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Abstract

In un mondo sempre più concentrato sulla necessità di fornire energia ad
una popolazione crescente, riducendo al contempo le emissioni di anidride
carbonica, i cicli Rankine organici rappresentano una possibile soluzione per
il raggiungimento di questo obiettivo. Questo studio riguarda, nella fat-
tispecie, il progetto e l’ottimizzazione di turbine assiali per i suddetti cicli
Rankine organici. Da un punto di vista progettuale, i fluidi organici esi-
biscono caratteristiche particolari, come un basso salto entalpico, una bassa
velocità del suono o grandi rapporti di espansione.
Un modello computazionale per la determinazione delle performance di tur-
bine assiali è stato sviluppato e validato utilizzando dati sperimentali. Il
modello permette di prevedere le performance dell’espansore con un range
di accuratezza di ±3%. Il processo di design è accoppiato con una pro-
cedura di ottimizzazione che prevede l’utilizzo di un algoritmo genetico.
L’efficienza total-to-static della turbina rappresenta la funzione obiettivo
dell’ottimizzazione.
La routine di calcolo è integrata in una più ampia analisi del ciclo ter-
modinamico, fornendo il punto di design ottimale della turbina. Per prima
cosa, il modello computazionale è utilizzato nel contesto della piattaforma
offshore di Draugen, dove tre sistemi di recupero calore sono confrontati.
Le prestazioni della turbina sono state analizzate per tre possibili cicli di
bottoming: ciclo Rankine organico (operante ciclopentano come fluido di
lavoro), ciclo Rankine a vapore, ciclo air bottoming. I risultati dello studio
indicano la turbina a gas come la soluzione più efficiente (ηts = 0.89), men-
tre la turbina a ciclopentano si dimostra essere la tecnologia più flessibile e
più compatta (2.45 ton/MW and 0.63 m3/MW). Inoltre, la tesi evidenzia
come per i cicli Rankine organico e a vapore, la configurazione di design
ottimale per la turbina non coincide con quella del ciclo termodinamico.
Questa conclusione suggerisce la possibilità di ottenere un’analisi più ac-
curata includendo il modello computazionale della turbina all’interno delle
simulazioni del ciclo termodinamico.
Di seguito, le prestazioni dell’espansore sono analizzate confrontando tre
diversi fluidi organici: ciclopentano, MDM e R245fa. I risultati dello stu-
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dio propongono l’MDM come il fluido più efficace da un punto di vista
dell’efficienza della turbina (ηtt = 0.89). D’altra parte, il cyclopentano
garantisce una maggiore potenza del ciclo organico (P = 5.35 MW), men-
tre l’R245fa rappresenta la soluzione più compatta (1.63 ton/MW and 0.20
m3/MW).
Infine, la tesi valuta come la composizione di una miscela binaria di isopen-
tano/isobutano influenza le prestazioni del ciclo termodinamico e l’efficienza
della turbina assiale. I risultati mostrano come l’uso di fluidi binari possa
portare ad un incremento delle performance in entrambi i casi.
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Abstract

In a world focused on the need to produce energy for a growing population,
while reducing atmospheric emissions of carbon dioxide, organic Rankine
cycles represent a solution to fulfil this goal. This study focuses on the
design and optimization of axial-flow turbines for organic Rankine cycles.
From the turbine designer point of view, most of this fluids exhibit some
peculiar characteristics, such as small enthalpy drop, low speed of sound,
large expansion ratio.
A computational model for the prediction of axial-flow turbine performance
is developed and validated against experimental data. The model allows
to calculate turbine performance within a range of accuracy of ±3%. The
design procedure is coupled with an optimization process, performed using a
genetic algorithm where the turbine total-to-static efficiency represents the
objective function.
The computational model is integrated in a wider analysis of thermodynamic
cycle units, by providing the turbine optimal design. First, the calculation
routine is applied in the context of the Draugen offshore platform, where
three heat recovery systems are compared. The turbine performance is in-
vestigated for three competing bottoming cycles: organic Rankine cycle (op-
erating cyclopentane), steam Rankine cycle and air bottoming cycle. Find-
ings indicate the air turbine as the most efficient solution (ηts = 0.89), while
the cyclopentane turbine results as the most flexible and compact technol-
ogy (2.45 ton/MW and 0.63 m3/MW). Furthermore, the study shows that,
for organic and steam Rankine cycles, the optimal design configurations for
the expanders do not coincide with those of the thermodynamic cycles. This
suggests the possibility to obtain a more accurate analysis by including the
computational model in the simulations of the thermodynamic cycles.
Afterwards, the performance analysis is carried out by comparing three or-
ganic fluids: cyclopentane, MDM and R245fa. Results suggest MDM as the
most effective fluid from the turbine performance viewpoint (ηtt = 0.89). On
the other hand, cyclopentane guarantees a greater net power output of the
organic Rankine cycle (P = 5.35 MW), while R245fa represents the most
compact solution (1.63 ton/MW and 0.20 m3/MW).
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Finally, the influence of the composition of an isopentane/isobutane mixture
on both the thermodynamic cycle performance and the expander isentropic
efficiency is investigated. Findings show how the mixture composition affects
the turbine efficiency and so the cycle performance. Moreover, the analysis
demonstrates that the use of binary mixtures leads to an enhancement of
the thermodynamic cycle performance.
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1
Introduction

The adoption of organic fluids instead of steam or gases as working fluid
in power cycles exhibits significant advantages in a variety of applications.
One of the most important is the possibility of designing low-stress, efficient
and low-priced turbines in power and temperature ranges for which steam
turbines would become unattractively costly and inefficient. The thermal
and transport analysis are the same used for gas and steam turbines. Nev-
ertheless, fluid properties play such an important role on the design process,
that the optimization of an organic fluid turbine is likely to yield solutions
that can appear quite unusual for a gas or steam turbine designer.

1.1 Aims

The core of the thesis consists in the development of a simulation model for
the design and optimization of axial-flow turbines. In particular, turbine
performance, blade geometry, thermodynamic states and weight require-
ments are predicted.
The first step in the design and optimization process of axial-flow turbines
is to define the function to be optimized; next a set of variables able to com-
pletely describe the geometry and the aerodynamics of the machine should
be selected. Additionally, a methodology for the evaluation of the losses
must be defined. This study uses the methodology suggested by Craig &
Cox (1971), which appears the most suitable in the case of organic fluids
(see Macchi (1977)).
Thermodynamic cycles are often simulated by assuming a constant isen-
tropic efficiency for the expander. Therefore, the scope of the thesis is to
provide a computational tool that can be included in more comprehensive
simulation models of thermodynamic cycles. This would allow to obtain
more accurate calculations of the cycles performance.
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First, the calculation routine is applied to the case of study of the Draugen
offshore platform, described in Chapter 3. In this context the thesis enters in
the analysis performed by Pierobon et al. (2013) aimed at defining the best
heat recovery system for the platform. In particular, the topping cycle is
constituted by the Siemens gas turbine SGT500, while three competing bot-
toming cycles are compared: organic Rankine cycle (ORC), steam Rankine
cycle (SRC) and air bottoming cycle (ABC). In the above mentioned study
the three thermodynamic cycles are modelled assuming a constant isentropic
efficiency for the turbine. For this reason, the thesis investigates the perfor-
mance of the ORC, SRC and ABC turbines at design conditions obtained
for the three cycles. Additionally, the turbine efficiency is studied for dif-
ferent mass flow rates and inlet pressures. Finally, the three expanders are
compared in terms of weight and volume requirements.

In a second moment, the study compares the turbine performance for three
organic working fluids: cyclopentane, MDM and R245fa. The goal of this
study is to understand how the working fluid affects turbine performance
and geometry. Indeed, a new criterion for the selection of the working fluid
for organic Rankine cycles might stem from the analysis of the expander
performance.

Finally, the thesis investigates the possible benefits, in terms of turbine and
cycle performance, arising when using binary mixtures as working fluids.

1.2 Methodology

The thesis started with a study of axial turbine theory, which can be found,
for example, in Negri di Montenegro et al. (2009) and Saravanamuttoo et al.
(2009). Then, it proceeded with the actual writing of the computational rou-
tine.
The overall procedure is summarized in figure 1.1. The computational rou-
tine can be seen as a box containing progressively smaller boxes. It began
with the definition of a set boundary conditions, imposed by the optimal de-
sign configuration of the thermodynamic cycle. These boundary conditions
represented the input data for the design and optimization process which
then rendered the optimal axial-flow turbines. Ten optimizing variables
were selected. They were mainly geometrical parameters, partially defining
the turbine geometry, but also included some dimensionless parameter, such
as the flow coefficient and the stage loading coefficient. When multi-stage
configurations were examined, the computational model defined each stage
separately, maintaining the maximum efficiency of the overall turbine as ob-
jective function of the optimization.
The computational model can be ideally divided in two branches:
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Chapter 1. Introduction

Figure 1.1: Schematic of the computational procedure

• Evaluation of the turbine performance, blade geometry, thermody-
namic states and velocity diagrams;

• Estimation of turbine weight and volume requirements.

The former section involved an iterative process based on the stage efficiency,
while the latter section proceeded with the weight calculation receiving the
turbine geometry as an input.
Initially, the design procedure was carried out with a one-dimensional (1-
D) approach, aimed at the definition of blade profile and the evaluation of
losses at mean radius. Then, assuming Free Vortex Theory, some elements
of two-dimensional (2-D) analysis were included. In this way, blade geome-
try, velocity triangles and losses were assessed at root, mean and tip radius,
as recommended by Craig & Cox (1971).

The computational model was validated against experimental data provided
by Stabe et al. (1984), Verneau (1987) and Kotzing & Evers (1985). The val-
idation process included performance, geometry and thermodynamic prop-
erties of the expanders. It should be pointed out that the section concerning
the weight calculation was not validated and provided for an approximated
value of heaviness and compactness of axial-flow turbines.

Paolo Gabrielli, s135427 - Technical University of Denmark 3
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1.3 Computational Tools
The computational code, named Mamba, was developed using the pro-
gramming language MATLAB, provided by MathWorks (2013). MATLAB,
acronym for Matrix Laboratory, is a numerical computing environment and
fourth generation programming language developed by MathWorks. The
thermodynamic properties were calculated using the database provided by
the open-source CoolProp (Bell et al. (2014)), developed at the University
of Liege, and by the commercial software Refprop, developed by Lemmon
et al. (2007) at NIST. Also, plots were built using the commercial package
Excel 2010.
The code involved an iterative method based on the stage efficiency. The
convergence was considered to be reached when the discrepancy between
two following iterations equalled a value lower than 0.0001. For all the in-
vestigated designs the convergence was reached within 50 iteration, with an
average running time lower than 10 second per stage. On the contrary, the
running time for the optimization strongly depended on the nature of the
examined fluids and ranged from less than 15 minutes for air to more than
2 days for a mixture of isobutane and isopentane.
The computational code allow to determine the turbine performance with
an accuracy of ±3%.

1.4 Structure of the Thesis
The structure of the report can be summarized as follows:

• Chapter 2 provides the background for the present study.

• Chapter 3 concerns the description of the Draugen offshore platform,
representing the case of study.

• Chapter 4, 5, 6 and 7 presents the methodology section of the the-
sis: chapter 4 describes the routine for the axial-flow turbine design;
chapter 5 reports the validation of the computational model; chap-
ter 6 presents the optimization methodology; chapter 7 describes the
methodology followed for the weight estimation.

• Chapter 8 lists the investigated applications of the computational
model.

• Chapter 9 presents and discusses the results of the thesis.

• Chapter 10 draws the main conclusions.

• Chapter 11 provides for some suggestions for further studies.
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2
Background

2.1 Organic Rankine Cycles

2.1.1 Introduction

The world energy consumption has risen to a level never reached before,
releasing in the same process large quantity of CO2 into the atmosphere.
Current concerns over climate change call for measures to reduce greenhouse
gases emissions, which can be summarized in the following modifications
(Quoilin et al. (2013)):

• A decrease in the energy intensity of buildings and industry;

• A shift from fossil fuels towards electricity in the fields of transporta-
tion and space heating;

• Clean power generation by a massive shift towards renewable energies;

• A reinforcement of the grid capacity and inter-regional transmission
lines to absorb daily and seasonal fluctuations.

Among the proposed solutions, the organic Rankine cycles could play a non-
negligible role. In particular:

• They can have a beneficial effect on the energy intensity of industrial
processes, mainly by recovering waste heat. This approach is known
as combined heat and power generation (CHP);

• They can be used to convert renewable heat sources into electricity.
This mainly includes geothermal, biomass and solar sources (CSP)
(Quoilin et al. (2013)).
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Furthermore, in a rather new framework of decentralized conversion of low
temperature heat into electricity, the ORC technology offers an interest-
ing alternative, also due to its modular feature: a similar ORC system can
be used with little modifications, in conjunction with various heat sources.
These aspects make the ORC more suitable than steam power to the con-
version of renewable energy sources, whose availability is generally more
localized than that of fossil fuels, and whose temperature is lower than that
of traditional fuels (see Quoilin et al. (2013)).

2.1.2 ORC Technology

Conceptually, the organic Rankine cycle is similar to a steam Rankine cycle
and it involves the same components as a conventional steam power plant.
The working principles is still based on the evaporation of a high pressure

Figure 2.1: Schematic view of an ORC with (right) and without
(left) recuperator, (Quoilin et al. (2013)).

liquid, which is in turn expanded to a lower pressure releasing mechanical
work. After the expansion the working fluid is condensed and pumped to
the high pressure, where the cycle restarts. Therefore, the basic components
are the boiler, a work-producing expansion device, a condenser and a pump.
However, the working fluid is an organic compound characterized by a lower
ebullition temperature than water and allowing power generation from low
heat source temperatures.
The layout of organic Rankine cycle is somewhat simpler than that of the
steam Rankine cycle: there is no water-steam drum connected to the boiler,
and one single heat exchanger can be used to perform the three evaporation
phases: preheating, vaporization and super-heating. The variations of the
cycle architecture are also more limited: reheating and turbine bleeding are
generally not suitable for the ORC cycle, but a recuperator can be installed

6
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as liquid preheater between the pump outlet and the expander outlet, as
shown in figure 2.1. The simple architecture presented in the figure can be
adapted and optimized depending on the target application.
The main applications of organic Rankine cycles range from solar power
plants to biomass, geothermal energy and waste heat recovery. A very in-
teresting overview on this topic is presented by (Quoilin et al. (2013)).

2.1.3 Expansion Machines for Organic Rankine Cycles

The performance of an ORC system strongly relates with that of the ex-
pander. The selection of the technology depends on the operating condi-
tions and on the size of the system. Two main types of machines can be

Figure 2.2: Optimum operating map for three expanders technology
and three target applications, (Quoilin et al. (2013)).

distinguished: the turbo and positive displacement types. Displacement
type machines are more appropriate in small-scale ORC units, as showed
by figure 2.2, as they are characterized by lower flow rates, higher pressure
ratios and much lower rotational speeds than turbo-machines. Since the
present thesis is aimed at designing and optimizing a turbo-expander for
organic Rankine cycles, it will focus only on turbo-machineries. In this cat-
egory, a distinction is generally made between two main types of turbines:
axial- and radial- flow turbines. This study will be concerned only with the
former type.
Axial turbines show a distinct design when used in combination with high
molecular weight working fluids. The main difference between organic fluids
and steam is the enthalpy drop during the expansion, which is much higher
for steam. As already mentioned, fewer stages are required in the case of an
organic fluid. Even single-stage turbines can be employed for low or medium
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temperature ORC cycles. Another characteristic of organic fluids is the low
speed of sound. As a result, this speed is reached much sooner in an ORC
than in a steam cycle and constitutes an important limitation as high Mach
numbers are related to higher irreversibility and lower turbine efficiencies.
Radial inflow turbines are designed for high pressure ratios and low working
fluid flow rates. Their geometry allows higher peripheral speeds than for ax-
ial turbines, and therefore a higher enthalpy drop per stage. They also have
the advantage of maintaining an acceptable efficiency over a large range of
part-load conditions (see Quoilin et al. (2013)).

2.2 The Axial-Flow Turbine Stage

Figure 2.3: Steam axial-flow turbine, (Siemens (2013c)).

Turbo-machineries are apparatus made up by several stator, or nozzle, blade
passages, each of them in series with a rotating vane (rotor) coupled with a
shaft, in order to exchange mechanical power with the external environment.
Turbines, for which the rotation of the shaft is provoked by the movement of
the rotor blades, and thus power is produced, are called driving machines.
On the other hand, compressors, for which the shaft causes the rotation of
the rotor blades, absorb power and are called operating machines. Focusing
on turbines, the main function of the stator passages is to accelerate the
fluid in order to produce work, actually extracted in the rotor vanes, due to
the rotation of the shaft. Figure 2.3 displays an example of steam axial-flow
turbine, i.e. with the fluid moving mainly in the direction of the axis of the
turbo-machine. The figure shows on the external circumference a series of
blades, a cascade, alternately mounted on a steady drum (nozzle) and on a
moving drum (rotor) which is rotating with angular velocity ω. The word
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Chapter 2. Background

"vane" indicates the physical space between two blades; it represents the
duct in which the fluid evolves. A schematic representation of stator and
rotor cascades is showed in figure 2.4.
The study of the stage of axial-flow turbines must start from the analysis of

Figure 2.4: Schematic representation of stator and rotor cascades,
(Carleton University (2013)).

those physical phenomena experienced by the fluid when crossing the vane
between two blades. At this purpose, some elements of gas dynamics for
axial-flow turbines are given in appendix A.

One of the key concepts in the investigation of axial flow turbines is rep-
resented by the efficiency of the stage (η). Two definitions can be used,
depending on which type of enthalpy drop is accounted for. In particular,
the total-to-total and total-to-static efficiency are given by the two equations
below, respectively,

ηtt = h01 − h03
h01 − h03,is

(2.1)

ηts = h01 − h03
h01 − h3,is

(2.2)

Where h indicates the enthalpy of the fluid; the subscript "0" refers to to-
tal conditions (Appendix A); the suffixes "1" and "3" indicate the different
stations of the stage: inlet nozzle and outlet rotor, respectively. The total-to-
total efficiency considers the total enthalpy drop, accounting for the kinetic
energy of the fluid at the outlet of the rotor. On the contrary, the total-
to-static efficiency involves the available enthalpy drop, without considering
the exiting kinetic energy. For the central stages of multi-stage turbines, the
total-to-total version appears more suitable, since the kinetic energy exiting
from one stage is exploited, at least in part, in the downstream stage. On
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the contrary, for single-stage turbines, as well as for the last stage of multi-
stages turbines, the total-to-static version seems the best alternative since
no kinetic energy is recovered in a following stage.
Other quantities involved in the analysis of a turbine stage are the specific
work extracted at the shaft, also called Euler work, and the degree of re-
action. It can be demonstrated (Appendix B) that the Euler work (Ws) is
expressed as

Ws = U(C2cosα2 + C3cosα3) = U(Ca2tanα2 + Ca3tanα3) (2.3)

Where U indicates the blade (peripheral) velocity, C is the absolute fluid
velocity and α symbolizes the angle formed by the absolute fluid velocity
and the axial direction; the subscript "a" refers to the axial direction, while
"2" indicates the station at the outlet of the nozzle. Similarly, it can be
proved (Appendix B) that the degree of reaction (Λ) is given by equations

Λ = W 2
3 −W 2

2
C2

2 − C2
1 +W 2

3 −W 2
2

(2.4)

Where W indicates the relative fluid velocity. The degree of reaction can
also be expressed in terms of fluid enthalpy:

Λ = h2 − h3
h1 − h3

(2.5)

A turbine characterized by a degree of reaction equal to zero is called impulse
turbine, while a reaction turbine has a degree of 0.5. Actually, the definition
of the degree of reaction does not include any kind of loss. Therefore, the
actual degree of reaction for an impulse turbine would be lower than zero.
More insights on stage efficiency, Euler work and degree of reaction, to-
gether with a description of the losses occurring within stator and rotor, are
provided by Appendix B.

2.3 Losses Classification
To handle the many different flow phenomena the overall loss in a row is
divided into a number of different regions. These regions are then correlated
separately and finally summed up to a total loss for the rotor, stator and total
stage. In the following a brief description of the major types of loss included
in this report is presented. It should be noted that many classifications have
been proposed and that given here is only one of the possibles. Figure 2.5
reports the main aerodynamic features in a turbine cascade, helping in the
comprehension of the losses classification. Additionally, figure 2.6 reports
the main terminology of the blade. In this figure the angles are measured
from the axial direction. A more detailed description of the different losses
occurring within a turbo-machinery is provided by Appendix C.
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Chapter 2. Background

Figure 2.5: Aerodynamic features in a turbine cascade (Dahlquist
(2008)).

2.3.1 Profile Loss

This is the loss that occurs on the blade surface due to increasing boundary
layer, surface friction and flow blockage as the passage area is decreased be-
cause of an increase of the surface boundary layer thickness. It also includes
the separation of boundary layer along the blade surface, and in some cases
the trailing edge separation and downstream mixing.

2.3.2 Secondary Loss

This is the loss caused by the viscous and turbulent mixing and dissipation of
energy when secondary flows and vortices are mixed together with the main
flow and wall boundary layer. In the present work, the overall secondary
loss is divided into two contributions: the fraction occurring inside the blade
row, secondary loss, and that occurring in the space between the blade rows
along the annular wall, annulus loss.

2.3.3 Tip Clearance Loss

The tip clearance loss is related with a leakage mass flow rate which is
separate from the main flow. A distinction has to be made between shrouded
and un-shrouded blades. In the first case, the leakage mass flow rate does
not pass through the blades, therefore not performing any useful work. For
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Figure 2.6: Blade terminology (Dahlquist (2008)).

un-shrouded blades the leakage occurs from the pressure to suction surface
of the blade (see 2.6).

2.3.4 Trailing Edge Loss

According to Ainley & Mathieson (1955) the finite thickness of the trailing
edge of the blade causes the flow to separate at both the pressure and suction
surface close to the trailing edge and create a recirculation zone as can be
seen in figure 2.5. In this wake the pressure is lower compared to the free
stream pressure. Moreover, a high velocity gradient is seen between the free
stream and the turbulent wake. The dissipation of energy is high as the
wake is mixing out downstream.

12



3
The Case of Study: Draugen

Offshore Platform

Figure 3.1: The Draugen platform (Offshore and Technology (2012)).

The Draugen oil field is located in the Haltenbanken of the North Sea and
belongs to Norwegian continental shelf. The area (block 6407/9) is situated
approximately 150 km north of Kristiansund in Norway and 200 Km south
of the Arctic Circle, in water depths of 240 to 280 m (figure 3.2). The oil
field was discovered in 1984 and named after Draugen, a fearsome sea figure
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of Norse fairy tales. The production license PL093 was acquired by Royal
Dutch Shell in the eighth licensing round in 1984. Government approval for
field development was given in December of that year (see Statoil (2012)).
The platform was installed in 1993, while the sub-sea structures designed

Figure 3.2: Draugen field location in the North Sea (Statoil (2012)).

for operation and maintenance were installed during the following months.
Draugen was the first field to be developed in the Norwegian Sea, an area
which later became one of the most important petroleum provinces in Nor-
way. Norske Shell is the operator, holding a 26.20% interest. The remaining
stake is held by Petoro (47.88%), BP Norge (18.36%) and Chevron (7.56%)
(see Kable (2013)). The platform is a mono-pile gravity based structure
(GBS) thrusted five meters into the sea bed at a water depth of 251 m,
being the first of its kind at that time (see Offshore and Technology (2012)
and Dong Energy (2012)). The field went into production in 1993 having
Norske Shell A/S as operator. The reservoir is made of sand stone which
is situated 1650 m below the sea bed and is estimated to contain volumes
of 1300 mmbbls (million barrels) stock tank oil initially in place (STOIIP)
and 420 bcf (billion cubic feet) gas initially in place (GIIP) (see Dong En-
ergy (2012)). The structure has seven large concrete oil tanks (1.4 mmbbls
capacity) situated on the seabed, which keep the platform in place. The oil
tanks are connected to an off-loading buoy which exports the oil to a shuttle
tanker once or twice per week (see Kandepu (2011)). The gas is exported
through a small pipeline to the larger ATS-pipeline and then onwards to
Karsto treatment plant. The concrete jacket of the GBS weights approxi-
mately 18500 tons and can accommodate 140 people at a time, 43 of which
are regular crew (Andersen & Uhrbrand (2013)).
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3.1 Electricity Generation

The platform requires electrical and mechanical energy to extract, process
and transport oil and gas. The electricity is mainly used for gas compres-
sion, sea water lifts, pumping of oil/condensate and oil exportation. The
platform operates in island (stand-alone grid) and has no onshore supply.
Therefore, the required energy is provided by three 17 MW design load
SGT500 turbines, manufactured by Siemens. The normal total electric load
is estimated of 19 MW (gas compressors for the gas proceeding equipment
and other pumps), while peak load of 24 MW occurs during the off-loading
of oil to shuttle-tankers, during seawater lifting and during water injections.
The turbines are fuelled by self-produced natural gas while diesel is kept for
back-up. Only two out of three gas turbines are operating at a time, sharing
50% of the load each, while the third one is shut down for maintenance. This
configuration guarantees that the required load can be supplied at any times
and that the engine operates safety. Voltage and frequency are constantly
controlled to be maintained at a value of 60 Hz and 11 kV respectively. A
waste heat recovery unit is connected to each gas turbine generating heat for
the condensate re-boiler and the crude oil heater (see Andersen & Uhrbrand
(2013)).
The Siemens SGT500, showed in figure 3.3, is an aero-derivative twin-spool
gas turbine and the engine model is the C-version launched in the beginning
of 1980. The low firing temperature and the large capacious combustor en-

Figure 3.3: SGT500 Siemens industrial gas turbine (Siemens
(2013b))

able the use of a wide range of fuels (gas fuels, liquid fuels and heavy fuels).
In particular the low firing temperature contributes to excellent maintenance
requirements: one overhaul every 9 years of operation on full load, one over-
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haul every 18 years of operation at a 94% load. The compact layout and the
easy on-site maintenance make this turbine adapt for offshore applications.
Furthermore, in combined cycle the SGT500 has high efficiency indepen-
dently from the kind of fuels. The compressor is a two multi-stages axial
flow compressor with a pressure ratio of 13. It consists of 10 high pressure
compression stages and 8 low pressure stages. There are seven anular com-
bustion chambers with conventional combustion systems; the fuel-supply
pressure required is 18±0.5 bar. The turbine is a 3-stage turbine (1 high
pressure stage and two low pressure stages), with a speed of 3600 rpm. The
generator is designed as a 4-pole generator with a voltage of 11 kV and a
frequency of 60 Hz. The design power generation is 16.5 MWe and the elec-
trical efficiency is 31.3%. At design the exhaust gas flow is 91.5 Kg/s and
the exhaust temperature is 379.2 ◦C. The temperature at the turbine inlet is
850 ◦C. Table 3.1 summarizes the design specification for the SGT500. This

Table 3.1: Design point specification for the Siemens SGT500
(Siemens (2013b)).

