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Abstract

I modelli su reticolo con simmetrie SU(n) sono attualmente oggetto di stu-
dio sia dal punto di vista sperimentale, sia dal punto di vista teorico; particolare
impulso alla ricerca in questo campo è stato dato dai recenti sviluppi in campo
sperimentale per quanto riguarda la tecnica dell’intrappolamento di atomi ultra-
freddi in un reticolo ottico. In questa tesi viene studiata, sia con tecniche anal-
itiche sia con simulazioni numeriche, la generalizzazione del modello di Heisenberg
su reticolo monodimensionale a simmetria SU(3). In particolare, viene proposto
un mapping tra il modello di Heisenberg SU(3) e l’Hamiltoniana con simmetria
SU(2) bilineare-biquadratica con spin 1. Vengono inoltre presentati nuovi risultati
numerici ottenuti con l’algoritmo DMRG che confermano le previsioni teoriche
in letteratura sul modello in esame. Infine è proposto un approccio per la for-
mulazione della funzione di partizione dell’Hamiltoniana bilineare-biquadratica a
spin-1 servendosi degli stati coerenti per SU(3).
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Introduction

SU(n) gauge theories are of fundamental importance in the description of a
wide variety of physical phenomena: the interactions of a great zoology of ele-
mentary particles can be described by means of those symmetries. Some well
known examples are SU(3), which is the gauge-symmetry of QCD, and SU(6),
which has been proposed to describe spinful quarks.

One way to extrapolate information about a lattice theory is to map it into a
field theory defined on a continuous space, using a semiclassical approximation. For
gauge theories, also the opposite happens, since often these theories are studied
not only in the continuum, but also on a discretized lattice. In this way, it is
possible to analyze gauge theories from a statistical mechanical point of view,
with all the tools and techniques that statistical mechanics provides [31]. In this
sense, the definition of gauge theories on a lattice constitutes a bridge between high
energy physics, which requires a deep knowledge of continuous gauge theories, and
condensed matter physics, whose one of main topics of interest is the study of
theories defined on a discretized space. This parallelism has become recently even
more important, due to the striking progresses in the field of experiments with
ultracold atoms in an optical lattices [8] [24]. Trapping fermionic alkaline-earth
atoms (usually some isotopes of Ytterbium or Strontium) in an optical lattice,
it is possible to realize a physical system whose effective Hamiltonian presents a
SU(n) symmetry. This experimental technique is very powerful since by tuning the
parameters of the system it is possible to reproduce a wide variety of Hamiltonians.
In this sense, these experiments may be used in order to simulate high energy
phenomena on a lattice, constituting in this way a good example of quantum
simulator.

From a theoretical point of view, the formalism usually used in the definition
of spin chains - that is, 1-dimensional lattice models with SU(2) symmetry - can
be easily generalized to SU(n) degrees of freedom, and, in this sense, it is possible
to formulate SU(n) generalizations of the SU(2) quantum Hamiltonians which has
been studied so much in the literature [7, 19, 22, 27]. These generalizations are
based on the substitution of SU(2) generators in the explicit formulation of the
Hamiltonian with the proper ones of the SU(n) group. One typical example is the
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case of the antiferromagnetic Heisenberg model, which has been generalized for a
set of SU(n) degrees of freedom [1–3,38, 39].

SU(2) Heisenberg model has been studied thoroughly since it is very useful in
order to describe magnetic quantum systems with nearest-neighbour interactions.
In the study of the path integral formulation of the partition function for the
SU(2) chain, the presence of a topological term, the so called Berry Phase, is of
outmost importance in order to determine the behaviour of the system. Indeed,
this topological term is the one that, through the continuum limit semiclassical
approximation, makes the system critical or massive depending on the value (half-
integer or integer) of the spin, as argued by Haldane [27]

An analogous statement holds for SU(n) antiferromagnetic Heisenberg Hamilto-
nians: a topological term appears in the path integral of the partition function,
and the value it takes has a great influence on the behaviour of the system. The
main difference between the SU(2) and a generic SU(n) Heisenberg model is that
the possible irreducible representations for SU(n) - the equivalent of the spin for
SU(2) - have a reacher structure than the ones for the SU(2) case, making the
semiclassical approximation more complex. In this sense, the choice of the SU(n)
representation is of fundamental importance in order to determine the behaviour
of the system.

The focus of this thesis is on the SU(3) generalization of the quantum antifer-
romagnetic Heisenberg Model. As highlighted before, SU(3) is the gauge group
of QCD. In particular, the quarks up, down and strange are organized according
to the fundamental representation of SU(3), while their respective antiparticles
form an antifundamental representation of the same group. In this sense, when
studying a quantum “spin” Hamiltonian with SU(3) degrees of freedom on the
sites of the lattice, in the fundamental or antifundamental representation, a good
picture is to interpret the degrees of freedom on the chain as interacting particles
(antiparticles) confined on a lattice. If we want to stick to this picture, that is, if
we are interested in the fundamental and antifundamental representations of the
SU(3) group, there are two possible inequivalent formulations of the Heisenberg
Hamiltonian. In the first, on each site there is a particle (fundamental repres-
entation), while in the second particles and antiparticles are alternated on odd
and even sites respectively (so, fundamental and antifundamental representations
are alternated). This, of course, changes not only the explicit formulation of the
Hamiltonian, but also the quantum numbers of the system.

The SU(3) Heisenberg antiferromagnetic model with the fundamental repres-
entation on the whole chain has been studied in literature; it has been shown to be
critical with central charge c = 2 [2,5], as confirmed by numerical results [5]. One
interesting feature of this model is that it can be mapped into a spin-1 chain [5],
the well known Lai-Sutherland model, which had already been inferred to present
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a SU(3) symmetry [2]. This correspondence makes it possible to apply all the
known results about the Lai-Sutherland chain to the SU(3) Hamiltonian.

As highlighted before, the choice of the representations of the SU(3) group
used in the defintion of the SU(3) antiferromagnetic Heisenberg problem, is of
main importance for the behaviour of the system. Indeed, if we chose to use not
the fundamental representation on each site, but to alternate fundamental and
antifundamental representations on odd and even sites of the chain, the physics of
the system changes dramatically. A model which has been argued to have a SU(3)
symmetry with alternated representations is the spin-1 biquadratic chain [14]; this
system has been proved analytically to be gapped [29, 30], though its gap is so
small that numerical studies on this model have often been tricky, since it could
easily seem to be in a critical phase in a finite-length numerical study [11,42].

In this work, an explicit mapping between SU(3) operators and spin-1 matrices
is proposed. It makes evident the correspondence between the antiferromagnetic
SU(3) Heisenberg model and spin-1 chains in both the formulation of the SU(3)
Hamiltonian. Since both the Lai-Sutherland model and the biquadratic chain are
particular cases of a more general spin-1 Hamiltonian depending on a parameter
α, this mapping could be useful in order to study how the SU(3) symmetry ap-
pears and disappears varying α. In this perspective, we propose a path integral
formulation of the partition function of the more general spin-1 system, formulated
in terms of SU(3) generators, which could, in principle, be the starting point to
find the continuum field theory underlying the spin system for any value of the
parameter α.

It should be stressed that the SU(3) Heisenberg model with alternated rep-
resentations has not been investigated numerically in the literature in its usual
formulation, though there are many numerical works about its spin-1 analogue,
the biquadratic chain [11, 14, 42]. In this work, we present some new numerical
results obtained with the DMRG algorithm. Since the map we propose allows us
to apply all the known results about the biquadratic spin-1 chain to the SU(3)
model under study, we compare our results with the one expected from the spin-1
chain. Our estimates of the gap and of the ground-state energy are in perfect
correspondence with the theoretical ones, confirming once again the equivalence
between the SU(3) and the spin-1 system.

This thesis is organized as follows:

• Since our aim is to study SU(n) lattices models, an introduction to SU(n)
group is given in the first chapter, with particular emphasis on SU(3), which
is the group we are more interested in.

• Chapter 2 is devoted to the description of the SU(2) Heisenberg Chain; the
methodology described in order to find the partition function of the model
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in its path integral formulation and the continuum limit turns out to be very
useful, since the SU(n) Hamiltonian can be treated in an analogous way.

• In Chapter 3 an introduction to the experimental and theoretical approach to
SU(n) systems is provided, in order to stress the importance of the problem
and to give an highlight on the results known about this wider class of
systems.

• The possibility of defining more than one non-equivalent SU(3) Heisenberg
Hamiltonians is discussed in Chapter 4. The possible formulations of a
SU(3)-symmetric Heisenberg Hamiltonian are described, and some highlights
on their structure and feature is given. An explicit mapping between spin-1
operators and SU(3) generators is given, which allows us to apply all the
known results about a wide set of spin-1 chains to SU(3)-symmetric sys-
tems. New numerical results about the SU(3) antiferromagnetic Heisenberg
model with alternate representations on even and odd sites are discussed. Fi-
nally, an alternative approach to the path integral formulation of the SU(3)
Heisenberg model is proposed and discussed.
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Chapter 1

SU(n) groups

In this chapter SU(n) groups are defined and introduced [26]. Some basic gen-
eral features of this class of groups is described and a notation quite common in
physics is introduced. SU(2) and SU(3) are described in more detail, due to their
fundamental importance in many fields of physics; for SU(3) particular import-
ance is given to its representations. Moreover, when studying SU(n) groups and
their representations, Young Tableau provide a powerful method to describe and
catalogue representations for these groups; they will be described briefly in the
last section of this chapter.

1.1 Some general properties

The SU(n) symmetry group is the group given by n× n unitary matrices with
determinant equal to one. It may be shown that it is a simple Lie group (and so,
it is also semisimple). It is clear that the definition itself provides a representation
of the group (in terms, of course, of n × n special unitary matrices), which is
called defining representation. The generators of the defining representation can
be found considering that every n × n unitary matrix U can be expressed in the
following form:

U = eM , (1.1.1)

with M a n × n antihermitian matrix, which by definition has n
2 independent

real parameters. If we require det(U) to be equal to one, M has to be traceless
because:

det(U) = det(eM) = eTr[M ] = 1 ⇒ Tr[M ] = 0 (1.1.2)

Antihermitian traceless matrices depend on n
2 − 1 real parameters; it means that

also U depends on the same number of parameters, which constitutes the di-
mension of the Lie group, equal to the number of its generators (in each of its
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SU(n) groups

representations). The Lie algebra su(n) is given by the set of n× n traceless anti-
hermitian matrices. Every traceless hermitian matrix can be expressed by a linear
combination of the generators of SU(n), weighted by n

2 − 1 real parameters:

M =
n2−1�

i=1

θiIi θi ∈ R (1.1.3)

It should be noticed that the unitary group has precisely the same generators of
SU(n) plus the Identity (as we said before, U(n) is a Lie group of dimension n

2);
it is only the presence or absence of the identity operator in the set of generators
of the algebra that makes the difference between the unitary group and its special
subgroup.

The generators of SU(n) follow the su(n) algebra (the explicit values of the
structure constants depend upon the specific group):

[Ii, Ij] = cijkIk (1.1.4)

Quite often however, relation (1.1.1) is rewritten in the form - which resembles
a rotation in the complex plane:

U = eiH (1.1.5)

Due to the presence of the imaginary unity at the exponential, H is an hermitian
traceless matrix, still depending on n

2 − 1 real parameters, so that we can write
it, analogously as in (1.1.3):

H =
n2−1�

i=1

θiFi θi ∈ R (1.1.6)

The Fi in (1.1.6) are a set of n2− 1 hermitian traceless n×n matrices which fulfill
the commutation relations:

[Fi, Fj] = iCijkFk (1.1.7)

It is quite common to refer to the Fi in (1.1.6) and (1.1.7) as generators of SU(n),
though this definition is slightly different from the formal one; quite analogously,
we will refer to (1.1.7) as su(n) algebra, though the formal definition is given by
(1.1.4).

It is worth noticing that:

SU(n) ⊆ SU(m) n,m ∈ N n ≤ m (1.1.8)

12



1.2. SU(2) symmetry group

That is beacuse it is always possible to write a m×m unitary matrix starting from
a n× n one:

Um×m =

�
Un×n 0(m−n)×n

0n×(m−n) I(m−n)×(m−n)

�

The associate m×m hermitian matrix is then in the form:

Hm×m =

�
Hn×n 0(m−n)×n

0n×(m−n) 0(m−n)×(m−n)

�

1.2 SU(2) symmetry group

1.2.1 Generators and commutation relations

SU(2) is the group of 2×2 special unitary matrices. From section (1.1), we know
that the numbers of the generators of SU(2) is equal to n

2 − 1
��
n=2

= 3. The most
common choice for the generators of the defining (or fundamental) representation
is:

Fi =
1

2
σi i ∈ {1, 2, 3} (1.2.1)

In (1.2.1), σi are the well known Pauli matrices:

σ1 =

�
0 1
1 0

�
σ2 =

�
0 −i

i 0

�
σ3 =

�
1 0
0 −1

�
(1.2.2)

The Fi matrices follow the su(2) algebra:

[Fi, Fj] = iεijkFk i, j, k ∈ {1, 2, 3} (1.2.3)

εijk is the Levi-Civita completely antisymmetric tensor. The Casimir operator of
the group for the defining representation is:

F
2 = F

2
1 + F

2
2 + F

2
3 (1.2.4)

By definition, it commutes with all the generators:

[F 2
, Fi] = 0 (1.2.5)

More generally, the Casimir operator of SU(2) may be expressed in any represent-
ation as the square sum of the three generators.
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SU(n) groups

1.2.2 SU(2) and spin

SU(2) symmetry group is one of the most important groups in physics, because
spin degrees of freedom can be described in terms of the SU(2) group. The most
simple case is the one of 1

2 -spin, which corresponds to the fundamental represent-
ation; 1

2 -spin operators, up to some constants, are the Pauli matrices:

Si =
1

2
�σi (1.2.6)

Of course, su(2) algebra (1.2.3) holds for these operators.
Different representations correspond to different values of the Casimir operator,

that is, different values for the total square spin. The three spin operators do not
commute, due to the su(2) algebra, so they can not be diagonalized at the same
time; spin states are labeled by the eigenvalues of the Casimir operator S2 (labeled
with S), and of just one of the spin operators, usually S3 (labeled with s); s may
only assume values between −S and +S in steps equal to one [23].

S
2|S, s� = �2S(S + 1)|S, s�

S3|S, s� = �s|S, s� (1.2.7)

Often in physics representations of SU(2) are labelled by means of spin. When
calculating the direct product of SU(2) representations, the Clebsh-Gordan series
describes how spin combine into different ones, for example:

�
1

2

�
⊗

�
1

2

�
= {0}⊕ {1} (1.2.8)

The {0} representation corresponds to a 1-dimensional SU(2) representation, with
a unique spin state |0, 0�, while the {1} representation corresponds to a 3-dimensional
representation of SU(2), and so on; from a physical point of view, the global spin
of a system formed by two 1

2 -spin particle can have S = 1 or S = 0.
The SU(2) generators may also be expressed in a form which is very useful

when applied to spin: S1 and S2 can be substituted by two other operators S+

and S−, defined as

S+ = S1 + iS2

S− = S1 − iS2 (1.2.9)

These two operators are called ladder operators [23]; they have the following pe-
culiar feature:

S±|S, s� = �
�

S(S + 1)− s(s± 1)|S, s± 1� (1.2.10)
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1.3. SU(3) symmetry group

The action of S+ and S− on a state gives the null vector in case lowering or raising
the S3 eigenvalue s makes it have a value which is not allowed in the representation
we have chosen. su(2) algebra can be written, in terms of these operators, as:

[S±, S3] = i�S±

[S+, S−] = 2�S3 (1.2.11)

In the following, when dealing with spin operators, we will consider � = 1.

1.3 SU(3) symmetry group

1.3.1 Generators and commutation relations

SU(3) is the group of 3×3 special unitary matrices; the number of its generator
is equal to n

2 − 1
��
n=3

= 8. The most common choice for the generators in the
defining (or fundamental) representation of the group is:

Fi =
1

2
λi (1.3.1)

In (1.3.1), λi are the so called Gell-Mann Matrices; their explicit formulation is:

λ1 =




0 1 0
1 0 0
0 0 0



 λ2 =




0 −i 0
i 0 0
0 0 0





λ3 =




1 0 0
0 −1 0
0 0 0



 λ4 =




0 0 1
0 0 0
1 0 0





λ5 =




0 0 −i

0 0 0
i 0 0



 λ6 =




0 0 0
0 0 1
0 1 0





λ7 =




0 0 0
0 0 −i

0 i 0



 λ8 =
1√
3




1 0 0
0 1 0
0 0 −2



 (1.3.2)

It can be easily seen how λ1, λ4 and λ6 can be obtained from σ1 - the first one of
the Pauli Matrices (1.2.2) - just shifting in the proper way its elements inside a
3×3 matrix. The same happens for λ2, λ5, λ7, which can be easily related to σ2.
λ3 and λ8 play the role of σ3, being diagonal traceless matrices.

The eight generators fulfill the su(3) algebra:

[Fi, Fj] = ifijkFk (1.3.3)
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SU(n) groups

The structure constant of su(3) can be calculated [26] and their value is:

f123 = 1 f147 = f246 = f257 = f345 =
1

4

f156 = f367 = −1

2
f458 = f678 =

√
3

2
, (1.3.4)

all the others being null or obtainable by a cyclic permutation of the indices of
these ones.

As SU(2) is a subgroup of SU(3), it is easy to find that particular combinations
of the Gell-Mann Matrices fulfill the su(2) algebra. Let us now define a set of op-
erators, which resemble in form the ladder operators usually found when studying
SU(2) symmetric systems, and which will be very helpful in the study of SU(2) as
subgroup of SU(3):

X = X
† = λ3 Y = Y

† =
√
3λ8

T =
λ1

2
− i

λ2

2
T

† =
λ1

2
+ i

λ2

2

U =
λ6

2
− i

λ7
2 U

† =
λ6

2
+ i

λ7

2

V =
λ4

2
+ i

λ5

2
V

† =
λ4

2
− i

λ5

2
(1.3.5)

The matrices (1.3.5) commute as described in table (1.1).

[X, Y ] = 0 [Y, T ] =
�
Y, T

†� = 0 [T, U ] = −V
†

�
T, U

†� = 0 [T, V ] = U
† �

T, V
†�

�
T

†
, U

�
= 0

�
T

†
, U

†� = V
�
T

†
, V

�
= 0�

T
†
, V

†� = −U [U, V ] = −T
† �

U, V
†� = 0�

U
†
, V

�
= 0

�
U

†
, V

†� = T
�
T, T

†� = −X = −2T3

[X, T ] = −2T
�
X, T

†� = 2T † [X,U ] = U

[Y, U ] = −3U
�
X,U

†� = −U
† �

Y, U
†� = 3U †

�
U,U

†� = X
2 − Y

2 = −2U3 [X, V ] = V [Y, V ] = 3V�
X, V

†� = −V
† �

Y, U
†� = −3V † �

V, V
†� = X

2 + Y
2 = −2V3

Table 1.1: Commutation relations for the U , V , T operators

It must be noticed that we have chosen a notation slightly different from the
usual one (in which Y = λ8, keeping the factor 1√

3
present in the definition of

the eighth Gell-Mann Matrix, and the relations in tab.(1.1) change consequently).
From (1.1) it is easy to verify that three su(2) algebras live in SU(3), having as lad-
der operators U and U

†, V and V
†, T and T

† respectively. Being ladder operators,
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1.3. SU(3) symmetry group

we expect these six operators to act upon some quantum numbers, making them
higher or lower; the quantum numbers we are looking for are the eigenvalues of the
X and Y matrices. From (1.1), it is apparent that X and Y are two commuting
operators; this means that these two matrices can be simultaneously diagonalized,
and their eigenvalues are, in this sense, good quantum numbers. We will name
these eigenvalues as x and y respectively, and by means of them we will label the
states of the defining representation of SU(3). Indeed, it can be shown that T (T †)
lowers (raises) x by two, U(U †) raises (lowers) x by one and lowers(raises) y by
three, V (V †) raises (lowers) x by one and raises (lowers) y by three. It must kept
in mind that these quantum numbers have a limited set of possible values, corres-
ponding to different eigenvalues of X and Y ; when the action of a ladder operator
on a state would lower or raise a quantum number to a value which is not in the
set of the allowed ones, the resulting state is null, exactly as happens in the case
of the ladder operators of a su(2) algebra.

From commutation relations in table (1.1), it is quite evident that the rank of
the group is equal to two. Since SU(3) is a simple Lie group, Racah’s theorem states
that this group is provided with two Casimir operators, which, in the fundamental
representation, are:

K1(F1, . . . , F8) =
8�

i=1

F
2
i (1.3.6)

K2(F1, . . . , F8) =
8�

i,j,k=1

dijkFiFjFk (1.3.7)

The coefficients dijk appearing in (1.3.7) are related to the anticommutation re-
lations between Gell-Mann matrices, and may be found keeping in mind that:

{λi,λj} =
4

3
δijI+ 2dijkλk (1.3.8)

Of course, the formulation (1.3.6) and (1.3.7) can be generalized to more complex
representations of the group.

1.3.2 SU(3) representations

Before giving some explicit examples of irreducible SU(3) representations, it is
useful to have some general insight of how these representations may be built. Our
starting point is constituted by the U , V , and T algebras. SU(3) multiplets can be
constructed from SU(2) multiplets of each of the three subalgebras U , V and T ;
due to the commutation relations (1.1), these SU(2) multiplets should be coupled
one to another in order to obtain a SU(3) multiplet. Moreover, being these three
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su(2) algebras completely equivalent - there is no reason to prefer one to the others
- we expect this symmetry to be reflected in the graphic depiction on a plane of
the states of any representation (with the two cartesian axes corresponding to the
eigenvalues of the generators which play the role of X and Y in that representa-
tion), which should have the shape of a regular hexagon or triangle, due to the way
the ladder operators act on the states and on the symmetry of their action [26].

Of course the simplest representation fulfilling all these requirements is the
singlet {1}, constituted by one unique state with quantum numbers (x = 0, y = 0),
as can be seen in fig.(1.1).

(0, 0)

y

x

1

Figure 1.1: Singlet representation of the SU(3) group

The two basic multiplet representations of SU(3) are given by the fundamental
representation {3} (fig. (1.2))and the and the antifundamental one {3} (fig. (1.3)).
In the case of {3}, it is apparent how the three states, which in the particle physics
language are called up (u), down (d) and strange (s) respectively, are labeled
by the eigenvalues of the operators X and Y : as we said before, the Fi defined
in (1.3.1) from the Gell-Mann matrices are the generators of the fundamental
(defining) representation. Through the ladder operators, T (T †), U (U †) and V

(V †) described in the previous section it is possible to get from one state to another
as in fig. (1.2).

