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Introduction

In recent years is becoming increasingly important to handle credit risk. To value

and to hedge credit risk in a consistent way, one needs to develop a quantitative model.

The main objective of the quantitative models of the credit risk is to provide ways to

price financial contracts that are sensitive to credit risk.

This thesis deal with a local stochastic volatility model with default.

Local stochastic volatility model is a continuous market model with non-constant volatil-

ity. In particular this model is an extension of the Black-Scholes one: the general idea

is to modify the dynamics of the underlying asset, thus obtaining a model in which the

volatility is a function of time and of the price of the underlying asset X.

That is σt = σ(t,Xt). This is due to the fact that, consistent with the observed market

dynamics, implied volatilities today change as maturity and strike changes. Moreover,

implied volatilities for fixed maturities and strikes also change over time and so volatility

is non-constant. One advantage of local volatility models is that transition densities of

the underlying – as well as European option prices – are often available in closed-form

as infinite series of special functions. In order to take into account the possibility of

bankruptcy of the counterparty of a contract, the models have to consider probability of

default. Default is now permeating the valuation of derivatives in any area.

Whenever a derivative is traded, the default risk of the counterparty should, in principle,

enter the valuation. Recently, regulatory institutions insisted on the need to include this

kind of risk in the pricing paradigm. Our goal is to develop a payoff depending on the

underlying of the basic derivative and on the default of the counterparty.

We will model the defaultable stock price process as a time-changed diffusion process

with state-dependent local volatility. The stock price process will have local-stochastic
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ii Introduction

volatility and default intensity. We will consider the JDCEV model of Carr and Linet-

sky (2006) and obtain a rich class of analytically tractable models with local-stochastic

volatility and default intensity. These models can be used to jointly price equity and

credit derivatives.

This work is organized as follows:

Chapter 1: in this chapter we will consider a random time i.e. a random variable

whose value is interpreted as the time at which a given stochastic process exhibits

a certain behavior of interest. We will analize the problem of the evaluation of

conditional expectation when the filtration available G is formed by the natural

filtration H of a random time and an arbitrary filtration F. We will introduce the

concept of survival process and hazard process. Finally we will show an important

lemma which allows to substitute the conditional expectation with respect to Gt

with the conditioning relative to the σ-algebra Ft.

Chapter 2: in this chapter we will present our model architecture. We will prove that

assumption made in the previous chapter holds and so we can used the main results

in our case. We will introduce the concept of the default time τ , a stopping time

which represents the instant in which the counterparty goes bankrupt. We will

present a defaultable asset S with risk-neutral dynamics. We will introduce the

European option-pricing problem and derive a partial differential equation (PDE)

for the price of an option. So we will show that the study of the price of our model

can be transferred in the study of a partial differential operator with variables

coefficients.

Chapter 3: in this chapter we will provide some interesting examples. We will present

the so called JDCEV model with respectively costant and stochastic short rate. As

regards the stochastic case we will present two classical time-homogeneous short-

rate models, namely the Vasicek (1977) and the Cox, Ingersoll and Ross (1985)

models. We will show that both models possess an affine term structure: this

argument acquires importance due to the fact that from an analytical and com-

putational point of view the existence of an affine term structure extremely sim-

plifies the content.
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Chapter 4: we will introduce two numerical methods in order to approximate differ-

ent bond prices. The former give an analytical approximation formulas and it is

based on the notion of polynomial expansion basis: the idea is to expand the local

volatility and drift functions as a Taylor series about an arbitrary point, i.e.

f(x) =
∞∑
n=0

an(x− x)n

in order to achieve their approximation result. We will derive a formal asymptotic

expansion for the function that solves the option pricing PDE. These formulas

are implemented in Wolfram Mathematica. The latter is based on Monte Carlo

method, one of the most popular numerical methods, which allow to calculate

approximately the price of the contract through several simulations. This method

is implemented in Matlab.

Chapter 5: Finally we will provide numerical examples that illustrate the effectiveness

and versatility of our methods. We will tests every code and we will summarized

in some tables the theoretical results obtained for each scheme.

In the appendix there are some interesting theoretical results which are used in the the-

sis. Appendix A deals with Probability spaces, distributions and characteristic function.

Appendix B treats of Stochastic process, Brownian motion and martingale. Appendix

C deals with Stochastic differential equations and presents the Feynman-Kac̆ theorem,

which shows the connection between SDEs and PDEs.

It is essential to stress that we make the common standard technical assumptions:

• all filtrations satisfy the usual conditions1 of right-continuity and completeness

1Given a probability space (Ω,G ,P) we say that Gt satisfies the so-called usual hypotheses with

respect to P if

1. N ⊂ G0 where N is the family of the events A s.t. P(A) = 0

2. the filtration is right-continuos i.e. for every t ≥ 0

Gt =
⋂
ε>0

Gt+ε
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• the sample paths of all sthocastic processes are assumed to be càdlàg2

• all r.v. and s.p. satisfy suitable integrability conditions, which ensure the existence

of considered conditional expectations, deterministic or stochastic integrals.

2càdlàg is the French shortening for ’right-continuos with finite left limits at all t’



Introduzione

Negli ultimi anni sta diventando sempre più importante gestire il rischio di credito.

Per la valutazione e per la copertura del rischio di credito in modo coerente, si ha la

necessità di sviluppare un modello quantitativo.

L’obiettivo principale dei modelli quantitativi del rischio di credito è quello di fornire

metodi per prezzi di contratti finanziari che sono sensibili al rischio di credito.

Questa tesi tratta di modelli stocastici con volatilità locale.

Un modello locale di volatilità stocastica è un modello continuo di mercato con volatilità

non costante. In particolare, questo modello è un’estensione di quello di Black-Scholes:

l’idea generale è quella di modificare la dinamica del sottostante, in modo da ottenere

un modello in cui la volatilità è una funzione del tempo e del prezzo del sottostante .

In altri termini σt = σ(t,Xt). Ciò è dovuto al fatto che, in linea con le dinamiche di mer-

cato osservate, le volatilità implicite cambiano al cambiare della scadenza e dello strike.

Inoltre, fissati la scadenza e lo strike, le volatilità implicite cambiano anche nel tempo e

cos̀ı la volatilità è non costante. Un vantaggio dei modelli a volatilità locale è che le den-

sità di transizione del sottostante - cos̀ı come i prezzi delle opzioni europee - sono spesso

disponibili in forma chiusa come una serie infinita di funzioni speciali. Al fine di tener

conto della possibilità di fallimento della controparte di un contratto, i modelli devono

considerare la probabilità di default. Il default è ormai diventato parte importante nella

valutazione dei derivati.

Ogni volta che un derivato viene scambiato, il rischio di default della controparte dovrebbe,

in linea di principio, entrare nella valutazione. Recentemente, istituzioni di regolamen-

tazione hanno insistito sulla necessità di includere questo tipo di rischio nel paradigma

dei prezzi. Il nostro obiettivo è quello di sviluppare un payoff che dipenda dal sottostante

v



vi Introduction

del derivato di base e dal default della controparte.

Modelleremo il processo del prezzo delle azioni con una volatilità locale dipendente dallo

stato. Il processo di quotazione avrà volatilità locale stocastica e un default predefinito.

Prenderemo in considerazione il modello di JDCEV di Carr e Linetsky (2006) ed otter-

remo una ricca classe di modelli analiticamente trattabili.

Questa tesi è organizzata come segue:

Capitolo 1: in questo capitolo prenderemo in considerazione un tempo casuale cioè

una variabile aleatoria il cui valore viene interpretato come il tempo in cui un dato

processo stocastico presenta un certo comportamento di interesse. Analizzeremo il

problema della valutazione dell’attesa condizionata quando la filtrazione disponibile

G è formata da una filtrazione naturale H di un tempo casuale e da una filtrazione

arbitraria F. Introdurremo il concetto di processo di sopravvivenza e di processo

di pericolo. Infine mostreremo un lemma importante che permette di sostituire

l’attesa condizionata rispetto a Gt con un attesa condizionata relativa alla σ-algebra

Ft.

Capitolo 2: in questo capitolo presenteremo il nostro modello oggetto di studio. Di-

mostreremo che le ipotesi fatte nel capitolo precedente sono verificate e cos̀ı potremo

utilizzare i principali risultati ottennuti nel nostro particolare caso. Introdurremo

il concetto di tempo di default τ , un tempo di arresto che rappresenta l’istante in

cui la controparte fallisce. Introdurremo il problema dell’option-pricing europea e

ricaveremo un’equazione differenziale alle derivate parziali (PDE) per il prezzo di

un’opzione. Quindi dimostreremo che lo studio del prezzo del nostro modello può

essere trasferito allo studio di un operatore differenziale alle derivate parziali con

coefficienti variabili.

Capitolo 3: in questo capitolo formiremo alcuni esempi interessanti. Presenteremo il

cosiddetto modello JDCEV rispettivamente con tasso a breve costante e stocastico.

Per quanto riguarda il caso stocastico presenteremo due classici modelli di tasso a

breve, vale a dire il modello Vasicek (1977) e quello Cox, Ingersoll e Ross (1985).

Mostreremo che entrambi i modelli possiedono una struttura affine: tale argomento

acquista particolare importanza grazie al fatto che da un punto di vista analitico e
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computazionale l’esistenza di una struttura affine semplifica estremamente il con-

tenuto.

Capitolo 4: introdurremo due metodi numerici per approssimare diversi prezzi dei

bond. Il primo fornisce formule d’approssimazione analitiche e si basa sulla nozione

di espansione di una base polinomiale: l’idea è quella di espandere la volatilità lo-

cale e la funzione di drift come una serie di Taylor intorno a un punto arbitrario,

vale a dire

f(x) =
∞∑
n=0

an(x− x)n

al fine di raggiungere un risultato approssimato. Deriveremo una formula di

sviluppo asintotico per la funzione che risolve i prezzi dell’ opzione. Queste for-

mule sono state poi implementate in Wolfram Mathematica. L’ ultimo è basato

sul metodo Monte Carlo, uno dei metodi numerici più popolari, che permette di

calcolare approsimativamente il prezzo del contratto attraverso diverse simulazioni

e facendone la media. Questo metodo è stato poi implementato in Matlab.

Chapter 5: infine forniremo esempi numerici che illustreranno l’efficacia e la versatilità

dei metodi studiati. Testeremo ogni algoritmo implementato e riassumeremo in

alcune tabelle i risultati teorici ottenuti.

Nell’appendice sono riportati alcuni risultati teorici interessanti che sono utilizzati nella

tesi. L’appendice A si occupa di spazi di probabilità, distribuzioni e funzione carat-

teristica. L’appendice B tratta di processi stocastici, moto browniano e martingale.

L’appendice C invece tratta di equazioni differenziali stocastiche e presenta il teorema

di Feynman-Kac̆, che mostra il legame tra SDE and PDE.

Riportiamo di seguito le ipotesi tecniche che assumiamo valide per tutta la tesi:

• ogni filtrazione soddisfa le ipotesi usuali3 di continuità e completezza

3Dato uno spazio di probabilità (Ω,G ,P) diciamo che Gt soddisfa le ipotesi usuali rispetto a P se

1. N ⊂ G0 dove N è la famiglia degli eventi A t.c. P(A) = 0
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• i cammini di tutti i processi stocastici si assumono essere càdlàg4

• tutte le variabili aleatorie e i processi stocastici soddisfano le condizioni di in-

tegrabilità adeguate che garantiscono l’esistenza di attese condizionate, integrali

deterministici o stocastici.

2. la filtrazione è continua da destra ovvero per ogni t ≥ 0

Gt =
⋂
ε>0

Gt+ε

4càdlàg è un’ abbreviazione francese che sta per ’continuità da desta con limite da destra finito in t’
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General notations

• N = {0, 1, 2, 3, · · · } is the set of natural numbers

• R is the set of real numbers

• R+ =]0,+∞[

• IH is the indicator function of H

• AC = Ω r A is the complementary of A (referred to events)

• E[X] := EP[X] (referred to random variables)

For any a, b ∈ R

• a ∧ b = min{a, b}

• a ∨ b = max{a, b}

Function spaces

• Bm = space of B-measurable functions

• Lp = space of functions integrable of order p

• Lploc = space of functions locally integrable of order p

• Ck = space of functions with continuos derivates up to order k ∈ N

Process spaces

• Lp = space of progressively measurable process in Lp([0, T ] x Ω)

1



2 LIST OF FIGURES

• Lploc = space of progressively measurable process X s.t. X(ω) ∈ Lp([0, T ]) for

almost any ω

Abbreviations

• r.v.= random variable

• s.p.= stochastic process

• s.t.= such that

• i.i.d.= independent and identically distribueted (referred to random variables)

• mg= martingale

• B.m.= Brownian motion

• i.e.= id est≡ that is

• PDE= Partial Differential Equation

• SDE= Stochastic Differential Equation



Chapter 1

Preliminary results

Let us start with some general remarks which will be useful for the costruction of our

defaultable model.

Let τ : Ω −→ R be a non-negative r.v. on a probability space (Ω,G ,P).

For our model τ represents the random time. For convenience we assume:

• P(τ = 0) = 0

• P(τ > t) > 0 for any t ∈ R+

The last condition means that τ is assumed to be unbonded.

Definition 1.1. We define the jump process H associated with the random time τ by

setting

Ht = I{τ≤t} for t ∈ R+

The process H has right-continuos sample paths. Specifically each sample paths is

equal to 0 before random time τ and it equals 1 for t ≥ τ .

Let H = (Ht)t≥0 stand for the filtration generated by the process H where Ht is the

σ-algebra defined by Ht = σ(Hu : u ≤ t). Finally we set H∞ = σ(Hu : u ∈ R+).

The σ-algebra Ht represents the information generated by the observations on the time

interval [0, t]. Let F = (Ft)t≥0 be an arbitrary filtration on a probability space (Ω,G ,P).

All filtration are assumed to satisfy ’usual condition’ of right continuity and completeness.

We assume that the filtration G has the form G = F ∨ H i.e. Gt = Ft ∨Ht for any

3



4 1. Preliminary results

t ∈ R+. For each t ∈ R+, the information available at time t is captured by the σ-algebra

Gt. We want to stress that the process H is obviosly G-adapted, but it is not necessary

F-adapted. In other words, the random time τ is a G-stopping time1, but it may fail to

be an F-stopping time.

Definition 1.2. For any t ∈ R+ we denote by G the F-survival process of τ with respect

to the filtration F, given as:

Gt = P(τ > t|Ft) t ∈ R+

Remark 1.