Low pressure turbine stages 1
High pressure turbine stages 2
Low pressure compressor stages 10
High pressure compressor stages 8
TIT [◦C] 850
Exhaust Gas Temperature [◦C] 379.2
Exhaust gas mass flow [◦C] 91.5
Net power output [MW] 16.5
Heat rate [kJ/kWh] 11312

gas turbine represents the topping cycle for the applications investigated in
the present work.
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4
Design of Axial-Flow

Turbines

4.1 Elements of Preliminary Design of Turboma-
chinery

Figure 4.1: Velocity triangles for stator and rotor

A primary tool in the investigation of axial-flow turbines is given by the
velocity triangles for stator and rotor, showed in figure 4.1. C and W sym-
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bolize the absolute and relative fluid velocity, respectively; the subscripts
"1", "2" and "3" indicates the stations of the stage: inlet nozzle, inlet rotor
and outlet rotor, respectively; α and β are the angles formed by the absolute
and relative velocity with the axial direction, respectively.
The gas enters the row of nozzle blades with a static pressure and temper-
ature p1, T1 and a velocity C1; it is expanded to p2,T2 and leaves with an
increased velocity C2 at an angle α2 formed by the absolute velocity vector
and the axial direction. The rotor blade inlet angle is chosen to suit the
direction β2 of the gas velocity W2 relative to the blade at the inlet. β2
and W2 are found by vectorial subtraction of the blade speed U from the
absolute velocity C2. After being deflected and usually further expanded in
the rotor blade passages, the gas leaves at p3, T3 with relative velocity W3
at angle β3. Vectorial addition of U yields magnitude and direction of the
gas velocity at exit from the stage, C3 and α3; α3 is known as swirl angle.
The present thesis assumed constant axial velocity through the stage. How-
ever, such hypotheses might imply a flared annulus as reported in figure
4.2 to accommodate the decrease in density as the gas expands through
the stage. Usually, for a single-stage turbine C1 is axial, i.e. α1 = 0 and

Figure 4.2: Flared annulus (Siemens (2013a)).

C1 = Ca1. If on the other hand the stage is typical of many in a multi-stage
turbine, C1 and α1 will probably be equal to C3 and α3 of the upstream
stage, so that the same blade shapes can be used in successive stages: it
is called a repeating stage configuration. In figure 4.1 the subscript "m"
indicates that the blade speed U is considered at mean radius. However,
because it increases with increasing radius, the shape of the velocity trian-
gles varies from root to tip of the blade. In the present thesis a mean-line
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one-dimensional (1-D) approach was initially followed, inserting some el-
ements of two-dimensional (2-D) analysis in the calculation of the blade
geometry and losses evaluation. Referring to figure 4.1, (Cw,2 + Cw,3) rep-
resents the change in whirl (tangential) component of momentum per unit
mass flow which produces the useful torque. The change in axial component,
(Ca,2 − Ca,3), produces an axial thrust on the rotor which may supplement
or offset the pressure thrust arising from the pressure drop (p2 − p3). With
the restriction of constant axial velocity, when the velocity triangles are su-
perimposed, the velocity diagram for the stage is given in figure 4.3. The

Figure 4.3: Velocity diagram with constant axial velocity, obtained
using the computational code Mamba.

geometry of the diagram, along with Ca,2 = Ca,3 = Ca gives immediately
the relations

Um
Ca

= tanα2 − tanβ2 = tanβ3 − tanα3 (4.1)

There are three dimensionless parameters found to be useful in turbine de-
sign. One, expressing the work capacity of the stage, is called the blade
loading coefficient or temperature drop coefficient, ψ. This study adopted
the NGTE practice (Saravanamuttoo et al. (2009)) and defined it as

ψ = 2Cp∆T0
U2
m

(4.2)

Where the stagnation temperature drop in the stage (∆T0) is given for a
perfect gas by

∆T0 = ηST01

[
1−

(
p03
p01

) k−1
k

]
(4.3)
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Where ηS is the isentropic stage efficiency. This study usually refers to the
total-to-static efficiency since it is mainly focused on the analysis of single-
stage turbines.
Another very useful parameter is the degree of reaction defined in chapter
2. With the assumption of constant axial velocity and C1 = C3, an approxi-
mated expression for Λ can be derived as suggested in Saravanamuttoo et al.
(2009). In this case, the degree of reaction can be expressed as

Λ = Ca
2Um

(tanβ3 − tanβ2) (4.4)

The third dimensionless parameter often referred to in axial-flow turbine
design appears in both equations 4.2 and 4.4: it is the ratio Ca/Um, called
the flow coefficient, φ. With the constant velocity assumption this coefficient
is equal for stator and rotor. Using this definition, equations 4.2 and 4.4 can
be written, respectively,

ψ = 2φ(tanβ2 + tanβ3) (4.5)

Λ = φ

2 (tanβ3 − tanβ2) (4.6)

At this point the gas angles can be expressed in terms of ψ, Λ and φ as
follows. Adding and subtracting equations 4.5 and 4.6 in turn, gives

tanβ3 = 1
2φ(1

2ψ + 2Λ) (4.7)

tanβ2 = 1
2φ(1

2ψ − 2Λ) (4.8)

Then using equation 4.1

tanα3 = tanβ3 −
1
φ

(4.9)

tanα2 = tanβ2 + 1
φ

(4.10)

Even with the restrictions already introduced, there is still an infinite choice
facing the designer. For example, although the overall turbine temperature
drop is fixed by cycle requirements, it is open to the designer to choose one
or two stages of large ψ or a large number of smaller ψ. It is possible to ob-
serve that in the context of organic Rankine cycles there is case for adopting
turbine with a low degree of reaction and with a low number of stages.
A very useful preliminary design tool, commonly referred to as Smith Chart
(Smith (1965)), resulted from a large amount of turbine testing carried out
at Rolls-Royce. This chart, reported in figure 4.4, shows contours of con-
stant isentropic efficiency as a function of stage loading coefficient and flow
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Figure 4.4: Smith chart (Smith (1965)).

coefficient. It should be noted that the efficiency quoted are for zero tip
clearance and would be slightly lower in actual engines. Turbine stages for
different engines have been designed over a wide range of locations on Smith
chart.

Finally, it should be observed that the shape of the velocity triangles must
vary from root to tip of the blade because the blade speed U increases with
radius. Twisted blading designed to take account of the changing gas an-
gles is called Vortex blading. Actually, it has been common turbine practice
to design on conditions at the mean diameter. Indeed, the results of com-
parative tests between constant angle and vortex blading showed that any
improvement in efficiency obtained with vortex blading was within the mar-
gin of experimental error (Johnston & Knight (1953)). Nevertheless Craig
& Cox (1971) suggested to determine the losses at more than one radius, at
least root, mean and tip, and to evaluate the overall loss through a weighted
average. For this reason, some elements of 2-D analysis must be introduced.
In particular, the thesis implemented the Free Vortex Theory analysis as
described in Saravanamuttoo et al. (2009). It assumed:

1. The total enthalpy h0 is constant over the annulus, i.e. dh0/dr = 0;

2. The axial velocity is constant over the annulus;

3. The whirl velocity is inversely proportional to the radius;
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A stage designed in accordance with the hypotheses above is called a Free
Vortex Stage. Under these assumptions, it is possible to demonstrate (Sar-
avanamuttoo et al. (2009)) that α2 at any radius is related to α2m at the
mean radius by

tanα2 =
(
rm
r

)
2
tanα2m (4.11)

Similarly, the swirl angle at any radius can be calculated as

tanα3 =
(
rm
r

)
3
tanα3m (4.12)

The gas angles at the inlet to the rotor blade, β2, can then be found using
equation 4.10, namely

tanβ2 = tanα2 −
U

Ca2
(4.13)

=
(
rm
r

)
2
tanα2m −

(
r

rm

)
2

Um
Ca2

(4.14)

Likewise, β3 is given by

tanβ3 =
(
rm
r

)
3
tanα3m +

(
r

rm

)
3

Um
Ca3

(4.15)

4.2 Methodology

The study started from a one-dimensional, mean-line design of axial-flow
turbines. The inputs for the design process included a set of boundary con-
ditions imposed by the thermodynamic cycles, ten optimizing variables, and
other quantities which were considered as fixed values in this study. The
optimal set of optimizing variables was provided by an optimization process
including the design routine.
Initially, a preliminary calculation of velocity triangles, thermodynamic prop-
erties and blade geometry was based on a guessed stage efficiency. After-
wards, fixed the blade angles, velocity triangles and thermodynamic prop-
erties were updated. Finally, the evaluation of the losses was carried out
and the stage efficiency calculated. At this point, an iterative cycle based
on the stage efficiency started. Diagram 4.11, at the end of the chapter,
summarizes the overall computational procedure.
The number of stages was chosen to be a fixed input rather than an opti-
mizing parameter based on the total enthalpy drop. The analysis assumed
a repeating stage configuration. For the first stage α1 did not coincide with
α3, even though Ca3 was considered equal to Ca1.
The design routine was carried out in the computational environment pro-
vided by MathWorks (2013), first for an ideal gas and then for a real fluid. In
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the former case the thermodynamic properties were calculated using equa-
tions valid for ideal gases and isentropic processes. On the contrary, for
a real fluid the thermodynamic properties were computed exploiting the
database furnished by Lemmon et al. (2007) and Bell et al. (2014).
Finally, it should be pointed out that in this study the suffix N is used to
denote quantities associated with the nozzle row, but the term stator is often
used in the text. However, the suffix S will be used to denote the stage. Also,
as in the early days of gas turbines the blade angles were measured from
the tangential direction following steam turbine practice, it is now usual to
measure angles from the axial direction.

4.2.1 Preliminary Calculations

Figure 4.5 schematically shows the procedure followed for the preliminary
determination of velocity triangles, thermodynamic properties and blade
geometry. Basically, each block in the figure represents an internal function

Figure 4.5: Preliminary determination of velocity triangles, thermo-
dynamics states and blade geometry

of the design routine.

Input Data

As mentioned above, the input data included the boundary conditions im-
posed by the thermodynamic cycle, ten optimizing variables and other pa-
rameters which were considered to be fixed in this study. The ten optimiz-
ing variables were selected based on considerations found in literature (see
Macchi (1977)), with the goal to obtain an easy computational routine. The
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fixed parameters were basically indexes related to the possibility to inves-
tigate shrouded or un-shrouded blades, total or partial admission, or other
similar design choices. Table 4.1 presents the list of the major input data for
the design routine. The complete list of input data for the design procedure
is reported in Appendix D. It should be pointed out that although the hy-

Table 4.1: Input data for the design routine.

Input Data Symbol
Optimizing Variables
Fluid inlet angle α1
Nozzle flow coefficient φN
Stage loading coefficient ψ
Nozzle throat [m] omin
Rotor opening [m] oR
Nozzle axial chord [m] cN
Rotor axial chord [m] cR
Nozzle opening-to-pitch ratio oN/sN
Rotor opening-to-pitch ratio oR/sR
Inlet rotor-to-outlet nozzle height ratio h2′/h2
Cycle Requirements
Mass flow rate [kg/s]
Inlet total temperature [K] T01
Inlet total pressure [bar] p01
Pressure ratio pr
Fluid -
Rotational speed [rpm] N
Fixed Inputs
Mach number for conv. - div. nozzle Mcd

Number of stages nst
Reynolds number Re

pothesis of constant axial velocity was made in the design procedure, it was
removed during the validation process. In the first case, the flow coefficient
was constant across the stage, φN = φR = φ; on the contrary φN 6= φR in
the validation process (the two values where given as inputs based on the
available data).

Inlet Total Conditions and Stage Conditions

Once the input data were defined, the total conditions at the inlet of the
nozzle and the stage conditions were calculated.
In particular, the total specific enthalpy, h01, and the total specific entropy,
s01, were calculated from T01 and p01. Next, known the number of stages,
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nst, the pressure drop for the single stage was determined by

pr0,S = nst
√
pr0 = nst

√
p03
p01

(4.16)

Where the subscript "0" indicates the total condition, and "S" stands for
stage. Equation 4.16 permitted to determine the total enthalpy drop for the
stage, i.e. the stage specific work. Both for the ideal gas and real fluid cases,
a first guess on the stage efficiency was necessary:

Ws = f (fluid, T01, pr0, ηS) (4.17)

Afterwards, an approximated calculation of fluid angle and degree of reaction
at mean radius was carried out. In this context, the swirl angle was assumed
equal to zero, α3 = 0, while the blade velocity at mean radius was found by

Um =
√

2∆h0
ψ2 (4.18)

Using equations 4.5 - 4.10 a simplified expression for the degree of reaction
was obtained,

Λ = φtanβ3 −
1
4ψ (4.19)

It should be observed that when 2-D effects are accounted for, the reaction
increases from root to tip of the blades. Although negative values would
be possible (see Appendix B), they must certainly be avoided because this
would imply expansion in the nozzle followed by re-compression in the rotor
and thus larger losses. A check on the degree of reaction at the root was
included in order to have positive values along the whole blade. Large swirl
angles would help in having a positive reaction at every radius. On the other
hands, the higher the swirl angles, the larger the deviation of the fluid and so
the losses. For this reason, a trade-off between opposite needs is necessary.
Finally, a first calculation of the fluid angles at mean radius was performed
using equations 4.8 and 4.7.

Velocity Triangles

Starting from the fluid angles, the velocity triangles were drawn through the
methodology described in the following.
Using the specific work obtained by equation 4.17, the axial velocity at the
exit of the nozzle can be determined using equation 2.3:

Ca,2 = Ws

Um(tanα2 − tanα3) (4.20)
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Then, due to the assumptions of constant axial velocity and repeating stage,
the axial velocity at the outlet of the rotor and at the inlet of the nozzle are
expressed, respectively, as

Ca,3 = Ca,2 = Ca (4.21)

Ca,1 = Ca,3 = Ca (4.22)

At this point, the absolute velocity was computed as

C = Ca
cosα

(4.23)

While the relative velocity was found by

W = Ca
cosβ

(4.24)

Finally, the flow coefficients were updated as

φ = Ca
Um

(4.25)

Where the subscript "m" recalls that the flow coefficients were evaluated at
the mean radius.
From the velocity triangles the Mach numbers were derived. Recalling its
definition (see Appendix A) the Mach number for each station was obtained.
In particular, the absolute Mach number at the exit of the nozzle and the
relative Mach number at the exit of the rotor are reported,

M2 = C2
Cs,2

(4.26)

M3,rel = W3
Cs,3

(4.27)

Where Cs is the fluid speed of sound. Finally, the degree of reaction was
re-evaluated through equation 2.4.

Degree of Divergence

The nozzle of axial-flow turbines can assume a convergent-divergent shape
when the Mach number exceeds a certain value. The nozzle degree of di-
vergence was evaluated using the empirical relationship suggested by Deich
et al. (1965). In particular, they proposed a value of M = 1.4 to switch from
a simply converging nozzle, to a converging-diverging configuration. Thus,

IF M<1.4 oN
omin

omin = 1
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IF M>1.4 oN
omin

= 1 + (0.5M2 − 0.4)( 1
qM2
− 1)

Where omin indicates the throat (minimum) opening and oN the nozzle
opening. qM is the area ratio between the considered Mach number and the
sonic throat, for an isentropic flow, given in section 2 by

qM2 = M2

[( 2
k+1)(1 + k−1

2 )M2
2 ]

k+1
2(k−1)

(4.28)

Equation 4.28 is valid for perfect gases only. Nevertheless, the present work
assumed it to hold also for real fluids, using an updated specific heat ratio
k based on the thermodynamic conditions.
Rotor blades, even for supersonic relative velocities, were assumed to be
converging with a rectilinear profile.
Further considerations on Deich Formula, along with the corresponding sec-
tion of the computational routine are reported in Appendix E.1.

Thermodynamics Properties

The next step was to calculate the thermodynamic properties for each sta-
tion of the axial-flow turbine. The calculation of the thermodynamic prop-
erties started from the knowledge of the total conditions at the inlet of the
nozzle: h01, s01, T01 and p01.

• Station 1. First, the static enthalpy and entropy were calculated
recalling their definition (Appendix A):

h1 = h01 −
C2

1
2 (4.29)

s1 = s01 (4.30)
This completely determined the static thermodynamic state at the
inlet of the nozzle.
For the real fluid model, the static pressure was determined using the
database provided by Lemmon et al. (2007) or Bell et al. (2014):

p1 = F (h1, s1, f luid) (4.31)

Where F indicated the generic thermodynamic function implemented
by the two database.
The other static properties, as well as the speed of sound, were then
computed by

[T1, ρ1, Cs,1] = F (p1, s1, f luid) (4.32)
The use of the couple (p, s) to define the thermodynamic state, stems
from computational considerations1. On the other hand, for the ideal

1The thermodynamic database were found to be more reliable for this combination of
thermodynamic properties.

Paolo Gabrielli, s135427 - Technical University of Denmark 27



Design and Optimization of Turbo-Expanders for Organic Rankine Cycles

gas model the static pressure was obtained through the isentropic
equation

p1 = p01

(
T1
T01

) k
k−1

(4.33)

While the density was obtained from the ideal gas law, and the speed
of sound by its basic definition (see Appendix A).

• Station 2. Recalling that h02 = h01, since no work is extracted in
the nozzle, the calculation proceeded finding h2 and s2,is = s1. The
thermodynamic states refer to figure 4.6. Then, h2,is was obtained

Figure 4.6: h-s diagram representing the expansion occurring in a
turbine stage (Wikipedia (2011)).

using a guess value of the nozzle efficiency. It was expressed as

h2,is = h1 −
h1 + h2
ηN,g

(4.34)

Where the suffix "g" indicates a guess value. Like the stage efficiency,
also the nozzle efficiency was updated after the losses evaluation. At
this point, the isentropic thermodynamic state at the exit of the nozzle
was defined. The real fluid model proceeded with the calculation of
the static pressure and entropy, respectively given by

p2 = f (h2,is, s1, f luid) (4.35)

28



Chapter 4. Design of Axial-Flow Turbines

s2 = f (h2, p2, f luid) (4.36)

The remaining static properties were calculated as described by equa-
tion 4.32. On the other hand, the ideal gas model repeated the proce-
dure described for station 1.

• Station 3. The stage outlet pressure was known from

p03 = p01 pr (4.37)

Where pr indicates the pressure ratio. Then, the real fluid model
determined h03,is as

h03,is = F (p03, s1, f luid) (4.38)

h3,is was obtained from equation 4.29; in this way the isentropic ther-
modynamic state at the outlet of the rotor was defined. Thus, the
pressure was computed as

p3 = F (h3,is, s1, f luid) (4.39)

Similarly, h3,isis was obtained from (p3, s2). Then, h3 was determined
guessing the rotor efficiency,

h3 = h2 − ηR,g(h2 − h3isis) (4.40)

As that of the stator, the rotor efficiency was updated within the
iterative process. At this point, the thermodynamic state at the outlet
of the rotor was defined. Finally, the calculation of both the static and
the total quantities were completed as described by equation 4.32.
On the other hand, the ideal gas model repeated the steps delineated
for station 1, finding T3 through a guess value of the rotor efficiency.

Blade Geometry

The last step of the preliminary calculation was an approximated determi-
nation of the blade geometry for each station of the turbine. The annulus
area was found from the continuity equation as a function of mass flow rate
(ṁ), density (ρ) and axial velocity (Ca),

A = ṁ

ρCa
(4.41)

The annulus area is also given by

A = 2πrmh = Umh

N
(4.42)
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Where h indicates the blade height and N the rotational speed. Therefore,
the height and radius ratio of the annulus can be found, respectively, from

h = AN

Um
(4.43)

rt
rr

= rm + (h/2)
rm − (h/2) (4.44)

Where the subscripts "t" and "r" indicate the tip and root radii, respectively.
Since the discussion of the effects of high and low annulus ratio are not of
primary importance in the present study, further discussion on this topic is
remanded to Appendix E.2.
Next, the flare angle2 was calculated for stator and rotor. It was determined
using the blade height and the blade axial chord (c), given as an input data,

δ = tan−1
(
hout − hin

2c

)
(4.45)

Where the subscripts "in" and "out" represent the inlet and outlet sections
of the stage. Ainley & Mathieson (1955) suggested 25◦ as a safe limit for
the flare angle.
Finally, the clearance between stator and rotor (srcl) was assumed to be
linked with the nozzle axial chord:

srcl = 0.5 cN (4.46)

Where the coefficient 0.5 was suggested by Saravanamuttoo et al. (2009)
(see Appendix E.2). It has to be noted that symmetrical flare angles were
considered in this study.

4.2.2 Iterative Cycle

After the preliminary calculations, the computational routine included an
iterative cycle based on the stage efficiency. Figure 4.7 schematically shows
the iterative cycle. It started with the definition of blade and fluid angles.
Afterwards, velocity triangles, thermodynamics properties and blades ge-
ometry were updated based on these angles. Finally, losses evaluation and
efficiency calculation were carried out.

Blade and Fluid Angles

First, the pitch was found both for the stator and for the rotor from the
opening-to-pitch ratio (o/s) and the blade opening (o). The correlation was
given by

s =
(
o

s

)
o (4.47)

2Angle of divergence of the annulus walls.
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Figure 4.7: Iterative cycle within the computational routine

The opening-to-pitch ratio was an optimizing variable and it was established
based on design requirements or optimization results. The nozzle opening
was previously calculated from the throat opening using the correlation pro-
posed by Deich et al. (1965).
Found the pitch, the number of blades was obtained from the geometrical
relation

z = 2πrm
s

(4.48)

The next step was to choose stator and rotor blade shapes. The blade has
to accept the gas incident upon the leading edge, and deflect it through the
required angle with the minimum loss. Conventional steam turbine blades
are shown in figure 4.8. The present thesis started from the determination
of the blade outlet angles defined by

θout = cos−1
(
o

s

)
(4.49)

Obviously, the incidence of the fluid (i) upon the blade profile affected the
profile loss. With reaction blading, the angle of incidence can vary approxi-
mately from -15◦ to +15◦ without increasing the profile loss coefficient. The
picture is not very different even when three-dimensional losses are taken
into account. In the present analysis, an incidence equal to 5◦ was assumed
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Figure 4.8: Conventional steam turbine profile (Xylon (2011)).

for the rotor at each section, while 0◦ was considered for the nozzle. This
was related to the consideration that the aerodynamic phenomena at the
inlet of the nozzle are generally easier to control. In this way, the twisting of
the blade simply followed the variation of the incident fluid angles, without
considering any external requirements. On the other hand, ORC turbines
are usually characterized by moderate blade height, which implies a small
degree of twisting.
Therefore, the blade inlet angle was given for stator and rotor, respectively,
by

θ1 = α1 + i1 (4.50)

θ2′ = β2′ + i2′ (4.51)

With i1 = 0◦ and i2′ = 5◦. Where θ indicates the blade angle; α and β the
fluid angles. The subscript "2’" indicates the station at the inlet of the rotor;
it was assumed β2′ = β2.
Afterwards, the calculation of the fluid outlet angles was carried out. They
were obtained from the blade outlet angles using the following correlations:

IF M<1 Correlation by Ainley & Mathieson (1951)

If M>1 Correlation by Vavra (1969)

It is important to remember that the velocity triangles yield the gas an-
gles, and they basically followed the choice of o/s.
The correlations proposed by Ainley & Mathieson (1951) and Vavra (1969)
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provided the angular deviation between blade and fluid angle for subsonic
and supersonic flows, respectively.

Ainley & Mathieson (1951) recommended different calculations for the fluid
outlet angle depending on the Mach number. In particular,

IF M < 0.5 α2,β3 found from the linear relationship in figure 4.9

IF M = 1 α2,β3 = cos−1(o/s)

IF 0.5 < M < 1 α2,β3 found using a linear interpolation

A more detailed explanation of the correlations proposed by Ainley & Math-
ieson (1951), along with their implementation in the computational routine,
is presented in Appendix E.3.
On the other hand, Vavra (1969) provided the correlation for M > 1. The-

Figure 4.9: Relationship between gas outlet angles and cos−1(o/s)
for "straight-backed" operating at low Mach numbers (Ainley & Math-
ieson (1951)).

oretically derived by applying energy, momentum and continuity equations
from the blade exit opening to the downstream conditions, assumed to be
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uniform, Vavra equation for the nozzle takes the following form:

∆α =
( k
k−1)( p2

pa
)tanαA +

√
(1− p2

pa
)[ 2k
k−1M

2
a − 1− k+1

k−1
p2
pa

] + [ k
k−1

p2
pa
tanαA]2

1 + kM2
a −

p2
pa

(4.52)
Where the subscript "a" indicates the conditions at the blade opening sec-
tion. The significance of the terms in the equation can be found in figure
4.10. Further considerations on the implementation of the Vavra equation

Figure 4.10: After expansion from supersonic nozzle having opti-
mum degree of divergence (Deich et al. (1965)), computed with Vavra
equation, Macchi (1977)

are given in Appendix E.3.
Until this point a 1-D mean radius analysis were carried out. As a result,
the fluid outlet angles were obtained at the mean radius. Starting from
these angles, velocity triangles, thermodynamic states and blade geometry
at mean radius were updated through the functions described in Section
4.2.1. Afterwards, some elements of 2-D analysis were introduced by ex-
ploiting the Free Vortex Theory. In particular, equations 4.11 - 4.15 allowed
to find angles and velocity triangles at root, mean and tip radii.

