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Abstract/Sommario

Abstract

The main result in this work is the solution of the Jeans equations for an
axisymmetric galaxy model containing a baryonic component (distributed
according to a Miyamoto-Nagai profile) and a dark matter halo (described
by the Binney logarithmic potential).

The velocity dispersion, azimuthal velocity and some other interesting
quantities such as the asymmetric drift are studied, along with the influence
of the model parameters on these (observable) quantities. We also give an
estimate for the velocity of the radial flow, caused by the asymmetric drift.

Other than the mathematical beauty that lies in solving a model analyt-
ically, the interest of this kind of results can be mainly found in numerical
simulations that study the evolution of gas flows. For example, it is im-
portant to know how certain parameters such as the shape (oblate, prolate,
spherical) of a dark matter halo, or the flattening of the baryonic matter,
or the mass ratio between dark and baryonic matter, have an influence on
observable quantities such as the velocity dispersion.

In the introductory chapter, we discuss the Jeans equations, which pro-
vide information about the velocity dispersion of a system. Next we will
consider some dynamical quantities that will be useful in the rest of the
work, e.g. the asymmetric drift. In Chapter 2 we discuss in some more de-
tail the family of galaxy models we studied. In Chapter 3 we give the solution
of the Jeans equations. Chapter 4 describes and illustrates the behaviour of
the velocity dispersion, as a function of the several parameters, along with
asymptotic expansions. In Chapter 5 we will investigate the behaviour of
certain dynamical quantities for this model. We conclude with a discussion
in Chapter 6.
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Sommario

Il risultato principale di questa tesi è la soluzione delle equazioni di Jeans
per un modello galattico costituito da una componente barionica (distribuita
secondo un profilo di densità Miyamoto-Nagai) e un alone di materia oscura
(distribuito secondo il modello di potenziale logaritmico di Binney).

Studiamo la dispersione di velocità, la velocità azimutale e alcune altra
quantità interessanti, come l’asymmetric drift. Studiamo inoltre l’influenza
dei parametri dei modelli su queste quantità osservabili. Diamo una stima
della velocità del radial flow, che è una conseguenza dell’asymmetric drift.

Risolvere un modello analiticamente non ha solo una bellezza matemat-
ica. Questi risultati possono essere utili per fare delle simulazioni numeriche.
Infatti, è importante sapere come alcuni parametri, per esempio la forma
dell’alone (oblato, prolato, sferico), lo schiacciamento del disco o il rapporto
tra la massa barionica e oscura, possono avere un’influenza sulle quantità
osservabili.

Nel primo capitolo descriviamo le equazioni di Jeans, che danno infor-
mazioni sulla dispersione della velocità di un sistema, e consideriamo alcune
quantità dinamiche che saranno utili nel resto della tesi, come l’asymmetric
drift. Nel Capitolo 2 discutiamo con più dettagli i modelli galattici che ab-
biamo considerato. Nel Capitolo 3 diamo la soluzione delle equazioni di
Jeans per questo modello. Il Capitolo 4 consiste soprattutto di grafici delle
quantità trovate come funzione dei parametri, e ci sono anche delle espan-
sione asintotiche. Nel Capitolo 5 guardiamo l’andamento di alcune quantità
dinamiche per questo modello. Concludiamo con il Capitolo 6.
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Chapter 1

Introduction

1.1 Preliminaries

Analytical galaxy models are often used as starting points for more elabo-
rate investigations. In general, galaxies are thought of, in first approxima-
tion, as systems in equilibrium. The proper approach to describe a (multi-
component) collisionless system is to use the phase-space distribution. How-
ever, this approach, even though physically based, is in the vast majority
of cases quite difficult, due to the need to solve the Poisson equation: this
difficulty increases considerably for non-spherical systems. The alternative
approach is to use the Jeans equations, i.e. to solve for the first velocity
moments of the distribution function, see e.g. [3].

Of course, in this approach there is no guarantee that the distribution
function of the model is positive, and often some educated guess is needed
to impose the closure relation (for example a prescribed anisotropy).

In the epoch of computers, it is tempting to ask why bother with ana-
lytical models of galaxies, when more realistic models could be constructed
by using directly numerical methods (or even N -body numerical simula-
tions). The fact is that solvable models, even if quite idealized, offer the
unique advantage of a first-hand understanding of the role of parameters
and assumptions on the obtained results. These insights can then be used
to interpret the more complicated (and realistic) numerical or observational
data.

In the literature, there is a quite large number of spherically symmetric
galaxy models (one and two-components) with Jeans equations that can
be fully solved analytically. This is not a surprise since in this case the
describing equations are ordinary differential equations depending only on r.
The class of axisymmetric models is by far less populated, and only a handfull
of two-component axisymmetric galaxy models are presently known. Some
examples are the Miyamoto-Nagai selfgravitating model (see [19] and [18]).

In this work we show that, quite remarkably, the Jeans equations for the
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8 CHAPTER 1. INTRODUCTION

Miyamoto-Nagai model embedded in the Binney logarithmic potential [4]
can be solved analytically for general choices of the parameters.

Among the obvious applications of the models (in addition to test nu-
merical codes dedicated to the solution of the Jeans equations), we recognize
the possibility to use these models for hydrodynamical simulations of gas
flows in early type galaxies, where the knowledge of the stellar velocity fields
is fundamental for the description of the thermalisation of the interstellar
medium, injected by the stellar feedback [20], [25].

Another simple application is to determine the effects of the relative
shape of the stellar and dark matter distribution in disk galaxies on the
vertical kinematics of stars. In fact, this quantity is used to infer properties
of dark matter near the equatorial plane in our galaxy [26].

Finally, we propose an interesting application of the obtained functions
for the asymmetric drift (AD). In general, it is expected (e.g., by chemical
evolution studies) that disk galaxies host radial flows in their disk. These
flows are expected to influence the chemical gradient of stellar populations
in the disk, so that from the study of chemical and age gradients in the disk
it is expected to gain information on galaxy formation. The problem is how
such radial flows are sustained. In fact, in case of angular momentum con-
servation, such flows cannot exist. Various explanations use (for example)
gravitational effects due to non-perfect axisymmetry (e.g., bars, spiral arms,
etc.) or gas accretion from above and below the disk of material with a
smaller specific angular momentum, so that after the mixing the gass falls
toward the center (as the angular momentum J of circular orbits in the equa-
torial plane decreases for decreasing R in stable disks). All these hypotheses
are realistic and may be at play. However, one could look also at "inner",
more "regular" mechanisms that can lead to radial gas flows. One possibil-
ity is represented (in principle) by considering the coupling between stellar
mass losses and AD. In fact, at each radius, the gas injected by the stars
has (due to AD) a smaller specific J than the gas rotating with the local
circular velocity, and this will produce a radial inflow. We use our models
to get some quantitative estimates of this effect.

1.2 The Jeans equations and their application in
simple models

Galaxies can, in good approximation, be regarded as systems in equilibrium.
This equilibrium situation allows the use of the Jeans equations to describe
the dynamics of a galaxy. These equations are interesting since they give
relations between observationally accessible quantities such as the velocity
dispersion components. Here we will merely state the Jeans equations, the
derivation, as is done in [4], is given in Appendix A. We give the equations
in the particular case of spherical symmetry and in the axisymmetric case.
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1.2.1 Spherical case

In spherical coordinates there is only one Jeans equation, most often written
as

d(ρσ2r )

dr
+ 2

β

r
ρσ2r = −ρdΦ

dr
, (1.1)

where

β =
2σ2r − v2ϕ − v2θ

2σ2r
(1.2)

is the anistropy parameter, a degree for the radial anisotropy. Since there is
only one such equation, it is in general not possible to obtain β and σ2r from
a known ρ and Φ: the equations are not closed. In the special case of an
ergodic distribution function f(H) however, where H is the Hamiltonian of
the system and H = E, we know that β = 0 and the equation can be solved
for σr.

We give an example of a spherically symmetric model for which the Jeans
equation can be solved. The Plummer sphere has potential-density pair

Φ(r) = − GM∗√
r2 + b2

, (1.3)

ρ(r) =
3M∗b

2

4π(r2 + b2)5/2
. (1.4)

It is easily checked that the total mass is indeed given byM∗. The parameter
b is a characteristic radius, in the sense that a sphere with radius b and
uniform density ρ(0) would have the same mass M∗.

If we assume an ergodic distribution function, straightforward integration
of the Jeans equation (1.1) gives

σ2r =
GM∗

6
√
r2 + b2

. (1.5)

As a second example, we will look at the influence of a central black hole
on the velocity dispersion in a galaxy, modelled by a Plummer sphere, this
will be done in Section 4.3.

1.2.2 Axisymmetric case

In the axisymmetric case there are two Jeans equations:

∂ρ∗σ
2

∂z
= −ρ∗

∂Φ

∂z
(1.6)

and
∂ρ∗σ

2

∂R
+ ρ∗

σ2 − v2ϕ
R

= −ρ∗
∂Φ

∂R
. (1.7)
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The derivation of these equations is given in Appendix A.
Notice that in the special case of spherical symmetry, formal integration

of eq. (1.6) shows that also σ has spherical symmetry, i.e. σ = σ(r).
In order to determine the azimuthal velocity we adopt the Satoh [27]

k-decomposition
vϕ

2 = k2(v2ϕ − σ2), (1.8)

and then it follows

σ2ϕ ≡ v2ϕ − vϕ2 = k2σ2 + (1− k2)v2ϕ, (1.9)

where 0 ≤ k ≤ 1. This implicitly assumes that the supporting distribution
function is a Satoh distribution function f(E, Jz; k). The case k = 1 corre-
sponds to the isotropic rotator while for k = 0 no net rotation is present and
all the flattening is due to the azimuthal velocity dispersion σϕ. In principle,
k can be a function of (R, z), bounded above by the function kmax(R, z),
so that σ2ϕ = 0 [6]. From eq. (1.7) it easily follows that in the spherical
limit of a two-integrals distribution function v2ϕ = σ2, and, if in addition
the distribution function is of the Satoh family, then the spherical limit is
isotropic.

In Chapter 2 we will introduce the Miyamoto-Nagai model and the Bin-
ney model. Both are axisymmetric and we will solve the Jeans equations for
these models.

Evans [8] used a result by Lynden-Bell [17], which states that the even
part of the distribution function can be recovered from ρ(R,Φ) by a double
Laplace inversion. Since the density for this model, obtained from the poten-
tial by Poisson’s equation, can be written as a function of R and Φ (instead
of the usual R and z), this leads to an explicit and remarkably simple form
for the distribution function:

F (E, J2
z ) = (AJ2

z +B)e
4E

v20 + Ce
2E

v20 (1.10)

with

A =

(
2

π

)5/2 1− q2

Gq2v30
, B =

(
2

π5

)1/2 R2
0

Gq2v0
, C =

2q2 − 1

4π5/2Gq2v0
.