Gt is Ft-measurable thanks to the properties of conditional expectation. (See A.3).

Remark 2.

Since F0 contains no information, we have:

G0 = P(τ > 0|F0) = P(τ > 0) > 0

The hazard process of the default time, given the flow of information represented by the

filtration F is formally introduced through the following definition.

Definition 1.3. Assume that Gt > 0 for any t ∈ R+. Then:

Γt := − lnGt t ∈ R+

is called the F-hazard process of τ .

Remark 3.

It is important to observe that for any A ∈ Gt we have A ∩ {τ > t} = B ∩ {τ > t} for

some event B ∈ Ft. Indeed we have two possibilities:

• if A = {τ ≤ u} for some u ≤ t ⇒ ∃B ∈ Ft s.t. A ∩ {τ > t} = B ∩ {τ > t}. It is

enough to take B = ∅.

• if A ∈ Ft ⇒ ∃B ∈ Ft s.t. A∩{τ > t} = B ∩{τ > t}. It is enough to take B = A.

1In a filtered space (Ω,G , (Gt),P) a r.v. τ : Ω −→ R+ is called stopping time with respect to the

filtration (Gt) if {τ ≤ t} ∈ Gt ∀t ≥ 0

Clearly a deterministic time τ ≡ t is a stopping time.
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The following lemma give an important result. It allows to substitute the conditional

expectation with respect to Gt with the conditioning relative to the σ-algebra Ft.

Switching from Gt expectations to Ft expectations is important because for some vari-

ables the Ft conditional expectations are easier to compute.

Lemma 1. Let Y be a r.v. on a probability space (Ω,G ,P). Then for any t ∈ R+ we

have:

E[I{τ>t}Y |Gt] = P(τ > t|Gt)
E[I{τ>t}Y |Ft]

Gt

(1.1)

Proof.

We need to verify that (recall that Ft ⊆ Gt)

E[I{τ>t}Y P(τ > t|Ft)|Gt] = E[I{τ>t}E[I{τ>t}Y |Ft]|Gt]

We need to show that for any A ∈ Gt we have:∫
A

I{τ>t}Y P(τ > t|Ft)dP =

∫
A

I{τ>t}E[I{τ>t}Y |Ft]dP

In view of the previous remark for any A ∈ Gt we have A ∩ {τ > t} = B ∩ {τ > t} for

some event B ∈ Ft and so:∫
A

I{τ>t}Y P(τ > t|Ft)dP =

∫
A∩{τ>t}

Y P(τ > t|Ft)dP =

=

∫
B∩{τ>t}

Y P(τ > t|Ft)dP =

=

∫
B

I{τ>t}Y P(τ > t|Ft)dP =

=

∫
B

E[I{τ>t}Y |Ft]E[I{τ>t}|Ft]dP =

=

∫
B

E[I{τ>t}E[I{τ>t}Y |Ft]|Ft]dP =

=

∫
B

I{τ>t}E[I{τ>t}Y |Ft]dP =

=

∫
B∩{τ>t}

E[I{τ>t}Y |Ft]dP =

=

∫
A∩{τ>t}

E[I{τ>t}Y |Ft]dP =

=

∫
A

I{τ>t}E[I{τ>t}Y |Ft]dP =
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Where in those steps the only properties that we have used are simply the properties of

conditional expectation (See A.3).

Corollary 1. If Ht ⊆ Gt then:

E[I{τ>t}Y |Gt] = I{τ>t}
E[I{τ>t}Y |Ft]

Gt

(1.2)

Proof.

It suffices to observe that, since Ht ⊆ Gt and Ht is Ht-measurable, we have

P(τ > t|Gt) = E[I{τ>t}|Gt] = I{τ>t}

In the last equality we have used the properties of conditional expectation (See A.3).

The formula (1.2) can be rewritten as follows:

E[I{τ>t}Y |Gt] = I{τ>t}E[I{τ>t}eΓtY |Ft] (1.3)

Lemma 2. Let Y be a r.v. on a probability space (Ω,G ,P) and let t ≤ T . Then:

E[I{τ>T}Y |Gt] = I{τ>t}E[I{τ>T}eΓtY |Ft] (1.4)

If Y is F -measurable, then

E[I{τ>T}Y |Gt] = I{τ>t}E[eΓt−ΓTY |Ft] (1.5)

Proof.

In view of (1.3), to show that (1.4) holds, it is enough to observe that I{τ>T}I{τ>t} =

I{τ>T}. For (1.5), by virtue of (1.4), we obtain

E[I{τ>T}Y |Gt] = I{τ>t}E[I{τ>T}eΓtY |Ft] =

= I{τ>t}E[E[I{τ>T}|FT ]eΓtY |Ft]

= I{τ>t}E[P(τ > T |FT )eΓtY |Ft]

= I{τ>t}E[GT e
ΓtY |Ft]

= I{τ>t}E[eΓt−ΓTY |Ft]
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1.1 Market assumptions

Before proceeding to the description of the models that will be discussed below, it is

useful to mention the properties of the financial market that are taken as the assumptions

on which these models are built. Some of these issues do not exist in real markets, but

they serve to simplify the mathematical treatment of the problem.

• It is assumed that the market is free of arbitrage opportunities. The absence of

arbitrage is an important concept in the mathematical theory of contingent claim

pricing which imposes constraints on the way instruments are priced in a market.

The word absence of arbitrage essentially addresses the opportunity to make a

risk-free profit : it is equivalent to the impossibility to invest zero today and receive

tomorrow a nonnegative amount that is positive with positive probability.

In other words, two portfolios having the same payoff at a given future date must

have the same price today.

• An important concept in the mathematical theory of contingent claim pricing is

risk-neutral pricing. It represents the price of any instrument in an arbitrage-free

market as its discounted expected payoff under an appropriate probability measure.

• It is assumed the existence of an equivalent martingale measure2 which leads to

absence of arbitrage.

• It is assumed frictionless market i.e. a financial market without transaction costs.

2See (B.5)





Chapter 2

Construction of the model

Our goal is, using the previous notations, to costruct a market model with default.

Let (Ω,G , (Gt)t≥0,P) a filtered probability space. All stochastic processes defined below

live on this probability space and all expectations are taken with respect to P.

1. Let W = (Wt)t≥0 be a real B.m.1

2. Let ε be a r.v. with exponential distribution with parameter 1 i.e. ε ∼ exp(1)2

and independent of W .

3. Let X be a process which is the solution of the follow SDE3:

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt (2.1)

where:

• µ = µ(t, x) : [0, T ] x R −→ R is a measurable4 function

• σ = σ(t, x) : [0, T ] x R −→ R is a non-negative measurable function

4. Let γ : [0,+∞[ x R −→ R non-negative measurable function.

1See (B.3)
2See (A.1.1)
3See (C.1)
4In a measure space (Ω,F ,P) we say that a function f : Ω −→ R is F -measurable if f−1(H) ∈ F

for any H ∈ B
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10 2. Construction of the model

We define τ : Ω −→ R be a non-negative r.v. on a probability space (Ω,G ,P) by

setting:

τ = inf{t ≥ 0 :

∫ t

0

γ(s,Xs)ds ≥ ε}

We shall now check that properties listed in the previous chapter are satisfied.

First of all we show that P(τ = 0) = 0. Since clearly {τ = 0} = {
∫ 0

0
γ(s,Xs)ds ≥ ε} we

have:

P(τ = 0) = P(0 ≥ ε) = 0

Now we show that P(τ > t) > 0 for any t ∈ R+. Before to prove this equality we have

to introduce this lemma.

Lemma 3. Let X,Y be a r.v. on (Ω,G ,P). Let F ⊆ G be a σ-algebra s.t.

• X is independent of F ;

• Y is F -measurable.

Then for every B-measurable bounded function h we have

E[h(X, Y )|G ] = g(Y ) where g(y) = E[h(X, y)] (2.2)

Proof.

We have to prove that the r.v. g(Y ) is a version of the conditional expectation of h(X, Y ).

i.e. that for any G ∈ F we have∫
G

h(X, Y )dP =

∫
G

g(Y )dP

Using the notation PW to denote the distribution of a given r.v. W, we have

g(y) =

∫
R
h(x, y)PX(dx)

Then, since g is a B-measurable function, by assumption ii) results that g(Y ) is a F -
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measurable. Further, given G ∈ F and putting Z = IG, we get∫
G

h(X, Y )dP =

∫
Ω

h(X, Y )ZdP =

∫ ∫ ∫
h(x, y)zP(X,Y,Z)(d(x, y, z)) =

=

∫ ∫ ∫
h(x, y)zPX(dx)P(Y,Z)(d(y, z)) =

=

∫ ∫
g(y)zP(Y,Z)(d(y, z)) =

=

∫
G

g(Y )dP

Where in third equality we have used the independence assumption i) and in fourth

equality Fubini’s theorem.

Now we can show that P(τ > t) > 0. Since {τ > t} = {
∫ t

0
γ(s,Xs)ds < ε} we have:

P(τ > t) = P(

∫ t

0

γ(s,Xs)ds < ε)

= E[I{∫ t0 γ(s,Xs)ds<ε}] = E[E[I{∫ t0 γ(s,Xs)ds<ε}|Ft]] =

= E[P(

∫ t

0

γ(s,Xs)ds < ε|Ft)]

Since ε is independent of F and {
∫ t

0
γ(s,Xs)ds < ε} is Ft-measurable, using the lemma

we obtain:

P(τ > t) = E[h(

∫ t

0

γ(s,Xs)ds)]

Where h(x) = P(ε > x) and since ε has an exponential distribution we have

E[h(

∫ t

0

γ(s,Xs)ds] > 0

This ends the proof.

Remark 4. Thanks to lemma we have

P(τ > t|Ft) = P(

∫ t

0

γ(s,Xs)ds < ε|Ft) = e−
∫ t
0 γ(s,Xs)ds > 0 (2.3)

Therefore the F-survival process of τ is positive i.e.

Gt = P(τ > t|Ft) > 0 t ∈ R+

So the F-hazard process of τ is well defined i.e.

Γt := − lnGt t ∈ R+
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Since Gt = e−Γt , by (2.3) we obtain:

Γt :=

∫ t

0

γ(s,Xs)ds (2.4)

Therefore the random time τ is seen as the first time when the hazard process Γ is

greater or equal to the random level ε ∼ exp(1) i.e.

τ = inf{t ≥ 0 : Γt ≥ ε}

2.1 Default time

In recent years is becoming increasingly important to handle credit risk. Credit risk

is the risk associated with the possibility of bankruptcy. More precisely, if a derivative

provides for a payment at cert time T but before that time the counterparty defaults, at

maturity the payment cannot be effectively performed, so the owner of the contract loses

it entirely or a part of it. It means that the payoff of the derivative, and consequently its

price, depends on the underlying of the basic derivative and on the risk of bankruptcy

of the counterparty. To value and to hedge credit risk in a consistent way, one needs

to develop a quantitative model. The standard way to model the counterparty risk of

bankruptcy is to introduce the default time τ : it is a stopping time which represents

the instant in which the counterparty goes bankrupt.

Default time is introduced because it gives information which is not contained in the

usual filtration F. In order to keep track of the event {τ ≤ t} we have introduce the

filtration H = (Ht)t≥0 stand for the filtration generated by a default indicator process

H defined in the previous chapter i.e.

Ht = I{τ≤t} for t ∈ R+

Therefore if we want a filtration which provides for the whole flow of information, we

should introduce an enlarged filtration G = F ∨H i.e. Gt = Ft ∨Ht for any t ∈ R+.

The filtration G represents the history of the market. It describes the default-free mar-

ket variables up to t (by filtration Ft) and tells whether default occurred before t (by

filtration Ht).

Now we can defined our model.
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2.2 Market model with costant short interest

In this section we will look at default model with deterministic interest rates.

For simplicity, we assume a frictionless market, no arbitrage, zero interest rates and no

dividends. We take, as given, an equivalent martingale measure P5 chosen by the market

on a complete filtered probability space (Ω,G , (Gt)t≥0,P) satisfying the usual hypothesis

of completeness and right continuity. The filtration G is defined as above and F is the

filtration generated by X.

We consider a defaultable asset S whose risk-neutral dynamics are given by

St = I{τ>t}eXt

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

τ = inf{t ≥ 0 :

∫ t

0

γ(s,Xs)ds ≥ ε}

(2.5)

• dXt may be interpreted as the change in Xt over the period [t, t+ dt]

• µ(t,Xt) and σ(t,Xt) are deterministic functions of Xt and t

• τ represents the default time of S and is the first arrival time of a process with

local intensity function γ(t, x) > 0

We assume that the coefficients are measurable in t and suitably smooth in x to

ensure the existence of a solution to (2.5). In the absence of arbitrage, S must be an

G-martingale6.

We define Mt = e−rtSt. It represents the discounted value of the asset.

We have to prove that the equality Mt = [MT |Gt] holds for t ≤ T .

Since (2.4) holds and eXT is Ft-measurable we can apply the lemma 2 of the previous

5See (B.5)
6See (B.4).
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chapter.

Mt = E[MT |Gt]⇐⇒ e−rtSt = E[e−rTST |Gt]

⇐⇒ St = E[er(t−T )ST |Gt]

⇐⇒ eXtI{τ>t} = er(t−T )E[eXT I{τ>T}|Gt]

⇐⇒ eXtI{τ>t} = er(t−T )I{τ>t}E[eXT−
∫ T
t γ(s,Xs)ds|Ft]

⇐⇒ eXt = er(t−T )E[eXT−
∫ T
t γ(s,Xs)ds|Ft]

⇐⇒ eXt−rt−
∫ t
0 γ(s,Xs)ds = E[eXT−rT−

∫ T
0 γ(s,Xs)ds|Ft]

Therefore Mt is a G-mg ⇐⇒ Yt := eXt−rt−
∫ t
0 γ(s,Xs)ds is a F-mg.