Evaluation of Losses with Craig-Cox Method

A brief classification of the losses was given in Chapter 2. Several models for
the investigation of the losses were developed in the past. Nevertheless, the
method proposed by Craig & Cox (1971) appears the most complete, coher-
ent and realistic correlation available in literature for the study of organic
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Rankine cycle turbines (see Macchi (1977)). The only important assumption
which had to be added to the original loss correlation (which holds only for
converging blade) was the information about losses in converging-diverging
supersonic nozzles: it was assumed that at design point the loss coefficient
of converging-diverging nozzles can be computed with the same procedure
used for converging blades, adding a correction factor from Kacker & Oka-
puu (1982).
Craig & Cox (1971) claimed that the method was valid both for gas and
steam turbines. Moreover, they stated that for most of the tests the effi-
ciency was predicted within a range of ±1.25%. However, there were some
prediction differences in the range of 10 to 25 MW, where the accuracy
range was wider, around ±3%. The test data used to obtain the correlation
for profile and secondary losses were from linear cascade tests, while other
losses, such as the tip clearance loss, were derived from specific turbine tests
and data from annular air tests. The losses in a blade row were divided in
two groups, provided by table 4.2. The methodology for the assessment of

Table 4.2: Division of stage losses by Craig & Cox (1971).

Group 1 Group 2
Nozzle profile loss Nozzle leakage loss
Rotor profile loss Balance hole loss
Nozzle secondary loss Rotor leakage loss
Rotor secondary loss Lacing wire loss
Nozzle annulus loss Wetness loss (if two-phase occurring)
Rotor annulus losses Windage loss
- Partial admission loss

the first group and the two first losses in the second group is depicted in
the following. The losses in the first group were described by a loss factor
measured in J/kg, while the losses in the second group were given as a di-
mensionless decrease in the stage efficiency. The reason for this is that Craig
& Cox (1971) found this to be the easiest way to derive the loss models from
test data. Furthermore, although off-design considerations were treated and
included in the Craig-Cox method, they were outside the purpose of the
present thesis. Note that the angles were defined from the tangential plane
in Craig-Cox equations and figures. For this reason, a careful angle conver-
sion was necessary.

Group 1: Profile Loss. The overall profile loss was given by a base loss
coefficient for incompressible flow (YP,0). Then it was corrected for variation
of Reynolds number (Re), trailing edge thickness (te) and incidence (i) by
some multipliers to the base loss. For the variation of Mach number (M ) and
curvature of the suction surface between the throat and trailing edge (tec)
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a further coefficient was added to the overall profile losses. The structure of
profile loss for Craig-Cox method is seen in the following equations,

YP = YP,0 χRe χte χi + ∆YP,M + ∆YP,tec + ∆YP,te (4.53)

Where Y indicates the loss dimensionless coefficient. The subscript "P" indi-
cate the profile loss and "0" the base coefficient. χ indicates a multiplicative
correction factor, while ∆Y designates an additive correction factor. The
base loss coefficient YP,0 was derived with low speed fluid flow and at an
incidence corresponding to the minimum profile loss. YP,0 was given as a
function of a lift parameter (FL), pitch-to-backbone length ratio (s/b), con-
traction ratio (CR) and outlet flow angle βout. FL was in turn obtained from
θout and αin− imin. The contraction ratio was defined as the inlet to throat
area ratio, where the inlet area was considered to be the maximum arc that
can be drawn entirely within the blade passage and witch is normal to the
blade surface. For more details and figures see Appendix F. To summarize
so far:

YP,0 = f(FL, CR, s/b) (4.54)

FL = f(αout, αin − imin) (4.55)

CR = f(c/b, 1− sinαout
sinαin

) (4.56)

Where b represented the backbone length of the blade, c the axial chord and
s the blade pitch.
To correct for the loss related to separation for a real thickness at the trailing
edge a theoretical derived correlation was presented in Fig.6 of Craig & Cox
(1971) as a function of the fluid outlet angle (αout or βout) and the trailing
edge thickness-to-pitch ratio tte/s. This correlation gave both a multiplier
χte and an extra added loss ∆YP,te to the base profile loss YP,0. For the
correction of Re Craig & Cox (1971) presented a chart (Fig. 3) valid for
different surface roughness and Reynolds number inside the range 104 <
Reo < 106, where Reo was based on blade throat opening (o). To correct
for Mach number in excess of unit, the correction factor ∆YP,M was added.
It was a function of o, tte/s and Mout. Finally, a correction for the mean
curvature between the throat and trailing edge suction surface was given
in Fig. 9 for the input parameter Mout and s/e, where e represents the
back surface curvature radius. The last correction on the profile loss was an
off-design multiplier χi to the base profile loss due to the incidence i.

Group 1: Secondary Loss. Craig & Cox (1971) involved both true
aerodynamic secondary loss and wall friction in their secondary loss corre-
lation. They also suggested a discrepancy between the losses for shrouded
and un-shrouded blades. However, they finally presented only a correlation
for shrouded blades, which they claimed to be approximately valid also for
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un-shrouded blades. For high aspect ratio (h/b), secondary losses inversely
proportional to the aspect ratio were assumed. On the other hand, when h/b
was decreased below a certain value the secondary flows present at the end-
walls (see figure 2.5) interacted resulting in smaller losses. For this reason,
Craig & Cox (1971) suggested a non-linear relationship against the aspect
ratio.
Furthermore, they assumed that Reynolds number affected secondary loss
similarly to profile loss. The overall secondary loss was given by

YS = YS,0 χRe χh/c (4.57)

Where,
YS,0 = f(FL (s/b), (Cin/Cout)2) (4.58)

χh/c = f(Ccrit/h) (4.59)

Where C represented the relative velocity for the rotor and the absolute
velocity for the stator. The subscript "crit" indicates the critical conditions.

Group 1: Annular Loss. The annular loss Yan was separated from the
secondary loss by Craig & Cox (1971) and was given as the sum of three
separate sources of loss: annular, cavity and a cavity loss factor due to
sudden expansion. The latter source was not considered in the present
work.

Group2: Tip Clearance Loss. Tip leakage loss over the blade tip was
given by equation 4.60, describing the reduction of the total-to-total stage
efficiency (∆ηtt) compared to that for zero tip clearance (ηtt). The area
ratio of tip clearance-to-throat (AK/A0) and an efficiency factor FK were
involved.

∆ηtt = FK

(
AK
A0

)
η0,tt (4.60)

For an increase in the leakage area (AK) the efficiency will decrease. The
factor FK was given as a function of geometrical parameters, stage loading
coefficient (ψ) relative velocities (W ),

FK = f(ψ, W
2
2 −W 2

1
W 2

2
,∆L) (4.61)

Where ∆L represented the overlap of the blades. Actually, such a procedure
was given for shrouded blades and implied different correction factors for
each type un-shrouded blades.
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Group 2: Miscellaneous Losses. Other losses evaluated in the compu-
tational routine included:

• Loss due to partial admission, assessed with the methodology proposed
by Traupel (1962);

• Disc windage loss, evaluated with the methodology suggested by Balje’
& Binsley (1968).

• Wet loss, evaluated using the methodology provided by Kotton (1998).
In particular, if Q < 0.984,

F = 2(1−Q) (4.62)

Otherwise,
F = 0.032 + 0.76(1− (Q+ 0.016)) (4.63)

Where Q is the vapour quality at the end of the expansion and F is the
dimensionless efficiency debit. Wet losses were accounted for only for
steam turbines, where two-phases occurs at the end of the expansion.

Final Considerations. Craig and Cox argued that the losses from group
1 should not be calculated at just one mean diameter. Instead they must
be evaluated for at least three different diameters (root, mean and tip) and
then an average value should be obtained with a parabolic loss distribution
according to

Yavg = 1
6
∑
j

Yj,root + 1
6
∑
j

Yj,tip + 4
6
∑
j

Yj,mean (4.64)

Where j indicates the different losses. Some of the figures presented by Craig
& Cox (1971) are displayed in Appendix F.

Efficiency Calculation

The calculation of the stage efficiency was performed accordingly with the
definition suggested by Craig & Cox (1971), consistently with the loss assess-
ment. Stator and rotor efficiency were found with the following equations,
respectively,

ηN = (h1 − h2)
(h1 − h2) +XI,N

(4.65)

ηR = (h2 − h3)
(h2 − h3) +XI,R

(4.66)
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Where XI,N and XI,R represent the global group 1 loss coefficients for nozzle
and rotor, respectively. They were consistently expressed in J/kg. After-
wards, the stage efficiency was computed as

ηS = Ws

(Ws+ rec · C
2
3

2 ) +XI,N +XI,R

− YII (4.67)

Where Ws is the Euler work, provided by equation 2.3, and YII indicates
the total group 2 loss, calculated for the whole stage. Equation 4.67 was
used to calculate both the total-to-static and total-to-total efficiency. The
only difference regarded the kinetic energy recovery coefficient rec: in the
first case rec = 0, while in the second case rec = 0.5, i.e. 50 % of kinetic
energy of the exhaust gas was recovered.

Finally, the restriction factors were calculated. They are used in continuity
equations, according to the method suggested by Vavra (1969):

ṁ = ζṁis (4.68)

Where ṁis is the mass flow rate given as an input (for an isentropic flow) and
ζ indicates the restriction factor. According to Vavra (1969), ζ is calculated
from equation

ζ = 1
1 + YP (HK )

(4.69)

Accounting only for profile losses. The boundary layer wake form to energy
factor ratio, H/K, was assumed to be equal to 0.7 based on the validation
results. Two different restriction factors, for stator and rotor, were com-
puted.
Once the efficiency of the stage was found, an iterative process was triggered.
Each function was updated until the difference between the efficiency of the
stage of two next iterations was below a certain threshold, chosen equal to
10−4.

4.2.3 Multi-Stage Considerations

The design procedure was repeated for each stage separately. The inlet con-
ditions for the downstream stage were the outlet conditions of the upstream
stage. This implied that T01, P01, C1, α1 for the second stage were equal
to T03, P03, C3, α3 of the first stage, respectively. As mentioned above,
the pressure drop was equally distributed among the stages using equations
4.16. Furthermore, the total-to-static efficiency was considered for the last
stage, as well as for the turbine as a whole, while the total-to-total efficiency
was used for the intermediate stages. Finally, it should be pointed out that
for ORC turbines rarely the number of stages is higher than 3 (see Macchi
(1977)).
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Figure 4.11 schematically summarizes the overall computational procedure.
The optimization process is investigated in more detail in Chapter 6.

Figure 4.11: Schematic of the overall computational routine.
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5
Validation of the

Computational Model

5.1 Introduction
Both the ideal gas and the real fluid model were tested against experimental
data. The ideal gas model was validated against Stabe et al. (1984) for a
single-stage turbine and against Kotzing & Evers (1985) for a multi-stage
configuration. Similarly, the real fluid model was validated against Stabe
et al. (1984) and Verneau (1987) for a single-stage turbine, and against
Kotzing & Evers (1985) for the multi-stage configuration. Since no major
differences were detected between the validation results for the two models,
in the following only some of these validations are presented. In particular,
the multi-stage validation is examined for the ideal gas model, while the
single-stage validation is described for the real fluid model. The remaining
validations can be found in Appendix G. The results of the computational
model were considered satisfying when affected by a relative error within a
range of ±3%; this was the accuracy range guaranteed by Craig and Cox
method for the evaluation of the losses.

5.2 Methodology
The validation process started from the definition of the input data. The
available experimental data were elaborated to determine the input param-
eters reported in table 4.1. When the inputs could not be retrieved by the
experimental data, the study proceeded with a "try and fail" method in or-
der to match the experimental results.
It should be pointed out that during the validation procedure the assump-
tion of constant axial velocity was removed; indeed, none of the examined
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turbines was characterized by this feature. As a result, a small change
was performed in the computational routine: instead of considering Ca,2 =
Ca,3 = Ca the axial velocity was calculated using the flow coefficient φ,

Ca = φUm (5.1)

Typically, the values of φN and φR could be determined working on the
experimental data. Then, Ca was calculated for stator and rotor, separately.
The validation was performed in terms of performance, geometry, velocity
diagram and thermodynamic states of the turbines.

5.3 Results & Discussion

5.3.1 Ideal Gas Model

Multi-Stage Validation: Kotzing & Evers (1985)

This validation was performed against the report prepared by Kotzing &
Evers (1985). The report regarded a test case on a four-stage low speed
gas turbine. The aim of this validation was to verify the reliability of the
computational routine for a multi-stage configuration. The analysis of the
ideal gas model appeared reasonable since air was used as a working fluid.
The turbine investigated by Kotzing & Evers (1985) was designed to have
the same blade section in all the stages at a given radius. The blading
was of the free-vortex type with a degree of reaction in the middle section
equal to 0.5. The turbine had a constant hub diameter of 270 mm. The
height of the rotor blades varied for the four-stage configuration between
64 mm and 89 mm for the first and last stage, respectively. The inputs
deduced from the experimental data are reported in table 5.1. While the
geometrical parameters were calculated from the report, the study proceeded
with a "try and fail" method for the flow coefficients and the stage loading
coefficient. Table 5.1 shows how the opening-to-pitch ratio was equal for
all the stages, implying the same blade shapes in each stage. Similarly, the
flow coefficients were very close for all the stages. As a result, the velocity
diagram was analogous for each stage. Fig 5.1 shows the velocity triangles
at mean radius for the fourth stage; however it can well be considered to
represent all the four stages. The velocity triangles for each stage can be
found in appendix G. Figure 5.1 explicates the fact that the turbine stages
are characterized by a degree of reaction of 0.5, i.e. reaction stages. Indeed,
the triangles for stator (blue) and rotor (red) look almost symmetrical, being
the only discrepancy the small difference in axial velocity.
Table 5.2 presents the results of the validation procedure for the first two
stages of the turbine, while 5.3 reports the results for the third and fourth
stage. In the table the acronyms CR and ER indicates computational and
experimental results, respectively. The comparison was carried out in terms
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Table 5.1: Major input data for the validation process against Kotz-
ing & Evers (1985).

Stage 1 Stage 2 Stage 3 Stage 4
Optimizing Variables
α1 [◦] 20 - - -
φN 0.6 0.61 0.59 0.605
ψ 4.3 3.5 3.6 3
omin [m] 0.031 0.031 0.031 0.031
oR [m] 0.027 0.027 0.027 0.027
cN [m] 0.01 0.01 0.01 0.01
cR [m] 0.01 0.01 0.01 0.01
oN/sN 0.36 0.36 0.36 0.36
oR/sR 0.39 0.39 0.39 0.39
h2′/h2 1.1 1.1 1.1 1.1
Cycle Requirements
ṁ [kg/s] 7.8 7.8 7.8 7.8
T01 [K] 413 - - -
p01 [bar] 2.6 - - -
pr 0.393 - - -
N [rpm] 7500 7500 7500 7500
Other Inputs
φR 0.62 0.64 0.61 0.63

Figure 5.1: Velocity triangles for stage 4 of the multi-stage gas tur-
bine. Ideal gas computational model.
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of geometry, thermodynamic states and velocity triangles for the single stage;
efficiency and power were investigated considering the turbine as a whole.
Table 5.4 reports the global total-to-total efficiency and the total power

Table 5.2: Part A - Validation results for stage 1 and stage 2 of
multi-stage gas turbine. Computational results.

Stage 1 Stage 2
CR ER ∆εrel CR ER ∆εrl

Blade Geometry
h1 [m] 0.066 0.064 2.88% 0.070 - -
h2 [m] 0.071 - - 0.075 - -
h3 [m] 0.076 - - 0.076 -
rm, [m] 0.135 0.135 0.05% 0.145 0.143 2.00%
Λ 0.501 0.5 0.24% 0.4973 0.5 0.54%
Thermodynamic States
T03 [K] 388.6 384 1.18% 366.1 364 0.58%
p03 [bar] 2.098 2.13 1.54% 1.679 1.71 1.88%
p3 [bar] 2.039 2.08 1.97% 1.648 1.67 1.63%
Velocity Diagram
Um [m/s] 106.0 - - 123.0 - -
C3 [m/s] 77.96 78 0.051% 88.66 90 1.51%
α2 [◦] 67.81 68 0.28% 68.16 68 0.23%
β2 [◦] 38.63 39.6 2.51% 39.66 39.6 0.15%
β3 [◦] 66.03 66 0.05% 66.03 66 0.05%
α3 [◦] 22.47 20 11.0% 24.1 20 17.0%
M2 0.421 - - 0.477 - -
M3,rel 0.411 - - 0.472 - -

output of the four-stage turbine. Both the parameters were calculated with
a satisfactory precision. As it can be noted from tables 5.2 and 5.3, many
parameters were not accessible for the comparison. However, the validation
against the available variables leaded to satisfying results for stage 1 and 2.
Indeed, for these stages all the parameters were calculated with an accuracy
range within ± 3%, except for α3. Nevertheless, although the angle was
affected by a relative error above 10%, the absolute error was smaller than
3◦, which appeared as an acceptable value. On the contrary, stage 3 and 4
presented some problems from the point of view of the blade geometry:

• The mean radius was affected by a high relative error: 13.9% for the
third stage and 23.6% for the fourth stage. This stemmed from the
fact that the code cannot predict an enhancement of the mean radius
across the turbine. Indeed, rm was calculated starting from Um, which
remains basically constant. Recalling that Um was computed as

Um =
√

2∆h0
ψ2
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Table 5.3: Part B - Validation results for stage 3 and stage 4 of
multi-stage gas turbine. Computational results.

Stage 3 Stage 4
CR ER ∆εrl CR ER ∆εrl

Blade Geometry
h1 [m] 0.079 - - 0.097 - -
h2 [m] 0.101 - - 0.105 - -
h3 [m] 0.102 - - 0.103 0.102 1.16%
rm [m] 0.141 0.161 13.9% 0.148 0.183 23.59%
Λ 0.508 0.5 1.57% 0.496 0.5 0.78%
Thermodynamic States
T03 [K] 344.7 341 1.08% 325 319 1.86%
p03 [bar] 1.319 1.35 2.36% 1.051 1.05 0.14%
p3 [bar] 1.279 1.31 2.55% 1.021 1.01 0.96%
Velocity Diagram
Um [m/s] 122.7 - - 116.873 - -
C3 [m/s] 78.15 77 1.47% 88.57 86.5 2.34%
α2 [◦] 68.16 68 0.23% 68.16 68 0.23%
β2 [◦] 38.67 39.6 2.35% 38.75 39.6 2.19%
β3 [◦] 66.03 66 0.05% 66.03 66 0.05%
α3 [◦] 21.87 20 8.55% 22.87 20 11.0%
M2 0.499 - - 0.477 - -
M3,rel 0.503 - - 0.472 - -

Table 5.4: Efficiency and power for the multi-stage gas turbine. Com-
putational results.

Comp. Result Experim. Result ∆εrel
ηtt 0.914 0.913 0.17%
P [MW] 0.699 0.703 0.57%

Paolo Gabrielli, s135427 - Technical University of Denmark 45



Design and Optimization of Turbo-Expanders for Organic Rankine Cycles

a possible solution for this problem can be searched in a different
distribution of the pressure drop respect to that implemented through
equation 4.16. Indeed, this would affect the enthalpy drop occurring
within the stage, which would turn in a variation of Um.

• Although a detailed comparison regarding the blade heights was not
possible, the calculation appeared consistent for the first three stages;
on the contrary some inaccuracies seemed to arise for the fourth stage.
Figures 5.2 and 5.3 show the blade geometry for the first and last
stage, respectively. The blade geometry for stage 1 was consistent to

Figure 5.2: Blade geometry for stage 1 of the multi-stage gas turbine.
Computational result.

that showed in Figure 2 of Kotzing & Evers (1985). Regarding stage
4, although the value of h3 matched the experimental one, the overall
shape did not correspond to that reported in Kotzing & Evers (1985).
Recalling the continuity equation (Appendix A), the reason for this
discrepancy might lay either on the calculation of the axial velocity
(this would refer again to the calculation of Um) or on the determi-
nation of the fluid density. Moreover, it should be pointed out that
the computational model assumed symmetrical flare angles, while this
was not the case of the gas turbine in Kotzing & Evers (1985).
As a result, further work must be done in order to obtain a more precise
simulation of the blade geometry, especially in multi-stage configura-
tions.
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Figure 5.3: Blade geometry for stage 4 of the multi-stage gas turbine.
Real fluid computational model.

The blade geometry for each stage is presented in appendix G. Finally, figure
5.4 shows the T-s diagram at mean radius for the four-stage expansion.

Figure 5.4: T-s diagram for the four-stages low speed turbine gas
turbine. Real fluid computational model.
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5.3.2 Real Fluid Validation

Single-Stage Validation: Stabe et al. (1984)

This validation was carried out considering the single-stage gas turbine de-
scribed in Stabe et al. (1984). The experimental data allowed to determine
all the inputs necessary for the design model. The values are reported in
table 5.5. Although Stabe et al. (1984) reported only one flow coefficient,

Table 5.5: Major input data for the validation process against Stabe
et al. (1984).

Optimizing Variables
α1 [◦] 0
φN 0.366
ψ 3.35
omin [m] 0.0147
oR [m] 0.0115
cN [m] 0.0355
cR [m] 0.033
oN/sN 0.258
oR/sR 0.376
h2/h2′ 1.1
Cycle Requirements
ṁ [kg/s] 7.81
T01 [K] 422.2
p01 [bar] 3.103
pr 0.424
N [rpm] 9048
Other Inputs
φR 0.532

φ = 0.449, this simply represented the average flow coefficient between stator
and rotor, given by

φ = φN + φR
2

Indeed, Figure 1 by Stabe et al. (1984) displays the experimental velocity
triangles, highlighting a variable axial velocity across the stage. Figure 5.5
shows the velocity triangles at mean radius obtained with the computa-
tional model Mamba. The blue triangle represents the outlet of the stator,
while the red triangle indicates the outlet of the rotor, i.e. stations 2 and
3, respectively. The dashed lines indicate the axial velocity, different for
stator and rotor. Table 5.6 reports the results of the validation in terms of
performance, blade geometry, thermodynamic states and velocity diagram.
The table compares computational and experimental results, reporting the
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Table 5.6: Validation result the single-stage gas turbine. Real fluid
computational model.

Comp. Result Experim. Result ∆εrel
Performance
ηtt 0.884 0.890 0.67%
P [MW] 0.824 - -
Blade Geometry
zN 26 26 0%
zR 47 48 2.1%
sN [m] 0.057 0.057 0%
sR [m] 0.031 0.031 0%
h2 [m] 0.035 0.036 2.59%
h3 [m] 0.035 0.036 1.71%
rm [m] 0.232 0.233 0.56%
Λ 0.456 - -
Thermodynamic States
T02 [K] 422.1 - -
p02 [bar] 2.961 - -
T03 [K] 340.6 - -
p03 [bar] 1.315 - -
Velocity Triangles
Um [m/s] 219.5 218 0.7%
Ca,2 [m/s] 81.2 - -
Ca,3 [m/s] 118 - -
C2 [m/s] 312 - -
W3 [m/s] 306 - -
α2 [◦] 75.1 75 0.16%
β2 [◦] 45.9 45 1.91%
α3 [◦] 29.8 30.2 1.33%
β3 [◦] 67.6 67.5 0.37%
M2 0.813 0.833 2.5%
M3,rel 0.847 0.867 2.3%
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Figure 5.5: Velocity triangles for the single-stage gas turbine. Real
fluid computational model.

relative error, ∆εrel, in percentage. The table actually exhibits a satisfac-
tory outcome. Indeed, the relative error was within the acceptable range
of ±3% for each parameter. This suggested a good behaviour of the code
when dealing with a single stage.
Actually, some of the quantities reported in the table, such as the degree
of reaction or the thermodynamic states, were not provided by Stabe et al.
(1984). Nevertheless, the results given by the computational model appeared
reasonable. For instance, a degree of reaction equal to Λ = 0.46 seemed to
describe properly the velocity triangles drawn in Figure 1 of Stabe et al.
(1984). In figure 5.6 the blade geometry is drawn. It well reproduces that
reported in Figure 5 of Stabe et al. (1984). Finally, figure 5.7 shows the
T-s static diagram at mean radius for the investigated turbine. The blue
line represents the expansion in the stator, while the red line indicates the
expansion occurring in the rotor.
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Figure 5.6: Blade geometry for the single-stage gas turbine. Real
fluid computational model.

Figure 5.7: T-s diagram for the single-stage gas turbine. Real fluid
computational model.
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Single-Stage Validation: Verneau (1987)

The validation process was concluded by testing the model against the ORC
turbine described in Verneau (1987). The investigated expander was a very
low-power turbine built for researching on energy recovery from exhaust gas
of car engines. R113 was chosen as working fluid. The theoretical degree
of reaction was equal to zero, while the expected power output was close
to 3 kW. For manufacturing reasons and aerodynamic efficiency a minimum
external diameter of 100 mm was imposed. The target efficiency was pretty
low, ηtt = 0.65, due to the very small size and partial admission. Indeed,
a single admission arc of 142◦ was necessary. Small size brought to rele-
vant Reynolds effect and significant tip clearance losses even with shrouded
rotor blades. Finally, it should be pointed out that the turbine was super-
sonic. Table 5.7 presents the inputs obtained by elaborating the available
experimental data. While the geometry was completely defined, the flow
coefficients and the stage loading coefficient were calculated by working on
the experimental data. Table 5.8 reports the comparison between computa-

Table 5.7: Major input data for the validation process against
Verneau (1987).