(1.11)

1.3 The model we consider

We use the Miyamoto-Nagai density profile (which will be discussed in de-
tail in the next chapter) to describe the baryonic matter in a galaxy. The
parameters in this model allow for a large range of different-looking models.
In [18] the authors point out that this model mimics the observed density
distribution in disk galaxies surprisingly well, and that the same model with
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different parameters can also be used to describe the bulge of a galaxy. We
will not use this latter feature in our model.

However if we want to discuss properties such as velocity dispersion, we
cannot restrict ourselves to the baryonic matter. Also dark matter has an
influence - and as we will see, quite an important one. Nowadays there is an
overwhelming amount of evidence for the existence of this still mysterious
dark matter. We give a short overview.

• A galaxy rotation curve shows the rotation velocity of stars in a galaxy
as a function of their distance to the center. If all the matter were in
the baryonic form, the bulk of it would be contained in the galactic
bulge. Hence the rotaton velocity outside the bulge should decrease
in an almost Keplerian way. However observations indicate that the
velocity curve remains almost flat, even at a distance well beyond the
bulge, indicating that matter is distributed almost uniformly up to
large distances.

• The velocity dispersion in a galaxy is much larger than what could be
explained by the baryonic matter alone, an observation our model will
agree with.

• X-ray emissions originating from the gas within galactic clusters is also
a probe for the mass distribution: their energy is related to the density
and pressure of the gas and, assuming equilibrium, this is an indication
of the gravitational effect [6].

• Gravitational lensing is the phenomenon where light from a very dis-
tant source gets gravitationally bent by a massive intermediate object
along the line of sight, such as a galaxy cluster. The strength of this
effect is proportional to the mass of the intermediate object and the
discrepancy between the thus measured mass and the observed lumi-
nosity is an indication for ’missing’ mass, i.e. dark matter.

• Fluctuations in the cosmic microwave background (CMB) spectrum
reveal a lot of information. Since baryonic and dark matter have dif-
ferent effects on density perturbations, the characteristics of the CMB
power spectrum (locations and intensity of the peaks) are another con-
firmation of the existence of dark matter.

• The large-scale structure of the universe points in the direction of a
hierarchical (bottom-up) structure growth. Without dark matter it
would have been impossible to create structures that are as large as we
observe today.

These indirect observations of dark matter point towards the existence
of dark matter, structured in almost spherical, smooth, virialized haloes.
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However it remains difficult to deduce the density distribution. Dark matter
density estimates in the solar neighbourhood are given in [26]. We chose to
model the dark matter using Binney’s logarithmic potential, which will be
discussed in more detail in the next chapter. The parameter q in this model
allows for both oblate (q < 1) and prolate (q > 1) halo shapes. The concept
of a prolate halo may be surprising, but this seems to be the case for the
Andromeda galaxy [13]. Recent work on the shape of the dark matter halo
can be found in [9] and [10].

1.4 Asymmetric drift and thermalisation tempera-
ture in galactic gas flows

Asymmetric drift (AD) is the phenomenon where stars rotate in a galaxy at
a mean velocity vϕ which is smaller than the circular velocity vcirc at this
radius. Here we will look at the cause of this phenomenon, its consequences,
and how its observation can improve galaxy density models.

The circular velocity is the velocity a test particle would have in a circular
orbit in the equatorial plane at radius R. Since in this case the centrifugal
force

F = −v
2
circ(R)

R
(1.12)

should be exactly balanced by the attractive force induced by the potential,

F = −∇Φ(R) = −dΦ

dR
, (1.13)

we find that
v2circ = R

dΦ

dR
. (1.14)

We recognize this term, up to a factor, in the right-hand side of the radial
Jeans equation (1.7), so by multiplying this equation by R/ρ∗ and evaluating
at z = 0, we obtain

v2circ − vϕ2 = σ2ϕ − σ2 −
R

ρ∗

∂ρ∗σ
2

∂R
. (1.15)

Hence in the case of an isotropic rotator this further simplifies to

v2circ − vϕ2 = −R
ρ∗

∂ρ∗σ
2

∂R
. (1.16)

Since the quantity v2circ− vϕ2 is the one that most easily follows from the
previous discussion, we adopt it as our definition for the asymmetric drift:

AD = v2circ − vϕ2. (1.17)
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Notice that in [4] the authors use the definition va = vcirc− vϕ. The connec-
tion between both definitions is obvious:

AD = va(vcirc + vϕ) = va(2vcirc − va) ' 2vavcirc, (1.18)

where the last approximation holds if va is considerably smaller than vcirc.
The asymmetric drift is an important phenomenon, for several reasons.

As there are only very few analytically solved models, most galaxy models
rely on numerical simulations. A better understanding of the importance and
the effect of the asymmetric drift could considerably enhance the accuracy
of these simulations.

The asymmetric drift can also provide a clue to the shape of the dark mat-
ter halo of a galaxy. From cosmological N-body simulations [7], [1] we know
that these haloes are not spherical. However, they are not expected to be
disk-shaped, either. A better knowledge of the halo shape would obviously
improve the quality of both analytical models and numerical simulations
[26]. For elliptical galaxies the halo shape can be probed using the effect of
the dark matter on X-ray emission, but this is not possible in disk galax-
ies. Hence properties such as the asymmetric drift and the vertical velocity
dispersion profile could tell us something on the halo shape.

Finally the asymmetric drift also has an important consequence on radial
flows in a disk galaxy. Gas clouds which have an angular momentum corre-
sponding to vcirc, get mixed because of the stars which, at the same radius,
have a smaller velocity vϕ. This causes the gas to obtain a smaller velocity
than the one required for the radius it moves on, and as a result the gas falls
inward, creating radial flows.

We will calculate the importance of the asymmetric drift in Chapter 5.
Another possible application of this kind of results is in determining the

flattening of the dark matter halo. This quantity is not easily measured, but
as we will see several observable quantities in our model depend significantly
on the flattening parameter. Hence measuring these quantities could give
more insight in the degree of flattening of the dark matter halo.

Another application, not treated in this work, lies in the possibility to
calculate in a simple way the thermalisation of stellar winds interacting with
the gas flows in early-type galaxies (see, e.g. [5], [6], [22], [24], [21], [20]).
We can define, as in [25], the equivalent temperature of stellar motions as

T∗ = Tσ + γthTrot, (1.19)

where
Tσ =

µmp

3kBM∗

∫
ρ∗Tr(σ2)dV (1.20)

is the contribution of random stellar motions (here kB is Boltzmann’s con-
stant, µ is the mean molecular weight at solar abundance and mp is the
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Figure 1.1: Temperature (top panels) and heating over cooling time ratio
(bottom panels) for a velocity dispersion supported E7 galaxy at different
ages (from left to right: 2.4 Gyr, 8 Gyr, 13 Gyr).

proton mass), γth is a parameter that can be estimated by using the results
of numerical simulations, and

Trot =
µmp

3kBM∗

∫
ρ∗vϕ

2dV (1.21)

is the contribution of stellar streaming motions.
Our models are important in this respect because it has been shown

that gas flows in galaxies of identical structure but different kinematical
support are characterized by different ISM velocity fields, with important
consequences both for their X-ray emission and for accretion phenomena on
their central black holes. This can be seen in Figures 1.1 and 1.2, taken
from [21]. In both figures the top panels show the temperature, the bottom
panels show the heating over cooling time ratio, at different ages (from left to
right: 2.4 Gyr, 8 Gyr, 13 Gyr). In both cases an E7 galaxy was simulated,
both simulations have an identical mass profile. However, the galaxy in
Figure 1.1 is velocity dispersion supported (hence k = 0 in eq. (1.8) in the
Satoh approach) so the flattening is caused by σϕ. The galaxy in Figure 1.2
on the other hand is an isotropic rotator, so k = 1, and the flattening is due
to the rotation.

The great flexibility of our models in principle allows for a fast exploration
of parameter space.
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Figure 1.2: Temperature (top panels) and heating over cooling time ratio
(bottom panels) for an isotropic rotator E7 galaxy at different ages (from
left to right: 2.4 Gyr, 8 Gyr, 13 Gyr).
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Chapter 2

The models

2.1 The Miyamoto-Nagai model

The Miyamoto-Nagai potential-density pair is

Φ(R, z) = − GM∗√
R2 + (a+ ζ)2

, (2.1)

ρ(R, z) =
M∗b

2

4π

aR2 + (a+ 3ζ)(a+ ζ)2

ζ3[R2 + (a+ ζ)2]5/2
, (2.2)

where ζ =
√
z2 + b2 and (R,ϕ, z) are the standard cylindrical coordinates.

The absence of ϕ in the formulae indicates that it is an axisymmetric model.
The ratio s = a/b is the flattening parameter. For a = 0, so s = 0, the model
reduces to the Plummer sphere [23]. For b = 0, so s → ∞, we obtain the
Kuzmin razor-thin disk [16]. Positive finite values of s give oblate models.
It can easily be checked that the total mass is indeed given by M∗.

Figures 2.1-2.3 show how the density varies as a function of z and R, for
certain values of the flattening parameter s. It is clear that with increasing
s one goes from a spherical model at s = 0 to an ever more flattened model.
As s tends to infinity (so b tends to zero while a is positive), we obtain a
superficial density.

Direct integration of the first Jeans equation (1.6) leads to

ρ∗σ
2 =

M2
∗Gb

2

8π

(a+ ζ)2

ζ2[R2 + (a+ ζ)2]3
(2.3)

and hence

σ2 =
M∗G

2

ζ(a+ ζ)2

[aR2 + (a+ 3ζ)(a+ ζ)2][R2 + (a+ ζ)2]1/2
. (2.4)

At this point the solution of the second Jeans equation (1.7) is trivial: there

17
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Figure 2.1: Isodensity contours for the Miyamoto-Nagai model for s = 0
(Plummer sphere).
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Figure 2.2: Isodensity contours for the Miyamoto-Nagai model for s = 1.
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Figure 2.3: Isodensity contours for the Miyamoto-Nagai model for s = 10.



2.1. THE MIYAMOTO-NAGAI MODEL 21

is no need for further integration. Solving for v2ϕ we obtain

v2ϕ =
M∗G

2

ζ(a+ ζ)2 + 2aR2

[aR2 + (a+ 3ζ)(a+ ζ)2][R2 + (a+ ζ)2]1/2
. (2.5)

We refer to Figures 3.1-3.3 where the black curve gives σ∗ for the single
component Miyamoto-Nagai model in the equatorial plane, for some different
values of the parameters a and b. Notice that as the flattening parameter
s = a/b increases, σ∗ decreases, especially in the central region.

As mentioned, if a tends to zero in the Miyamoto-Nagai model, we obtain
the Plummer sphere. It is easily checked that putting a = 0 in the solution
for the Miyamoto-Nagai model gives the result obtained in eq. (1.5) when
we discussed systems with spherical symmetry.

