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Sommario
La dissipazione dell'energia turbolenta viene presentata nel contesto teorico della famosa 

teoria di Kolmogorov, formulata nel 1941. Alcune precisazioni e commenti sulla teoria aiutano 

il lettore nella comprensione dell'approccio allo studio della turbolenza, oltre a presentare alcune 

problematiche di base. 

Viene fatta una chiara distinzione fra dissipazione, pseudo-dissipazione e surrogati della 

dissipazione.  La  dissipazione  regola  come  l'energia  cinetica  turbolenta  viene  trasformata  in 

energia interna, il che fa di questa quantità una caratteristica fondamentale da investigare per  

migliorare la nostra comprensione della turbolenza. 

La dissertazione si concentra sull'investigazione sperimentale della pseudo-dissipazione. 

Difatti  questa quantità è difficile da misurare dato che richiede la conoscenza completa del 

gradiente del campo di velocità tridimensionale. Avendo a che fare con anemometria a filo caldo 

per misurare la dissipazione è necessario considerare i surrogati, dato che risulta impossibile  

ottenere tutti i termini della pseudo-dissipazione. L'analisi dei surrogati è la parte principale di  

questo lavoro. In particolare due flussi, il canale ed il getto turbolenti, sono considerati. Questi  

flussi canonici, brevemente introdotti, sono spesso utilizzati come banco di prova per solutori 

numerici e strumentazioni sperimentali per la loro semplice struttura. Le osservazioni fatte in  

tali  flussi  sono  spesso  trasferibili  a  casi  più  complicati  ed  interessanti,  con  numerose 

applicazioni industriali.

Gli  strumenti  principali  per  l'investigazione  sono  DNS e  misure  sperimentali.  I  dati  

numerici sono utilizzati come riscontro per i risultati sperimentali, dato che tutte le componenti 

della dissipazione sono calcolabili nell'ambito della simulazione numerica. I risultati di alcune 

simulazioni numeriche erano già disponibile all'inizio di questa tesi, quindi il lavoro principale è 

stato incentrato sulla lettura ed elaborazione di questi dati. Gli esperimenti sono stati effettuati 

con la tecnica dell'anemometria a filo caldo,  descritta nel  dettaglio sia a livello teorico che 

pratico. 

Lo studio della DNS del canale turbolento a Re=298 rivela che il surrogato tradizionale 

può essere migliorato. Di conseguenza due nuovi surrogati vengono proposti, basati su termini 

del  gradiente di  velocità facilmente accessibili  dal  punto di vista sperimentale.  Riusciamo a 

trovare una formulazione che migliora l'accuratezza del surrogato di un ordine di grandezza.

  Per  il  getto  I  risultati  di  una  DNS  a  Re=1600,  e  i  risultati  del  nostro  apparato  

sperimentale a Re=70000 sono comparati per validare l'esperimento. Viene riscontrato che il 

rapporto fra  i  componenti  della  dissipazione  considerati  è  diverso tra  DNS ed esperimenti. 

Possibili errori in entrambi i set di dati vengono discussi, e vengono proposte delle soluzioni per 

migliorare i dati. 



Abstract
Turbulent  energy  dissipation  is  presented  in  the  theoretical  context  of  the  famous 

Kolmogorov theory, formulated in 1941. Some remarks and comments about this theory help 

the reader understand the approach to turbulence study, as well as give some basic insights to 

the problem. 

A clear  distinction  is  made  amongst  dissipation,  pseudo-dissipation  and  dissipation 

surrogates. Dissipation regulates how turbulent kinetic energy in a flow gets transformed into 

internal energy, which makes this quantity a fundamental characteristic to investigate in order to 

enhance our understanding of turbulence. 

The dissertation focuses on experimental investigation of the pseudo-dissipation. Indeed 

this quantity is difficult to measure as it requires the knowledge of all the possible derivatives of 

the  three  dimensional  velocity  field.  Once  considering  an  hot-wire  technique  to  measure 

dissipation  we  need  to  deal  with  surrogates  of  dissipation,  since  not  all  the  terms  can  be  

measured. The analysis of surrogates is the main topic of this work. In particular two flows, the 

turbulent channel and the turbulent jet, are considered. These canonic flows, introduced in a 

brief fashion, are often used as a benchmark for CFD solvers and experimental equipment due 

to their simple structure. Observations made in the canonic flows are often transferable to more 

complicated and interesting cases, with many industrial applications.

The main tools of investigation are DNS simulations and experimental measures. DNS 

data  are  used  as  a  benchmark  for  the  experimental  results  since  all  the  components  of  

dissipation are known within the numerical simulation. The results of some DNS were already 

available at the start of this thesis, so the main work consisted in reading and processing the 

data. Experiments were carried out by means of hot-wire anemometry, described  in detail on a 

theoretical and practical level.  

The study of  DNS data  of  a  turbulent  channel  at  Re=298 reveals  that  the  traditional 

surrogate can be improved Consequently two new surrogates are proposed and analysed, based 

on terms of the velocity gradient that are easy to measure experimentally. We manage to find a  

formulation that improves the accuracy of surrogates by an order of magnitude. 

For the jet flow results from a DNS at Re=1600 of a temporal jet, and results from our 

experimental facility CAT at Re=70000, are compared to validate the experiment. It is found 

that the ratio between components of the dissipation differs between DNS and experimental  

data. Possible errors  in both sets of data are discussed, and some ways to improve the data are  

proposed. 



Introduction

Amongst the fields of classical physics, fluid mechanics is widely regarded as one of the most 

challenging and fascinating.  Fluid mechanics  is  involved in  a  variety of  natural  phenomena or 

practical applications, ranging from weather forecast to the design of a race car. Every time a fluid 

moves,  it  does so by following the fundamental laws of physics (mass, momentum and energy 

conservation)  written  under  the  assumption  of  the  fluid  being  a  continuum  made  of  infinite 

particles.  Unfortunately  the  model  that  describes  this  motion,  known  as  the  Navier-Stokes 

equations, is rather difficult to solve analytically, aside from very simple (but important) cases. 

To  further  increase  the  complexity  of  the  problem,  experiments  show that  flows  can  be 

divided in two categories. Laminar flows where the motion appears to be organized in a steady and 

regular  fashion,  and  Turbulent  flows where  the  motion  is  unsteady and seemingly  random,  so 

chaotic that any prediction on it's evolution may seem impossible. The discriminating parameter 

between this two regimes is the Reynolds number ℜe≡U L/v , which links the fluid viscosity

ν  to the characteristic length L and velocity U. Transition of the flow from laminar to turbulent  

state is a gradual process that arises for infinitesimal disturbances which get amplified and form 

instabilities.

The vast majority of flows encountered in nature or in practical applications are turbulent. 

Unlike other complicated phenomena turbulence is easily observed, but is extremely difficult to 

understand and explain. Due to our lack of a full comprehension of how turbulence works, research 

has focused on simple basic flows (like jets, channels, wakes or boundary layers) with the aim of  

enhancing the understanding of turbulent mechanisms.

Three main approaches have historically been followed:

• Analytical. The equations of motion are solved in an exact or approximate way, giving a 

mathematical description of the flow field. This approach is usually the best since it gives complete 

informations regarding all the quantities involved, but is seldom feasible since the equations can 

rarely be solved in a closed form. Also, while there are many solutions to the equations for laminar 

flows, this is not true in the case of turbulent flows, where even very simple cases are not solved.

• Numerical. The equations of motion are solved by means of computer. While in laminar 

flows the numerical solutions may be very accurate, in the turbulent regime a complete description 

of the flow is related to the description of the dynamics of all the turbulent scales (from the smallest 
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to the biggest), forcing the discretization of the flow domain to become finer and finer, saturating 

consequently  the  available  computational  resources.  This  restricts  the  application  of  numerical 

solutions of the Navier-Stokes equations only to low Reynolds number flows which today are still 

far from most industrial cases.

• Experimental. The flow is reproduced in laboratory and physical quantities are measured. 

With this approach it is possible to obtain results which are affected by measurement errors and by a 

lack of knowledge of the exact boundary conditions. On the other hand, measurements of real flows 

do  not  need  almost  any  modelling  and  the  errors  are  anyway  bounded  by  the  measurement 

uncertainties.

Using  these  tools  it  is  possible  to  observe  that  high  Reynolds  number  turbulence  is 

characterised by the presence of a wide range of different coherent patterns, regarded as eddies. 

Large eddies are generated by the interaction between the flow and the solid surfaces inside it, and 

as a result turbulent kinetic energy is introduced in the flow. These big eddies are dependent on the 

particular flow geometry and are dominated by inertial forces. From the large eddies, energy is 

transferred to smaller ones in a process that is known as energy cascade; this happens until eddies 

reach their minimum dimension where dissipation of the turbulent kinetic energy into heat is caused 

by viscous  forces.  These  small  structures  are  called  Kolmogorov  scale,  from the  name of  the 

mathematician that first quantified them in 1941. Unlike large scale eddies, they are believed to be 

independent on the flow geometry and have universal and isotropic properties. 

The  turbulent  kinetic  energy  dissipation  that  takes  place  at  Kolmogorov  scales  is  a  non 

reversible  process,  and  a  fundamental  property  of  turbulence.  It's  determination  requires  the 

knowledge of the velocity gradient in each point of the flow field, which was impossible until in 

1987. During that year Balint presented the first measurements of a velocity gradient in a boundary 

layer taken with a 9 sensor hot-wire probe, and Kim published the first DNS of a turbulent channel 

flow.

However the measurement of such quantity poses a significant challenge even today, given 

that  some terms of the velocity gradients are  of  difficult  experimental  access.  Because of this, 

surrogates for the dissipation have been proposed which involve only the terms easy to measure 

with  the  most  common  technique,  i.  e.  hot-wire  anemometry.  Note  that  when  dealing  with 

experimental measurements one has to consider the filtering effects both in spatial and temporal 

resolution. These effects, generated by the inability of measuring a punctual quantity with a finite 

size sensor, can affect the results in a way such that real, physical phenomena will be  overlooked or 
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on the contrary, artificially created. 

The goal of the present thesis is to compare existing surrogates to the real dissipation, develop 

new ones,  and discuss discrepancies  due to  the different  formulations  as well  as  the effects  of 

filtering. In order to do so, the dissipation is evaluated with a numerical approach in a turbulent 

channel flow, and compared to the most common surrogates also from the same simulation. To 

further advance the study a numerical simulation of a turbulent jet is also considered, and the data 

compared to some experimental results. 

Chapter 1 of this thesis is a collection of background theory in the fields of homogeneous 

isotropic turbulence (1.1), turbulent kinetic energy dissipation (1.2) and canonic flows involved in 

the study (1.3 and 1.4).  Since we make large use of experimental data produced with hot-wire 

anemometry, the technique itself is presented (1.5) and some issues regarding filtering of the data 

are discussed (1.6).

Chapter 2 is a description of the experimental equipment utilised in the measurements (2.1), 

as well as the description of the set-up for the DNS in the temporal jet (2.2) and in the channel (2.3).

Chapter 3 presents the results obtained in the DNS of the channel flow (3.1), the experimental 

results in the physical jet (3.2) and the DNS data of the temporal jet (3.3). Given that we have two 

sets of data for the jet flow, a comparison between the two is made (3.4).

Chapter 4 is a recap of the work done and of the results obtained, with additional comments 

on possible ways to improve the data sets. Questions left open are also reported in this section, with 

the hope that further studies can continue this research.
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1. Theory

1.1 The Kolmogorov 1941 theory
The Kolmogorov 1941 theory is based on a set of three hypothesis applied to the Navier - 

Stokes  equations.  Based  on  these  hypothesis  it's  possible  to  derive  some  relations  and  make 

predictions about the behaviour of a turbulent flow.

HP1 In the limit  of very large Reynolds number,  all  the possible  symmetries of the N-S 

equations broken by the insurgence of turbulence, are restored in a statistical sense at small scales 

and away from boundaries.

So, if l 0 is the integral scale for the production of turbulence considered, a “small scale” is

l≪l 0 . Defining the velocity increments as:

 δu(r , l) ≡ u (r+l)−u( l) (1.1.1)

we assume that these velocity increments are homogeneous in the domain for all displacements ρ 

and small increments l :

 δu(r+ρ , l) =law δu (r , l ) (1.1.2)

HP2 Under the same assumptions of HP1, turbulent flow is self similar at small scales, with a 

unique scaling exponent h∈ℝ such that:

 δu(r ,λ l ) =law λhδu (r , l ) , ∀λ∈ℝ+ (1.1.3)

HP3 Under the same assumptions of HP1, turbulent flow has a finite non vanishing mean rate 

of dissipation ε per unit mass.

Under the hypothesis of homogeneity, isotropy and  HP3 it's possible to write an exact and 

non trivial relation for the third order longitudinal structure function for the velocity increment:

 S3( l) = 〈(δu∣∣(r , l ))3〉 = − 4
5
ε l , (1.1.4)

where u∣∣(r , l )  stands for the velocity increment (as in 1.1.1) in the longitudinal direction l. 

This is the four – fifths law that Kolmogorov derived from the N-S equations. A proof of the 

law is given in details in the appendix, while here we focus on the main consequences of the theory.
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Main results of the Kolmogorov 1941 theory
One  remark  that  can  be  done  about  this  law  is  that  it's  invariant  under  Galilean 

transformations.  We  know  that  in  absence  of  boundaries  and  forcing  the  N-S  equations  are 

invariant, so for any solution u(t, r) and for any vector U, u'(t, r) is still a solution. Isotropy is not 

conserved  because  U introduces  a  preferred  direction,  but  homogeneity  and  stationarity  are 

preserved. If U is taken random and isotropically distributed, all the structure functions (including 

S3 ) are invariant.

The presence of a driving force breaks the invariances of the N-S equations but doesn't affect 

the four fifths law, which is then invariant under Galilean transformations.

Note that dropping the assumption of isotropy , for  ν → 0 and small  l it's still possible to 

derive a relation between velocity changes and dissipation rate:

− 1
4
∇ l⋅〈∣δu( l )∣2δu (l )〉 = ε  (1.1.5)

This  equation is  equivalent  to  (1.1.4) when the flow is  homogeneous and isotropic at  all 

scales.

The exponent h = 1/3 of HP2 can be directly inferred from (1.1.4).

Assuming that all the moments of arbitrary positive order p > 0 are finite, and defining the 

(longitudinal) structure function of order p as:

S p(l)≡〈(δu∣∣( l ))
p〉  (1.1.6)

we can infer from the self – similarity hypothesis HP2 and from h=1/3:

S p (l) = C pε
p/3 l p/3  (1.1.7)

where the C p  are dimensionless and independent of Re (since Re → ∞). C3=−4 /5  is 

clearly universal  from (4/5  law),  but  nothing requires  the  other  C p  to  be  so,  as  is  instead 

postulated by Kolmogorov.

Note that S p (l)  doesn't involve the integral scale since l 0 →∞ . For finite integral scales 

there is a non dimensional correction function S̃ p (l / l0)  to ensure an explicit dependence from 

the  integral scale.