Optimizing Variables
α1 [◦] 0
φN 0.69
ψ 4.3
omin [m] 0.0125
oR [m], 0.0125
cN [m] 0.0017
cR [m] 0.001
oN/sN 0.258
oR/sR 0.4
h2/h2′ 1.1
Input Data
ṁ [kg/s] 0.18
T01 [K] 403
p01 [bar] 6.8
pr 0.167
N [rpm] 18000
Other Inputs
φR 0.483

tional and experimental results. For some parameters the comparison was
not possible, due to the lack of available information. Although the de-
termination of the performance and the velocity diagram (figure 5.8) was
accurate, the computational results were characterized by some imprecisions.
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Table 5.8: Validation results for the single-stage R113 turbine. Real
fluid computational model.

Comp. Result Experim. Result ∆εrel
Performance
ηtt 0.652 0.65 0.35%
P [kW] 3.089 3 2.89%
Blade Geometry
zN 24 22 8.33%
zR 122 - -
sN [m] 0.013 0.0133 2.304%
sR [m] 0.003 - -
rm [m] 0.484 0.48 0.85%
h2 [m] 0.004 0.0035 12.5 %
h3 [m] 0.032 0.005 62.5 %
Λ -0.263 0 26.3 %
Thermodynamic States
T02 [K] 397.2 - -
p02 [bar] 4.049 - -
p2 [bar] 0.61 - -
T03 [K] 366.5 - -
p03 [bar] 1.136 - -
p3 [bar] 1.013 - -
Velocity Diagram Um [m/s] 91.23 90 1.41 %
Ca,2 [m/s] 62.9 - -
Ca,3 [m/s] 44.08 - -
C2 [m/s] 240.1 240 0.05 %
W3 [m/s] 108.8 - -
α2 [◦] 74.7 74 1.05 %
β2 [◦] 65.8 65.5 0.5 %
α3 [◦] 10.4 - -
β3 [◦] 66.09 65.4 1.04 %
M2 1.87 1.76 5.77 %
M3,rel 0.859 0.88 2.42 %
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Figure 5.8: Velocity triangles for the single-stage R113 turbine. Real
fluid computational model.

In particular:

• Number of nozzle blades. Although zN was affected by a relative
error ∆εrel = 8.33%, the absolute discrepancy was of 2 blades. For
this reason, this was not judged as a relevant error of the code.

• Nozzle absolute Mach number. A similar reasoning was applied.
Even if M2 was affected by a relative error of 5.77%, this did not
appear as a significant problem, since no information related to the
calculation of the speed of sound and the Mach number itself was
provided.

• Blade heights. In this case a significant relative error was found:
∆εrel = 12.5% for h2 and ∆εrel = 62.5% for h3. Moreover, a converg-
ing shape of the rotor, not consistent whit that reported in Verneau
(1987), was observed (figure 5.9). This was due to a static compression
occurring within the rotor. Indeed, although the total conditions were
characterized by a consistent pressure gradient, the static pressure at
the inlet of the rotor was lower than that at the outlet (0.61 bar ver-
sus 1.013 bar). The total and static T-s diagram at mean radius are
paralleled in figure 5.10. The unusual behaviour presented in figure
5.10b was connected to the supersonic feature of the turbine. Indeed,
at the exit of the nozzle the absolute velocity was much higher than at
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Figure 5.9: Blade geometry for the single-stage R113 turbine. Real
fluid computational model.

the outlet of the rotor: C2 >> C3 implied p2 < p3 and ρ2 < ρ3, even
though p02 > p03. The suffix "0" indicates the total conditions, while
"1", "2" and "3" refers to the stations of the stage. This behaviour can
actually be registered in supersonic turbo-machinery, as suggested by
Sungho (2013): the fluid was strongly accelerated through the nozzle
causing a severe pressure drop. Then, a recover in pressure followed
inside the rotor, where the fluid had to win the adverse pressure gra-
dient to return to the subsonic conditions. This caused an increasing
in density and a reduction in annulus area, as observed in figure 5.9
showing the blade geometry.

• Degree of reaction. The negative degree of reaction of an impulse
turbine can be explained recalling its definition:

Λ = W 2
3 −W 2

2
C2

2 − C2
1 +W 2

3 −W 2
2

(5.2)

This definition does not include any kind of loss. On the contrary
W3 < W2 due to the friction dissipation (Appendix B); this implies
Λ < 0. Actually, Verneau (1987) stated that, even though the the-
oretical degree of reaction was equal to zero, the fluid experienced a
deceleration through the rotor, W3 < W2. For this reason, a negative
degree of reaction was expected.
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Although a detailed comparison was not possible for the thermodynamic
properties, the results appeared consistent with the data provided by Verneau
(1987). In particular, the exit pressure of p03 = 1.136 bar agreed with the
value of 1.08 bar after the recuperator, before the condenser. Similarly, the
exit temperature of T03 = 92.5 ◦C was consistent with the value of 67 ◦C
after the recuperator, before the condenser.

Figure 5.10: T-s total and static diagrams for the single-stage R113
turbine. Real fluid computational model.

(a) T-s total diagram

(b) T-s static diagram
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6
Optimization of Axial-Flow

Turbines

6.1 Introduction

6.1.1 The Genetic Algorithm

The optimization process was based on a genetic algorithm (GA) available
through the ga-function in the programming language MATLAB (Math-
Works (2013)).
For the purpose of the present study, a simple comprehension of the way in
which the ga-function works is sufficient. For a detailed description of the
principle of operation of genetic algorithms see Wikipedia (2013b).

Genetic Algorithms were formally introduced in the United States in the
1970s by John Holland at the University of Michigan. A genetic algorithm is
a heuristic search that mimics the process of natural selection. This heuris-
tic process is routinely used to generate useful solutions to optimization
and search problems. The genetic algorithm can be applied to solve prob-
lems that are not well suited for standard optimization algorithms, including
problems in which the objective function is discontinuous, non-differentiable,
stochastic, or highly non-linear.

In a genetic algorithm, a population of candidate solutions to an optimiza-
tion problem, called individuals, is evolved toward better solutions. Each
candidate solution has a set of properties, its chromosomes, which can be
mutated and altered. The evolution usually starts from a population of ran-
domly generated individuals, and is an iterative process; the population at
each iteration is called a generation. In each generation, the fitness of every
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individual in the population is evaluated; the fitness is usually the value
of the objective function in the optimization problem being solved. The
fittest individuals are stochastically selected from the current population,
and each individual’s genome is modified to form a new generation. The
new generation of candidate solutions is then used in the next iteration of
the algorithm. Over successive generations, the population "evolves" toward
an optimal solution. Each new "child" solution can be born in three different
ways:

• Elite: individual in the previous generation with the best fitness values
surviving to the new generation.

• Crossover: children created by combining the genotype vectors of a
pair of parents.

• Mutation: children created by introducing random changes to a single
parent.

Typically, a genetic algorithm requires:

1. A genetic representation of the solution domain;

2. A fitness function to evaluate the solution domain.

The generational process is repeated until a termination condition has been
reached. Common terminating conditions are:

• A solution is found that satisfies minimum criteria;

• Fixed number of generations reached;

• The highest ranking solution’s fitness is reaching or has reached a
plateau such that successive iterations no longer produce better results;

6.2 Methodology

The numerical environment provided by MathWorks (2013) allows to solve
single and multi-objective optimization problems. The present study only
dealt with a single objective function. In particular, the total-to-static effi-
ciency of the axial-flow turbine represented the objective of the optimization
problem. Because the GA minimizes the objective function, the fitness func-
tion was defined as the reciprocal of the efficiency of the axial-flow turbine.
The implementation of the genetic algorithm required the following steps:

• Definition of a set of boundary conditions. The input parameters given
to the genetic algorithm were the cycle requirements reported in table
4.1.
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• Definition of a set of optimizing variables (the maximum number of
variable is 20). They were chosen based on computational require-
ments of the design routine.

• Definition of a lower and upper boundary for each optimizing variable.
The study assumed the same variable ranges for each application (see
table 6.1).

• Characterization of the GA using the command gaoptimset. This op-
tion allows, for example, to draw the fitness function versus the number
of generations using the expression:

opts = gaoptimset(′PlotFcns′,@gaplotbestf)

An example of fitness function is displayed in figure 6.1. The figure
shows how the algorithm was converging towards an optimum solution,
characterized by the highest value of the efficiency.

Figure 6.1: Objective function versus number of generations.

• Definition of the fitness function. It is basically the mathematical
function to be optimized. This point required the definition of all
the inputs for the fitness function, specifying the optimizing variables.
They were described by the vector kobe, while the function representing
the optimization problem was called Mamba. Therefore, the fitness
function was defined by

fitnessfcn = @kobe Mamba(kobe, ...inputs...)
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• Call of the genetic algorithm through the expression

[kobe, fval] = ga (fitnessfcn, nvars, [ ], [ ], [ ], [ ], lb, ub, [ ], opts);

Where the left-hand side of the expression represents the ouputs of
the optimization process: kobe is the vector characterized by the best
set of optimizing variables; fval symbolizes the minimum value of the
objective function. On the other hand, the right-hand side of the
expression reports the inputs to the ga-function: Fitnessfcn indicates
the call of the fitness function; nvars gives the number of optimized
variables; lb and ub and represent the lower and upper boundaries for
the vector kobe, respectively; opts indicates the options specified for
the genetic algorithm.

The choice of the total-to-static efficiency as objective function relates to
the consideration that mainly single-stage turbines were considered.
The optimization process can be seen as an external shell containing the
design routine. Starting from the cycle requirements it rendered the best
set of optimization parameters, in terms of turbine efficiency. The lower and
upper bounds for each of the optimizing parameters are presented in table
6.1. For multi-stage configurations, each optimizing variable was chosen to

Table 6.1: Optimization variables with lower and upper constrains.

Variable Lower Bound Upper Bound
α1 [◦] -15 +15
φN 0.2 0.9
ψ 2 7
omin [m] 0.007 0.02
oR [m] 0.007 0.02
cN [m] 0.01 0.08
cR [m] 0.01 0.08
oN/sN 0.2 0.5
oR/sR 0.2 0.5
h2/h2′ 1 1.1

be equal for each stage; in this way, the same blade geometry was ensured
for all the stages.
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7
Weight of Axial-Flow

Turbines

7.1 Introduction

In many ORC applications requirements on weight are not of secondary im-
portance. For this reason, this chapter aims at developing a computational
routine for an approximated calculation of the weight of axial-flow turbines.
This routine was included in the computational model: starting from the
results of the design and optimization process, the weight of the expander
was estimated. Each component of the turbine was modelled in its easiest
shape. The computational routine started from the definition of the volume
of the turbine; then, the weight was determined based on the density of each
component.
No validation was carried out in this case due to lack of available data.
Therefore, the calculation provides an approximated value of the weight of
axial-flow turbines and a relative comparison for different expanders. All the
investigated turbines were characterized by similar geometrical proportions.

7.1.1 Materials for Axial-Flow Turbines

Materials have been played, and will continue to play, the key part in efforts
to increase axial turbine performance.
The selection of materials for each component follows from the requirements
imposed on the component. Therefore, in principle, each component, or a
set of identical components may be made from different materials. On the
other hand, thinking in term of minimum costs will naturally reduce the
number of materials in an engine. Several types of materials are today
in widespread use, namely titanium alloys, stainless steels and superalloys
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(Saravanamuttoo et al. (2009)).
Titanium alloys are used in fan and compressor blades, discs and casings;
Stainless steels have iron as the main element, while chromium, nickel and
other elements provide resistance to rusting by generating a thin oxide layer
on the surface;
In superalloys the main alloying element is nickel, cobalt or iron with the
nickel-based alloys seeing the most extensive research and development.

An interesting dissertation on the materials in use for axial-flow turbines
is provided by Saravanamuttoo et al. (2009).

7.1.2 Main Components of Axial-Flow Turbines

Blades

Blades turn the flow; in compressors power is absorbed as a result, while
in turbine power is generated. Being primarily aerodynamic devices, blades
must have accurate aerofoil contours and high surface quality. In figure 2.6
the geometry of the blade and the terminology used to describe the blade
profile were shown. Figure 7.1a shows a representation of a turbine blades,
while figure 7.1b reports different shapes of actual turbine blades.

Figure 7.1: Turbine blades (Wikipedia (2012)).

(a) Blade representation
(b) Real blades

Bladed Rotor Discs

A bladed rotor disc support the blades, transfers the torque generated or
absorbed by the blades, and supports a pressure differential across the stage.
Prime consideration in the design of discs is avoidance of burst, which is
caused by elastoplastic failure of disc material. Nevertheless, since a detailed
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disc design is outside of the purpose of this study, it assumed the simplest
case of discs: uniform (constant thickness), with a bore, rotating at constant
speed. Furthermore, the radius was linked to other turbine components
based on proportions found in literature (Costa (2006), Babcock & Wilcox
(1927)). Figure 7.2 shows a turbine disc with a simple shape.

Figure 7.2: Turbine disc (Walter (2013)).

Bearings

A bearing is a machine element that constrains relative motion and reduces
friction between moving parts to only the desired motion. The design of the
bearing may, for example, provide for free linear movement of the moving
part or for free rotation around a fixed axis. Many bearings also facilitate
the desired motion as much as possible by minimizing friction. The two
principal types of bearings are rolling elements and hydrodynamic bearings,
reported in figure 7.3a and 7.3b, respectively. The bearings are inserted
within bearing casings, which provides a support and an attachment point.

Other Components

Other components of axial-flow turbines which were considered for the weight
calculation include:

• Shaft. Depending on the applications it might be hollow. However,
the present analysis assumed a solid cylindrical shaft;

• Blade shrouding. Many turbine rotor blades have a shrouding at the
top, which interlocks with that of adjacent blades, to increase damping
and thereby reduce blade flutter. Figure 7.4 shows a schematic of a
shrouded blade;
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Figure 7.3: Turbine bearings (Direct industry (2013)).

(a) Rolling elements.

(b) Hydrodynamic bearings.

Figure 7.4: Schematic of shrouded blade (Major Engine Section
(2012)).
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• Gear box. It is necessary to couple expander and generator in case
of different rotational speeds;

• Labyrinth seal. It is a type of mechanical seal that provides a tor-
tuous path to help prevent leakage;

• Turbine casing. The external casing.

7.2 Methodology

First, the computational routine estimated the weight for each stage. Then,
the heaviness of the turbine as a whole was computed by adding the com-
ponents external to the stages (see figure 7.5). Initially, the volume of each
component was defined starting from the geometry provided by the design
and optimization routine. Afterwards, the weight was determined using the
density of each component. Table 7.1 reports the density for some materials
used for modelling the axial-flow turbine.
The present method did not proceeded with the mechanical design of the

Table 7.1: Density of materials used for modelling the axial-flow
turbine (Saravanamuttoo et al. (2009)).

Material Component ρ [kg/m3]
Structural steels
S355 shaft, casing 8000
St52 shaft, casing 7800
Stainless steels
B23 bearings 7385
C93200 bearings 8910
13Cr5Ni labyrinth seal 7750
16Cr5Ni labyrinth seal 8050
Superalloys
Rene41 discs, blades 8250
Waspalloy discs 8200
CMSX-4 blades, vanes 8700
CMSX-10 blades, vanes 9050
Steels
4340 bearings casing 7850
st gear box 7800
Others
DCI bearings casing 7100
Cu gear box 8933
Powder metals gear box 6700
JM7 labyrinth 7600
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components. On the contrary, it assumed certain geometrical proportions
among components based on data found in literature; see Babcock & Wilcox
(1927), Costa (2006) and Saravanamuttoo et al. (2009). Basically, the cal-
culation was based on a set of parameters, called Q factors, necessary to
define the geometrical dimensions of the expander. In the present analysis
they were kept constant, thus assuming a similar geometry for each exam-
ined turbine. Table 7.2 reports value and meaning for each of the Q factors.
A correction factor of 1.3 was applied to the overall calculation, rounding

Table 7.2: Q factors defining the geometrical proportions of the tur-
bine.

Symbol Value Meaning
Q 0.4 shaft radius-to-blade root radius ratio
Qb 1.25 outer-to-inner bearing radius ratio
Qbc 1.3 outer bearing casing radius-to-inner bearing radius
Qc 1.6 casing thickness-to-blade height ratio
Qc′ 1.2 casing length-to-shaft length ratio
Qduct 0.3 duct thickness-to-blade height ratio
Qerr 1.3 expected error factor
Qlab 0.05 relative weight of labyrinth seal
Qsh 2 shaft axial length (stage section)-to-stage axial length
Qsh′ 2 shaft axial length (turbine section)-to-stage axial length
Qsr 0.1 shrouding height-to-blade height ratio
Qwh 0.25 wheel length-to-shaft length ratio
Qwh′ 1.05 wheel radius-to-shaft radius ratio
Qwh′′ 0.4 gear box casing thickness-to-wheel radius ratio

up the results assuming an inaccuracy of 30%. This error was related to the
presence of other, not considered, components and to the degree of approx-
imation.
Figure 7.5 shows a schematic of the calculation process.

7.2.1 Shaft

The evaluation of the weight of the shaft started from the definition of its
volume, based on the geometry defined by the design routine. The shaft
was outlined as a solid cylinder, and its radius was considered to be 0.4
(Q) times the blade root radius, averaged upon the length of the stage. In
formula, the radius of the shaft (rsh) was given by

rsh = Q(rr,1 + rr,3)
2 (7.1)

Where the suffix "sh" identifies the shaft, "r" indicates the blade root radius,
"1" and "3" refers to the stations of the stage: inlet nozzle and outlet rotor,
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Figure 7.5: Weight calculation process.

respectively. The base surface (A) of the shaft was found from the radius
using the familiar equation

Ash = πr2
sh (7.2)

The overall length of the shaft was ideally divided in two sections: one re-
lated to the stage, and one linked to the feed and exhaust ducts of the tur-
bine. The section related to the stage, denoted with suffix "S", was assumed
to exceeds the stage axial extension (the sum of the blade axial chords), by
a factor Qsh = 2. Thus,

lsh,S = Qsh (cN + cR + srcl) (7.3)

Where l indicates the length, srcl is the clearance between stator and rotor,
cN and cR are the axial chords of stator and rotor, respectively.
Similarly, the section of the shaft related to the feed and exhaust ducts was
assumed to exceed the stage extension by the factor Qsh′ = Qsh. Therefore,
the overall shaft length was

lsh = 2Qsh (cN + cR + srcl) (7.4)

The volume (V ) was computed as

Vsh = Ash lsh (7.5)

Finally, using structural steel S355 the weight (w) of the shaft was obtained
by

wsh = Vsh ρS355 (7.6)
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7.2.2 Bearings

A similar procedure was followed for the bearings, which were modelled as
hollow cylinders and denoted by the subscript "b". The internal and external
radii were linked by the factor Qb = 1.25. They were given by

rin,b = rsh (7.7)

rex,b = Qb rin,b (7.8)

Where "in" and "ex" indicates internal and external radius, respectively.
Figure 7.6 shows a part of the turbine shaft with a rolling element and its
casing. The base area of one bearing was given by

Figure 7.6: Turbine shaft with bearing (IMTS (2014)).

Ab = π(r2
ex,b − r2

in,b) (7.9)

The length of the bearings depends on the bore diameter. In practice,
different configurations are possible. This study assumed a length-to-bore
diameter ratio equal to 0.5, based on data provided by Bearing Work inc.
(2013). Therefore,

lb = rin,b (7.10)

The volume of the bearings were calculated through equation

Vb = nbAb lb (7.11)

Where nb is the number of bearings; nb = 4, since four bearings were ac-
counted for. Finally, the weight of the bearings was determined using equa-
tion 7.6 considering stainless steel C93200.
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7.2.3 Bearing Casing

The next step was to compute the weight of the bearing casings, denoted
by "bc". The casing was modelled as the combination of a ring covering
the bearing and a base providing support and an attachment point (IMTS
(2014)). The external radius of the casing was defined by the factor Qbc =
1.3. Thus, inner and outer radii of the ring were given, respectively, by

rin,bc = rex,b (7.12)

rex,bc = Qbc rsh (7.13)

The base surface was calculated using equation 7.9. The axial extension of
the ring was considered equal to that of the bearing, lbc = lb. Then, the
volume the weight of the ring were determined using equation 7.11 and 7.6,
respectively. To calculate the weight of the ring, the density of ductile cast
iron was used.
Afterwards, the base of the bearing casing was computed. It took the shape
of a parallelepiped characterized by:

lbcb = 2 lb (7.14)

xbcb = 2 rsh (7.15)

hbcb = rex,b − rin,b (7.16)

Where "bcb" is the suffix identifying the bearing casing. Then, the volume
was computed as

Vbcb = nb lbcb xbcb hbcb (7.17)

And the weight obtained through equation 7.6 using the density of ductile
cast iron. Finally, the global weight of the bearing casing was calculated as
the sum of the weights of ring and base,

wbc,tot = wbc + wbcb (7.18)

7.2.4 Discs

Two discs were considered, one for the stator and one for the rotor. Uniform
discs with constant thickness were modelled. Each disc was simulated as a
hollow cylinder spanning from the shaft radius to the blade root radius, as
shown in figure 7.7. Hence, inner and outer radii were given by

rin,d = rsh (7.19)

rex,d = rr,1 + rr,3
2 (7.20)
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Figure 7.7: Inlet end of axial-flow turbines with first disc (Walter
(2013)).

Where the subscript "d" characterizes the disc calculation. The axial ex-
tension of each disc was assumed to exceed that of the blade of 5% (Costa
(2006)). Thus,

ldc = 1.1(cN + cR) (7.21)
The base surface and the volume of the discs were calculated using equation
7.9 and 7.5, respectively. Then, the weight was computed through equation
7.6 using the density of superalloy Rene41.

7.2.5 Blades

A basic blade profile, as shown in figure 7.8, was investigated. The trailing
edge (subscript "te") accounted for the 10% of the overall blade length; its
thickness, tte, was defined during the design routine. Then, the thickness
of the blade varied along the profile: 3 times that of the trailing edge for
the central part; 4 times that of the trailing edge for the leading edge. The
central part of the blade and the leading edge accounted for 70% and 20%
of the overall blade length, respectively. Hence, the blade thickness (tbl) was
computed as

tbl = 0.1tte + 0.7 (3 tte) + 0.2 (4 tte) (7.22)
Next, the blade volume was calculated as

Vbl = tbl hbl b z (7.23)

Where "bl" indicates the blade; h is the blade height, b is the backbone
length and z the number of blades. The blade height is actually an averaged
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Figure 7.8: High-pressure blade profile (Xylon (2011)).

height given by
hbl = hin + hout

2 (7.24)

Where hin and hout are the blade height at inlet and outlet station. Equa-
tions 7.22 and 7.23 were computed for stator and rotor separately. Finally,
the weight of the cascade was calculated with equation 7.6 using the density
of superalloy CMSX-4.

7.2.6 Shrouding

For shrouded tips, the weight of the shrouding ("sr") was accounted for.
The thickness of the shrouding was related to the blade height trough the
factor Qsr = 0.1. The shrouding was modelled as a ring around the tip with
internal and external radii given, respectively, by

rin,sr = rt,1 + rt,3
2 (7.25)

rex,sr = rin,sr +Qsr hR (7.26)

Where hR is the rotor height given by equation 7.24. The shrouding included
rotor and stator-rotor clearance. Thus, its axial extension was given by

lsr = cR + srcl (7.27)

Next, base surface and volume of the shrouding were computed with equa-
tion 7.9 and 7.5, respectively. Finally, the weight was calculated with equa-
tion 7.6 where the density of superalloy Rene 41 was used.
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With the shrouding, the calculation connected to the heaviness of the stage
components was completed. Then, the computational routine concluded
the estimation of the turbine weight by adding those components which are
external to the stage: gear box, feeding duct, exhaust duct and outer casing.

7.2.7 Gear Box

The gear box was schematized as the ensemble of two shafts and two wheels,
designed to bring the rotational speed at the conventional value of Na =
3000 rpm. Therefore, it was implemented only when the axial-flow turbine
was rotating at N 6= Na. Both shafts and wheels were modelled as simple
cylinders. Two identical shafts were considered. Figure 7.9 shows a power
transmission gear box. The axial length of the shafts related to the gear box

Figure 7.9: Power transmission gear box (ACE (2014)).

was assumed to equal that of the "stage portion" of the shaft:

lsh,gb = lsh,S (7.28)

Where the suffix "gb" indicates the gear box. Moreover, the radius of the gear
box shafts was equal to that of the turbine shaft: rsh,gb = rsh. Then, base
surface, volume and weight of the gear box shafts were computed through
equations 7.2 - 7.6.
Afterwards, two wheels ("wh") were modelled, one rotating at turbine rota-
tional speed, identified by subscript "1", and one rotating at alternator ro-
tational speed, indicated with subscript "2". The axial length of the wheels
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was linked to that of the shafts through the factor Qwh = 0.25. In particular,

lwh = Qwh lsh,gb (7.29)

The radius of wheel 1 was related to that of its shaft through the factor
Qwh′ = 1.05. Thus,

rwh1 = Qwh′ rsh,gb (7.30)

On the other hand, the radius of wheel "2" was computed as

rwh2 = rwh1
N

Na
(7.31)

Where N and Na are the turbine and alternator rotational speed, respec-
tively. Then, the weight was calculated for the two wheels considering the
density of copper.
The gear box was completed by an outer casing whose external radius was
related to that of wheel 1 through the factor Qwh′′ = 0.4. In particular, for
N > Na, inner and outer radii are provided by

rin,gbc = rwh2 + 0.005 (7.32)

rex,gbc = rin,gbc +Qwh′′ rwh1 (7.33)

Where the subscript "gbc" refers to the gear box casing. The weight of the
casing was obtained using the density of copper. Finally, the total weight
of the gear box was calculated as the sum of the components:

wgb = 2wsh,gb + wwh1 + wwh2 + wgbc (7.34)

7.2.8 Feeding and Exhaust Ducts

Both the feeding duct and the exhaust duct were represented as hollow
cylinders made up by Rene 41 and St52, respectively.