Another option is to look at the two-component Miyamoto-Nagai model.
This model was first considered in [18] as a model for our own galaxy, in an
attempt to model the galactic rotation curve which has two peaks. A first
analytical approach was presented in [6], where one component describes the
stellar component and the other component describes a dark matter halo. In
order to obtain some analytical results, it is necessary to choose two models
with the same b parameter, but the a and M parameters can vary between
the two components. Even with this simplifying condition it is not possible to
solve the Jeans equations in only elementary functions, but some quantities
such as the kinetic energy and the interaction energy betweens stars and
halo can be exactly calculated. The authors calculate the virial interaction
energy, given by W = −

∫
ρ∗〈x,∇Φ〉d3x = W∗∗+W∗h. They find that, with

s = a/b,

W∗∗ =
GM2

∗
8b

[
π

2s2
− 1− 2s2

s(1− s2)
− F (s)

s2(1− s2)

]
, (2.6)

where

F (s) =


arccos(s)/

√
1− s2 if 0 ≤ s < 1;

1 if s = 1;

arccosh(s)/
√
s2 − 1 if s > 1

(2.7)

and so

W∗∗(0) = −3πM∗
32

. (2.8)

Near s = 1 we have that F (s) = 1 + (1− s)/3 +O(1− s)2 so that

W∗∗(1) = −
(

1

3
− π

16

)
M∗. (2.9)
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As for the halo contribution, they find that, with c = (s+ sh)/2,

8b(1− c2)2

GM∗Mh
W∗h =

π

2

(
c− 1

c

)2

−
(

2c+
1

c

)
+

(
4− 1

c2

)
F (c)

+ s

[(
2c2 − 1 +

2

c2

)
− π (1− c2)2

c3
+

(
2

c3
− 5

c

)
F (c)

]
(2.10)

with
W∗h =

GM∗Mh

96b
(9π + 32s) (2.11)

if c = 0 and

W∗h =
GM∗Mh

240b
[(15π − 32) + s(112− 30π)] (2.12)

if c = 1.

2.2 Binney logarithmic model

The Binney potential-density pair is

Φ(R, z) =
v2h
2

ln

(
R2

h +R2 +
z2

q2

)
, (2.13)

ρ(R, z) =
v2h

4πGq2
(2q2 + 1)R2

h +R2 + (2− q−2)z2

(R2
h +R2 + z2q−2)2

. (2.14)

Figures 2.4-2.7 show the isodensity contours for some different choices
for the parameters q and Rh. The parameter q is the axis ratio of the
equipotential surfaces, which are ellipsoids. In this sense it is comparable to
the parameter s in the Miyamoto-Nagai model: a smaller value for q results
in a flatter distribution. Notice that q should be at least 1/

√
2 ' 0.707, else

the density is no longer everywhere positive because of the term 2 − q−2.
The value q = 1 gives a model with spherical symmetry. The parameter Rh

mainly has an influence on the central behaviour: the density at the origin
is a decreasing function of Rh. If Rh = 0, the central density diverges. At
large distances, e.g. R >> Rh, the influence of Rh is small.

The circular speed at radius R in the equatorial plane is

vc(R) =
vhR√
R2

h +R2
. (2.15)

It should be noted that this is an unphysical model: the mass outside
any equipotential surface is infinite. Moreover, if Rh = 0 then also the mass
at the origin diverges. Despite this drawback, the model is very often used
because it has a very easy analytical form.
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The choice of parameters Rh = 0 and q = 1 gives the well-known SIS
(Singular Isothermal Sphere) model. In this case the density simplifies to

ρ(r) =
v2h

4πGr2
. (2.16)

Other than having a singularity at the origin (since Rh = 0) and having
spherical symmetry (since q = 1), this model has the interesting property
that it is isothermal: consider an isothermal gas at (constant) temperature T ,
composed of particles with mass m. This has equation of state p = kTρ/m
where k is Boltzmann’s constant. If this gas is in a state of hydrodynami-
cal equilibrium, then balancing the pressure gradient with the gravitational
force, we obtain

− GM(r)

r2
ρ =

kT

m

dρ

dr
, (2.17)

where

M(r) =

∫
V (r)

ρdV =
v2hr

G
(2.18)

is the mass within a sphere with radius r (the integration is trivial). Solving
the differential equation by separating the variables ρ and r, we obtain

−
v2hm

kT
ln r = ln ρ+ C, (2.19)

where C is an integration constant. Substitution of ρ as a function of r leads
to (

2−
v2hm

kT

)
ln r = ln

(
v2h

4πG

)
+ C. (2.20)

Since the right-hand side is independent of r, the coefficient of ln r should
be zero, hence

v2h =
2kT

m
. (2.21)

This explains the ’isothermal’ in the name of this model, and it gives a
further interpretation for the constant vh.
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Figure 2.4: Isodensity contours for the Binney logarithmic model for q =
0.71, Rh = 0.
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Figure 2.5: Isodensity contours for the Binney logarithmic model for q =
0.71, Rh = 1.
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Figure 2.6: Isodensity contours for the Binney logarithmic model for q =
0.71, Rh = 2.
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Figure 2.7: Isodensity contours for the Binney logarithmic model for q = 1,
Rh = 0 (SIS model).
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Chapter 3

The solution of the Jeans
equations

3.1 Solution of the vertical Jeans equation

3.1.1 The general case

We consider the model consisting of a baryonic component given by the
Miyamoto-Nagai model and a dark matter component given by Binney’s
logarithmic potential, so the total potential is given by

Φt = Φ∗ + Φh, (3.1)

where Φ∗ is given by eq. (2.1) and Φh is given by eq. (2.13).
The special cases R = 0 (z axis), A = 0 (critical cylinder) and s = 0

(spherical stellar density) are treated in Section 3.1.2. Note that all these
special cases can be obtained as a limiting case of the general solution, but
for the sake of simplicity we give the solution in these cases explicitly.

The contribution of the halo to the vertical and radial velocity dispersion
is given by

ρ∗σ
2
∗h =

∫ ∞
z

ρ∗
∂Φh

∂z′
dz′ = v2h

∫ ∞
z

ρ∗z
′ dz′

A+ 1 + z′2
=
M∗v

2
h

4πb3
I, (3.2)

where
A ≡ q2(R2 +R2

h)− 1 (3.3)

and where the last identity is obtained by normalization of all the lenghts
to b (in order to avoid cumbersome notation, from now on also R, Rh and z
must be intended normalized to b). Note that, given q and Rh, the minimum
value for A is q2R2

h − 1, a value reached on the z axis. The integral (3.2) is
quite formidable, especially considering the fact that ρ∗ contains two nested
irrationalities. However, in the following we show that this integral can in
fact be computed in terms of elementary functions.

29
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Splitting the integral

We begin by removing the inner irrationality with the substitution ζ =√
1 + z2, so that

I ≡
∫ ∞
ζ

sR2 + (s+ 3ζ ′)(s+ ζ ′)2

ζ ′2[R2 + (s+ ζ ′)2]5/2(A+ ζ ′2)
dζ ′. (3.4)

Note that ζ ′ ≥ 1, so that A+ζ ′2 ≥ 0 everywhere, where equality holds at the
origin when Rh = 0 (and so in particular for the SIS). In order to proceed
with the integration, we now also remove the second irrationality with the
change of variable sh x = (s + ζ)/R. Notice that this substitution is not
valid if R = 0, however in this case the integrand in eq. (3.4) is a rational
function of ζ ′ and its integration is elementary (see Section 3.1.2). If R 6= 0
we obtain

I =
1

R2

∫ ∞
arcsh λ

[
s+ (3R sh x− 2s)sh2x

]
dx

(R sh x− s)2[A+ (R sh x− s)2](1 + sh2x)2
, (3.5)

where arcsh x = ln
(
x+
√

1 + x2
)
and

λ ≡ s+ ζ

R
=
s+
√

1 + z2

R
. (3.6)

A partial fraction decomposition [14] in terms of sh x of the integrand in
eq. (3.5) gives

I =
1

R2

∫ ∞
arcsh λ

α0 + α1sh x+ α2sh2x+ α3sh3x
(1 + sh2x)2

dx

+
1

R2

∫ ∞
arcsh λ

β0 + β1sh x
(Rsh x− s)2

dx

+
1

R2

∫ ∞
arcsh λ

γ0 + γ1sh x
A+ (Rsh x− s)2

dx

=
Iα + Iβ + Iγ

R2
, (3.7)

where λ is defined in eq. (3.6) and the meaning of Iα, Iβ and Iγ is obvious.
Notice however that if A = 0 (which is the case for at most one R value,

for the SIS model it happens at R = 1), two of the denominator factors in eq.
(3.5) coincide and a different partial fraction decomposition is needed. In
the case s = 0 the integrand in eq. (3.4) simplifies. One could use the same
approach, with a now simplified partial fraction decomposition, however a
different substitution is easier. Both these special cases and the previously
excluded case R = 0 will be treated in Section 3.1.2. Now we focus on the
evaluation in the case R 6= 0, A 6= 0, s 6= 0.
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The integral Iα

The first integral in eq. (3.7) is of trivial evaluation and the result is

Iα =
2α0 + α2

3
+

α3√
1 + λ2

− α0λ

(1 + λ2)3/2

− α3 − α1

3(1 + λ2)3/2
− (α2 + 2α0)λ

3

3(1 + λ2)3/2
,

(3.8)

where the α coefficients are given by

α0αd
s

=− 17R8 − 2R6(11s2 − 12A) +R4(8s4 + 19s2A− 9A2)

+ 2R2(s2 +A)(7s4 +A2) + s2(s2 +A)3,
α1αd
R

=− 6R8 +R6(14s2 + 15A) + 2R4(25s4 − 4s2A− 6A2)

+R2(34s6 + 3s4A+ 4s2A2 + 3A3) + 2s2(2s6 + 5s4A+ 4s2A2 +A3),
α2αd
s

=− 8R8 +R6(2s2 + 3A) + 2R4(13s4 + 8s2A+ 3A2)

+R2(s2 +A)(14s4 + 9s2A−A2)− 2s2(s2 +A)3,
α3αd
R

=− 3R8 + 2R6(7s2 + 3A) +R4(32s4 + s2A− 3A2)

+ 2s2R2(5s4 −A2)− s2(5s2 +A)(s2 +A)2,

(3.9)

where
αd = (R2 + s2)2[(A+ s2 −R2)2 + 4R2s2]2. (3.10)

The integral Iβ

The β coefficients are given by

β0βd = R4s, β1βd = R3s2, (3.11)

where
βd = A(R2 + s2)2. (3.12)

Using the standard substitution y = th (x/2) we obtain

Iβ = −2β0
s2

∫ 1

µ

y2 − 2sy/R− 1

(y2 + 2Ry/s− 1)2
dy, (3.13)

where

µ ≡ tanh

(
arcsh λ

2

)
=

√
1 +

1

λ2
− 1

λ
. (3.14)

It can be easily proved that the two real zeros of the denominator lie out-
side the integration domain. The standard partial fraction decomposition
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technique gives elementary rational integrals and after some simplification
we find that the explicit expression is given by

Iβ =
β0
R

(√
1 + λ2

ζ
− 1

R

)
. (3.15)

The integral Iγ

The third integral is the most complicated one, due to the presence of the
parameter A in the integrand. The partial fraction decomposition coefficients
in eq. (3.7) for R 6= 0, s 6= 0 and A 6= 0 are given by

γ0γd
R2s

=−R6 − 2R4(s2 − 3A)−R2(s4 − 18s2A− 3A2)− 8A(s2 +A)2,

γ1γd
R3

=−R4(s2 − 3A)− 2R2(s4 + 8s2A+ 3A2)− (s2 − 3A)(s2 +A)2,

(3.16)

with
γd = A[(A+ s2 −R2)2 + 4R2s2]2. (3.17)

At variance with the integrals Iα and Iβ we now have to distinguish
the integration procedure as a function of the sign of A. Inspection of eq.
(3.7) suggests that an easy factorization of the denominator of Iγ could be
obtained in the case A < 0. However, as the same procedure cannot be
applied to the case A > 0 without using complex numbers, we prefer to
follow another approach that maximizes the similarity of the treatment in
the two cases. We cannot exclude that other approaches exist, leading to an
even more direct integration. In the following we describe the approach we
deem optimal after several attempts.