The drift condition follows by applying the Ito’s formula to the process eXt−rt−
∫ t
0 γ(s,Xs)ds

and setting the drift term to zero i.e.

dYt = Yt(−r − γ(t,Xt))dt+ YtdXt +
1

2
Ytd < X >t

= Yt(−r − γ(t,Xt))dt+ Ytµ(t,Xt)dt+ Ytσ(t,Xt)dWt +
1

2
Ytσ

2(t,Xt)dt

= Yt(−r − γ(t,Xt) + µ(t,Xt) +
1

2
σ2(t,Xt))dt+ Ytσ(t,Xt)dWt

Therefore:

−r − γ(t,Xt) + µ(t,Xt) +
1

2
σ2(t,Xt) = 0

=⇒ µ(t,Xt) = r + γ(t,Xt)−
1

2
σ2(t,Xt)

Thus, in order to guarantee that Mt is a mg we have to impose tha additional re-

strictions on the drift µ(t,Xt) i.e. µ(t,Xt) is fixed by σ(t,Xt), γ(t,Xt) and r.

where

• r is the risk-free rate

• σ2(t, x) is the local volatility

• γ(t,Xt) is the intensity function of default

And so:
dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

dXt = (r + γ(t,Xt)−
1

2
σ2(t,Xt))dt+ σ(t,Xt)dWt

(2.6)
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2.3 Option pricing

We consider a European derivative expiring at time T .

Taking care of the credit risk of the counterparty, the price at time t of a derivative with

payoff H(ST ) is given by

E[H(ST )|Gt] (2.7)

In order to calculate this, it is necessary to know how to deal with default time and the

new filtration. The lemma 2 in the previous chapter shows how to express (2.7) in terms

of Ft instead of Gt.

Theorem 2.3.1. The no-arbitrage price Vt is given by

Vt = K + I{τ>t}E[e−
∫ T
t γ(s,Xs)ds(h(XT )−K)|Ft] (2.8)

Proof.

For convenience, we introduce

h(x) := H(ex) and H(0) = K

So we have two possibilities:

1. if {τ > T}
=⇒ St = eXt =⇒ H(St) = H(eXt) = h(Xt) (2.9)

2. if {τ ≤ T}
=⇒ St = 0 =⇒ H(St) = H(0) = K (2.10)

Using risk-neutral pricing, the value Vt of the derivative at time t is given by the

conditional expectation of the option payoff

Vt = E[H(ST )|Gt] =

= E[I{τ>T}h(XT )|Gt] +KE[I{τ≤T}|Gt] =

= E[I{τ>T}h(XT )|Gt] +K −KE[I{τ>T}|Gt] =

= K + E[I{τ>T}(h(XT )−K)|Gt] =

= K + I{τ>t}E[e−
∫ T
t γ(s,Xs)ds(h(XT )−K)|Ft]
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In second equality we have used respectively (2.9) and (2.10).

In fifth equality, since h(Xt) −K is a Ft-measurable r.v. (indeed Xt is Ft-measurable

and h is a continuos function) and (2.4) holds, we have used the formula of the lemma

2.

One notes that the pricing formula (2.8) consists of two parts: the value of payoff

conditional on no default and the value of the cash payment K in the event of default.

From (2.8), we see that, in order to compute the price of an option, we must evaluate

functions of the form

u(t, x) := E[e−
∫ T
t γ(s,Xs)dsh(XT )|Xt = x] (2.11)

By a direct application of the Feynman-Kac̆ representation theorem7, the function u(t, x)

defined in (2.11) is the classical solution (when it exists) of the following Cauchy problem (A+ ∂t)u(t, x) = 0 t ∈ [0, T [, x ∈ R

u(T, x) = h(x) x ∈ R
(2.12)

where A is the second order elliptic differential operator with variable coefficients

A(t, x)f(x) =
1

2
σ2(t, x)∂xxf(x) + µ(t, x)∂xf(x)− γ(t, x)f(x) (2.13)

We say that A is the characteristic operator of Xt.

If the operator A+ ∂t has a fundamental solution p(t, x, T, y) then, for every integrable

datum h, the Cauchy problem (2.12) has a classical solution that can be represented as

u(t, x) = e−
∫ T
t γ(s,Xs)ds

∫
R
p(t, x, T, y)h(y)dy (2.14)

Therefore, by Feynman-Kac̆ formula, we have that

E[e−
∫ T
t γ(s,Xs)dsh(XT )|Xt = x] = e−

∫ T
t γ(s,Xs)ds

∫
R
p(t, x, T, y)h(y)dy

i.e.

E[e−
∫ T
t γ(s,Xt,x

s )dsh(X t,x
T )] = e−

∫ T
t γ(s,Xs)ds

∫
R
p(t, x, T, y)h(y)dy (2.15)

where X t,x
T represents the process that at the istant t is in x.

7See C.2.
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Remark 5. The equation (2.15) means that, for fixed x ∈ R and t < T , the function

y 7→ p(t, x, T, y)

is the density of the r.v. X t,x
T . We express this fact by saying that p is the transition

density of the SDE given in the model (2.5). This fundamental result unveils the deep

connection between PDEs and SDEs.

Therefore, in order to compute the price of an option, we must solve PDE in (2.12)

with coefficients in function of two variables: t and x.

The solution of variables coefficients partial differential equations is an important en-

gineering problem. In the literature several methods have been proposed to overcome

this problem. In chapter 4 we will show our methodology in order to solve PDE with

variabiles coefficients.

2.4 Market model with stochastic short interest

In this section we will look at general local-stochastic volatility models with default

with stochastic short interest.

As above, we assume a frictionless market, no arbitrage, zero interest rates and no

dividends. We take, as given, an equivalent martingale measure P8 chosen by the market

on a complete filtered probability space (Ω,G , (Gt)t≥0,P) satisfying the usual hypothesis

of completeness and right continuity. The filtration G is defined as above and F is the

filtration generated by X.

We consider a defaultable asset S whose risk-neutral dynamics are given by

St = I{τ>t}eXt

dXt = µ(t,Xt, rt)dt+ σ(t,Xt, rt)dW
1
t

drt = α(t,Xt, rt)dt+ β(t,Xt, rt)dW
2
t

d < W 1,W 2 >t= ρ(t,Xt, rt)

τ = inf{t ≥ 0 :

∫ t

0

γ(s,Xs)ds ≥ ε}

(2.16)

8See (B.5)



18 2. Construction of the model

with the correlation −1 < ρ < 1.

As the asset price S must be a martingale, by applying the Ito’s formula to the process

eXt−
∫ t
0 rsds−

∫ t
0 γ(s,Xs)ds and setting the drift term to zero we obtain that the drift function

µ must be given by

µ(t,Xt, rt) = rt + γ(t,Xt)−
1

2
σ2(t,Xt, rt)

Making the same steps of the previous section we denote by V the no-arbitrage price of

European derivative expiring at time T with payoff H(ST ). It is well known, extended

the formula of (2.8) that

Vt = K + I{τ>t}E[e−
∫ T
t rs+γ(s,Xs)ds(h(XT )−K)|Ft] (2.17)

Then, to value a European-style option, one must compute functions of the form

u(t, x, r) := E[e−
∫ T
t rs+γ(s,Xs)dsh(XT )|Xt = x, rt = r] (2.18)

By a direct application of the Feynman-Kac̆ representation theorem, the function u(t, x, r)

defined in (2.18) is the classical solution (when it exists) of the following Cauchy problem (A+ ∂t)u = 0

u(T, x, y) = h(x, y)
(2.19)

where A the operator is given explicitly by

A(t, x)f(x, r) =
1

2
σ2(t, x, r)∂xxf(x, r) +

1

2
β2(t, x, r)∂rrf(x, r) + µ(t, x)∂xf(x, r)+

+ α(t, x, r)∂rf(x, r) + ρσ(t, x, r)β(t, x, r)∂xrf(x, r)− (r + γ(t, x))f(x, r)

(2.20)

As we can see, the results of the previous section can be extended in a straightforward

fashion to include models with stochastic interest rates.

In the next chapter we will show some finance models.



Chapter 3

Examples

3.1 JDCEV Model

In mathematical finance, the JDCEV or Jump to Default Constant Elasticity of

Variance model is a stochastic volatility model, which attempts to capture stochastic

volatility and the leverage effect. The model is widely used in the financial industry,

especially for modelling equities and commodities.

This work develops an analytical solution to the pricing problem under the Jump to

Default Constant Elasticity of Variance. Consider a defaultable bond, written on S,

that pays one dollar at time T > t if no default occurs prior to maturity and pays zero

dollars otherwise. Indicating with τ the default time variable, this means that ST > 0 if

τ > T . Then by theorem (2.3.1) with K = 0 and h(x) = 1 we have that the time t value

of the bond is given by

Vt = I{τ>t}E[e−
∫ T
t γ(s,Xs)ds|Ft] (3.1)

We set

u(t,Xt, T ) = E[e−
∫ T
t γ(s,Xs)ds|Ft]

thus

Vt = I{τ>t}u(t,Xt, T ) (3.2)

19
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In practice the price takes care of the risk of default of the issuer. Note that u(t, x, T ) is

both the price of a bond and the conditional survival probability i.e.

P(τ > T |Gt) = E[I{τ>T}|Gt] = E[e−
∫ T
t γ(s,Xs)ds|Ft]

The yield Y (t, x, T ) of such a bond, on the set τ > T is defined as

Y (t, x, T ) =
− log u(t, x, T )

T − t

The credit spread is defined as the yield minus the risk-free rate of interest i.e.

CSpread(t, x, T ) = Y (t, x, T )− r =
− log u(t, x, T )

T − t
− r

Obviously, in the case of zero interest rates, we have: yield = credit spread.

In the time-homogeneous case, the underlying S is described by (2.6) with

σ(x) = δe(β−1)x

γ(x) = b+ cσ2(x) = b+ cδ2e2(β−1)x

µ(x) = r + γ(x)− 1

2
σ2(x) = (c− 1

2
)δ2e2(β−1)x + r + b

where δ > 0, b ≥ 0,c ≥ 0.

Therefore, in this model, the instantaneous volatility is specified as a power function

where

• 0 ≤ β ≤ 1 is the volatility elasticity parameter

• δ > 0 is the volatility scale parameter

The limiting case with β = 0 corresponds to the constant volatility assumption in the

BSM model.

Remark 6. We will restrict our attention to cases in which β < 1. From a financial

perspective, this restriction makes sense, as it results in volatility and default intensity

increasing as S → 0+ which is consistent with the leverage effect.

To be consistent with the empirical evidence linking corporate bond yields to equity

volatility, Carr and Linetsky propose to specify the default intensity as a function γ(x)

of the instantaneous stock variance where
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• b is a constant parameter governing the state-independent part of the jumpto-

default intensity

• c is a constant parameter governing the sensitivity of the intensity to the local

volatility σ2

The model is:

St = I{τ>t}eXt

dXt = ((c− 1

2
)δ2e2(β−1)Xt + r + b)dt+ δe(β−1)XtdWt

τ = inf{t ≥ 0 :

∫ t

0

b+ cδ2e2(β−1)Xt ≥ ε}

(3.3)

The characteristic operator of Xt by (2.13)

A(t, x)f(x) =
1

2
δ2e2(β−1)x∂xxf(x) +

[
(c− 1

2
)δ2e2(β−1)x + r + b

]
∂xf(x)− γ(t, x)f(x)

The exact price i.e. the survival probability u(t, x;T ) in this setting , which requires

a Kummer confluent hypergeometric function, is computed in Mendoza-Arriaga et al.

(2010) .

u(t, x;T ) =
∞∑
n=0

e−(b+ωn)T
Γ(1 + c

|β|)Γ(n+1
2|β| )

Γ(ν + 1)Γ( 1
2|β|)n!

·

· A
1

2|β| exe−Ae
−2βx

F1(1− n+
c

|β|
; ν + 1;Ae−2βx)

(3.4)

where

• F1 is the Kummer confluent hypergeometric function i.e. a generalized hypergeo-

metric series introduced in (Kummer 1837), given by

F1(a, b, z) =
∞∑
n=0

(a)nz
n

(b)nn!

where
(a)0 = 1

(a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1)

is the rising factorial.
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• Γ(x) is a Gamma function i.e.

Γ(x) =

∫ +∞

0

tx−1e−tdt

• ν, A, ω are defined as follow

ν =
1 + 2c

2|β|

A =
r + b

δ2|β|
ω = 2|β|(r + b)

In this case we have make the assumption of deterministic rates.

When pricing a long-maturity option, however, the stochastic feature of interest rates

has a stronger impact on the option price. Therefore the short rate process have to enter

in the valuation. The general dynamic of the stochastic-local volatility model is given in

(2.16).

In the literature have been proposed numerous way on how to specify the dynamic of the

short rate under the equivalent martingale measure. We start the section by introducing

two popular short rate models: the Vasicek (1977) model and the Cox, Ingersoll and

Ross (1985) model. These are all endogenous term-structure models, meaning that the

current term structure of rates is an output rather than an input of the model. The

success of models like that of Vasicek (1977) and that of Cox, Ingersoll and Ross (1985)

was mainly due to their possibility of pricing analytically bonds and bond options. Before

define those models we have to introduced the notion of affine term structure.

3.2 Affine term structure

This argument acquires importance due to the fact that from an analytical and com-

putational point of view the existence of an affine term structure extremely simplifies

the content.

Definition 3.1. A model is said to possess an affine term structure if the zero coupon

bond can be written in the form

p(t, T ) = eA(t,T )−B(t,T )r(t) (3.5)
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where A and B are deterministic functions and with zero coupon bond we mean a contract

which guarantees the holder 1 dollar to be paid on the date T i.e.

p(t, T ) = E[e−
∫ T
0 rsds]

It turns out that the existence of an affine term structure is extremely pleasing from

an analytical and computational point of view, so it is considerable interest to understand

when such a structure appears. Both the Vasicek and CIR models we will see are affine

models, since the bond price has an expression of the above form in both cases. Assume

we have a general risk-neutral dynamics for the short rate,

drt = b(t, rt)dt+ σ(t, rt)dWt

We may wonder whether there exist conditions on b and σ such that the resulting model

displays an affine term structure. The answer is simply that the coefficients b and σ2

need be affine functions themselves. More precisely if the coefficients b and σ2 are of the

form

b(t, x) = λ(t)x+ η(t)

σ2(t, x) = γ(t)x+ δ(t)
(3.6)

for suitable deterministic time functions λ, η, γ, δ. The functions A and B can be obtained

from the coefficients λ, η, γ, δ by solving an opportune differential equations indeed we

have the following theorem.

Theorem 3.2.1. Assume that b(t, x) and σ(t, x) are of the form in (3.6), then the model

admits an affine term structure of the form (3.5) where A and B satisfy the system ∂tB(t, T ) + λ(t)B(t, T )− 1

2
γ(t)B2(t, T ) = −1

B(T, T ) = 0
(3.7)

 ∂tA(t, T ) = η(t)B(t, T )− 1

2
δ(t)B2(t, T )

A(T, T ) = 0
(3.8)
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The first equation is a Riccati differential equation that, in general, needs to be solved

numerically. However, in the particular cases of Vasicek where

λ(t) = −K

η(t) = Kθ

γ(t) = 0

δ(t) = σ2

(3.9)

or CIR where
λ(t) = −K

η(t) = Kθ

γ(t) = σ2

δ(t) = 0

(3.10)

we have that the equations are explicitly solvable.