• Feeding duct. The thickness of the feeding duct was connected to
the inlet blade height of the first stage through the factor Qduct = 0.3.
The inner and outer radii were given by

rin,feed = rt,1,first stage (7.35)

rex,feed = rin,feed +Qduct h1,first stage (7.36)

The length of the duct was given by the factor Qsh′ and axial extension
of the first stage:

lfeed = Qsh′

2 (cN + cR + srcl)first stage (7.37)

The volume and weight of the duct were determined using equation
7.6.
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• Exhaust duct. The thickness of the exhaust duct depended on the
exit blade height of the last stage through the factor Qduct. In partic-
ular,

rin,exh = rt,3,last stage (7.38)

rex,exh = rin,exh +Qduct h3,last stage (7.39)

The length of the duct was given by factor Qsh′ and axial extension of
the last stage:

lfeed = Qsh′

2 (cN + cR + srcl)last stage (7.40)

The weight of the exhaust duct was computed in the usual way.

7.2.9 Labyrinth seal

The weight of the labyrinth seal was estimated by following a different ap-
proach. Indeed, it was purely assumed to account for a certain percentage
of the total weight of all the other components, including the outer casing.
Such a percentage was given by the factor Qlab = 0.05. Therefore,

wlab = Qlab
∑
i

wi (7.41)

Where the index i refers to each component of the turbine.

7.2.10 Casing

Finally, the expander outer casing was implemented. It was simulated as
a hollow cylinder of structural steel St52. Its thickness was related to the
blade height through the factor Qc = 1.6. Internal and external radii were
given by

rin,c = rout,sr + 0.01 (7.42)

rex,c = rin,c +Qc (hN + hR
2 ) (7.43)

The axial extension of the casing was connected to that of the turbine by
the factor Qc′ = 1.2. Thus,

lc = Qc′ lsh (7.44)

Then, volume and weight of the casing were computed through equations
7.5 and 7.6.
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7.2.11 Total Weight and Volume Requirements

The calculations described from section 7.2.1 - 7.2.6 were computed for each
stage. Then, the overall expander weight was calculated as

wtot = (
nst∑
j

stage comp.∑
i

wi,j) + wgb + wfeed + wexh + wlab + wc (7.45)

Where index j is related to the number of stages and index i to the stage
components. Finally, the overall volume requirements for the turbine were
computed as

Vtot = Qerr πr
2
ex,tot lex,tot (7.46)

Where rex,tot was the maximum value between the outer radius of the ex-
ternal casing and that of the gear box casing; lex,tot was the total extension
of external casing and gear box:

lex,tot = lc + lsh,gb (7.47)
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8
Applications

In the present study, the computational model was used for the following
applications:

1. Determination of the turbine optimal design for given cycle require-
ments;

2. Drawing of the turbine efficiency charts, studying the efficiency profile
for different inlet pressures as a function of the specific speed Ns;

3. Comparison of the turbine performance for three competing heat re-
covery systems, in the context of the Draugen offshore platform;

4. Comparison of the turbine performance for three organic working flu-
ids;

5. Evaluation of the effects of binary mixture composition on turbine
performance.

First, the computational model was applied to the case of study of the Drau-
gen offshore platform (see Chapter 3). In this context, the thesis provided
a tool for the prediction of the performance of the axial-flow turbine of the
heat recovery system.
Afterwards, the simulation model was applied to the study of a different off-
shore platform, investigating three competing ORC heat recovery systems.
In particular, the performance of the expander was investigated for three
different ORC units handling cyclopentane, MDM and R245fa.
Finally, the effects of the composition of a binary mixture on both the tur-
bine isentropic efficiency and the cycle performance were evaluated in the
context of a liquid heat source at 120◦.
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8.1 Optimal Design Point
The computational simulations were performed modelling a single-stage tur-
bine, with constant axial velocity through the stage. The input data for the
design and optimization process derived from a previous optimization of the
thermodynamic cycles; depending on the context different objective func-
tions were selected. Table 8.1 presents the boundary conditions provided by
the thermodynamic cycles. As already said, a complete list of the inputs
for the design routine can be found in Appendix D. Starting from this in-

Table 8.1: Cycle requirements imposed to the design and optimiza-
tion process.

Parameter Symbol
Mass flow rate [kg/s] ṁ
Total inlet temperature [K] T01
Total inlet pressure [bar] p01
Expansion ratio pr
Fluid
Designer choice
Rotational speed [rpm] N
Number of stages nst

put data, the optimization rendered the best set of optimizing variables in
terms of optimal total-to-static efficiency of the axial-flow turbine. Then,
the optimal design was obtained.

8.2 Efficiency Chart
Once the optimal solution was calculated for a given set of boundary con-
ditions, the thesis investigated the turbine performance for different mass
flow rates and inlet pressures. In particular, the total-to-static efficiency was
drawn as a function of the specific speed (Ns).
The total-to-static efficiency was defined in chapter 2 using equation 2.2.
The specific speed Ns is a dimensionless parameter related to the size and
the rotational speed of the turbine. It is given by

Ns =
N
√
V̇out

∆h3/4
is

(8.1)

Where N is the rotational speed of the turbine expressed in [rev/s],
√
V̇out

is the volumetric rate at the exit of the stage and ∆his is the isentropic
enthalpy drop.
For a given value of the inlet pressure, the specific speed was changed by
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varying the mass flow rate. Depending on the application, the mass flow rate
ranged between 5 kg/s and 800 kg/s, resulting in a specific speed extending
from 0.01 to 0.19. The same procedure was repeated for different values
of the inlet pressure; depending on the situation and on the fluid, the inlet
pressure covered a wide range, spanning from 2.36 bar for a gas turbine to 40
bar for a cyclopentane turbine. All the other boundary conditions remained
unchanged during the drawing of the efficiency charts.

8.3 Comparison between ORC, SRC and ABC
Axial Expanders

This comparison took place in the context of the Draugen offshore plat-
form. A wider analysis of the platform, performed by Pierobon et al. (2013),
took into consideration three competing heat recovery systems and com-
pared them in order to find the most effective solution in terms of cycle
performance, net present value, weight and carbon dioxide emissions. In
particular, organic Rankine cycle (ORC), steam Rankine cycle (SRC) and
air bottoming cycle (ABC) were paralleled. Nevertheless, this study did
not account for variations of turbine efficiency. For this reason, the thesis
participated in the investigation by providing a simulation model for the pre-
diction of the performance of the expander for the three bottoming cycles.
In the three cases, a single-stage turbine was designed using the data com-
ing from a previous optimization of the thermodynamic cycle; the maximum
net present value of the cycle was the objective function of the optimiza-
tion problem. The three axial-flow turbines were analysed by comparing the
three design points and the efficiency charts.
Something more should be said on the choice of the rotational speed for
each turbine. This was equal to 3000 rpm for the ORC turbine, handling
cyclopentane. Indeed, this rotational speed was found to be suitable for
this kind of expander, allowing to couple turbine and generator without the
need of a gear box. On the other hand, N = 11700 rpm was chosen for the
steam turbine since this rotational speed appeared as the aptest choice for
the design mass flow rate equal to ṁ = 7.299 kg/s, based on data proposed
by Mitsubishi (2012). Finally, N = 3600 rpm for the ABC was selected to be
equal to the rotational speed of the SGT500, i.e. the turbine of the topping
cycle of the Draugen offshore platform; this would allow to use the same
shaft for the two turbines.
Finally, it should be observed that at the end of the steam expansion two
phases occur. Therefore, wet loss must be accounted for. This study calcu-
lated the efficiency penalization due to the wet loss using the methodology
proposed by Kotton (1998), described in Chapter 4.
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8.4 Axial-Flow Turbine Performance for different
Working Fluids

A major topic in investigation of organic Rankine cycles is the working fluid
selection, since it affects cycle performance and component design. Hazard
levels, ozone depletion potential (ODP), global warming potential (GWP)
and thermal stability must also be considered. When choosing a working
fluid for an ORC, it is therefore necessary to consider many different parame-
ters, in order to reach a feasible design. For this reason, another interesting
application is related to the investigation of the turbine performance for
different organic working fluids. In particular, the examination compared
three heat recovery systems for an offshore application. The topping cycle
was given by a gas turbine, while the bottoming cycle was an ORC unit
operating with three representative working fluids:

• Cyclopentane as hydrocarbon (HC). It is a highly flammable alicyclic
hydrocarbon with chemical formula C5H10. It occurs as a colourless
liquid with a petrol like odor. Its melting and boiling point are at
94◦C and 49◦C, respectively;

• MDM as siloxane. Precisely it is an octamethyltrisiloxane, a heavy
organic compound with molar mass equal to M = 236.53;

• R245fa as refrigerant. It is also called pentafluoropropane and it is a
refrigerant used primarily for closed-cell spray foam insulation. Unlike
CFC and HCFC, blowing agents formerly used for this purpose, it has
no ozone depletion potential and is nearly non-toxic. It does have a
high GWP, equal to 950.

The selected fluids are commercially available and suitable for ORC appli-
cations; also, they allow to operate under subcritical conditions. Moreover,
the three fluids cover a wide range of thermodynamic properties: critical
pressure varying from 14.1 bar to 45.1 bar, critical temperature ranging
from 154.1◦C to 291◦C and molecolar weight varying from 70.13 kg/kmol to
236.5 kg/kmol. Figure 8.1 shows the T-s diagram for the considered fluids.
Furthermore, this fluid selection allowed to identify limitations and benefits
of selected ORC fluids. In particular, R245fa and cyclopentane are charac-
terized by high critical temperature in comparison with other refrigerants
and liner hydrocarbons, respectively. Similarly, MDM steam temperature
in subcritical conditions is close to best hydrocarbons value; it is a dry fluid
with low critical pressure and for this reasons it is used in various commer-
cial ORC units.
The comparison was performed analysing the optimal design for three single-
stage turbines. The sets of boundary conditions was provided by a previous
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Figure 8.1: T-s diagram for cyclopentane, MDM and R245fa.

optimization of the thermodynamic cycle; for the three fluids, the temper-
ature of the hot gases and the requirements of the cooling fluid remained
unchanged. The maximum net power output of the cycle represented the ob-
jective function for the optimization process. It should be pointed out that
the three cycles were modelled in order to work in subcritical conditions.
Finally, the efficiency charts for the three turbines were also paralleled.

8.5 Performance Analysis for Axial-Flow Turbines
Operating Binary Fluids

Although an abundant literature is available on fluid selection for pure flu-
ids, binary working fluids have been studied far less, despite the available
literature suggesting possible performance benefits when zeotropic mixtures
are used in organic Rankine cycles. The non-isothermal change phase of
zeotropic mixtures can be utilized to optimize the heat transfer processes in
the evaporator and the condenser thus increasing the efficiency of the ORC.
The thesis examined the effects of the composition of an isopentane/isobu-
tane mixture on the performance of a single-stage axial-flow turbine. The
case of study was given by the ORC unit simulated as described in table
8.2. The heat source was liquid water at 120 ◦C representing a geother-
mal heat source. The thermodynamic cycle was optimized considering the
maximum net power output as the objective function of the optimization
process. Initially, the organic Rankine cycle unit was optimized at different
mixture compositions by assuming a constant isentropic efficiency. Subse-
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Table 8.2: Modelling conditions for the ORC operating binary mix-
tures as working fluids.

Quantity Value
Heat source (water)
Heat source temperature 393.15 K
Heat source mass flow rate 50 kg/s
Heat source pressure 4 bar
Condenser
Cooling water inlet temperature 298.15 K
Cooling water temperature rise 5 K
Min. temperature difference 5 K
Outlet vapour quality 0
Cooling water pressure 4 bar
Pump
Isentropic efficiency 0.8
Boiler
Min. temperature difference 10 K
Turbine
Isentropic efficiency 0.8
Min. vapour quality at the outlet 1

quently, the turbine was designed for each optimal solution and the new
cycle performance was evaluated including the actual expander efficiency.
Finally, the analysis of the losses occurring within the single-stage turbine
was carried out.
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9
Results And Discussion

9.1 Heat Recovery System for Draugen Offshore
Platform

9.1.1 Optimal Design Point for the ORC Axial-Flow Turbine

The design and optimization process was applied to the ORC heat recovery
system of the Draugen offshore platform. The topping cycle was the gas
turbine SGT500 described in chapter 3, while the bottoming cycle was an
organic Rankine cycle operating with cyclopentane. The cycle requirements
are reported in table 9.1. This set of data came from a previous optimiza-

Table 9.1: Design Boundary conditions for the ORC single-stage
axial-flow turbine. Draugen offshore platform.

Parameter Value
ṁ [kg/s] 45
T01 [K] 513
p01 [bar] 30
pr 0.0333
Fluid Cyclopentane
Designer choice
N [rpm] 3000
nst 1

tion of the ORC unit, where the maximum net present value represented the
objective function (Pierobon et al. (2013)). The optimal set of optimizing
variables is described in table 9.2.
Table 9.3 presents the optimal design solution. For the meaning of the

symbols in the table, see Chapter Nomenclature.
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Table 9.2: Ideal set of optimizing parameters for the ORC single-
stage turbine. Draugen offshore platform.

Variable Optimal Value
α1 0.8834◦
φN 0.3356
ψ 3.4057
omin [m] 0.02
oR [m] 0.0077
cN [m] 0.0773
cR [m] 0.0422
oN/sN 0.2382
oR/sR 0.439
h2/h2′ 1.0577

A representation of the velocity diagram is displayed in figure 9.1. The figure
highlights how the analysis was carried out using the hypothesis of constant
axial velocity. Moreover, it confirms that the optimal solution is given by
an impulse turbine, with a degree of reaction of Λ = 0.14.
Figure 9.2 shows the blade geometry. It denotes a big increase in the ro-

Figure 9.1: Velocity triangles of the optimal ORC single-stage tur-
bine. Draugen offshore platform.

tor height (hR) due to the density drop. Indeed the density decreases from
5.9 kg/m3 to 1.7 kg/m3. Since mass flow rate and axial velocity remains
basically constant, the density reduction turns in a proportional height en-
hancement, from 0.016 m to 0.054 m. Both the quantities are characterized
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Table 9.3: Optimal design features of the ORC single-stage turbine.
Draugen offshore platform.

Performance
ηtt 0.746
ηts 0.724
P [MW] 5.635
Ws [MJ/kg] 0.126
Blade Geometry
zN 44
zR 303
sN [m] 0.121
sR [m] 0.018
h1 [m] 0.001
h2 [m] 0.016
h3 [m] 0.054
rm [m] 0.844
Λ 0.14
Thermodynamic States
T02 [K] 494.5
p02 [bar] 11.62
ρ2 [kg/m3] 5.879
T03 [K] 422.8
p03 [bar] 1.001
ρ3 [kg/m3] 1.728
Velocity Diagram
Um [m/s] 265.0
Ca [m/s] 88.51
C2 [m/s] 374.6
W3 [m/s] 198.9
α2 [◦] 76.34
β2 [◦] 48.17
α3 [◦] -44.55
β3 [◦] 63.58
M2 1.619
M3,rel 0.872
Craig-Cox Losses
XP,N [MJ/kg] 1.006
XS,N [MJ/kg] 1.915
XP,R [MJ/kg] 0.166
XS,R [MJ/kg] 0.118
Xan [MJ/kg] 0.132
XI,N [MJ/kg] 2.454
XI,R [MJ/kg] 0.351
YII 0.040
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Figure 9.2: Blade geometry of the optimal ORC single-stage turbine.
Draugen offshore platform.

Figure 9.3: T-s static diagram of the optimal ORC single-stage tur-
bine. Draugen offshore platform.
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by a variation ratio of h3/h2 = ρ2/ρ3 = 3.42. The high increase in the
rotor height translates in a value of the rotor flare angle equal to the upper
constraint, δR = 25◦. Because of this safety requirements on the flare angle,
assuming fixed the blade height by an optimal annulus area, the rotor axial
chord had to assume a precise value given by equation 4.45. In particular,
cN = 0.044 m.
The T-s static diagram of the expansion is reported in figure 9.3. From
the diagram the efficiency of the rotor appears higher than that of the sta-
tor. Indeed, a smaller temperature drop occurs in the stator in spite of a
higher entropy production. Moreover, the overall turbine efficiency, ηtt =
0.746, agrees with the observable temperature difference between real and
isentropic conditions, around 25 K.
Finally, the results of the approximated calculation of weight and volume
requirements are presented in table 9.4. The power output of P = 5.63 MW

Table 9.4: Weight and volume requirements for each component of
the optimal ORC single-stage turbine. Draugen offshore platform

Component Weight [ton] Volume [m3]
Shaft 2.852 -
Bearings 1.566 -
Bearings casing 0.422 -
Discs 2.768 -
Blades 0.020 -
Shrouding 0.017 -
Casing 1.964 -
Gear System 0 -
Seals 0.488 -
Feed Duct 0.100 -
Exhaust Duct 0.402 -
Other/Inaccuracy 3.225 -
Turbine 13.83 3.57

leads to a specific weight of 2.45 ton/MW and a specific volume re-
quirements of 0.63 m3/MW.
Figure 9.4 shows the breakdown of the turbine weight. The plot shows that
the heavier components are the shaft (21%), the discs (20%) and the casing
(14%). In this case, the gear box is not accounted for due to the fact that
the expander rotates at 3000 rpm.
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Figure 9.4: Breakdown of the weight of the optimal ORC single-stage
turbine. Draugen offshore platform.

9.1.2 Efficiency Chart

After the determination of the optimal design, the study proceeded with
the evaluation of turbine performance for different working conditions. In

Figure 9.5: Total-to-static efficiency as a function of the specific
speed for p01 equal to 5, 10, 20, 30 bar. ORC single-stage axial turbine.

particular, the optimal design was defined for different inlet pressures and
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mass flow rates: for a given inlet pressure the total-to-static efficiency was
drawn as a function of the specific speed. The mass flow rate ranged from 20
kg/s to 800 kg/s, causing a variation of the specific speed from 0.02 to 0.125
(equation 8.1). The procedure was repeated for four total inlet pressures
(p01) varying from 5 bar to 30 bar (design condition). The pressure ratio
changed accordingly to the inlet pressure in order to maintain 1.01 bar at the
exit of the turbine. Indeed, the final total pressure was assumed to be fixed
by the condenser and it was considered slightly higher than one; this allowed
to avoid depressions in the condenser, which would cause air leaking inside.
Figure 9.5 shows the total-to-static efficiency as a function of the specific
speed for inlet pressure of 5 bar, 10 bar, 20 bar and 30 bar. The plot was
built exploiting the optimization results reported in Appendix H.3. Figure
9.5 highlights that the efficiency presents a maximum for a given specific
speed. The optimal specific speed (Nsopt) slightly increases when decreas-
ing the inlet pressure, as summarized by table 9.5. The table suggests that

Table 9.5: Maximum efficiency and optimal specific speed for vari-
able inlet pressures. ORC single-stage axial turbine.

p01 [bar] ηts,max Nsopt
30 0.849 0.1
20 0.860 0.107
10 0.884 0.111
5 0.897 0.122

the maximum efficiency for the expander is not reached in correspondence
of the design configuration provided by Pierobon et al. (2013). Indeed, at
design pressure, while the optimal net present value of the cycle is reached
for Nsopt = 0.031, the ideal condition for the turbine is given by Nsopt =
0.1. In terms of mass flow rates, ṁopt = 500 kg/s for the expander, leading
to a turbine efficiency of ηts = 0.849; ṁopt = 45 kg/s for the ORC unit,
implying a turbine efficiency of ηts = 0.724. This might shift the optimal
design condition of the cycle towards higher mass flow rates.
Furthermore, figure 9.5 also shows how the turbine efficiency increases when
decreasing the inlet pressure and so the pressure drop. Indeed, lower pres-
sure drops bring to smaller fluid accelerations and lower fluid deviations.
Both these factors turn in reduced loss and higher turbine efficiency.
Finally, figure 9.5 highlights how the trend of the efficiency is not parabolic.
Indeed, although the profile presents a maximum, the curve is steeper be-
fore the peak than after it. To understand the reasons underlying such
phenomenon, an analysis of the losses as a function of the specific speed was
carried out. The losses investigation was performed only at design pressure
(30 bar), being conceptually analogous for each pressure. Several competing
losses defines the turbine efficiency (Chapter 2). In the present thesis the
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overall loss was divided into two groups, expressed in table 4.2, as suggested
by Craig & Cox (1971). While the group 1 losses was expressed in [MJ/kg],
the group 2 loss was provided as an efficiency debit to be subtracted to the
efficiency calculated through the group 1 loss. While group 1 loss was ex-
amined for nozzle and rotor separately, group 2 loss was related to the stage
as a whole.
Figure 9.6 displays all the fractions of group 1 dissipation as a function of
specific speed. In the figure each contribution is added to the sum of the pre-

Figure 9.6: Group 1 loss fractions as a function of specific speed.
ORC single-stage axial turbine.

vious ones, in order to highlight the different profiles. The annulus loss was
given as a single coefficient for stator and rotor, since the nozzle share was
found to be practically constant and overriding the rotor one. The meaning
of the symbols in the figure is the following: X indicates the loss coefficient;
the subscripts "N" and "R" stand for nozzle and rotor, respectively; "P" in-
dicates the profile loss, "S" the secondary loss and "an" the annular loss.
Figure 9.6 suggests that:

• Certain losses present a minimum, while other are characterized by a
monotone trend. In particular, nozzle profile losses, rotor profile losses
and rotor secondary losses present a minimum. Nozzle secondary losses
and annulus losses decrease for increasing specific speed. The present
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chapter will refer to the first type of loss as A loss and to second type
as B loss;

• Within B loss, the annulus dissipation is practically constant, while
nozzle secondary loss decreases remarkably;

• A and B losses compete after the minimum point. However, the en-
hancement of group A loss after the minimum point exceeds the re-
duction of B loss. As a result, the overall group 1 loss still presents a
minimum, with the curve raising less steeply after it (figure 9.7);

• As a consequence of the decreasing trend of B loss, the absolute value
of group 1 loss is higher for low specific speeds than for high specific
speed;

• Rotor losses are less affected than the nozzle losses by the specific
speed.

The last three points can be clarified drawing the profile of the group 1
overall loss, shown in figure 9.7. The figure displays the group 1 loss for the
stator (XI,N ), the group 1 loss for the rotor (XI,R) and the global group 1
loss given by the sum of the two (XI,tot). The figure actually exhibits a min-

Figure 9.7: Group 1 overall loss as a function of specific speed. ORC
single-stage axial turbine.
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imum for the group 1 overall loss. Nevertheless, the curve is flatter after the
minimum than before it. Moreover, the loss absolute value is smaller after
the minimum than before it. Both of this facts are due to the competition
of A and B losses. Furthermore, figure 9.7 confirms that the rotor loss is
less significant than nozzle loss and it is less affected by the mass flow rate.
Finally, the trend of group 2 loss (YII) is reported in figure 9.8; it reflects
a monotone decreasing trend with the specific speed. Therefore, the same
conflict experienced by A and B losses was repeated between group 1 and
2 losses. As a result, although the overall loss presents a minimum, the

Figure 9.8: Group 2 overall loss as a function of specific speed. ORC
single-stage axial turbine.

curve raises less steeply after the minimum than before it, causing a lower
dissipation value. This behaviour of the losses explains why the efficiency
profile presents a maximum and why after the maximum it decreases slower
than before it.

On the other hand, the losses behaviour can be explained resorting to the
methodology presented by Craig & Cox (1971). Actually, since the lift coef-
ficient remained basically constant, due to an inlet blade angle ranging from
-2◦ to 2◦, the investigation should mainly focus on fluid velocity and fluid
deviation. While the power output grows when increasing the mass flow
rate, the specific work remains constant. Indeed it depends on the enthalpy
drop, fixed by the pressure drop; also, it is given by a trade-off between
blade velocity (Um), axial velocity (Ca) and fluid deviation (see equation
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2.3). In particular, group 1 loss profile can be examined before and after
the minimum point:

• Ns < Nsopt. Initially, the increase in size leads to an increase in
blade velocity, which causes an enhancement of the contraction ratio
(CR) and a decrease in fluid deviation; this produces smaller losses
(Appendix B). Nevertheless, the reduction in fluid deviation cannot
equalize the growth in Um. For this reason the axial velocity slightly
decreases, translating in smaller losses. In this context, the bigger
mass flow rate is absorbed by taller blades.
Further increasing the mass flow rate, the blade velocity grows slower,
while the axial velocity remains basically constant; this produces a
smaller loss reduction.

• Ns > Nsopt. After the minimum, Um starts to diminish, while Ca
has to increase to absorb the mass flow rate; the higher axial velocity
is the main responsible for the greater losses occurring in the axial-
flow turbine. Moreover, in this zone the fluid deviation increases, also
contributing to growing losses.

On the contrary, group 2 loss follows the so-called size effect. Indeed, tip
leakage loss, disc windage loss and other group 2 losses are due to the fact
that a certain fraction of fluid is lost without producing power. However,
this portion of fluid becomes relatively less significant increasing the total
power outcome, leading to lower group 2 losses.