The substitution y = ex gives

Iγ =
2γ1
R2

∫ ∞
ν

(y2 +Hy − 1) dy

∆(y)
, (3.18)

where

∆(y) = y4 − 4s

R
y3 +

(
4A

R2
+

4s2

R2
− 2

)
y2 +

4s

R
y + 1, (3.19)

with
ν ≡ earcsh λ = λ+

√
1 + λ2 (3.20)

and
H = 2

γ0
γ1
. (3.21)

In principle, we could use the antisymmetry of ∆(y)/y2 (after noticing that
y = 0 is not a zero) to factorize it: it is readily seen that if y1 is a zero of ∆,
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then so is −1/y1. This implies that ∆(y)/y2 can be written as a quadratic
polynomial in t = y− 1/y, from which the factorization is immediate. How-
ever, if A > 0 the two roots of this quadratic polynomial in t are complex
conjugates.

In practice this computation is not needed since any quartic polynomial
with real coefficients can be factorized into two quadratic polynomials with
real coefficients. We found it useful, without loss of generality, to adopt the
factorization

∆(y) =
[
(y −∆+)2 + δ+

] [
(y −∆−)2 + δ−

]
. (3.22)

Expansion of eq. (3.22) and comparison with eq. (3.19) shows that

∆± =
s

R
±
√
s2

R2
+ δ, δ± =

1− δ
δ

∆2
±, (3.23)

where

δ =

√
(A+ s2 −R2)2 + 4R2s2 − (A+ s2 −R2)

2R2
. (3.24)

Notice that we always have δ > 0,∆+ > 0,∆− < 0. If A > 0, then 0 < δ < 1
and hence δ± > 0, making the two quadratic polynomials in eq. (3.22)
irreducible over the reals. If A < 0, then δ > 1 and hence δ± < 0, compatible
with the fact that in this case ∆ can be factorized into four linear factors
over the reals.

Now we can proceed in the usual way, by a partial fraction decomposition.
The coefficients in

y2 +Hy − 1

∆(y)
=

η+y + θ+
(y −∆+)2 + δ+

+
η−y + θ−

(y −∆−)2 + δ−
(3.25)

are given, after some simplification, by

η±σd =± 2δ

(
2δ − Hs

R

)
,

θ±σd =2∆±

[ s
R

(∆+ −∆−)± δ∆±(H + 2∆∓)
]
,

(3.26)

where

σd = 4(∆+ −∆−)

(
δ2 +

s2

R2

)
. (3.27)

Note that a few simple algebraic relations link the constants above. They
can be used to simplify the final expression of Iγ :

∆2
+δ− = δ+∆2

− ,
η+∆+ + θ+

∆+
=
η−∆− + θ−

∆−
. (3.28)
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Doing so, we finally obtain1

Iγ =
γ1η+
R2

ln
(ν −∆−)2 + δ−
(ν −∆+)2 + δ+

+
2γ1
R2

θ+ + η+∆+√
|δ+|

×
arctan

√
δ+(ν −∆−)−

√
δ−(ν −∆+)

(ν −∆+)(ν −∆−) +
√
δ+δ−

if A > 0;

arctanh
√
|δ+|(ν −∆−)−

√
|δ−|(ν −∆+)

(ν −∆+)(ν −∆−)−
√
δ+δ−

if A < 0.

(3.29)

We stress again that these formulae cannot be used in their present form
to describe the velocity dispersion on the z axis (R = 0), on the critical
cylinder (A = 0), or in the case of a spherical stellar density (s = 0). All
these cases are treated in Section 3.1.2.

Plots of σ∗ in the equatorial plane are shown in Figures 3.1-3.3. Upon
comparison of these plots, we can see the role each parameter plays. Com-
paring the orange and red curves, we see that an increase in q leads to a
decrease in σ∗. This effect is important mainly at larger R and the differ-
ence diminishes as the Miyamoto-Nagai model gets flatter: the green and
blue curves are closer together. In general both the halo contribution and
the stellar contribution are larger if s is smaller. The influence of Rh is
mainly visible in the central region. The smaller Rh, the larger the halo
contribution near the center.

Two-dimensional colour-coded maps of σ∗ for various parameter values
are given in Figures 3.4-3.7. Notice the spherical symmetry in Figure 3.4.
The difference between Figures 3.6 and 3.7 is rather small, one could say that
a higher q leads to a lower σ∗ far above the equatorial plane. The effect of s
is clear: for a less flattened Miyamoto-Nagai model (e.g. s = 0), the velocity
dispersion σ∗ is quite high also away from the equatorial plane (beware that
there is a considerable difference in the colour coding between the maps with
s = 0 and those with s = 10).

1The addition formulae used to obtain (3.29) are

arctanh u− arctanh v = arctanh
u− v

1− uv
,

arctan u− arctan v = arctan
u− v

1 + uv
,

where for |x| < 1, arctanh x = 1
2
ln 1+x

1−x .
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Figure 3.1: σ∗ in the equatorial plane (z = 0) for our model with b = 2 kpc,
M∗ = 1011M�, vh = 200 km/s, Rh = 0.5b and varying values of s and q.
The stellar contribution is given by the black curves.
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Figure 3.2: σ∗ in the equatorial plane (z = 0) for our model with b = 2 kpc,
M∗ = 1011M�, vh = 200 km/s, Rh = 2b and varying values of s and q. The
stellar contribution is given by the black curves.
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Figure 3.3: σ∗ in the equatorial plane (z = 0) for our model with b = 2 kpc,
M∗ = 1011M�, vh = 200 km/s, Rh = 10b and varying values of s and q. The
stellar contribution is given by the black curves.
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Figure 3.4: σ∗ in the full two-dimensional meridional plane for our model
with b = 2 kpc, M∗ = 1011M�, vh = 200 km/s, Rh = 2b, s = 0, q = 1. Also
shown (purple lines) are the isodensity lines for the stellar component.



3.1. SOLUTION OF THE VERTICAL JEANS EQUATION 39

0 20 40 60 80

0

20

40

60

80

0 20 40 60 80
R [kpc]

0

20

40

60

80

z 
[k

p
c]

0 20 40 60 80

0

20

40

60

80

93 130 166 202

σz [km s−1]

Figure 3.5: σ∗ in the full two-dimensional meridional plane for our model
with b = 2 kpc, M∗ = 1011M�, vh = 200 km/s, Rh = 2b, s = 0, q = 0.7.
Also shown (purple lines) are the isodensity lines for the stellar component.
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Figure 3.6: σ∗ in the full two-dimensional meridional plane for our model
with b = 2 kpc, M∗ = 1011M�, vh = 200 km/s, Rh = 2b, s = 10, q = 1.
Also shown (purple lines) are the isodensity lines for the stellar component.
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Figure 3.7: σ∗ in the full two-dimensional meridional plane for our model
with b = 2 kpc, M∗ = 1011M�, vh = 200 km/s, Rh = 2b, s = 10, q = 0.7.
Also shown (purple lines) are the isodensity lines for the stellar component.



42 CHAPTER 3. THE SOLUTION OF THE JEANS EQUATIONS

3.1.2 Special cases

In the following we give the explicit solution in the special cases R = 0,
A = 0, s = 0. If two or all three of these parameters vanish the following
formulae should be used:

• if A = R = 0 then eq. (3.31) should be used;

• if A = s = 0 then eq. (3.40) should be used;

• if R = s = 0 then eq. (3.40) should be used;

• if A = R = s = 0 then eq. (3.39) should be used.

Velocity dispersion on the z axis

For R = 0, the integral in eq. (3.4) can be easily solved by the standard
partial fraction decomposition technique. We obtain

I =
1

As2ζ
+

4s

(A+ s2)3
ln

(ζ + s)2

ζ2 +A
− A+ 5s2

s2(A+ s2)2(ζ + s)
− 1

s(A+ s2)(ζ + s)2

+
3A2 − 6As2 − s4

A
√
|A|(A+ s2)3


arctan

√
A

ζ
if A > 0;

arctanh
√
|A|
ζ

if A < 0.

(3.30)

Note that, by definition, A ≥ −1 and ζ ≥ 1 so that there is no problem
with the argument of the arctanh function. Also note that the cases A = 0
and A = −s2 should be treated separately: if A = 0 then

I =
8

s5
ln
ζ + s

ζ
+
s4 + 2s3ζ − 8s2ζ2 − 36sζ3 − 24ζ4

3s4ζ3(ζ + s)2
. (3.31)

If A = −s2 then

I =
1

4s5
ln
ζ + s

ζ − s
− 6s3 + 10s2ζ + 9sζ2 + 3ζ3

6s4ζ(ζ + s)3
. (3.32)

Note that in the latter case ζ − s cannot be negative since ζ ≥ 1 and A =
−s2 ≥ −1, hence s ≤ 1.

This gives the solution on the z axis. Notice that this solution is always
finite, except in the origin (z = 0, hence ζ = 1) in those cases where A = −1,
which implies that Rh = 0.
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Velocity dispersion on the critical cylinder

On the critical cylinder R2 = R2
c ≡ q−2−R2

h the parameter A vanishes, and
two denominator factors in eq. (3.5) coincide. Note that, if qRh > 1, there
is no critical cylinder since A > 0 for every R. If qRh < 1 then Rc > 0, in
particular Rc = 1 for the SIS model. If qRh = 1 then the critical cylinder
coincides with the z axis and the solution for I is given by eq. (3.31).

The partial fraction decomposition in eq. (3.7) is no longer valid, instead
we have that

I =
Iα + Ic
R2
c

, (3.33)

where Iα is as before and Ic can, without loss of generality, be written as

Ic =

∫ ∞
arcsh λ

4∑
i=1

θi
(Rcsh x− s)i

dx, (3.34)

where the coefficients θi can be found by the usual partial fraction decompo-
sition technique. The substitution y = ex transforms the integrals in rational
ones: ∫

dx

Rcsh x− s
=

2

Rc

∫
dy

y2 − 2 s
Rc
y − 1

= − 2√
R2
c + s2

arctanh
√
R2
c + s2

Rcy − s
.