Moreover, the fact that the second order structure function follows an l 2 /3 law implies that 

the dissipation rate also goes as ε2 /3 . From probability theory we know that the energy spectrum 

is a power law
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E (k )≈k−n , 1<n<3 , (1.1.8)

and the second order spatial structure function is also a power law

〈∣u(r ' )−u (r )∣2〉≈∣r '−r∣n−1 , (1.1.9)

meaning that the energy spectrum is 

E (k )≈ε2/3 k−5 /3  . (1.1.10)

The dissipation range
In the derivation of the four – fifths law (see appendix) we assumed 

K≫K c≈l0
−1 And ∣2 νΩK∣≪ε , (1.1.11)

where  K is  a  wave  number  much  greater  than  the  inverse  of  the  integral  scale,  and  Ω is  the 

cumulative enstrophy up to that wave number.

The range of wave numbers for which this is true is defined as inertial range, because the 

dynamic of the N-S equations in this range is dominated by inertial terms. The upper limit of this 

range can be actually inferred from the energy flux relation (A.2.19). Assuming that we are in the 

inertial range, the energy injection is approximately F K≃ε .  The cumulative enstrophy

ΩK=
1
2
〈∣ωK

<∣2〉=∫
0

K

k 2 E (k )dk  (1.1.12)

can  be  calculated  using  (1.1.12),   giving  ΩK≈(ε
2 k 4)1 /3 .  Imposing  now  the  condition

∣2 νΩK∣≪ε ,  we  find  the  dissipation  wave  number  up  to  which  dissipation  is  negligible 

compared to the energy flux (constants are omitted):

K d=(ν3

ε )
−1 /4

. (1.1.13)

The inverse of this number is called the Kolmogorov dissipation scale

η≡(ν3

ε )
1 /4

, (1.1.14)

which sets the upper limit for the so called dissipation range. In this range the energy input from 

non linear interactions and the energy drain from viscous dissipation are in exact balance.
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1.2 Turbulent kinetic energy dissipation
The kinetic energy of the fluid (per unit mass) is

E ( x , t)≡1
2

U ( x ,t )⋅U ( x , t)  . (1.2.1)

The mean of E can be decomposed in two parts

〈E (x ,t )〉=E (x , t)+k ( x , t)  (1.2.2)

where E ( x , t) is the kinetic energy of the mean flow

E ( x , t)≡1
2
〈U 〉⋅〈U 〉  , (1.2.3)

and k(x, t) is the turbulent kinetic energy

k ( x , t)≡1
2
〈u⋅u〉=1

2
〈u i⋅u i〉  . (1.2.4)

This decomposition follows from the Reynolds decomposition of the flow velocity in mean 

and  fluctuating  components  as U=〈U 〉+u .  The  turbulent  kinetic  energy  k  determines  the 

isotropic part of the Reynolds stress tensor (which equals
2
3

k δij ) but also constitutes an upper 

bound for the anisotropic parts.

The instantaneous kinetic energy
The equation for the evolution of E, obtained from the Navier-Stokes equations, is

DE
Dt

+∇⋅T=−2ν S ij S ij  , (1.2.5)

where S ij≡
1
2
(∂U i /∂ x j+∂U j /∂ xi) is the rate of strain tensor and 

T i≡U i
p
ρ
−2νU j S ij  , (1.2.6)

is the flux of energy. The integral of equation (1.2.5) over a fixed control volume is

d
dt∫∫∫V

E dV+∫∫
A

(U E+T )⋅n dA=−∫∫∫
V

2 ν S ij S ij dV  . (1.2.7)

As usual the surface integral accounts for inflow, outflow and work done over the surface of 

the control volume, modelling the transport of energy. The right hand side is a non-negative term 

that  acts  as  a  sink  of  energy,  transforming  it  from mechanical  into  internal  energy,  modelling 

dissipation. Note that there is no source of energy within the flow.
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The mean kinetic energy
The equation for the mean kinetic energy 〈E 〉 is simply obtained by taking the mean of 

equation (1.2.5):

D 〈E 〉
Dt

+∇⋅(〈u E 〉+〈T 〉)=−ε−ε  . (1.2.8)

The two terms on the right hand side are

ε≡2ν S ij S ij  , (1.2.9)

ε≡2ν〈 s ij s ij〉  , (1.2.10)

where S ij and sij are the mean and fluctuating rate of strain tensor

S ij=〈 S ij 〉≡
1
2(∂〈U i〉

∂ x j
+
∂ 〈U j〉
∂ x i )  , (1.2.11)

sij=S ij−〈S ij 〉≡
1
2( ∂ ui

∂ x j
+
∂ u j

∂ x i)  . (1.2.12)

The first contribution, ε , is the dissipation due to the mean flow which generally is of order 

Re-1 compared with other terms, and therefore negligible.

The mean flow and turbulent kinetic energy
The equations (1.2.3) and (1.2.4) can be rewritten as

D E
D t

+∇⋅T=−P−ε  , (1.2.13)

D k
Dt

+∇⋅T '=P−ε  . (1.2.14)

The quantity

P≡−〈ui u j〉
∂ 〈U i〉
∂ x j

 , (1.2.15)

is generally positive and acts as a source in equation (1.2.14). Because of this it's referred to as the 

turbulent energy production, or simply production.

Equations (1.2.13) and (1.2.14) show the important role played by production. The action of 

the mean velocity gradient working against the Reynolds stresses removes kinetic energy from the 

mean flow and transfers it to the fluctuating velocity field.
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Dissipation
In  equation  (1.2.14)  the  sink  term is  the  turbulent  kinetic  energy  dissipation,  or  simply 

dissipation.  The  fluctuating  velocity  gradients (∂ ui /∂ x j) working  against  the  fluctuating 

deviation stresses (2 ν sij) transform the kinetic energy into internal energy. This results in a raise 

of temperature that is almost always negligible.

The local instantaneous energy dissipation rate is defined as the limit of εr , r→0 ,

ε0≡2ν sij sij

= ν
2( ∂ ui

∂ x j
+
∂ u j

∂ x i )
2

 (1.2.16)

so as can be seen by the definition, the dissipation is always non-negative.

Note that  just  as  the  mean velocity profiles,  with proper  scaling also the  production  and 

dissipation become self similar (i.e. independent of Re and x, for large enough Re and x/D. See 

chapter 1.4 for a more rigorous definition of self-similarity in jet flows).

 This is experimentally confirmed (Hussein 1994) and will be used as an assumption in the 

measurements done in this thesis. Consequently, the scaling used in the jet flow is

P̂≡P /(U o
3 /r1 /2)  , (1.2.17)

ε̂≡ε/(U o
3 /r1 /2)  . (1.2.18)

The pseudo-dissipation ε̃  is defined by

ε̃≡ν〈
∂u i

∂ x j

∂ u i

∂ x j
〉  , (1.2.19)

and is related to the true dissipation ε by

ε̃=ε−ν
∂2 〈u i u j〉
∂ x i∂ x j

 . (1.2.20)

In virtually all circumstances, the final term in equation 1.2.16 is small (at most a few percent 

of ε ) and consequently the distinction between ε and ε̃ is seldom important.

Measuring ε0 requires the simultaneous acquisition of nine velocity derivatives resolved in 

space such that  r  is less than any dynamically relevant length scale in  the flow, and temporally 

resolved  at  a  correspondingly  small  time  scale.  The  challenge  of  making  such  measurements 

encourages the consideration of surrogates for ε0 based on a subset of the nine components of the 

strain rate. Traditionally the surrogate of choice is (Laufer, 1952)

9



ε=15ν 〈(∂ u
∂ x )

2

〉  , (1.2.21)

which,  as we shall  see in section 4,  often gives poor results  and is theoretically valid only for  

homogeneous and isotropic turbulence.

The budget of the turbulent kinetic energy
For the self-similar round jet the turbulent kinetic energy budget is shown in  Figure 1. The 

quantities  plotted  are  the  four  terms  in  equation  (1.2.14)  normalized  by U 0
3/r1 /2 .  The 

contributions  are  production,  P;  dissipation,  ε;  mean  flow  convection, −D k /D t ;  turbulent 

trasport −∇⋅T ' .  While  production and mean flow convection are historically measured with 

uncertainties within 20%, the error on dissipation and turbulent transport can be as big a a factor of  

two or more.

Along the jet, dissipation is a dominant term. Production peaks at r /r1 /2≈0.6 , where the 

ratio P /ε≈0.8 . At the edge of the jet production goes to zero, and dissipation is balanced by the 

transport.
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Figure 1: The turbulent kinetic energy budget in the self-similar round jet. Quantities are  
normalized by U0 and r1/2. (Panchapachesan & Lumely 1993)



1.3 Wall bounded flows
The vast  majority of turbulent  flows are bounded by one or  more surfaces.  Examples  of 

internal flows are channel and pipe flows, while external flows are encountered when dealing with 

boundary layers. In this thesis it will be presented a simulation of a channel flow, so it's appropriate  

to  give some background theory of his  fundamental flow. Central  issues are  the mean velocity 

profiles, the friction laws and the turbulent energy balance, that will now be discussed.

Channel flow

Consider the flow along a rectangular duct ( L
δ
≫1) of large aspect ratio (b

δ
≫1) . 

The resulting mean flow is  predominantly in the longitudinal (or x) direction,  while the 

mean  velocity  varies  mostly  in  the  transversal  (or  y)  direction.  All  the  flow  statistics  are 

independent of the spanwise (or z) position.

Focusing the study on the fully developed region (so large values of x) the flow results 

statistically stationary and one-dimensional (varies only along y).

For the channel flow we define two velocities, and their respective Reynolds numbers:

• centreline velocity U 0≡〈U 〉y=δ , ℜe0≡
δU 0

ν

• bulk velocity Ū≡1
δ∫0

δ

〈U 〉dy , ℜe≡(2δ)Ū
ν .

Balance of mean forces

Since  〈W 〉=0 and  
d 〈U 〉

dx
=0 ,  from  the  continuity  equation  involving  the  mean 

velocities components we can say that:

 
d 〈V 〉

dy
=0 (1.3.1)

and considering the impermeability condition at the wall we conclude that 〈V 〉=0 for all y.

The mean momentum balance in y direction is then:

 0=− d
dy

〈v2〉−1
ρ
∂〈 p 〉
∂ y (1.3.2)

which using the boundary condition 〈v2〉 y=0=0 integrates to:
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 〈v2〉+〈 p〉 /ρ=pw(x )/ρ ,where pw=〈 p (x ,0,0)〉 . (1.3.3)

This is useful to deduce that the mean axial pressure gradient is uniform across the flow:

 ∂〈 p 〉
∂ x

=
d pw

d x
. (1.3.4)

The mean momentum balance in x direction is:

 0=ν d 2〈U 〉
dy2 − d

dy
〈u v 〉−1

ρ
∂〈 p 〉
∂ x (1.3.5)

and can be rewritten as:

 d τ
dy

=
d pw

dx
(1.3.6)

where the total shear stress is defined as:

 τ( y)≡ρν d 〈U 〉
dy

−ρ〈u v 〉 (1.3.7)

Since τ is a function of only y, and pw is a function of only x, it's clear from (1.3.6) that 

both d τ /dy  and d pw /dx are constant. Taking the boundary conditions into consideration:

τ( y)=τw(1− y
δ ) , where τw≡τ(0) . (1.3.8)

The normalization of the wall shear stress is referred to as skin friction coefficient, based on 

the centreline or on the bulk velocity:

c f≡
τw

1
2
ρU 0

2 , C F≡
τw

1
2
ρŪ 2 . (1.3.9)

The flow is driven by the drop in pressure between entrance and exit. In the fully developed 

flow region there is a constant negative mean pressure gradient  ∂〈 p 〉
∂ x

=
d pw

dx
 balanced by the 

shear stress gradient d τ
dy

=−
τw

δ
.
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Near wall shear stress
The total shear stress is the sum of viscous stress and Reynolds stress. At the wall the no slip 

condition U (x ,t )=0 makes it so that the Reynolds stress is zero. So at the wall the shear stress 

is entirely of viscous origin:

 τw=ρν(d 〈U 〉
dy )

y=0
. (1.3.10)

Profiles of the viscous and Reynolds shear stresses obtained with a DNS are shown in Figure 2.

It's clear that close to the wall the viscosity  ν and the wall shear stress  τw are important 

parameters. From these quantities (and ρ) we define some viscous scales to be used near the wall:

• friction velocity uτ≡√ τw

ρ

• viscous lengthscale δν≡ν√ ρ
τw
= ν

uτ

• friction Reynolds number ℜe τ≡
u τδ
ν
= δ
δν

• wall units y+≡ y
δν
=

uτ y
ν

Different regions in the near wall flow are defined based on y+ . The viscous wall region 
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Figure 2: Profiles of the viscous shear stress, and the Reynolds shear stress in turbulent channel flow. DNS  
data from Jimenez (2008), Re=2000.
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( y+<50) is  directly  affected  by  molecular  viscosity,  while  the  outer  region  ( y+>50) can 

neglect viscous effects. Within the viscous region there's the viscous sub-layer  ( y+<5)  where 

the Reynolds shear stress is negligible compared to the viscous stress.

Mean velocity profiles
Channel flow is completely specified by ρ, ν, δ, uτ. With no assumptions and adopting a non 

dimensional function Φ (to be determined) we can write:

 
d 〈U 〉

dy
=uτ

y
Φ( y

δν
, y
δ ) (1.3.11)

keeping in mind that  δν is the appropriate lengthscale in the near wall region, while δ is 

suitable for the outer region.

The law of the wall
Following Prandtl hypothesis, close to the wall the mean velocity profile is determined by the 

viscous scales. Mathematically  Φ asymptotically tends to a function of only y /δν as y /δ→0 :

d 〈U 〉
dy

=uτ

y
Φ1( y

δν) , for 
y
δ
≪1  (1.3.12)

where

Φ1( y
δν)= lim

y /δ→0
Φ( y

δν
, y
δ ) . (1.3.13)

Defining u+( y+)  as 

 u+≡
〈U 〉
uτ

(1.3.14)

we can rewrite the previous relation as:

 du+

dy+=
1
y+
Φ1( y+) (1.3.15)

which after integration is the law of the wall:

 u+= f w( y+)=∫
0

y+ 1
y '
Φ1( y ' )dy ' . (1.3.16)

Note that, for  
y
δ
≪1 ,  u+  is a function of solely  y+ . For Reynolds numbers away 
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from transition there is experimental proof that the function  f w( y+)  is universal for channel, 

pipe and boundary layers. The form of the function  f w( y+) can be determined for small and 

large values of y+ .

Viscous sub-layer
At  the  wall  the  no  slip  condition  imposes  f w (0)=0 ,  f w ' (0)=1 .  Using  a  Taylor 

expansion:

 f w ( y+)= y++Ο( y+2) (1.3.17)

As shown in Figure 3 the linear relation holds well for the viscous sub-layer ( y+<5) .