9.1.3 Comparison between ORC, SRC and ABC Axial Ex-
panders

In the context of a wider study of the Draugen offshore platform, three ther-
modynamic cycles were analysed in order to identify the most effective heat
recovery system. The comparison was performed among organic Rankine
cycle (ORC), steam Rankine cycle (SRC) and air bottoming cycle(ABC) by
Pierobon et al. (2013). In this section the expanders for the three bottoming
cycles are designed and compared.

Optimal Design

Cyclopentane was operated as working fluid for the ORC, while steam and
air were used for SRC and ABC, respectively. Table 9.6 reports the boundary
conditions provided by Pierobon et al. (2013), i.e. assuring the maximum
net present value for each cycle. The table infers that the specific enthalpy
drop for steam is much higher than that of cyclopentane and air, due to the
high pressure drop. This leads to similar power ouputs for ORC and SRC
in spite of the difference in mass flow rate. Moreover, it should be observed
that while the inlet pressure is close to the critical value (≈ 45 bar) for
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Table 9.6: Boundary conditions for the design of ORC, SRC and
ABC single-stage axial turbines.

ORC SRC ABC
Fluid Cyclopentane Steam Air
ṁ [kg/s] 45 7.299 87.5
T01 [K] 513.15 629.8 605.9
p01 [bar] 30 12.57 2.46
pr 0.033 0.010 0.407
Designer choice
N 3000 11700 3600
nst 1 1 1

cyclopentane, the steam and air expanders work far from critical conditions.
Table 9.7 presents a comparison among the optimal designs for the three
turbines. The table shows that the air turbine is characterized by the highest
efficiency. This is probably connected to the fact that it is subsonic, while
ORC and SRC expanders are supersonic machines.
The velocity triangles for the three turbines are shown in figure 9.9. The
plot confirms the low degree of reaction for the three turbo-machineries. The
steam turbine, especially, is characterized by Λ = 0.107. The low reaction,
together with a high pressure drop, turns in high fluid acceleration within
the nozzle which then implies high Mach number and high losses.
Figure 9.10 compares the blade geometry for the three single-stage turbines.
The figure shows a relevant growth of the blade height across the stage for
the expanders. This increase is provoked by the decrease in density, since
mass flow rate and axial velocity do not change across the stage (recall the
continuity equation). The main effect of the density drop is observable in
the rotor, where the greater variation in blade height occurs:
h3/h2 = 3.425 for cyclopentane;
h3/h2 = 21.5 for steam;
h3/h2 = 1.354 for air.
This brings to different considerations:

• Cyclopentane. See section 9.1.1

• Steam (Fig. 9.10b). The elevated pressure drop, higher than 100,
is the main responsible of this decrease in density (21.5). In order
to restrain the value of the flare angle, the rotor axial chord reaches
the upper limit, equal to 0.08 m. Nevertheless the rotor flare angle
assumes a value of δ = 54◦, more than twice the safe limit proposed by
Ainley & Mathieson (1955). This suggests that a multi-stage configu-
ration is required. In this way, the pressure drop would be distributed
among different blade rows, guaranteeing an acceptable load for each
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Table 9.7: Optimal design for ORC, SRC and ABC single-stage axial
turbines.

ORC SRC ABC
Performance
ηtt 0.746 0.89 0.922
ηts 0.724 0.805 0.887
P [MW] 5.635 5.633 11.08
Ws [MJ/kg] 0.126 0.766 0.126
Blade Geometry
zN 44 78 28
zR 303 82 29
sN [m] 0.121 0.044 0.170
sR [m] 0.0175 0.042 0.155
h1 [m] 0.001 0.003 0.174
h2 [m] 0.016 0.012 0.254
h3 [m] 0.054 0.258 0.344
rm [m] 0.844 0.547 0.735
Λ 0.14 0.107 0.175
Thermodynamic States
T02 [K] 494.5 626.3 605.8
p02 [bar] 11.62 8.426 2.32
ρ2 [kg/m3] 5.879 1.109 0.954
T03 [K] 422.8 323.1 484.0
p03 [bar] 1.001 0.133 1.001
ρ3 [kg/m3] 1.728 0.055 0.698
Velocity Diagram
Um [m/s] 265.0 670.5 277.0
Ca [m/s] 88.51 156.5 76.35
C2 [m/s] 374.6 784.3 388.5
W3 [m/s] 198.9 329.8 217.6
α2 [◦] 76.34 78.49 78.67
β2 [◦] 48.17 33.68 53.72
α3 [◦] -44.55 -67.3 -43.77
β3 [◦] 63.58 61.68 69.46
M2 1.619 1.483 0.843
M3,rel 0.872 0.216 0.498
Craig-Cox Losses
XI,N [MJ/kg] 2.454 7.246 0.496
XI,R [MJ/kg] 0.351 0.529 0.157
YII 0.040 0.024 0.002
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(a) ORC

(b) SRC

(c) ABC

Figure 9.9: Velocity triangles for ORC, SRC and ABC turbines
single-stage axial turbines.
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row. Real solutions also include more complex configurations, split-
ting the mass flow rate between two low-pressure stages.
This analysis considered a single-stage steam turbine in order to per-
form a consistent comparison among the three alternatives. Neverthe-
less, a more realistic simulation of steam turbines is recommended.

• Air (Fig. 9.10c). The situation of the air expander is between
the previous cases: in spite of a low relative height growth (1.35)
the absolute increase is remarkable (0.09 m). As a result, the upper
limit for the flare angle (25◦C) is reached together with the upper
bound of the axial chord (0.08 m). Therefore, although the single-stage
configuration is acceptable, multi-stage solutions should be taken into
consideration for higher pressure drops or bigger mass flow rates.

Figure 9.11 reports the T-s static diagram for the three axial-flow turbines.
The figure exhibits a higher efficiency of the rotor compared to that of the
stator for ORC and SRC expanders. On the contrary, stator and rotor have
similar efficiencies for the ABC turbine. Furthermore, the figure confirms a
higher overall efficiency for SRC and ABC turbines compared to the ORC
one. Indeed, the temperature difference between real and isentropic condi-
tions is equal to 11 K for the steam turbine, 9 K for air turbine and 25 K
for cyclopentane turbine.
Finally, the three axial turbines were compared in terms of weight and vol-
ume requirements. Same Q factors, thus same geometrical proportions, were
assumed for the three expanders. Table 9.8 presents the weight and the vol-
ume of the expanders.
Analysing the table it is possible to state that:

Table 9.8: Weight and volume requirements for ORC, SRC and ABC
single-stage axial turbines.

ORC SRC ABC
Weight [ton] 13.83 17.97 50.87
Volume [m3] 3.57 4.68 12.49
Specific Weight [ton/MW] 2.45 3.19 4.59
Specific Volume [m3/MW] 0.63 0.83 1.13

• The ORC turbine is the smallest solution in terms of volume require-
ments and the lightest in terms of weight. Nevertheless, table 9.7
exhibits an external diameter of:
Dex = 1.742 m for ORC turbine;
Dex = 1.352 m for SRC turbine;
Dex = 1.814 m for ABC turbine.
From which the steam turbine would appear as the most compact so-
lution. On the other hand, it should be recalled that SRC and ABC
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(a) ORC

(b) SRC

(c) ABC

Figure 9.10: Blade geometry for ORC, SRC and ABC single-stage
axial turbines.
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(a) ORC

(b) SRC

(c) ABC

Figure 9.11: T-s static diagram for ORC, SRC and ABC single-stage
axial turbines.
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turbines use a gear box to reduce the rotational speed. In particular,
the gear box of the steam turbine assumes a significant size due to
the relevant rotational speed reduction from 11700 rpm to 3000 rpm.
Therefore, this component is responsible for the higher weight and
volume requirements of the SRC expander (figure 9.12).

• The ABC turbine is the biggest and heaviest solution. The elevated
absolute values of weight and volume (50.87 ton and 4.59 m3) are
connected to the high power output (high mass flow rate), necessary
to satisfy the compressor requirements. On the other hand, the high
specific weight and volume can be explained considering the small spe-
cific work and the small density compared to SRC and ORC turbine,
respectively. In the first case, a higher air mass flow rate is required
to produce the same amount of power produced by steam. In the sec-
ond case, although the specific work is the same, the same mass of air
occupies a larger volume compared to cyclopentane.

Figure 9.12 shows the breakdown of the weight for the three expanders.
Although the figures result from an approximate calculation, it is possible
to observe that:

• The relative importance of the gear box is significant for the SRC
turbine (29%), while is less relevant for the ABC turbine (6%). This
relates to the rotational speed of the two turbines: N = 11700 rpm
and N = 3600 rpm, respectively. The gear box is absent in the ORC
turbine (N = 3000 rpm).

• The relative importance of the shaft decreases going from ORC (21%)
to SRC (5%) to ABC (3%) turbine. A similar behaviour can be ob-
served for the discs: their relative importance diminishes going from
ORC (20%) to SRC (5%) to ABC (3%).

• The relative weight of the casing increases going from ORC (14%) to
SRC (26%) to ABC (49%) turbine. This is connected to the increase
in blade height registered for the three technologies. A similar trend
is observed for feeding and exhaust ducts.
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(a) ORC

(b) SRC

(c) ABC

Figure 9.12: Breakdown of the weight of ORC, SRC and ABC single-
stage axial turbines.
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Efficiency Chart

After the comparison between the optimal design conditions, the perfor-
mance of the expanders at different mass flow rates was investigated.
At design pressure, the mass flow rate varied between 5 kg/s and 35 kg/s
for the SRC turbine and between 5 kg/s and 250 kg/s for the ABC turbine.
This translated in a specific speed ranging from 0.06 - 0.16 and 0.007 - 0.15,
respectively. Figure 9.13 compares the efficiency trends as functions of the

Figure 9.13: Total-to-static efficiency as a function of the specific
speed at design inlet pressure for ORC, SRC and ABC single-stage
axial turbines.

specific speed. The optimization results for SRC and ABC turbines are re-
ported in Appendix H.3. The figure displays a similar maximum efficiency
for SRC and ORC turbines, while this value is higher for the ABC expander.
Additionally, the efficiency profile for air is wider than that computed for
steam and cyclopentane. Indeed, the Ns range covered by the combination
of the ORC and SRC turbines, is basically covered by the ABC expander
alone. On the other hand, the Ns range is similar for ORC and SRC tech-
nologies, but the efficiency profile for SRC is shifted towards higher specific
speed. This behaviour is probably linked with the greater rotational speed
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of the SRC turbine. Finally, it should be noted that even though the air
turbine curve is wider, the ORC turbine is the most flexible solution in terms
of mass flow rate.
The trend of the efficiency can be explained through the losses analysis. The
plots obtained for the ORC turbine are reported in figures 9.6 - 9.8. Simi-
larly, group 1 and group 2 losses are paralleled for SRC and ABC turbines
in figures 9.14 and 9.15, respectively. Similar considerations to those carried
out for cyclopentane can be repeated. Indeed, while group 1 loss presents
a minimum, group 2 loss is characterized by a monotone decreasing profile.
The behaviour of group 1 loss relates to a trade-off between blade velocity,
axial velocity and fluid deviation (Section 9.1.2). Moreover, figures 9.14 and
9.15 exhibit flatter loss profiles for the ABC turbine compared to the SRC
one. In other words, the losses are less affected by the turbine size for the
ABC expander. This might be connected to the fact that, in this case, the
enhancement in mass flow rate is mainly absorbed by an increase in blade
height, thus allowing for small variations of the axial velocity.
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(a) SRC

(b) ABC

Figure 9.14: Group 1 loss for SRC and ABC single-stage axial tur-
bines.
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(a) SRC

(b) ABC

Figure 9.15: Group 2 loss for SRC and ABC single-stage axial tur-
bines.
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9.2 Axial-Flow Turbine Performance for different
Working Fluids

9.2.1 Optimal Design

In this context, the heat source consisted in a gas turbine of an offshore plat-
form. Three bottoming cycles operating three organic fluids were compared.
The set of boundary conditions for the turbine design was provided by a
previous optimization of the thermodynamic cycle; the maximum net power
output of the cycle represented the objective function of the optimization
problem. Three subcritical organic Rankine cycles operating cyclopentane,
MDM and R245fa were investigated. Three single-stage turbines were mod-
elled.
Table 9.9 reports the cycle requirements. The optimal set of optimizing

Table 9.9: Boundary conditions for the three ORC single-stage axial
turbines.

Cyclopentane MDM R245fa
ṁ [kg/s] 72.09 95.64 204.2
T01 [K] 502.4 558.5 421.6
p01 [bar] 40 13 33
pr 0.086 0.115 0.258
Designer choice
N 3000 3000 3000
nst 1 1 1

parameters for each fluid is presented in table 9.10, where the blue colour
indicates that the maximum limit is reached, while the green colour refers
to the lower constraints.
Table 9.11 presents the optimal design configuration for the three ex-

panders. The table displays how MDM and R245fa cycles are characterized
by a higher efficiency of the turbine. Nevertheless, more efficient expanders
do not necessarily turn in more efficient cycles. Indeed, the table also shows
a higher power output for cyclopentane in spite of a lower mass flow rate,
suggesting a better efficiency for this cycle. An interesting application would
consist in including the computational routine in more complex simulation
models investigating the overall performance of the thermodynamic cycles.
Figure 9.16 gives some more insights comparing the velocity triangles. The
figure portrays three turbine with a low degree of reaction. In particular,
the R245fa expander is characterized by a reaction of 0.085.
Furthermore, the velocity diagrams highlight a decrease in the axial velocity
from cyclopentane to MDM and from MDM to R245fa. Although this trend
seems to contradict the increase in mass flow rate, it is connected to the tur-
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(a) Cyclopentane

(b) MDM

(c) R245fa

Figure 9.16: Velocity triangles for the three ORC single-stage axial
turbines.
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Table 9.10: Optimizing variables for the three ORC single-stage axial
turbines.

Cyclopentane MDM R245fa
α1 [◦] 1.8532 0.9999 0.8696
φN 0.3277 0.6780 0.7772
ψ 3.1515 3.2238 3.6213
omin [m] 0.008 0.0095 0.0076
oR [m] 0.0072 0.0116 0.0072
cN [m] 0.0749 0.0427 0.0572
cR [m] 0.0334 0.0768 0.0334
oN/sN 2.001 0.2471 0.2156
oR/sR 0.3540 0.4280 0.4304
h2/h2′ 1.0996 1.0786 1.0397

bine specific work; indeed, this behaviour can be explained using equation
2.3: with a similar shape of the velocity triangles, i.e. similar fluid devia-
tion, the axial velocity decreases with the specific work extracted from the
turbine, being the two quantities directly proportional. Then, the increase
in mass flow rate affects the blade geometry, presented in figure 9.17 for the
three expanders.
The blade height basically depends on three factors: axial velocity, fluid

density, mass flow rate (continuity equation). The tree stations are analysed:

• Station 1. The blade height at the nozzle inlet increases from cy-
clopentane to MDM. Indeed, in this case all the three factors work in
the same direction: decrease in axial velocity, increase in mass flow
rate and decrease in density. Similarly, the blade height grows from
MDM to R245fa. Indeed, the axial velocity reduction and the increase
in mass flow rate overcome the density growth.

• Station 2. The same phenomenon occurs at the outlet of the nozzle.

• Station 3. At the outlet of the rotor the situation is slightly different:
while the blade height increases from cylopentane to MDM for the
above mentioned reasons, it decreases from MDM to R245fa. This is
due to the fact that the density enhancement overrides the reduction
in axial velocity and the growth in mass flow rate. This also turns in
a smaller flare angle (δ) for R245fa turbine.

Moreover, a reduction of mean radius is observed from cyclopentane to MDM
and from MDM to R245fa. This is linked with the decreasing enthalpy drop,
which turns in smaller blade velocities (equation 4.18).

Figure 9.18 shows the T-s static diagram for the three expanders. From
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Table 9.11: Optimal design features for the three ORC single-stage
axial turbines.

Cyclopentane MDM R245fa
Performance
ηtt 0.826 0.887 0.876
ηts 0.786 0.832 0.828
P [MW] 5.351 2.577 3.699
Ws [MJ/kg] 0.074 0.027 0.018
Blade Geometry
zN 108 72 56
zR 207 88 120
sN [m] 0.040 0.036 0.035
sR [m] 0.021 0.030 0.017
h1 [m] 0.002 0.007 0.013
h2 [m] 0.012 0.035 0.040
h3 [m] 0.037 0.096 0.067
rm [m] 0.688 0.416 0.318
Λ 0.197 0.199 0.085
Thermodynamic States
T02 [K] 473.7 548.8 412.1
p02 [bar] 25.42 9.876 27.25
ρ2 [kg/m3] 24.33 24.04 77.84
T03 [K] 403.5 523.1 364.7
p03 [bar] 4 1.7 9
ρ3 [kg/m3] 8.117 8.708 45.31
Velocity Diagram
Um [m/s] 216.5 130.8 100.0
Ca [m/s] 53.46 42.85 32.16
C2 [m/s] 267.3 164.9 149.2
W3 [m/s] 147.5 94.63 71.40
α2 [◦] 78.46 74.94 77.55
β2 [◦] 40.71 33.56 54.84
α3 [◦] -55.73 -47.32 -48.43
β3 [◦] 68.75 63.08 63.22
M2 1.336 1.377 1.216
M3,rel 0.692 0.729 0.541
Craig-Cox Losses
XI,N [MJ/kg] 0.935 0.260 0.184
XI,R [MJ/kg] 0.154 0.047 0.038
YII 0.054 0.012 0.009
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(a) Cyclopentane

(b) MDM

(c) R245fa

Figure 9.17: Blade geometry for the three ORC single-stage axial
turbines.
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(a) Cyclopentane

(b) MDM

(c) R245fa

Figure 9.18: T-s static diagram for the three ORC single-stage axial
turbines.
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the figure the rotor efficiency appears to be slightly higher than the stator
efficiency for the three expanders. Moreover, a small entropy production,
around 6 J/(kg K), is observed for MDM and R245.

Finally, the three axial turbines were compared in terms of weight and vol-
ume requirements. Similar geometries were assumed. Table 9.12 presents
the results of the weight calculation. The table suggests that:

Table 9.12: Weight and volume requirements for the three ORC
single-stage axial turbines.

Cyclopentane MDM R245fa
Weight [ton] 9.77 7.82 6.054
Volume [m3] 2.16 1.22 0.73
Specific Weight [ton/MW] 1.82 3.02 1.63
Specific Volume [m3/MW] 0.40 0.47 0.20

• The R245fa turbine is the lightest and most compact solution. This
is connected to the small mean radius and to the high density of the
fluid.

• The greater weight and volume for the cyclopentane turbine relate to
the bigger external diameter:
Dex = 1.413 m for the cyclopentane turbine;
Dex = 0.928 m for the MDM turbine;
Dex = 0.703 m for the R245fa turbine.
Nevertheless, the cyclopentane expander results lighter and more com-
pact than the MDM one, in terms of specific weight and volume; this
being due to the greater power output and smaller mass flow rate.

Figure 9.19 displays the breakdown of the weight for the three expanders.
Even though the figure comes from an approximated calculation, it is pos-
sible to observe that:
• For each of the three expanders, the heaviest components are the shaft,
the discs and the external casing of the turbine.

• The relative importance of the bearings is significant for the cyclopen-
tane turbine (11%).

• MDM and R245fa expanders register a similar weight breakdown; it
is characterized by a greater importance of the casing (37% and 39%)
and a smaller importance of the shaft (11% and 9%) compared to the
cyclopentane turbine.

• A peculiarity of the R245fa turbine is the relevant weight of the blades
(4%).
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(a) Cyclopentane

(b) MDM

(c) R245fa

Figure 9.19: Breakdown of the weight for the three ORC single-stage
axial expanders.
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9.2.2 Efficiency Chart

After the investigation of the three optimal design points, the study pro-
ceeded by drawing the efficiency profiles as functions of the specific speed.
Three inlet pressures were considered for each fluid. The pressure ratio var-
ied accordingly to the inlet pressure in order to maintain the same outlet
pressure, fixed by the conditions available at the condenser.
Table 9.13 summarizes the results of the optimization procedure. The effi-

Table 9.13: Maximum efficiency and optimal specific speed; three
different pressures for each fluid are reported.

p01 [bar] ηts,max ṁ range [kg/s] Ns range Nsopt
Cyclopentane

40 0.861 20 - 700 0.026 - 0.149 0.111
30 0.876 20 - 700 0.029 - 0.169 0.114
20 0.889 20 - 700 0.032 - 0.189 0.123

MDM
13 0.851 20 - 700 0.031 - 0.187 0.121
8.5 0.858 20 - 700 0.037 - 0.206 0.108
4 0.877 20 - 300 0.050 - 0.204 0.115

R245fa
33 0.828 50 - 500 0.032 - 0.118 0.074
24 0.889 20 - 900 0.020 - 0.145 0.103
17 0.890 20 - 800 0.026 - 0.170 0.105

ciency charts of the three turbines are paralleled in figure 9.20, while figure
9.21 compares the efficiency profiles at design pressures. All the plots are
built using the results of the design and optimization procedure reported in
Appendix I.
The main results of the comparison can be described as follows:

• For given fluid and mass flow rate, the turbine efficiency increases
while decreasing the inlet pressure.

• Each efficiency curve presents a maximum. For cyclopentane and
R245fa turbines, the optimal specific speed increases while decreas-
ing the pressure. On the contrary, any definite behaviour is observed
for the MDM expander.

• Contrarily to cyclopentane and MDM, the efficiency profiles at differ-
ent pressures for the R245fa expander do not assume similar shapes.
Indeed, for this fluid, the curve at design pressure is symmetrical and
narrow; on the contrary, the trends become wider and less symmetrical
when decreasing the inlet pressure. Referring to figure 9.20c, for p01 =
24 bar and 17 bar, the efficiency curves are flatter after the maximum
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(a) Cyclopentane

(b) MDM

(c) R245fa

Figure 9.20: Total-to-static efficiency as a function of the specific
speed; three inlet pressures for each fluid.
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Figure 9.21: Total-to-static efficiency as a function of the specific
speed; design pressure for each fluid.

point. This difference might relate to the fact that the design pressure
is very close to the critical value (≈ 36 bar).

• Contrarily to cyclopentane and MDM, in the case of R245fa the opti-
mal mass flow rate for the turbine coincides with that of the thermo-
dynamic cycle (at design pressure).

• At design pressure (p01,des), the average efficiency decreases from cy-
clopentane to MDM and from MDM to R245fa. Moreover, at p01 =
p01,des, R245fa is the less flexible fluid in terms of mass flow rate varia-
tion. Nevertheless, figure 9.20c shows that R245fa is the fluid with the
highest efficiency and the widest mass flow rate range for p01 < p01,des.

9.3 Performance Analysis for Axial-Flow Turbines
Operating with Binary Fluids

This section is focused on the evaluation of the possible benefits arising
when using binary mixtures in ORC applications. In particular, the effects
of the composition of an isopentane/isobutane mixture on both the ther-
modynamic cycle performance and the expander isentropic efficiency are
evaluated.
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Initially, the ORC unit was optimized, in terms of maximum power output,
at different mixture compositions, assuming a constant expander efficiency,
ηtt = 0.8. Twenty-one mixtures compositions ranging from pure isopentane
(xmol = 0) to pure isobutane (xmol = 1) were computed. The present work
only considered eight compositions; the results of the cycle optimization are
reported in table 9.14.
The maximum net power output of the cycle as a function of the com-

Table 9.14: Optimal ORC design, in terms of maximum power out-
put, as a function of fluid compositionηtt = 0.8.

xmass xmol T01 [K] p01 [bar] m [kg/s] Pnet [kW] pr
0 0 344.1 3.655 39.64 1541 0.247
0.168 0.2 349.3 4.860 40.27 1594 0.253
0.349 0.4 352.4 6.260 40.30 1572 0.268
0.446 0.5 352.8 6.977 40.59 1582 0.272
0.547 0.6 352.4 7.712 41.08 1602 0.275
0.763 0.8 349.6 9.281 42.65 1668 0.277
0.820 0.85 348.6 9.735 43.08 1679 0.278
1 1 345.9 11.54 43.91 1590 0.299

position is displayed in figure 9.22 (ηtt = 0.8). In this case, the net power
output presents two maxima: one at isopentane/isobutane molar fractions
of 0.9/0.1 and one at isopentane/isobutane molar fractions of 0.15/0.85.
Moreover, pure isobutane seems to be more effective than pure isopentane.
Next, the turbine was designed for each of these eight optimal solutions

and the effects of the mixture composition on the turbine performance were
assessed. In particular, total-to-static and total-to-total efficiency for the ex-
pander are presented in figure 9.23 as a function of the mixture composition.
The figure indicates that:

• Pure isopentane is characterized by the highest efficiency: ηts = 0.87
and ηtt = 0.93;

• The efficiency profiles present a minimum: ηts = 0.78 and ηtt = 0.83
for an isopentane/isobutane molar fractions of 0.8/0.2;

• The efficiency curves present a maximum for a isopentane/isobutane
molar fractions of 0.4/0.6: ηts = 0.85 and ηtt = 0.89.

Finally, the new cycle performance was evaluated including the actual ex-
pander efficiency. The total-to-total efficiency was computed. The new
optimal configurations are reported in table 9.15. Figure 9.24 compares the
net power output trends for constant and variable isentropic efficiency. The
main discrepancies between the two profiles can be summarized as:
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Figure 9.22: Net power output as a function of the mixture compo-
sition for ηtt = 0.8.

Figure 9.23: Expander efficiency as a function of the mixture com-
position.
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Table 9.15: Optimal ORC design, in terms of maximum power out-
put, as a function of fluid composition for variable ηtt.

xmass xmol T01 [K] p01 [bar] m [kg/s] Pnet [kW] pr
0 0 344.2 3.667 39.61 1787 0.247
0.168 0.2 349.3 4.861 40.27 1648 0.253
0.349 0.4 352.5 6.264 40.28 1666 0.268
0.446 0.5 352.8 6.984 40.56 1751 0.272
0.547 0.6 352.5 7.721 41.04 1784 0.275
0.763 0.8 349.7 9.293 42.60 1847 0.276
0.820 0.85 348.7 9.747 43.04 1851 0.278
1 1 346.0 11.56 43.86 1740 0.299

Figure 9.24: Net power output as a function of fluid composition.
Constant and variable expander efficiency.
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• The variable efficiency profile is characterized by a higher average net
power. In particular, for pure isopentane the net power output regis-
ters a significant increase: 1787 kW versus 1541 kW (+13.7%).