(3.35)

Notice that from eq. (3.34), no singularities are contained in the integration
domain. The other integrals are most easily obtained by differentiating with
respect to s. The limits of integration for y are νc as in eq. (3.20) evaluated
at R = Rc, and ∞. The final result for Ic obtained in this way can be
simplified to

Ic =
2R2

c(3R
4
c − 24R2

cs
2 + 8s4)

(R2
c + s2)9/2

arctanh
√
R2
c + s2

Rcνc − s

+
2

3

R2
cs

(R2
c + s2)4

P5(νc, Rc)

(Rcν2c − 2sνc −Rc)3
,

(3.36)

where

P5(ν,R) =3R2s(4R2 − 3s2)ν5 +R(15R4 − 54R2s2 + 36s4)ν4

+ s(−78R4 + 100R2s2 − 32s4)ν3 + 6R(−4R4 + 21R2s2 − 10s4)ν2

+ 3R2s(22R2 − 13s2)ν +R3(13R2 − 8s2).

(3.37)

A careful treatment shows that in the special case where the critical cylinder
coincides with the z axis (i.e. qRh = 1 and A = R = 0), the solution there
obtained by eq. (3.33) is indeed the same as the one obtained in eq. (3.31).
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Spherical stellar density

The integral (3.4) now simplifies to

I = 3

∫ ∞
ζ

ζ ′

(R2 + ζ ′2)5/2(A+ ζ ′2)
dζ ′. (3.38)

The substitution u =
√
ζ2 +R2 gives a rational integrand. We have to

discern three cases: if A = R2 then

I =
3

5(R2 + ζ2)5/2
. (3.39)

If A 6= R2 then

I =
1

(A−R2)(R2 + ζ2)3/2
− 3

(A−R2)2
√
R2 + ζ2

+
3

|A−R2|5/2


arctan

√
A−R2

R2 + ζ2
if A > R2;

arctanh

√
R2 −A
R2 + ζ2

if A < R2.

(3.40)

3.1.3 An alternative approach

Before using our results for some applications to astrophysical problems, we
notice that the integrals that have been calculated so far could (at least for
R > 0) also be obtained by the Residue Theorem of Complex Analysis. After
the change of variable z = ex in eq. (3.5) we obtain a rational integrand in
z, which we call f0(z). The resulting integration to be performed is in the
range [ν,∞[ and it is trivial to prove that the denominator has no real zeros
in this range. The numerator of f0 has degree 11 and the denominator has
degree 16, so that the rational function amply satisfies Jordan’s Lemma,
see e.g. [30]. In order to use the Residue Theorem we have to modify the
integrand so that the contribution after one turn on the circle containing all
the poles sums up to be the desired integral. This was done by multiplication
of the integrand by ln(z − ν). The integration path in the complex plane is
qualitatively given in Figure 3.8. At this point the standard method gives

I =

∫ ∞
ν

f0(z)dz = −
∑

Res[f0(z − ν) ln(z − ν)]. (3.41)

The denominator of f0 is a polynomial of degree 16 in z with real co-
efficients, which is manifested in the fact that its zeros (hence the poles
of f0) are either real or they come in complex conjugate pairs. The func-
tion has both fixed and movable poles. First, there are two fixed quadru-
ple poles at z1,2 = ±i. We always have two movable double real poles
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Figure 3.8: The contour in the complex plane. The poles z1 to z8 are indi-
cated, the case A < 0 is given here.
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at z3,4 = (s ±
√
s2 +R2)/R. Finally we have four movable simple poles at

z5,6 = (u±
√
u2 +R2)/R and z7,8 = (v±

√
v2 +R2)/R2, where u = s+

√
−A

and v = s−
√
−A. These four poles are real inside the critical cylinder, out-

side the critical cylinder they come in two pairs of complex conjugate simple
poles. On the critical cylinder they merge with the other double real poles,
yielding two quadruple real poles.

We finally notice that despite the elegance of this method and the in-
teresting property that this integration can be performed, we decide not to
use this method because the number of poles, their multiplicity and their
complex nature does not reduce the amount of work needed to obtain the
final (real) results.

3.2 Solution of the second Jeans equation

3.2.1 The general case

In the previous section we gave the solution for the integral I, which solves
the first Jeans equation (1.6). For the second Jeans equation (1.7), no further
integration is needed: we only need the derivative of I with respect to R. For
R > 0 one can obtain an explicit expression for dI/dR. The easiest way to
do so is to consider eq. (3.5), perform the partial fraction decomposition on
the integrand and differentiate with respect to R. The integrals appearing
in this way are formally similar to the ones in the previous section and they
can be solved with the same techniques.

We differentiate eq. (3.5) with respect to R, taking into account that λ
depends on R. This gives

dI

dR
= −2I

R
+

s+ ζ

R2
√

1 + λ2
s+ (3Rλ− 2s)λ2

(Rλ− s)2[A+ (Rλ− s)2](1 + λ2)2
+
Îα + Îβ + Îγ

R2
,

(3.42)
where

Îα =

∫ ∞
arcsh λ

α̂0 + α̂1sh x+ α̂2sh2x+ α̂3sh3x
(1 + sh2x)2

dx, (3.43)

Îβ =

∫ ∞
arcsh λ

β̂0 + β̂1sh x+ β̂2sh2x
(Rsh x− s)3

dx, (3.44)

Îγ =

∫ ∞
arcsh λ

γ̂0 + γ̂1sh x+ γ̂2sh2x+ γ̂3sh3x
[A+ (Rsh x− s)2]2

dx (3.45)
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and the coefficients are given by

α̂i = α̇i

β̂0 = −sβ̇0
β̂1 = Rβ̇0 − sβ̇1 − 2β0

β̂2 = Rβ̇1 − 2β1

γ̂0 = γ̇0(A+ s2)− 2q2Rγ0

γ̂1 = −2Rsγ̇0 + γ̇1(A+ s2) + 2γ0s− 2q2Rγ1

γ̂2 = R2γ̇0 − 2Rsγ̇1 − 2Rγ0 + 2sγ1

γ̂3 = R2γ̇1 − 2Rγ1

where the dot denotes differentiation with respect to R. It is clear that Îα
is formally equal to Iα, hence its solution is

Îα =
2α̂0 + α̂2

3
+

α̂3√
1 + λ2

− α̂0λ

(1 + λ2)3/2
− α̂3 − α̂1

3(1 + λ2)3/2
− (α̂2 + 2α̂0)λ

3

3(1 + λ2)3/2
.

(3.46)
We compute Îβ by first performing the substitution y = tanh(x/2), this leads
to

Îβ =
2

s3

∫ 1

µ

β̂0y
4 − 2β̂1y

3 + (4β̂2 − 2β̂0)y
2 + 2β̂1y + β̂0

(y2 + 2R/sy − 1)3
dy. (3.47)

The quadratic polynomial in the denominator can be factorized as

y2 +
2R

s
y − 1 = (y − y+)(y − y−) (3.48)

with

y± = −R
s
±
√

1 +
R2

s2
. (3.49)

A partial fraction decomposition then reduces the problem to elementary
integrals of the form

∫ 1
µ (y − y±)−ndy with n = 1, 2, 3. This decomposition

requires the solution of a system of six equations in six variables, which is
easily done by standard methods, but we do not give the explicit solutions
for the partial fraction decomposition coefficients here since they are quite
lengthy.

For Îγ the substitution y = ex gives

Îγ =
2

R4

∫ ∞
ν

P (y)

∆2(y)
dy, (3.50)

where ∆(y) is the polynomial from eq. (3.19) and

P (y) = γ̂3y
6+2γ̂2y

5+(4γ̂1−3γ̂3)y
4+(8γ̂0−4γ̂2)y

3+(3γ̂3−4γ̂1)y
2+2γ̂2y−γ̂3.

(3.51)
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Using the factorisation from eq. (3.22) it is easy to find a partial fraction
decomposition of the rational function in the integrand of eq. (3.50), we
obtain

P (y)

∆2(y)
=

η
(1)
+ y + θ

(1)
+

(y −∆+)2 + δ+
+

η
(1)
− y + θ

(1)
−

(y −∆−)2 + δ−

+
η
(2)
+ y + θ

(2)
+

[(y −∆+)2 + δ+]2
+

η
(2)
− y + θ

(2)
−

[(y −∆−)2 + δ−]2
.

(3.52)

We do not give the explicit expressions for the numerator coefficients here,
since they are too long. They are however easily obtained in the standard
way, by multiplying the right-hand side of eq. (3.52) by ∆2(y), thus obtaining
P (y), and comparing the coefficients with the ones in eq. (3.51). The solution
of this linear system of eight equations in eight variables gives the values of
the coefficients. The final expression for Îγ is then easily obtained since only
integrals of the following elementary forms remain:∫

y −∆±
(y −∆±)2 + δ±

dy =
1

2
ln[(y −∆±)2 + δ±]

∫
1

(y −∆±)2 + δ±
dy =

1√
|δ±|


arctan

y −∆±√
δ±

if A > 0

arctanh
y −∆±√
|δ±|

if A < 0∫
y −∆±

[(y −∆±)2 + δ±]2
dy =− 1

2[(y −∆±)2 + δ±]∫
1

[(y −∆±)2 + δ±]2
dy =

y −∆±
2δ±[(y −∆±)2 + δ±]

+
1

2δ±
√
|δ±|


arctan

y −∆±√
δ±

if A > 0

arctanh
y −∆±√
|δ±|

if A < 0.

(3.53)

Two-dimensional colour-coded maps of σϕ are given in Figures 3.9 and
3.10. Notice that for q = 1 we get quite high values of σϕ further above the
equatorial plane than for q = 0.7.

3.2.2 Special cases

We have to distinguish the same special cases as in the previous section,
since the obtained formulae do not apply anymore when sAR = 0.

On the z axis

Notice that by eq. (3.4) it is clear that I is an even function of R, hence
dI/dR = 0 at R = 0.
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Figure 3.9: σ∗,ϕ in the full two-dimensional meridional plane for our model
with b = 2 kpc, M∗ = 1011M�, vh = 200 km/s, Rh = 2b, s = 10, q = 1.
Also shown (purple lines) are the isodensity lines for the stellar component.
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Figure 3.10: σ∗,ϕ in the full two-dimensional meridional plane for our model
with b = 2 kpc, M∗ = 1011M�, vh = 200 km/s, Rh = 2b, s = 10, q = 0.7.
Also shown (purple lines) are the isodensity lines for the stellar component.
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On the critical cylinder

There are several ways to obtain dI/dR on the critical cylinder, i.e. for
A = 0. Unfortunately, they are all quite complicated. Of course one can
take the limit of the general solution for A → 0. In this limit the divergent
quantities in Îβ and Îγ cancel each other. Another approach is to differentiate
eq. (3.4) and to evaluate this at A = 0. This integral can then be solved in
the same way as we solved I in the general case, i.e. with the substitution
sh x = (s+ ζ)/R. This leads to

dI

dR
=

∫ ∞
arcsh λ

P5(sh x)

(Rsh x− s)6(1 + sh2x)3
dx, (3.54)

where P5 is a fifth degree polynomial. With an exponential or tanh(x/2)
substitution this transforms in a rational integral, but it is clear that the
calculations will be quite cumbersome. Note that obviously differentiating
the solution for A = 0 with respect to R (which would be considerably less
complicated) does not give the desired result, since A depends on R.