Remark 7. We note that equation (3.7) is an equation for the determination of B which

does not involve A. Having solved (3.7) we may then insert the solution B into (3.8) and

simply integrate in order to obtain A.

3.2.1 Vasicek model

In finance, the Vasicek model is a mathematical model describing the evolution of

interest rates (1977). The model specifies that the instantaneous interest rate follows

the stochastic differential equation:

drt = K(θ − rt)dt+ σdWt r0, K, θ, σ > 0 (3.11)

where

• r0 is the initial condition

• The drift factor K(θ − rt) represents the expected instantaneous change in the

interest rate at time t.

• σ determines the volatility of the interest rate



3.2 Affine term structure 25

This dynamics has some peculiarities that make the model attractive. The equation is

linear and can be solved explicitly and the distribution of the short rate is Gaussian.

Indeed integrating equation1 (3.11), we obtain, for each s ≤ t

rt = e−tK(r0 +Kθ

∫ t

0

esKbds+

∫ t

0

esKσdWs)

= r0e
−tK + θe−tK(etK − 1) +

∫ t

0

e−K(t−s)σdWs

= r0e
−tK + θ(1− e−tK) +

∫ t

0

e−K(t−s)σdWs

rt ∼ N(mt, Vt)
2 where

mt := E[rt] = r0e
−Kt + θ(1− e−Kt)

Vt := V ar[rt] =
σ2

2K
(1− e−2Kt)

(3.12)

This implies that, for each time t, the rate rt can be negative with positive probability.

The possibility of negative rates is indeed a major drawback of the Vasicek model.

As a consequence of (3.12), the short rate r is mean reverting, since the expected rate

tends, for t going to infinity, to the value θ.

The simulation of the paths are plotted in figure (3.1).

As we say in previous section Vasicek possesses an affine term structure. Equations

(3.7) and (3.8) became  ∂tB(t, T )−KB(t, T ) = −1

B(T, T ) = 0
(3.13)

 ∂tA(t, T ) = KθB(t, T )− 1

2
σ2B2(t, T )

A(T, T ) = 0
(3.14)

The first equation is a simple ODE in the t-variable. It can easy be solved as

B(t, T ) =
1

K
(1− e−K(T−t))

1We have used Theorem(C.1.1) with b := Kθ,B := −K,σ := σ
2We have used Remark (15)
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Figure 3.1: Path of Vasicek processes

where from the second system we obtain

A(t, T ) = (θ − σ2

2K2
)(B(t, T )− T + t)− σ2

4K
B2(t, T )

Therefore the zero coupon bond, using (3.5), is

p(t, T ) = e(θ− σ2

2K2 )(B(t,T )−T+t)− σ2

4K
B2(t,T )− 1

K
(1−e−K(T−t))tt (3.15)

See function bond VASICEK.m which compare the exact formula with the approxi-

mation result of the bond.

In light of expression (2.16), the process that describes the evolution of the price of the

underlying is

St = I{τ>t}eXt

dXt = ((c− 1

2
)δ2e2(β−1)Xt + rt + b)dt+ δe(β−1)XtdW 1

t

drt = K(θ − rt)dt+ σ̂dW 2
t

d < W 1
t ,W

2
t >t= ρ

(3.16)

Therefore in term of the istantaneos correlation coefficient we set

W 2
t = ρW 1

t +
√

1− ρ2 · dZt (3.17)
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So we obtain

dXt = ((c− 1

2
)δ2e2(β−1)Xt + rt + b)dt+ δe(β−1)XtdW 1

t

drt = K(θ − rt)dt+ σ̂ρdW 1
t + σ̂

√
1− ρ2dZt

We definy Yt = (Xt, rt) and Wt = (W 1
t , Zt), so we have:

dYt = b(t,Xt, rt)dt+ C(t,Xt, rt)dWt (3.18)

with

b(t, x, r) =

(
µ(t, x)

K(θ − r)

)

C(t, x, r) =

(
σ(t, x) 0

σ̂ρ σ̂
√

1− ρ2

)
In order to write the characteristic operator of the SDE we have to compute C ·C∗ where

C := C(t, x, r) so we have

C · C∗ =

(
σ2(t, x) σ̂ρσ(t, x)

σ̂ρσ(t, x) σ̂2

)

Finally the characteristic operator of (3.27) is

A =
1

2
σ2(t, x)∂xx + σ̂ρσ(t, x)∂xr +

1

2
σ̂2∂rr + µ(t, x)∂x +K(θ − r)∂r − (r + γ(t, x))

Our goal is to compute a representation formula for the classical solution u of the Cauchy

problem  (A+ ∂t)u = 0 in [0, T [xR

u(T, x) = 1 x ∈ R
(3.19)

Thanks to Feynman-Kac̆ formula the solution can be written in terms of expectation3

i.e.

u(t, x) = E[e−
∫ T
t (rs+γ(s,Xs))ds] (3.20)

See function VASICEK simulaz.m.

3See (C.2)
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3.2.2 CIR model

Another important model which is more studied in the financial literature is the

Cox–Ingersoll–Ross model (1985). The resulting model has been a benchmark for many

years because of its analytical tractability and the fact that, contrary to the Vasicek

model, the instantaneous short rate is always positive.

The model specifies that the instantaneous interest rate follows the stochastic differential

equation:

drt = K(θ − rt)dt+ σ
√
rtdWt r0, K, θ, σ > 0 (3.21)

The drift factor K(θ − rt) is exactly the same as in the Vasicek model. It ensures mean

reversion of the interest rate towards the long run value θ.

The condition

2Kθ > σ2

has to be imposed to ensure that the origin is inaccessible to the process (3.21), so that

we can grant that r remains positive. The mean and the variance of rt are given by

E[rt] = r0e
−Kt + θ(1− e−Kt)

V ar[rt] = r0
σ2

K
(e−Kt − e−2Kt) + θ

σ2

2K
(1− e−Kt)2

(3.22)

The simulation of the paths are plotted in figure (3.2).

As we say in previous section CIR possesses an affine term structure. Equations (3.7)

and (3.8) became  ∂tB(t, T )−KB(t, T )− 1

2
σ2B2(t, T ) = −1

B(T, T ) = 0
(3.23)

 ∂tA(t, T ) = KθB(t, T )

A(T, T ) = 0
(3.24)

The price at time t of a zero-coupon bond with maturity T is

p(t, T ) = A(t, T )e−B(t,T )r(t) (3.25)

where

A(t, T ) = (
2he

1
2

(K+h)(T−t)

2h+ (K + h)(e(T−t)h − 1)
)
2hθ
σ2
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Figure 3.2: Path of CIR processes

B(t, T ) =
2((T−t)h−1)

2h+ (K + h)(e(T−t)h − 1)

h =
√
K2 + 2σ2

See function bond CIR.m which compare the exact formula with the approximation

result of the bond.

In light of expression (2.16), the process that describes the evolution of the price of the

underlying is

St = I{τ>t}eXt

dXt = ((c− 1

2
)δ2e2(β−1)Xt + rt + b)dt+ δe(β−1)XtdW 1

t

drt = K(θ − rt)dt+ σ̂
√
rtdW

2
t

d < W 1
t ,W

2
t >t= ρ

(3.26)

Therefore writting the linear combination we have shown in (3.17) we obtain

dXt = ((c− 1

2
)δ2e2(β−1)Xt + rt + b)dt+ δe(β−1)XtdW 1

t

drt = K(θ − rt)dt+ σ̂ρ
√
rtdW

1
t + σ̂

√
1− ρ2

√
rtdZt

We definy Yt = (Xt, rt) and Wt = (W 1
t , Zt), so we have:

dYt = b(t,Xt, rt)dt+ C(t,Xt, rt)dWt (3.27)
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where b(t, x, r) is the same in Vasicek and

C(t, x, r) =

(
σ(t, x) 0

σ̂ρ
√
r σ̂

√
1− ρ2

√
r

)

In order to write the characteristic operator of the SDE we have to compute C ·C∗ where

C := C(t, x, r) so we have

C · C∗ =

(
σ2(t, x) σ̂ρσ(t, x)

√
r

σ̂ρσ(t, x)
√
r σ̂2r

)

Finally the characteristic operator of (3.27) is

A =
1

2
σ2(t, x)∂xx + σ̂ρ

√
rσ(t, x)∂xr +

1

2
rσ̂2∂rr + µ(t, x)∂x +K(θ − r)∂r − (r + γ(t, x))

The classical solution u of the Cauchy problem (3.19) is (3.20).

See function CIR simulaz.m.



Chapter 4

Numerical method

In this section we describe the approximation methodology. The goal of this work is

to solve the partial differential equations with variables cofficients and give a numerical

approximation of the solution. Our Cauchy problem is given by (A+ ∂t)u(t, x) = 0 t ∈ [0, T [, x ∈ R

u(T, x) = h(x) x ∈ R
(4.1)

where

A(t, x)f(x) = a(t, x)∂xxf(x) + µ(t, x)∂xf(x)− γ(t, x)f(x) (4.2)

and

a(t, x) :=
1

2
σ2(t, x)

4.1 Taylor series expansion

This kind of method, which is proposed by Pagliarani, Pascucci, and Riga (2013),

consist of approximating the drift and diffusion coefficients of A with a polynomial

expansion.

Definition 4.1. We say that (an, γn) is a polynomial expansion basis forA if the following

are satisfied:

• the sequences (an(t, x))n≥0 and (γn(t, x))n≥0 are sequences of continuous functions

that depend polynomially on x with a0(t, x) ≡ a0(t) and γ0(t, x) ≡ γ0(t)

31
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• We have convergence

a(t, x) =
∞∑
n=0

an(t, x) γ(t, x) =
∞∑
n=0

γn(t, x)

in some sense (pointwise or in norm).

For a fixed polynomial expansion basis (an, γn) the operatorA can be formally written

as

A(t, x) =
∞∑
n=0

An(t, x) (4.3)

where the operators An = An(t, x) act as

An(t, x)f(x) = an(t, x)∂xxf(x) + µn(t, x)∂xf(x)− γn(t, x)f(x) (4.4)

Now we approximate the drift and diffusion coefficients of A as a Taylor series about an

arbitrary point x ∈ R. This corresponds to setting

an(t, x) =
(x− x)n

n!
∂nxa(t, x)

γn(t, x) =
(x− x)n

n!
∂nxγ(t, x)

(4.5)

The choice of x is somewhat arbitrary. However, a convenient choice that seems to work

well in most applications is to choose x near Xt , the level of the process X at time t.

Following the classical perturbation approach, we expand the solution u as an infinite

sum

u =
∞∑
n=0

un(t, x) (4.6)

Inserting (4.6) and (4.3) into (2.12) we have:

n = 0

(A0 + ∂t)u0(t, x) = 0

n = 1
(A0 +A1 + ∂t)(u0(t, x) + u1(t, x)) = 0

(A0 + ∂t)u0(t, x) +A1u0(t, x) + (A0 + ∂t)u1(t, x) +A1u1(t, x) = 0

A1u0(t, x) + (A0 + ∂t)u1(t, x) +A1u1(t, x) = 0

(A0 + ∂t)u1(t, x) = −A1u0(t, x)−A1u1(t, x)
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So we find that the functions (un)n≥0 satisfy the following sequence of nested Cauchy

problems  (A0 + ∂t)u0(t, x) = 0 t ∈ [0, T [, x ∈ R

u0(T, x) = h(x) x ∈ R
(4.7)

and 
(A0 + ∂t)un(t, x) = −

n∑
k=1

Ak(t, x)un−k(t, x) t ∈ [0, T [, x ∈ R

un(T, x) = 0 x ∈ R

(4.8)

Notice that

A0(t, x)f(x) = a0(t, x)∂xxf(x) + µ0(t, x)∂xf(x)− γ0(t, x)f(x)

is the characteristic operator of the following additive process

dX0
t = (r + γ0(t)− a0(t))dt+

√
2a0(t)dWt (4.9)

whose characteristic function p̂0(t, x, T, ξ) is given explicitly by

p̂0(t, x, T, ξ) = E[eiξX
0
T |Xt = x] =

∫
R
eiξyp0(t, x, T, ξ)dy (4.10)

where p0(t, x, T, ξ) is the density of X0
T .

By applying the Ito’s formula to the process eiξX
0
T we obtain:

d(eiξX
0
t ) = iξeiξX

0
t dX0

t −
ξ2

2
eiξX

0
t d < X0 >t=

= iξeiξX
0
t ((r + γ0(t)− a0(t))dt+

√
2a0(t)dWt)−

ξ2

2
eiξX

0
t d < X0 >t=

= eiξX
0
t [iξ(r + γ0(t)− a0(t))− ξ2

2
· (2a0(t))]dt+ · · · dWt

Then

eiξX
0
T = eiξX

0
t +

∫ T

t

eiξX
0
s [iξ(r + γ0(s)− a0(s))− ξ2

2
· (2a0(s))]ds+

∫ T

t

· · · dWs

= eiξx +

∫ T

t

eiξX
0
s [iξ(r + γ0(s)− a0(s))− ξ2

2
· (2a0(s))]ds+

∫ T

t

· · · dWs
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Where in the second equality, since X0
t = x, we have replaced eiξX

0
t with eiξx.

Therefore

E[eiξX
0
T ] = E[eiξx] +

∫ T

t

E[eiξX
0
s ][iξ(r + γ0(s)− a0(s))− ξ2

2
· (2a0(s))]ds

= eiξ(x+
∫ T
t (r+γ0(s)−a0(s))ds)− ξ

2

2

∫ T
t 2a0(s)ds

= eiξ(x+M(t,T ))− ξ
2

2
C(t,T )

where M(t, T ) and C(t, T ) are defined as

M(t, T ) :=

∫ T

t

(r + γ0(s)− a0(s))ds

C(t, T ) :=

∫ T

t

2a0(s)ds

And so

p̂0(t, x, T, ξ) = eiξ(x+M(t,T ))− ξ
2

2
C(t,T ) (4.11)

By (A.2.1) it means that X0
T has Gaussian distribution with parameter M(t, T ), C(t, T )

i.e. X ∼ N(M(t, T ), C(t, T )). Therefore the 1-dimensional Gaussian density of X0
T is

p0(t, x, T, y) =
1√

2πC(t, T )
e−

(x−y−M(t,T ))2

2C(t,T )

Our goal is to provide an alternative representation of the price expansion. We need an

important result: the following theorem provides an explicit expansion for the charac-

teristic function p̂(t, x;T, ξ) of Xt , expressed in terms of integro-differential operators

applied to p̂0(t, x, T, ξ).