The log law
For larger y+  we suppose that viscosity has little effect, so that Φ1  assumes a constant 

value:

 Φ1( y+)=1
k  for 

y
δ
≪1 , y+≫1 (1.3.18)

where k is the Von Kármán constant. So in this region the mean velocity gradient is given by:

 
du+

dy+=
1

k y+
(1.3.19)

which easily integrates to give the log law:
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Figure 3: Near wall profiles of mean velocity from the DNS of  Jimenez (2008), Re=2000.
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u+=1
k

ln ( y+)+B . (1.3.20)

The values of the constants are determined experimentally and are taken to be within 5% of

k=0.41 , B=5.2 . (1.3.21)

As shown in Figure 4 the law holds very well for y+>30  and 
y
δ
<0.3 . The region 

between the viscous sub-layer and the log-law region is called buffer layer, where transition form 

viscosity dominated to turbulence dominated flow occurs.

The velocity defect law
In the outer layer ( y+>50)  we assume that  Φ becomes independent of the viscosity

 Φ0( y
δ)= lim

y /δ ν→∞
Φ( y

δν
, y
δ ) (1.3.22)

leading to:

 
d 〈U 〉

dy
=Φ0( y

δ ) . (1.3.23)

Integrating from a generic y/δ to the centre of the channel we obtain the velocity defect law:

U 0−〈U 〉
u τ

=F D( y
δ )=∫y /δ

1 1
y '
Φ0( y ' )dy ' . (1.3.24)

The velocity defect is the difference between the centreline velocity and the mean velocity. 
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Figure 4: Near wall profiles of mean velocity, DNS data from Jimenez (2008), Re=2000.
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The law states that this difference, normalized by the friction velocity, depends on  y/δ only. There 

is no suggestion that F D  is universal, because it generally varies in different flows.

At high enough Reynolds number (generally Re > 104) there is an overlap region between the 

inner layer ( y /δ<0.1)  and the outer layer ( y /δν>50) . In this region both equations (1.3.18) 

and (1.3.22) must be true, implying that

 
y
uτ

d 〈U 〉
dy

=Φ1( y
δν)=Φ0( y

δ ) , for δν≪ y≪δ . (1.3.25)

This equation is satisfied in the overlap region only by Φ1  and Φ0  assuming a constant 

value:

 y
uτ

d 〈U 〉
dy

= 1
k , for δν≪y≪δ . (1.3.26)

We can now determine the form of the velocity defect law for small  y/δ to be:

 
U 0−〈U 〉

u τ
=F D( y

δ )=− 1
k

ln( y
δ )+B1 , for 

y
δ
≪1 (1.3.27)

where B1  is a flow dependent constant. To determine it's value,  note that as shown in Figure 4 

the  log  law  is  reasonably  close  to  the  DNS  value  even   in  the  central  part  of  the  channel 

(0.3< y /δ<1)  where no arguments support it. Extrapolating the centreline velocity from the log 

law we obtain a way to determine B1 :

U 0−U 0,log

uτ
=B1  (1.3.28)

which results in a very small value since U 0−U 0,log  is within 1% of U 0 . DNS data lead to 

B1≈0.2 , while experimental results indicate B1≈0.7 .
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Wall regions recap

Region Location Property

Inner layer y /δ<0.1

〈U 〉 determined by uτ and

y+ , independent of U 0

and δ  

Viscous wall region y+<50
Significant contribution to the 

shear stress due to viscosity

Viscous sub-layer y+<5
Reynolds shear stress is 

negligible compared to viscous 

Outer layer y+>50
Negligible effect of viscosity 

on 〈U 〉

Overlap region y+>50, y /δ<0.1 Present only at high Reynolds

Log law region y+>30, y /δ<0.3 Log law holds

Buffer layer 5< y+<30

Transitional region between 

viscous and turbulent 

dominated flow

The friction law
The aim is now to determine the Reynolds number dependence of the skin friction coefficient 

an other relevant quantities.

A good estimate of the bulk velocity come from the application of the log law to the whole 

channel.  As  stated  before  there  are  small  deviations  near  the  centreline,  while  the  substantial 

deviations in the near wall region can be overlooked since they have a negligible contribution to the 

integral.

With this approximation:

 
U 0−Ū

uτ
=1
δ∫0

δ U 0−〈U 〉
uτ

dy≃1
δ∫0

δ

− 1
k

ln( y
δ )dy=1

k
≈2.4 (1.3.29)

having taken B1=0  for consistency at y=δ .
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Consider the log law in the inner layer

 
〈U 〉
u τ

=1
k

ln( y
δν)+B (1.3.30)

and in the outer layer

 
U 0−〈U 〉

u τ
=− 1

k
ln( y

δ)+B1 (1.3.31)

combining them leads to:

U 0

uτ
= 1

k
ln( δδν)+B+B1=

1
k

ln[ℜ e0(U 0

uτ
)
−1]+B+B1  (1.3.32)

which is independent of y. Solving this for U o/uτ  we can calculate (for each given ℜe0 ) the 

skin friction coefficient, using:

 c f≡
τw

1
2
ρU 0

2
=2( uτ

U 0)
2

(1.3.33)

and with approximation (1.3.29) also

 C F≡
τw

1
2
ρŪ 2 . (1.3.34)

Reynolds stresses
Consider the DNS data at Re = 13'750 shown in Figure 5, Figure 6 and Figure 7. The flow is 

divided into three regions:

• viscous wall region for y+<50

• log law region for y+>50, y /δ<0.3  or equivalently 50< y+<120

• core region for y /δ>0.3  or equivalently y+>120

In the log law region there is approximate self-similarity. The normalized Reynolds stresses 

〈u i u j〉
k

are almost uniform, as is the production to dissipation ratio  
P
ε and the normalized 

mean shear rate 
S k
ε . Moreover, production and dissipation are in balance, meaning 

P
ε
≈1 .

In the core region the mean velocity gradient and the shear stress vanish, leading to P → 0.
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In the viscous wall region, production, dissipation, turbulent kinetic energy and anisotropy 

achieve their peaks. Consider the fluctuation velocity components near the wall (small y) at a fixed 

point in space and time, expressed through a Taylor expansion:

 
u=a1+b1 y+c1 y2+…
v=a2+b2 y+c2 y2+…
w=a3+b3 y+c3 y2+…

(1.3.35)

for the no slip condition and the impermeability at the wall  a1=a2=a3=0 . Since u and w are 

zero at the wall for every x and z, we can state that

 (∂u
∂ x )y=0

=0  and (∂w
∂ z )y=0

=0 (1.3.36)

so for the continuity equation:

(∂ v
∂ y )y=0

=0=b2 . (1.3.37)

This means that close to the wall the flow has only two components, i.e. the motion occurs in 

planes parallel to the wall.

Taking the mean of the series products gives the Reynolds stresses:

 

〈u2〉=〈b1
2〉 y2+…

〈v2〉=〈c2
2〉 y4+…

〈w2〉=〈b3
2〉 y2+…

〈u v 〉=〈b1 c2〉 y3+…

(1.3.38)

For fully developed channel flow, the turbulent kinetic energy balance equation is:

 P−ε̃+ν
d 2 k
dy2 −

d
dy

〈
1
2
ν ū⋅ū 〉− 1

ρ
d
dy

〈ν p' 〉=0 (1.3.39)

where  the  terms  are  respectively  production,  pseudo-dissipation,  viscous  diffusion,  turbulent 

convection and pressure transport.

Peak production  occurs  in  the  buffer  layer  at  y+≈12 .  Here  
P
ε
≈1.8  so  the  excess 

energy is transported away. Pressure transport is very small. Turbulent convection transports both in 

the log wall region and in the near wall region. Viscous diffusion transports energy all the way 

towards the wall. The dissipation at the wall is balanced by the viscous transport,
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ε=ε̃=ν
d 2 k
dy2 , for y =2. (1.3.40)
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Figure 5: Reynolds stresses and kinetic energy normalized by the friction velocity against y+ from DNS of channel flow 
at Re=2000 (Jimenez 2008).
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Figure 6: Profiles of Reynolds stresses normalized by the turbulent kinetic energy from DNS of channel flow at  
Re=2000 (Jimenez 2008).
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Figure 7: Profiles of the energy balance components from DNS of channel flow at Re=2000 (Jimenez 2008).
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1.4 Free shear flows
The  most  commonly  free  shear  flows  are  jets,  wakes  and  mixing  layers.  The  main 

characteristic of these flows is that they are away from walls so that the turbulence in the flow is 

caused only by differences in the mean velocity. Most of the experimental and numerical work in 

this thesis is about round jets, so the well known theory for this flow is now reminded here.

Round Jet flow
A round jet consist ideally of a Newtonian fluid, flowing steadily through a round nozzle of 

diameter d, which produces a flat top-hat velocity profile UJ. The jet flow enters an ambient filled 

with  the  same  fluid,  which  is  at  rest  at  infinity.  The  flow  is  also  statistically  stationary  and 

axisymmetric, hence all statistics are independent of the time and the azimuthal coordinate ϑ. The 

velocity  components  along  the  cylindrical  coordinate  system (x , r ,θ) are  respectively

(U , U r , U θ) .

The flow is completely defined by Uj, d and v so the only non-dimensional parameter defining 

it is ℜe=U J d /ν  , even if in practice there is some dependence on details of the nozzle and the 

surroundings (Schneider 1985; Hussein 1994).

The mean velocity field
As  expected  the  mean  velocity  is  predominantly  in  the  axial  direction,  with  the  mean 

azimuthal velocity being zero and the mean radial velocity being one order of magnitude smaller.

Defining the centreline velocity as

U 0(x )≡〈U ( x ,0 ,0)〉  , (1.4.1)

and the jet's half width, r 1/2 , as

〈U ( x , r 1/2(x ) , 0)〉=1
2

U 0(x )  , (1.4.2)

one  can  observe  that  after  an  initial  development  region  (say 0≤x /d≤25 )  the  axial  mean 

velocity profile  becomes self-similar.  This  means  that  as  the jet  decays  and spreads,  the  mean 

velocity profile changes, but with proper scaling the shape of the profile is preserved.

 To further investigate the jet  self-similarity,  it  is  necessary to determine the variation of

U 0(x )  and r 1/2(x ) . In  Figure 9 the data for (the inverse of) U 0(x ) is plotted against x/d, 

resulting in a linear behaviour. The intercept of this line with the abscissa defines the so called 

“virtual origin”, denoted by x0 . The mathematical relation describing this trend is
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U 0( x)
U j

= B
( x−x0)/d

 , (1.4.3)

where B is an empirical constant called velocity decay. Note that equation (1.4.3) does not formally 

hold  in  the  development  region,  and  is  artificially  prolonged  there  with  the  only  purpose  of 

calculating the virtual origin.

The empirical law for the jet's half width is

r 1/2(x )=S (x− x0)  , (1.4.4)

where S is the (constant) spreading rate. The law again holds only in the fully developed region.

Since U 0(x )≈ x−1 and r 1/2(x )≈x the local Reynolds number ℜe0(x )=U 0(x )r1 /2( x)/ν

is independent of x. The constants B and S where object of several experiments, summarized in the 

following table:

Panchapakesan & 
Lumley (1993)

Hussein (1994) hot-
wire data

Hussein (1994) laser 
doppler data

Re 11'000 95'500 95'500

S 0,096 0,102 0,094

B 6,06 5,90 5,80

From the table it appears that the spreading rate and the decay velocity are independent of Re 

for a turbulent and fully developed jet, the only differences being due to experimental uncertainties.

However, even if the flow shows no dependence of Re in the mean axial velocity profile and 

in the spreading rate after proper scaling, the Reynolds number still influences the absolute size of 

the small scale structures, making them smaller for larger Reynolds.
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The cross stream similarity variable can be taken to be either

ξ≡r /r1 /2  , (1.4.5)

or 

η≡r /(x− x0)  , (1.4.6)

the two being related by η=S ξ . The self-similar mean velocity profile is defined as

f (η)= f (ξ)=〈U ( x , r ,0)〉 /U 0( x)  , (1.4.7)

and shown in Figure 9 for the axial component.
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Figure 8: The variation with axial distance of the mean velocity along the centreline in a turbulent round jet,  
Re=95500. Symbols, experimental data from Hussein (1994); line, equation (1.4.3).
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Figure 9: Self-similar profile for the mean axial velocity in the self-similar round jet. (Hussein 1994)
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The mean radial component can be calculated from the continuity equation, resulting smaller 

by a factor of 40 compared with the axial component. The radial velocity becomes negative at the 

jet far ends, meaning that flow is actually being entrained form the ambient into the jet.

Reynolds stresses
The fluctuating velocity components in the cylindrical coordinate system are (u x , ur , uθ) so 

it follows that in the turbulent round jet the Reynolds-stress tensor is

⟦ 〈ux
2〉 〈ux ur 〉 0

〈ux ur 〉 〈ur
2〉 0

0 0 〈uθ
2〉⟧  , (1.4.8)

because 〈ux uθ〉 and 〈ur uθ 〉 are zero for axial symmetry.

The  Reynolds  stresses  are  also  self-similar,  i.e.  the  profiles  of 〈ui u j〉 /U 0( x)2 plotted 

against  the  radial  coordinates ξ=r /r1 /2 or η=r /(x− x0) collapse  for  all  x  beyond  the 

development region as in Figure 10.

The local turbulence intensity is defined as u ' / 〈U 〉 where u' is the root mean square (rms) 

velocity fluctuation u '≡√(〈u2〉) . At the edge of the jet, although the Reynolds stress decays, the 

ratio increases without bounds, as in Figure 11, starting from a centreline value of 0,25.

26

Figure 10: Profiles of Reynolds stresses in the self-similar round jet. (Hussein 1994)
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Figure 11: The profile of local turbulence intensity in the self similar round jet. Blue line, data from Hussein 1994;  
green symbols, data from our facility.
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1.5 Hot wire anemometry
Nowadays there are several techniques to estimate the velocity field in an experimental set-

up.  The  main  candidates  are  usually  hot-wire  anemometry  (HWA),  laser  Doppler  velocimetry 

(LDV) and particle image velocimetry (PIV). For the present experiments we choose HWA, mainly 

because of it's  excellent temporal resolution.  Spatial  resolution is  however a different problem, 

which is analysed in section (1.6), that can greatly affect the accuracy of measurements.

In HWA, a small wire heated by an electric current is placed in the flow. An electronic circuit 

connected to the wire measures the heat transferred to the flow that invests  the wire,  which is 

proportional to the flow velocity. We operate the wire in Constant Temperature Anemometry (CTA) 

mode, since the wire is maintained at a constant temperature with a feedback circuit as in Figure 12. 

The hot  wire,  shown between C and D,  it  is  part  of  a  Wheatstone  bridge,  such that  the  wire  

resistance is kept constant over the bandwidth of the feedback loop. Since the hot wire voltage is a 

simple  potential  division  of  the  output  voltage,  the  output  voltage  is  normally  measured  for 

convenience.