Spherical stellar density

If s = 0 then we again use eq. (3.38). Differentiating the integrand with
respect to R, we obtain

dI

dR
=− 15R

∫ ∞
ζ

ζ ′

(R2 + ζ ′2)7/2(A+ ζ ′2)
dζ ′

− 3q2R

∫ ∞
ζ

ζ ′

(R2 + ζ ′2)5/2(A+ ζ ′2)2
dζ ′.

(3.55)

Both integrals become rational after the substitution u =
√
ζ2 +R2 and

with the standard methods we obtain

dI

dR
= − 3(5 + 2q2)R

7(ζ2 +R2)7/2
(3.56)

if A = R2 and else

dI

dR
=

R(5− 2q2)

(A−R2)2(R2 + ζ2)3/2
− 3R(5− 4q2)

(A−R2)3
√
R2 + ζ2

− 3R

(A−R2)(R2 + ζ2)5/2

+
3q2R

√
R2 + ζ2

(A−R2)3(ζ2 +A)
+

15(1− q2)R
|A−R2|7/2


arctan

√
A−R2√
R2 + ζ2

if A > R2

−arctanh
√
R2 −A√
R2 + ζ2

if A < R2.

(3.57)
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Chapter 4

Preliminary analysis

The obtained formulae are analytical and simple, yet they are complicated
enough to not give an immediate feeling about the behaviour of the model
as a function of the parameters. For this reason, as is often done in similar
studies, asymptotic formulae are useful, due to their extremely simple al-
gebraic form. In addition, asymptotic formulae are also important because
they can be used as a check for the full solutions, by comparing numerical
results in the limit cases. Finally, we stress that the obtained formulae have
also been tested against the direct numerical solution of the Jeans equations
obtained with the numerical code in [24]. The relative errors on the velocity
dispersion in a typical region (the central 50 kpc) are of the order of mag-
nitude of 1 in 1000, which is a very satisfactory result. Figures 4.1 and 4.2
show the exact analytical solution for σ and the solution obtained by the
numerical code, respectively.

4.1 Influence of the parameters on the derived quan-
tities

Figures 3.1-3.3 show the influence of the various parameters Rh, s and q on
the value of σ∗ in the equatorial plane. It is clear that the behaviour in
the central regions is mostly determined by the values of Rh and s. Indeed,
if Rh is very small, the dark matter density near the origin is high, which
has a big influence on the velocity dispersion near the origin. The more the
baryonic matter is in a flat disk (i.e., the larger s), the lower the value of the
velocity dispersion everywhere. Also the influence of q is clear: an oblate
dark matter halo (q < 1) causes a larger velocity dispersion than a spherical
(q = 1) or a prolate (q > 1) halo.

53
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Figure 4.1: σz for the inner 50 kpc, based on the obtained (exact) analytical
solution with model parameters b = 2 kpc, M∗ = 1011M�, vh = 200 km/s,
Rh = 2b, q = 0.7, s = 1.
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Figure 4.2: σz for the inner 50 kpc, based on the numerical solution of the
Jeans equations with model parameters b = 2 kpc, M∗ = 1011M�, vh = 200
km/s, Rh = 2b, q = 0.7, s = 1.
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4.2 Asymptotics

We study, as an example, how the dark matter halo shape and density affect
the vertical velocity dispersion and the asymmetric drift of the model, which
are two quantities that can be observed. First we give the asymptotic be-
haviour of the velocity dispersion for the model. The asymptotic expansion of
all dynamical quantities of the self-gravitating Miyamoto-Nagai model with-
out halo is trivial and can be obtained directly from the exact expressions
given in Chapter 2.

The obtained formulae reported in the text are fully general and they can
be easily implemented in numerical codes and in computer algebra systems
to explore the behaviour of the model in all cases of interest. However they
are sufficiently cumbersome to avoid an immediate reading of their physical
contents. For this reason it is helpful to provide asymptotic expansions
at selected places in the model. In principle the asymptotic expansions
can be obtained by working directly on the obtained expressions, however
the asymptotic analysis can also be performed directly on the integral in
eq. (3.4). As usual with asymptotic expansions of integrals, some care is
needed. As we will see, at all these selected places the velocity dispersion
field is dominated at the leading order by the dark matter halo effects.

Recall that all squared velocities such as σ2 and v2h are normalized to
GM∗/b. We begin with the behaviour near the origin. Two cases must be
distinguished: Rh = 0 and Rh > 0. In fact, as shown with the aid of a simple
ellipsoidal model in Appendix B, in the case Rh = 0 it is expected that σ2∗
diverges. Indeed, if Rh = 0 then

σ2∗ = −v2h ln
√
z2 + q2R2 +

2v2h(s+ 1)4ϕ(s) + 1

2(s+ 1)(s+ 3)
+O(R, z), (4.1)

where

ϕ(s) =
(s4 − 6s2 − 3) ln 2 + 8s ln(s+ 1)− (s4 − 3s2 + 6s− 4)

(s2 − 1)3
(4.2)

and ϕ(1) = ln(2)/2− 7/12. Also v2ϕ has the same behaviour. If Rh > 0 then
I is finite at the origin (and hence so is σ2∗) and its value can be obtained by
substitution of z = 0 into eq. (3.30). As the resulting formulae are trivial to
obtain and not illuminating, we do not report them here.

The value of I along the z axis (R = 0) is given in Section 3.1.2 (as
described at the end of Section 3.1.1, the formulae obtained there are not
valid on the z axis). If we let z (and hence ζ) tend to infinity we obtain after
an asymptotic expansion

σ2∗ =
1

5
v2h +

(
4s

45
v2h +

1

6

)
z−1 +O(z−2) (4.3)

as z tends to infinity.
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Finally the treatment in the equatorial plane (z = 0) for R → ∞ is
considerably more complicated than the other two cases. The behaviour in
the equatorial plane is given to the first two leading terms, in order to show
explicitly the effect of the stellar density. However, this is by far the most
interesting application of our models, i.e. the possibility of using kinematic
properties in the equatorial plane to infer information about the dark matter
halo flattening. The following formula has been obtained both by expansion
of the integral and of the explicit formula, and was also verified numerically,
thus giving an independent check of the obtained formulae. If s > 0 (i.e. the
stellar density distribution is not spherical),

σ2∗ =

[
1

q2
+
ξ(q)

s

]
v2h
R2

+

[
(s+ 1)2

2s
+ v2hτ(q)

]
1

R3
+O(R−4), (4.4)

where

ξ(q) =
q2 − 4

(q2 − 1)2
+

3

|q2 − 1|5/2

{
arctan

√
q2 − 1 if q > 1

arctanh
√

1− q2 if q < 1
(4.5)

and ξ(1) = 3/5, and

τ(q) =
q4 − 3q2 + 17

(q2 − 1)3
− 1

q2

+
8q4 + 8q2 − 1

q3|q2 − 1|7/2


−arctanh

√
q2 − 1

q
if q > 1

arctan
√

1− q2
q

if q < 1

(4.6)

and τ(1) = −64/105. If s = 0 however this asymptotic behaviour changes
to

σ2∗ =
ξ(q)

3
v2h +

1

6R
+O(R−2). (4.7)

Also notice that the parameter choice q = 1 and s = 0 introduces spher-
ical symmetry to both the stellar and the dark matter component. Hence it
is not a surprise that in this case the asymptotic behaviour along the z axis
is the same as in the equatorial plane, both near the origin and at infinity.

4.3 Influence of a supermassive central black hole

Consider a black hole with potential

ΦBH = −GMBH

r
= − ε√

R2 + z2
(4.8)

where ε = MBH/M∗ and the same normalizations have been used.
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Then the circular velocity contribution is

v2circ(R) =
ε

R
, (4.9)

so that at R → ∞ it ends up in the first term different from v2h, next to a
term 1/R. Since ε ∼ 10−3 this contribution is very small. Near the origin
however, this contribution diverges evidently.

It seems to be impossible to solve the Jeans equations explicitly in the
general case. However it is possible to give an asymptotic expansion both
near the origin and at large distance, and to solve the Jeans equation (1.1)
in the spherical (a = s = 0) and isotropic (β = 0) case: we then get

σ∗,BH =
ε

3r

[
−8r(r2 + 1)5/2 + (r2 + 1)(8r4 + 12r2 + 3)

]
. (4.10)

The velocity dispersion component caused by the black hole near the
origin is given by

σ2∗,BH =
ε√

R2 + z2
+ εg(s) +O(R, z), (4.11)

where

g(s) = − 2s4 − 9s2 − 8

(s+ 3)(s− 1)3
− 15s

(s+ 3)(s− 1)3
√
|s2 − 1|

{
arctan

√
1−s2
s if s < 1;

arctanh
√
s2−1
s if s > 1

(4.12)
and g(1) = −16/7. The function g is increasing, with g(0) = −8/3 and
g(s) → −2 as s → ∞. This behaviour is interesting: for very small r
the contribution will be stronger than the one caused by the halo (in the
divergent Rh = 0 case). Since ε is very small, from a certain r on the halo
contribution will dominate. For typical values q = 1, Rh = 0, ε = 10−3,
vh = 1 the leading terms are equal at r = 10−4.

In the equatorial plane the velocity dispersion component caused by the
black hole depends on s: if s > 0 then

σ2∗,BH = ε

(
1 +

1

2s

)
1

R3
+O(R−5). (4.13)

If s = 0 then
σ2∗,BH =

ε

6R
+O(R−3). (4.14)

Hence in both cases the black hole only causes a contribution in the second
order term, and with a coefficient which contains the very small ε.

It is easily checked that the explicit solution for the velocity dispersion in
the spherical isotropic case, given above, is consistent with the asymptotic
expansions, both at the origin and at infinity.
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4.4 The virial quantities

Remarkably, in the SIS halo case it is trivial to prove that the halo contri-
bution in the virial interaction energy, defined by

W = −
∫
ρ∗〈x,∇Φt〉d3x = W∗∗ +W∗h, (4.15)

is given by
W∗h = −v2hM∗. (4.16)

In the Binney case such an easy result in general does not hold. In that case
we have that

W∗h = −v2h
∫
ρ∗

q2R2 + z2

q2R2 + z2 + q2R2
h

dV

= −v2hM∗ + v2hq
2R2

h

∫
ρ∗

q2R2 + z2 + q2R2
h

dV.

(4.17)

This implies that W∗h is a strictly increasing function of Rh. If Rh = 0 (so
also in the case of a non-spherical halo) then eq. (4.16) holds. If Rh > 0 it
seems impossible to solve the integral in eq. (4.17) with elementary functions,
even if it is possible the formulas will probably be so complicated that they
have no practical use.