Theorem 4.1.1. For any n ≥ 1 we have:

p̂n(t, x, T, ξ) = L x
n (t, T )p̂0(t, x, T, ξ) t < T, x, ξ ∈ R

with p̂0 as in (4.11) and

L x
n (s0, T ) =

n∑
h=1

3n∑
i=1

n∑
k=1

(x− x)kF
(n,h)
i,k (s0, T )∂ix

with

F
(n,h)
i,k (s0, T ) =

∫ T

s0

∫ T

s1

∫ T

s2

· · ·
∫ T

sh−1

f
(n,h)
i,k ds1ds2 · · · dsh
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The coefficients f
(n,h)
i,k are presented in the works of Lorig, Pagliarani and Pascucci and

they have already been computed and saved in a model independent fashion.

(See coefficients prices order3 JDCEV.txt)

In particular the solution un of (4.8), if it exists, is given by

un(t, x) = Ln(t, T )u0(t, x) (4.12)

where u0 is explicitly given by

u0(t, x) = e−
∫ T
t γ0(s)ds

∫
R
p0(t, x, T, y)h(y)dy

In our case, if we want to compute the bond price, (i.e. h(y) = 1) since∫
R
p(t, x, T, y)dy = 1

we have

u0(t, x) = e−
∫ T
t γ0(s)ds

= e−
∫ T
t b+cδ2e2(β−1)xds

= e−
∫ T
t b+cδ2S

2(β−1)
0 ds

= e−(T−t)(b+cδ2S2(β−1)
0 )

(4.13)

where in the third equality we have put x = log(S0). Instead, if we want to compute the

European option prices, (i.e. h(y) = ey −K0) we have

M(t, T ) =

∫ T

t

((c− 1

2
)δ2S

2(β−1)
0 + r + b)ds

= (T − t)[(c− 1

2
)δ2S

2(β−1)
0 + r + b]

C(t, T ) =

∫ T

t

2S
2(β−1)
0 ds

= 2(T − t)S2(β−1)
0

(4.14)

Therefore

u(t, x) = e−(T−t)(b+cδ2S2(β−1)
0 )

∫
R

1√
2πC(t, T )

e−
(x−y−M(t,T ))2

2C(t,T ) (ey −K0)dy
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Remark 8 (Accuracy of the pricing approximation). Asymptotic convergence results were

proved in Pagliarani et al.(2013); Lorig et al. (2013a). Precisely, assume that the

functions a = a(t, x) and γ = γ(t, x) are differentiable up to order n with bounded and

Lipschitz continuous derivatives. Assume also that the covariance matrix is uniformly

positive definite and bounded. Let x = x. Then for any N ∈ N we have

u(t, x) =
∞∑
n=0

un(t, x) +O(T − t)
N+1

2 as t→ T− (4.15)

Remark 9 (Practical implementation). Notice that after a few terms the expression for

Ln becomes very long. In practice, the formulas are feasible only for n ≤ 4. However,

in light of (4.15), it is sufficient to get very accurate results with n = 2 or n = 3.

In the following section we will present another criteria of approximation which is

widely used in finance.

4.2 Monte Carlo Method

A fundamental implication of asset pricing theory is that, under certain circum-

stances, the price of a derivative can be usefully represented as an expected value.

Valuing derivatives thus reduces to computing expectations. But not every contract can

be priced with an explicit formula. Most models in fact can have complicated payoffs

so that the expectation of their discounted values cannot be easily calculated. In those

cases the derivatives pricing can be simulated only approximately and a good way to

determine the price of the contract can be to perform Monte Carlo simulation.

Monte Carlo method is one of the most popular numerical methods and it is used in

many circumstances in mathematical finance and in particular in the pricing problem.

Monte Carlo method allows to calculate the expected value of a random variable whose

distribution is known. It is based on the strong law of large numbers which ensures that

this estimate converges to the correct value as the number of draws increases.

Theorem 4.2.1. Let (Xn) be a sequence of i.i.d. r.v. with E[X1] <∞.

Let µ = E[X1] and

Mn =
X1 + · · ·+Xn

n
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then we have

Mn −→ µ a.s.

This theorem tells that if we are able to generate many realizations X1 , X2 ,· · · , Xn

of the random variable X in an independent way, then we can almost surely use their

mean Mn as an approximation of E[X].

In order to give a first estimate of the error of the Monte Carlo method we have to

introduce Markov’s inequality.

Theorem 4.2.2 (Markov inequality). Let X be a r.v., λ ∈ R,λ > 0, 1 ≤ p <∞.

Then:

P(|X − E[X]| ≥ λ) ≤ var(X)

λ2
(4.16)

Proof.

E[(X − E[X])p] =

∫
Ω

(X − E[X])pdP

≥
∫
{X−E[X]≥λ}

(X − E[X])pdP

≥ λp
∫
{X−E[X]≥λ}

dP

= λpP(X − E[X] ≥ λ)

=⇒P(X − E[X] ≥ λ) ≤ E[(X − E[X])p]

λp

(4.17)

We have (4.16) putting p = 2. Indeed

P(X − E[X] ≥ λ) ≤ E[(X − E[X])2]

λ2
=
var(X)

λ2
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If we apply this proposition with X = Mn for every ε > 0 w obtain:

P(|Mn − µ| ≥ ε) ≤ var(Mn)

ε2
=

=
var(X1+···+Xn

n
)

ε2
=

=
1
n2var(X1 + · · ·+Xn)

ε2
=

=
1
n
var(X1)

ε2
=

=
σ2

nε2

where in third equality we have used the properties of the variance, in fourth equality

the independence of the generations Xk , k = 1, · · · , n (thus the variance of their sum

is the sum of their variances), and the fact that they are identically distributed (so the

variances are all equal to var(X1)).

Therefore

P(|Mn − µ| ≥ ε) ≤ σ2

nε2
(4.18)

We set p = σ2

nε2
.

Formula (4.18) gives an estimate of the error in terms of three parameters:

1. n: the number of samples i.e. how many random numbers we have generated

2. ε: the maximum approximation error

3. p: the probability that the approximated value Mn not belongs to the confidence

interval [µ− ε, µ+ ε]

By (4.18) what is interesting to note is that with n tending to infinity the probability of

obtaining a bad result (where the ’badness’ is fixed by ε) tends to zero and so when n

tends to infinity the probability that Mn not belongs to the confidence interval became

zero. This fact can be written as follow:

Mn −→ µ with probability 1 as n→∞

Remark 10. It is important to stress that the result and the error of the Monte Carlo

method are r.v.
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Now we introduce the central limit theorem which provides information about the

likely magnitude of the error in the estimate after a finite number of draws.

Theorem 4.2.3. Let (Xn) be a sequence of real i.i.d. r.v.with σ2 = var(X1) <∞. We

put, as usual,

Mn =
X1 + · · ·+Xn

n

µ = E[X1]

and we consider the sequence defined by

Gn =
√
n(
Mn − µ

σ
) n ∈ N

Then

Gn ∼ N(0, 1)

meaning that the error on the left has approximately the distribution on the right. Equiv-

alently

√
n(Mn − µ) ∼ N(0, σ2) =⇒Mn − µ ∼ N(0,

σ2

√
n

)

So, the central limit theorem provides an estimate of the speed of the convergence

and the error distribution. It asserts that, as the number of replications n increases, the

standardized estimator
√
n(Mn−µ

σ
) converges in distribution to the standard normal.

The same result holds if σ is replaced with the sample standard deviation sC . This

is important because σ is rarely known in practice but sC is easily calculated from

simulation output. For a more detailed analysis we refer to the next section.

Remark 11. One of the few drawbacks of the Monte Carlo method is that it is almost

impossible to have completely independent generations of the random variable: since

we need a great number of realizations, we must use a calculator, which can only work

following algorithms, thus giving results which are only pseudo-random. The error due to

the non-independence of the generations cannot be easily estimated, but if the generator

works well the method can be applied and gives good results anyway.
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4.2.1 Confidence interval

Thanks to central limit theorem we can introduce the notion of confidence interval.

Very often, the estimate of a parameter does not provide sufficient guarantees of accuracy,

and it is more reasonable to provide a set of values that can be considered a reasonable

estimate of the parameter. Therefore, one way to describe concisely our approximation

is to introduce confidence intervals. The confidence interval is a range of values within

which is believed to have comprised the parameter in question with a certain degree of

confidence. We indicate with δ the level of confidence of the confidence interval and

with p = 1 − δ the probability that our estimate belongs to the interval of confidence.

More precisely, for finite but at least moderately large n, we can supplement the point

estimate Mn with a confidence interval.

Let

sC =

√√√√ 1

n− 1

n∑
i=1

(Xi −Mn)2

denote the sample standard deviation of X1 , X2 ,· · · , Xn and let zδ denote the 1 − δ
quantile of the standard normal distribution. Then

[Mn − z δ
2

sC√
n
,Mn + z δ

2

sC√
n

]

is an asymptotically valid 1− δ confidence interval for µ.

This means that the true value of µ is inside the ’window’ with probability p = 1 − δ.
Here we report the values of zδ correspondent to some of the most used confidence levels:

δ Interval confidence zδ

0.01 99% 2.58

0.02 98% 2.33

0.05 95% 1.96

0.10 90% 1.65

Table 4.1: Confidence levels

In our approximation we will fix δ = 0.01 therefore the true result will stay in the

window

[Mn − 2.58
sC√
n
,Mn + 2.58

sC√
n

]
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with probability p = 99%.

Remark 12. We can see that, as n increases, the window shrinks as 1√
n

, which is worse

than the 1
n

rate one would typically wish. This means that if we need to reduce the

window size to one tenth, we have to increase the number of scenarios by a factor 100.

This implies that sometimes, to reach a chosen accuracy (a small enough window), we

need to take a huge number of scenarios n.

4.2.2 Euler scheme

Valuing a derivative security by Monte Carlo typically involves simulating paths

of stochastic processes used to describe the evolution of underlying asset prices, inter-

est rates and model parameters. The simplest method for approximate simulation of

stochastic differential equations is the Euler scheme. Now we see how it can be used in

conjunction with the Monte Carlo method in order to improve accuracy.

We consider a process X satisfying a SDE of the form

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

In this case the distribution of XT is not known explicitly. In order to obtain some real-

izations of XT we use a Euler-type scheme. It is clear that, in this way, the discretization

error of the SDE must be added to the error of the Monte Carlo method.

Our goal is to compute a numerical approximation of the bond which is represented as

an expected value i.e.

Bond(T ) := E[e−
∫ T
0 r+γ(s,Xs)ds]

and, since the risk-free rate of interest r is costant, we have

Bond(T ) := e−rTE[e−
∫ T
0 γ(s,Xs)ds]

We set

f(XT ) = e−
∫ T
0 r+γ(s,Xs)ds

Thanks to Monte Carlo method, the bond price approximation is given by

E[f(XT )] ≈ 1

n

s∑
j=1

f(X
(j)
T )
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where X
(1)
T , X

(2)
T , · · · , X(s)

T are independent realizations.

Before to illustrate the main steps, in order to guarantee consistence in our work, we

introduce our notation. For a fixed discretization step h we divide the time horizont [0, T ]

into small increments of length h and we consider a time grid 0 = t0 < t1 < · · · < tn = T .

We set:

• n = number of increments

• s = number of realizations

• X(i, j) = matrix of the process X where i stay for ti and j for j-th realization

• t(i) = vector of n increments

The steps are follows:

Step 1: First of all we have to simulate paths of stochastic process Xt used to describe

the evolution of underlying asset price. We have to produce s independent re-

alizations Zi of the normal standard distribution N(0, 1) and, using an iterative

formula, we have to determine the corresponding realizations of the final value of

the underlying asset X
(1)
T , X

(2)
T , · · · , X(s)

T .

We use a simple recursive procedure for simulating values ofX at t0 < t1 < · · · < tn:

For j = 1, · · · , s for i = 1, · · · , n− 1

X
(j)
ti+1

= µ(ti, X
(j)
ti )(ti+1 − ti) + σ(ti, X

(j)
ti )(Wti+1

−Wti)

Since Wti+1
−Wti =

√
ti+1 − ti · Ztiwith Zti ∼ N(0, 1)

=⇒X(j)
ti+1

= µ(ti, X
(j)
ti )(ti+1 − ti) + σ(ti, X

(j)
ti )
√
ti+1 − tiZti

(4.19)

Step 2: Then, for each realization (i.e. for each column), we have to compute

IRiemann(j) =

∫ T

0

γ(t,X
(j)
t )dt

In order to obtain a good approximation of the integral we have used Composite

Simpson’s rule which is a method for numerical integration. What give Composite

Simpson’s rule competitive with alternative method is that if the interval of inte-

gration [0, T ] is in some sense ”small”, then Composite Simpson’s rule will provide
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an adequate approximation to the exact integral. Suppose that the interval [0, T ]

is split up in n subintervals as above. Then, the composite Simpson’s rule is given

by∫ T

0

f(t)dt ≈ h

3
(f(t0) + 4f(t1) + 2f(t2) + 4f(t3) + 2f(t5) + · · ·+ 4f(tn−1) + f(tn))

Step 3: Finally we have to compute the approximation of the price of the derivative.

Then we computed

f(j) = exp(−r ∗ t(n)− Iriemann(j));

Therefore the approximation of the price is given by

BondTs =
1

n

s∑
j=1

f(j)

In order to consider the 99% Interval confidence we have to compute the sample

standard deviation. Using the definition we have introduced in section (4.2.1), we

obtain

sC =

√√√√ 1

s− 1

s∑
j=1

(f(j)− BondTs)2

therefore the true result µ will stay in the window

[BondTs − 2.58
sC√
n
,BondTs + 2.58

sC√
n

]

with probability p = 99%.