Since the circuit response is heavily dependent upon the individual hot wire, the feedback 

circuit must be tuned for each hot wire (Dantec 1986). Although strictly it is necessary to test the 

hot wire with velocity perturbations to optimise the frequency response, a much simpler electronic 

test has been developed that injects a small voltage square wave into the Wheatstone bridge. It has 

been shown (Freymuth  1977),  that  the  optimum circuit  performance is  found when the  output 

response is approximately that shown in Figure 13. The square wave test allows a quick estimation 

of the frequency response, although it has been shown (Moss 1992) that any contamination of the 

wire reduces the frequency response without any apparent effect on the pulse response.
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Figure 12: Schematic of constant temperature anemometer. (Sheldrake 1995)



General hot-wire equation
To examine the behaviour of the hot wire, the general hot wire equation must first be derived.  

This equation will be used to examine both the steady state response of the hot wire, discussed here, 

and its frequency response, discussed later. By considering a small circular element of the hot wire, 

as in Figure 14, a power balance can be performed, assuming a uniform temperature over its cross-

section:

I 2 Rwδ x=ρw cw

∂T w

∂ t
Aδ x+k w A

∂T w

∂ x

+hπd (T w−T a)δ x−k w A(∂T w

∂ x
+
∂2T w

∂ x2 δ x)+σε(T w
4−T a

4)πd δ x
 (1.5.1)

where on the left hand side there is the power produced by Joule effect. In the right hand side we 

find the power accumulated in the wire, the incoming power due to conduction, the power loss to 

convection, the outgoing power due to conduction and the irradiated power respectively.

The  quantities  in  equation  (1.5.1)  are:  I current  intensity  in  the  wire, Rw wire 

resistance, ρw wire  density, cw wire  specific  heat, T w heated  wire  temperature, k w wire 

thermal conductivity, h convective heat transfer coefficient, T a fluid ambient temperature, σ

Stephan-Boltzmann constant and ε emissivity of the wire.

This  can be simplified  neglecting radiation (Højstrup 1976),  to  give the general  hot-wire 

equation:

K 1

∂T w

∂ t
=
∂2T w

∂ x2 −β1T w+K 2T a−K 3  . (1.5.2)
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Figure 13: Optimum square-wave test  
response. (Bruun 1995)



The constants are given by:

K1=
ρw cw

k w
 (1.5.3)

β1=
hπd
k w A

−
α I 2ρw

k w A2  (1.5.4)

K 2=
hπd
k w A  (1.5.5)

K 3=
I 2ρw

k w A2 (αT a−1)  (1.5.6)

The two main assumptions made in deriving equation (1.5.2) are that the radial variations in 

wire temperature and the radiation heat transfer are negligible: both of these will be justified briefly. 

The radiation term in equation (1.5.1) can be compared with any other term to assess its relative 

importance: the term chosen here is the convective heat loss term in equation (1.5.1), giving a ratio:

Ratio= σε
hT a

(T w
4−T a

4)  . (1.5.7)

Typical flow conditions over a typical hot wire give a ratio of 0.048 %.

The effects of radial variations are slightly more complex, but a simple case can be developed 

whereby the temperature is assumed to vary only in the radial direction. Performing a heat balance 

on the wire gives:

−I 2ρw

k w A2 =
1
r
∂
∂ r (∂T

∂ r )  (1.5.8)

If the change in resistivity with temperature is neglected, this yields the solution:
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Figure 14: Heat balance for an infinitesimal element.  
(Bruun 1995)



T w(r )=const−
I 2ρw

kw A2
r2

4  , (1.5.9)

where the constant is found from an energy balance at the surface. The maximum change across the 

wire as a ratio of the difference in temperature driving the heat transfer is then:

Ratio=1
4

k
k w

Nu  , (1.5.10)

where Nu is the Nusselt number, defined as Nu=hd w /k w , which is a non-dimensional parameter 

for the ratio between convectional and conductive heat exchange.

For typical conditions at stage exit, the ratio is 0.022 %. Since these two effects are clearly 

negligible, equation (1.5.2) can be used as the general hot wire equation.

Steady state solution
The general  steady state  solution to  equation  (1.5.2),  assuming that β̄1>0 ,  is  found by 

applying the boundary condition and defining the mean wire temperature, denoted with an upper 

bar, along the axial coordinate of the wire x (see also Figure 14):

T̄ w=T̄ a  at x=±1 , (1.5.11)

T m=
1
2 l∫−l

+l

T̄ w dx  . (1.5.12)

The non-dimensional steady state wire temperature distribution is then:

T̄ w−T̄ a

T m−T̄ a
=

[1− cosh (√ β̄1 x )
cosh (√β̄1 l) ]

[1− 1
(√ β̄1 l)

tanh (√β̄1l)]
 , (1.5.13)

which is only a function of the Biot number √β̄1 l  as seen in Figure 15.

A heat balance can then be performed over the whole wire, assuming that the flow conditions 

are uniform over the wire:

Ī 2 Rw=H̄ cond+H̄ conv  . (1.5.14)

The  two  heat  transfer  components  can  be  found  from the  flow  conditions  and  the  wire 

temperature distribution:

H̄ conv=2 l πd h̄(T m−T̄ a)  (1.5.15)
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H̄ cond=2 k w A∣∂ T̄ w

∂ x ∣
x=l

 , (1.5.16)

to give a steady state heat transfer equation:

Ī 2 Rw=2π h̄c d l (T m−T̄ a)  , (1.5.17)

where the corrected heat transfer coefficient is given by:

h̄c=h̄+
d k w

4 l (√β̄1 tanh(√β̄1 l)

1−
tanh(√β̄1l)

√ β̄1 l )  . (1.5.18)

If the Biot number is larger than approximately 3, as is usually the case, in terms of Nusselt 

number this approximates to (Bradshaw 1971):

Nuc=Nu+ d
2 l √ k w

k √Nu  (1.5.19)

giving the steady state calibration equation:

Ēw
2=2π k l Rw Nuc (T m−T̄ a)  , (1.5.20)

where the temperature dependent wire resistance is set by adjusting the current flow in the 

Wheatstone  bridge.  To  reduce  the  proportion  of  heat  transfer  by  conduction  for  given  flow 

conditions the wire length to diameter ratio must thus be increased. Although the conduction end 

effect can be compensated out using equation (1.5.19), this is normally done automatically in the 

calibration. Equation (1.5.20) shows that the variations in the wire voltage are only dependent upon 

fluctuations in the Nusselt number and the temperature difference between the hot wire and the 

flow: both of these will now be examined.
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Figure 15: Steady state temperature distribution.  
(Freymuth 1979)



Nusselt number dependence
Due  to  the  general  engineering  importance  of  heat  transfer  from  a  heated  cylinder,  the 

dependence of the Nusselt number on the flow conditions has been the subject of much research. 

The Nusselt number, as stated before, is a non-dimensional heat transfer coefficient, Nu=h d /k

which is the ratio of of the convective to the conductive heat transfer. The most general relationship 

states the dependence of Nu from several parameters (Bruun 1995):

Nu=Nu(ℜ e , Pr , Kn , M , l /d ,ΔT /T a)  , (1.5.21)

where  the  Reynolds  number ℜe=Ud /ν ,  Mach  number M=U /a  and  Prandtl  number

Pr=ν/α are defined using the kinematic viscosity of the fluid ν , the velocity of sound a, and 

the thermal diffusivity α . The Knudsen number Kn=λ/ d represents the ratio between the gas 

mean free path λ and the wire diameter. The influence of the wire length/diameter ratio is due to 

the conduction end effects. In principle it would be possible for a given hot-wire probe to find an 

expression for the Nusselt number in terms of the non-dimensional quantities in equation (1.5.21). 

In practice, however, (keeping in mind that hot-wire probes are miniature devices) such a 

general  relation  would give large  errors  for  small  deviations.  It  is  however  possible  to  further 

simplify the above relation with some assumptions:

• incompressible flow (eliminates the Mach number dependence)

• standard density flow (eliminates the Knudsen number dependence)

• infinitely long wire (eliminates both l/d and ΔT /T a  dependence).

This idealised problem was solved by King (1914), resulting in King's law:

Nu=Nu(ℜ e , Pr)=1+√2π(Pr ℜe )
1
2  . (1.5.22)

For HWA applications this translates into:

E2=A+B U eff
n  (1.5.23)

where A, B and n are variables dependent on several quantities listed in relation (1.5.21), and the 

effective cooling velocity U eff is given by Jorgensen's equation:

U eff
2 =U n

2+k t
2U t

2+k s
2 U s

2  , (1.5.24)

where in the reference system of a single wire U n ,U t ,U s are respectively the normal, tangential 

and  bi-normal  velocity  components; k t , k s are  the  yaw and  pitch  factors  equal  to ≈0.2 and

≈1 respectively. 
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For a given probe operated in a low Mach number flow the fluid properties are fairly constant and if 

additionally the temperature difference between the wire and the flow temperature is kept constant 

(this is known as constant temperature anemometry (CTA)) the variables  A,  B  and  n  in equation 

(1.5.23) will loose their dependency on the mentioned dimensionless quantities.

Figure 16 shows a typically observed Nu≈ℜe0,5 (equivalent to E2≈U eff
0,5 ) functionality, 

which  shows  a  fairly  good  constancy of  the  variables  in  equation  (1.5.23)  over  a  quite  large 

Reynolds number range. The constants A, B and n are usually determined by means of a calibration 

against a known flow field.

Temperature dependence
The measured wire voltage is also dependent upon the temperature difference between the 

wire and the flow (1.5.21). Unless this temperature difference is  measured or already known a 

measurement  error  will  result,  although  this  error  can  be  minimised  for  small  temperature 

fluctuations by operating the wire at a high temperature and calibrating the wire at the mean flow 

temperature. A means of compensation will otherwise be required: there are two main practical 

ways (Bruun 1995):

1.  Automatic compensation: Use a temperature sensor in the Wheatstone bridge.

2.  Analytical  correction:  Measure  the  flow temperature  separately and compensate 

using the heat transfer equation.

Since  automatic  compensation  has  a  bandwidth  of  approximately  100  Hz,  analytical 

correction  is  the  only  means  of  compensation  at  most  experimental  frequencies,  provided  the 

possibility of having time-resolved temperature measurements.
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Figure 16: Nu as a function of Re for hot wire  
in air. (Alfredsson 2005)



Technique limitations
The features of hot-wire anemometry were already mentioned, namely its continuous signal 

and its ability to detect very fast fluctuations. If several hot-wires are placed close to each other or 

on the same probe two or three velocity components as well as velocity gradients can be measured 

instantaneously and simultaneously. But there are limitations to what can be measured. Most of the 

limitations  can  directly  be  derived  from  the  assumptions  made  within  this  chapter.  These 

assumptions  begin  to  fail  in  very  low  velocity  regions  (where  natural  convection  becomes 

important), separation regions (i.e. backflow, since hot-wires cannot distinguish between upward or 

downward cooling) or in very close vicinity of solid surfaces (since the heat sink represented by the 

surface is not taken into account by the calibration) .
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1.6 Resolution effects in hot wire measurements
Accurate measurement of the statistics in a turbulent flow is important to further advance the 

fundamental knowledge in the field. To this day the study of resolution effects was mainly focused 

on turbulent boundary layers, where the small scale structures are small enough to appreciate the 

issue.  Hot-wire  anemometry  (HWA)  is  the  most  popular  experimental  technique  for  turbulent 

boundary layer research, given its unsurpassed temporal and spatial resolution. A growing number 

of discrepancies reported in the literature by different groups of researchers led to the investigation 

on  how  the  lack  of  resolution  can  affect  measurements.  The  staple  work  in  this  field  is  the 

experimental investigation on spatial resolution by Ligrami & Bradshaw (1987), referred to from 

now on as LB87.

Even if in the present work turbulent boundary layers are not directly considered,  similar 

effects to the ones reported in this chapter can potentially occur in other turbulent flows, such as the 

jet or the channel. It was deemed appropriate to report the latest results in resolution effects, but the 

actual  impact  on  jet  and channel  flow measurements  should  be  far  less,  because  the  turbulent 

structures are bigger than in the boundary layer.

Methodology
The spatial attenuation (filtering) caused by an idealized spanwise sensor is a function of the 

integral of the velocity fluctuations across the element. In turbulent flows these fluctuations are time 

dependent, and composed of multiple overlapping and interacting scales. The degree of attenuation 

on  the  single  spanwise  element  is  highly  dependent  on  the  spectral  composition  of  turbulent 

fluctuations. Specifically one must consider the width of the energetic fluctuations compared to the 

spanwise length of the sensor element. This requires spectral information in the spanwise direction, 

which are today available only from direct numerical simulations (DNS).

In recent literature two different approaches to the problem are found. One is to collect many 

experimental data from previous works, involving different probe lengths, l/d ratios and Reynolds 

number, and extrapolate the filtering effect caused by these factors. The other is to consider a DNS 

of the flow and, from these “exact” data, investigate the effects of resolution by filtering the data 

according to different probe length.

Both approaches seem to lead to the same conclusions (Hutchins 2009), but the debate is still 

open on some issues. As an example of the effects of spatial resolution effects, we report the near 

wall peak attenuation and the outer hump generation.
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Near wall peak attenuation

While a peak in the inner-scaled streamwise broadband turbulent energy  〈u+2〉≡
〈u2〉
uτ

2 is 

widely reported at a wall normal location z+≡ z uτ

ν
≈15±1 , the measured magnitude shows great 

dependence on non-dimensional wire length l+≡ l uτ

ν
and the friction Reynolds number.

A surface fit of the experimental data (see  Figure 17), given by a non-linear least squares 

regression in the form of

 〈u+2〉∣peak =Alog10 R eτ−Bl+−C( l+

R eτ
)+D

∣A 1.0747 B 0.0352
C 23.0833 D 4.8371∣

(1.6.1)

shows the tendency of the magnitude of the peak to increase for increasing Reynolds number, and to 

decrease for increasing l+ . A separate study based on DNS confirms the tendency of magnitude 

attenuation due to increasing l+ at a fixed Reynolds number (see Figure 18).

Relation (1.6.1) can be also used to validate one of the guidelines provided by LB87, which 

recommends to use wires of length l+≤20 , asserting that “the turbulence intensity, flatness factor 
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Figure 18: Comparison of streamwise turbulence intensity  
profiles for different filter lengths, l+≈ 3.8 (∆), 11.5 (○),  

19.1 (*), 34.3 (+) and 57.3 (□); arrow indicates increasing  
filter length (l+), and the dashed lines are at z+ ≈ 15 and 

120 (z/δ ≈ 0.12).  (Hutchins 2009)

Figure 17: Variation of the peak value of the inner-scaled  
turbulence intensity with Re and  l+ for various 

experiments. Symbols refer to experiment considered.  
(Hutchins 2009)



and skewness factor of the longitudinal velocity fluctuations are nearly independent of wire length 

when the latter is less than 20-25 wall units”. The percentage error predicted from (1.6.1) for a wire 

length l+=20 compared to an ideal wire (l+→0)  is given by

 ∣%error∣l+=20=100× 20(B+C /R eτ )
Alog10 R eτ+D . (1.6.2)

The absolute error given by the numerator of equation (1.6.2) tends to a constant value as Re 

increases, but the percentage error will fall indefinitely. This leads to the conclusion that the smaller

l+  can be, the better.

