1 1 . . . 0

 .

This leads to conclude that (xi−xj)yij = 1 when i 6= j, whereas yii are unconstrained.
We have almost shown the following result.

Theorem 12.1. Let Cn
reg be the open set of (x1, . . . , xn) ∈ Cn such that xi 6= xj for

i 6= j. There exists an isomorphism of symplectic manifolds ξ : T ∗(Cn
reg/Sn) → Un,

where Sn denotes the symmetric group, given by the formula (x1, . . . , xn, p1, . . . , pn) 7→
(X, Y ) :

X =


x1 0 . . . 0
0 x2 . . . 0
...

...
. . .

...
0 0 . . . xn

 ; Y =



p1
1

x1 − x2

. . .
1

x1 − xn
1

x2 − x1

p2 . . .
1

x2 − xn
...

...
. . .

...
1

xn − x1

1

xn − x2

. . . pn


.

Proof. Let ak
.
= Tr(Xk) and bk

.
= Tr(XkY ). On M we have:

{bm, ak} = mam+k−1.

On the other hand, by definition of ξ: ξ∗ak =
∑
xki , ξ

∗bk =
∑
xki pi. Thus we see

that
{bm, ak} = {ξ∗bm, ξ∗ak}.

Now we are done, since the functions ak and bk form a local coordinate system near
a generic point of Un.

In such coordinates, the Hamilton function of the Calogero-Moser system reads:

H = Tr(Y 2(x, p)) =
∑
i

p2
i −

∑
i 6=j

1

(xi − xj)2
. (12.1)

Thus the Calogero-Moser Hamiltonian describes the motion of n particles on the line,
interacting with potential −1/x2. The procedure we have described ensures that this
system is completely integrable, with first integrals

Hi = Tr(Y i(x, p))
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and provides an explicit solution:

Xt = X0 + 2tY0, Pt = Ẋt,

where (X, Y ) = ξ(x, p).

48



Bibliography

[1] Arnold, V.I., Metodi Matematici della Meccanica Classica, Editori Riuniti

[2] Cannas da Silva, A., Lectures on Symplectic Geometry, Springer Verlag

[3] Dubrovin, Novikov, Fomenko, Geometria Contemporanea, Editori Riuniti

[4] Guillemin, V., Sternberg, Shl.: Symplectic Techniques in Physics, Cambridge
University Press

[5] Etingof, P.: Lectures on Calogero-Moser systems, ETH Education

[6] Moser, J.: Three Integrable Hamiltonian Systems Connected with Isospectral
Deformations, Advances in Mathematics 16, 197-220 (1975).

[7] Schutz, B., Geometrical Methods of Mathematical Physics, Cambridge Univer-
sity Press

49