• The variable efficiency curve presents only one peak: Pnet = 1851 kW
for an isopentane/isobutane molar fraction of 0.15/0.85. Such a peak
is higher than for the constant efficiency curve: 1851 kW versus 1679
kW (+9.3%).

• While the constant efficiency curve presents a relative maximum for an
isopentane/isobutane molar fraction of 0.8/0.2, the variable efficiency
curve presents a minimum at this composition.

The explanation of the efficiency behaviour is not straightforward. However,
some more insight can be provided by the analysis of the losses occurring
within the single-stage turbine. Figure 9.25 displays the components of the
total group 1 loss as a function of the mixture composition. The figure shows

Figure 9.25: Group 1 loss contributions as a function of the fluid
composition.

that the nozzle profile loss represents the main fraction of the overall group 1
loss up to an isopentane/isobutane molar fraction of 0.7/0.3. Moreover, it is
the most affected by the fluid composition; in particular, the peak occurring
at the isopentane/isobutane molar fraction of 0.8/0.2 explains the efficiency
minimum at that composition.
The nozzle secondary loss is less affected by the fluid composition and rep-
resents the main contribution to the overall loss for isopentane/isobutane
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molar fractions higher than 0.7/0.3.
On the contrary, the rotor losses are only slightly affected by the fluid com-
position and account for a minor share of the overall loss.
Figure 9.26 shows the behaviour of the overall group 1 loss. The trend of

Figure 9.26: Group 1 overall loss as a function of the fluid composi-
tion. Analysis of expander performance using binary mixtures

total group 1 loss explains the efficiency profile for isopentane/isobutane
concentrations lower than 0.15/0.85. On the other hand, for isobutane mo-
lar fraction higher than 0.85, the efficiency profile can be justified by looking
at the group 2 loss, portrayed in figure 9.27.
The losses behaviour is probably connected with the nature of isopentane
and isobutane. In particular, a peculiar drop in the mixture density is reg-
istered at the exit of the nozzle for an isopentane/isobutane molar fraction
of 0.8/0.2. At this composition ρ2 = 2.85 kg/m3, while ρ2,isopentane = 4.53
kg/m3 and ρ2,isobutane = 15.2 kg/m3. This decrease in density provokes an
increase in fluid velocity, which is the main responsible for the higher losses.
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Figure 9.27: Group 2 total loss as a function of the fluid composition.
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10
Conclusions

10.1 Accuracy of the Simulation Model

The computational model Mamba provided a tool for the prediction of per-
formance, blade geometry, thermodynamic states and velocity diagram of
axial-flow turbines. The validity of the simulation model was tested against
experimental data provided by Stabe et al. (1984), Kotzing & Evers (1985)
and Verneau (1987), both for the ideal gas and the real fluid cases. The
ideal gas and real fluid models basically leaded to same results. The main
conclusions can be summarized as follows:

• Performance, blade geometry, thermodynamic states and velocity dia-
gram of single-stage gas turbines were predicted within an accuracy
range of ±3%.

• For multi-stage gas turbines, performance, blade geometry, ther-
modynamic states and velocity diagram of the first two-stages were
predicted within an accuracy range of ±3%. On the contrary, errors up
to 25% arose in the calculation of the mean radius of the last stages.

• For single-stage ORC turbines, performance and velocity diagram
are calculated within an accuracy range of ±3%.
On the contrary, errors up to 60% affected the calculation of the blade
height. These errors were probably connected to an inaccurate evalua-
tion of the thermodynamic properties at the exit of the nozzle (highly
supersonic conditions). Moreover, although a detailed comparison was
not possible due to the lack of available data, the pressure and tem-
perature at the end of the expansion appeared consistent with the
boundary conditions provided by Verneau (1987).
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• An estimation of axial-flow turbine weight was carried out. However,
no validation was performed because of the lack of available data. For
this reason, the results provided approximated values for weight and
volume requirements of axial-flow turbines, allowing for preliminary,
relative considerations.

10.2 Draugen Offshore Platform Applications

The computational model entered in the wider analysis of the Draugen off-
shore platform by providing a tool for the prediction of the turbine per-
formance. In particular, a single-stage axial-flow turbine was modelled for
three competing bottoming cycles: organic Rankine cycle, steam Rankine
cycle and air bottoming cycle.

Findings indicated that for the ORC and SRC turbines, the optimal working
conditions do not coincide with those of the thermodynamic cycles (evalu-
ated assuming constant efficiency for the expander). This suggested that
the optimal working conditions of the cycles might shift towards higher
mass flow rates and lower pressures. On the contrary, the optimal working
point for the ABC turbine equalled that of the thermodynamic cycle.
Moreover, the analysis of the expanders excluded the possibility of a single-
stage steam turbine; this was caused by an excessive steam expansion (h3/h2
= 21.5).

Furthermore, the study indicated the ORC turbine as the most flexible so-
lution in terms of mass flow rate range (20 < ṁ < 800 kg/s) followed by
ABC (5 < ṁ < 250 kg/s) and SRC (5 < ṁ < 35 kg/s) expanders. On the
other hand, the ABC turbine was found to be the most performing among
the examined expanders (ηts,des = 0.89) followed by SRC (ηts,des = 0.81)
and ORC (ηts,des = 0.72) expanders; however, this is not necessarily related
with the overall cycle performance.

The efficiency profile, characterized by a maximum, was explained by inves-
tigating the behaviour of the losses occurring within the stage. The analysis
leaded to the conclusion that the efficiency mainly depends on a trade-off
between blade velocity, axial velocity and fluid deviation.

The weight estimation proposed the ORC turbine as the lightest and most
compact solution in terms of specific requirements: 2.45 ton/MW, 0.63
m3/MW; it was followed by the SRC (3.19 ton/MW, 0.83 m3/MW) and
ABC (4.59 ton/MW, 1.13 m3/MW) turbines. Nevertheless, the SRC tur-
bine was characterized by the smaller external radius: 1.35 m versus 1.74 m
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for the ORC turbine and 1.81 m for the ABC turbine. This suggested that
the greater weight and volume requirements for the SRC expander depends
on the presence of the gear box (29% of the total weight).

10.3 Comparison of Organic Working Fluids
The computational model was implemented to compare the performance of
three single-stage turbines operating cyclopentane, MDM and R245fa.

The analysis indicated MDM (ηts,des = 0.887) and R245fa (ηts,des = 0.876)
as the most effective fluids from the turbine performance point of view. Nev-
ertheless, although cyclopentane brought to a lower turbine efficiency (ηts,des
= 0.83), it allowed for a higher specific work; this implied a greater power
output in spite of a lower mass flow rate, suggesting a higher efficiency of
the thermodynamic cycle.

Moreover, the study showed how the optimal working conditions for the
thermodynamic cycles do not coincide with those of the expanders, for each
of the three fluids. On the contrary, better performance of the turbine was
obtained by decreasing the inlet pressure and by increasing the mass flow
rate. Furthermore, the R245fa turbine represented the less flexible solution
at design condition (50 < ṁ < 500 kg/s); nevertheless, it became the most
flexible technology when decreasing the turbine inlet pressure: 50 < ṁ <
900 kg/s for p01 = 24 bar.

R245fa allowed for the lightest and most compact expander in terms of
specific weight and volume: 1.63 ton/MW, 0.2 m3/MW; it was followed by
cyclopentane (1.82 ton/MW, 0.40 m3/MW) and MDM (3.02 ton/MW, 0.47
m3/MW) turbines.

10.4 Effects of Binary Mixtures as Working Fluid

The study investigated the influence of the composition of an isopentane/isobu-
tane mixture on both the thermodynamic cycle performance and the ex-
pander isentropic efficiency.

The analysis indicated that the expander performance was affected by the
fluid composition, presenting two peaks in total-to-static efficiency: 87%
for pure isopentane and 85% for a 0.40/0.60 (in terms of molar fractions)
mixture of isopentane/isobutane. As a result, the net power output of the
cycle remarkably varied depending on whether variable turbine efficiency
was considered or not in the optimization procedure.
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11
Future Work

Some suggestions for further studies are reported.

In spite of the previous considerations, the analysis of the turbine perfor-
mance is not sufficient to establish the best heat recovery system or the
optimal organic working fluid. At this purpose, the computational model
for the expander should be coupled with the simulation model of the ther-
modynamic cycle.

Moreover, the computational model should be extended in order to describe
the off-design behaviour of axial-flow turbines. This would be of a big in-
terest in order to realistically predict the turbine performance in actual sit-
uations, providing for information regarding the flexibility of the expander.

Some improvements of the computational model should be performed. In
particular, a more precise description of the blade geometry could be pro-
vided, especially in multi-stage configurations.
Furthermore, it should be possible to select the type of turbine depending on
the investigated application. For this reason, the calculation routine should
include the possibility to model radial-flow turbines.
Additionally, some elements of mechanical design might be included. In
particular, stress considerations should be made regarding the blades and
discs design.

A more precise weight estimation should be carried out. This might be
done by implementing a library of materials and components for turbines.
Also, different geometrical proportions could be considered depending on
the application, based on more accurate experimental data.
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A more detailed analysis on the fluid selection should be carried out. In
particular, more insights should be provided about the actual importance of
fluid and boundary conditions in affecting the turbine performance. Also,
more fluids might be taken into consideration.
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A
Elements of Gas Dynamics

for Axial-Flow Turbines

Owing to the increasing tendency towards specialization even at first-degree
and diploma level, it may be that some readers will not have been exposed to
a course in gas dynamics, especially related to those phenomena occurring
in axial-flow turbines. It is hoped that this appendix will provide them with
an adequate summary of those aspects which are relevant to turbine theory.

A.1 General Equations of Fluid Motion

The study of turbo-machineries is performed considering the energetic trans-
formation occurring within the blade profile. The most significant transfor-
mations are related to the conversion from kinetic energy to pressure, and
vice versa. Such a conversion is accompanied by the variation of thermody-
namic properties such as enthalpy, temperature, pressure and density. More
precisely, the fluid is accelerated within the stationary vanes, which must
be convergent for a subsonic fluid. Depending on the degree of reaction,
the flow can be accelerated also in the moving blades, which then can be
convergent or with a constant cross area. For a detailed description of the
determination of the geometry of a duct crossed by a fluid in subsonic and
supersonic conditions see Negri di Montenegro et al. (2009).
In order to study the behaviour of a fluid in a duct it is convenient to in-
troduce the analytical model provided by the General Equations of Fluid
Motion, in thermal and mechanical form. The equations are, respectively,

dh+ CdC + gdz = dq − dWs (A.1)

CdC + gdz + vdp+ dΓ = −dWs (A.2)
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Where h stands for specific enthalpy, C is the absolute velocity, g the gravity
acceleration, z the altitude of the fluid, q the exchanged heat, Ws the specific
work, Γ the stage loss, v the specific volume and p the fluid pressure. It
should be observed that for the stator, which obviously do not exchange
work with the external environment, the term dWs is null.

A.2 Total and Static Quantities

The analysis of the phenomena occurring within the stage of a turbo-machinery
should start from the observation that the variations of potential energy, as
well as the geodetic variations, are negligible compared to those of enthalpy
and kinetic energy for a compressible fluid. This stems from the small
geodetic drop undergone by the fluid going through the turbo-machinery.
On the other hand, the kinetic energy drop becomes of predominant impor-
tance, compared to the specific work exchanged by the fluid, as well as the
enthalpy drop in steady and moving vanes. Studying the phenomena oc-
curring within such vanes, it is convenient to refer to quantities called total,
rather than to the static properties. The total thermodynamics properties,
or stagnation thermodynamics properties, are defined as those quantities
characterizing a fluid which is decelerated from an original velocity C1 to a
null velocity through an isentropic process. Referring to figure A.1, applying

Figure A.1: Stage expansion h-s diagram, (Wikipedia (2011)).

the afore-mentioned definition of total thermodynamics property, the total
enthalpy, h01, can be expressed using the general equation of fluid motion
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in its thermal form. Indeed,

h01 = h1 + C2
1

2 (A.3)

where h1 is the enthalpy of the fluid, called static enthalpy to distinguish it
from the total enthalpy, in this study denoted by the subscript "0". Conse-
quently, recalling that h = CpT , where Cp is the constant pressure specific
heat, the total temperature can be expressed by

T01 = T1 + C2
1

2Cp (A.4)

With Cp constant and known for a given perfect gas. Moreover, due to the
isentropic deceleration, i.e. for an isentropic compression,

p1
p01

=
(
T1
T01

) k
k−1

(A.5)

ρ1
ρ01

=
(
T1
T01

) 1
k−1

(A.6)

Being p and ρ, respectively, pressure and density of the fluid, and k the
specific heat ratio, defined by,

k = Cp

Cv
(A.7)

A.3 Speed of Sound and Mach Number

Consider an adiabatic duct with constant section, without friction and with
a resting fluid inside. Then, imagine a piston acting on the fluid providing
an impulse, as represented in figure A.2. In this way, a perturbation will

Figure A.2: Horizontal-axis, constant section, free friction duct with
pressure wave
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start to propagate along the duct, not instantaneously, but with a velocity
equal to the speed of sound within the fluid, Cs. Indeed, any perturbation,
i.e. a compression of the fluid, is travelling within a fluid with a wave front of
velocity Cs. Such a wave front separates that part of the fluid affected by the
perturbation from that part that is not affected yet. Furthermore, it looks
appropriate to precise that the perturbation does not cause a longitudinal
movement of the fluid, but simply an oscillation/compression. An observer
united with the wave front would see the fluid moving with a velocity Cs,
turning in a virtual mass flow rate given by

ṁ = ρCsA (A.8)

Differentiating equation A.8, being the mass flow rate and the section of the
duct constant, it is possible to obtain,

dρ

ρ
+ dCs

Cs
= 0 (A.9)

Applying the Equation of motion in its mechanical form and dividing by
C2
s , it is possible to write,

dCs
Cs

+ dp

ρC2
s

= 0 (A.10)

From equations A.9 and A.10 the square of the speed of sound can be ex-
pressed as

C2
s = dp

dρ
(A.11)

Introducing the hypothesis of perfect gas, still considering an isentropic pro-
cess, it is possible to write,

dp

p
= k

dρ

ρ
(A.12)

The ideal gas law states

pv = R′T

M
(A.13)

where R’ is the ideal gas constant, equal to 8.314 J/(K mol), and M the
fluid molar mass. R = R′/M is the ideal gas constant expressed in J/(K g).
Therefore, for a perfect gas equation A.11 can be written as

C2
s = k

p

ρ
= kRT (A.14)

Thus, equation A.14 provides the expression of the speed of sound for an
ideal gas,

Cs =
√
KRT (A.15)

Equation A.15 suggests the speed of sound to be strongly dependent on
the absolute temperature of the fluid. The quantity usually adopted to

136



Appendix A. Elements of Gas Dynamics for Axial-Flow Turbines

individuate the regime of motion is the ratio between the punctual velocity
and the speed of sound in the same point; such a quantity is called Mach
Number and it is given by

M = C

Cs
(A.16)

From the definition it results that the Mach number will be higher than one
for a velocity greater than the speed of sound, while the Mach number will
result lower than one for a velocity smaller than the speed of sound. In the
former case, the regime of motion is said ipersonic or supersonic, while it
is said iposonic or subsonic in the latter case. On the other hand, if the
velocity of fluid equals the speed of sound, the Mach number will be equal
to one and the regime of motion is called sonic.

A.4 Fluid Motion through a Duct

A.4.1 Fluid Flow and Critical pressure Ratio

Consider a fluid exiting from a duct in which the upstream total conditions
are assigned, i.e. ρ01 = const., T01 = const., p01 = const., as showed in
figure A.3. The duct be without friction, with horizontal-axis and adiabatic.

Figure A.3: Horizontal-axis, free friction duct with assigned up-
stream total conditions

Assume that the physical state of the upstream section be not affected by
the mass flow rate exiting from the duct. In other words, the upstream
conditions can be considered constant and independent from the downstream
conditions. This can occur if the upstream section is much larger than
the downstream section. Recalling equation A.1, neglecting the geodetic
variations and assuming an isolated and adiabatic duct, it is possible to
write,

CdC + dh = 0 (A.17)
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Therefore, integrating between section 1 and 2 and considering an ideal gas,
i.e. constant Cp with the temperature, it is obtained,

C2
2

2 −
C2

1
2 = Cp(T1 − T2) (A.18)

Thus, referring to the total conditions in the upstream section,

C2
2 = 2kRT01

k − 1

(
1− T2

T01

)
(A.19)

Where the subscript 01 refers to the total conditions in the upstream section,
while the subscript 2 indicates the conditions of the downstream section.
Equation A.14 in section 2 can be written as

C2
s = kRT01

T2
T01

(A.20)

At this point, the velocity of the fluid in section 2 and the speed of sound can
be compared referring to equations A.19 and A.20. Figure A.4 shows the
trend of the two velocities as a function of the dimensionless quantity T2/T01.
Both from the figure and from the equations, it can be noticed that for a

Figure A.4: Fluid velocity and speed of sound as functions of the
ratio T2/T01

given value of the temperature ratio, called critical value, the two velocities
result to be equal, C1 = Cs. On the other hand, for values of T2/T01 above
the critical value the flow is subsonic, while for values lower than the critical
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one the flow is supersonic. The critical temperature condition, characterized
by sonic flow, can be determined by equalling equation A.19 and A.20. In
this way, (

T2
T01

)
crit.

= 2
k + 1

[
1−

(
T2
T01

)
crit.

]
(A.21)

Thus, (
T2
T01

)
crit.

= 2
k + 1 (A.22)

Similarly, the sonic condition can be expressed in terms of pressure ratio
through the equation (

p2
p01

)
crit.

=
(
T2
T01

) k
k−1

crit.
(A.23)

Giving the expression of the critical pressure ratio,(
p2
p01

)
crit.

=
( 2
k + 1

) k
k−1

(A.24)

In the following table, the critical pressure ratio for some fluids is reported.
At this point, consider a perfect gas with given physical conditions, con-

Table A.1: Critical pressure ratio for some fluids of interests

Fluid Specific heat ratio, k Critical pressure value, ( p2
p01

)crit.
Air 1.4 0.528
Superheated vapour 1.3 0.546
Saturated vapour 1.135 0.577
Cyclopentane 1.2374 0.5573

tained in a very big volume, i.e. physical state not modified by the flow rate
exiting the volume, flowing through an adiabatic duct following an isentropic
process, as reported in figure A.3. Decreasing the downstream pressure, the
fluid will start to move following the pressure gradient. Therefore, there will
be a mass flow rate flowing from the first to the second environment. Such
a mass flow rate can be expressed with the continuity equation applied to
section 2.

ṁ2 = ρ2A2C2 (A.25)

Density and the velocity in section 2 can be expressed in terms of upstream
conditions through the following equations,

ρ2 = ρ01

(
p2
p01

) 1
k

(A.26)

C2 =

√√√√ 2k
k − 1

p01
ρ01

[
1−

(
p2
p01

) k−1
k

]
(A.27)
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From equations A.25 - A.27, the ratio between mass flow rate and area in
section 2 can be found by

ṁ

A2
=

√√√√ 2k
k − 1p01ρ01

[(
p2
p01

) 2
k

−
(
p2
p01

) k+1
k

]
(A.28)

Such a ration take the name of mass velocity. The mass velocity as a func-
tion of the pressure ratio given is showed in figure A.5 (dashed parabolic
trend). Note that when p2/p01 = 1 the velocity is null and so the mass

Figure A.5: Mass velocity as a function of the pressure ratio

velocity; likewise, for p2/p01 = 0 the density is equal to zero (infinite specific
volume) and so the mass velocity. The pressure ratio allowing the maximum
disposable flow rate can be determined through the derivative of the term
within square brackets in equation A.28. Posing such a derivative equal to
zero,

d(ṁ/A2)
d(p2/p01) = 2

k

(
p2
p01

) 2−k
k

− k + 1
k

(
p2
p01

) 1
k

= 0 (A.29)

Which is null for a given value of the pressure ratio:

p2
p01

=
(
p2
p01

)
crit.

=
( 2
k + 1

) k
k−1

(A.30)

Or, in terms of temperature,(
T1
T0T

)
crit.

= 2
k + 1 (A.31)
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It appears evident that this ratio coincides with the critical value. Equations
A.30 and A.31 simply express a particular condition in terms of pressure ra-
tio and temperature ratio, respectively, that allows the maximum disposable
mass flow rate in the duct. Such correlations perfectly correspond to those
provided by equations A.24 and A.22, expressing the critical pressure and
temperature value, respectively. Therefore, it can be stated that the maxi-
mum disposable flow rate occurs for the critical value of the pressure ratio,
when the fluid velocity of the fluid at the exit of the duct equals the speed
of sound. Actually, this fact can be seen from equations A.27, too. Indeed,
replacing the critical value to the pressure ratio,

Ccrit. =
√

2k
k − 1

p01
ρ01

[
1− 2

k + 1

]
=

=
√

2k
k + 1

p01
ρ01

=

√
2k
k + 1RT01 =

√
kRTcrit. = Cs

Therefore, when the sonic conditions are reached in section 2, the fluid flows
at the speed of sound, the Mach number is equal to 1 and the maximum
mass flow rate is given by

ṁmax

A2
= ṁcrit.

A2
= p01√

T01

√√√√ k

R

( 2
k + 1

) k+1
k−1

(A.32)

Equation A.32 suggests that, for given area and fluid, the maximum value
of mass flow rate depends only on the total upstream conditions, and it is
not affected by the downstream conditions.
At this point, it should be pointed out that the dashed parabolic profile
(figure A.5) is only theoretical but it can not actually occur. Indeed, for a
downstream pressure lower than the critical value the mass flow rate can not
decrease, but has to remain constant (straight continuous line in figure A.5).
Indeed, starting from a pressure ratio equal to 1, the fluid begins moving with
increasing velocity while decreasing the pressure; once the critical pressure
ratio is reached, the fluid velocity at the outlet section equals the speed of
sound. In these conditions, any further downstream perturbation, such a
reduction in pressure, cannot affect the upstream conditions since the above
mentioned perturbation would propagate towards the upstream section with
a velocity equal to the speed of sound, which is the same velocity of the
fluid. In other worlds, any perturbation occurring at the downstream section
cannot return upstream because the wave front is forced in a stationary
position, since it is moving with the same speed of the flowing fluid, but in
opposite direction. For this reason, the real profile of the mass velocity is
given in figure A.5 where the straight continuous line replaces the dashed
parabolic section.
To conclude, the Mach number at the outlet section can be expressed as a
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function of the pressure ratio. Indeed, the equation of fluid motion in its
thermal form states:

h2 + C2
2

2 = h1 + C2
1

2 (A.33)

Where the geodetic contribution has been neglected and the system assumed
to be adiabatic and isolated. Therefore,

C2
2

2 = Cp(T01 − T2) (A.34)

This equation provides the outlet velocity of a fluid knowing the upstream
and downstream temperature. Recalling the definition of the constant pres-
sure specific heat, given by equation A.35, it is possible to write the following
equations,

Cp = R
k

k − 1 (A.35)

T01
T2

= 1 + k − 1
2

C2
2

kRT2
= 1 + k − 1

2
C2

2
C2
s

= 1 + k − 1
2 M2

2 (A.36)

Thus,
p01
p2

=
(

1 + k − 1
2 M2

) k
k−1

(A.37)

The last equation links the Mach number in the downstream section with
the pressure ratio. Figure A.6 shows the trend of mass flow rate as a function
of Mach number. Such a figure can be obtained combining equation A.28
and A.37. The figure shows how for Mach numbers ranging in a relatively

Figure A.6: Mass flow rate as a function of the Mach number of the
downstream section
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wide interval, from 0.8 to 1, the flow rate changes only of few percentage
points respect to the maximum value.

Paolo Gabrielli, s135427 - Technical University of Denmark 143



Design and Optimization of Turbo-Expanders for Organic Rankine Cycles

144



B
Axial-Flow Turbine Stage

The space requirements for the Master thesis did not allow to give a detailed
description of those key parameter involved in the study of axial-flow tur-
bines. It is hoped that this appendix will provide readers with some deeper
insight of the aforementioned parameters.