Outer hump generation
Consider profiles of streamwise turbulent intensity for several viscous scaled wire lengths and 

a fixed Reynolds number R eτ≈14 000 . As the wire length is increased we observe the fall in 

magnitude for the near wall peak (as described earlier), but also the rise of a secondary peak in the 

log region. If l+ is further increased the near wall peak disappears, and the secondary peak begins 

to decrease it's magnitude as well (see Figure 19a). Note that the mean velocity profiles show no 

dependence on wire length (see Figure 19b). 

One can decompose the fluctuating velocity signal in small scale (λ x
+<7000) an large scale

(λ x
+>7000) contributions, where  λ x

+ is the streamwise wave length of Fourier decomposed 

fluctuations defined as λ x
+≡2π/k x ( k x is the streamwise wave number) (Hutchins & Marusic, 

2007). Looking at the decomposed broadband turbulence intensity (see Figure 20), one can note that 

the small scale contribution is located near the wall and decreases with increasing wire length, while 

the large scale contribution is located mainly in the log region and is not affected by wire length.  

Thus as the wire length increases we are increasingly measuring only the large scale contribution to 

the broadband intensity.

Further studies reveal that up to friction Re = 18830 there is no outer hump for spatially well 

resolved measurements, so this phenomena is due to resolution issues only (at least up to that Re).
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A more in depth look at the decomposed turbulence intensity profiles (see Figure 21), reveals 

that  small  scales  are  affected by wire length only,  while  large scales  are  affected by Reynolds 

number only.
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Figure 19: (a) Broadband turbulence intensity profiles at  
Re=14000 using three wire lengths. (b) Associated mean  

velocity profiles:□, l+=22; ∆, l+=79; ○,  l+=153. (Hutchins  
2009)

Figure 20: Turbulence intensity profiles decomposed into  
small scale (solid symbols) and large scale (open symbols)  

contributions. The symbols are as in figure 3. The lines  
show the broadband turbulence intensity for l+=22 (solid 

line),  l+=79 (dashed line),  l+=153 (dotted line). (Hutchins  
2009)

Figure 21: Turbulence intensity profiles decomposed into  
small scale (solid symbols) and large scale (open symbols)  

for two different friction Reynolds numbers. Re=7300  
(dotted symbols), Re=14000 (plain symbols). Triangular  
symbols for l+=79, squared symbols for  l+=22. (Hutchins 

2009)



Temporal resolution
Temporal  and  spatial  resolution  requirements  are  related  through  Taylor's  hypothesis.  To 

avoid attenuation the overall temporal resolution of the measurement system must be fast enough to 

resolve a structure of a given streamwise length as it travels past the sensor. This means that in fast,  

high Reynolds number flows, the temporal resolution has to be increased, as the convection velocity 

increases and the size of the smallest structures decreases.

After defining a viscous time scale as

t+≡ t uτ
2

ν
=
λx
+

u+  (1.6.3)

it can be shown (Hutchins 2009) that turbulent fluctuations are well resolved for  t+≈3 , thus 

establishing a maximum flow frequency for boundary layer measurements in the form of

f c≥
uτ

2

3ν
. (1.6.4)

This clearly poses a limit to the reachable Reynolds number using commercial systems that 

usually can provide measurements in the range 30< f a<100 kHz.

Guidelines for hot wire measurements
To isolate as much as possible the effects of spatial and temporal filtering, as well as heat loss  

to the supports, we can define three guidelines for “accurate” measurements:

1. l+ should be as small as possible. When comparing data at different l+ some attempts 

at compensation for the error should be made. Provided l+ < 20, the error on turbulence intensity 

peak should be less that 10% at friction Re > 3000.

2. t+ < 3. The highest frequency information will increase as  uτ
2 . It's necessary to 

ensure that all experimental apparatus can resolve these time scales.

3. l/d > 200. The errors due to heat loss to the supports are not related to lack of spatial 

resolution, but can be severe. These specification follows the one in LB87, and seems to be still 

valid according to more recent studies.
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2. Numerical and Experimental set-up

2.1 Experimental Set-up for the turbulent jet flow
The experiments were carried out in the Coaxial Aerodynamic Tunnel facility (CAT) located 

in the laboratory of the Second Faculty of Engineering, Forlì. This facility was designed by Buresti 

(2000) and further developed by Burattini (2002) at the department of Aerospace Engineering of the 

University of  Pisa (DIA),  and was sent  to  the University of  Bologna as  part  of  a  cooperation 

between the two departments. The CAT can be used for mixing layers studies as it consists of two 

coaxial top-hat jets. However for the purposes of the current study on a simple round jet, only the  

inner jet was used. 

The  facility,  schematically  presented  in  Figure  22,  is  composed  of  two  independent 

centrifugal blowers driven by three phase electrical motors (A & B) whose speed is controlled by 

two electrical inverters. To reduce disturbances from the fans there are two pre-settling chambers (C 

& D) just downstream from the blowers. Further downstream are located the settling chambers (D 

& E) for the inner and outer jet respectively. Flow conditioning is performed by three screens and a 

honeycomb in the inner jet,  as well as five screens and a honeycomb in the outer jet (H). The 

contraction rates are 11:1 and 16,5:1 for the inner and outer jet respectively. Both nozzles (Do = 100 

mm, Di = 50 mm) end with a 100 mm straight pipe. 

The experimental facility is placed in a large laboratory and the exit of the jets located as far  

as possible from any kind of obstacle, with the goal of resembling a jet in an infinite environment.
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Due to the axial symmetry of this set-up, a cylindrical set of coordinates (x, r, θ) was selected, 

with the corresponding velocity being (u, v, w) to indicate axial, radial and azimuthal components. 

The azimuthal velocity at the exit was characterised by Burattini (2002) and found to be negligible.

The hot-wire probes (P) are positioned in the flow by means of a motorized traversing system, 

capable of moving the probe in the axial (M) and radial (N) directions. The traversing system is 

digitally operated through a PC using  a  NI BCN 6221 board,  while  the  jet  speed is  manually 

adjusted with the inverter.

Before any measurement could be carried out, the CAT had to be aligned with the traversing 

system. This alignment, achieved with the aid of a laser light, is however geometrical only. The real 

jet  axis  is  in  general  influenced by the surroundings and, given the degrees  of  freedom of  the 

traversing, can be isolated only in the radial direction.
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Figure 22: Schematic of the Coaxial Air Tunnel (CAT) facility: A) outer jet blower, B)inner jet blower, C) outer jet pre-
settling chamber, D) inner jet pre-settling chamber, E) inner jet diffuser, F) outer jet settling chamber, G) inner jet  

settling chamber, H) screens and honeycombs, J) outer jet hoses, K) close-up of the jet exit with the thick separating  
wall, L) axial traversing, M) heat gun, and N) radial traversing.



Measurement techniques
As previously explained in section (1.6), hot-wire anemometry was the technique of choice to 

carry out the measurements. For the present set of results, two different probes were specifically 

produced in-house. The data was then acquired by means of a DANTEC StreamLine 90N10 Frame 

with two 90C10 Constant Temperature Anemometers (CTA) modules connected to a NI BCN 6221 

acquisition card.

The probes
Commercial hot-wire probes are usually made out of tungsten and have at least a length of 1 

mm and a diameter of 5 μm, assuring relatively good mechanical strength to the product. The size 

of this probes however becomes a problem when investigating small scale turbulence, since the 

filtering effects greatly interfere with the measurement.

Both the probes  used in  the  experiment  were hand-made in our  laboratory following the 

procedure described in Fiorini (2012), to better fit the requirements imposed by filtering and heat 

loss toward the prongs (see ). In order to maintain a l/d ratio of ≈ 200, the wires mounted are ≈ 500 

μm long and have a  ≈  1,25  μm diameter. Since tungsten wires are not available in those sizes, 

platinum wires made with the Wollastone process were used instead. Those wires are secured in 

position between the prongs via soft-soldering, the solder material being a Sn60Pb40 alloy.

The types of probe produced are a Double-Wire (DW) and an X-Wire (XW), as in Figure 23. 

The first allows the estimate of partial spatial derivatives in r and θ for the axial velocity, the latter 

allows the estimate of the radial and azimuthal velocities.
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Figure 23: Schematic example of Double-Wire (left) and X-Wire (right).



Sampling frequency and time
All hot-wire measurements (aside from calibration) are carried out with a sampling frequency 

of 20kHz and a low pass filter (LPF) set at 10kHz to ensure good resolution and avoid aliasing 

problems. The sampling time was selected to be 120 seconds, high enough to resolve statistical 

moments with satisfactory accuracy, but not too long in order to retain calibration until the end of 

the measurement (each radial sweep takes about 45 minutes). The estimated error for the mean is 

given by

ε=√(2Λ
T ) urms

u
≈0,01  , (2.1.1)

while the error on the variance is

ε=√(2Λ
T

(F−1))≈0,06  . (2.1.2)

Both  the  integral  time  scale Λ≡(x− x0)/U cl and  the  flatness F≡(u4)/(u2)2 were 

calculated from preliminary results.

Calibration
In order  to relate the voltages acquired with the hot-wire to real velocities,  calibration is 

necessary before each sets of measurements. The procedure for the DW and the XW are rather 

different,  hence  described  in  different  paragraphs.  In  both  instances  the  mean flow velocity  is 

determined with a Prandtl tube (external diameter = 2 mm, internal diameter = 1 mm) connected to 

a differential pressure transducer SETRA239 0-5 water inches.

Double wire calibration
A fourth order polynomial relation for each wire has been used to convert the voltage into the 

velocity:

U wire1=a01+a11 E1+a21 E1
2+a31 E1

3+a41 E1
4

U wire 2=a02+a12 E 2+a22 E2
2+a32 E 2

3+a42 E2
4  (2.1.3)

This method does not take into account any thermal corrections like King's Law, but gives a 

better fit while retaining a simple implementation (Bruun 1995). On the other hand this method is  

far from the cooling laws of the wire and cannot reliably extrapolate data outside the calibration 

range.
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For each calibration a velocity sweep was performed after having positioned both the Prandtl 

tube and the DW in the potential core of the jet. A sample output of this procedure is given in Figure

24. 

X wire calibration
To calibrate  the  XW one  has  to  install  on  the  jet  nozzle  a  graduated  device  capable  of 

exposing the probe at different angles with respect to the flow (Errore: sorgente del riferimento non

trovata). Ideally one would like to position the Prandtl tube alongside the XW, like in the DW case. 

Unfortunately this is not possible because the device mounted at the nozzle takes up too much space 

already. 

The flow velocity is  instead determined from a fourth order polynomial fit  obtained with 

another calibration, which this time relates the engine frequency to the output velocity in the jet's 

potential core. This relation was found to be very stable and accurate, with errors under 1% (Figure

25). 

For each XW calibration a  map of points for  various  velocities  and angles  was obtained 

(Figure 26), and a polynomial fit of fifth order was calculated separately for the velocities and the 

angles. The fitting error in the velocity map was found to be small (around 1%), while the fitting 

error in the angle map was sometimes very high. 

This prompted the removal of measured voltages outside of the calibration map during the 

acquisition of data, in order to avoid false readings on the velocity and angle. The percentage of  

samples removed from a time series is shown in Figure 27.
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Figure 24: Example calibration curves for a Double-Wire. Wire 1 (left) and Wire 2 (right)  
have a different response.



The amount  of  samples  removed is  negligible  on the centreline,  but  becomes high when 

approaching the outskirts of the jet. Note that the removal of a single point here causes the inability 

to calculate two derivatives (since we use a simple finite difference scheme of first order for that). It 

was however noticed that while this filtering helps in obtaining smoother statistics, it does not alter 

significantly their qualitative behaviour.

Reynolds number and distance from the nozzle
As  previously  stated,  the  turbulent  jet  becomes  self-similar  for  large  enough  Re  and 

downstream position.  Since  we want  to  measure  a  turbulent  flow in  the  self-similar  region,  a 

ℜe=U J D /ν=70 ' 000 was  selected,  along  with  a  downstream  position  of  x/D=30.  The 

downstream position is measured starting from the virtual origin of the jet, which for our facility 

stands 125mm inside the nozzle.

Each  of  the  4  total  experiments  involves  a  sweep  of  the  jet  radius,  starting  from the 

centreline and moving upwards in steps of 15mm, to collect a total of 18 measure points.
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Figure 25: Relation between engine frequency and top-hat velocity at the nozzle for the  
CAT.
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Figure 26: Calibration map for the X-Wire.

Figure 27: Percentage of points out of the calibration map during an acquisition with an  
X-Wire.
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2.2 Numerical Set-up for the turbulent jet flow
The  laboratory experiments  mentioned  above  involve  an  actual  spatial  development  of  a 

turbulent jet issuing from a nozzle into an ideally infinite environment filled with the same fluid. 

Computing such flow accurately, so that all the relevant length and time scales are captured, can be 

extremely demanding on both computer time and memory. Therefore it was decided to compute a 

temporal analogue of the problem, where one studies the time evolution of a cylindrical mixing 

layer inside a computational domain which is periodic in all three spatial dimensions.

The advantage of using a periodic domain is that spectral methods based on the Fast Fourier 

Transform (FFT) can be used to compute the flow reasonably fast  and with high accuracy. It's 

important, however, to note that the periodic boundary conditions produce a flow that, while not 

identical  to  the  spatially  evolving  jet,  closely  resembles  it.  Thus,  although  we  capture  three 

dimensional structures of the kind known to occur in a laboratory jet, such events as ring formation 

and pairing now occur over the temporal evolution of the flow, and not in a particular region of the 

space.  The  calculations  are  therefore  not  strictly  representative  of  the  evolution  of  either  an 

axisymmetrical jet or a wake but of a cylindrical (or tubular) mixing layer.

The simulation set-up was taken from Basu & Narashima (1999), since it was not in the goals 

of this thesis. All the post-processing of the results was however independently carried out given the 

very specific nature of the quantities to study.

Governing equations
The flow is considered to be nearly incompressible, since the Mach number of the simulation 

is extremely small and therefore all density changes are neglected. Equations (2.2.1) and (2.2.2) 

respectively express the conservation of mass and momentum, where u is the velocity vector, ρ the 

density of the fluid, p the pressure, ν the kinematic viscosity.

∇⋅u=0  (2.2.1)

∂u
∂ t

+(u⋅∇)u=− 1
ρ
∇ p+ν∇ 2u  (2.2.2)

These equations are rewritten in a non-dimensional way before solving, using as a scale the 

initial diameter d0, the initial centreline velocity U0 and a reference temperature T0.