4.5 A rule of thumb

After verification that all formulae are correct, we can come to these main
conclusions:

• There is the influence of the flattening of the baryonic matter on the
velocity dispersion: a more spherical distribution gives higher values
for σ.

• The role of the parameter Rh, which determines the dark matter den-
sity in the central regions, is important mainly in these central regions,
with increasing σ as Rh decreases.

• The halo flattening parameter q (the lower q, the flatter the dark matter
halo) is present in the leading term of the asymptotic expansion of σ
at large distance. This term is a decreasing function of q.

• As was to be expected, the influence of a central black hole is very
much limited to the central regions.
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Chapter 5

Three applications

As examples of applications of our new model, we present a few represen-
tative cases of the behaviour of the vertical velocity dispersion of stars near
the equatorial plane as a function of the dark matter halo flattening, the
behaviour of the asymmetric drift and an estimate for the velocity of the
radial flow.

5.1 The influence of the halo flattening parameter

From an observational point of view, the influence of the dark matter halo
flattening parameter q on the velocity dispersion, is perhaps the most in-
teresting one. The shape of the dark matter halo is the topic of ongoing
research, but since all the effects of the dark matter can only be observed in-
directly, by the consequences of its gravitational interaction, it is not easy to
establish what shape the halo has. Most observations point in the direction
of almost spherical haloes, but this is quite a rough estimate: some authors
find prolate or triaxial haloes [9], [10], [13], [26].

With these uncertainties in mind, it is interesting to see how the halo
flattening parameter q influences observable quantities. Looking back at
Figures 3.1-3.3 it is clear that σ in the equatorial plane is a decreasing func-
tion of q, where the slope of this function is stronger (i.e. the influence of q
is bigger) for more spherical galaxies (i.e. s is small).

Comparing Figures 3.6 and 3.7 we see that in a position high above the
equatorial plane and far from the center, for a flatter halo (i.e. q = 0.7) we
get higher values for σ than for q = 1. The same general trend applies to
σϕ, as can be seen by comparing Figures 3.9 and 3.10.

61



62 CHAPTER 5. THREE APPLICATIONS

5.2 The asymmetric drift

The circular velocity in the equatorial plane is

v2circ(R) = R
∂Φt

∂R
=

R2

[R2 + (s+ 1)2]3/2
+

v2hR
2

R2
h +R2

. (5.1)

For R→∞ we can expand this as

v2circ = v2h +
1

R
−
R2

hv
2
h

R2
− 3

2

(s+ 1)2

R3
+O

(
R−4

)
. (5.2)

Near the origin we notice that the asymptotic expansion strongly depends
on Rh. If Rh = 0 then

v2circ = v2h +
R2

(s+ 1)3
− 3

2

R4

(s+ 1)5
+O

(
R6
)
, (5.3)

but if Rh > 0 then

v2circ =

[
v2h
R2

h

+
1

(s+ 1)3

]
R2 −

[
v2h
R4

h

+
3

2(s+ 1)5

]
R4 +O

(
R6
)
. (5.4)

The asymmetric drift (AD, see [4]) is the phenomenon where there is a
difference between the circular velocity vcirc and the azimuthal velocity vϕ.
We have that

v2circ − vϕ2 = −R
ρ∗

∂ρ∗σ
2

∂R
, (5.5)

which holds in the case of an isotropic rotator (k = 1) and follows immedi-
ately from eqs. (1.7) and (1.9). We focus on the difference of the squared
velocities because it is of easiest evaluation in our case. Using the asymptotic
behaviour obtained before, we see that

v2circ − vϕ2 =
5v2h
R2

[
1

q2
+
ξ(q)

s

]
+

6

R3

[
(s+ 1)2

2s
+ v2hτ(q)

]
+O(R−4) (5.6)

if s > 0 and
v2circ − vϕ2 =

5

3
ξ(q)v2h +

1

R
+O(R−2) (5.7)

if s = 0 and so in particular AD ∼ v2h+1/R in the spherical case where s = 0
and q = 1. Notice that for fixed s, the leading order term of the expansion
is a decreasing function of q. Figures 5.1-5.6 show the AD and the AD as
a fraction of the circular velocity as functions of R in the equatorial plane.
For these graphs we took the definition of AD as difference of velocities:

AD = vcirc − vϕ, (5.8)
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Figure 5.1: The AD in the equatorial plane for our model with b = 2 kpc,
M∗ = 1011M�, vh = 200 km/s, Rh = 0.5b and different values of s and q.

so that dimensionally the AD is a velocity. Since for s = 0 the velocity
vϕ vanishes, we get that AD = vcirc and the graphs for this case have been
omitted. Figure 5.7 shows a map of the AD also outside the equatorial plane.
The circular velocity is given in Figures 5.8-5.10, notice that this quantity
does not depend on the halo flattening parameter q. The velocity vϕ in the
equatorial plane is given in Figures 5.11-5.13, two maps are given in Figures
5.14 and 5.15.

5.3 An estimate for the velocity of the radial flow

In the previous section we discussed the importance of the asymmetric drift
in our model. It is clear that radial flows will occur as a consequence of this
asymmetric drift. The mechanism at hand is the following: suppose there
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Figure 5.2: The AD in the equatorial plane for our model with b = 2 kpc,
M∗ = 1011M�, vh = 200 km/s, Rh = 2b and different values of s and q.
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Figure 5.3: The AD in the equatorial plane for our model with b = 2 kpc,
M∗ = 1011M�, vh = 200 km/s, Rh = 10b and different values of s and q.
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Figure 5.4: The AD/vcirc ratio in the equatorial plane for our model with
b = 2 kpc, M∗ = 1011M�, vh = 200 km/s, Rh = 0.5b and different values of
s and q.
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Figure 5.5: The AD/vcirc ratio in the equatorial plane for our model with
b = 2 kpc, M∗ = 1011M�, vh = 200 km/s, Rh = 2b and different values of s
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Figure 5.6: The AD/vcirc ratio in the equatorial plane for our model with
b = 2 kpc, M∗ = 1011M�, vh = 200 km/s, Rh = 10b and different values of
s and q.
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Figure 5.7: The AD in the full two-dimensional meridional plane for our
model with b = 2 kpc, M∗ = 1011M�, vh = 200 km/s, Rh = 2b, s = 10,
q = 0.7. Also shown (purple lines) are the isodensity lines for the stellar
component.
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Figure 5.8: vcirc in the equatorial plane for our model with b = 2 kpc,
M∗ = 1011M�, vh = 200 km/s, Rh = 0.5b and different values of s and q.



5.3. AN ESTIMATE FOR THE VELOCITY OF THE RADIAL FLOW71

0 20 40 60 80 100

0

100

200

300

400
Rh=2b

0 20 40 60 80 100
R [kpc]

0

100

200

300

400

v
c

[k
m

 s
1
]

s=0, q=1
s=0, q=0.7
s=10, q=1

s=10, q=0.7

Figure 5.9: vcirc in the equatorial plane for our model with b = 2 kpc,
M∗ = 1011M�, vh = 200 km/s, Rh = 2b and different values of s and q.
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Figure 5.10: vcirc in the equatorial plane for our model with b = 2 kpc,
M∗ = 1011M�, vh = 200 km/s, Rh = 10b and different values of s and q.
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Figure 5.11: vϕ in the equatorial plane for our model with b = 2 kpc,
M∗ = 1011M�, vh = 200 km/s, Rh = 0.5b and different values of s and q.
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Figure 5.12: vϕ in the equatorial plane for our model with b = 2 kpc,
M∗ = 1011M�, vh = 200 km/s, Rh = 2b and different values of s and q.
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Figure 5.13: vϕ in the equatorial plane for our model with b = 2 kpc,
M∗ = 1011M�, vh = 200 km/s, Rh = 10b and different values of s and q.
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Figure 5.14: vϕ in the full two-dimensional meridional plane for our model
with b = 2 kpc, M∗ = 1011M�, vh = 200 km/s, Rh = 2b, s = 10, q = 1.
Also shown (purple lines) are the isodensity lines for the stellar component.
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Figure 5.15: vϕ in the full two-dimensional meridional plane for our model
with b = 2 kpc, M∗ = 1011M�, vh = 200 km/s, Rh = 2b, s = 10, q = 0.7.
Also shown (purple lines) are the isodensity lines for the stellar component.
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is some cold gas at a distance between R and R + ∆(R) from the center of
the galaxy. For the sake of simplicity, we restrict ourselves to the equatorial
plane. This gas follows the galaxy rotation curve.

Then some other gas, coming from stellar feedback, is added into this
same region. This new gas has a lower velocity (because of the asymmetric
drift) and hence a lower angular momentum. The two components mix and
the resulting specific angular momentum will be a weighted average of both
initial specific angular momenta.

The result will be that the mixed gas will fall inward. Let us now give an
estimate of the velocity of this radial flow. Suppose the superficial density
of the cold gas is given by σ0(R). This gas rotates at the circular velocity,
hence its angular momentum is given by

J0(R) = 2πR∆(R)σ0(R) ·Rvcirc(R). (5.9)

In a time interval ∆t the stars inject a certain amount of gas into the
interstellar medium, given by

Min = 2πR∆(R)σ̇(R)∆(t)Rv∗(R). (5.10)

Hence the specific angular momentum after the mixing is given by

j(R) =
R(σ0vcirc + σ̇∆(t)v∗)

σ0 + σ̇∆(t)
= j0(R)− σ̇∆(t)ADR

σ0 + σ̇∆(t)
, (5.11)

where j0(R) = Rvcirc(R) is the specific angular momentum of the cold gas
and AD = vcirc − v∗ is the asymmetric drift.

Since AD is a positive quantity, the resulting specific angular momentum
will be smaller than j0, hence there will be inflow: gas flowing towards the
more central regions. In order to make an estimate for its velocity, we can
look at the first order estimate, valid for small ∆(t),

j(R) = j0(R)−AD(R)
Rσ̇

σ0
∆(t). (5.12)

If we evaluate this for a small time step, we obtain that

j0(R+ δ(R)) ∼ j0(R) + j′0(R)δ(R) = j0(R)−AD(R)
Rσ̇

σ0
δ(t), (5.13)

which gives us a formula for the infall velocity:

vinfall = −AD(R)Rσ̇

σ0j′0(R)
. (5.14)

The magnitude of this effect can be estimated by plugging some typical
values into this formula. Let us look at the solar neighbourhood, hence
R = 8kpc, and let us take a typical value of σ̇/σ0 = 10−9. For j′0 we need
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the circular velocity, we assume that vcirc = kRα where α = 0 describes the
flat part of the rotation curve. Then j′0 = (α+1)vcirc. So, for the flat part of
the rotation curve the only factor left to estimate is (vcirc − v∗)/vcirc which
we can estimate to be 0.1, as in Figure 5.4. These values lead to a velocity
of vinfall ∼ 1km/s.