The antifundamental representation is defined as the conjugate of the fun-
damental one. Its generators can be found explicitly in a quite straightforward
way [26]. As we have seen from (1.1.1), (1.1.2) and (1.1.6), a SU(3) transforma-
tion in its defining (fundamental) representation, can be written as:

U = eiH , H =
8�

a=1

θaFa, θa ∈ R (1.3.9)

Its conjugate transformation may be written as:

U = U
∗ = e−iH∗

H
∗ =

8�

a=1

θaF
∗
a , θa ∈ R (1.3.10)
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T

VU

y

x

d = |2� = (−1, 1) u = |1� = (1, 1)

s = |3� = (0,−2)

1

Figure 1.2: Representation {3}

T̄

V̄ Ū

y

x

d̄ = |2̄� = (1,−1)ū = |1̄� = (−1,−1)

s̄ = |3̄� = (0, 2)

1

Figure 1.3: Representation {3}

From (1.3.10) it is quite straightforward to take as generators for the antifunda-

mental representation the set of matrices F = λi
2 , which may be defined starting

from Gell-Mann matrices as:

λi = −λ
∗
i i ∈ {1, ..., 8} (1.3.11)

In this new set of generators, the role of X and Y is played by

X = λ3 =




−1 0 0
0 1 0
0 0 0



 Y =
√
3λ8 =




−1 0 0
0 −1 0
0 0 2



 (1.3.12)

From fig. (1.3) it is now clear that the states of the antifundamental represent-
ation are labeled by the eigenvalues of X and Y , precisely as happens for the

fundamental one; quite analogously, T (T †), U (U †) and V (V
†
) (defined as in

(1.3.5) substituting λi with λi) make it possible to shift from one state to another
as represented in fig. (1.3).

Being the fundamental and the antifundamental representations one the con-
jugate of the other (the states of the {3} can be found by changing the sign of
the coordinates of the ones of the {3}), often the states of the antifundamental
representation are referred to as antiparticles, and are called antiup (u), antidown
(d) and antistrange (s) respectively.

Irreducible representations of different dimensions are related one to the other
through Clebsch-Gordan series. Some examples are:

{3}⊗ {3} = {1}⊕ {8}
{3}⊗ {3} = {6}⊕ {3} (1.3.13)

In figures (1.4), (1.5), (1.6), (1.7), (1.8) some of the lowest dimensional repres-
entations are depicted; x and y on the two axes represent the eigenvalues of the
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d-dimensional operators that play the role of X and Y in the d-dimensional rep-
resentation depicted. If there are one or more circles around a certain point of the
graph, it means that there are more than one state with the same coordinates. Of
course, there is no upper limit to the dimension of irreducible representations that
we can find.

(−2, 0) (2, 0)

(−1,−3) (1,−3)

(1, 3)(−1, 3)

(0, 0)

y

x

1

Figure 1.4: Representation {8}
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(−3, 3)

(−1, 3)

(−1, 3) (1, 3) (3, 3)

(1,−3)

(−2, 0) (2, 0)

(0,−6)

(0, 0)

y

x

1

Figure 1.5: Representation {10}

(3,−3)

(−2, 0) (2, 0)

(1, 3)

(1,−3)(−1,−3)(−3,−3)

(−1, 3)

(0, 6)

(0, 0)

y

x

1

Figure 1.6: Representation {10}

(−2,−2) (2,−2)

(−1, 1) (1, 1)

(0, 4)

(0,−2)

(2, 4)(−2, 4)

(−3, 1) (3, 1)

(−1,−5) (1,−5)

y

x

1

Figure 1.7: Representation {15}

(2, 2)(−2, 2)

(1,−1)(−1,−1)

(0,−4)

(0, 2)

(−2,−4) (2,−4)

(3,−1)(−3,−1)

(1, 5)(−1, 5) y

x

1

Figure 1.8: Representation {15}
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1.4 Young Tableau

Young tableau are a useful and powerful method to describe different repres-
entations of the permutation group Sn and of SU(n) through a graphic depiction
in accordance with a set of simple rules. Though they were born in the context
of the study of permutations, they can be transposed also to the case of SU(n);
since they are so easy to use and interpret,Young diagrams give us one efficient
tool to manipulate SU(n) representation. In this section, Young tableau will be
described both in the context of Sn and SU(n) [26]; for the SU(n) case particular
stress will be put on the method for the evaluation of direct products between
representations [26].

1.4.1 Young Tableau and the permutation group

Given a set of n objects (particles, numbers, . . . ) a permutation is a trans-
formation of the set which interchanges some (or all) objects of the set between
themselves. If only two objects are exchanged one with the other, the permutation
is called transposition; we can define a transposition operator Pij, which exchanges
the i-th object with the j-th one. Every permutation can be obtained by a combin-
ation (product) of transpositions; the way this combination may be defined is not
unique, but every possible set of transposition by which we can obtain a certain
permutation is formed by an odd or even number of transpositions. Thanks to this
property, it is possible to define a sign for the permutation, which is equal to 1 if
the permutation is even or −1 if it is odd. The set of all possible permutations of n
objects is a group, and it is called permutation group Sn: indeed, it is quite evident
that, once we have defined the identity element I which leaves the set unaltered,
all the requirements necessary to define a group, stated in section (A.1), hold.

An explicit physical formulation may be useful to visualize the permutation
group. Let us define a two-particles wave function ψ(1, 2), which will be a function
of all the degrees of freedom of the two identical particle; with the numbers 1, 2,
. . . we denote the whole set of degrees of freedom. The transposition operator P12

will act on this state in the following way:

P12ψ(1, 2) = ψ(2, 1) (1.4.1)

In (1.4.1), we have exchanged the two particles or, equivalently, the first particle
has assumed all the degrees of freedom that were of the second, and viceversa. It
is possible to define a symmetric and an antisymmetric (under exchange of the
degrees of freedom) wave function (ψs, ψa):

ψs = ψ(1, 2) + ψ(2, 1) ψa = ψ(1, 2)− ψ(2, 1) (1.4.2)
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1.4. Young Tableau

It is easy to verify that these two wave function are really symmetric or antisym-
metric:

P12ψs = ψs P12ψa = −ψa (1.4.3)

Of course, it is possible to define symmetric or antisymmetric wave functions with
an arbitrary number of particles, and given a generic wave function ψ(1, 2, ..., n)
through a proper set of transpositions we can symmetrize or antisymmetrize it.

Let us now define what a Young tableaux (or Young diagram) is using as
example the states in (1.4.2) We denote with a column of m boxes a state which is
completely antisymmetric under the exchange of m indices, while a column with
nc row will represent a state which is completely symmetric under the exchange of
nc indices. The two two-particles wave functions (1.4.2) are then represented by:

ψs = ψa = (1.4.4)

Of course, this notation can be generalized to any number of particles, but with
a caveat: the number of boxes should always be equal to the number of particles.
There are also more complicated cases than the one of completely (anti)symmetrized
wave functions, because it is possible to have mixed symmetry states, which are
(anti)symmetric only under the exchange of some particles and only in a certain
number. For example, for three particle states, there are three possible cases:

ψs = ψmix = ψa = (1.4.5)

In (1.4.5) ψmix is a state symmetric under exchange of two of the three particles,
and antisymmetric under the exchange of one of these two with the third. It should
be noticed that, no matter how many particles we are considering, the completely
symmetric and the completely antisymmetric states are unique: there is just one
way to symmetrize or antisymmetrize completely a state. To have all the possible
states which fulfill a certain n-particles (mixed) symmetry, it is enough to take
the correspondent Young Tableaux and to fill it with all possible numbers from 1
to n, taking into consideration also the combinations with repeated numbers, but
sticking to the following requirements - which describe the so called standard form
for a Young diagram:

• The numbers must not decrease along a row, from left to right;

• The numbers must increase along a column, from top to bottom;
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• The number of boxes in a column must not be lower than the number of
boxes in the following one, from left to right.

It should be noticed that if we stick to these requirements properly, we do not
have all the possible states. For example, for three-particles wave function, these
two states are allowed:

1 2

3

1 3

2
(1.4.6)

These ones, however, are not:

1 2

3

1 3

2
(1.4.7)

They describe a wave function symmetric under the exchange of particles 1 and
2 and antisymmetric under exchange of particles 2 and 3, and symmetric under
the exchange of particles 1 and 3 and antisymmetric under exchange of 3 and
2, respectively. However, these two states can be obtained by using the group
operators Pij on the two states (1.4.6) respectively: we have found two invariant
subspaces of S3. In this sense, the standard form of Young tableau lets us catalogue
all irreducible representations of Sn through all the possible allowed combinations
of n boxes. When we fill the boxes of a certain diagram in all the proper ways
with numbers from 1 to n, we get a series of states which form a basis for an
irreducible representation of the group characterized by certain (anti)symmetry
properties, though we should also consider configurations of the diagram which
are not allowed in order to have all the states of the representation: the number
of possible allowed ways we can fill a given tableaux is equal to the dimension of
the correspondent representation.

Given a permutation group Sn, it is possible to catalogue all its Young diagrams
through a set of numbers qi, each of them corresponding to the number of boxes in
the i-th row; for example, the tableau for S3 (1.4.5) may be characterized as (3,0,0),
(2,1,0), (1,1,1) respectively. Another way to characterize the Yang tableaux of Sn

is using not qi, but another set pi defined as pi = qi− qi+1. States (1.4.5) may then
be described by (3,0,0), (1,1,0), (0,0,1).

It is possible to define the conjugate Young diagram of a given one: each row
becomes a column and each column becomes a row. It is clear that the dimensions
of the representations related to a Young tableaux and to its conjugate one are the
same: conjugate diagrams correspond to different representations with the same
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1.4. Young Tableau

dimension. To exemplify, let us consider the four possible representations of S4:

(1.4.8)

The conjugation relations for these Young Tableau are:

⇐⇒

⇐⇒

⇐⇒ (1.4.9)

The completely symmetric and the completely antisymmetric states are one the
conjugate of the other; moreover, we can see that the last diagram in (1.4.9) is
self-conjugate.

1.4.2 Young Tableau and SU(n)

In the previous paragraph, we have seen how Young diagrams work in the case
of the permutation group SN . Quite an analogous treatment may be applied to
the case of SU(n), on the basis of the following theorem: every state formed by
N particles, belonging to the permutation group SN and generated by composing
single-particle states of a n-dimensional SU(n) multiplet belongs also to an irredu-
cible representation of SU(n) [26]. This theorem has a series of consequences; firs
of all, it means that we can apply the Young tableau method to SU(n), keeping
in mind that a diagram representing a SU(n) multiplet may have columns with a
maximum of n boxes - that is, we can have a maximum of n rows. The reason is
quite clear: if we have a state formed by particles of a n-dimensional multiplet, it
makes no sense to try to antisymmetrize a state with n + 1 particles. Moreover,
since the completely antisymmetric state is uniquely defined, columns with exactly
n boxes may be omitted, because they do not contribute to the dimension of the

25



SU(n) groups

irreducible representation of SU(n) we are describing by means of the diagram. For
example, let us consider SU(3): in (1.4.10) we see how a state with three-boxes
columns may be reduced to an equivalent one.

=⇒ (1.4.10)

In this formulation, every tableaux represents an irreducible representation of
SU(n), whose dimension will be equal to the numbers of way to fill the N boxes
of the diagram with the numbers from 1 to n in a standard configuration; in this
sense, every box will correspond to a particle, and the number inside it labels the
state the particle is in.

We will call fundamental representations of SU(n) the representations related
to Young tableau with only one of the pi different from zero. The fundamental
representations for SU(2), SU(3), SU(4) are:

SU(2) : (1.4.11)

SU(3) : (1.4.12)

SU(4) : (1.4.13)

For the SU(3) case (1.4.12), these two representations are the ones that in section
(1.3.2) we called fundamental and antifundamental respectively.

In the case of SU(n), we can define the conjugate of a Young diagram in a
slightly different way than what we did for the permutation group. Let us consider
a diagram characterized by a set of integers number pi as defined in the previous
section; its conjugate representation is the one with the same set pi but in opposite
order, that is:

(p1, ..., pn−1) =⇒ (pn−1, ..., p1) (1.4.14)

One simple example of conjugation is:

(p1 = 2, p2 = 1) =⇒ (p1 = 2, p2 = 1) (1.4.15)
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From the comparison of (1.4.9) and (1.4.15) it is quite evident that the definition
of conjugation we have given when studying the permutation group and the one
considered for the SU(n) case are not equivalent at all.

As our main interest is in the SU(3) symmetry group, let us now introduce
the Young tableau for some of its representations. First of all, there are the
fundamental and antifundamental representations (1.4.12); it is clear that they
are one the conjugate of the other. For the octet representation we will have the
diagram:

{8} (1.4.16)

This tableaux may be filled, as we expect, in eight different ways according to a
standard configuration:

1 1

2

1 1

3

1 2

2

1 2

3

1 3

2

1 3

3

2 2

3

2 4

3
(1.4.17)

The other three-boxes tableau we may have for a SU(3) symmetry are:

{10} (1.4.18)

≡ ① {1} (1.4.19)

It is not difficult to verify that (1.4.18) and (1.4.19) have dimensions equal to 10
and 1 respectively (for (1.4.19) it is due to the fact that for a SU(3) symmetry we
can omit columns with 3 boxes).

It is clear that, for more complex representations, it may be exceedingly long
to calculate how many standard configurations are possible for a given tableaux.
What we need is a general formula allowing us to calculate the dimension of a
diagram in a quicker way. Firstly, let us notice that for a representation of SU(n+
1), only n integers {p1, ..., pn} are needed to characterize its tableaux, since columns
with n + 1 boxes may be omitted. When we want to study the same diagram in
the context of SU(n), all that we need to do is to eliminate the last pi, that is, all
columns with n boxes: in SU(n) the same diagram is defined by a set {p1, ..., pn−1}.
A recursion formula may be proved, on the basis of these considerations; if we
denote with Dn(p1, ..., pn−1) the dimension of the tableaux represented by the set
(p1, ..., pn−1) interpreted as diagram for SU(n), we have:

Dn+1(p1, ..., pn) =
1

n!
(pn + 1)(pn + pn−1 + 2)...(pn + ...+ p1 + n)Dn(p1, ..., pn−1)

(1.4.20)
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Thanks to (1.4.20) it is possible to calculate the dimension of a Young tableaux
(that is, an irreducible representation) in SU(n + 1) using the knowledge of the
dimension of the same diagram in SU(n).

This formula may well be simplified for the case of SU(3). First of all, let us
notice that the only possible diagrams for SU(2) are the ones with just one row
of p1 boxes. Since we can fill the boxes only with 1s and 2s, the diagrams in a
standard form will have a set of numbers 1 followed by a set of numbers 2. There
are exactly (p1 + 1) configurations of this type: the one with just numbers 1 and
no numbers 2, and p1 configurations, in which the number two is repeated from a
certain box to the end of the row:

1 1 1
. . .
. . .

1 1 1
�
1 configuration

1 1 1
. . .
. . .

1 1 2

1 1 1
. . .
. . .

1 2 2
...

2 2 2
. . .
. . .

2 2 2






p1 configurations

We can then arrive to the conclusion that:

D2(p1) = p1 + 1 (1.4.21)

Thanks to (1.4.21) it is possible to apply (1.4.20) to the SU(n) case, in particular
also to the SU(3) one. What we find is:

D3(p1, p2) =
1

2
(p2+1)(p1+p2+2)D2(p1) =

1

2
(p2+1)(p1+p2+2)(p1+1) (1.4.22)

This formula gives us a simple way to calculate the dimension of the representation
of SU(3) related to a given Young tableaux.

It is worth stressing that, in the context of SU(3), the two integer numbers p1
and p2 characterizing a representation may be also used to evaluate the Casimir
operator K1 defined in (1.3.6) for that representation: it can be shown that the
following relation holds:

K1 =
p
2
1 + p

2
2 + p1p2

3
+ p1 + p2 (1.4.23)

(1.4.23) provides a simple way to calculate one of the Casimir operators of SU(3),
which helps us to recognize different multiplet representations of the group.

We now turn to the description of how Young diagrams may be used to evaluate
direct products: Young tableau provide indeed a powerful and efficient method to
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find the direct product between representations of SU(n), and so to calculate the
related Clebsch-Gordan series. Let us consider two Young tableau for two represen-
tations of SU(n), for example two octets of SU(3), and let us study their inner
product:

⊗ = {8}⊗ {8} (1.4.24)

The idea is to label all the boxes of the second representation with letters {a, b, . . . },
giving the same label to boxes in the same row in increasing order from top to
bottom of the diagram, and then to juxtapose the boxes of the second tableaux
to the first tableaux in all possible ways in order to obtain new Young diagrams
with the following constraints:

• The new tableaux must be in a standard form;

• There must be no columns with more than n boxes;

• The letters of the alphabet {a, b, . . . } in the boxes from the second diagram
must increase from top to bottom of a column;

• The letters of the alphabet {a, b, . . . } in the boxes from the second diagram
must not decrease from left to right of a row;

• If we count from right to left of each row of the new tableau, as we go down
from top to bottom of the diagram, the number of times the (k+1)-th letter
has been repeated must never exceed the number of repetition of the k-th
one;

For example, in the case (1.4.24), we get:

⊗ a a

b
= a a

b
⊕

a a

b

⊕ a

a b
⊕

a

a

b

⊕ a

a b

⊕
a

b

a

= ⊕ ⊕ ⊕ ⊕ ① ⊕ (1.4.25)

{8}⊗ {8} = {27}⊕ {10}⊕ {10}⊕ {8}⊕ {1}⊕ {8} (1.4.26)
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Chapter 2

SU(2) Antiferromagnetic
Heisenberg Model

This chapter is devoted to the study of the Antiferromagnetic Heisenberg Model
and of its behaviour. Firstly, the model is defined and its Hamiltonian formulated;
secondly coherent states for the SU(2) symmetry group are introduced [7,35]. We
then turn to the study of the path integral formulation for the partition function
[7, 22]. The discrete system under analysis can be mapped into a continuous one,
under a continuum limit [19,22], and the continuous model we find is described [37].
The well known Haldane Conjecture [27] is formulated and described through a
Renormalization Group transformation [22, 34].

2.1 An introduction to the model

Let us consider a chain, that is, a 1-dimensional lattice, with constant lattice
spacing a. On each site of the chain we suppose that there is a single particle
with a certain quantum spin S, and that only the spin degree of freedom of the
particles matters in the definition of our system. The simplest interaction between
particles on a spin chain is a nearest-neighbour interaction, that is, a two-body
interaction between particles situated on sites one next to the other. One of the
most important models for a spin chain of this kind is the Heisenberg model, whose
Hamiltonian is:

Ĥ = J

�

i

Si · Si+1 (2.1.1)

Si denotes the spin operators acting on the i-th site of the chain; the Hamiltonian
can be formulated as:

Ĥ = J

�

i

�
S
i
1S

i+1
1 + S

i
2S

i+1
2 + S

i
3S

i+1
3

�
(2.1.2)
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It is clear that this hamiltonian is isotropic along each of the three axes. Of
course, it can be generalized, for example, assuming some kind of anisotropy or
introducing an external magnetic field; in the following we will consider only the
simple formulation (2.1.1).

Another characteristic that is very important for the behaviour of this physical
system is the sign of the coupling constant J : if J > 0 the model is antiferro-
magnetic, if J < 0 it is ferromagnetic. Depending on the sign of J , the states
of the spectrum dispose themselves differently: if the chain is ferromagnetic, the
lowest energy states are the one with a ferromagnetic order, that is with the spins
aligned, while in the antiferromagnetic case states with a Neel order, that is, with
a staggered disposition of the spins on the chain, are favoured. Changing the sign
of J , the lowest energy states become the most excited and viceversa. Moreover,
it should be noticed that, depending on the value S of the spin on each site, the
Si constitute a different representation of the SU(2) group on each site; the Young
diagram of a representation of given S is a row of 2S boxes:

. . .

. . .� �� �
2S boxes

(2.1.3)

We are interested in the case of an Heisenberg Antiferromagnetic SU(2) spin chain,
with a S-spin particle on each site. Our starting point is the partition function of
the model, which determines the thermodynamic behaviour of the system:

Z = Tr
�
e−βĤ

�
(2.1.4)

This quantity will be studied thoroughly in the following using a path integral
formulation; to define a path integral, the so called coherent states will be needed.
The next section is devoted to the introduction and the description of this set of
states and of its properties.

2.2 Coherent states for SU(2)

It is a result of group theory [7] that every operator G of the SU(2) S-spin
representation can be expressed as:

G = eiφS3eiθS2eiχS3 (2.2.1)

θ, φ and χ determine univocally the matrix G. Their range is θ ∈ [0, π], φ ∈ [0, 2π[,
χ ∈ [0, 2π[. The set of coherent states can be found applying the operator (2.2.1)
to the highest weight state, that is, for SU(2), the maximally polarized state
|S, S�; since in quantum mechanics states are defined up to a phase, χ can be
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fixed arbitrarly. The coherent state |Ω� can be parametrized by a classical three-
dimensional real unimodular vector Ω = (Ω1,Ω2,Ω3), with:

Ωi =
1

S
�Ω|Si|Ω� (2.2.2)

The explicit expression for Ω is:

Ω =
�
sin(θ) cos(φ), sin(θ) sin(φ), cos(θ)

�
(2.2.3)

It should be noticed that (2.2.3) does not depend upon χ, as expected: two angles
are enough to define the coherent states for SU(2). It can be proved [7] that the
set of states |Ω�, depending on θ and φ, are overcomplete; the resolution of the
identity is:

2S + 1

4π

�
dΩ|Ω��Ω| = 2S + 1

4π

�
dφdθ sin(θ)|Ω��Ω| = I (2.2.4)

It can be easily verified that the quantum state |Ω� is normalized to one.
A many-particle coherent state, as the ones we will consider in the following,

may be defined as:
|Ω� = ⊗i|Ωi� (2.2.5)

In (2.2.5), |Ωi� denotes the single-particle coherent states of each of the particle
contributing to the final state, each one depending on its angles θi, φi and χi. The
resolution of the identity (2.2.4) can be easily generalized for a set of many-particles
coherent states.

2.3 The path integral formulation

Let us now go back to the partition function (2.3.13); the first step of our
analysis is to formulate this quantity by means of a path integral [7,22]. To do so,
it is useful to notice that:

Z = Tr
�
e−βĤ

�
= lim

N→∞
Tr

��
e−

β
N Ĥ

�N
�

(2.3.1)

In (2.3.1) we have only divided β in N intervals and taken the limit for N → ∞.
The trace can be expressed in a more explicit way through the coherent states of
our system at temperature β:

Z = lim
N→∞

� �
�

i

dΩi(β)

�
�Ω(β)|

�
e−

β
N Ĥ

�N
|Ω(β)� (2.3.2)
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Let us now introduce N resolutions of the identity, and, ignoring constant factors
preceding Z, we find:

Z = lim
N→∞

� �
�

i,τ

dΩi(τ)

�
β�

τ=�

�Ω(τ + �)|e−�Ĥ(τ)|Ω(τ)� (2.3.3)

In (2.3.2) � = β
N , τ is an integer multiple of � and we are assuming |Ω(β)� = |Ω(0)�.