Denoting the now non-dimensional variables with an asterisk, we get:

∇⋅u∗=0  (2.2.3)
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∂u∗

∂ t∗
+(u∗⋅∇∗)u∗=−∇∗ p∗+ 1

ℜe
∇∗2 u∗  (2.2.4)

Initial and boundary conditions
The  equations  (2.2.3),  (2.2.4)  and  (2.2.8)  are  solved  in  a  Cartesian  coordinate  system

x=( x , y , z)=( x1, x2, x3) .  However  in  order  to  facilitate  the  description  of  initial  conditions 

relevant  to  the  (temporally  evolving)  jet,  we  shall  also  use  a  cylindrical  coordinate  system

(x , r ,θ) such that

x = x
y = r cos(θ)
z = r sin(θ)

 . (2.2.5)

The corresponding velocity components are (u , v ,w) and (u ,ur , uθ) in the Cartesian and 

cylindrical coordinate system respectively.

The initial conditions are chose to simulate a flow that is similar (in temporal sense) to a jet 

issuing from a round nozzle. Thus we have a tubular shear layer along the x direction at time t = 0.  

The streamwise x velocity has a top-hat profile with a tan hyperbolic shear layer:

u = 1, ∀r≤r0−δ/2
= 0, ∀r≥r0+δ/2

= 1
2(1−tanh( r−r0

2θ0 )) , ∀r0−δ/2<r<r0+δ/2
 (2.2.6)

where δ is the characteristic width of the shear layer. Here r0 is the initial radius of the shear layer, θ0 

is the initial momentum thickness and u0 and ur are assumed to be zero everywhere. A small random 

perturbation is imposed on the shear layer corresponding to an increment in ur.

Even though our focus in this study is primarily on the late times after the jet has developed 

self-similarity, we nevertheless compute through the instability and transition phases of the jet; this 

approach has been taken here because it is difficult to prescribe an `initial' far-field condition that 

contains the representative vortical structures which are so essential to the points being made here. 

The boundary conditions are taken to be periodic in each space direction for all primary variables 

(this facilitates the use of Fourier spectral schemes, and hence FFTs). The computational domain is 

a periodic cubical box of dimension 4 x 4 x 4, resolved with 192 Fourier modes for each side. The 

size of the radius of the tubular shear layer is initially 1.
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Method of solution
Equation (2.2.4) is solved along with the continuity equation (2.2.3) in a Cartesian coordinate 

system using  the Fourier  Galerkin (spectral)  technique.  The basic  philosophy of  the  scheme is 

similar to that of Orszag (1971) for direct solution of the incompressible Navier Stokes equations.

 The periodic boundary conditions are automatically satisfied by choosing a Fourier spectral 

representation. For integrating in time, we use a third-order-accurate Runge Kutta scheme for the 

non-linear terms, coupled with a third-order-accurate Adams Bashforth scheme for the linear terms.

The programming language of choice is Fortran, operated on a Unix based system, to give the 

maximum performance possible to the calculation.  However the short amount of time available 

forced  us  to  evolve  only 2 configurations  with  different  initial  disturbs.  As  a  consequence  the 

statistical convergence is not complete.

Numerical Post-processing
The result of the simulation is the complete velocity field in the computational box for all the 

times in the temporal evolution. In order to make a comparison with the experimental results, we 

are interested in calculating the total dissipation and some of it's components in a cylindrical system 

of reference. We start by calculating the velocity gradient in the Fourier space, starting from the 

velocity field (which is also in the Fourier space). At this point the velocity field and the velocity 

gradient are taken into the physical space with an inverse FFT, obtaining these quantities in the 

Cartesian coordinates.  A polynomial interpolation is performed to obtain the fields in a cylindrical 

grid, starting from the Cartesian grid. 

At this point we use the velocity gradient in Cartesian formulation (but on the cylindrical grid) 

to obtain it's corresponding version in cylindrical coordinates as follows.

Consider a vector quantity F in a three dimensional space (which in our case represents the 

velocity vector). This quantity can be written in Cartesian coordinates as

F=(F1

F 2

F 3
)(x , y , z)  , (2.2.7)

and in the cylindrical coordinate system as

F̃=(F x

F r

Fθ
)( x , r ,θ)  . (2.2.8)
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Beside the obvious relation (2.2.5), one can state the relation between the vector components 

in the two different coordinate systems:

F x = F1

F r = F 2 cos(θ)+F3 sin(θ)
F θ = −F 2sin (θ)+F 3cos (θ)

 . (2.2.9)

The partial derivatives in the cylindrical coordinate system can be generally expressed as a 

function of the derivatives in the Cartesian coordinate system using the chain rule of derivation:

∂
∂ x

( F̃ ) = ∂
∂ x

(F )

∂
∂ r

( F̃ ) = ∂ y
∂r

∂
∂ y

(F )+∂ z
∂ r

∂
∂ z

(F )

∂
∂θ

( F̃ ) = ∂ y
∂ θ

∂
∂ y

(F )+∂ z
∂θ

∂
∂ z

(F )

 , (2.2.10)

which, using relation (2.2.5), leads to

∂
∂ x

(F̃ ) = ∂
∂ x

(F )

∂
∂ r

( F̃ ) = ∂
∂ y

(F )cos (θ)+ ∂
∂ z

(F )sin (θ)

∂
∂θ

( F̃ ) = − ∂
∂ y

(F)r sin (θ)+ ∂
∂ z

(F )r cos (θ)

 . (2.2.11)

To obtain the full velocity gradient tensor in cylindrical coordinates one must apply relation 

(2.2.11) to each component of F̃ in combination with (2.2.9):

∂ F x

∂ x
=

∂ F1

∂ x
∂ F x

∂ r = cos(θ)
∂F x

∂ y +sin(θ)
∂F x

∂ z

= cos (θ)
∂ F1

∂ y
+sin(θ)

∂F 1

∂ z
1
r
∂ F x

∂θ
= −sin (θ)

∂F x

∂ y +cos(θ)
∂ F x

∂ z

= −sin(θ)
∂F 1

∂ y
+cos(θ)

∂ F1

∂ z

 (2.2.12)

51



∂ F r

∂ x
= cos(θ)

∂F 2

∂ x
+sin(θ)

∂F 3

∂ x
∂ F r

∂ r
= cos (θ)

∂ F r

∂ y
+sin(θ)

∂F r

∂ z

= cos2(θ)
∂ F 2

∂ y
+sin2(θ)

∂ F3

∂ z
+cos (θ)sin(θ)[ ∂F 3

∂ y
+
∂F 2

∂ z ]
1
r
∂F r

∂θ
= −sin(θ)

∂F r

∂ y
+cos (θ)

∂ F r

∂ z

= cos2(θ)
∂ F 2

∂ z −sin2(θ)
∂ F3

∂ y +cos (θ)sin(θ)[ ∂F 3

∂ z −
∂F 2

∂ y ]

 (2.2.13)

∂ Fθ

∂ x
= −sin(θ)

∂F 2

∂ x
+cos(θ)

∂F 3

∂ x
∂ Fθ

∂ r
= cos (θ) ∂ Fθ

∂ y
+sin(θ) ∂F θ

∂ z

= cos2(θ)
∂F 3

∂ y
−sin2(θ)

∂ F 2

∂ z
+cos(θ)sin(θ)[ ∂ F3

∂ z
−
∂F 2

∂ y ]
1
r
∂F θ

∂θ
= −sin(θ) ∂F θ

∂ y
+cos(θ) ∂F θ

∂ z

= cos2(θ)
∂F 3

∂ z
+sin2(θ)

∂ F 2

∂ y
−cos(θ)sin(θ)[ ∂ F3

∂ y
+
∂F 2

∂ z ]

 (2.2.14)

Relations (2.2.12), (2.2.13) and (2.2.14) make up the entire velocity gradient in cylindrical 

coordinates as a function of the velocity gradient in Cartesian coordinates. Simply substitute the 

velocity vector u to the generic vector field F and the result is obtained:

⟦
∂u
∂ x

∂ ur

∂ x
∂uθ

∂ x
∂u
∂ r

∂ ur

∂ r
∂uθ

∂r
1
r
∂ u
∂θ

1
r
∂ur

∂θ
1
r
∂ uθ

∂θ
⟧( x , r ,θ)  (2.2.15)

Having all the terms in (2.2.15) at disposal, it's possible to calculate the dissipation using for 

example relation (1.2.19).

 Keep in mind that to resemble a spatial average with a temporal jet we have to run several 

simulations with a slightly different initial disturb, and evolve them to a big enough time so that the 

corresponding space is in the self-similar region (usually t > 20).
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2.3 Numerical Set-up for the turbulent channel flow
The dataset considered is the result of a direct numerical simulation of a turbulent channel 

flow  (see  Figure  28)  by  Cimarelli  &De  Angelis  (2011)  at  a  friction  Reynolds  number

ℜeτ=uτh /ν=298 where, uτ is the friction velocity, ν the kinematic viscosity and h the half 

channel height. 

The  computation,  carried  out  with  a  pseudo-spectral  code,  was  cut  after  500  large  eddy 

turnover  times,  defined as T=h/U c where U c is  the  centreline velocity.  To be  relevant,  the 

statistics have been evaluated averaging over 100 different initial configurations. 

Further details about the numerical scheme adopted are far beyond the purposes of the present 

work, and can be found in Lundblah, Henningson & Johansson (1992).

The  computational  domain  is 2π h⋅2 h⋅πh with  512x193x265  grid  points  respectively, 

corresponding in a resolution, in non-dimensional wall units along the homogeneous directions, of

Δ x+=Δ z+=3,64 . This resolution, higher than usual for a turbulent channel flow, was adopted 

at the expense of the achievable Reynolds number to appreciate the phenomena and the dynamics of 

the velocity field up to the dissipative scale. For more details about the single point statistics in this 

dataset, see Saikrishnan (2011).
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Figure 28: Turbulent structures in a channel flow, DNS at Re=298 (Cimarelli & De  
Angelis, 2011).



3. Results
Here the results, both numerical and experimental, are presented for the channel and the jet 

flow  respectively.  The  results  are  then  commented  upon,  and  an  attempt  at  explaining  the 

discrepancies with the expected results is made.

3.1 Numerical results for the turbulent channel flow
Since in the case of a turbulent channel flow we do not have access to any experimental data, 

only the DNS data will be presented. As previously stated, the main investigation of this work  is 

devoted to  turbulent  kinetic  energy dissipation,  which  can  be computed from DNS data  in  it's 

complete formulation (also referred to as  true dissipation)  as in (1.2.16).  Here,  for comparison 

purposes only, we report the curve for the classic surrogate of dissipation in channel flows, which is 

(1.2.21).

To better approximate the true dissipation along the channel height two new surrogates are 

proposed, based on the terms eventually measurable with a Double-wire and an X-wire. They are 

respectively the short and long surrogates, formulated as

εshort≡A〈(∂ u
∂ x)

2

〉+B 〈(∂ u
∂ y)

2

〉  , (3.1.1)

εlong≡C 〈(∂u
∂ x)

2

〉+D 〈( ∂u
∂ y)

2

〉+E 〈(∂ v
∂ x)

2

〉+F 〈(∂w
∂ x )

2

〉  . (3.1.2)

The constant coefficients are obtained from the true dissipation values with a least squares 

method, resulting in the following table:

Short surrogate (3.1.1) Long surrogate (3.1.2)

A B C D E F

9,1975 0,6440 14,1818 0,6351 3,7345 -7,9463

From the DNS data we compute the dissipation as a function of the channel height position 

only, taking the mean along xz planes and in time. 

In Figure 29 the curves for true dissipation, traditional surrogate and proposed surrogates are 

reported. In Figure 30 the error for each dissipation surrogate, compared to the true dissipation, is 

plotted along the channel height.
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As one can see from both figures, the traditional surrogate (1.2.21) has good agreement with 

the true dissipation along the central part of the channel, where the theoretical hypothesis upon 

which it's based (homogeneity and isotropy of turbulence) are definitely more verified than near the 

walls. 

It's  evident that the long surrogate (3.1.2), involving more terms from the true dissipation 

formulation than the shot surrogate (3.1.1), gives a better approximation of the true dissipation (i.e. 

a lower mean error). To improve even further this long surrogate, and since the region in close 

proximity of the wall is experimentally inaccessible with hot-wires,  we attempted to refine the 
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Figure 29: Turbulent kinetic energy dissipation along channel height from DNS data, Re=298. 

Figure 30: Dissipation surrogate error compared to the true dissipation, DNS data Re=298.
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coefficients in the table above by starting the least square fitting not from the wall (where y+=0 ) 

but from a small distance. In particular distances of y+=5, 10, 20,30 were also considered as a 

starting point, and the resulting surrogates are shown in Figure 31. The error of each formulation 

compared to the true dissipation is shown in Figure 32.

56

Figure 31: Different fits for the coefficients of the long surrogate. Each fits has a different starting point,  
y+=0,5,10,20,30. Data from a DNS at Re=298.

Figure 32: Error relative to the true dissipation for each formulation of the long surrogate. Data from a DNS at  
Re=298.
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It is noted that the formulations starting close to the wall have a better fit in those regions, but 

fail in the central regions of the channel, while formulations that start away from the wall have a 

good fit in the centre and a bad fit at the walls.

Since from Figure 32 it can be rather difficult to judge which formulation has the least mean 

error, we report it in the following table:

From y+ = 0 From y+ = 5 From y+ = 10 From y+ = 20 From y+ = 30

 8.2750% 6.4726%  6.8752% 7.8385% 12.2835%

The  formulation  starting  from y+=5 gives  the  best  fit  of  the  true  dissipation,  and  the 

coefficients are:

εlong≡C 〈(∂u
∂ x)

2

〉+D 〈( ∂u
∂ y)

2

〉+E 〈(∂ v
∂ x)

2

〉+F 〈(∂w
∂ x )

2

〉  

∣C 11.7969 D 0.6873
E 1.4525 F −4.5013∣

(3.1.3)

The mean error for the traditional surrogate (1.2.21) is a full order of magnitude larger, being 

63.0192% for this simulation.
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3.2 Experimental results for the turbulent jet flow
In the case of turbulent jet flow it was possible to obtain experimental data using the facility 

and methods discussed in chapter 2.1. To prove the quality of the flow produced by our facility, and 

to verify that our measuring system is working as intended, we report the curves for the mean axial  

velocity in Figure 33 and the curve of the velocity fluctuation variance in Figure 34.
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Figure 33: Mean axial velocity profile. The velocity is normalized with the centreline value, the radial coordinate with  
the jet's half width. Experimental data from a turbulent top-hat jet at x/D=30 and Re=70000.
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Figure 34: Variance of the axial fluctuation velocity component, along the jet radius. The variance value is normalized  
with the centreline velocity value, the radius with the jet's half width. Experimental data from a turbulent top-hat jet at  

x/D=30 and Re=70000.
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While the mean velocity profile has the shape that we expect in the self-similar region, the 

graph of the velocity fluctuation is flat in the central region of the jet. This usually means that we 

are only partially entering the self-similar region, where we expect Figure 34 to closely resemble a 

Gaussian curve.