1

n

s∑
j=1

f(X
(j)
T ) =

e−rT

n

s∑
j=1

e−IRiemann(j) ≈ e−rTE[e−
∫ T
0 γ(s,Xs)ds]

Remark 13. We want to stress that the error of this code is composed by

1. The error committed by the composite Simpson’s rule

2. The discretization error of the SDE committed by the Euler schemes

3. The error of the Monte Carlo method
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We give above the different Matlab code which we have implemented for our financial

problems. Precisely:

function MMC simulaz.m.: compute Bond(T ) := e−rTE[e−
∫ T
0 γ(s,Xs)ds]

function Payoff rcost.m.: compute Call(T ) := e−rTE[e−
∫ T
0 γ(s,Xs)ds(eXT −K0)]

function VASICEK simulaz.m.: compute Bond(T ) := E[e−
∫ T
0 rs+γ(s,Xs)ds] with

drt = K(θ − rt)dt+ σdWt

function CIR simulaz.m.: compute Bond(T ) := E[e−
∫ T
0 rs+γ(s,Xs)ds] with

drt = K(θ − rt)dt+ σ
√
rtdWt

function bond VASICEK.m.: compute Bond(T ) := E[e−
∫ T
0 rsds]

function bond CIR.m.: compute Bond(T ) := E[e−
∫ T
0 rsds]
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function MMC simulaz.m.

%MMC PER CALCOLARE IL BOND ALL’ ISTANTE FINALE (A SCADENZA) DELL INTERVALLO

%DI DISCRETIZZAZIONE PER IL MODELLO JDCEV

%input

sigma = 0.3; beta = 2/3; b = 0.01; c = 2; r = 0.05;

Tmax = 20;

Tmin = 0;

N = 2000; %numero di intervalli in cui discretizzo

iter = 100000; %numero di simulazioni

t = linspace(Tmin, Tmax,N);

delta = t(2)− t(1);

sig = @(x)sigma ∗ exp((beta− 1) ∗ x);

mu = @(x)(c− 0.5) ∗ sigma2 ∗ exp((2 ∗ beta− 2) ∗ x) + r + b;

gamma = @(x)b+ c ∗ sigma2 ∗ exp((2 ∗ beta− 2) ∗ x);

%inizializzazione

X = zeros(N, iter);%risolve la PDE(ogni colonna mi da una traiettoria nel tempo(da 0 a T))

num = zeros(N, iter);%gamma calcolato nelle traiettorie

num(1, :) = gamma(0);

f = zeros(1, iter);%funzione di cui voglio calcolare la media

Iriemann = zeros(1, iter);%integrale in gamma

%righe=tempo e colonne=simulazioni

for k = 1 : iter

for i = 1 : N − 1

Z = randn(1); %schema di Eulero per calcolare i diversi X

X(i+ 1, k) = X(i, k) +mu(X(i, k)) ∗ delta+ sig(X(i, k)) ∗ sqrt(delta) ∗ Z;

perm = X(i+ 1, k);

num(i+ 1, k) = gamma(perm);

end

%metodo di Simpson per calcolare l’integrale

s1 = sum(num(2 : 2 : N − 2, k));

s2 = sum(num(3 : 2 : N − 1, k));

Iriemann(k) = delta ∗ (num(1, k) + num(N, k) + 2 ∗ s1 + 4 ∗ s2)/3;

f(k) = exp(−Iriemann(k));

end

%prezzo bond scontato(da confrontare con user JDCEV yelds con r)

bondT = exp(−r ∗ Tmax)/iter ∗ sum(f);
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function Payoff rcost.m.

%MMC PER CALCOLARE LA CALL ALL’ ISTANTE FINALE (A SCADENZA) DELL INTERVALLO

%DI DISCRETIZZAZIONE PER IL MODELLO JDCEV

%input

sigma = 0.3; beta = 2/3; b = 0.01; c = 2; r = 0.05; cappa = 2;

Tmax = 5;

Tmin = 0;

N = 500; %numero di intervalli in cui discretizzo

iter = 100000; %numero di simulazioni

t = linspace(Tmin, Tmax,N);

delta = t(2)− t(1);

sig = @(x)sigma ∗ exp((beta− 1) ∗ x);

mu = @(x)(c− 0.5) ∗ sigma2 ∗ exp((2 ∗ beta− 2) ∗ x) + r + b;

gamma = @(x)b+ c ∗ sigma2 ∗ exp((2 ∗ beta− 2) ∗ x);

%inizializzazione

X = zeros(N, iter);%risolve la PDE(ogni colonna mi da una traiettoria nel tempo(da 0 a T))

num = zeros(N, iter);%gamma calcolato nelle traiettorie

num(1, :) = gamma(0);

f = zeros(1, iter);%funzione di cui voglio calcolare la media

Iriemann = zeros(1, iter);%integrale in gamma

%righe=tempo e colonne=simulazioni

for k = 1 : iter

for i = 1 : N − 1

Z = randn(1); %schema di Eulero per calcolare i diversi X

X(i+ 1, k) = X(i, k) +mu(X(i, k)) ∗ delta+ sig(X(i, k)) ∗ sqrt(delta) ∗ Z;

perm = X(i+ 1, k);

num(i+ 1, k) = gamma(perm);

end

%metodo di Simpson per calcolare l’integrale

s1 = sum(num(2 : 2 : N − 2, k));

s2 = sum(num(3 : 2 : N − 1, k));

Iriemann(k) = delta ∗ (num(1, k) + num(N, k) + 2 ∗ s1 + 4 ∗ s2)/3;

premium(k) = max(exp(X(N, k))− cappa, 0);

f(k) = premium(k) ∗ exp(−r ∗ Tmax− Iriemann(k));

end

%prezzo bond scontato(da confrontare con user JDCEV yelds con r)

bondT = 1/iter ∗ sum(f);

Now we consider JDCEV model which we have described above with stochastic interest

rate. First of all we describes the short rate through the Vasicek model, then through

the CIR model which is more attractive.



4.2 Monte Carlo Method 47

function VASICEK simulaz.m.

%MMC PER CALCOLARE IL BOND ALL’ ISTANTE FINALE (A SCADENZA) DELL INTERVALLO

%DI DISCRETIZZAZIONE PER IL MODELLO JDCEV CON TASSO CHE SEGUE IL MODELLO DI

%VASICEK

%input

sigma = 0.3; beta = 2/3; b = 0.01; c = 2;

%input per il tasso r

K = 1; teta = 0.03; m = 0.2; rho = −0.3;

Tmax = 20;

Tmin = 0;

N = 2000; %numero di intervalli in cui discretizzo

iter = 100000; %numero di simulazioni

t = linspace(Tmin, Tmax,N);

delta = t(2)− t(1);

sig = @(x)sigma ∗ exp((beta− 1) ∗ x);

mu = @(x)(c− 0.5) ∗ sigma2 ∗ exp((2 ∗ beta− 2) ∗ x) + b;

gamma = @(x)b+ c ∗ sigma2 ∗ exp((2 ∗ beta− 2) ∗ x);

%inizializzazione

X = zeros(N, iter);%risolve la PDE(ogni colonna mi da una traiettoria nel tempo(da 0 a T))

num = zeros(N, iter);%gamma calcolato nelle traiettorie

num(1, :) = gamma(0);

r = zeros(N, iter);

r(1, :) = 0.02;

f = zeros(1, iter);%funzione di cui voglio calcolare la media

Iriemann = zeros(1, iter);%integrale in gamma

Iriemannr = zeros(1, iter);%integrale in r

%righe=tempo e colonne=simulazioni

for k = 1 : iter

for i = 1 : N − 1

Z1 = randn(1);

W1 = sqrt(delta) ∗ Z1;

Z2 = randn(1);

W2 = rho ∗W1 + sqrt(1− (rho ∗ rho)) ∗ Z2 ∗ sqrt(delta);

r(i+ 1, k) = r(i, k) +K ∗ (teta− r(i, k)) ∗ delta+m ∗W2;

%schema di Eulero per calcolare i diversi X

X(i+ 1, k) = X(i, k) +mu(X(i, k) + r(i, k)) ∗ delta+ sig(X(i, k)) ∗ sqrt(delta) ∗ Z;

perm = X(i+ 1, k);

num(i+ 1, k) = gamma(perm);

end

%metodo di Simpson per calcolare l’integrale

s1 = sum(num(2 : 2 : N − 2, k));

s2 = sum(num(3 : 2 : N − 1, k));

s1r = sum(r(2 : 2 : N − 2, k));

s2r = sum(r(3 : 2 : N − 1, k));

Iriemann(k) = delta ∗ (num(1, k) + num(N, k) + 2 ∗ s1 + 4 ∗ s2)/3;

Iriemannr(k) = delta ∗ (r(1, k) + r(N, k) + 2 ∗ s1r + 4 ∗ s2r)/3;

f(k) = exp(−Iriemannr(k)− Iriemann(k));

end

bondT = 1/iter ∗ sum(f);%prezzo bond
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function CIR simulaz.m.

%MMC PER CALCOLARE IL BOND ALL’ ISTANTE FINALE (A SCADENZA) DELL INTERVALLO

%DI DISCRETIZZAZIONE X IL MODELLO JDCEV CON TASSO CHE SEGUE IL MODELLO CIR

%input

sigma = 0.3; beta = 2/3; b = 0.01; c = 2;

%input per il tasso r

K = 1; teta = 0.03; m = 0.2; rho = −0.3;

Tmax = 20;

Tmin = 0;

N = 2000; %numero di intervalli in cui discretizzo

iter = 100000; %numero di simulazioni

t = linspace(Tmin, Tmax,N);

delta = t(2)− t(1);

sig = @(x)sigma ∗ exp((beta− 1) ∗ x);

mu = @(x)(c− 0.5) ∗ sigma2 ∗ exp((2 ∗ beta− 2) ∗ x) + b;

gamma = @(x)b+ c ∗ sigma2 ∗ exp((2 ∗ beta− 2) ∗ x);

%inizializzazione

X = zeros(N, iter);%risolve la PDE(ogni colonna mi da una traiettoria nel tempo(da 0 a T))

num = zeros(N, iter);%gamma calcolato nelle traiettorie

num(1, :) = gamma(0);

r = zeros(N, iter);

r(1, :) = 0.02;

f = zeros(1, iter);%funzione di cui voglio calcolare la media

Iriemann = zeros(1, iter);%integrale in gamma

Iriemannr = zeros(1, iter);%integrale in r

%righe=tempo e colonne=simulazioni

for k = 1 : iter

for i = 1 : N − 1

Z1 = randn(1);

W1 = sqrt(delta) ∗ Z1; Z2 = randn(1);

W2 = rho ∗W1 + sqrt(1− (rho ∗ rho)) ∗ Z2 ∗ sqrt(delta);

r(i+1, k) = r(i, k)+K∗(teta−r(i, k))∗delta+m∗sqrt(r(i, k))∗W2+0.25∗(m2)∗W2∗W2−0.25∗(m2)∗delta;

if(r(i+ 1, k) < 0)

r(i+ 1, k) = −r(i+ 1, k);

end

%schema di Eulero per calcolare i diversi X

X(i+ 1, k) = X(i, k) +mu(X(i, k) + r(i, k)) ∗ delta+ sig(X(i, k)) ∗ sqrt(delta) ∗ Z;

perm = X(i+ 1, k);

num(i+ 1, k) = gamma(perm);

end

%metodo di Simpson per calcolare l’integrale

s1 = sum(num(2 : 2 : N − 2, k));

s2 = sum(num(3 : 2 : N − 1, k));

s1r = sum(r(2 : 2 : N − 2, k));

s2r = sum(r(3 : 2 : N − 1, k));

Iriemann(k) = delta ∗ (num(1, k) + num(N, k) + 2 ∗ s1 + 4 ∗ s2)/3;

Iriemannr(k) = delta ∗ (r(1, k) + r(N, k) + 2 ∗ s1r + 4 ∗ s2r)/3;

f(k) = exp(−Iriemannr(k)− Iriemann(k));

end

bondT = 1/iter ∗ sum(f);%prezzo bond
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Now we set default = 0 i.e. γ(t,Xt) = 0. Our goal is to compute a numerical

approximation of the zero coupon bond which is represented as an expected value i.e.

p(0, T ) := E[e−
∫ T
0 rsds]

and compare it with exact formula given by Brigo.
function bond VASICEK.m.

%MMC PER CALCOLARE IL PREZZO ZERO COUPON BOND E CONFRONTO CON LA

%FORMULA DEL PREZZO ESATTA DI VASICEK DATA DAL BRIGO

%input per il tasso r

K = 5; teta = 0.1; m = 0.2;

Tmax = 20;

Tmin = 0;

N = 2000; %numero di intervalli in cui discretizzo

iter = 100000; %numero di simulazioni

t = linspace(Tmin, Tmax,N);

delta = t(2)− t(1);

%inizializzazione

r = zeros(N, iter);

r(1, :) = 0.02;

f = zeros(1, iter);%funzione di cui voglio calcolare la media

Iriemannr = zeros(1, iter);%integrale in r

%righe=tempo e colonne=simulazioni

for k = 1 : iter

for i = 1 : N − 1

Z1 = randn(1);

W1 = sqrt(delta) ∗ Z1;

r(i+ 1, k) = r(i, k) +K ∗ (teta− r(i, k)) ∗ delta+m ∗W1;

end

s1r = sum(r(2 : 2 : N − 2, k));

s2r = sum(r(3 : 2 : N − 1, k));

Iriemannr(k) = delta ∗ (r(1, k) + r(N, k) + 2 ∗ s1r + 4 ∗ s2r)/3;

f(k) = exp(−Iriemannr(k));

end

%prezzo zero coupon bond

bondT = 1/iter ∗ sum(f);

B = 1/K ∗ (1− exp(−K ∗ Tmax));

A = exp((teta−m2/(2 ∗K2)) ∗ (B − Tmax)−m2/(4 ∗K) ∗B2);

bond esatta = A ∗ exp(−B ∗ r(1, 1));

errore = norm(bond esatta− bondT )/norm(bond esatta); %errore relativo del prezzo



50 4. Numerical method

function bond CIR.m.