This value is a typical one for this kind of radial velocities. However we
want to stress that the inner effect described here cannot be the only one:
the observed metallicity gradient and star formation rate strongly suggest
that other mechanisms are important as well. Some of these mechanisms
are the ’cosmological’ radial flow (caused by inflow of extragalactic material
and minor mergers) and the radial flow induced by resonance effects with
the central bar [11] or with the spiral arms [28].
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Chapter 6

Conclusions and discussion

We considered a galaxy density model given by a Miyamoto-Nagai model
for the stellar component and a Binney logarithmic halo for the dark matter
component. The latter is a generalisation of the Singular Isothermal Sphere,
with the notable difference that the SIS model has a singularity at the origin
(the density tends to infinity), which is in general not the case in the Binney
model.

We focused on the Jeans equations, which in our axisymmetric case are
reduced to only two equations. We analytically solved these and gave the
asymptotic behaviour of the quantities involved, both at infinity and near
the origin. Also some other observable quantities such as the asymmetric
drift were discussed and calculated.

Notice that we did not include a black hole in the model. With an extra
potential term to describe this black hole it is no longer possible to solve the
integrals using only elementary functions. Moreover, since the Miyamoto-
Nagai core is flat, the addition of a black hole is physically impossible unless
all orbits are circular.

We made plots and studied the asymptotic behaviour of several physical
quantities, aiming to clarify the influence of the model parameters. This
kind of correlations, such as the one between the dark matter halo flattening
parameter q and the asymmetric drift in the central regions, could be of
interest for numerical simulations or other galaxy models.

Summarizing, we showed the following.

• We can solve the Jeans equations for the Miyamoto-Nagai model im-
mersed in a generic Binney dark matter halo, which has the SIS as a
special case. This was done for all parameter values, thus providing a
lot of flexibility, e.g. from a disk galaxy to a spherical one. This model
joins the other family of two-component Miyamoto-Nagai models for
which the Jeans equations were solved in [6]. We also show that the
solution of the Jeans equations for this model can in principle also be
obtained with the Residue Theorem.

81



82 CHAPTER 6. CONCLUSIONS AND DISCUSSION

• The obtained formulae have been tested against their asymptotic ex-
pansions and also by solving the Jeans equations with the axisymmetric
numerical code in [24]. The latter turned out to give results that are
in excellent agreement with each oher: a relative error of the order of
magnitude of 1 in 1000 between the exact solution and the solution of
the numerical code. Hence this model can also be used as a test for
numerical Jeans solvers.

• As a simple preliminary application of our model, we focused on the
dependence of the vertical dispersion of stars in the equatorial plane
on the dark matter halo flattening parameter q. We showed that the
velocity dispersion increases with the flattening of the halo. As is well
known, this is relevant for studies of dark matter densities in the solar
neighbourhood, see e.g. [12], [4].

• In the same spirit we also investigated the behaviour of the asymmetric
drift as a function of the halo properties, finding that it is a decreasing
function of q: the flatter the dark matter halo, the higher the value of
the asymmetric drift.

• We used our derived values for the asymmetric drift to obtain estimates
on a possible new mechanism that could produce radial gas flows in
disk galaxies by intrinsic methods due to mass loss of stars near the
equatorial plane. Our results show that this mechanism could explain
radial flows of the order of 1 km/s.

Of course the applications just mentioned and explored in a very pre-
liminary way are just a few of many other possible applications (e.g. the
study of the circular velocity of gas in the equatorial plane, the building of
hydrostatic, barotropic and baroclynic models for hot rotating models [2],
the setup of numerical simulations of gas flows in early-type galaxies with
a proper description of thermalisation and stellar motions,...). We believe
that our new model provides a significant addition to the class of known
fully analytical axisymmetric models with dark matter haloes. We notice
that recently two papers [9], [10] appeared with a new class of axisymmetric
dark matter haloes, based on Miyamoto-Nagai-like densities. Even if we did
not study the problem in depth, we feel that our method of solving the Jeans
equations could work in at least some of these cases as well.



Appendix A

Derivation of the Jeans
equations

We start from a general setting and afterwards we turn our attention to the
spherical and axisymmetric cases.

Let f be the distribution function for the stellar content of a galaxy. This
means that fd3xd3v is the stellar mass found at a certain position x with a
certain velocity v. This f is normalized to have∫

R6

fd3xd3v = M∗. (A.1)

It follows that the density is given by

ρ∗(x) =

∫
fd3v, (A.2)

where the integration takes place over all velocities. Let the system be
described by a Hamiltonian H. The continuity equation

∂ρ∗
∂t

+
∂

∂x
· (ρ∗ẋ), (A.3)

which expresses the conservation of mass, leads to the collisionless Boltzmann
equation

0 =
∂f

∂t
+ [f,H] =

∂f

∂t
+
∂f

∂q
· ∂H
∂p
− ∂f

∂p
· ∂H
∂q

, (A.4)

where (q, p) is any canonical set of coordinates.

A.1 Spherical case

In spherical coordinates, the Hamiltonian is given by

H =
1

2

(
p2r +

p2θ
r2

+
p2ϕ

r2 sin2 θ

)
+ Φ, (A.5)
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where
pr = vr, pθ = rvθ, pφ = r sin θvϕ (A.6)

are the moments and Φ is the total potential (in the most general case it
will be the sum of potential terms caused by the baryonic matter, the dark
matter and a central black hole). If we consider a steady state system with
spherical symmetry, some terms vanish: all time derivatives are zero, as are
the angular partial derivatives of Φ and ∂f/∂ϕ. Hence we obtain

pr
∂f

∂r
+
pθ
r2
∂f

∂θ
−

(
dΦ

dr
−
p2θ
r3
−

p2ϕ

r3 sin2 θ

)
∂f

∂pr
+
p2ϕ cos θ

r2 sin3 θ

∂f

∂pθ
= 0. (A.7)

Now we multiply by pr and integrate over dprdpϕdpθ. By the divergence
theorem, the last term vanishes. In the other terms the integrals can be
solved by using the property of the distribution function that

vj
∂f

∂vi
d3v = −δijρ∗. (A.8)

Moreover, prpθ = 0 since H and J are even functions of vr and hence so is
f . Eventually we obtain

d(ρσ2r )

dr
+ ρ

(
dΦ

dr
+

2σ2r − v2θ − v2ϕ
r

)
= 0. (A.9)

This equation is often rewritten as

d(ρσ2r )

dr
+ 2

β

r
ρσ2r = −ρdΦ

dr
, (A.10)

where

β =
2σ2r − v2ϕ − v2θ

2σ2r
(A.11)

is the anistropy parameter, a degree for the radial anisotropy. One can obtain
only one such equation, so it is in general not possible to obtain β and σr
from a known ρ and Φ: the equations are not closed. In the special case of
an ergodic distribution function f(H) however, we know that β = 0 and the
equation can be solved for σr.

A.2 Axisymmetric case

After spherical symmetry, the next step is axisymmetry. Obviously this case
is of interest when one models galaxies, which in general have rather axisym-
metric than just spherical symmetry. To handle this case, we first need to
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derive the Jeans equations in cylindrical coordinates. The Hamiltonian is
given by

H =
1

2

(
p2R +

p2ϕ
R2

+ p2z

)
+ Φ, (A.12)

where
pR = vR, pϕ = Rvϕ, pz = vz (A.13)

are the moments and Φ is the total potential (in the most general case it will
be the sum of potential terms caused by the baryonic matter, the dark matter
and a central black hole). If we consider a steady state system with axial
symmetry, the partial derivatives with respect to t and ϕ vanish, leading to

pR
∂f

∂R
+ pz

∂f

∂z
−

(
∂Φ

∂R
−
p2ϕ
R3

)
∂f

∂pR
− ∂Φ

∂z

∂f

∂pz
= 0. (A.14)

Now we multiply by pR and integrate over dpRdpϕdpz. By the divergence
theorem, the last term vanishes. In the other terms the integrals can be
solved by using the property of the distribution function that

vj
∂f

∂vi
d3v = −δijρ∗. (A.15)

In an analogous way, we can multiply eq. (A.14) by pϕ or by pz, which
gives us two more equations.

This gives three equations for the six second order velocity moments,
hence the system is not closed (looking at even higher order moments does
not solve this problem since the number of variables increases faster than the
number of equations). However, if we assume that the distribution function
is of the form f(E, Jz), further simplifications can be made: (1) the velocity
dispersion tensor is aligned with the coordinate system, i.e. vRvz = vRvϕ =
vϕvz = 0; (2) the radial and vertical velocity dispersions are equal, i.e.
σR = σz ≡ σ; (3) the only possible non-zero streaming motion is in the
azimuthal direction.

This leads to the following two equations, known as the Jeans equations
in the axisymmetric case. There are only two because the third one vanishes
completely.

∂ρ∗σ
2

∂z
= −ρ∗

∂Φt

∂z
(A.16)

and
∂ρ∗σ

2

∂R
+ ρ∗

σ2 − v2ϕ
R

= −ρ∗
∂Φt

∂R
. (A.17)



86 APPENDIX A. DERIVATION OF THE JEANS EQUATIONS



Appendix B

A simple ellipsoidal model

In order to illustrate the central behaviour of the Miyamoto-Nagai model
velocity dispersion as a function of the halo properties, we give here the
solution for a simple toy model, obtained by superimposing to the Binney
logarithmic halo an ellipsoidally stratisfied beta model with stellar density

ρ∗ =
ρ0∗m

β
0

(R2 + z2

p2
+m2

0)
β/2

, (B.1)

where m0 is a scale length. Then the first Jeans equation gives

ρ∗σ
2
∗h =

∫ ∞
z

ρ∗
∂Φh

∂z
dz = ρ0∗m

β
0v

2
hp
βI. (B.2)

This can be solved for general positive β:

I =
(z2 + C)1−

β
2

β(z2 +B)
2F1

(
1, 1; 1 +

β

2
;
B − C
z2 +B

)
(B.3)

with
B = q2(R2 +R2

h); C = p2(R2 +m2
0). (B.4)

In specific cases this result can be simplified: if B = C (and so in partic-
ular in the singular case where Rh = m0 = 0) we find that

I =
1

β
(z2 +B)−β/2. (B.5)

When B = C and β = 3 we are in the case discussed in [4].
Also if B 6= C but β is an integer the result can be written in elementary

functions, e.g. if β = 2 then

I =
1

2(C −B)
ln
z2 + C

z2 +B
, (B.6)
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if β = 4 then

I = − 1

2(C −B)(z2 + C)
+

1

2(C −B)2
ln
z2 + C

z2 +B
. (B.7)

If Rh = 0 and m0 > 0 then the behaviour near the origin is given by

I ∼ −(pm0)
−β ln

√
z2 + q2R2 (B.8)

and hence
σ2∗h ∼ −v2h ln

√
z2 + q2R2, (B.9)

reminiscent of the behaviour in eq. (4.1). If Rh > 0 and m0 = 0 then there
is divergence at the origin if β ≥ 2.
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