Since � can be regarded as a very small quantity, we can now proceed to a Taylor
expansion of the exponential to the first order in �:

Z = lim
N→∞

� �
�

i,τ

dΩi(τ)

�
β�

τ=�

�Ω(τ + �)|(1− �Ĥ)|Ω(τ)�) (2.3.4)

It is now convenient to define the classical hamiltonian H as a normalized expect-
ation value of the operator Ĥ:

H(τ) =
�Ω(τ + �)|Ĥ|Ω(τ)�
�Ω(τ + �)|Ω(τ)� (2.3.5)

Substituting (2.3.5) in (2.3.4), and exponentiating the hamiltonian again it is easy
to obtain:

Z = lim
N→∞

� �
�

i,τ

dΩi(τ)

�
β�

τ=�

e−�H(τ)�Ω(τ + �)|Ω(τ)�

= lim
N→∞

� �
�

i,τ

dΩi(τ)

�
β�

τ=�

e−�H(τ)(1 + ��Ω̇(τ)|Ω(τ)�)

= lim
N→∞

� �
�

i,τ

dΩi(τ)

�
β�

τ=�

e−�H(τ)+��Ω̇(τ)|Ω(τ)� (2.3.6)

We now have to evaluate the scalar product �Ω̇(τ)|Ω(τ)�; it can be shown that the
following result holds for the coherent states we defined in section (2.2) [7]:

�Ω̇(τ)|Ω(τ)� =
�

j

�Ω̇j(τ)|Ωj(τ)� =
�

j

iφ̇j cos(θj) (2.3.7)

Moreover, also the hamiltonian H can be evaluated; keeping in mind that the
quantum hamiltonian Ĥ is (2.1.1), H is defined as (2.3.5) and that (2.2.3) holds,
it is quite straightforward to find, at the zeroth order in �:

H(τ) = JS
2
�

i

Ωi(τ) ·Ωi+1(τ) (2.3.8)
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2.3. The path integral formulation

We now have all we need to turn to a path integral formulation of the partition
function. First of all, we define an integration measure for our integral:

DΩ = lim
N→∞

�

i,τ

dΩi(τ) (2.3.9)

Since � is vanishing small, we can consider τ as a continuous variable; the final
expression we find keeping in mind all we have done so far is:

Z =

�
DΩ e−

� β
0 dτH(τ)+iS

�
i ω(Ωi) (2.3.10)

ω(Ωi) = −
� β

0

dτ φ̇i(τ) cos(θi(τ)) (2.3.11)

The term S
�

i ω(Ωi) is called Berry phase, and will contribute in a fundamental
way to the description of the model, since it will give some topological information
about it. Of course, formulation (2.3.11) may be summarized as:

Z =

�
DΩ e−S(Ω) (2.3.12)

S =

� β

0

dτH(τ)− iS

�

i

ω(Ωi) (2.3.13)

S is the action for our model, which will be of great importance in the following
for the understanding of the behaviour of this system. Of course, this procedure
can be done precisely in the same way for any other spin-model, substituting Ĥ

with the appropriate quantum hamiltonian.

2.3.1 Geometrical interpretation of the Berry phase

The Berry phase is not explainable in terms of the Hamiltonian of our system:
its form is due to the structure of the coherent states, and a geometrical interpret-
ation of this quantity by means of the classical spin vectors Ωi(τ) can be given [7].
Each one of the Ωi(τ) is bounded, by its own nature of unimodular vector, to
move upon a spherical surface of unitary radius; at any change of τ it changes
direction, but not lenght, describing a trajectory upon this sphere, which can be
parametrized using the parameter τ . In this picture, of course the angles θ(τ)i
and φ(τ)i constitute the latitude and the longitude respectively of the points on
the sphere belonging to the trajectory. Since |Ω(β)� = |Ω(0)� the trajectories on
the sphere are closed ones; this implies that it is possible to express ω(Ωi) of the
Berry phase in an equivalent formulation:

ω(Ωi) = −
� β

0

dτ φ̇i(τ) cos(θi(τ)) =

� β

0

dτ

�
1− φ̇i(τ) cos(θi(τ))

�
(2.3.14)
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(2.3.14) can be easily recognized as the area on the spherical surface enclosed by
the trajectory described by Ωi(τ). It is then possible to use Stoke’s theorem, and
to express ω(Ωi) as [7]:

ω(Ωi) =

� β

0

dτAi(Ωi) · Ω̇i

∇×Ai ·Ωi = 1 (2.3.15)

Ai is a vector potential, similar to the one usually defined in the context of classical
electromagnetism. Of course, there is a gauge freedom in the choice of Ai, and
many equivalent formulations are possible for it.

2.4 The continuum limit approximation

The Heisenberg model, being defined on a lattice, describes the 1-d space as
discrete; what we would like to do now is to study the continuum limit approx-
imation of this model, in which space is treated as continuous. In order to do so,
we shall consider a semiclassical approximation, which holds only in the large-S
limit [7, 19, 22]. Firstly, we express the classical spin vector Ωi(τ) through the so
called Haldane Ansatz:

Ωi = (−1)imi

�
1− a2

S2
li · li +

a

S
li (2.4.1)

In (2.4.1), mi is called Néel field, and constitutes the slowly varying part of the
classical vector; its norm is equal to one, precisely as Ωi, and it keeps track of the
staggered Néel order which is favoured by the antiferromagnetic coupling through
the term (−1)i, which gives a different sign on odd and even sites. li is the canting
field, and it is supposed to be very small: it constitute a correction to the main
term constituted by mi, to which it is orthogonal. These two fields have then the
following properties:

mi ·mi = 1 mi · li = 0 (2.4.2)

In the continuum limit, the lattice constant a becomes vanishing small, and
sums over the sites are replaced by integration over a continuous space variable
x. mi becomes then m(x), and li becomes l(x); we are allowed to have a Taylor
expansion for mi+1 and for a

S li+1 to the second order in a:

mi+1 = m(x) + a
∂m(x)

∂x
+

1

2
a
2∂

2m(x)

∂x2

a

S
li+1 =

a

S
l(x) +

a
2

S

∂l(x)

∂x
(2.4.3)
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2.4. The continuum limit approximation

Moreover, due to (2.4.2), it is clear that

m · ∂m
∂x

= 0 (2.4.4)

The continuum limit Hamiltonian is found taking (2.4.3) and (2.4.4) into con-
sideration, and Taylor expanding to the second order in a: since the classical
Hamiltonian is in the form (2.3.8), one gets - ignoring constant factors - [19]:

� β

0

dτH(τ) = J

� β

0

dτdx

�
−a

2
m · ∂

2m

∂x2
+ 2

a

S2
l(x) · l

�
(2.4.5)

After an integration by parts, we find the final form for the continuum limit of the
Heisenberg Hamiltonian:

� β

0

dτH(τ) =

� β

0

dτdx
Ja

2

�
S
2∂m

∂x
· ∂m
∂x

+ 4l · l
�

(2.4.6)

Let us now turn to the Berry phase (2.3.11): to have the continuum form
for the effective action S (2.3.13), it also has to be formulated for a continuous
1-dimensional space, as we have just done for the hamiltonian. Though it will
be trickier from an analytical point of view, the idea is exactly the same: to
substitute the Haldane Ansatz (2.4.1) for Ωi in the Berry phase and to evaluate it
consequentely. First of all we notice that, since li is the small rapidly varying part
of the Haldane Ansatz, and plays the role of a correction, one is allowed decompose
Ωi as:

Ωi = Λi + δΛi

Λi = (−1)imi

δΛi =
a

S
li (2.4.7)

In the previous expression, Λi is the dominating part of the field, that is, the one
depending on mi in the Haldane Ansatz (2.4.1) (we have regarded the square root
term as negligible, since li is a small fluctuation), and δΛi is the correcting term
depending only on li; consequentely, it is possible to write:

ω(Ωi) = ω(Λi) + δω(δΛi) (2.4.8)

To evaluate δω(δΛi), it is better to use the formulation (2.3.15) of the Berry phase,
which uses a vector potential Ai; after some algebra [19], one can find that the
variation of ω is:

δω(Λi) =

� β

0

dτδΛi ·
�
Λi ×

∂Λi

∂τ

�
(2.4.9)
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Substituting (2.4.7) in this expression, we find:

δω(li) =
a

S

� β

0

dτ li ·
�
mi ×

∂mi

∂τ

�
(2.4.10)

Let us now formulate the Berry phase in the continuum approximation:

S

�

i

ω(Ωi) = Γ(m) +

�
dxdτ l ·

�
m× ∂m

∂τ

�
(2.4.11)

Γ(m) is the continuum limit for S
�

i ω(Λi). To calculate it, it is important to
keep in mind the staggering factor (−1)i in (2.4.7):

S

�

i

ω(Λi) = S

�

i

(−1)iω(mi) = S

�

i

(ω(m2i)− ω(m2i+1)) (2.4.12)

Expanding in a Taylor series, keeping only the first derivative of m, one finds,
turning to the continuum expression [7, 19]:

Γ(m) =
S

2

�
dx

δω

δm
· ∂m
∂x

=
S

2

�
dx

�
mi ×

∂mi

∂τ

�
· ∂m(x)

∂x

=
ϑ

4π

�
dxdτ

�
∂m

∂τ
× ∂m

∂x

�
·m (2.4.13)

ϑ = 2πS (2.4.14)

Getting all we did so far together, the action S has the form:

S = S1 + S2 (2.4.15)

S1 =

�
dxdτ

Ja

2

�
S
2∂m

∂x
· ∂m
∂x

+ 4l · l
�

− i

�
dxdτ

�
m× ∂m

∂τ
· l
�

(2.4.16)

S2 = −iΓ(m) (2.4.17)

Let us keep in mind that our partition function is in now in the form:

Z =

�
DlDm δ(m ·m− 1)e−S (2.4.18)
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2.5. The O(3) non-linear σ model

Our final step is to perform the integration of the rapidly varying variable l; in
order to do so, it is enough to notice that S1 can be rearranged in order to make
it possible a gaussian integration, just completing the square:

2aJl·l−im× ∂m

∂τ
·l =

�√
2Jal− i

m

2
√
2Ja

× ∂m

∂τ

�2

+
1

8Ja

�
m× ∂m

∂τ

�2

(2.4.19)

We can now integrate the l variable of our path integral - which will give only a
constant multiplicative factor before Z, that can be ignored -. Let us notice that:

m · ∂m
∂τ

= 0 ⇒
�
m× ∂m

∂τ

�2

=
∂m

∂τ
· ∂m
∂τ

(2.4.20)

The path integral we have is then [7, 19, 22]:

Z =

�
Dm δ(m ·m− 1)e−S̃−iΓ(m) (2.4.21)

S̃ =

�
dxdτ L̃ (2.4.22)

L̃ =
1

2g

�
v

�
∂m

∂x

�2

+
1

v

�
∂m

∂τ

�2
�

(2.4.23)

g =
2

S
v = 2Jsa (2.4.24)

The Lagrangian (2.4.23) can be recognized as the one of the so called O(3) non-
linear σ model (NLσM) in its euclidean formulation; this gives us an hint of what
is the physical interpretation of the procedure described so far. What we have now
is a path integral of the exponential of the action of a field theory in its euclidean
formulation: this object corresponds to the euclidean (Wick-rotated) generating
functional for the field theory found through the continuum limit, evaluated with
no external sources. We have then taken advantage of the correspondence between
quantum statistical mechanics and quantum field theory, mapping the original spin
chain in one dimension into a field theory in 1+1 dimensions (the role of time is
played by the temperature τ) with well known characteristics.

The next section will provide an outline of the features of the classical O(3)NLσM
and of its most important topological properties [37].

2.5 The O(3) non-linear σ model

The O(3) non-linear σ model describes three free real scalar fields (m1, m2,
m3), which can be expressed as a vector field m, in 1+1 dimensions [37]; the
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vector field m(x, τ) is supposed to have modulus equal to one at any point of our
2-dimensional space-time:

m(x, τ) =




m1(x, τ)
m2(x, τ)
m3(x, τ)



 m(x, τ) ·m(x, τ) =
3�

i=1

(mi(x, τ))
2 = 1 (2.5.1)

Due to constraint (2.5.1), m can vary only on a sphere: this two-dimensional
spheric surface constitutes an internal space for the possible configurations of the
vector field, which must not be confused with the 1+1 dimensional space in which
the fields mi live.

The Lagrangian has the following form [37]:

L =
1

2

2�

µ=1

3�

i=1

∂mi

∂xµ

∂mi

∂xµ
=

1

2

2�

µ=1

∂m

∂xµ
· ∂m
∂xµ

(2.5.2)

In (2.5.2), x1 = x, x2 = τ and Lorentz convention for up and down indices is used.
In order to find the equation of motion, we should minimize the action, imposing
that it encodes the constraint (2.5.1) by means of a Lagrange multiplier:

S =

�
dxdτ (L(x, τ)− λ(x, τ) (m ·m− 1)) (2.5.3)

The equation of motion is then:

(�+ λ)m = 0 (2.5.4)

It can be further simplified using the constraint (2.5.1):

m · (�+ λ)m = 0 ⇒ λ = −m ·�m ⇒ (�−m ·�m)m = 0 (2.5.5)

If we do not want to take into account the time dependence of the solutions of
the equation of motion, but only to consider the static set of solutions, we can
formulate the static equation of motion as:

�
∂
2

∂x2
−

�
m · ∂

2m

∂x2

��
m = 0 (2.5.6)

Of course it is possible to turn to the hamiltonian formulation from the lagrangian
formulation; the energy one can easily find for a static field is [37]:

E =
1

2

�
dxdτ

�
∂m

∂x
· ∂m
∂x

+
∂m

∂τ
· ∂m
∂τ

�
(2.5.7)
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2.5. The O(3) non-linear σ model

Let us now consider the case E = 0; of course the partial derivatives in (2.5.7)
must be equal to zero, which implies that m must not depend on the point of
the space time we are calculating it in: m is, in this case, a three dimensional
vector which remains constant through all the motion. Solution of this kind are
clearly infinite degenerate, since, as we said before, due to the condition (2.5.1),
m is bounded on the spherical surface S2 of the internal space of the field: each
point of the sphere corresponds to a proper zero-energy state, and what we have
is a family of continuously degenerate minimum states. It is also possible to study
the statical states with finite non zero energy, 0 < E < ∞. To avoid divergencies
in the expression (2.5.7), ∂m

∂x is required to go to zero quickly enough at infinite,

which means that (with r =
√
x2 + τ 2):

lim
r→∞

m = m0 (2.5.8)

In (2.5.8) m0 is a constant field belonging to the sphere S2, to which m tends no
matter from which direction we approach infinity. This limit has a consequence
of fundamental importance: since at infinity our three-dimensional real field has
precisely the same value not depending on the way we study its limit, the coordin-
ate space (x, τ) can be compactified into a sphere with one of the pole coinciding
with the point at infinity (in which the value of the field is univocally defined).
Being m(x) a map between the physical coordinates and its inner space, which is
a S2 surface itself, it turns out that we have found, through the field, a mapping
between the sphere of physical coordinates S2,phys and the internal space sphere
S2,int. To summarize, a finite energy solution with no dependence on the time
variable τ is a mapping between two spheres:

m : S2,phys → S2,int (2.5.9)

Mappings between spheres S2 have an important topological property: they can be
classified into homotopy sectors [37]. An homotopy sector is a set of maps which
may be regarded as equivalent since one can be deformed into the other with
continuity; mappings belonging to different homotopy sectors, on the contrary, are
not smoothly deformable one into the other. It is a result of topology that, in
the case (2.5.9), the homotopy sectors are in infinite countable number and can
be labelled through an integer number Q ∈ Z; indeed, they form a group (called
π2(S2)) which is isomorphic to Z. The number Q is called winding number, or
Pontraygin index, and it is equal to the number of times S2,int is wrapped by the
S2,phys through the mapping m. It can be shown [37] that the Pontraygin index
assumes the form:

Q =
1

4π

�
dxdτ

�
∂m

∂τ
× ∂m

∂x

�
·m (2.5.10)
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Going back to the Heisenberg antiferromagnetic chain, what we have is that
the term Γ(m) in (2.4.13) and (2.4.14) is just the general expression of the winding
number of the O(3) non-linear σ model, preceded by a factor 2πS. Since we have
to consider all the possible homotopy sectors in the path integral representing the
partition function - that is, all possible paths for m -, the final form for Z is:

Z =
�

Q∈Z

�
Dmδ(m ·m− 1)e−

�
dτdxL e2πiSQ (2.5.11)

e2πiSQ is then a topological term. Its influence on the evaluation of the partition
function depends on whether we are dealing with integer or semi-integer spin:
if S is an integer number, the topological phase is just equal to one, and so it
doesn’t matter for the final result, while if S is semi-integer the sum over Q
becomes staggered, since the topological phase is equal to (−1)Q, making much
more difficult to predict through the path integral formulation of Z the behaviour
of the system. Though the problem of the evaluation of Z for the Heisenberg chain
is not resolved yet, there are very strong hints that a solution is possible; let us
then turn to a deeper analysis of Z and of what it tells us about the system under
examination.

2.6 A Renormalization Group transformation

The action we are dealing with is (2.4.22); of course, a redefinition of the
space-time variables is always possible, in order to find:

S̃ =

�
dxdτ

1

2g

�
(∂τm)2 + (∂xm)2

�
(2.6.1)

We have chosen a rescaling of the variables which would absorb the velocity v in
(2.4.23), in order to have exactly the euclidean formulation of lagrangian (2.5.2).
We are interested in a semiclassical analysis of Z, that is a low-energy perturbative
treatment of our action; this is possible only if the coupling constant g is reasonably
small, that is (see (2.4.24)) if the spin S is sufficiently large. This kind of analysis
corresponds to the assumption that the quantum perturbations are small, allowing
us to consider our partition function as a semiclassical object; moreover, since the
winding number can not be modified by local fluctuations, being a topological
property of the system, the topological term may be ignored in the following part
of our reasoning.

The new form for the action S̃ has the relevant property of being invariant
under rescaling of the variable by means of the same constant α; this kind of
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2.6. A Renormalization Group transformation

symmetry is called scale invariance:





x → αx

τ → ατ

m → m
⇒ S̃ → S̃ (2.6.2)

The model described by the action (2.6.1) is in 1+1 dimensions; it can be easily
generalized to an arbitrary number d of dimensions, but being careful with the
coupling constant (which is adimensional in the case of a bidimensional system,
but becomes dimensional when turning to a higher number of dimensions) [22]:

S̃d =
1

2uad−2
0

�
d
d
x(∂xm)2 =

�
dx

dL̃d (2.6.3)

u = ga
2−d
0 (2.6.4)

In (2.6.4) a0 is the (small) typical length scale of the system, and m is still com-
posed by three components. Since, as stressed before, we are interested in a low-
energy expansion, what we would like to do is to obtain an effective action for the
model, keeping in the evaluation of the path integral only the low-energy fluctu-
ation (that is, the one with small momentum p, also called infrared); the faster
(more energetic) modes of the fluctuations (called ultraviolet) may be integrated
away through a so called Renormalization Group transformation. In general, a
transformation of this kind consists in an appropriate variation of the coupling
parameters of the system which keeps the form of the action invariant, living
therefore unvaried the physical observables of the theory; the fluctuation of a scale
we are not interested in will be averaged and only the relevant one kept [22].

Let us suppose that the third component of m describes only fast fluctuations,
and so it may be regarded as small. Due to the fact the the module of m is
equal to one, we can parametrize the first two components of this classical field by
means of the third one and of an angle γ ∈ [0, 2π]; moreover, also the m3 will be
riparametrized by means of a scalar field ψ:

m1 =
�

1−m
2
3 cos(γ) (2.6.5)

m2 =
�

1−m
2
3 sin(γ) (2.6.6)

m3 =
�

ua
d−2
0 ψ (2.6.7)

m
2
1 + m

2
2 + m

2
3 = 1 (2.6.8)

Substituting (2.6.5), (2.6.6) and (2.6.7) in (2.6.3), the action becomes [22]:

S̃d =
1

2

�
d
d
x

�
(∂xψ)

2 +
1− ua

d−2
0 ψ

2

ua
d−2
0

(∂xγ)
2 +

ua
d−2
0

1− ua
d−2
0 ψ2

(ψ∂xψ)

�
(2.6.9)
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This expression can be further simplified expanding it in a Taylor series regarding
the coupling constant u as small: that is precisely the limit one should take into
consideration to have a semiclassical expansion. What we find, keeping terms up
to the second order in u is [22]:

S̃d =
1

2

�
d
d
x

�
(∂xψ)

2 +
1

ua
d−2
0

(∂xγ)
2 − ψ

2 (∂xγ)
2 +

+ ua
d−2
0 (ψ∂xψ)

2 + u
2
a
2(d−2)
0 ψ

2(ψ∂xψ)
2

�
(2.6.10)

Let us consider the superior cutoff κ for the momentum |p|, which is of the order of
the inverse of the space cutoff, κ ∼ 1

a0
. The fluctuations of this order of magnitude

are precisely the one we want to integrate out of the partition function, in order to
study the low-energy approximation: the idea is that phenomena at very different
momentum scales do not interact strongly, so they can be considered separately. It
is now possible to perform the path integral which express the averaging of these
fluctuation in the partition function; it will be done only over a shell of values for
the momenta, κb < |p| < κ, with 0 < b < 1 [22]:

�

κb<|p|<κ

Dψ(p)e
− 1

2

�
ddx

�
(∂xψ)

2+ 1

uad−2
0

(∂xγ)
2−ψ2(∂xγ)

2
�

(2.6.11)

We can now transport ψ and γ from the coordinate space to the momenta space
through a Fourier transform; keeping in mind that we can regard γ as varying
at a sufficiently small rate, in the limit b → 1 - so that the Fourier transform of
its gradient does not give momenta in the shell of values considered in the path
integral -, (2.6.11) may be rewritten as:

�

κb<|p|<κ

Dψ(p)e
− 1

2(2π)d

�
ddp|ψ(p)|2p2+ 1

2(2π)d

�
ddp|ψ(p)|(∂xγ)2 ∼

∼ e
1

2(2πd)

�
κb<|p|<κ ddp ln

�
2π
p2

�
+ 1

2(2π)d
(∂xγ)

2 �
κb<|p|<κ ddp 1

p2 (2.6.12)

The previous formula can be found calculating naively the first integral as it was
a usual gaussian integral and then exponentiating the result [22]. Substituting
this result in the expression for the partition function, the effective d-dimensional
Lagrangian density assumes the following form, ignoring all the terms from the
first order in u:

Leff
d = − 1

2(2πd)

�

κb<|p|<κ

d
d
p ln

�
2π

p2

�
+

1

2
(∂xψ)

2 +

+
1

2

�
1

ua
d−2
0

− 1

(2π)d

�

κb<|p|<κ

d
d
p

1

p2

�
(∂xγ)

2 − 1

2
ψ

2(∂xγ)
2

(2.6.13)
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2.6. A Renormalization Group transformation

The form of the effective Lagrangian is the same as the one we started from, pre-
ceded by a shifting constant, and with a redefinition of the coupling parameter -
exactly what we expected, having performed a Renormalization Group transform-
ation -:

1

ua
d−2
0

→
�

1

ua
d−2
0

− 1

(2π)d

�

κb<|p|<κ

d
d
p

1

p2

�
(2.6.14)

One more thing that is important to underline is that, having averaged all the
quantum fluctuations with momenta in the shell κb < |p| < κ, the cutoff for the
momentum has been changed by the transformation - and equivalently the spacial
one:

κ
� = bκ (2.6.15)

a
�
0 =

a0

b
(2.6.16)

It is clear that to a decrease of the momentum cutoff (2.6.15) corresponds an
increase in the spacial cutoff (2.6.16). (2.6.14) may now be expressed as [22]:

1

u�a�d−2
0

=
1

ua
d−2
0

− 1

(2π)d

�

κb<|p|<κ

d
d
p

1

p2

=
1

ua
d−2
0

− Sd

(2π)d
1

d− 2
(1− b

d−2)κd−2 (2.6.17)

In (2.6.17) the integral has been evaluated and Sd is the surface of the d-dimensional
sphere. This expression may be expanded in a Taylor series of the coupling con-
stant (we will keep only terms up to the second order), with the additional condi-
tion that the parameter ε = d − 2 should be regarded as small; in this way it is
then possible to find the so called β-function [22]:

β(u) =
du

d ln(a0)
= −εu+

u
2

2π
(2.6.18)

The system we considered at the beginning has one spacial dimension and one
“temporal” dimension, that is d = 2 (ε = 0). What we find is then:

β(u) =
u
2

2π
(2.6.19)

The β-function for a two-dimensional system is always positive; it means that, to
an increase of the spacial cutoff, an increase of the coupling parameter corresponds;
it implies that, looking at an effective theory for lower energy modes, the effective
coupling constant is increased respect to the one we started with. This result is
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SU(2) Antiferromagnetic Heisenberg Model

more striking if we remember that the coupling constant is linked to the spin S of
the chain:

u ∝ 1

S
(2.6.20)

So, at lower energy, it is possible to define an effective spin, which turns out to
decrease as the faster modes of the system are averaged and integrated out from
the partition function.These results are the starting point for the so called Haldane
conjecture about the behaviour of the Heisenberg Chain depending on whether the
spin is an integer or a semi-integer number, which will be enunciated and motivated
in the next section [22,27].