%MMC PER CALCOLARE IL PREZZO ZERO COUPON BOND E CONFRONTO CON LA

%FORMULA DEL PREZZO ESATTA DEL CIR DATA DAL BRIGO

%input per il tasso r

K = 5;

teta = 0.4;

m = 0.8;

Tmax = 20;

Tmin = 0;

N = 2000; %numero di intervalli in cui discretizzo

iter = 100000; %numero di simulazioni

t = linspace(Tmin, Tmax,N);

delta = t(2)− t(1);

%inizializzazione

r = zeros(N, iter);

r(1, :) = 0.02;

f = zeros(1, iter);%funzione di cui voglio calcolare la media

Iriemannr = zeros(1, iter);%integrale in r

%righe=tempo e colonne=simulazioni

for k = 1 : iter

for i = 1 : N − 1

Z1 = randn(1);

W1 = sqrt(delta) ∗ Z1;

r(i+1, k) = r(i, k)+K∗(teta−r(i, k))∗delta+m∗sqrt(r(i, k))∗W1+0.25∗(m2)∗W1∗W1−0.25∗(m2)∗delta;

if (r(i+ 1, k) < 0)

r(i+ 1, k) = −r(i+ 1, k);

end

end

s1r = sum(r(2 : 2 : N − 2, k));

s2r = sum(r(3 : 2 : N − 1, k));

Iriemannr(k) = delta ∗ (r(1, k) + r(N, k) + 2 ∗ s1r + 4 ∗ s2r)/3;

f(k) = exp(−Iriemannr(k));

end

%prezzo zero coupon bond

bondT = 1/iter ∗ sum(f);

acca = sqrt(K2 + 2 ∗m2);

B = (2 ∗ (exp(acca ∗ Tmax)− 1))/(2 ∗ acca+ (K + acca) ∗ (exp(acca ∗ Tmax)− 1));

esponente = (2 ∗K ∗ teta)/m2;

A1 = (2 ∗ acca ∗ exp(0.5 ∗ Tmax ∗ (K + acca)))/(2 ∗ acca+ (K + acca) ∗ (exp(acca ∗ Tmax)− 1));

A = A1(esponente);

bond esatta = A ∗ exp(−B ∗ r(1, 1));

errore = norm(bond esatta− bondT )/norm(bond esatta); %errore relativo del prezzo
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Results

In this section we test the performance of the analytical approximation formula pre-

sented in the previous sections in the context of one-dimensional local volatility models.

In the following experiment we compare the second and third order approximation of

the Bond price with an accurate Monte Carlo simulation.

Precisely we show numerical approximation of:

1. JDCEV model with costant interest r

2. JDCEV model with stochastic interest r which follow two different models:

• Vasicek model

• Cir model

The true result bond esatta := u(t, x;T ) is computed in Wolfram Mathematica by

formula (3.4) truncating the infinite sum at n = 70.

Relative error is defined as

err =
||bond esatta− bondT||

||bond esatta||

51



52 5. Results

5.0.3 JDCEV model with costant interest

We fix the following parameters:

σ = 0.3; β = 2/3;

b = 0.01; c = 2;

S0 = 1; r = 0.05;

We have considered 100 discretization points for each year (i.e if T = 1 ⇒ N = 100,if

T = 2⇒ N = 200,eccetera...). Therefore we have fixed δ = 0.01.

Since the Monte Carlo method requires s iterations, if we choose a great number of

simulations it turns out to be quite slow. In order to have the result in few minutes we

have to keep number not enormous ( we mean something like 100000).

First of all we computed the approximate price of a bond i.e.

Bond(T ) := E[e−
∫ T
0 r+γ(s,Xs)ds]

This model is computed in user JDCEV yields.nb (Wolfram Mathematica) and in

MMC simulaz.m (Matlab). With Bondbar[2] and Bondbar[3] we mean respectively the

second and the third order approximation. In order to have an high precision we have

considered 99% Interval confidence i.e. zδ = 2.58.

We have summarized in next tables the theoretical results obtained for each scheme.

The Bond price at time t0, t1, · · · , tn and the simulation of the path are plotted in figure

(5.1) and (5.2).

Simulations 99% Interval confidence Exact price Relative error (%)

100 0.794695± 0.011210 0.794206 0.06

1000 0.794813± 0.003560 0.794206 0.07

10000 0.794869± 0.001125 0.794206 0.08

100000 0.794699± 0.000356 0.794206 0.06

Table 5.1: Bond price at maturity T = 1: The approximate price Bondbar[2]= 0.793964

and Bondbar[3]= 0.794264
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Simulations 99% Interval confidence Exact price Relative error (%)

100 0.639907± 0.019236 0.642143 0.3

1000 0.642376± 0.006139 0.642143 0.03

10000 0.642486± 0.001953 0.642143 0.05

100000 0.642507± 0.000618 0.642143 0.05

Table 5.2: Bond price at maturity T = 2: The approximate price Bondbar[2]= 0.640787

and Bondbar[3]= 0.642532

Simulations 99% Interval confidence Exact price Relative error (%)

100 0.371500± 0.031687 0.370376 0.3

1000 0.369358± 0.010109 0.370376 0.2

10000 0.370128± 0.003212 0.370376 0.06

100000 0.370413± 0.001015 0.370376 0.009

Table 5.3: Bond price at maturity T = 5: The approximate price Bondbar[2]= 0.364453

and Bondbar[3]= 0.372089

Simulations 99% Interval confidence Exact price Relative error (%)

100 0.181677± 0.035609 0.180146 0.8

1000 0.179587± 0.011358 0.180146 0.3

10000 0.179500± 0.003584 0.180146 0.3

100000 0.180271± 0.001137 0.180146 0.06

Table 5.4: Bond price at maturity T = 10: The approximate price Bondbar[2]= 0.18438

and Bondbar[3]= 0.169343

Performing the simulations, we note, as expected according to the law of large num-

bers, that increasing the number of experiments used in the probabilistic Monte Carlo

method, the value of the price differs less and less from the exact value obtained by

formula of Mendoza (3.4) with an error of 0.01%. This is a test of the robustness of

the Monte Carlo method. Similarly we observe that the approximate value given by

expanding the drift and diffusion coefficients is quite good. In particular we can note

that for maturities between 0.5 and 5 years the third order approximation is better than
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Simulations 99% Interval confidence Exact price Relative error (%)

100 0.061044± 0.031891 0.0614821 0.7

1000 0.061861± 0.010156 0.0614821 0.6

10000 0.061561± 0.003194 0.0614821 0.1

100000 0.061406± 0.001009 0.0614821 0.1

Table 5.5: Bond price at maturity T = 20: The approximate price Bondbar[2]=

0.0886772 and Bondbar[3]= 0.0473193

Figure 5.1: Bond price as a function of time

Figure 5.2: Path of X
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the second order approximation. While if we consider maturities over 5 years the best

result is given by the second order approximation.

Now we considered the case of option pricing i.e.

Bond(T ) := E[e−
∫ T
0 r+γ(s,Xs)ds(eXT −K0)]

We fix the following parameters:

σ = 0.3; β = 2/3;

b = 0.01; c = 2;

S0 = 1; r = 0.05;

This model is computed in user JDCEV yields payoff.nb (Wolfram Mathematica) and in

Payoff rcost.m (Matlab). With Callbar[2] and Callbar[3] we mean respectively the second

order and the third approximation.

We have summarized in next tables the theoretical results obtained for each scheme.

In this case we have not the exact price therefore we cannot compute the relative error

between the exact value and the approximate price.

Simulations 99% Interval confidence

100 0.521039± 0.031891

1000 0.524265± 0.011830

10000 0.530646± 0.003792

100000 0.530258± 0.001208

Table 5.6: Call price at maturity T = 0.25 with K0 = 0.5: The approximate price

Callbar[2]= 0.528831 and Callbar[3]= 0.528828
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Simulations 99% Interval confidence

100 0.133577± 0.050686

1000 0.134295± 0.015432

10000 0.132254± 0.005019

100000 0.131981± 0.001600

Table 5.7: Call price at maturity T = 1 with K0 = 1.2: The approximate price

Callbar[2]= 0.132196 and Callbar[3]= 0.131823

Simulations 99% Interval confidence

100 0.189783± 0.090009

1000 0.178767± 0.024269

10000 0.181238± 0.007888

100000 0.184460± 0.002555

Table 5.8: Call price at maturity T = 3 with K0 = 1.8: The approximate price

Callbar[2]= 0.1884 and Callbar[3]= 0.18112

Simulations 99% Interval confidence

100 0.304975± 0.108190

1000 0.322570± 0.035480

10000 0.322640± 0.011511

100000 0.323634± 0.003667

Table 5.9: Call price at maturity T = 5 with K0 = 2: The approximate price Callbar[2]=

0.335117 and Callbar[3]= 0.320025

We can seen that the approximate price obtained from the Monte Carlo method is

near to the approximate price obtained from Taylor expansion. This mean that the

two methods give a similiar results and so they work well. We want to stress that

the series approach using in Wolfram Mathematica code is better than the simulations

approach using in Monte Carlo Method. The latter indeed is more quickly than the

former. For this reason we prefer testing only user JDCEV yields payoff.nb with different

parameters. Therefore we test the performance of Mathematica code fixing several strike.
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We considered the same parameters as above but now we want to use two different values

of β i.e.:

• β = 2/3

• β = 1/3

First of all we consider β = 2/3. We have summarized in next tables the theoretical

results obtained.

σ = 0.1 σ = 0.3 σ = 0.5

T K0 Call[2] Call[3] Call[2] Call[3] Call[2] Call[3]

0.5 0.509886 0.509886 0.528831 0.528828 0.563828 0.56378

0.25 0.6580 0.35501 0.35501 0.379985 0.379982 0.426988 0.426919

1 0.0311581 0.0311581 0.0905966 0.0905883 0.167224 0.167116

0.3 0.722935 0.722935 0.761811 0.761721 0.81961 0.818629

1 0.7746 0.284674 0.284633 0.389749 0.389507 0.539434 0.536925

1.2 0.007433 0.007431 0.132196 0.131823 0.322439 0.318584

0.25 0.802547 0.802538 0.868908 0.867881 0.929499 0.929545

3 0.7071 0.441545 0.441519 0.630842 0.627943 0.800898 0.801087

2 0.0001318 0.00005497 0.142347 0.13427 0.466416 0.466974

0.2 0.864487 0.864453 0.92711 0.92558 0.962841 0.972083

5 0.7746 0.475261 0.475131 0.718598 0.712718 0.856188 0.891952

2.2 0.001908 0.001458 0.288716 0.272119 0.597738 0.699241

Table 5.10: Call price as a function of time to maturity T and strike K0 with β = 2/3

Now we fix β = 1/3.
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σ = 0.1 σ = 0.3 σ = 0.5

T K0 Call[2] Call[3] Call[2] Call[3] Call[2] Call[3]

0.5 0.509873 0.509873 0.528659 0.528636 0.563192 0.562811

0.25 0.6580 0.354993 0.354493 0.379789 0.379763 0.426314 0.425759

1 0.031112 0.0311117 0.0896343 0.0895746 0.163514 0.162653

0.3 0.722823 0.72282 0.760731 0.760012 0.817319 0.809473

1 0.7746 0.284352 0.284344 0.386765 0.384824 0.531282 0.511203

1.2 0.006589 0.006572 0.122499 0.119508 0.303944 0.273103

0.25 0.801929 0.801854 0.866317 0.858104 0.918568 0.918932

3 0.7071 0.439809 0.439599 0.622695 0.599502 0.76976 0.771274

1.6 0.003753 0.003173 0.221725 0.169829 0.490558 0.494197

0.2 0.863491 0.863223 0.924395 0.912173 0.931938 1.00588

5 0.7746 0.471433 0.470395 0.707262 0.660241 0.736797 1.02291

1.7 0.023194 0.020869 0.387067 0.284418 0.425585 1.05287

Table 5.11: Call price as a function of time to maturity T and strike K0 with β = 1/3

5.0.4 JDCEV model with sthocastic interest: Vasicek model

This model is computed in bond VASICEK.m (Matlab). The exact value is given by

formulas written in Brigo. The aim of this test is to show the validity of the strong law

of large numbers. We want to show that, as the simulations increase, the approximate

price begin better and better. We have summarized in next tables the theoretical results

obtained for each maturity.

Simulations 99% Interval confidence Exact price Relative error (%)

100 0.923006± 0.008385 0.919849 0.3

1000 0.919002± 0.002379 0.919849 0.09

10000 0.919769± 0.000794 0.919849 0.008

100000 0.919664± 0.000254 0.919849 0.02

Table 5.12: Vasicek:Zero coupon bond at maturity T = 1
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Simulations 99% Interval confidence Exact price Relative error (%)

100 0.835965± 0.011809 0.833067 0.3

1000 0.834258± 0.003638 0.833067 0.1

10000 0.833359± 0.001110 0.833067 0.03

100000 0.832863± 0.000356 0.833067 0.02

Table 5.13: Vasicek: Zero coupon bond at maturity T = 2

Simulations 99% Interval confidence Exact price Relative error (%)

100 0.615634± 0.012960 0.618635 0.4

1000 0.618387± 0.004344 0.618635 0.04

10000 0.618226± 0.001384 0.618635 0.06

100000 0.618669± 0.000440 0.618635 0.005

Table 5.14: Vasicek: Zero coupon bond at maturity T = 5

Simulations 99% Interval confidence Exact price Relative error (%)

100 0.377779± 0.011944 0.376725 0.2

1000 0.376083± 0.003744 0.376725 0.1

10000 0.377061± 0.001207 0.376725 0.08

100000 0.376660± 0.000386 0.376725 0.01

Table 5.15: Vasicek: Zero coupon bond at maturity T = 10

Simulations 99% Interval confidence Exact price Relative error (%)

100 0.139932± 0.005882 0.139703 0.01

1000 0.139051± 0.001955 0.139703 0.04

10000 0.139666± 0.000650 0.139703 0.02

100000 0.139690± 0.000204 0.139703 0.009

Table 5.16: Vasicek: Zero coupon bond at maturity T = 20

5.0.5 JDCEV model with sthocastic interest: Cir model

This model is computed in bond CIR.m. The exact value is given by formulas written

in Brigo. Also in this case we can see the efficiency and the validity of the strong law of
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large numbers.

Simulations 99% Interval confidence Exact price Relative error (%)

100 0.729457± 0.013856 0.726221 0.4

1000 0.727159± 0.004184 0.726221 0.1

10000 0.725590± 0.001348 0.726221 0.08

100000 0.724982± 0.000254 0.726221 0.02

Table 5.17: CIR: Zero coupon bond at maturity T = 1

Simulations 99% Interval confidence Exact price Relative error (%)

100 0.488751± 0.016629 0.489457 0.1

1000 0.488411± 0.004869 0.489457 0.2

10000 0.488376± 0.001525 0.489457 0.2

100000 0.488576± 0.000483 0.489457 0.1

Table 5.18: CIR: Zero coupon bond at maturity T = 2

Simulations 99% Interval confidence Exact price Relative error (%)

100 0.148767± 0.007593 0.149647 0.5

1000 0.148927± 0.002548 0.149647 0.4

10000 0.149330± 0.000802 0.149647 0.2

100000 0.149414± 0.000256 0.149647 0.1

Table 5.19: CIR: Zero coupon bond at maturity T = 5

Simulations 99% Interval confidence Exact price Relative error (%)

100 0.020814± 0.001497 0.020764 0.2

1000 0.020719± 0.000538 0.020764 0.2

10000 0.020798± 0.000166 0.020764 0.1

100000 0.020760± 0.000052 0.020764 0.02

Table 5.20: CIR: Zero coupon bond at maturity T = 10
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Simulations 99% Interval confidence Exact price Relative error (%)

100 0.000398± 0.000042 0.000400 0.3

1000 0.000399± 0.000014 0.000400 0.1

10000 0.000399± 0.000005 0.000400 0.2

100000 0.000400± 0.000001 0.000400 0.01

Table 5.21: CIR: Zero coupon bond at maturity T = 20

The last two tests allow to confirm again the numerical accuracy of our approxima-

tions given by Monte Carlo method. Thanks to its usefulness, it is used in many circum-

stances in mathematical finance and in particular in the pricing problem. Moreover the

level of mathematics required is quite basic and so it not difficult to implement. On the

other hand a large number of samples is required to reach the desired results therefore

calculations can take much time. For this reason it may not always be appropriate and

we prefer, if it exist, anoter criteria of approximation.