Using  a  combination  of  Double-wire  and  X-wire  it  was  possible  to  measure  5  of  the  9 

elements in the velocity gradient tensor, leading to an estimate for the lower bound of the pseudo-

dissipation given by

ε=ν[〈(∂u x

∂ x )
2

〉+〈(∂ ux

∂r )
2

〉+〈(∂u x

∂θ )
2

〉+〈(∂ ur

∂ x )
2

〉+〈(∂ uθ

∂ x )
2

〉]  . (3.2.1)

The result is reported in Figure 35, where each component of the velocity gradient tensor has 

been  measured  along the  jet  radius  and  averaged in  time.  The  quantities  are  scaled  with  the 

centreline velocity and the jet's half width, giving a non-dimensional representation.

This result leads to believe that some terms of the velocity gradient contribute significantly 

more than others to the turbulent energy dissipation.  However,  in the next paragraph, the DNS 

results give a contrasting result, signalling that the experiments may have been biased by some kind 

of error.
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Figure 35: Turbulent pseudo-dissipation components experimentally measured in a turbulent jet flow, Re=70'000.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.005

0.01

0.015

0.02

0.025

0.03
Experimental dissipation in a turbulent jet

 ξ  = r/r1/2 [/]

 ν
 <

 (t
er

m
)2  >

 r 1/
2/U

c3  [/
]

 

 

<(du/dr)2>
<(du/dx)2>
<(du/dth)2>
<(dur/dx)2>

<(duth/dr)2>

total



3.3 Numerical results for the turbulent jet flow
Ideally,  when  dealing  with  statistical  quantities  like  the  turbulent  energy dissipation,  one 

would like to have as many simulations as possible, each evolving a slightly different initial disturb 

on the velocity field. In the time-frame of the present work only two DNS of the temporal jet could 

be evolved to a large enough time to approach the self-similar region. However we are limited in 

the maximum evolution time also by the size of the computational box, which needs to contain all 

of the jet.   Beyond a certain time the jet begins to fill the computational box, and thus nearby 

(periodic) boxes can affect the subsequent evolution. 

This forces us to consider a velocity field where the jet still suffers from the influence of the 

potential core near the centreline, resulting in fluctuations near the centre being smaller than in a 

fully developed jet. As a proof that the fields considered at least do not suffer from problems due to  

the periodicity of the domain, we report the profile of the mean velocity components in Figure 36.

When dealing with the numerical data from a DNS one has access to the whole velocity field, 

and  therefore  the  whole  velocity  gradient,  so  it's  possible  to  calculate  the  entire  dissipation. 

However for clarity purposes we report in Figure 37 only the total dissipation and the same terms 

that was possible to measure in our experimental facility.

Here the influence  of the potential core is proved by the maximum dissipation being not on 

the centreline, but further away. However the data after the dissipation peak should be usable to 
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Figure 36: Mean profile for the cylindrical velocity components  in a turbulent jet, Re = 1600.
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judge the relative importance of the terms inside the formulation of the pseudo-dissipation.

From the graph we notice that the stronger terms are the ones involving the derivatives of the 

axial velocity component in the radial and azimuthal directions, which are very similar to each 

other.  The terms involving the derivatives in  the axial  direction are generally weaker,  with the 

derivatives of the radial and azimuthal velocity components being similar  to each other and bigger 

than the derivative of the axial velocity in the axial direction.

This relative magnitude is connected to the shape of the turbulent structures found in the fully 

developed jet, which are tubular shaped structures stretched in the axial direction. Similar structures 

are encountered in the turbulent channel, where the relative importance of the pseudo-dissipation 

terms is comparable to the jet case.
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Figure 37: Profiles of dissipation from a DNS of a turbulent jet, Re=1600. Dashed line (black), total dissipation;  
colours and symbols, dissipation components.
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3.4 Comparison between DNS and Experimental data (jet)
As stated in relation (3.2.1), only 5 components of the dissipation could be estimated though 

experiments. We expect the magnitude of the total  dissipation,  as well  as the magnitude of the 

single  terms,  to  be  different  from experimental  and  DNS data,  since  the  data  are  obtained  in 

different conditions of Re and the temporal jet is not yet fully developed. It is of particular interest a 

comparison of the terms ratio in experimental and DNS data (see Figure 38, Figure 39, Figure 40, 

Figure 41). 
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Figure 38: Profile of the ratio between the second and first term in relation (3.2.1) for the dissipation. Dashed line,  
DNS at Re=1600; Symbols, experimental data at Re=70000.

Figure 39: Profile of the ratio between the third and first term in relation (3.2.1) for the dissipation. Dashed line, DNS  
at Re=1600; Symbols, experimental data at Re=70000.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

 ν
 (t

er
m

 ra
tio

) r
1/

2/U
c3  [/

]

 ξ  = r/r1/2 [/]

Ratio  (dux/dr)2 / (dux/dx)2

 

 

DNS
Exp

0 0.5 1 1.5 2 2.5 3 3.5 4
0

10

20

30

40

50

60

70

 ν
 (t

er
m

 ra
tio

) r
1/

2/U
c3  [/

]

 ξ  = r/r1/2 [/]

Ratio  (dux/d θ )2 / (dux/dx)2

 

 

DNS
Exp



From Figure 38 and Figure 39 it appears that the ratio of the terms experimentally measured 

with  the  Double-Wire,  (du x /dr )2  and (du x /d θ)
2 ,  to  the  reference  term (du x /dx)2 is  one 

order of magnitude larger than in the DNS data. This can be due to errors in the  calculation of the 

experimental  derivatives  along  the  radial  and  azimuthal  directions,  probably  connected  to  the 

spacing between the wires being underestimated. Note that the spacing is very difficult to measure 

accurately and directly affects the derivatives, which are then squared, amplifying any error.
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Figure 40: Profile of the ratio between the first and fourth term in relation (3.2.1) for the dissipation. Dashed line, DNS  
at Re=1600; Symbols, experimental data at Re=70000.

Figure 41: Profile of the ratio between the first and fifth term in relation (3.2.1) for the dissipation. Dashed line, DNS at  
Re=1600; Symbols, experimental data at Re=70000.
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The ratio of the terms measured experimentally with the X-wire, (dur /dx)2 and (duθ/dx )2 , to 

the reference term (du x /dx)2 (see Figure 40 and Figure 41 respectively) is much closer.  All the 

terms involving the partial derivatives along the axial direction are obtained experimentally with 

Taylor's hypothesis, which itself can cause errors up to 30%  (Dahm & Southerland, 1997).

For reference purposes the curves for the total dissipation, estimated with the experimental 

data and calculated with the DNS data, are shown in Figure 42. 

The  DNS  data  show  the  influence  of  the  potential  core  near  the  centreline,  where  the 

dissipation is less than expected because of the lower turbulence. The qualitative behaviour of the 

curve after the peak should be correct also for the fully developed jet.

The experimental data are a lower bound estimate based on the measurable terms in relation 

(3.2.1), so we expect it to be lower than the DNS dissipation..
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Figure 42: Profile of the total dissipation. Dashed line, DNS at Re=1600; Symbols, experimental data at Re=70000.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

 T
ot

al
 d

is
si

pa
tio

n 
no

rm
al

iz
ed

 [/
]

 ξ  = r/r1/2 [/]

 

 

DNS
Exp



4. Conclusions
Turbulent  energy dissipation  was  presented  in  the  theoretical  context  of  the  Kolmogorov 

theory, and then investigated with particular regard to a wall-bounded flow (channel) and a free 

shear flow (jet). 

Dissipation estimates were accessible through DNS data of a turbulent channel, where the 

poor performances of a traditional surrogate for dissipation have been shown. Given those poor 

performances a new surrogate, based upon easily measurable terms of the velocity gradient tensor 

was proposed, and it's better accuracy was proven.  

Starting from those conclusions, we moved the investigation of dissipation on a turbulent jet. 

This time we had access to an experimental facility of proven quality, which led to the collection of  

five out of nine terms of the velocity gradient tensor. For comparison purposes a DNS of a temporal 

jet was employed,  but it was not possible to evolve the jet beyond a certain time without touching 

the borders of the computational box. Since the solution is calculated on a periodic domain using 

Fourier, when the jet starts to fill the domain the solution in the whole field changes and it's not 

comparable to a physical jet any more.  On the other hand, the experimental data are affected by 

some  kind  of  error,  which  impacts  the  value  of  the  single  velocity  gradient  terms.  The  error 

probably lies in the measure of the spacing  between the wires in the Double-Wire probe, or it can 

be connected to the propagation of the error due to the Taylor's hypothesis.

Ideally we would have liked to develop a dissipation surrogate for the turbulent jet in the 

same way we did for the turbulent channel. This was not possible because the DNS data needs to be  

recalculated over a larger domain, such that the jet is evolved enough to reach the fully developed 

region without filling the computational box. Additional errors in the experimental data make the 

task to develop a surrogate impossible.

Future development of the research in the experimental side should involve the investigation 

of experimental errors in the jet measurements, as well as considering new ways to measure with 

our equipment the now inaccessible  terms of the velocity tensor.  Once a fully developed DNS 

simulation is available, a dedicated surrogate for the turbulent jet flow can be developed in the same 

way it was done for the turbulent channel flow.
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Appendix

A.1 Statistical Background
Turbulence is described mainly though the probabilistic concepts that we now introduce. All 

of  the  following  chapter  is  based  on  dynamical  systems,  represented  by  the  quadruplet 

(Ω , A , P ,G t)  where:

• Ω  is a probability space;

• A  is a sigma algebra of  Ω ;

• P  is  a  probability  measure  that  maps  A  to  the  real  numbers  between  0  and  1 

satisfying also

P (a )⩾0 ∀a ∈A , P (∪i Ai)=∑
i

P (Ai) , P (Ω)=1

where Ai  is any enumerable set of disjoint sets ∈A ;

• Gt  is a family of time shifts operators depending on the variable t⩾0  which can be 

continuous or discrete and satisfies the semi group properties

G0=I , G t Gt '=Gt+t '

and conserves the probability

P (Gt
−1 a)=P (a) ,∀ t⩾0,∀a∈A .

Random variables
Def. A random variable is a map

 v :Ω→ℝ , w̄→v (w̄) , (A.1.1)

as for example is a single component of the velocity of a turbulent fluid at a given point in 

time and space (so the dependence from the initial conditions w̄  remains).

Def. The probability measure of the random variable v is the image of the measure P by the 

map v. The cumulative probability is defined as:

F (x)≡Prob {v (w̄)<x }≡P (v−1(−∞ , x )) , (A.1.2)

where v−1  denotes the set of w̄  mapped into the interval by v. This result in F(x) being a non 

decreasing function, and it's derivative
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 p (x )=dF (x )
dx (A.1.3)

is  non  negative  and  referred  to  as  the  probability  density  function  (p.d.f.).  The  p.d.f.  is 

normalized:

 ∫ℝ
p( x)dx=1 . (A.1.4)

Def. The mean value (or expectation value) of v is given by:

〈v 〉≡∫Ω
v (w̄)dP=∫ℝ

x p( x)dx , (A.1.5)

which is a linear operation that can give an infinite value. The random variable is centred if the 

mean value is zero.

Def. The moment of m-th order of the random variable v is given by

 〈vm〉≡∫ℝ
xm p( x)dx , m∈ℕ (A.1.6)

If the variable is centred we also define:

• the variance σ2=〈v2〉

• the skewness S= 〈v3〉
(〈v2〉)3/2

• the flatness F= 〈v4〉
(〈v2〉)2 .

Def.  The characteristic function of the random variable v is the function of real variable z 

given by:

 K (z )≡〈e izv〉=∫ℝ
eizx p (x)dx , (A.1.7)

which  is  the  Fourier  transform of  the  p.d.f.  p(x).  This  is  convenient  because  the  characteristic 

function of the sum of two independent variables is the product of the individual characteristic 

functions.

Def. The centred random variable is said to be Gaussian if

K (z )=〈e izv〉=e
− 1

2 σ
2 z2

. (A.1.8)

All  the  previous  definitions  can  be  extended  to  multidimensional  random  variables. 

Substituting ℝn  for ℝ  in the definition of random variable we obtain a vector valued random 

variable
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 v (w̄)=(v i( w̄) , i=1,… , n) . (A.1.9)

The moments become tensors of the form

〈v i1
v i2
…v i m

〉 , i=1,… , n . (A.1.10)

If the v is centred it's covariance tensor is defined as:

Γij≡〈vi v j〉=[ 〈v1
2〉 〈v1 v2〉 ⋯ 〈v1 vn〉

〈v2 v1〉 〈v2
2〉 ⋯ ⋮

⋮ ⋯ ⋱ ⋮
〈vn v1〉 ⋯ ⋯ 〈vn

2 〉
] . (A.1.11)

Random functions
Def. A random function (or stochastic process) is a family of random variables depending on 

several spatial or time variables. For example the velocity field v (t , r , w̄) , solution of the N-S, is 

a random function.

The moments of order n of the random function are tensors:

 〈v i1
(t 1, r1)vi2

(t 2, r 2)…vi m
(tm , rm)〉 , i=1,… , n . (A.1.12)

If the random function is centred (〈v 〉=0)  as we generally assume, the correlation function is:

Γij ( t , r ; t ' , r ' )≡〈v i(t , r )v j( t ' , r ' )〉 . (A.1.13)

Def. The characteristic functional of the random function v (t , w̄) is defined as the map

 z ( t)→K [ z (⋅)]≡〈e i∫ℝ
dt z(t )v(t ,w̄)

〉 (A.1.14)

where z is a non random test function (a smooth function with compact support).

Def. A random function is said to be Gaussian if for all test functions z(t) the integral

 ∫ℝ
z (t )v (t , w̄)dt (A.1.15)

is a Gaussian random variable.

Statistical symmetries
A random function is said to be G-stationary if for all t and w̄

v (t+h , w̄)=v ( t ,Gh w̄) , ∀h≥0 . (A.1.16)

The full solution of the N-S problem v (t , r , w̄) is a stationary random function.

A looser definition of stationarity for random functions is equality in law. A random function 
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is equal in law when all the statistical proprieties (moments and/or p.d.f.) are the same after an 

argument shift, and it's denoted by:

 v (t+h)=law v (t ) . (A.1.17)

A broader concept than stationarity, which is very useful in turbulence, involves the increments:

Def. A random function v (t , w̄) is said to have Gt stationary increments if for all t, t', and

w̄ :

v (t '+h , w̄)−v (t+h , w̄)=v (t ' , Gh w̄)−v (t ,Gh w̄) , ∀h≥0 . (A.1.18)

It's important to note that stationarity implies stationary increments, but not the opposite.

For space translations we have the following notion:

Def. The random function v (t , w̄) is said to be homogeneous if there is a group Gρ
space  of 

space shift transformations of Ω , conserving the probability and commuting with the time shifts 

Gt such that:

v (t , r , w̄)=v (t , r ,Gρ
space w̄) . (A.1.19)

As a consequence of homogeneity all the moments are invariant under a simultaneous  space 

translation of their  arguments.  The correlation tensor of a stationary and homogeneous random 

velocity field is:

 〈v i(t , r )v j( t ' , r ' )〉=Γij (t−t ' , r−r ' ) . (A.1.20)

Homogeneity can be weakened to homogeneous increments  just  as stationarity.  Statistical 

invariance under rotations is instead referred to as isotropy.