2.7 The Haldane Conjecture

The main feature of the system is its correlation length ξ, which is inversely
proportional to the mass of the system. If it is finite, then the model presents a
gap in its energy spectrum: the first excited states must have a finite difference in
energy respect to the ground state. If the correlation length diverges, it turns out
that the spectrum is gapless: excitations from the ground state can be find with
arbitrarily small variations of the ground state energy. In the first case, the system
is massive, in the second one is massless, or critical. The Haldane Conjecture [27]
states that half-integer Antiferromagnetic Heisenberg Spin Chains are massless,
while the ones with integer S have a gap in the spectrum; the explanation we
will give now is not a formal prove of this statement, but only a goodsense-based
reasoning strongly supporting it - and that is why it is called “conjecture”, even
though there are many evidences, also from a numerical point of view, that it
should be right. First of all, let us consider the correlation length ξ of the model,
and let us study how it changes under a change of the coupling constant [22]. In
general, since ξ is, dimensionally speaking, a length, it may be written as:

ξ = a0f(u) (2.7.1)

In this formulation, a0 is the spacial scale of the system and f is an adimensional
function depending on u. Since ξ should be invariant under a Renormalization
Group transformation, we can assume that:

dξ

d ln(a0)
= 0 (2.7.2)

From this expression one can get the following differential equation, in which the
β-function appears:

β(u)
dξ

du
(u) + ξ(u) = 0 (2.7.3)
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2.7. The Haldane Conjecture

Using (2.6.19) the solution can be easily calculated:

ξ(u1) = ξ(u2)e
2π
u1

− 2π
u2 (2.7.4)

We are interested in the calculation of ξ(u0), with u0 =
2
g - that’s where we started

-, supposing that u2 is sufficiently large - at limit infinite - to make e
2π
u2 negligible:

ξ(u0) ∼ ξ(u2)e
πS (2.7.5)

If the spin is integer, the partition function (2.5.11) presents no topological
term, so we have a “pure” Non Linear σ Model, with no influence from the to-
pological phase. Since it is well known that the O(3) NLσM is massive, it can
be reasonably inferred that the integer spin chain has a gap too; the correlation
length may be evaluated from (2.7.5):

ξ(u0) ∼ a0e
πS (2.7.6)

In (2.7.6) the correlation length of the system with the usual coupling constant u0

is estimated to be finite, supporting the thesis of the massiveness of the Heisenberg
Antiferromagnetic model with integer spin [22, 27]. The same can not be said for
the case of the half spin Heisenberg Chain, since the influence of the topological
term is relevant and difficult to analyze. Anyway, it is a well known result of
Bethe-Ansatz techniques [10] that in the 1

2 -spin case the model is massless. Since
we are interested only in the low-energy limit, we should keep in mind the result we
have found through the Renormalization Group transformation performed before:
the effective coupling constant increases as the fastest modes are integrated out
of the partition function in the semiclassical approximation we are considering.
Since the consequence is that the effective spin decreases, we can suppose that the
effective theory for a generic half-integer valued spin behaves roughly as the model
with the lowest half-integer valued spin possible, that is S = 1

2 . As we know that
this particular case is critical, it is possible to suppose that all the half-spin chain
are gapless, though obviously not reproducing exactly the behaviour of the 1

2 -spin
Antiferromagnetic Heisenberg Chain [22, 27].
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Chapter 3

Theoretical and experimental
approach to SU(n) systems

In the previous chapter we have seen how the SU(2) Heisenberg model can be
treated theoretically. An extension of this model to SU(n) degrees of freedom has
been object of research in the past years [1–3, 38, 39]; of course, one may ask why
we should be interested in lattice models showing a SU(n) symmetry, since we
usually use SU(2) degrees of freedom in order to describe spin systems.

SU(n) groups are well known in the literature since they constitute the gauge
symmetry of many phenomena in high energy physics; one example is SU(3) which
is the (non abelian) gauge group for Quantum Chromodynamics. In a SU(n) gauge
theory, the idea is to describe a (non-abelian) vector potential, belonging to su(n)
algebra, in interaction with a set of fields which transform according to some
representation of the SU(n) group.

Usually, lattice theories are mapped into field theories through semiclassical
approximations, as the continuum limit examined for the SU(2) Heisenberg model
in Chapter 2. In this way, it is possible to extrapolate information about the
lattice model from the continuum theory - in the case analyzed for SU(2), we
could estimate the presence or absence of a mass gap in the spectrum of the
system depending on the value of the topological term. For gauge theories defined
in a continuous space, it can be useful to do precisely the opposite thing, defining
a (simplified) gauge theory on a lattice, which is formulated by means of SU(n)
degrees of freedom; in this way, all the instruments and techniques of statistical
mechanics can be applied also to gauge problems [31]. Numerical simulations can
be realized and phase transitions can be examined from a different point of view.
In this sense, the formulation of SU(n) models on a lattice constitutes a bridge
between high energy physics and condensed matter systems.

This link has recently become even more important thanks to the experimental
results obtained in the study of SU(n) systems on a lattice: indeed, the increas-
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Theoretical and experimental approach to SU(n) systems

ing experimental ability in manipulating ultracold atoms trapped in an optical
lattice has made it possible to realize experimentally SU(n) systems in a con-
trolled framework, with the possibility to realize many different (effective) SU(n)
Hamiltonians on a lattice by tuning the setting parameters of the experiment. In
this sense, experimental settings involving ultracold atoms trapped into an optical
lattice have all the potentiality to constitute a quantum simulator for SU(n) gauge
theories [8, 24].

Since the focus of this work is on SU(3) symmetric 1-dimensional lattice mod-
els, an introduction to SU(n) lattice systems both from an experimental and from
a theoretical point of view is due. Firstly, some insight on the experimental tech-
niques used in this fields and on why this experimental method is so powerful is
given; then, a brief description of how in the literature SU(n) lattice models has
been theoretically studied, also from the point of view of semiclassical approxim-
ations - similar to the one described for the SU(2) case in the previous chapter -
is provided.

3.1 Experimental approach to SU(n) models

Recently many researchers have focused their attention on the experimental
implementation of SU(n) symmetric systems, like the ones we have introduced
in the previous paragraph. Many experiments have been done using fermionic
ultracold alkaline-earth atoms (usually some isotopes of Ytterbium or Strontium)
trapped into an optical lattice realized in order to simulate systems whose effective
Hamiltonian presents a SU(n) symmetry, making it possible to investigate from
an experimental point of view gauge theories defined on a lattice, which, as said
before, can be put in relation with many high energy physics phenomena. In this
sense experiments with ultracold atoms in optical lattices constitute a powerful
and promising quantum simulator for a wide variety of physical phenomena; also
the possibility of simulating not only lattice theories with just gauge degrees of
freedom, but also the interaction between matter and gauge fields is being investig-
ated [8]. In recent times, the possibility to use Ytterbium atoms in order to study
SU(6)-symmetric systems has been explored both from a theoretical [13] and an
experimental point of view [44].

Let us now turn to a brief outline of the implementation of SU(n) systems with
this promising experimental technique [24]. The ultracold atoms are confined into
a lattice, which is created by a periodic potential generated by a set of laser beams.
In this way, it is possible to reproduce lattices in various dimensions. Alkaline-
earth atoms are the properest ones for this kind of experiments, due to their
characteristic features: firstly, their electronic configuration presents an excited
state (|e�) and a ground state (|g�) with total electron spin J equal to zero in
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3.2. Read’s and Sachdev’s approach to SU(n) systems

both cases; secondly, their nuclear spin degree of freedom is almost completely
decoupled to the electron spin, given the constraint that the total wave function
must be antisymmetric. Together, these two features make these atoms a good
choice to simulate SU(n) systems, though, of corse, both nuclear and electronic
spin constitute a SU(2) degree of freedom.

Let us now explain why it is so. Thanks to these characteristics, the effective
strong-coupling Hamiltonian of these kind of systems can be formulated by means
of a set of destruction (creation) operators cj,α,m (c†j,α,m) which destruct (create)
an atom at the j-th site of the lattice, in the electronic state α - which can be |g�
or |e� - and, denoting with I the nuclear spin, Iz equal to m - which, of course,
can vary in the set (−I,−I + 1, . . . , I − 1, I). Using these operators it is possible
to define a further one, Smn, which fulfills su(n) algebra, with n = 2I + 1:

Smn =
�

j,α

c
†
j,α,ncj,α,m (3.1.1)

[Smn, Spq] = δmqSpn − δpnSmq (3.1.2)

It is now clear these are particularly suitable in order to represent SU(n) models
on a lattice. Moreover, due to the fact that the number of particles with a certain
nuclear spin on the lattice is constant, Smm is constant too for each value of m in
(−I,−I + 1, . . . , I − 1, I); this implies that, by fixing Smm to zero for some values
of m, it is possible to reproduce a SU(n) symmetry with n < 2I + 1.

This experimental technique is incredibly powerful. For example, depending
on the number of particles on each site of the lattice, it is possible to fix the
representation of the SU(n) group on each site. Indeed, the number of particles at
the j-th site of the lattice, nj, (nj =

�
α,m c

†
j,α,mcj,α,m) is equal to the sum of the

heights of each column of the Young diagram corresponding to the representation
of SU(n) on that site (let’s keep in mind that, due to the total antisymmetry of the
wave function and to the restriction on the possible electron states, the maximum
number of columns in such a tableaux is two).

3.2 Read’s and Sachdev’s approach to SU(n) sys-
tems

It has been shown in Chapter 2, in which the SU(2)-symmetric Heisenberg
model has been studied, how in that case it is possible to get the underlying low-
energy field theory from the lattice model through the continuum limit. It is im-
portant to remark, however, that this kind of limit is, of course, an approximation,
since we are dealing with a semiclassical approach. An approach to this problem in
the context of SU(n) chains has been proposed by Sachdev and Read [38,39]; this
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section is devoted to a review of their work. The model they are interested in is
the SU(n)-symmetric generalization of the Antiferromagnetic Heisenberg model,
which is defined substituting in the proper way SU(n) generators to the SU(2)
ones of the usual formulation.

The aim of Read’s and Sachdev’s work is to study a semiclassical approxima-
tion for a SU(n) antiferromagnetic Heisenberg Chain, in case there are conjugate
representations of the SU(n) group on even and odd sites.

3.2.1 The fermionic formulation of the SU(n) generators

The Hamiltonian Read’s and Sachdev’s are interested in is given by the fol-
lowing straightforward SU(n)-symmetric generalization of the antiferromagnetic
Heisenberg model:

H =
J

n

�

i

�

αβ

Sαβ(i)Sβα(i+ 1) (3.2.1)

Sαβ are the generators of the su(n) algebra, in a chosen representation on the odd
sites and in its conjugate representation on the even ones. If we label with nc

the number of columns and with m the number of rows of a rectangular tableau,
we have that the conjugate of a SU(n) representation (m,nc) is characterized by
(n−m,nc). A particular case, on which we will focus in the next chapters of this
work, is the one of fundamental and antifundamental representations of SU(3):

{3} = (m = 1, nc = 1) (3.2.2)

{3} = (m = 2, nc = 1) (3.2.3)

The generators of the su(n) algebra can be redifined using fermionic operators.
The idea is to describe the SU(n) degrees of freedom of a site by the presence
(absence) of one or more fermions on that site, with n possible types of fermions,
each one with nc possible colours.

In order to do so, let us introduce the set of SU(n) operators:

Ŝαβ =
�

a

c
†
a,βca,α − δαβ

nc

2
(3.2.4)

The operators cα (c†α) are fermionic destruction (creation) operators of tha α-th
species, α ∈ {1, . . . , n} in the a-th colour, a ∈ {1, . . . , nc}. It is easily verified that
the operators so defined fulfill the su(3) algebra:

�
Ŝαβ, Ŝγδ

�
= Ŝγβδαδ − Ŝαδδβγ (3.2.5)
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3.2. Read’s and Sachdev’s approach to SU(n) systems

The constraint on the number of fermions on odd ((m,nc) representation) and
even ((n−m,nc) representation) sites is:

�

α

c
†
a,αcb,α = δabm on odd sites (3.2.6)

�

α

c
†
a,αcb,α = δab(n−m) on even sites (3.2.7)

Another equivalent picture for the even-sublattice representation is found per-
forming a particle-hole transformation on the even sites. In that case, the gener-
ators acting upon odd sites are (3.2.4), while on the even sites the generators are
defined as:

−Ŝαβ =
�

a

d
†
a,αda,β − δαβ

nc

2
(3.2.8)

da,α and d
†
a,α are new fermionic operators, and formally destroy and create holes

on the even sites. The constraint on the number of holes on each (even) site is
given by (3.2.6).

3.2.2 SU(n) coherent states

In order to write the partition function of the systems by means of a path
integral, as described for the SU(2) case in Chapter 2, it is necessary to introduce
coherent states for a SU(n) symmetry. There are many different definitions (see
for example [35], or [25,32] for a study of SU(3) coherent states), but we will stick
to the one provided by Read and Sachdev in [38,39], since it is the one best fitting
their construction.

First of all, let us introduce the highest weight state for the (m,nc) represent-
ation. It is defined as the state |Ψ0(m,nc)� which fulfills:

Ŝαα|Ψ0(m,nc)� = +
nc

2
α ∈ {1,m} (3.2.9)

Ŝαα|Ψ0(m,nc)� = −nc

2
α ∈ {m+ 1, n} (3.2.10)

On the even sublattice, the highest weight state is defined as the state |Ψ0(n −
m,nc)� which fulfills:

Ŝαα|Ψ0(n−m,nc)� = −nc

2
α ∈ {1,m} (3.2.11)

Ŝαα|Ψ0(n−m,nc)� = +
nc

2
α ∈ {m+ 1, n} (3.2.12)

Coherent states for the representation (m, nc) are found applying the expo-
nential of the generators on the highest weight state; the explicit expression for a
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coherent state is:

|q� = exp
�
qλµŜµλ − q

∗
λµŜλµ

�
|Ψ0(m,nc)� (3.2.13)

qλµ are complex fields. In the previous formula, λ ∈ {1,m} and µ ∈ {m+1, n}. In
this way, the exponential in (3.2.13) does not take into account those generators
which leave the highest weight state invariant. If we call U the matrix exponential
of the generators in (3.2.13), what we get is:

|q� = U |Ψ0� (3.2.14)

U = exp

��
0 q

−q
† 0

��
(3.2.15)

With q we denote the complex fields qλµ disposed accordingly with the value of λ
and µ.

Precisely the same construction holds for the conjugate representation on the
even sites.

3.2.3 The path integral formulation of the partition func-
tion

The coherent states introduced in the previous paragraph are the starting point
for Read’s and Sachdev’s formulation of the partition function Z through a path
integral.

It is now possible to replicate all the calculation performed in Chapter 2 in order
to evaluate the partition function with a path integral; the type of reasonment is
precisely the same, but SU(3) coherent states are used instead of SU(2) ones.
What Sachdev and Read get is:

Z =

�
DQ(τ) exp (−S) (3.2.16)

S =

� β

0

dτH(Q(τ)) + SB (3.2.17)

SB = −
� β

0

dτ�q|q̇� (3.2.18)

Analogously to the vector Ω introduced in the SU(2) case (see section 2.2), Q is
the tensor found calculating the expectation value of the SU(n) generators Ŝαβ on
the coherent state. Also in this case, a Berry phase term, SB, is present, and is of
fundamental importance in order to determine the behaviour of the system.

In order to perform the continuum limit, it is necessary to work in the semiclas-
sical approximation nc → ∞; in this limit, Read and Sachdev find a continuous
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non-linear sigma model in 2 dimensions with a topological term, as a function of
a unitary hermitian tensor field Ω(x, τ):

S = SB +
1

2

� β

0

dτdxTr

�
Jn

2
c

4n
(∂xΩ)

2 +
n

16Ja2
(∂τΩ)

2

�
(3.2.19)

With a we denote the lattice spacing of the chain.This action is of particular in-
terest since it has a U(n)/(U(m)× U(n−m)), and so it is a so called grassmannian
non-linar σ model [3]. In this sense, in the large-nc limit, the system under study
breaks the SU(n) symmetry into a smaller one.

A case of particular interest is the one with m = 1. In this case, after some
calculus, Sachdev [39] finds the following explicit formulation for the continuum
limit of S:

S = SCPn−1 + SB (3.2.20)

SCPn−1 =
2

g

�
dxdτ (∂µz · ∂µz∗ − (z∗ · ∂µz) (z · ∂µz∗)) (3.2.21)

SB =
nc

2

�
dxdτ�µν (∂µz

∗) (∂νz) (3.2.22)

In the previous formulæ, g is the rescaled coupling constant, g = 4a
nc
. z is a complex

vector field with n components, which are assumed to vary slowly. It fulfills the
constraint:

z · z∗ = 1 (3.2.23)

Action (3.2.21) is the action of the so called CP
(n−1) model [37]; it depends on

a complex n-dimensional vector field with the constraint expressed by (3.2.23)
living in a two-dimensional space. CP

1 correspond to the O(3) non-linear σ model
described in section 2.5. Let us now turn to a brief description of the properties
of the CP

n−1 model [37].

3.2.4 CP
n−1 models

The Lagrangian of the CP
n−1 model is [37]:

LCPn−1 = ∂µz · ∂µz∗ − (z∗ · ∂µz) (z · ∂µz∗) (3.2.24)

z, as said before, is a n-dimensional complex vector field with norm equal to one:

z =




z1
...
zn



 z · z∗ = 1 (3.2.25)
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It should be noticed that z · ∂µz is a pure imaginary number, because, due to the
constraint (3.2.25) it holds that:

∂µ(z · z∗) = ∂µz · z∗ + z · ∂µz∗ = 0 ⇒ Re(z∗ · ∂µz) = 0 (3.2.26)

One important feature of the model is the presence of a U(1) gauge invariance;
the lagrangian LCPn−1 is invariant under a transformation:

zj(x, τ) → zj(x, τ)e
iα(x,τ)

j ∈ {1, ..., n} (3.2.27)

Due to this symmetry, we can introduce an auxiliary gauge vector field Aµ, pre-
cisely as it is usually done in the context of QED. This field doesn’t describe
any physical degree of freedom, but expresses the gauge invariance of the system;
indeed one can rewrite the Lagrangian as:

LCPn−1 = ∂µz · ∂µz∗ + AµAµ − 2Aµ(iz
∗ · ∂µz) (3.2.28)

Aµ = iz∗ · ∂µz (3.2.29)

With (3.2.29), which expresses the equation of motion of Aµ from Lagrangian
(3.2.28), the two formulations of the CP

n−1 Lagrangian (3.2.24) and (3.2.28) co-
incide. To continue our parallelism with QCD, we can formulate the Lagrangian
once again using the covariant derivative:

LCPn−1 = (Dµz)
∗ · (Dµz) (3.2.30)

Dµ = ∂µ + iAµ (3.2.31)

We can now find the equation of motion, which should also keep track of the
constraint on the modulus of z. In order to do so, we must extremize:

Stot =

�
dxdτ (LCPn−1 + λ(x, τ) (z · z∗ − 1)) (3.2.32)

The equation of motion we find, simplified by means of the constraint - which
makes it possible to express λ(x, τ) in terms of z and the gauge field - is [37]:

DµDµz− (z∗ ·DµDµz) z = 0 (3.2.33)

It can be shown [37] that, in order to avoid divergencies of the action, the limit of
the vector field z for r =

√
x2 + τ 2 → ∞ must fulfill:

lim
r→∞

z(x, τ) = z0e
iφ(θ) (3.2.34)

θ is the angle which, with the radius r, describes in polar coordinates the two-
dimensional (x, τ) physical space. z0 is fixed, while the phase angle φ can vary in
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function of θ - so, it depends on the direction from which the limit is calculated.
φ, being an angle, describes a one dimensional sphere (that is, a circumference),
which we shall call Sint

1 , since it describes the internal space of the fields at infinity,
while the circumference formed by the possible values of by θ describe the physical
space, so it is called S

phys
1 . The boundary conditions in (3.2.34), in this sense,

describe a mapping between two cirmuferences:

φ(θ) : Sphys
1 → S

int
1 (3.2.35)

As for the case of mappings between spheres S2, also maps between S1 spheres
can be divided in homotopy classes, that is, classes of mappings which can be
deformed with continuity one in the other. These homotopy classes form a group,
π1(S1), which is isomorphic to Z; in this sense, each homotopy class can be labeled
by an integer number called winding number, and denoted with Q. It can be
demonstrated [37] that in our case the explicit expression for Q is:

Q = − i

2π

�
dxdτ�µν(Dµz)

∗(Dµz)

= − i

2π

�
dxdτ (�µν ∂µz

∗ · ∂νz +

+ �µν (AµAν + iAµ ∂νz
∗ · z+ iAν ∂µz

∗ · z))

= − i

2π

�
dxdτ�µν ∂µz

∗ · ∂νz (3.2.36)

We can now go back to the partition function in the continuum limit for the
SU(n) Heisenberg model described before. The Berry phase (3.2.22) can be written
in terms of the winding number Q:

SB = iπncQ (3.2.37)

In order to take into consideration all the homotopy sectors - that is, all the possible
paths for z, the partition function we have is:

Z =
�

Q

�
DzDz∗δ(z · z∗ − 1)e−SCPn−1 (−1)ncQ (3.2.38)

From the previous expression, it is clear that if nc is even it does not influence
the partition function while, if it is odd, the oscillating term in the partition
function makes it much difficult to study the behaviour of the model through a
path integral formulation. CP

n−1 models have been investigated deeply both from
a numerical [9] and a theoretical point of view [37], due to the fact that it has been
argued that this class of model may be used in order to describe QCD.