Chapter 6

Conclusions and future work

Analytical approximation methods in option pricing have attracted an ever increasing

interest in the last years. This is due to the demand for more sophisticated pricing mod-

els, including local, stochastic volatility that generally cannot be solved in closed-form.

In this thesis we have defined a local stochastic volatility model with default i.e. a model

which take into account the possibility of bankruptcy of the counterparty of a contract.

We have analized our defaultable model and through Feynman-Kac̆ representation the-

orem we have seen that the price of an option is the classical solution (when it exists)

of Cauchy problem therefore we have solved a PDE with variables coefficients. We have

illustrated how to obtain fast and accurate pricing approximations by expanding the

drift and diffusion as a Taylor series and we have compared the second and third order

approximation of the Bond and Call price with an accurate Monte Carlo simulation.

Finally we have examined the numerical accuracy of our approximation both with Math-

ematica algorithms and with Matlab ones. We have provided several numerical examples

illustrating the usefulness and versatility of our methods.
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Appendix A

Probability spaces

Modern probability theory has become the natural language for formulating quan-

titative models of financial markets. In this chapter we presents some of its tools and

concepts that will be important to understand every step of the costruction of our model.

Our goal is to give some background knowledge on random variables, sthocastic process

and Stochastic Differential Equation.

Definition A.1. Let Ω be non-empty set. A σ-algebra F is a collection of subsets of

Ω s.t. :

1. contains the empty set: ∅ ∈ F

2. contains the complementary of every element: if A ∈ F then AC ∈ F

3. is stable under unions: for every sequence (An)n∈N of elements of F ,

∞⋃
n=1

An ∈ F

An elements of a σ-algebra F is called a event therefore σ-algebra F is a family

of events. In many applications and especially in mathematical finance, σ-algebras are

routinely used to represent the concept of information.

Example The Borel σ-algebra B is the σ-algebra generated by the Euclidean topol-

ogy of R i.e.

B = σ({A|A open set in R})

65



66 A. Probability spaces

Definition A.2. A measure P on F is a map P: F −→ [0, 1] s.t. :

1. P(∅) = 0

2. for every (An)n∈N of pairwise disjoint elements of F , we have:

P(
∞⋃
n=1

An) =
∞∑
n=1

P(An)

If P(Ω) <∞ we say that P is a finite measure.

P is called probability measure. It assigns a probability between 0 and 1 to each event.

An event A s.t. P(A) = 1 is said to occur almost surely. If P(A) = 0 this is interpreted

by saying the event A is impossible.

Definition A.3. A probability space is a triple (Ω,F ,P) with:

1. Ω be non-empty set

2. σ-algebra F on Ω

3. P a measure on F

Remark 14. In a financial modelling context

Ω : will represent the different scenarios which can occur in the market, each scenario

ω ∈ Ω being described in terms of the evolution of prices.

Ft : can be interpreted as the collection of events reflecting informations known up to

payment period t

P : is a probability measure that assigns probabilities to the events in the σ-algebra F

A.1 Distributions

Probabilities measure definded on the Euclidean space play an essential role.

Definition A.4. A probability measure on (R, B) is called distribution.
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Definition A.5. Let f : R −→ R+ be a non-negative B-measurable function s.t.∫
R
f(x)dx = 1

Then

P(H) =

∫
H

f(x)dx H ∈ B

is a distribution. We say that f is the density of P with respect to Lebesgue measure.

Therefore there is a natural way to define a distribution that is given a density.

A.1.1 Exponential distribution

Let λ > 0 and X be a r.v. with exponential distribution with parameter λ i.e.

X ∼ exp(λ). Then X has the following density:

f(x) = λe−λtI]0,+∞[ t ∈ R

A.1.2 Gaussian distribution

Let µ ∈ R and σ > 0 and X be a r.v. with Gaussian distribution with parameter

µ, σ i.e. X ∼ N(µ, σ2). Then X has the following density:

f(x) =
1√

2πσ2t
e−

(x−µ)2

2σ2t x ∈ R, t > 0

A.2 Fourier transform

We introduce the notion of Fourier transform which play an important role defining

each distribution uniquely.

Definition A.6. The Fourier transform of a function f ∈ L1(R) is defined as follows:

f̂(ξ) =

∫
R
eiξxf(x)dx (A.1)

Definition A.7. Let X a r.v. and PX its distribution. The characteristic function of

the r.v. X with values in R is the function ϕX : R −→ C defined by

ϕX(ξ) = E[eiξX ] =

∫
R
eiξyPX(dy)

Therefore ϕX is simply the Fourier transform of the distribution PX of X.
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A.2.1 Gaussian Fourier characteristic function

If X ∼ N(µ, σ2) then we have

ϕX(ξ) =
1√

2πσ2

∫
R
eiξye−

(y−µ)2

2σ2 dy =

=
1√
π

∫
R
eiξ(µ+x

√
2σ2)e−x

2

dx =

=
eiξµ√
π

∫
R
eiξx

√
2σ2−x2dx =

=
eiξµ√
π

√
πe−

ξ2σ2

2 dx =

= eiξµ−
ξ2σ2

2 dx

A.3 Conditional expectation

In financial applications the price of an asset is generally modeled by a r.v. X and

the amount of information available is described by a σ-algebra G . As a consequence

it is natural to introduce the notion of conditional expectation of X given G , usually

denoted by E[X|G ].

Definition A.8. Let X be a r.v. on (Ω,F ,P) and B ∈ F with P(B) > 0. We define

E[X|B] =
1

P(B)

∫
B

XdP

We denote by G the σ-algebra generated by B:

σ(B) = {∅, B,BC , Ω}

The conditional expectation of X given G is defined by

E[X|G ](ω) =

E[X|B] if ω ∈ B

E[X|B] if ω ∈ BC

We remark that E[X|G ] is a r.v.

It is easy to prove, as a consequence of the definition and costruction of the conditional

expectation, that the following properties hold.

For every X, Y r.v. ∈ L1(Ω,F ,P) and a, b ∈ R, we have:
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1. E[X|G ] is G -measurable

2.
∫
A
E[X|G ]dP =

∫
A
XdP for every A ∈ G

3. if X is G -measurable, then X = E[X|G ]

4. if X and G are independent (i.e. σ(X) and G are independent) then E[X|G ] =

E[X]

5. E[E[X|G ]] = E[X]

6. if Y is G -measurable and bounded, then E[XY |G ] = Y E[X|G ]

7. if H ⊆ G , then E[E[X|G ]|H ] = E[X|H ]

8. LINEARITY: E[αX + βY |G ] = αE[X|G ] + βE[Y |G ]

9. MONOTONICITY: if X < Y then E[X|G ] < E[Y |G ]

10. JENSEN’S INEQUALITY: if ϕ is a convex function s.t. ϕ(X) ∈ L1(Ω,F,P), then

E[ϕ(X)|G ] ≥ ϕ(E[X|G ])
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Stochastic process

Definition B.1. A s.p. is a family (Xt)t≥0 of r.v. with values in R s.t. the map

X : IxΩ −→ R, X(t, ω) = Xt(ω) (B.1)

is a function of both time t and randomness ω. For each ω, the trajectory

X(ω) : t 7→ Xt(ω)

defines a function of time, called the sample path of process.

Therefore a s.p. is a family (Xt)t≥0 of r.v. indexed by time. The time parameter t may

be either discrete or continuos but in this work we will consider continuos-time sthocastic

processes. So a s.p. can be used to describe a random phenomenon that evolves in time:

for istance, we can interpret a positive r.v. Xt as the price of a risky asset at time t. The

interpretation of the index t as a time variable introduces a dynamic aspect which needs

to be taken into account by properly defining the notion of information in the context of

a sthocastic model. So we have to introduce the important concept of filtration which

will allow us to define the important notions of past information and to classify processes

and random times according to these properties.

Definition B.2. A filtration on a probability space (Ω,F ,P) is an increasing family of

σ-algebras (Ft)t≥0 s.t. ∀t ≥ s ≥ 0 we have Fs ⊆ Ft

Ft is then interpreted as the information known at time t, which increases with time.

Infact, in a dynamic context, as time goes on, more information is progressively revealed
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to the observer. Therefore, to accomodate this additional feature, a probability space

(Ω,F ,P) is equipped with a filtration. It is called filtered probability space. From an

intuitive point of view, the probability of occurrence of a random event will change with

time as more information is revealed. An event A ∈ Ft in an event s.t. given the

information Ft at time t the observer can decide whether A has occurred or not.

B.1 Brownian Motion

Definition B.3. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. A real Brownian

motion is a s.p. W = (Wt)t≥0 in R s.t.

• W0 = 0 a.s.

• W is F -adapted and continuos

• for t > s ≥ 0 the r.v. Wt −Ws has normal distribution i.e. Wt −Ws ∼ N0,t−s and

is independent of Fs

Definition B.4. Let (Ω,F , (Ft)t≥0,P) be a filtered probability space. A s.p. M is a

martingale if:

• Mt ∈ L1(Ω) ∀t ≥ 0

• E[Mt|Fs] = Ms for s ≤ t

B.2 Equivalent Martingale Measure (EMM)

In a given stochastic model, a key result is the established connection between the

economic concept of absence of arbitrage and the mathematical property of existence

of a probability measure, the equivalent martingale measure (or risk-neutral measure),

whose definition is given in the following.

Definition B.5. An equivalent martingale measure Q is a probability measure on the

space (Ω,F ) s.t.
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• Q0 and Q are equivalent measures i.e.

Q0(A) = 0⇐⇒ Q(A) = 0 for every A ∈ F

• the Radon-Nikodym derivative dQ
dQ0

belongs to L2(Ω,F , Q0)

• the ’discounted asset price’ process is a F-mg
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Stochastic differential equations

Definition C.1. We consider x0 ∈ R and two measurable functions

µ = µ(t, x) : [0, T ]xR −→ R

σ = σ(t, x) : [0, T ]xR −→ R

• µ is called the drift coefficient

• σ is called the diffusion coefficient

Let W a 1-dimensional B.m. on the filtered probability space (Ω,F , (Ft)t≥0,P) on which

the usual hypothesis hold. A solution relative to W of the SDE with coefficients (x0, µ,

σ) is a F -adapted continuos process (Xt)t∈[0,T ] s.t.

• µ(t, x), σ(t, x) ∈ L2
loc(Ω)

• we have that

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt

X0 = x0

(C.1)

C.1 Linear SDE

Definition C.2. We define Linear Stochastic differential equations a particular type of

SDE in which the coefficients of (C.1) are linear functions of Xt ; it means they are the

75



76 C. Stochastic differential equations

ones of the form

dXt = (b+BXt)dt+ σ(t)dWt

X0 = x0

(C.2)

with b, σ, B ∈ C(R+) costant coefficients.

Theorem C.1.1. The solution of the SDE (C.2) with initial condition is of the form

Xt = etB(x0 +

∫ t

0

e−sBbds+

∫ t

0

e−sBσdWs) (C.3)

Proof.

We define Yt := x0 +
∫ t

0
e−sBbds+

∫ t
0
e−sBσdWs.

We have to show that

dXt = d(etBYt)

i.e.

(b+BXt)dt+ σ(t)dWt = d(etBYt)

By applying the Ito’s formula to the process etBYt we obtain:

d(etBYt) = BetBYtdt+ etBdYt =

= BetBYtdt+ etB(e−tBbdt+ e−tBσdWt) =

= BXtdt+ bdt+ σdWt =

= (b+BXt)dt+ σ(t)dWt

Remark 15. Xt ∼ N(m(t), C(t)) with

m(t) := E[Xt] =

= E[etB(x0 +

∫ t

0

e−sBbds+

∫ t

0

e−sBσdWs)] =

= E[etBx0 +

∫ t

0

e(t−s)Bbds]

(C.4)
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C(t) := E[(Xt −m(t))(Xt −m(t))∗] =

= etBE[(

∫ t

0

e−sBσdWs)(

∫ t

0

e−sBσdWs)
∗]etB

∗
=

= etB
∫ t

0

(e−sBσ)(e−sBσ)∗dWse
tB∗ =

=

∫ t

0

(e(t−s)Bσ)(e(t−s)Bσ)∗dWs

(C.5)

C.2 Fundamental solution and transition density

The following theorem establishes an important link between SDEs and PDEs. Our

goal is to prove a representation formula for the classical solution u of the Cauchy problemAu− au+ ∂tu = 0 in ST := [0, T [xR

u(T, x) = ϕ(x) x ∈ R

where a, ϕ are given functions and

A =
1

2
σ2(t, x)∂xx + µ(t, x)∂x

is the characteristic operator of the SDE

dXt = µ(t,Xt)dt+ σ(t,Xt)dWt (C.6)

We will show that the solution can be written in terms of expectation of u(t,Xt).

Theorem C.2.1 (Feynman-Kac̆ formula). Let u ∈ C2(ST ) ∩ C(ST ) be a solution of the

Cauchy problem (C.2). Assume that:

• the coefficients µ(t, x), σ(t, x) are measurable and have at most linear growth in x

• for every (t, x) ∈ ST there exist a solution X t,x of the SDE (C.6) relative to a

1-dimensional B.m. W on the space (Ω,F , (Ft)t≥0,P)

• σ is bounded and there exist two positive costants M and α s.t.

|u(t, x)| ≤Meαx
2

Then for every (t, x) ∈ ST we have the representation formula

u(t, x) = E[e−
∫ T
t γ(s,Xt,x

s )dsϕ(Xx,t
T )] (C.7)
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