Ergodic results
In  the  general  framework  of  dynamical  systems  (i.e.  the  quadruplet  (Ω , A ,P ,G t) ), 

Birkhoff's ergodic theorem assumes that the only sets in A which are globally invariant under the 

time shifts  Gt are those of measure zero and one. It  follows that for any integrable function f 

defined on Ω and for almost all w̄ '∈Ω ,

lim
T →∞

1
T ∫0

T

f (Gt w̄ ')dt=∫Ω
f ( w̄)dP≡〈 f 〉 . (A.1.21)

This means that under suitable conditions time averages are equivalent to ensemble averages. 

For a stationary random function v (t , w̄)  the statement of  Birkhoff's ergodic theorem becomes 

that for almost all w̄ '∈Ω
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lim
T →∞

1
T ∫0

T

v (t , w̄)dt=〈v 〉 . (A.1.22)

In practice time averages are calculated over a finite sample of data. The length of this sample 

should be such as 

 T≫T integ (A.1.23)

where T integ is the integral time scale:

T integ≡
∫

0

∞

dt∣〈v( t )v (0)〉∣

〈v2〉
=
∫
0

∞

dt∣Γ(t)∣

Γ(0)
. (A.1.24)

The ergodic theorem can be used to evaluate the moments of v (t , w̄) , since they are also 

stationary functions.  However  the integral  time scale  grows very rapidly with  the order  of  the 

moment, requiring very long samples for high order moments.

Ergodicity can be extended to space domains, provided that the space domain is of infinite 

extension in at least one direction so that the averages over increasingly longer distances can be 

taken.  For  example,  if  v ( x , y , z , w̄)  is  a  random homogeneous  and  ergodic  velocity  field 

defined in all of ℝ3 we have

lim
L→∞

1
L3∫

0

L

∫
0

L

∫
0

L

dx dy dz v (x , y , x , w̄)=〈v 〉 . (A.1.25)

Spectrum of stationary random functions
One of the most common ways to analyse a stationary random function is though it's power 

spectrum.  To  properly  define  this  concept  we first  introduce  the  low pass  filtered  function  as 

follows:

 
v (t , w̄)=∫ℝ

e ift v̂ ( f , w̄)df ,

v F
<( t , w̄)=∫∣ f ∣≤F

eift v̂ ( f , w̄)df ,F≥0.
(A.1.26)

where the Fourier variable is denoted by f.

The cumulative energy spectrum is defined as:

ξ(F )≡1
2
〈[vF

<(t)]2〉  (A.1.27)

which does not depend on time since we assumed stationarity. This quantity can be interpreted 

as the mean kinetic energy in temporal scales greater than  ≈F−1 . It's also a non decreasing 
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function of the cut-off frequency F.

The energy spectrum of the stationary random function v (t , w̄) is defined as:

E ( f )≡ d
dt
ξ(F ) ≥0 , (A.1.28)

where the non negativity follows from the non decreasing property. The energy spectrum will 

be often referred to as just spectrum. Since the filtered velocity field reduces to the unfiltered one 

when F → ∞, t follows that

1
2
〈v2〉=∫

0

∞

E ( f )df , (A.1.29)

so  the  mean  kinetic  energy  is  the  integral  of  the  energy  spectrum over  all  frequencies. 

Observing that the Fourier transform of dv / dt is v̂ f we obtain

 1
2
〈(dv (t , w̄)

dt )
2

〉=∫
0

∞

f 2 E ( f )df . (A.1.30)

We shall also present the Wiener – Khinchin formula

E ( f )= 1
2π ∫−∞

+∞

e ifsΓ(s)ds , (A.1.31)

which states that the correlation function and the energy spectrum are Fourier transforms of 

each other. The formula implies that Fourier transforms of a correlation function of a stationary 

random function must be non negative.

All of this can again be extended to the spatial domain when it's unbounded, for example the 

cumulative spatial energy spectrum becomes

ξ(K )≡1
2
〈∣vK

<(r)∣2〉 , (A.1.32)

where v K
< is the low pass filtered vector velocity field containing all the harmonics with a 

wave number less or equal to K. It follows that the spatial energy spectrum is

 E (k )≡d ξ(k )
dk . (A.1.33)

Note that even if the space is three dimensional, the variables K and k are wave numbers (so 

positive  scalars).  This  implies  that  the  mean  energy is  obtained  by the  same one  dimensional 

integral as in the time case.
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A.2 Proof of Kolmogorov's law
In  chapter  1.1  a  very  fundamental  law  discovered  by  Andrey  Kolmogorov  in  1941  is 

presented. We shall now report  the proof of this  law following the modern approach that Uriel  

Frisch describes in his book “Turbulence” (1995).

Kolmogorov four – fifths law
In his original paper Kolmogorov assumed a freely decaying turbulent flow. Real turbulence 

is  maintained by mechanisms like the  interactions  of  the flow with  the boundaries,  or  thermal 

convection instabilities. This inhomogeneities can be partially ignored at  small  scales and away 

from their source, but are necessary to replenish the energy dissipated by the viscosity. A simple 

model would be to add a forcing term f ( t , r ) to the N-S equations:

∂t v+v⋅∇ v=−∇ p+ν∇ 2v+ f
∇⋅v=0.

 (A.2.1)

Assume that the forcing term is only active at large scales, to model the real production of 

turbulence that often involves large scale instabilities. Also consider f ( t , r ) to be a stationary 

homogeneous random force, and assume that all the moments required in the proof are finite (for 

ν>0). Now we define the physical space energy flux

ε(l )≡−∂t[ 1
2
〈v (r )⋅v (r+ l) 〉]NL

, (A.2.2)

which has the dimensions of a time rate of change of an energy per unit mass, where ∂t(⋅)NL

stands for the contribution to the time rate of change from the non linear terms in the N-S equations.

Kármán – Howarth – Monin relation
Homogeneous solutions of the N-S equations satisfies

ε( l)=− 1
4
∇ l⋅〈∣δv (l )∣2δv ( l)〉=

=−∂t
1
2 〈v (r )⋅v (r+l)〉+〈v (r )⋅ f (r+ l)+ f (r−l)

2 〉+ν∇ l
2 〈v (r )⋅v (r+l )〉

, (A.2.3)

where ∇ l denotes the partial derivatives with respect to the vectorial increment l, and

〈∣δv ( l)2∣δv ( l)〉≡〈∣δv (r , l )∣2δv (r , l )〉 . (A.2.4)

After averaging no dependence on r is left, because of homogeneity.

The above relation (A.2.1) is an anisotropic generalization (by Monin) of the relation first 

established by Kármán and Howarth. We shall skip the proof of this relation which can be found in 
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several books about turbulence. Observe that if in (A.2.1) we hold the viscosity  ν > 0 fixed, and we 

let the increment l → 0, this results in the term ∇ l⋅〈∣δ v ( l)∣2δ v ( l )〉 going to zero. This means that 

the velocity increments are linear for very small increments. This leaves us with

∂t
1
2
〈v2〉=〈 f (r )⋅v (r)〉+ν〈v (r )⋅∇ 2 v (r )〉 , (A.2.5)

which clarifies  that  the only changes in  the mean energy come from the forcing term and the 

viscous dissipation. If l≠0 , (A.2.1) is essentially an energy flux relation.

The energy flux for homogeneous turbulence
The scale by scale energy budget equation

∂t ξK+ΠK=F K−2 νΩK  (A.2.6)

states that the rate of change of the energy (∂t ξK ) at scales down to l=K−1 , plus the flux of 

energy to smaller scales due to non linear interactions (ΠK ) , is equal to the energy injected at 

scales l by the force (F K) minus the energy dissipated at such scales (2 νΩK ) . All the terms 

above are treated as random homogeneous functions, and are mean quantities defined as:

• the cumulative energy ξK≡
1
2
〈∣vK

<∣2〉

• the cumulative enstrophy ΩK≡
1
2
〈∣ωK

<∣2〉 ,ω≡∇∧v is the vorticity (curl of the velocity)

• the cumulative energy injection F K≡〈 f K
<⋅v K

<〉

• the energy flux ΠK≡〈v K
<⋅(v K

<⋅∇ v K
> )〉+〈v K

<⋅(v K
>⋅∇ vK

>)〉

where the low (and similarly high) pass filtering were defined in appendix A.1. We now want 

to use the Kármán – Howarth – Monin relation to re-express the energy flux as a function of the 

third order moments of velocity increments.

The energy flux for homogeneous turbulence
Observe that the scale by scale energy budget equation can be rewritten as

ΠK=−∂t(ξK )NL , (A.2.7)

because we defined the energy flux to smaller scales as due to non linear interactions. Through the 

identity
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∫ℝ3 d 3 k e i k⋅r=(2π)3δ (r )  (A.2.8)

and the assumption of homogeneity, we obtain

ΠK=
1

(2π)3
∫∣k∣≤K

d 3 k∫ℝ3 d 3l e i k⋅l ε( l) . (A.2.9)

By switching the integrations in the previous relation, we can perform the one over k. Using 

spherical coordinates with the polar axis along l, we get

ΠK=
1

2π2∫ℝ3 d 3l sin (K l)−K l cos (K l)
l 3 ε( l) . (A.2.10)

Integrating by parts the relation becomes

ΠK=
1

2π2∫ℝ3 d 3l sin (K l)
l

∇ l⋅[ε( l ) l
l 2 ] , (A.2.11)

and substituting the value of ε(l ) given by the Kármán – Howarth – Monin relation

ΠK=−
1

8π2∫ℝ3 d 3l sin(K l )
l

∇ l⋅[ l
l 2 ∇ l⋅〈∣δ v ( l )∣2δv ( l )〉] (A.2.12)

we accomplish the rewriting of the energy flux in terms of third order velocity increments.

The energy flux for homogeneous isotropic turbulence
By adding the assumption of isotopic turbulence, we can express the energy flux in terms of 

third order moments of longitudinal velocity increments. We will omit the proof of the following 

relation for the energy flux in homogeneous isotropic turbulence:

ΠK=−
1

6π∫0
∞

dl sin(K l)
l

(1+l ∂l)(3+l ∂l)(5+l ∂l)
S 3( l)

l
 (A.2.13)

where 

∂l≡∂/∂ l , S3(l )=〈(δv∣∣(r , l))3〉 . (A.2.14)

Using (A.2.3) it's now possible to derive an energy transfer relation for homogeneous 

isotropic turbulence:
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∂t E (k ) = T (k )+F (k )−2 ν k2 E (k ) ,

T (k ) ≡ −
∂
∂k
Πk

= ∫
0

∞

cos(k l)(1+l∂l)(3+l ∂l)(5+l∂l)
S3(l )
6 πl

dl

 (A.2.15)

where

E (k )= ∂
∂k

1
2
〈∣vk

<∣2〉 , F (k )= ∂
∂k
〈 f k

<⋅vk
<〉  (A.2.16)

are the energy spectrum and the energy injection spectrum respectively. The function T(k) is called 

energy  transfer,  and  represents  the  time  rate  of  change  per  unit  wave  number  of  the  energy 

spectrum, due to non linear interactions. Hence through the Weiner – Khinchin formula (A.1.31) 

and (A.2.2) we can express the transfer in terms of physical space flux as

T (k )=− 2
π∫0

∞

k l sin (k l)ε( l)dl . (17)

Relation (A.2.15) is more practical since S3(l ) is a quantity experimentally determinable. 

From the energy flux to the four – fifths law
Up until now we assumed homogeneity and isotropy. To further proceed in the derivation of 

the four – fifths law, we need to make specific assumptions about fully developed turbulence:

i.The driving force f ( t , r ) is active only at large scales and has no contribution at wave 

numbers ≫K c≈ l0
−1 , where l 0 is the integral scale. Reformulating we have

f K
< (t , r )≃ f (t , r ) , for K≫K c .

ii. For large times the solution of the N-S equations tends to a statistically stationary 

state, with a finite mean energy per unit mass.

iii. In the infinite Reynolds number limit (i.e.  ν → 0), the mean energy dissipation per 

unit mass ε(ν) tends to a finite positive limit (as in HP3):

lim
ν →0

ε(ν)=ε>0 .

iv. Scale invariance (HP1 and HP2) are not necessary.

A direct consequence of stationarity item (ii) is the time derivative terms can now be omitted 

in  the global energy budget equation (A.2.5) and in the scale by scale  energy budget  equation 

(A.2.6), which become respectively
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〈 f⋅v 〉=−ν〈v⋅∇2 v 〉=ε(ν)  (A.2.18)

and

 ΠK=F K−2 νΩK . (A.2.19)

Now consider the energy injection term F K for K≫K c . Using its definition and item (i) 

we obtain

F K=〈 f K
<⋅v 〉≃〈 f⋅v 〉=ε(ν) . (A.2.20)

About the dissipation term 2 νΩK we can say that for fixed K

lim
ν →0

2νΩK=0 . (A.2.21)

Indeed we have that

2 νΩK = ν〈∣ωK
<∣2〉 ≤ νK 2 〈∣vK

<∣2〉
≤ νK 2〈∣v∣2〉 = 2 νK 2 E

, (A.2.22)

where E is the mean energy (bounded by item (ii)). The first equality follows form the enstrophy 

definition, while the second inequality follows from the fact that the curl operator acting a low pass 

filtered vector field with a cut-off wave number K, has a norm bounded by K. 

From (A.2.19), if we use item (iii) combined with (A.2.20) and (A.2.21), we obtain

lim
ν →0

ΠK=ε , ∀K ≫K c . (A.2.23)

This means that, in the statistically stationary state, the energy flux is independent of the scale 

under consideration and equal to the energy  input / dissipation, provided no direct energy injection

(K≫K c) and no direct dissipation (ν→0) .

Combining  this  result  with  the  relation  for  the  energy  flux  (A.2.13)  and  changing  the 

integration variable from l to x = K l, we get (in the limit for infinite Reynolds number):

ΠK=−∫
0

∞

dx sin (x )
x

F( x
K )=ε , ∀K≫K c , (A.2.24)

where

F (l)≡(1+l ∂l)(3+l ∂l)(5+l ∂l)
S 3( l)
6π l

. (A.2.25)

Observe that for large K the behaviour of integral (A.2.24) involves only the small l behaviour 
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of F(l), and that we have the identity ∫
0

∞

dx(sin (x )/ x)=π/2 . Thus we can write that for small l

F (l)≃− 2
π
ε . (A.2.26)

Substituting this into (A.2.25) leads to a linear third order differential equation for S3(l) . 

Solving this with the condition that  lim
l →0

S 3( l)=0 for  ν→0 leads to the sought four – fifths 

law:

S3(l)=−
4
5
ε l . (A.2.27)
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