57



Theoretical and experimental approach to SU(n) systems

3.3 Some remarks on the SU(3) chain

In this chapter, we have provided some known results about SU(n) systems on
a lattice, with particular emphasis on the SU(n) Heisenberg model with altern-
ate representations. Aim of this work is to study the SU(3) Antiferromagnetic
Heisenberg model. The formulation with the fundamental and antifundamental
representation of SU(3) alternated on even and odd sites of the chain can be re-
garded to be of particular interest, since, due to Sachdev’s and Read’s calculations
discussed in the previous section, it can be linked to a model (CP

2) of particular
interest in the study of high energy phenomena. It should be kept in mind, how-
ever, that the results discussed before hold only in a semiclassical approximation -
that is, for nc → ∞ -. Since the fundamental and antifundamental representations
- which both have nc = 1 - are far from this limit, this result should be applied
with particular attention to this peculiar case.

One other reason which makes this chain particularly interesting is the fact
that SU(n) Heisenberg models of the type described by Read and Sachdev have
been inferred [14] to be gapped with n > ncritical, and gapless with n < ncritical,
with ncritical = 3; in this sense, the SU(3) Heisenberg chain with alternated rep-
resentations constitutes a “transition point” for this class of Hamiltonians.

It is clear that the SU(3) Heisenberg chain is a system whose peculiar features
are very interesting. In the next chapters, we will provide a map which allows us to
write this chain and its “twin” one with the same representation on each site into
spin-1 chains, whose behaviour is well known, and some new numerical results will
be discussed. Moreover, due to the limitations highlighted before, an alternative
approach to the path integral formulation of the partition function of these SU(3)
systems is proposed, which may be applied to a wider class of Hamiltonians.
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Chapter 4

SU(3) Antiferromagnetic
Heisenberg Model

This chapter is devoted to the study of the SU(3) quantum Antiferromagnetic
Heisenberg Hamiltonian, and to provide some new results about it. Firstly, the
two possible non-equivalent formulations of a Heisenberg Hamiltonian showing a
SU(3) symmetry are presented and discussed; the one we are more interested in
is the one with alternated fundamental and antifundamental representations on
odd and even sites. Secondly, an explicit mapping between SU(3) operators and
SU(2) generators in its spin-1 representation is proposed, and the models we get
mapping the Heisenberg SU(3) chains into spin-1 are introduced and described.
Some new numerical results about the SU(3) Heisenberg chains with alternated
representations are presented and compared with the known analytical predictions.
Finally, we propose an alternative approach to the path integral formulation of the
SU(3) lattice models which could be useful in a wide variety of cases.

4.1 Two non-equivalent Hamiltonians

The model we want to study in this work is the so called SU(3) Antiferro-
magnetic Heisenberg Model. Its Hamiltonian resembles the one of the SU(2) case
(2.1.1), but the generators SU(2) are replaced with the ones of SU(3). Precisely as
in the case of a SU(2) symmetry, one may ask which representation - the equivalent
of the SU(2) spin - is used in the formulation of this quantum Hamiltonian. If we
want to stick to the simplest ones, that is, the fundamental and antifundamental
representations, the variety of Heisenberg-like models is wider than in the SU(2)
case, due to the fact that for SU(2) fundamental and antifundamental representa-
tions coincide, while for SU(3) it is not so. The most straightforward Heisenberg
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Hamiltonians with a SU(3) degree of freedom on each site are:

Ĥ = J

�

i

8�

α=1

λ
2i−1
α λ

2i
α + J

�

i

8�

α=1

λ
2i
α λ

2i+1
α (4.1.1)

Ĥ
� = J

�

i

8�

α=1

λ
i
αλ

i+1
α (4.1.2)

In (4.1.1) and (4.1.2) the site index is denoted in roman letters, while the greek
letters label the matrices of the Gell Mann set (in the fundamental or antifunda-
mental representation). The sign of J determines the (anti)ferromagnetic beha-
viour of these models; our main interest is on the antiferromagnetic case (J > 0).
Moreover, it is quite evident that we are considering only isotropic chains.

The main difference between these two systems is given by the SU(3) degrees
of freedom that can be found on the sites of a chain: in the model described by
Ĥ

�, the “particle” at each site can be described by means of SU(3) fundamental
representation, while the Hamiltonian Ĥ describes a system with a SU(3) antifun-
damental representation on even site and fundamental representation on the odd
ones. Hamiltonian Ĥ

� has been studied in literature [2,5]; of particular importance
is the possibility to map this system in a spin-1 model with Hamiltonian:

ĤLS = J

�

i

�
Si · Si+1 + (Si · Si+1)

2� (4.1.3)

This model is the well known Lai-Sutherland model, which is known to be critical
[43]; this of course implies that also the model Ĥ � is critical, as confirmed by
numerical results [5]. In particular, its central charge is c = 2, as the correspondent
field theory is a SU(3) Wess Zumino Witten model of level k = 1. An explicit
mapping between SU(3) systems and spin-1 models which can be applied also to
this case is proposed in the next section. The quantum numbers of this system
are:

X̂ =
�

i

Xi (4.1.4)

Ŷ =
�

i

Yi (4.1.5)

Through this quantum numbers it is possible to catalogue all the states in the
spectrum, which, of course, are organized according to SU(3) representations:

{3}⊗ {3}⊗ . . . = {3}⊕ {6} . . . (4.1.6)

⊗ ⊗ . . . = ⊕ ⊕ . . . (4.1.7)
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The hamiltonian Ĥ is of particular importance. It has not been investigated
very much in its SU(3) formulation, but it is known to correspond to a pure
biquadratic spin 1 chain [2, 14]:

Hbiq = −J

�

i

(Si · Si+1)
2 (4.1.8)

The mapping between SU(3) degrees of freedom and spin-1 ones proposed in the
next chapter will make this correspondence clear. SinceHbiq is known to be massive
[29, 30], also our system has a non-null energy gap.

Just from the fact that one is massless and the other is massive, it is clear that
the choice of the representations used in the formulation of a SU(3) Heisenberg
model makes Ĥ � and Ĥ completely different from a physical point of view, though
they seem so similar one to the other. It shouldn’t arrive as a surprise, however: it
is easy to see, after an explicit calculation of the λα keeping in mind (1.3.11), that
the Hamiltonian with alternated fundamental and antifundamental representations
may be written as an anisotropic all-fundamental SU(3) Heisenberg spin-chain:

Ĥ = J

�

i

�
−λ

i
1λ

i+1
1 + λ

i
2λ

i+1
2 − λ

i
3λ

i+1
3 − λ

i
4λ

i+1
4

+λ
i
5λ

i+1
5 − λ

i
6λ

i+1
6 + λ

i
7λ

i+1
7 − λ

i
8λ

i+1
8

�
(4.1.9)

As a basis for a single site with a fundamental representation, the canonical
basis for C3 may be chosen, since it is formed by the common eigenvectors of X
and Y (see equation (1.3.5)), which correspond to the |1�, |2�, |3� states (u, d, s
respectively) represented in figure 1.2:

|u� =




1
0
0



 |d� =




0
1
0



 |s� =




0
0
1



 (4.1.10)

The quantum numbers for the antifundamental representation are provided by
X = −X, Y = −Y ; this means that, also in the case of the antifundamental
representation, the canonical basis for C3 can be chosen as basis for the Hilbert
space of a single site. The three vectors of the basis correspond to the |1�, |2�, |3�
states (u, d, s) depicted in figure 1.3:

|u� =




1
0
0



 |d� =




0
1
0



 |s� =




0
0
1



 (4.1.11)

It is important to highlight that, though these basis are formally the same, from
a physical point of view they describe very different entities, being related to
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fundamental and antifundamental representation respectively (that is, to particles
and antiparticles!). The hilbert space of the chain may also be described through
the use of Young diagrams:

{3}⊗ {3}⊗ {3}⊗ {3}⊗ . . . = {1}⊕ {8}⊕ {1}⊕ . . . (4.1.12)

⊗ ⊗ ⊗ ⊗ . . . = ① ⊕ ⊕ ① ⊕ . . . (4.1.13)

One of the quantum numbers of the chain is given, of course, by the sum of X on
the odd site and X on the even sites; the other one is the sum of Y on the odd
sites and Y on the even sites.

X̃ =
�

i

(X2i−1 +X2i) =
�

i

(−1)i+1
Xi (4.1.14)

Ỹ =
�

i

(Y2i−1 + Y 2i) =
�

i

(−1)i+1
Yi (4.1.15)

X̃ and Ỹ are used to label all states, and so divide the spectrum in “spin” sectors.

4.2 A mapping into a spin-1 chain

The Hamiltonians introduced in the previous section are defined through the
use of 3 × 3 matrices; one may ask if they are related to some SU(2) invariant
spin-1 chain, since also in the case of a spin-1 system the Hilbert space of a single
site is C3. Indeed, we will show that this is the case. In order to do so, it is
necessary to map a set of SU(3) operators into spin operators fulfilling the su(2)
algebra. A good choice, in our case, is provided by:

S1 = λ7 S2 = −λ5 S3 = λ2 (4.2.1)

These three operators fulfill the relations:

[λ7,−λ5] = iλ2

[λ7,λ2] = −i (−λ5)

[−λ5,λ2] = iλ7 (4.2.2)

These reproduce the su(2) algebra:

[Si, Sj] = �ijkSk (4.2.3)
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By multipling the three spin components between themselves, we get all the other
Gell-Mann matrices:

(S1)
2 =

1

2

�
−λ3 −

1√
3
λ8 +

4

3
I
�

(S2)
2 =

1

2

�
λ3 −

1√
3
λ8 +

4

3
I
�

(S3)
2 =

1√
3
λ8 +

2

3
I

S1S2 = −T S2S1 = −T
†

S2S3 = −U S3S2 = −U
†

S3S1 = −V S1S3 = −V
† (4.2.4)

Of course, a mapping of this type implies a mapping between spin-1 states and
SU(3) states. Due to the fact that for our purposes we will use the all-fundamental
formulation of the Hamiltonian Ĥ, the correspondence between SU(2) and SU(3)
states is the same on even and odd sites of the chain. In this sense, a basis for
the Hilbert space of a single site is found diagonalizing the third component of
spin, that is the λ2 Gell-Mann matrix. Its eigenvalues are {−1, 0, 1}, as expected
for the operator S3 of a SU(2) symmetry with spin equal to one. A choice for the
respective eigenstates is provided by:

|− 1� =




i√
2
1√
2

0



 =
i|u�+ |d�√

2

|0� =




0
0
1



 = |s�

|1� =




− i√

2
1√
2

0



 =
−i|u�+ |d�√

2
(4.2.5)

It is clear that, in the mapping, the u and d states of the fundamental repres-
entation are mixed (summed and subtracted) in order to get the proper spin-1
eigenstates.

First of all, let us notice that the SU(2) Heisenberg model in this formulation
assumes the form:

HHeis = J

�

i

(Si · Si+1) = J

�

i

�
λ
i
2λ

i+1
2 + λ

i
5λ

i+1
5 + λ

i
7λ

i+1
7

�
(4.2.6)
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Of particular interest in our case is the SU(2) spin-1 biquadratic chain:

Hbiq = −J

�

i

(Si · Si+1)
2 (4.2.7)

Indeed, we find that it corresponds to the SU(3) Antiferromagnetic Heisenberg
Hamiltonian with alternate representations on the chain in the formulation (4.1.9),
up to a multiplicative constant and an additive term whose only consequence is to
shift the spectrum of the model:

Hbiq =
J

2
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i

�
− λ

i
1λ

i+1
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i
2λ

i+1
2 − λ

i
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i
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i
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i
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i
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i
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=
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2
Ĥ − 4

3
L (4.2.8)

The final additive term in (4.2.8) does not constitute a problem since it is linear
respect to the size L of system, which means that it just shifts the energy density
of the chain in the thermodynamic limit.

The general Hamiltonian which can be found combining (4.2.6) and (4.2.7) has
been deeply investigated in literature. It can be formulated as:

Htot = J1

�

i

Si · Si+1 − J2

�

i

(Si · Si+1)
2 =

= J

�
cos(α)

�

i

Si · Si+1 − sin(α)
�

i

(Si · Si+1)
2

�

J1 = J cos(α)

J2 = J sin(α) (4.2.9)

In the previous expression we are assuming J > 0. It can be easily verified that,
if we set α = −π

4 in the previous expression, corresponding to the Lai-Sutherland
chain, the explicit Hamiltonian we get in terms of SU(3) generators corresponds
to Hamiltonian (4.1.2) describe in the previous section.

The physics of the system changes sensibly varying the angle α; the phase
diagram as proposed by many works in literature (see, for example, [2, 6, 14, 21])
is represented in figure 4.1. Also its generalization to a higher dimensional lattice
has been deeply investigated [45].

There are some points of the diagram, corresponding to particular values of
the angle α, which enjoy a SU(3) symmetry. First of all the pure biquadratic
chain with a negative coupling may be recovered for α = π

2 (point F on the phase
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Highest weight state description of the isotropic spin-1 chain
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We introduce an overcomplete highest weight state basis as a calculational tool for the description of the
isotropic spin-1 chain with bilinear exchange coupling J1 and biquadratic coupling J2. The ground state can be
expressed exactly at the three special points in the phase diagram where the Hamiltonian corresponds to a sum
of nearest neighbor total spin projection operators !J1=0!J2, J1=−J2"0, and J1=−J2 /3!0". In particular, at
the phase transition point J1=−J2"0, it is possible to exactly compute the ground states, excited states,
expectation values, and correlation functions by using the new total spin basis.
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I. INTRODUCTION

There has been a large interest in the isotropic one-
dimensional spin-1 chain ever since Haldane’s prediction1,2

that the excitation spectrum in integer spin Heisenberg
chains should show a gap in strong contrast to the model
with half-integer spins. The general SU!2" invariant spin-1
chain model with nearest neighbor coupling is given by

H = #
i=1

N

$J1Si · Si+1 − J2!Si · Si+1"2%

= J#
i=1

N

$cos # Si · Si+1 − sin # !Si · Si+1"2% , !1"

where Si are the spin-1 operators at site i in a one-
dimensional periodic lattice with N sites. Exact analytical
solutions at special points were obtained by Affleck,
Kennedy, Lieb and Tasaki !AKLT",3,4 Sutherland,5

Klümper,6–8 and Barber and Batchelor,9 which supported
Haldane’s hypothesis and established an interesting phase
diagram10,11 as shown in Fig. 1. Experimental results on
quasi-one-dimensional spin-1 compounds such as “NENP,”
CsNiCl3, or AgVP2S6 also confirmed the gap and the exis-
tence of effective s= 1

2 spins near boundaries.12,13 The spin-1
chain was also one of the driving forces in the development
of the density matrix renormalization group algorithm, which
in turn provided very accurate estimates of the excitation
spectrum and the correlation lengths at the Heisenberg
point.14,15

By changing the ratio of the Heisenberg coupling J1 and
biquadratic exchange term J2, the system can be tuned
through at least three antiferromagnetic regions11 and one
ferromagnetic phase, as shown in Fig. 1. The three estab-
lished antiferromagnetic regions are called Trimer, Haldane,
and Dimer, of which the last two are gapped. Because in
most substances the biquadratic exchange term is much
smaller compared to the bilinear term, the experimental re-
alization in regions with dominant biquadratic exchange term
was not possible for a long time. First experimental success
was achieved with LiVGe2O2, which appears to be well de-
scribed by a large positive value of J2.16

The similarity of the phase diagrams of the spin-1 chain
compared to the spin-1

2 chain with next nearest neighbor cou-

pling is striking. The spin-1
2 model of a periodic chain with

sites N is given by

H = #
i=1

N

!J1si · si+1 + J2si · si+2"

= J#
i=1

N

!cos $ si · si+1 + sin $ si · si+2" , !2"

where si are the spin-1
2 operators at site i. The spin-1

2 chain
also shows three antiferromagnetic regions, two of which are
believed to be gapped, and one ferromagnetic phase as
shown in Fig. 1. It is known that the AKLT point in the
spin-1 chain is in the same phase as the Majumdar-Ghosh
point17 in the spin-1

2 chain, i.e., the two points B and b in Fig.
1 can be connected in a more general parameter space.18 We
also see that the two gapped phases in both the spin-1 and
the spin-1

2 chain are separated by an integrable point with
SU!2"2 symmetry !points G and g". Moreover, in both cases,

FIG. 1. !Left" Phase diagram of the spin-1 chain as function of
#: A!0", pure Heisenberg chain; B!−arctan 1 /3", AKLT point !Refs.
3 and 4"; C!−% /4", Sutherland model !Ref. 5"; D!−% /2", phase
transition !Ref. 19"; E!3% /4", phase transition !Refs. 20–22";
F!% /2", exactly solvable !Refs. 6–8"; and G!% /4", SU!2"2 inte-
grable point !Refs. 23–25". !Right" Phase diagram of the spin-1

2
chain as function of $: a!0", Heisenberg chain !Ref. 26";
b!arctan 1 /2", Majumdar-Ghosh point !Ref. 17"; c!&0.24", critical
point !Ref. 27"; d!−% /2", phase transition; g!% /2", two independent
chains, SU!2"1&SU!2"1 integrable; and e!%−arctan 1 /4", phase
transition !Ref. 28". The gaps are generically denoted by !. The
points B, D, and E are projection points treated in this paper.

PHYSICAL REVIEW B 77, 014429 !2008"

1098-0121/2008/77!1"/014429!7" ©2008 The American Physical Society014429-1

Figure 4.1: The phase diagram of the Hamiltonian (4.2.9) in function of α.
Figure taken from [6].

diagram); as seen before, it corresponds to the antiferromagnetic Heisenberg SU(3)
model with alternated representations. It turns out to be exactly solvable and it is
in a massive phase [29,30]. The diametrically opposite point α = −π

2 (D in figure
4.1) corresponds to the SU(3) ferromagnet with alternated representations on the
sites (that is, we have just switched the sign of the coupling of the biquadratic
chain); it is at the transition point between two massless phases [36]. Also point C
(α = −π

4 ) is quite interesting: it is the well known Lai-Sutherland model, which,
as pointed out before, can be mapped into a the SU(3) antiferromagnetic chain
with the fundamental representation at each site. It is massless and its central
charge is c = 2 (the underling field theory is a Weiss Zumino Witten model of
level k = 1) [2,5] . Changing the overall sign of the Hamiltonian, one turns to the
equivalent of a SU(3) ferromagnetic chain with the same representation at every
site (point E in figure, α = 3

4π).

4.2.1 The map applied to the quantum numbers

The mapping proposed in this Chapter is quite useful also because it makes
much more explicit which are the quantum numbers in those points of the dia-
gram 4.1 which have a SU(3) symmetry. Indeed, for the antiferromagnetic SU(3)
Heisenberg model with the same representation all over the chain, the quantum
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numbers are:

X̂ =
�

i

Xi

Ŷ =
�

i

Yi (4.2.10)

Of course, they still are quantum numbers also in the case of a ferromagnetic
coupling. Thanks to the map provided in (4.2.2) and (4.2.4), we may translate
these quantum numbers in the spin-1 language; if we do so we obtain the quantum
numbers for the Hamiltonian:

HLS = J

�
�

i

Si · Si+1 +
�

i

(Si · Si+1)
2

�
(4.2.11)

As said before, depending on the type of coupling, it corresponds to the point C
(Lai-Sutherland model, antiferromagnetic coupling) and E (ferromagnetic coup-
ling) in the phase diagram in fig. 4.1. Its quantum numbers turn out to be (up to
multiplicative and additive constants, which can be ignored):

X̂ =
�

i

(S2
3)i

Ŷ =
�

i

(S2
2 − S

2
1)i

(4.2.12)

Using the commutation relations of the su(2) algebra it can be verified in a straight-
forward way that X̂ and Ŷ commute with HLS, confirming in this way that they
are good quantum numbers for the model.

Precisely the same thing happens for the point F and D in figure 4.1, which,
as already noticed, correspond to the SU(3) antiferromagnet and ferromagnet re-
spectively with alternate representations on odd and even sites. Since Ỹ and
X̃ (see (4.1.14) and (4.1.15)) are quantum numbers for the SU(3) Hamiltonian
Ĥ, the correspondent SU(2) operators are quantum numbers of the spin-1 chain
Hbiq (4.2.7). In this sense, from (4.1.14), (4.1.15) and (4.2.4) we find that, up
to multiplicative and additive factors, which do not influence the properties of
commutation with the Hamiltonian, the biquadratic spin-1 chain has the following
conserved quantities:

X̃ =
�

i

(−1)i+1
�
S
2
2 − S

2
1

�
i

Ỹ =
�

i

(−1)i+1
�
S
2
3

�
i

(4.2.13)
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4.2. A mapping into a spin-1 chain

It can be easily shown that these two operators commute with the Hamiltonian
Hbiq.

If an Hamiltonian has a SU(2) symmetry - as it is for the model (4.2.9) for
any value of the angle α -, one of the spin components is chosen as quantum
number in order to classify the spectrum. Usually S

tot
3 =

�
i(S3)i is the chosen

one, but of course also S
tot
2 or S

tot
1 would be fine (each of them commutes with

a SU(2) Hamiltonian, but they do not commute between themselves). Of course,
this reasoning may be translated into the SU(3) operator language. Due to the
map (4.2.1), we could choose each one of λ2, −λ5 and λ7 as quantum number; in
order to keep the usual convention, we will choose S

tot
3 =

�
i λ

i
2. In this sense, it

turns out to be a good quantum number for any value of α in the Hamiltonian
(4.2.9), no matter if the corresponding model is SU(3) symmetric or not.

This fact becomes much more interesting for those values of α for which the
Hamiltonian is SU(3) symmetric, since it makes explicit a non-obvious quantum
number (λ2 is not diagonal in the defining representation, so usually it is not used
in order to classify the spectrum of a SU(3) Hamiltonian). Let us consider the
Heisenberg Hamiltonian with fundamental representation on each site (α = −1

4π

for the antiferromagnet, α = 3
4π for the ferromagnet); we have:

S
tot
3 =

�

i

λ
i
2 (4.2.14)

For the one with alternated representations (α = π
2 for the antiferromagnet, α =

−π
2 for the antiferromagnet) we have:

S
tot
3 =

�

i

�
λ
2i−1
2 + λ

2i
2

�
=

�

i

λ
i
2 (4.2.15)

The last relation is due to the fact that λ2 = λ2. We have found that these two
models, which are symmetric under SU(3) transformations in different ways, due
to the different structures of the representations on the chain, share a common
quantum number.

Let us now have some considerations about the relation between spectrum and
quantum numbers for these two chains. Of course, the spectrum of an Hamiltonian
with just a SU(2) symmetry will be split into different SU(2) representations (that
is, different spin sectors); states into each sectors are labeled through S

tot
3 eigen-

values. In the case of a SU(3) symmetry, precisely the same things happens, but
two quantum numbers (X̃ and Ỹ , or X̂ and Ŷ depending on the “type” of SU(3)
symmetry) are needed to classify the states of the various SU(3) representations.
Since the SU(3) Heisenberg Hamiltonians enjoy not only the SU(3) symmetry, but
also a SU(2) one - which we may expect, since SU(2) is a subgroup of SU(3) - we
may split the spectrum both respect to SU(3) and to SU(2) representations. Of
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course, the two ways of cataloguing the spectrum are equivalent, but it is conveni-
ent to choose one of the two depending on whether we want to study the system
as SU(3) Heisenberg model or as SU(2) quadratic chain. Obviously, the two ways
of dividing the spectrum must be coherent one with the other, keeping in mind
that states of a same representation are degenerate.

4.3 Numerical results

In this section we provide some results known in literature, and use them as
a comparison with the results of our DMRG simulations. The Hamiltonian ana-
lyzed is the one of the Antiferromagnetic SU(3) Heisenberg model with alternated
representations on even and odd sites. Let us recall its explicit formulation:

H = J

�

i

8�

α=1

λ
2i−1
α λ

2i
α + J

�

i

8�

α=1

λ
2i
α λ

2i+1
α (4.3.1)

As shown in the previous section through our mapping, it turns out to be equi-
valent to the SU(2) Hamiltonian (which, due to this equivalence, has also a SU(3)
symmetry):

Hbiq = −J

�

i

(Si · Si+1)
2

=
1

2
H − 4

3
L (4.3.2)

The mapping presented in the previous section is of great importance, since
it allows us to use all the known results about this SU(2) chain in the study of
our SU(3) system. Indeed, the biquadratic SU(2) Hamiltonian has been object
of intense study in literature, since it turns out to be exactly solvable. Many
analytical and numerical works can be found about this subject; in particular,
Klümper [29, 30] showed that this theory is massive, and was able to provide an
analytical computation for the ground-state energy density in the thermodynamic
limit (ε0 = −2.796863 . . . in units of the coupling constant J), for the gap with the
first excited state (∆ = 0.1731788 . . . in units of the coupling constant J) and for
the correlation length (ξ = 21.0728505 . . . in units of the lattice space). Since the
two Hamiltonians are not precisely the same through our mapping, but there are
some multiplicative and additive constant factors in this corrispondence, the gap
and the ground-state energy density must be rescaled in order to have the proper
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ones for our SU(3) system, so that we find:

ε0 = −2.927059 . . .

(in units of the coupling constant J rescaled to get (4.1.9))

∆ = 0.3463576 . . .

(in units of the coupling constant J rescaled to get (4.1.9))

It has been argued [4, 14] that the biquadratic chain (4.2.7) corresponds to a
SU(3) symmetric system with alternated representations on the sites; our mapping
realizes explicitly this correspondence, allowing us to consider the two hamiltoni-
ans (4.2.7) and (4.1.1) equivalent. Moreover, it has also been argued [4, 14] that
the first two states of the Hamiltonian are SU(3) singlets which become degenerate
in the thermodynamic limit: this is due to the so called dimerization. Dimeriza-
tion happens when the symmetry under translation of one site is broken, and so
there are two degenerate ground-states which are respectively even and odd under
translation of one site. Of course, these two states are not degenerate in a finite
length chain, and for a finite system one of them corresponds to an excited state.

In terms of the SU(3) chain, we see from the exact diagonalization of the
Hamiltonian (4.1.1) with periodic boundary conditions and a number of sites
L = 4, 6 that effectively the first two SU(3) singlet appearing in the spectrum
are respectively even (the ground state one) and odd (the excited one) under
translation of one site; it should be noticed that for so short a chain the ground
state is given by a representation {1} of SU(3), but the antisymmetric singlet be-
comes the first excited state only for longer chains (L ≥ 8 as can be seen from
DMRG simulations with PBC): there is a crossover phenomenon between a set of
degenerate eigenstates forming a representation {8} and the singlet (see fig 4.2).
The problem of crossover has been mentioned in [11, 42].

From what we said before, it is clear that the correlation length of the system
is very large (or equivalently, the gap is very small); it means that, of course, our
system is not critical, but it is not so far from criticality. This implies that numer-
ical results must be interpreted carefully since, especially with periodic boundary
conditions, the system seems to be somehow critical, which has always made nu-
merical work on this system - or, more properly, on its equivalent SU(2) chain -
trickier [11, 42].

Let us now turn to the discussion of the results of our DMRG simulations.
The Hamiltonian under exam is (4.1.9), with J = 1. In the following graphics, the
number of states we keep in the DMRG truncation of the reduced density matrix
is denoted with M .

The code used in this work is the one used by the Group IV of the section of
Bologna of the INFN in order to study fermionic, bosonic and spin systems. It
has been written by F. Ortolani, and it is the same used for numerical research
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Figure 4.2: The first three states of the energy spectrum from numerical
simulations with PBC. The coloured lines have been drawn as a guide for the eye.

about the SU(3) antiferromagnetic Heisenberg Hamiltonian with the fundamental
representation at each site in [5]. For a description of the potentialities of the
algorithm and of the code in the study of phase transition and critical systems
with particular emphasis on spin-1 chains see [18]

4.3.1 Numerical results for the Von Neumann Entropy

Firstly, let us consider the behaviour of the Entropy for the ground-state of the
Hamiltonian (4.3.1). Due to the problem pointed out above, under PBC, DMRG
data for the Entanglement Entropy of a partition of size l of a chain of length L

seems to be fitted quite well by the Cardy-Calabrese formula (see Appendix C) [12]
for critical systems:

S(l) =
c

3
log

�
L

a
sin

�
πl

L

��
(4.3.3)

DMRG results for S(l) with PBC and for different fixed values of L are presen-
ted in figure 4.3. Entropy is calculated using a base-2 logarithm, and (4.3.3) is
rescaled consequently in order to estimate a (fictious) value of the central charge
c. Also the fit curve representing (4.3.3) is shown. Indeed, the Cardy-Calabrese
formula seems to hold, though there is a hint that the model is not really massless:
the estimated value of c undergoes huge variations depending on the length L of
the chain, from c ∼ 1.405 for L = 20 to c ∼ 1.215 for L = 52.

This problem is solved if we consider open boundary conditions. For a massive
system, the entropy of a partition of the system into two halves as a function of
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Figure 4.3: DMRG with PBC results for Entanglement Entropies for finite length
chains, as a function of the size of the partition considered l. (a) Entropy for

L = 20. (b) Entropy for L = 30. (c) Entropy for L = 40. (d) Entropy for L = 52

L is expected to saturate to a constant, while for a massless one, as can be easily
recovered from (4.3.3) it scales as the logarithm of L. It is well known [12] that
for a massive theory in the thermodynamic limit (with L � ξ), it holds that the
entanglement entropy of a part A of a bipartited chain is:

SA ∝ log

�
ξ

a

�
(4.3.4)

It is clear that SA is constant, no matter the length of the chain or the size of the
partition. The behaviour of the entanglement entropy in our DMRG simulations
with OBC confirms that the system is massive: in figure 4.4 the entropy for a
partition of length L

2 is shown as function of the size of the chain. For a sufficiently
long chain, it clearly saturates to a constant value, as expected.

We can conclude that the estimate of the Entropy for the ground-state through
numerical simulations with periodic boundary conditions is not conclusive in order
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Figure 4.4: Entropy of the bipartited chain as a function of L, using OBC.

to highlight the non-criticality of the system; on the other hand, the massiveness
of the theory becomes evident looking at DMRG results for the Entanglement
Entropy obtained with open boundary conditions.

4.3.2 Numerical results for the energy spectrum

Also the spectrum of the Hamiltonian has been investigated by means of DMRG
simulations; in this way we could estimate the ground-state energy density �0 in
the thermodynamic limit and the gap ∆. The results we will show are obtained
targeting only states with X̃ = 0 and Ỹ = 0: the singlets of the ground state
(representation {1}) have these quantum numbers and the first excited energy level
(representation{8}, so formed by 8 degenerate states) has two states belonging to
this “spin” sector.

Before giving the numerical results obtained, it is necessary to stress the differ-
ence between OBC and PBC in the study of the structure of the spectrum. With
PBC, the two dimerized singlets described at the beginning of the section form
the first two states of the spectrum; simulations with periodic boundary conditions
make apparent how the two states become degenerate in the thermodynamic limit.
In this sense, in order to evaluate ∆ from this kind of simulations we should not
look at the difference in energy between the first two states (which are degenerate
for a chain of infinite length), but at the gap between these states and the third
one (which belongs to a representation {8}). In DMRG simulations with OBC,
the situation is completely different: due to the fact that the two boundaries of the
chain are not linked by the Hamiltonian with open boundary conditions, we can
not see the broken symmetry of translation of one site. These simulations show
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Figure 4.5: DMRG results for the energy of the system with periodic boundary
conditions. (a) Energy density of the first three states of the spectrum as a

function of 1
L2 . (b) Energy density of the first two states as a function of 1

L and
estimates of �0. (c) Difference of energy between the state of the octet and the

two singlets as a function of 1
L , and estimates of the gap ∆.
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us just one singlet as ground state, and the first excited level is formed by the {8}
representation.

In figure 4.5 we show the numerical results for the study of the spectrum with
periodic boundary conditions. All the fit curves are obtained interpolating the
DMRG data with a second-degree polynomial of 1

L . Both the singlets - which
become degenerate in the thermodynamic limit - appear, labeled respectively with
E0 and E1 since they are not degenerate for a finite length chain. E2 is the energy of
one of the two X̃ = Ỹ = 0 states of the octet. From figure 4.5(a), it is clear how the
energy densities of the two singlets become more and more similar at the enlarging
of the chain; in figure 4.5(b) the estimates for �0 are reported. The values we get
for �0 (so, the asymptotic value of E0(L)/L and E1(L)/L for L → ∞, or 1/L → 0)
are �0 ∼ −2.927 (if we use the lower-lying singlet) and �0 ∼ −2.923 (if we use the
“excited” one). Both this estimates coincide in a good degree of approximation
with the theoretical value �0 = −2.927059. The evaluation of the gap ∆ (the
difference in energy between the states of the octet and the two singlets, supposed
to be degenerate in the thermodynamic limit) changes very much if we use the
lower or the higher singlet in order to estimate it, as can bee seen in figure 4.5(c).
The values of ∆ (as asymptotic value for ∆E in the limit L → ∞, or 1/L → 0)
we get are ∆ ∼ 0.237 if we use the lower-lying singlet state, and ∆ ∼ 0.347 if we
consider the higher one. While the first estimate is not so accurate, the second
one is highly consistent with the theoretical value ∆ = 0.3463576.

In figure 4.6 some numerical results obtained by DMRG simulations using open
boundary conditions are presented . Also in this case, all the fit curves are obtained
interpolating the DMRG data with a second-degree polynomial of 1

L . As explained
before, in this case there is just one singlet present (whose energy is labeled with
E0). The first excited state in the sector X̃ = 0, Ỹ = 0 belongs to the degenerate
octet. In figure 4.6(a) data for the energy density of both the ground state and
the excited one are presented: the presence of a gap, due to the non-criticality of
the model, is evident. From the numerical data shown in figure 4.6(b) we could
extrapolate the value of �0 (that is, the value of E0(L)/L in the limit 1/L → 0):
our estimate, �0 ∼ −2.927 is in good agreement with the theoretical one. Not so
good is the precision of the value of the gap ∆ obtained by a fit of the DMRG data
in figure 4.6(c). Indeed, we find an estimate ∆ ∼ 0.299 which is consistent with
the expected value ∆ = 0.3463576, though with a certain degree of approximation.

To conclude, we can affirm that energy values obtained with DMRG simula-
tions, both with periodic and open boundary conditions, are coherent with the
theoretical prediction of non-criticality of the SU(3) antiferromagnetic Hamilto-
nian with alternated representations on even and odd sites of the chain. The
estimates of the ground-state energy density and of the gap are consistent with
the theoretical ones.
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Figure 4.6: DMRG results for the energy of the system with open boundary
conditions. (a) Energy density of the first two states of the spectrum as a
function of 1

L2 . (b) Energy density of the first state as a function of 1
L and

estimate of �0. (c) Difference of energy between the state of the octet and the
singlet as a function of 1

L , and estimate of the gap ∆.
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4.4 Approach to a path integral formulation of
the bilinear-biquadratic chain

In this section our aim is to propose a formulation of the path integral for the
bilinear-biquadratic chain introduce in the previous chapter by means of SU(3)
coherent states. First of all, such coherent states [25] are introduced and their
explicit formulation is discussed for both fundamental and antifundamental rep-
resentations. Then, we calculate the expectation value of the spin-1 Hamiltonian
under exam, formulated in terms of SU(3) operators, on the chosen basis of co-
herent states; this calculation can be considered the first step in order to calculate
the continuum limit for the chain at any value of the parameter α.

4.4.1 Coherent states for SU(3)

In this section we present the explicit formulation for SU(3) coherent states
in both fundamental and antifundamental representation, basing our reasoning
on [25]; this construction resembles the one used by Read and Sachdev in [38,39],
but the coherent states we study here are built ad hoc for SU(3) fundamental and
antifundamental representations.

Coherent states for the fundamental representation

As generators of SU(3) in the fundamental representation, let us choose:

Ŝij = |i��j| (4.4.1)

The base states are given, of course, by the canonical base for C3:

|1� =




1
0
0



 |2� =




0
1
0



 |3� =




0
0
1



 (4.4.2)

It is easy to verify that it holds that:

Ŝ =





1
2λ3 +

1
2
√
3
λ8 +

I
3 T

†
V

T −1
2λ3 +

1
2
√
3
λ8 +

1
3I U

†

V
†

U − 1√
3
λ8 +

1
3I



 (4.4.3)

We will refer to operators Ŝij as lowering operators if j < i and as raising operators
if i < j. It should be noticed that in this formulation we are, formally, considering
the whole U(3) group, since we are considering also the identity operator among
the generators.
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The highest weight state is the state |Ψ1� which fulfills:

Ŝij|Ψ1� = 0 ∀ i < j (4.4.4)

It can be easily shown that:

|Ψ1� =




1
0
0



 (4.4.5)

In order to define the coherent state, we use a triplet of indipendent complex fields,
(γ1, γ2, γ3); the coherent state |γ�� is found applying the exponential of the lowering
operators to the highest weigh state:

|γ�� = eγ3Ŝ31eγ1Ŝ21eγ2Ŝ32 |Ψ1� =




1
γ1

γ3



 (4.4.6)

It should be noticed that our state |γ�� does not depend upon γ2; this doesn’t come
as a surprise, however, since |Ψ1� is invariant under the action of eγ2S32 . Moreover,
it is necessary to normalize the state |γ��, in order to find the normalized coherent
state:

|γ� = 1√
f1
|γ�� f1 = 1 + |γ1|2 + |γ3|2 (4.4.7)

Thanks to this explicit formulation of SU(3) coherent states in the fundamental
representation, it is now possible to find the expectation values of the generators
Ŝij calculated on the state |γ�:

�Ŝ� = 1

f1




1 γ1 γ3

γ
∗
1 |γ1|2 γ

∗
1γ3

γ
∗
3 γ1γ

∗
3 |γ3|2



 (4.4.8)

Coherent states for the antifundamental representation

The construction of the coherent states for the antifundamental representation
is analogue to the one described before for the fundamental representation. We
start from the generators of this representation, which are:

Ŝij = −|i��j| (4.4.9)

The basis of states chosen is the same of the fundamental representation case
(4.4.2). The explicit formulation of the generators is:

Ŝ =





1
2λ3 +

1
2
√
3
λ8 +

I
3 T

†
V

T −1
2λ3 +

1
2
√
3
λ8 +

1
3I U

†

V
†

U − 1√
3
λ8 +

1
3I



 (4.4.10)
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It is evident that the previous expression is analogue to the one of the fundamental
representation case, with the operators of one representation exchanged with the

one of the other. Also in this case we will refer to operators Ŝij as lowering
operators if j < i and as rising operators if i < j.

The highest weigh state is defined as the state |Ψ2� which fulfills:

Ŝij|Ψ2� = 0 ∀ i < j (4.4.11)

It is easily verified that:

|Ψ2� =




0
0
1



 (4.4.12)

Precisely as we have done before, we can define the coherent state for the an-
tifundamental representation using the same triplet of complex fields (γ1, γ2, γ3):

|γ�� = eγ3Ŝ31eγ1Ŝ21eγ2Ŝ32 |Ψ2� =




γ1γ2 − γ3

−γ2

1



 (4.4.13)

We are allowed to put γ1 = 0 for the antifundamental representation, since |Ψ2�
is invariant under the action of eγ1Ŝ21 . The properly normalized coherent state for
this representation is:

|γ� = 1√
f2
|γ�� f2 = 1 + |γ2|2 + |γ3|2 (4.4.14)

The expectation values of the generators Ŝij calculated respect to this state are:

�Ŝ� = 1

f2




−|γ3|2 −γ

∗
2γ3 γ3

−γ2γ
∗
3 −|γ2|2 γ2

γ
∗
3 γ

∗
2 1



 (4.4.15)

4.5 The expectation value of the Hamiltonian

The Hamiltonian we are interested in is the bilinear-biquadratic spin-1 chain
we have described in the previous section:

Htot = J

�
cos(α)

�

i

Si · Si+1 − sin(α)
�

i

(Si · Si+1)
2

�
(4.5.1)
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In terms of SU(3) matrices, through the mapping introduced in the previous sec-
tions, it can be written as:

Htot = J
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(4.5.2)

We have chosen to use the same representation (the fundamental one) on the vari-
ous sites, but of course we may also formulate it using fundamental representation
on the odd sites and the antifundamental one on the even ones, expressing the
operators in the proper way. In this way, it is made much more evident that the
term preceded by sin(α) corresponds - up to multiplicative and additive constants
- to the Heisenberg SU(3) Hamiltonian with alternated representations. The for-
mulation of the bilinear-biquadratic spin-1 Hamiltonian becomes then:

Htot =
�

i

H2i−1,2i +
�

i
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(4.5.3)

The additive constants in the previous formula do not change the behaviour of the
system, since their only effect is to shift the energy of the model.

Our purpose now is to evaluate the expectation value of Htot, calculated on
a total state constituted by coherent states of fundamental and antifundamental
representations on odd and even sites respectively. Since this calculation consti-
tutes the main result of this section, let us introduce the context in which we
are doing it. It is well known, as we have seen both in Chapters 2 and 3, much
information on a quantum theory on a lattice may be extrapolated from the path
integral formulation of the partition function of the model and the subsequent
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continuum limit through a semiclassical approximation. In this chapter, it has
been shown that the bilinear-biquadratic spin-1 Hamiltonian (4.5.1) has a very
rich phase diagram with both massive and massless phases, and in some peculiar
points of this diagram presents a SU(3) symmetry. It would be very interesting to
study in which way this symmetry appears and disappears throughout the phase
diagram, analyzing the continuum limit for the general Hamiltonian Htot, in order
to see how the low-energy effective field theory changes throughout the phase dia-
gram. To do so, it is necessary, as has been done in Chapters 2 and 3, to introduce
a basis of coherent states to use in order to define the path integral of the model.
The partition function would be of this kind:

Z =

�
Dγ e−S

S =

� β

0

dτ�Htot(τ)�+ SB

SB = −
�

dτ�γ|γ̇� (4.5.4)

In this work, we will not estimate the Berry phase SB, but only the expectation
value of the Hamiltonian on a total state formed by alternated fundamental and
antifundamental coherent states. In this way, we introduce three complex fields
(γ1, γ2, γ3), which in the continuum limit should describe the effective field theory
of the model. When the value of the parameter α is such that the system is not
in a SU(3)-symmetric phase, we expect that some of these degrees of freedom
would turn out to be redundant, since the residual symmetry is SU(2), which
is a subgroup of SU(3). In this work, we present the preliminary calculation of
�Htot(τ)� with the formalism of coherent states described in this section. In the
following, the dipendence on the Wick-rotated “time” τ will be omitted for the
sake of simplicity.

Let us now turn to the explicit calculation. First of all, it is useful to remark

how the Hamiltonian (4.5.3) may be formulated by means of Ŝ and Ŝ. Firstly, in
order to do so, it is useful to formulate it thorugh the ladders operators for the
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two representations:
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This Hamiltonian can be formulated in a much simpler way through (4.4.3) and
(4.4.10) as:
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T )2iβα

+ sin(α)
�
Ŝ
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(4.5.6)

In the previous expression the sum over repeated greek letter is implied. The
expectation value of the Hamiltonian can then be simply evaluated as:
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(4.5.8)
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This expectation value can, of course, be expressed in terms of the complex
quantities (γ1, γ2, γ3) defined on each site. Using (4.4.8) and (4.4.15) we find:
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(4.5.11)

In this way, we have seen how the expectation value of the Hamiltonian on the
basis of coherent states can be written in terms of three complex fields, which, in
the continuum limit, would describe the effective field theory for this lattice model.
The next steps should be the evaluation of the Berry phase and the proper mapping
into a continuum theory, which we do not discuss here. It is clear, however, that
this method can turn out to be very useful in a unified description of the bilinear-
biquadratic spin-1 chain in each point of its phase diagram (that is, for any value
of the angle α). In this way, we may have an analytical tool to study how the
symmetries of the model change throughout its phase diagram.
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Conclusions

In this work we have focused on SU(n)-symmetric systems defined on a lattice,
with particular emphasis on the SU(3) Heisenberg model. This field of research
is of great interest both theoretically and experimentally: SU(n) lattice models
can be regarded as simplified models on a discretized space for many high energy
phenomena. SU(3) models are of particular interest since SU(3) constitutes the
gauge symmetry of QCD. Experimentally, the ability to manipulate in laboratories
cold atoms in a optical lattice has become recently so advanced that through
this experimental technique it is possible to simulate many different quantum
Hamiltonians showing a SU(n) symmetry.

After reviewing the main topics on this field of research, both from an ex-
perimental and a theoretical point of view, we have presented a study of the link
between spin-1 chains and SU(3) symmetric models. The class of spin-1 Hamiltoni-
ans we find shows SU(3)-symmetry in particular points of its phase diagram, which
is quite rich, presenting various phase transitions and both massive and massless
phases. The link between this class of SU(2)-symmetric chains and SU(3) ones is
given by an explicit mapping of SU(3) degrees of freedom into SU(2) ones; this
mapping turns out to be very useful, since it makes evident the symmetries of the
Hamiltonian.

We presented also some new numerical results about the SU(3) Antiferromag-
netic Heisenberg model; these results, obtained by means of the DMRG algorithm,
are completely consistent with the ones predicted theoretically on the basis of the
behaviour of the spin-1 chain our SU(3) model can be mapped to.

Finally, we have proposed an approach to the path integral for the partition
function of SU(3)-symmetric systems through the use of coherent states of the fun-
damental and antifundamental representations of the SU(3) group. This approach
may be applied to the whole class of spin-1 chains mentioned above, in order to
understand how the extended SU(3) symmetry emerges at special points of the
phase diagram of the SU(2) chain.
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Appendix A

An outline of Group Theory

Both in Physics and Mathematics Group Theory is of fundamental importance;
in particular, the invariance of a physical system under the action of certain groups
gives us many information about the properties and the behaviour of that system.
Aim of this Appendix is to provide some basic notions in Group Theory and
Representation Theory [15,26,41]. Lie algebras and Lie groups will be defined and
their properties quickly reviewed [15, 26, 41]. The link between group theory and
physics will be described and stressed [26].

A.1 Groups and representations

A group G is defined as a collection of elements characterized by a set of
properties:

• A law of composition (which will be denoted by the symbol ‘·’) exists between
elements of the group. If a and b are elements of the group, then

a · b = c

is an element of the group.

• The law of composition is associative:

a · (b · c) = (a · b) · c a, b, c ∈ G

• An element e belonging to the group exists characterized by the property:

e · g = g · e = g g ∈ G

There is just one element which fulfills this requirement and it is called
identity.
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An outline of Group Theory

• For each element g of the group, another element g−1 exists, such that:

g · g−1 = g
−1 · g = e g

−1 ∈ G

g
−1 is called inverse, or reciprocal, of g.

A particular class of group is the one of abelian groups; G is called abelian (or
commutative) if

g · h = h · g ∀g, h ∈ G (A.1.1)

It is clear that this definition is very general, and that groups of really different
nature exist. Two basic examples of group are the sets R of real numbers, which
may be considered a group with the ordinary sum as composition law, and R�{0}
with the ordinary product as composition law. Another trivial example is given
by Z2 = {1,−1} with the product as composition law. One group we will be
very interested in is SU(3), which is formed by all 3 × 3 unitary matrices with
determinant equal to one (so called ‘special’); it will be studied thoroughly in the
following.

One of the most interesting and important area of Group Theory is Represent-
ation Theory. Representations give us the chance to materialize such an abstract
definition as the one of group through the use of matrices. A d-dimensional repres-
entation of a group G is defined as a group of d×d non-singular matrices with the
matrix product as composition law, which is in a homomorphic relation with G it-
self; we will denote an element of the representation related to g ∈ G as Γ(g). If the
homomorphic mapping between G and one of its representations is an isomorph-
ism, the representation is called faithful. If all the elements of a representation are
unitary matrices, the representation is called unitary. Two representations Γ(g)
and Γ�(g) are called conjugate one of the other if

Γ�(g) = Γ(g)∗

Γ(g) = Γ�(g)∗ (A.1.2)

Given two d-dimensional representations Γ1(g) and Γ2(g), these two are called
equivalent if the matrices of the two representations are linked by a similarity
transformation which does not depend on the element of the group g:

Γ2(g) = S
−1Γ1(g)S ∀g ∈ G (A.1.3)

In (A.1.3) S is a d× d non singular matrix.
Moreover, a representation may be reducible or irreducible. Γ(g), acting on a

vector space M , is reducible if it exists a (nontrivial) subspace N ⊆ M so that:

Γ(g)n ∈ N ∀n ∈ N ⊆ M (A.1.4)
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A.1. Groups and representations

N is called invariant subspace. Equivalently, a d-dimensional representation Γ(g)
may be defined reducible if it can be written - up to a similarity transformation -
in the following form:

Γ(g) =

�
Γ11(g) Γ12(g)
021 Γ22(g)

�
(A.1.5)

The matrix Γ(g) has been expressed through some matrices Γ11(g), Γ12(g), Γ22(g),
which are d1 × d1, d1 × d2, d2 × d2 matrices respectively, for some integer numbers
d1 and d2 not depending on g with d1 + d2 = d. With 021 we denote the null
matrix d2 × d1. It can be proved that Γ11(g) and Γ22(g) are d1-dimensional and
d-2 dimensional representations of the same group G [15]; in this sense, when
Γ(g) is reducible, it means that it can be written by means of other ‘smaller’
representations.

A representation is called irreducible if it is not reducible. Irreducible represent-
ations are enough to characterize all unitary representations: it can be proved [15]
that every (reducible) unitary representation Γ(g), acting on a vector space M

may be expressed as the direct sum of irreducible unitary ones Γi(g), each one
acting on a different ortogonal subspace Ni, so that:

M =
�

i

Ni Ni ⊂ M ∀i Ni⊥Nj, i �= j

Γ(g) =
�

i

Γi Γi(g) : Ni → Ni (A.1.6)

Representations may also be multiplied one with another, and not only summed.
The type of product needed to define a product operation between representations
is the direct product. Given a p × p matrix A and a q × q matrix B, their direct
product is defined as:

(A⊗ B)ijkl = AijBkl i, j ∈ {1, . . . , p}, k, l ∈ {1, . . . , q} (A.1.7)

From (A.1.7) it is straightforward to define a product between representations,
since each representation is given by a set of square matrices. Given a d1-dimensional
representation Γ1(g) of the group G acting on the space M1 and a d2-dimensional
representation Γ2(g) of the same group, acting on the space M2 , a new d1d2-
dimensional representation Γ(g) may be defined by the direct product:

Γ(g) = Γ1(g)⊗ Γ2(g) Γ(g) : M1 ⊗M2 → M1 ⊗M2 (A.1.8)

Of course definition (A.1.8) may be generalized to any arbitrary number of repres-
entations. It is important to underline that, even if the Γi(g) we are multiplying
through the direct product are irreducible, Γ(g) is a reducible representation: the
direct product doesn’t allow us to discover new irreducible representations of a
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given group. The result of a direct product between unitary representations is
still a unitary representation, and may be expanded as a sum of irreducible unit-
ary ones, according to (A.1.6); this expansion is called Clebsch-Gordan series.
The number of times each irreducible representation appears in a Clebsch-Gordan
series is called Clebsch-Gordan coefficient.

A.2 Lie groups and Lie algebras

A class of groups which is of particular relevance in physics is the class of
Lie groups. Lie groups have a richer structure than ordinary groups, because
they have some additional properties. First of all, they are continuous groups; a
continuous group G not only fulfills all the requirements of groups, but it is also
a topological space, in the sense that a set of neighborhoods Ug may be defined
for each element g ∈ G. The structure of topological space must be coherent with
group properties and the group composition law. The concept of neighborhood
makes it straightforward to define continuity upon such a group. Lie groups form
a particular class of continuous groups, fulfilling these additional requirements:

• For any given neighborhood U ⊆ G of the identity element e, each element
g ∈ U can be parametrized through a set of real numbers (q1, . . . , qn). e is
parametrized by the set (0, . . . , 0).

• For any given neighborhood U ⊆ G of the identity element e, the corres-
pondence between elements of the group and the n-ples we use for the para-
metrization is continuous and 1− 1.

• The composition of two elements of the group g1(q1, . . . , qn) and g2(q�1, . . . , q
�
n)

is given by g1(q1, . . . , qn) · g2(q�1, . . . , q�n) = g(p1, . . . , pn); the real variables
(p1, . . . , pn) are analytic functions of (q1, . . . , qn; q�1, . . . q

�
n).

If a continuous group G has all these properties, then it is called a Lie group of
dimension n [15, 41].

Let us now consider a d-dimensional representation of the Lie groupG, Γ(q1, . . . , qn).
If it is analytic respect to (q1, . . . , qn), we can define a set of n d×d matrices which
are called generators of the group:

Ij =
∂Γ

∂qj
(q1 = · · · = qn = 0) j ∈ {1, . . . , n} (A.2.1)

It is clear that the number of the generators does not depend on the representation
we have chosen, and that it is equal to the dimension of the Lie group itself.

The concept of Lie group is deeply connected to the concept of Lie algebra
[15,41]. A (real) Lie algebra L is defined as a vector space V , upon which a inner
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product - the ‘commutator’, which we will denote with the symbol ‘[...]’ - is defined,
which has the following properties:

• The commutator of two elements of the space V belongs to V :

[x, y] ∈ V x, y ∈ V

• The commutator is antisymmetric under exchange of the two variables:

[x, y] = −[y, x] x, y ∈ V

• The commutator is linear respect to the first variable:

[αx+ βy, z] = α[x, z] + β[y, z] x, y, z ∈ V α, β ∈ R

• The commutator fulfills Jacobi’s identity:

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0 x, y, z ∈ V

It is worth noticing that the second and the third properties listed above together
imply that the commutator is linear also respect to the second variable. A par-
ticular case of Lie algebra is the one in which V is a space of matrices, and the
commutator is indeed what we usually call commutator:

[A,B] = AB − BA A,B ∈ V (A.2.2)

Given a basis xk for the space V , which we will assume to be n-dimensional, the
commutator is univocally defined by its action upon the basis, that is:

[xa, xb] =
n�

c=1

Cabcxc (A.2.3)

The constants Cabc appearing in (A.2.3) are called structure constants of the Lie
algebra L, and, due to the antisymmetry of the commutator, are antisymmetric
under the exchange of the firs two indices; moreover, as a consequence of the
properties of the commutator, they fulfill Jacobi’s identity too:

CabeCecd + CbceCead + CcaeCebd = 0 (A.2.4)

It is evident that the structure constants are everything we need to know to have
a complete knowledge of the commutator itself. It is important to underline that,
although the algebra is formed only by real linear combinations of its basis ele-
ments, there is no need for the elements themselves to be real. The concept of
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representation may be applied to Lie algebra quite in the same way we have done
with groups: a d-dimensional representation of a Lie algebra L is given by a set of
d× d matrices Γ(x) so that:

Γ(αx+ βy) = αΓ(x) + βΓ(y) x, y ∈ L α, β ∈ R
Γ([x, y]) = [Γ(x),Γ(y)] x, y ∈ L

It is clear that Γ(x) form a Lie algebra themselves, with the same structure con-
stants, and, if xk provide a basis for L, Γ(xk) are a basis for the representation.
As in the case of groups, L and its representations stand in a homomorphic re-
lation. Many concepts, as equivalence between representations or reducibility of
a representation are precisely the same we have defined in the context of group
theory.

We now come to the problem of the relation between Lie algebras and Lie
groups. It can be proved that for every Lie group G a Lie algebra L exists;
the number of generators Ij of the group is equal to the dimension of L, and Ij

provide a basis for L [15,41]. This means that for every Lie group, we can specify
some commutation relations between the generators and evaluate the structure
constants, thanks to the associate Lie algebra. The commutation relations and
the structure constants may help us to recognize different representations of the
same Lie group: it may be shown that if a set of matrices acting on a certain space
fulfills the relations of the Lie algebra L (and of its representations) associated to
a certain Lie group G, then they provide a set of generators for a representation
of G [15, 41].

The correspondence between Lie algebras and Lie groups gives us another
powerful method to describe the representations of G: the exponential repres-
entation. Given a basis for the Lie algebra L, Ij, and a neighborhood U ⊆ G of
the identity element of the group, e, for each element of the neighborhood g ∈ U

there is a n-ple (q1, . . . , qn) (the canonical coordinates), so that:

g = eq1I1+···+qnIn (A.2.5)

Precisely the same relation holds if we do not consider the group and the algebra
themselves but their representations: given a n-dimensional Lie group and its Lie
algebra, for every d-dimensional representation of the algebra with basis Ik, a d-
dimensional representation of the Lie group exists with a choice of the generators
provided by the set Ik itself, so that we can write:

Γ(g) = eq1I1+···+qnIN (q1, . . . , qn) ∈ Rn (A.2.6)
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A.2.1 Simple Lie groups and Casimir operators

Given a Lie group G, a subgroup A ⊆ G is called invariant if:

gag
−1 ∈ A ∀g ∈ G, ∀a ∈ A (A.2.7)

A Lie group is called simple if there is no abelian (see (A.1.1)) continuous invariant
subgroup for it; a less strong condition applies to the so called semisimple Lie
groups, which do not possess continuous abelian invariant subgroups (but may
have continuous non abelian ones).

It is called invariant operator, or Casimir operator of a Lie group G (in a certain
representation) an operator K which commutes with all the generators Ij of the
group:

[Ij, K] = 0 ∀j ∈ {1, . . . , dim(G)} (A.2.8)

Semisimple groups have a peculiar feature, described by Racah’s theorem: every
semisimple Lie group is provided with a number of Casimir operators equal to the
largest number of generators of the group commuting with each other (that is, the
so called rank of the group). Moreover, each Casimir operator may be expressed
in terms of the generators of the group [26]. The importance of Casimir operators
and of this theorem in physical applications will be made clear in the following.

A.3 Groups and symmetries in physics

Group theory in physics is of fundamental importance, because the transform-
ations acting upon physical systems can usually be expressed in terms of repres-
entations of certain groups; in particular, if the action functional of a system is
invariant under the action of a group - more precisely, of one of its representations
- that group is said to constitute a symmetry group for the system. Lie groups
are of particular relevance in the study of symmetries in physics, due to Nöther
theorem; it states that for every continuous symmetry of the system, an integral
of motion exists - that is, a quantity whose value doesn’t change in time [41]. One
basic example is energy: if the system is invariant under translations in time, en-
ergy is one of the integrals of motion. We will suppose that this assumption holds
for the systems we will study. In the quantum case, conservation of energy allows
us to catalogue the states depending on their energy, that is on the eigenvalue of
the Hamiltonian. If other symmetries exist, the generators of each group commute
with the Hamiltonian: the hamiltonian and the generators can be diagonalized
at the same time, and states can be labeled by means of the eigenvalues of the
proper number of generators of each group - depending on the rank of the group
itself - and of the Hamiltonian. Every eigenvalue used to label the states is called
quantum number of the system [26].
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In physics, an invariant subspace (see (A.1.4)) for a certain representation of
a Lie symmetry group G of the system is called a multiplet. It is quite straight-
forward to show that, due to the fact that the Hamiltonian and the generators of
the group commute and to the Lie structure of the group, the elements of each
multiplet have the same energy, that is they are degenerate [26]. Since both the
Hamiltonian and the Casimir operators commute with the generators of the group,
the invariant operators commute with the Hamiltonian too; moreover, different
Casimir operators commute with each other. This means that the Hamiltonian
and each of the Casimir operators may be diagonalized at the same time, and
consequently that the multiplets are also degenerate eigenstates of the invariant
operators: the eigenvalue of the Casimir operators is enough to define the mul-
tiplet completely. It is evident how powerful this idea is: it gives us the chance
to catalogue uniquely all the possible eigenstates of an Hamiltonian - the states
of our system - in terms of the eigenvalues of a limited set of operators. It should
be noticed, however, that these considerations hold only if the symmetry group is
semisimple, thanks to Racah’s theorem.
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Appendix B

An outline of DMRG

Density Matrix Renormalization Group (DMRG) is an algorithm that, from
the ’90s to nowadays, has been one of the most used and appreciated in the field of
condensed matter numerical simulations. It has been introduced in 1992 by S.R.
White [46, 47], and it allows to have very good estimates for the spectrum and
the expectation values of a number of observables. This numerical method has
been used in this work in order to study the SU(3) Antiferromagnetic Heisenberg
model; in this sense, an introduction to the algorithm and to the main quantities
analyzed with it are due.

In this chapter the DMRG algorithm is described [16, 40, 46, 47]; since it is
necessary to be aware of the notion of density matrix and reduced density matrix
in order to catch the main features of the algorithm, a brief introduction to these
operators in physics is given [17, 33]. Moreover, since not only the spectrum but
also the entropy of the system under study is analyzed through this numerical
method, a qualitative introduction to Entanglement and Entanglement Entropy is
provided [17].

B.1 The density matrix

B.1.1 Some general features

Let us suppose to study a quantum system; if it is in a certain (normalized)
quantum state |ψ� it is possible to define its density matrix as:

� = |ψ��ψ| (B.1.1)

If (B.1.1) holds, then the system is said to be in a pure state, that is, its state
is precisely defined as a unique quantum state. That is not always the case: it is
possible to define also the so called mixed state. A mixed state can be written as
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a statistical combination of pure states, that is:

� =
�

k

pk|ψk��ψk| (B.1.2)

0 ≤ pk ≤ 1 (B.1.3)�

k

pk = 1 (B.1.4)

It is quite important to stress that a mixed state does not correspond to the system
being in a quantum state which is a combination of the |ψk� appearing in (B.1.2)
(which, on the contrary would give a pure state, since a superposition of quantum
states is just another precisely determined quantum state): a mixed state is, on the
contrary, a classical combination of pure states. Moreover, it is not necessary that
the states |ψk� are orthogonal one to the other, though they should be normalized
to one. In general, some properties hold for a density matrix � [17]:

• � is selfadjoint.

• � is of trace class.

• � is bounded:
��|ψ�� ≤ �|ψ�� → ��� ≤ 1 (B.1.5)

• � is semipositive:
�ψ|�|ψ� ≥ 0 ∀ |ψ� (B.1.6)

B.1.2 Reduced density matrix and Schmidt decomposition

Let us suppose that the quantum system under examination is in a pure state
(B.1.1). Of course, it is possible to divide it into two subsystems A and B; for
each of them is possible to define its own density matrix, which can be found
eliminating (tracing out) all the degrees of freedom of the other subsystem from
the original density matrix �. �A and �B obtained this way are called reduced
density matrices [17]. More explicitly, let us start from the state of the total
system:

|Ψ� =
�

i,j

cij|i�A|j�B =
�

i

|i�A |̃i�B (B.1.7)

|̃i�B =
�

j

cij|j�B (B.1.8)

The density matrix can then be written as:

� = |Ψ��Ψ| =
�

i,k

|i�A |̃i�B A�k|B�k̃| (B.1.9)
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We can suppose to have chosen the states |i�A properly, so that it holds:

�A =
�

i

pi|i�A A�i| (B.1.10)

The (reduced) density matrix for the subsystem A can then be evaluated:

�A = TrB[�] =
�

i,k,j

B�j|
�
|i�A |̃i�B A�k|B�k̃|

�
|j�B

=
�

i,k

|i�A A�k|
�

j

�
B�k̃|j�B B�j |̃i�B

�

=
�

i

pi|i�A A�i| (B.1.11)

B�k̃|̃i�B = piδi,k (B.1.12)

(B.1.12) not only tells us that the basis |̃i�B we have chosen for the subsystem B is
an orthonormal one, but also gives us the chance to have an explicit expression for
the reduced density matrix �A. Moreover, it is quite easy to find also a formulation
for |Ψ� and �B, after the suitable rescaling |i��B = 1√

pi
|̃i�B:

|Ψ� =
�

i

√
pi|i�A|i��B (B.1.13)

�B =
�

i

pi|i��B B�i�| (B.1.14)

(B.1.13) is called Schmidt decomposition. It is very important to notice that due
to (B.1.11), (B.1.13) and (B.1.14), the density matrices �A and �B have precisely
the same number of non zero weights; this number is called Schmidt number. If it
is equal to one, the state of the system is called separable, since it is possible to
decompose |Ψ� in two states for the two subsystems, which are not correlated one
with the other. On the other hand, if the Schmidt number is greater than one, then
the state of the system is called entangled, since it is not possible to decompose |Ψ�
in two uncorrelated states of the subsystems and the two subsystem are actually
entangled. In the case of a separable state, �A and �B represent a pure state each,
while, if entanglement is present, they both are mixed states. One particular case
of entangled state is the one usually called maximally entangled; in this case �A

has all its weights different from zero, and is, in a certain sense, “as mixed as
possible”.
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B.2 Entanglement and Entropy

From a thermodynamical point of view, if we consider our global system as a
canonical ensemble, the definition for its density matrix is [33]:

�c =
1

Z
e−βH (B.2.1)

Z = Tr[e−βH ] (B.2.2)

To define the thermodynamical entropy, it is useful to remind the definition of free
energy:

F = − 1

β
ln(Z) (B.2.3)

Entropy can then be expressed with the usual formulation:

S = −
�
∂F

∂T

�
(B.2.4)

After some calculation, it is straightforward to find [33]:

S = −�ln (�c)� = −Tr [�c ln (�c)] (B.2.5)

(B.2.5) is a particular case (that is, restricted to the canonical ensemble) of the
so called Von Neumann Entropy. It can be defined in a more general way for the
density matrix of an arbitrary system as:

S = −Tr [� ln(�)] (B.2.6)

If we consider the reduced density matrix �A defined previously (B.1.10) relatively
to the partition of the system under study into two subsystems A and B, the
entropy becomes:

SA = −
�

k

pk log(pk) (B.2.7)

This is the explicit expression for the entropy of the subsystem A; since the weights
pk are the same for both the reduced density matrices �A and �B, SA and SB are
precisely the same.

Von Neumann Entropy is a good measurement of Entanglement in a bipartite
pure state as the one we have seen in the previous paragraph for a series of reasons
[17]. In fact, it has a set of features which are usually required for an observable
to be interpreted as an estimate of Entanglement:

• S (�) is equal to zero if calculated using a pure state - so, if the two subsys-
tems A and B seen before are not entangled their Entropy is null.
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• The value of S (�) does not vary under unitary global transformation (pre-
cisely as we expect from a local observable as the Entanglement).

• If � is a d × d density matrix (and we calculate the logarithm in (B.2.6) in
base d) it fulfills the relation:

S (�) ≤ ln(d) (B.2.8)

The relation with the identity sign is true only if the state is equipartited
(that is, � is a diagonal matrix with d diagonal elements each one equal to
1
d).

• If � is the density matrix of a system (possibly in a mixed state, due to
quantum or thermic interactions with the environment) then, given its sub-
systems A and B, it holds that:

S (�) ≤ S (�A) + S (�B) (B.2.9)

The equality holds only if the state is not entangled respect to the partition
into the two subsystems A and B. Anyway, the entropy of the total system
is always minor than the sum of the entropies of its components.

• S (�) is a convex function:

S (α1�1+α2�2) ≥ α1S (�1)+α2S (�2) α1,α2 ≥ 0 α1+α2 = 1 (B.2.10)

B.3 The DMRG algorithm

DMRG stands for Density Matrix Renormalization Group. This algorithm has
been incredibly successful in the study of a number of quantum many body sys-
tems, like the Heisenberg or the Hubbard model. The main idea is to keep only a
certain number of degrees of freedom in the description of the Hamiltionian, which
should catch the physics of the system and simplify the evaluation of the observ-
ables enough to have approximated but faithful estimates of their expectation
values.

The first try in this sense was the Real Space Renormalization Group (RSRG)
algorithm, ideated by K. G. Wilson in the ’70s [48]. The idea of this algorithm
is to use energy as criterion for deciding which states to keep in the approxima-
tion. A system with � sites, Hilbert space of dimension M and described by the
Hamiltonian Ĥ, is put in interaction with another system equal to itself; the total
system will have 2� sites, a M

2-dimensional Hilbert space and will be described by
the sum of the Hamiltonians of the two blocks plus an interaction term (which will
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replicate the interaction between sites present in the original Hamiltonian). This
Hamiltonian can be diagonalized; only the first M states with the lowest energy
eigenvalues are kept as approximated basis for the 2� chain, which becomes the
starting system for the next iteration of the algorithm. This procedure is repeated
until the desired length for the chain is reached. This algorithm seems reliable but
it presents a physical problem of fundamental importance: its assumption is that
the low energy states of a system are formed by the union of the low energy states
of its subsystems. Rarely it is so: if we think at the typical example of a system
formed by a free particle in a 1-dimensional box of finite length, its ground state
wave function does not present any node wherever, while, if we put together the
ground state wave functions for smaller boxes juxtaposed, the global wave function
presents nodes at the “junctions” of the boxes [40].

DMRG overcomes the problems typical of the RSRG algorithm, selecting the
degrees of freedom to be kept in the approximation procedure in a completely
different way, introducing a cutoff on the eigenvalues of the density matrix of the
system, and not on the energy spectrum. It has become one of the privileged
algorithm for computation and numerical simulation in the field of many body
quantum systems.

B.3.1 The infinite-system algorithm

Let us now analyze the first part of this algorithm, the so called infinite-system
DMRG [16,40,46,47]. The starting point is a chain of length � (in the program we
use, it is equal to four), with an M -dimensional Hilbert space and Hamiltonian Ĥ�.
The dimension of the Hilbert space is an input parameter of the code and, at the
first iterations of the algorithm, due to the small length of the chain, may be larger
than the real one (which is equal to d

�, with d the dimension of the Hilbert space
of a single site). What one would like to do now is to expand the chain in a proper
way, in order to reach the needed length for the total system; in order to do so, the
starting block is expanded by one site (and so described by a Hamiltonian Ĥ�+1,
with a Md-dimensional Hilbert space) , and then reflected as in a mirror in order
to get a second block (this second block is often referred to as environment (E),
while the first (�+ 1)-long block is simply called system (S)). The two blocks are
then put in interaction through an interacting term (reproducing the interaction
between sites in the original Hamiltonian). The result is a so-called superblock
with 2� + 2 sites and Hamiltonian Ĥ2�+2. As in the RSRG procedure, some kind
of approximation is needed, in order to reduce the effective degrees of freedom
under examination; Ĥ2�+2 is diagonalized and the ground state |ψ� found. It is
then possible to define the density matrix for the total system in the usual way
� = |ψ��ψ|. It is possible to evaluate the reduced density matrix for the block
S, tracing out the degrees of freedom of the block E: �S = TrE[�]. Once it is
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diagonalized, we choose to keep just the M eigenstates of �S corresponding to
the highest eigenvalues of the reduced density matrix as (approximated) basis for
the Hilbert space of the block S; of course, more states we keep, better is the
approximation but longer is the computation time. What we have at this point
is then a block S with a certain Hilbert space and of length � + 1, which is the
starting block for the next iteration of the algorithm exactly as just described.
Its (effective) hamiltonian is found as Ĥeff

�+1 = T
†
Ĥ�+1T , with T is the (Md)×M

matrix having as column the states kept to generate the Hilbert space of the �+1
chain. The procedure is repeated until the desired length for the chain is reached.

It should be noticed that the algorithm formulated this way works well in
case the chain under consideration has open boundary condition; if the boundary
conditions are periodic, during each step the two blocks S and E interact on the
boundary, making the numerical analysis much more complicated. It is possible to
overcome this difficulty through a small change in the algorithm. If we denote with
B the initial block and p a single site, the construction of the superblock for the
open boundary conditions may be summarized as “BppB”; in order to take into
account the periodic boundary conditions, it is enough to build the superblock as
“BpBp”.

B.3.2 The finite-system algorithm

After the necessary number of iterations of the infinite-system algorithm has
been performed, we have an approximated set of states describing the system and
an effective Hamiltonian, which keeps track of the eliminated degrees of freedom.
It is then possible to improve the approximation of the Hilbert space of the system
with another procedure, called finite-system algorithm [16,40,46,47]. If we denote
with L the size of the chain we want to reach, at the end of the procedure described
in the above paragraph we have two blocks of length

�
L
2 − 1

�
and two sites between

them (or an alternate disposition of blocks and sites if we are dealing with PBC;
from now on we will consider only the case of OBC, keeping in mind that the
algorithm can be properly modified for periodic boundary conditions). Keeping
fixed the total length of the chain (L), the block on the left is step by step enlarged
(precisely in the same way it happen for the infinite-system algorithm, with a
proper choice of the states to keep in the Hilbert space) and the one on the right
becomes smaller, always having two free sites in the middle. The basis for the
second block - necessary to evaluate a basis for the Hilbert space of the first block
- is recovered from memory: it is necessary to store it during the first part of the
DMRG simulation. When the block on the left is of a size such that the block on the
right can be exactly diagonalized using M states the role of the right and the left
block are exchanged: the right block becomes bigger, and the approximation for
its states is improved, while the states for the left block - whose length is decreased
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step by step - are recovered from memory. This procedure comes to an end when
all the chain has been examinated. This procedure is called sweep, and usually
two or three sweeps are enough to have a convenient degree of approximation.

So far, it has always been said that the density matrix used to truncate the
Hilbert space is the one related to the ground state; it should be noticed, however,
that is possible also to R� “target” different states (for example excited ones, or
with certain specified quantum numbers), getting more data about excited states.
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Appendix C

An outline of Conformal Field
Theory

A brief introduction to some concepts of Conformal Field Theory (CFT) is
provided in this chapter. First of all, conformal transformations are introduced
and defined [20,34]; conformal dimensions and primary fields are then introduced,
and the central charge is defined through the use of the so called Operator Product
Expansion on the stress-energy tensor of the theory [20, 34]. The mapping of a
theory living on a cylinder into a theory on a complex plane is described and some
insight on the generators of the conformal transformations is given [20]. Finally,
some well known results which turn out to be useful both in the analytical and
the numerical study of conformal theories are provided [12,20]

C.1 Conformal transformations in a 2-dimensional
space

A system is said to be conformal if it is invariant under a local scale transform-
ation (which is called conformal transformation) [34]:

x → λ(x)x (C.1.1)

Is a known result of CFT that every system which is invariant under global scale
transformations, rotations and translations is also conformal; this statement turns
out to be very useful in the analysis of conformal models [20]. Let us consider
a d-dimensional space; under transformation (C.1.1) the metric tensor gµν of the
space undergoes the following transformation:

g
�
µν(x

�) = Λ(x)gµν(x) (C.1.2)
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If we consider an infinitesimal transformation of kind (C.1.1) we find:

x
�µ = x

µ + �
µ(x) (C.1.3)

g
�
µν(x

�) = gµν(x) + ∂µ�ν(x) + ∂ν�µ(x) (C.1.4)

If the system is conformal, of course it holds that g�µν(x
�) = gµν(x). In this case it

is quite easy to find that [20, 34]:

∂µ�ν(x) + ∂ν�µ(x) = gµν(x)
2

d
∂ · � (C.1.5)

From now on we will restrict our analysis to the case of a 2-dimensional euclidean
space (gµν(x) = δµν). In this particular case, (C.1.5) can be substituted by this
set of requirements:

∂1�1(x) = ∂2�2(x) (C.1.6)

∂1�2(x) = −∂2�1(x) (C.1.7)

These requirements make it possible to move from the real space to the complex
space. Indeed we can introduce the following complex quantities:

z = x1 + ix2 (C.1.8)

z = x1 − ix2 (C.1.9)

� = �1 + i�2 (C.1.10)

� = �1 − i�2 (C.1.11)

∂z =
1

2
(∂1 − i∂2) (C.1.12)

∂z =
1

2
(∂1 + i∂2) (C.1.13)

These identities, together with (C.1.6) and (C.1.7), tell us that �(z) and �(z) are
respectively holomorphic and antiholomorphic functions. Though of course z and
z are dipendent one to the other (we are using two complex variables - that is, four
real parameters - to describe a 2-dimensional space!), they are usually treated as
indipendent, as we would have done if x1 and x2 were continuously extended from
R to C. The metric tensor gets the form:

gµν =

�
0 1

2
1
2 0

�
µ, ν ∈ {z, z} (C.1.14)

An object which is always of great interest in the study of a theory is the stress-
energy tensor Tµν ; in the usual coordintes (x1, x2), it is the Noether Current found
when applying a conformal transformation to the action of the model:

δS =
1

2π

�
d
2
xTµν(x)∂

µ
�
ν(x) (C.1.15)
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Due to conformal symmetry (which, as we said, may be regarded as formed by
translational, rotational and global scaling symmetries), this tensor has some fea-
tures of great importance:

∂µT
µν(x) = 0 T

µν(x) = T
νµ(x) T

µ
µ (x) = 0 (C.1.16)

These properties may be translated into the complex language: the new stress-
energy tensor can be found through a proper transformation, and properties (C.1.16)
change consequentely. The (renormalized) diagonal elements (T and T ) of the new
energy tensor are [28] :

T = T11 − T22 − 2iT12 (C.1.17)

T = T11 − T22 + 2iT12 (C.1.18)

From (C.1.16) the following relations hold:

∂zT (z, z) = ∂zT (z, z) = 0 (C.1.19)

This means that T and T depend only on z and z respectively.

C.2 Primary fields and Operator Product Ex-
pansion

Let us now turn to a conformal 2-dimensional field theory. A field ϕ of the
model is called primary if under a conformal transformation (z� = f(z), z� = f(z))
it transforms as:

ϕ
�(z�, z�) =

�
df(z)

dz

�−h �
df(z)

dz

�−h

ϕ(z, z) (C.2.1)

The parameters h and h are real ones, and are called conformal dimensions of
the field. Primary fields constitute a generalization of the so called quasi-primary
fields, which transform as C.2.1 only under the action of a certain set of global
conformal transformations, and not of a general local conformal transformation.

When studying a model, one is usually interested in the study of the correlation
functions of the fields of the theory. In the context of CFT, correlation functions
are usually expressed as Operator Product Expansion (OPE); for two given fields
A and B, their OPE is defined as:

A(z)B(w) =
�

k

αk(w)

(z − w)k
(C.2.2)
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This notation works in the following way: this relation holds only if the lefthand
side of the identity belongs to a correlator, the fields αk are regular when eval-
uated in w, and terms which are regular in w are omitted from the sum. One
clarifying example is the so called Ward Identity; if we define X as a product
of n primary fields (X = ϕ1(z1, z1) . . .ϕn(znzn)) with conformal dimensions (hi,
hi), the Ward Identities for the holomorphic and antiholomorphic parts of the
stress-energy tensor reads [20]:

�T (z)X(w1, w1, . . . , wn, wn)� =
n�

i=1

�
hi

(z − wi)2
+

1

z − wi
∂i

�
�X(w1, w1, . . . , wn, wn)�

(C.2.3)

�T (z)X(w1, w1, . . . , wn, wn)� =
n�

i=1

�
hi

(z − wi)2
+

1

z − wi
∂i

�
�X(w1, w1, . . . , wn, wn)�

(C.2.4)
In the notation of OPE, the Ward Identities for a single field may be written as:

T (z)ϕ(w,w) ∼ h

(z − w)2
ϕ(w,w) +

1

z − w
∂wϕ(w,w) (C.2.5)

T (z)ϕ(w,w) ∼ h

(z − w)2
ϕ(w,w) +

1

z − w
∂wϕ(w,w) (C.2.6)

For the correlation function of the stress-energy tensor evaluated in two different
points, it holds that [20]:

T (z)T (w) ∼ c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
(C.2.7)

From the comparison between (C.2.5) and (C.2.7) it is clear that the stress-energy
tensor is a quasi-primary field with conformal dimension h = 2. The constant c

appearing in (C.2.7) is a fundamental quantity in CFT, and it is called central
charge; its value depends on the degrees of freedom of the system under consid-
eration. In general, models with the same central charge belong to a so called
universality class, that is, an ensemble of systems which behave substantially in
the same way and can be regarded as equivalent after a proper mapping; in this
sense, once the central charge of a conformal system is known, it is possible to ex-
trapolate information about its behaviour from the behaviour of the other systems
of the same class.
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C.3 Radial Quantization and the Virasoro Al-
gebra

In the context of conformal field theory, the usual method of quantization is the
so called radial quantization [20]. First of all, let us consider a 1+1 dimensional
model defined on an infinite cylinder: its height (which goes from −∞ to +∞) is
the time coordinate t, while the space coordinate x, belonging to the interval (0, L),
describes the circumferences which form the cylinder, and has periodic boundary
conditions (the space time point (0, t) is identified with (L, t)). It is possible to
map this cylinder into the complex plane with complex coordinate z, using the
following transformation:

z = e
2πξ
L (C.3.1)

ξ = t+ ix (C.3.2)

In this picture, each space-time position is described by a complex point on the
plane; points with the same modulus (that is, at the same distance from the origin
of the plane) describe the same time moment, but in different spacial positions.
In this sense, it is clear that the origin of the plane corresponds to t = −∞ and, if
the complex plane is compactified into an S

2 sphere, t = +∞ is described by the
northern pole of this sphere.

This construction is needed in order to have a well defined Hilbert space. As
first step, it is necessary to define a vacuum state for the theory ( |0� ) upon which
the proper creation operators may be applied in order to get all the possible states;
this vacuum has to be invariant under conformal transformations. Usually, in QFT,
the fields of an interacting theory are regarded as free in the limit t → ±∞; the
fields obtained in this limit are called asymptotic fields, and from the action of an
asymptotic field upon the vacuum one gets a so-called asymptotic state. The same
procedure can be followed also in the case of a CFT with radial quantization; let
us consider the asymptotic “in” field, defined at t = −∞, which in the formalism
of radial quantization can be recast as:

ϕin = lim
z,z→0

ϕ(z, z) (C.3.3)

The asymptotic “in” state assumes the form:

|ϕin� = ϕin|0� = lim
z,z→0

ϕ(z, z)|0� (C.3.4)

Let us now suppose that ϕ(z, z) is a (quasi)primary field with conformal dimensions
h and h. Of course, it is possible to perform a Taylor expansion of the field in
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order to get [20]:

ϕ(z, z) =
�

m,n∈Z
z
−m−h

z
−n−h

ϕm,n (C.3.5)

ϕm,n =
1

2πi

�
dww

m+h−1 1

2πi

�
dww

n+h−1
ϕ(w,w) (C.3.6)

Looking carefully at (C.3.4), (C.3.5), (C.3.6), it is clear that for (C.3.4) to hold it
is necessary that:

ϕm,n|0� = 0 m > −h, n > −h (C.3.7)

This kind of expansion can be applied to the stress-energy tensor in a quite straight-
forward way: keeping in mind that for T (z), the conformal dimension h is equal
to 2, (C.3.5) and (C.3.6) become:

T (z) =
�

n∈Z
z
−n−2

Ln (C.3.8)

Ln =
1

2πi

�
dww

n+1
T (w) (C.3.9)

In a quite analogous way, one can find, for the antiholomorphic stress-energy
tensor:

T (z) =
�

n∈Z
z
−n−2

Ln (C.3.10)

Ln =
1

2πi

�
dww

n+1
T (w) (C.3.11)

Ln and Ln constitute the set of generators of the conformal transformations on
the Hilbert space defined before. They form the Virasoro Algebra, which is char-
acterized by the following commutation relations:

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0 (C.3.12)

�
Ln, Lm

�
= 0 (C.3.13)

�
Ln, Lm

�
= (n−m)Ln+m +

c

12
n(n2 − 1)δn+m,0 (C.3.14)

The operators L0 and L0 are peculiar, since they generate dilatations in the com-
plex plane, corresponding to time translation in the radial quantization formalism;
keeping in mind that energy is the conserved charge related to time-translation
invariance, this implies that the Hamiltonian must be proportional to the sum of
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these two generators. Indeed, the Hamiltonian of a conformal theory on a cylinder
may be formulated as [20]:

H =
2π

L
(L0 + L0)−

cπ

6L
(C.3.15)

This Hamiltonian constitutes the evolution operator of the system. This kind of
Hamiltonian is often found as continuum limit of (critical) Hamiltonians defined
on a lattice. When performing this limit from the discrete space of the lattice
to a continuum space coordinate, the resulting Hamiltonian usually differs by a
multiplying constant v from the expression C.3.15. Though this doesn’t affect the
physics of the model at all, it is important because it constitutes a characteristic
velocity of the model. In the following we will keep this constant explicit when
needed. L1, L1, L−1 and L−1 generate all the other global conformal transform-
ations; the vacuum has to be invariant under the action of these generators plus
the two generators of time-translations:

Ln|0� = 0 n ∈ {0, 1,−1} (C.3.16)

Ln|0� = 0 n ∈ {0, 1,−1} (C.3.17)

It is possible to generate new states through the action of an asymptotic field of
conformal dimensions

�
h, h

�
on the conformal vacuum:

|h, h� = ϕ(0, 0)|0� (C.3.18)

These asymptotic states are labeled through the conformal dimensions of the
field because the following relations hold:

L0|h, h� = h|h, h� (C.3.19)

L0|h, h� = h|h, h� (C.3.20)

Due to (C.3.15), conformal states defined this way are eigenstates of the hamilto-
nian; moreover, since in the case we are interested in (that is, in unitary theories)
the conformal dimensions are positive, the conformal vacuum turns out to be the
ground state of the system.

Starting from an asymptotic state it is possible to build a tower of conformal
states, through the action of the Virasoro operators upon it:

Ln|h, h� = 0 n > 0 (C.3.21)

Ln|h, h� = 0 n > 0 (C.3.22)

L−n|h, h� = |h+ n, h� n > 0 (C.3.23)

L−n|h, h� = |h, h+ n� n > 0 (C.3.24)
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C.4 Some useful relations

At the beginning of the previous section, our starting point was a conformal
theory defined on a cylinder (and so, with a finite spacial length L), which was
then mapped into a complex plane. All the comments and definitions that followed
did not keep track of the finite length of the system, but only of the lucky case
of having transferred the theory to the complex plane. In physics, we are usually
interested in studying systems with infinite length (that is, in the thermodynamic
limit) though often - for example, through the use of numerical methods - only
finite length systems can be properly studied in every detail. In this sense, it is of
great importance to understand what happens to some physical observables, like
energy or Entropy, when the system under study is of finite or infinite size.

The fact is that, if we study a theory living on a cylinder, we should keep in
mind that in some way we are introducing a boundary, though the manifold under
consideration is infinite: a finite correlation length (ξ) exists, due to the presence
of a characteristic length scale L, though in a conformal theory we expect ξ = ∞.
Every problem disappears in the limit L → ∞. This is exactly what happens when
studying the so called critical systems. When a system (for example, defined on
a linear lattice) is at a critical point (respect to some coupling parameters), it is
expected to have an infinite correlation length - that is, to be massless.

Let us consider a theory on the cylinder. It is possible to define the free energy
of the system (F ) per unit of (physical) length (as before, let us call it L), and to
evaluate it. This result is well known and derives from (C.3.15); it states that [20]:

F

L
= f0 −

πcv

6L2
(C.4.1)

Moreover, from the definition of the excited states in a Verma module and of the
Hamiltonian, it is possible to estimate the energy gap between the ground state
and an excited state with conformal dimensions

�
h+N, h+N

�
(h and h are the

conformal dimensions of the asymptotic state and N and N give us the shift of
the conformal dimensions of the excited state from the ones of the asymptotic
state) [20, 28]:

δE =
2π

�
h+ h+N +N

�
v

L
(C.4.2)

Of course, the gap closes as the size of the system becomes bigger, as expected for
a critical system.

Another quantity that gives us a huge amount of information about the system
is the Entanglement Entropy. About it a well known result exists, which can be
very useful not only from an analytical point of view, but also in the context of
numerical simulations. Let us consider a theory defined on a finite chain of length
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L with lattice spacing a; moreover, let us assume that the correlation length of the
chain, ξ - which is non infintite because of the finiteness of the system - is much
bigger than a. The chain can be divided into a subsystem of size � (let’s call it A)
and a subsystem of size L− � (labelled with B). Given the density matrix � of the
system, it is possible to estimate the entanglement entropy of the partition:

�A = TrB [�] (C.4.3)

SA = −TrA [�A ln �A] (C.4.4)

Through the path integral formulation of the partition function and of the
density matrix, Calabrese and Cardy [12] studied the entropy of a bipartited system
of this kind, under the hypothesis it is conformal in the thermodynamic limit; they
were able to provide the celebrated Cardy-Calabrese formula, which, for a system
with periodic boundary conditions, reads:

SA =
c

3
ln

�
L

πa
sin

�
π�

L

��
+ b (C.4.5)

b is a non universal constant. It is important to stress that this formula relates the
Entanglement Entropy with the central charge, which gives us a powerful tool for
the estimate of c through numerical data, also due to the fact that equation (C.4.5)
does not have any dependence on the characteristic velocity v (while (C.4.1) and
(C.4.2) do); moreover, precisely as one should expect, SA has its maximum when
� = L

2 .
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