B.1 The Mass Flow Function

In order to describe the fluid behaviour in turbo-machinery, a useful param-
eter is the so called Mass Flow Function, expressed by

MFF = ṁ
√
T01

p01
(B.1)

Its general definition can be obtained by Eq. A.28, using the Ideal gas law.
Indeed,

MFF = ṁ
√
T01

p01
= A2

√√√√ 2k
R(k − 1)

[(
p2
p01

) 2
k

−
(
p2
p01

) k+1
k

]
(B.2)

Such parameter, for a given fluid and geometry, depends only on the pressure
ratio and it reaches its maximum value at critical conditions,

MFFmax = MMFcrit. = ṁmax

√
T01

p01
= A2

√√√√ k

R

( 2
k + 1

) k+1
k−1

(B.3)

It is interesting to notice that the maximum mass flow function does not
depend on the fluid upstream condition (contrarily to the maximum mass
flow rate), but it only depends on geometry of the duct and type of fluid.
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Therefore, it is constant for values of the pressure ratio lower than the
critical. Thus, for 0 < p2 < pcrit.,

MFF = MFFmax = MFFcrit. (B.4)

B.2 Nozzle Losses
The equations presented in Appendix A were obtained for an ideal fluid
considering an isentropic expansion. On the other hand, an accurate analysis
needs to consider real fluid behaviour and real transformations, with positive
entropy production. The efficiency of the nozzle, ηN , can be defined as the
ratio of the actual kinetic energy at the outlet of the nozzle, C2

2/2 and the
theoretic kinetic energy at the same section, C2

2,is/2, without losses (see
figure A.1). Therefore, the nozzle efficiency can be expressed as

ηN = C2
2

C2
2,is

(B.5)

Introducing the velocity reduction coefficient for the nozzle, γN , defined as

γN = C2
C2,is

(B.6)

The nozzle efficiency can be expressed as

ηN = γ2
N (B.7)

Furthermore, from the equation of fluid motion,

C2
2

2 = h01 − h2 (B.8)

C2
2is
2 = h01 − h2,is (B.9)

Thus, the losses in the nozzle can be expressed as

ΓN = h2 − h2is = (1− γ2
N )
C2

2,is
2 (B.10)

It has to be pointed out that the enthalpy is used instead of temperature.
This is a necessary requirements to have an analysis holding for real fluids.
Indeed, although an ideal gas analysis might be accurate for gas turbines,
running air, it is certainly not suitable for ORC turbines, handling heavy
organic fluids. Figure B.1 shows γN as a function of the pressure ratio,
for a converging nozzle, for two different values of fluid deviation. Increas-
ing the pressure ratio, and therefore the velocity, γN decreases, leading to
higher losses. Additionally, the velocity reduction coefficient also decreases
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increasing the deviation of the fluid. In fact, enhancing the fluid devia-
tion the losses rise, especially because of the profile contribution. For a
converging-diverging nozzles the penalization of γN is an increasing func-
tion of the ratio of downstream section to throat section. Thus, the higher
the pressure ratio, the lower γN . Since for a converging-diverging nozzle the
losses are higher, converging nozzles are used also for Mach numbers greater
than 1. In the present thesis the nozzle was considered converging until a
Mach number equal to 1.4, Deich et al. (1965).

Figure B.1: Velocity reduction coefficient for the nozzle as a function
of the pressure ratio for different fluid deviations

B.3 Rotor Losses

Also for the moving blades the losses can be evaluated through the relative
velocity reduction coefficient, γR. Referring to figure A.1, in case of p2 > p3,
and so W3 > W2, it is possible to write,

γR = W3
W3,is

(B.11)

Therefore, for axial-flow turbines, with U1 = U2, applying the equation of
fluid motion in its thermal form for an observer united with rotor blades, it
is possible to write,

ΓR = h3 − h3,is = (1− γ2
R)W

2
3is
2 (B.12)
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Figure B.2 shows the velocity reduction coefficient for the rotor, γR, as a
function of the fluid deviation within the rotor, which is the main dissipa-
tion source. As for the stator, the higher the fluid deviation the lower the
velocity reduction coefficient, i.e. greater losses. Both Fig. B.1 and B.2
were obtained using the computational tool developed for the thesis.

Figure B.2: Velocity reduction coefficient for the rotor as a function
of the fluid deviation

B.4 Work Equations for Axial-Flow Turbines

Either equation A.1 or A.2, can be applied to a fluid operating in moving
blades using a reference frame united with the impeller. Obviously, the term
CdC will be replaced by WdW where C and W represent the absolute and
relative velocity, respectively. Furthermore, the work dWs will be null and
a new term accounting for the centrifugal forces must appear. In particular,
the work performed by centrifugal forces on a particle moving towards the
periphery of dr is given by

(ω2r)dr = UdU (B.13)

Where dr represent the infinitesimal radius. In the Energy Equation such a
work has a negative sign, since it represents a work performed on the particle.
Therefore, the equation of fluid motion in its thermal and mechanical form
becomes, respectively,

dh+WdW + gdz = dq − (−UdU) (B.14)
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WdW + gdz + vdp+ dΓ = −(−UdU) (B.15)

Both these equations can be applied assuming a steady or a moving reference
frame. Combining steady and moving options for one of the two equations
it is possible to write,

CdC + dL = WdW − UdU (B.16)

Integrating between the section 2 and 3, the specific work performed by the
rotating blades can be expressed as

Ws = C2
2 − C2

3
2 + W 2

3 −W 2
2

2 + U2
2 − U2

3
2 (B.17)

On the other hand, recalling the Carnot Theorem (Wikipedia (2013a)) and
naming α the angle formed by the velocity vector C and the axial direction,
it is possible to write,

W 2
3 = U2

3 + C2
3 + 2U3C3cosα3 (B.18)

Likewise,
W 2

2 = U2
2 + C2

2 + 2U2C2cosα2 (B.19)

In this way, equation B.17 becomes

Ws = U2C2cosα2 + U3C3cosα3 (B.20)

Since the thesis is focused on the design and optimization of axial-flow turbo
expanders, the radial component of velocity is neglected and so any variation
in the peripheral velocity U. Therefore, writing U1 = U2 = U , Equations
B.17 and B.20 become

Ws = C2
2 − C2

3
2 + W 2

3 −W 2
2

2 (B.21)

Ws = U(C2cosα2 + C3cosα3) = U(Ca2tanα2 + Ca3tanα3) (B.22)

Where the suffix "a" indicates the axial component of the velocity.

B.5 Total to Total and Total to Static Efficiency
To express the effectiveness of a stage, the concept of stage efficiency is
introduced. This efficiency has two possible definitions, depending on which
kind of enthalpy drop is accounted for. In particular, if the overall enthalpy
drop is considered, the efficiency takes the name of total-to-total efficiency,
while if the available enthalpy drop is taken into account the efficiency is
referred to as total-to-static efficiency. The overall and available enthalpy
drops are expressed by the two following equations, respectively.

Ett = h01 − h03,is (B.23)
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Ets = h01 − h3,is (B.24)

Where h03,is and h3,is are the total and static enthalpy, respectively, at the
end of the isentropic expansion, at the stage outlet pressure. It should be
pointed out that the total enthalpy is obtained from the static enthalpy
adding the real velocity, as the theoretical is unknown. For the central
stages of multi-stage turbines, the total-to-total version appears more suit-
able, since the kinetic energy exiting from one stage is exploited, at least in
part, in the downstream stage. On the contrary, for single-stage turbines, as
well as for the last stage of multi-stages turbines, the total-to-static version
looks like the best alternative since no kinetic energy is recovered in a fol-
lowing stage. Summarizing, the total-to-total and total-to-static efficiency
are provided by the two equations below, respectively.

ηtt = h01 − h03
h01 − h03,is

(B.25)

ηts = h01 − h03
h01 − h3,is

(B.26)

It is possible to notice as the total-to-static efficiency is somewhat smaller
than the total-to-total, in the measure in which it has a bigger denominator,
due to h3,is < h03,is.

Degree of Reaction

The degree of reaction is defined as the ratio of the energy converted in
kinetic energy along the moving vanes (assuming null losses inside the rotor)
to the overall energy converted in kinetic energy (assuming null dissipations
inside stator and rotor). Indicating with 1, 2 and 3 the sections at inlet of
stator, outlet of stator/inlet of rotor and outlet of rotor, respectively, the
degree of reaction is expressed as

Λ =
∫ 2

3
dp
ρ +

∫ 2
3 gdz − Γ2,3∫ 1

2
dp
ρ +

∫ 1
2 gdz + Γ1,2 +

∫ 2
3
dp
ρ +

∫ 2
3 gdz − Γ2,3

(B.27)

Applying the equation of fluid motion in its mechanical form to the nozzle,∫ 1

2

dp

ρ
+
∫ 1

2
gdz + Γ1,2 = C2

2 − C2
1

2 (B.28)

Similarly, applying the energy balance between outlet and inlet of the rotor,∫ 2

3

dp

ρ
+
∫ 2

3
gdz − Γ2,3 = W 2

3 −W 2
2

2 + U2
2 − U2

3
2 (B.29)

Therefore,

Λ = W 2
3 −W 2

2 + U2
2 − U2

3
C2

2 − C2
1 +W 2

3 −W 2
2 + U2

2 − U2
3

(B.30)
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Then, for axial-flow turbine, i.e. U2 = U3 = U ,

Λ = W 2
3 −W 2

2
C2

2 − C2
1 +W 2

3 −W 2
2

(B.31)

A turbo-machinery characterized by a degree of reaction equal to zero is
called impulse turbo-machinery, while a reaction turbo-machinery has a de-
gree of reaction higher than zero. Actually, the definition of the degree
of reaction does not include any kind of loss. Therefore, in the reality an
impulse turbine would have a degree of reaction lower than zero. Indeed,
Λ < 0 results from W3 = γRW2, with γR < 1. Generally, for steam and gas
turbine the value of the degree of reaction is comprised between 0 and 0.5.
The present study found value within this range also for turbines operating
with organic fluids.
Finally, it should be noted than the degree of reaction can be expressed in
terms of the enthalpy drop experienced by the fluid inside nozzle and rotor.
In particular, for the nozzle,

h1 − h2 + g(z1 − z2) = C2
2 − C2

1
2 (B.32)

While for the rotor, assuming constant peripheral speed,

h2 − h3 + g(z2 − z3) = W 2
3 −W 2

2
2 (B.33)

As a result, neglecting the geodetic term, much smaller compared to the
enthalpy drop in the context of steam, gas or ORC turbines, the degree of
reaction can be expressed as

Λ = h2 − h3
h1 − h3

(B.34)
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C
Losses Classification

The aim of this appendix is to provide some further detail about the different
losses occurring within a turbo-machinery.

Figure C.1: Aerodynamic features in a turbine cascade, (Carleton
University (2013)).

C.1 Profile Loss

Some general trends proposed by Ainley and Mathieson in Ainley & Math-
ieson (1955) is that the profile losses in a impulse stage will be higher com-
pared to a reaction stage because of the higher fluid deviation. Furthermore,
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Ainley & Mathieson (1955) suggested that a high outlet Mach number will
reduce the profile losses of about ten percent compared to a lower value,
even though the exact value of the lower Mach number is not given. Cor-
rection of the profile loss for Reynolds number is often made, and normally
the outlet Mach number is taken in consideration, as well. According to
Denton (1993) the enthalpy generation is proportional to the velocity to a
power of three, and therefore the greatest part of the profile loss created at
the suction surface where the velocity is higher.

Figure C.2: Blade terminology, (Dahlquist (2008)).

C.2 Secondary Loss

The nature of this loss is complicated to understand and describe. However,
it has been seen that important parameters for its analysis are the blade
geometry, Mach number and inlet boundary layer. The believed most im-
portant blade shape are the turning angle, aspect ratio, pitch to chord ratio
and diameter for the leading edge, (Dahlquist (2008)). For a high turning
angle the secondary flow will increase, as the blade load and driving pres-
sure gradient increases. The pitch to chord ratio also influences the blade
loading. Mach number affects secondary losses in the measure in which a
high acceleration reduces the boundary layer thickness and thus the area of
secondary losses in the boundary layer.
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C.3 Tip Clearance Loss
A distinction was made between shrouded and un-shrouded blades. In the
first case, the leakage mass flow rate is not passing through the blades, there-
fore not performing any useful work. Additionally, the difference in speed
and direction between leakage and main flow rate will lead to dissipation of
energy and increased entropy creation as it remixes whit the main flow. For
un-shrouded blades the leakage occurs from the pressure to suction surface
of the blade (see 2.6). Along with entropy generation and flow turning this
leakage flow also creates an unloading of the tip of the blade and increases
secondary flow. Therefore, less work can be extracted. The most important
parameters are the relative tip clearance, incoming boundary layer thickness,
blade load, and incidence angle (Dahlquist (2008)).

C.4 Trailing Edge Losses
The momentum thickness at trailing edge that reduces the effective flow
area, and the fact that all mixing would not be completed before it reaches
the next blade row also needs to be taken into consideration. Substantial pa-
rameters are back pressure, outlet flow angle, pitch, trailing edge thickness,
Mach number and momentum thickness (Dahlquist (2008)).

C.5 Shockwave Losses
Across a shock wave there is a sudden increase in static pressure, boundary
layer thickness and viscous dissipation of energy. To take into consideration
this type of losses, generally a separate shock loss parameter is introduced
and included in the profile losses. The most important parameters are Mach
number and Reynolds number (Dahlquist (2008)). One positive effect of a
shock is that if it does not create a massive and instant separation, the
energy in the boundary layer increases and therefore withstand a higher
rate of diffusion without separation.
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D
Input Data of the Design

Process

A complete list of the input parameters necessary for the design routine is
provided by tables D.1 - D.3.

Table D.1: Input parameters for the design routine: optimizing pa-
rameters

Optimizing Parameters
Fluid inlet angle α1
Rotor Flow Coefficient φR
Stage Loading Coefficient ψ
Nozzle Throat [m] omin
Rotor Opening [m] oR
Nozzle Axial Chord [m] cN
Rotor Axial Chord [m] cR
Nozzle Opening-to-Pitch ratio oN/sN
Rotor Opening-to-Pitch ratio oR/sR
Inlet Rotor-to-Outlet Nozzle Height ratio h2/h2′
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Table D.2: Input parameters for the design routine: fixed variables

Fixed Variables
Number of stages nst
Kinetic energy recovery coefficient rec
Incidence
Nozzle minimum incidence[◦] iminn
Rotor minimum incidence [◦] iminr
Craig-Cox Input Parameters
Equivalent sand grain size ksbr
Reynolds number Re
Nozzle stall incidence [◦] istalln
Maximum relative velocity ratio WWmax
Nozzle trailing edge thickness-to-opening ratio teon
Rotor trailing edge thickness-to-opening ratio teor
Back surface curvature radius [m] e
Blades overlap [m] overlap
Indexes
Mach number for conv.-div.nozzle Mcd
Controlled/un-controlled expansion ctrlexp
On/off-design offdes
Shrouded/un-shrouded blades shroud
Total/partial admission partadm
Number of sector of partial admission nsecpa

Table D.3: Input parameters for the design routine: thermodynamic
cycle parameters

Thermodynamic Cycle Requirements
Inlet total temperature [◦C] T01
Inlet total pressure [bar] p01
Total pressure ratio pr
Mass flow rate [kg/s] ṁ
Rotational speed [rpm] N
Type of fluid
Gas constant [J/(mol K)] R
Guessed stage efficiency etatsg
Guessed nozzle efficiency etatsng
Guessed rotor efficiency etatsrg
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In addition to the input data list, an example of input script is here reported.
In particular, this input data were related to the cyclopentane turbine de-
sign in the context of the organic Rankine cycle used to recover heat from
the Draugen offshore platform.

%%=========================================================================
%=======================CYCLOPENTANE Input Data============================
%==========================================================================

% D e f i n i t i o n o f the input data f o r an o f f −shore a p p l i c a t i o n us ing
% cyc lopentane as working f l u i d .

%%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−L i s t o f Parameters−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% − s t a t i o n 1 = i n l e t o f the nozz l e
% − s t a t i o n 2 = o u t l e t o f the nozz l e
% − s t a t i o n 21 = i n l e t o f the r o t o r
% − s t a t i o n 3 = e x i t o f the r o t o r
% − m = mass f low ra t e [ kg/ s ]
% − T01 = t o t a l temperature at s t a t i o n 1 [K]
% − pr0 = t o t a l o u t l e t p r e s su r e at s t a t i o n 3 to i n l e t o u t l e t p r e s su r e at
% s t a t i o n 1
% − p01 = t o t a l p r e s s u r e at s t a t i o n 1 [ Pa ]
% − R = u n i v e r s a l gas constant [ J/kmol−K]
% − M = molar mass o f the working f l u i d [ kg/kmol ]
% − gam = s p e c i f i c heat r a t i o o f the working f l u i d
% − Cp = cos tant p r e s s u r e s p e c i f i c heat [ J/kg−K]
% − phi = stage f low c o e f f i c i e n t
% − alpha1 = f l u i d abso lu t e ang le at s t a t i o n 1 [ degree s ]
% − N = r o t a t i o n a l speed [ rev / s ]
% − Um = p e r i f e r a l speed at the mean rad iu s [m/ s ]
% − e = blade back rad iu s [m]
% − sigmactmax = maximum l i m i t o f the c e n t r i p e t a l t e n s i l e s t r e s s [N/m2]
% − omin = minimum value o f the nozz l e opening ( throat ) [m]
% − or = r o t o r opening ( r o t o r i s cons ide r ed only converg ing ) [m]
% − Mcd = Mach number f o r which the nozz l e s h i f t s from converg ing to
% converging−d i ve r g in g
% − iminn = minimum i n c i d e n c e at nozz l e i n l e t [ degree s ]
% − teon = t r a i l i n g edge t h i c k n e s s to opening r a t i o f o r the nozz l e
% − t eo r = t r a i l i n g edge t h i c k n e s s to opening r a t i o f o r the r o t o r
% − aspr = aspect ra t i o , he ight to chord r a t i o
% − ksbr = equ iva l en t sand gra in s i z e to blade backbone l enght r a t i o
% − ksbrp = equ iva l en t sand gra in s i z e to blade backbone l enght r a t i o to
% use in the p l o t
% − Re = number o f Reynolds
% − i s t a l l = s t a l l i n g i n c i d e n c e [ degree s ]
% − WWmax = maximum square o f the r e l a t i v e mean v e l o c i t y r a t i o
% − c t r l e x p = index : i f 0 , c o n t r o l l e d expansion , i f 1 , uncont ro l l ed
% expansion
% − over lap = over lap [m]
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% − of f_des = index : i f 0 , des ign cond i t i ons ,
% i f 1 , o f f −des ign c o n d i t i o n s
% − shroud = index : i f 0 , shrouded turbine ,
% i f 1 , unshrouded turb ine
% − partadm = index : i f 0 , t o t a l admission ,
% i f 1 , p a r t i a l admiss ion about Suter−Traupel
% − nsecpa = number o f s e c t o r o f admiss ion ( p a r t i a l admiss ion )

%%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−Optimizing Var iab les −−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% STAGE COEFFICIENTS
phin = [ 0 . 2 4 8 9 0 .2132 0 . 3 6 6 ] ; % Nozzle f low c o e f f i c i e n t
ph i r = [ 0 . 2 6 5 6 0 .3042 0 . 5 3 2 ] ; % Rotor f low c o e f f i c i e n t
p s i = [ 3 . 4 0 5 7 3 3 . 3 5 ] ; % Stage load ing c o e f f i c i e n t

% OPENING
omin = [ 0 . 0 2 0 .0108 0 . 0 1 5 ] ; % Nozzle throat opening
or = [ 0 . 0 0 7 7 0 .0106 0 . 0 1 1 5 ] ; % Rotor opening

% AXIAL CHORD
cn = [ 0 . 0 7 7 3 0 .0500 0 . 0 3 5 5 ] ; % Nozzle a x i a l chord
cr = [ 0 . 0 4 2 2 0 .0272 0 . 0 3 3 0 ] ; % Rotor a x i a l chord

% OPENING TO PITCH RATIO
osn = [ 0 . 2 3 8 2 0 .2 0 . 2 5 8 ] ;
o s r = [ 0 . 4 3 9 0 .295 0 . 3 7 6 ] ;

% HEIGHT RATIO
hhh = [ 1 . 0 9 7 7 1 .0092 1 . 0 8 ] ; % I n l e t r o t o r to o u t l e t s t a t o r he ight r a t i o

%%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−Cycle Input Data−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% EFFICIENCY GUESS
e t a t s g = 0 . 8 ; % Guessed s tage e f f i c i e n c y
eta t sng = 0 . 8 ; % Guess nozz l e e f f i c i e n c y
e t a t s r g = e t a t s g ; % Guessed r o t o r e f f i c i e n c y
e t a t s 0 = 0 . 7 8 ; % Guessed e f f i c i e n c y to s t a r t the i t e r a t i v e c y c l e

f l u i d = ’ Cyclopen . f l d ’ ; % Working f l u i d

m = 45 ; % Mass f low ra t e [ kg/ s ]
mx = m; % Fixed mass f low ra t e ( r e s t r i c t i o n f a c t o r s )
N = 3000 / 60 ; % Rotat iona l speed [ rev / s ]

% THERMODYNAMICS
T01 = [513 0 0 ] ; % Total i n l e t temperature [K]
p01 = [3000000 0 0 ] ; % Total i n l e t p r e s su r e [ Pa ]
pr0 = 1/30 ; % Overa l l t o t a l p r e s s u r e r a t i o
C1 = [75 0 0 ] ; % I n l e t abso lu t e v e l o c i t y [m/ s ]
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% GAS PROPERTIES
M = refpropm ( ’M’ , ’T ’ ,T01 ( 1 ) , ’P ’ , p01 (1)/1000 , f l u i d ) ; % Molar mass [ kg/kmol ]
Cp = refpropm ( ’C ’ , ’T ’ ,T01 ( 1 ) , ’P ’ , p01 (1)/1000 , f l u i d ) ;
Cp = Cp ; % Constant p r e s su r e s p e c i f i c heat [ J/kg−K]
Cv = refpropm ( ’O’ , ’T ’ ,T01 ( 1 ) , ’P ’ , p01 (1)/1000 , f l u i d ) ;
Cv = Cv ; % Constant volume s p e c i f i c heat [ J/kg−K]
k = Cp/Cv ; % S p e c i f i c heat r a t i o
R = 8314 ; % I d e a l gas constant

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−Fixed Input Var iab les −−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
nst = 1 ; % Number o f s t a g e s

r ec = [ 0 0 0 ] ; % Recuperated f r a c t i o n o f o u t l e t k i n e t i c energy

alpha1 = [ 0 0 0 ] ; % Fluid abso lu t e i n l e t ang le

% INCIDENCE
iminn = [ 0 0 0 ] ; % Nozzle assumed optimal i n c i d e n c e
iminr = [ 3 3 3 ] ; % Rotor assumed opt im ia l i n c i d e n c e

% CRAIG−COX INPUT PARAMETERS
ksbr = 0 . 0 0 0 2 ; % Equivalent send gra in s i z e
Re = 1d6 ; % Reynolds number
i s t a l l n = 15 ; % S t a l l i n c i d e n c e

WWmax = 1 ; % Maximum r e l a t i v e v e l o c i t y r a t i o
teon = 0 . 1 ; % T r a i l i n g edge to opening r a t i o f o r nozz l e
t eo r = 0 . 1 ; % T r a i l i n g edge to opening r a t i o f o r nozz l e
e = 1d5 ; % Back s u r f a c e curvature rad iu s
over lap = 0 . 0 0 2 ;
% Overlap

% INDEXES
c t r l e x p = 0 ; % Contro l l ed expansion ( 0 ) , un−c o n t r o l l e d expansion (1 )
o f f_des = 1 ; % Design ( 0 ) , Off−des ign (1 )
shroud = 0 ; % Shrouded b lades ( 0 ) , un−shrouded b lades (1 )
partadm = 1 ; % Total admiss ion ( 1 ) , p a r t i a l admiss ion (0 )
nsecpa = 2 ; % Number o f s e c t o r o f p a r t i a l admiss ion
Mcd = 1 . 4 ; % Mach number at which switch to converging−d i ve r g in g nozz l e
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E
Insights of Design

Methodology

Due to the obvious space requirements on the Master thesis, some section of
the design methodology was only hinted in thesis core. This appendix aims
at providing some deeper explanation of the aforementioned sections.

E.1 Deich Formula

As mentioned in Section 4.2.2, Deich et al. (1965) proposed a value of M
= 1.4 to switch from a simply converging nozzle, to a converging-diverging
configuration. It proposed an empirical relationship between the Mach num-
ber and the blade degree of divergence. In particular, the nozzle opening
was calculated through the formula

oN = oN
omin

omin (E.1)

Where the ratio oN/omin depended on the value of the Mach number, as
indicated in 4.2.2. As a result, the nozzle opening was obtained from the
minimum opening, i.e. throat opening, which was one of the ten optimizing
parameters. Actually, the value of oN/omin calculated in this way is some-
what less than the theoretical degree of divergence: this means that only
a part of the supersonic expansion takes place in the diverging interblade
channel, while its completion occurs after the blade outlet section by mean
of the so-called ”after-expansion” process.
The computational function for the calculation of the nozzle degree of di-
vergence is here reported.
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%%=========================================================================
%================================DEICH_R===================================
%==========================================================================

% The formula from Deich , i s used to c a l c u l a t e the degree o f d ive rgence .

%%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−L i s t o f Parameters−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% − on = nozz l e opening
% − omin = nozz l e throat
% − M2 = abso lu t e Mach number e x i t i n g the nozz l e
% − k = heat capac i ty r a t i o
% − qM = area r a t i o between the cons ide r ed Mach number
% and the s o n i c throat , f o r i s e n t r o p i c f low

%%
func t i on [ on , qM2, onomin ] = Deich_R ( omin , M2, kn , Mcd)

qM2 = M2 / ((2 / ( kn + 1)) ∗ ( (1 + ( ( kn − 1) / 2) ∗ . . .
(M2^2) ) ) ^ ( ( kn + 1) / (2 ∗ ( kn − 1 ) ) ) ) ;

% The area r a t i o i s v a l i d in case o f i s e n t r o p i c p roce s s
% and f o r a p e r f e c t gas

i f M2 <= Mcd
onomin = 1 ;

e l s e
onomin = 1 + ( 0 . 5 ∗ M2 − 0 . 4 ) ∗ ( (1 / qM2) − 1 ) ;

end

on = onomin ∗ omin ;

end

E.2 Blade Geometry Considerations

Some considerations regarding the main geometry, not of major relevance
for this study, can be done:

• Regarding the annulus radius ratio, it should be pointed out that val-
ues in the region of 1 - 4 would be regarded as satisfactory. If the
rotational speed, assumed as an input, had led to an ill-proportioned
annulus, it would have been necessary to rework the preliminary de-
sign. For example, rt/rr could be reduced by increasing the axial
velocity, i.e. by using a higher value of the flow coefficient, φ. This
would also increase the nozzle efflux velocity, and therefore a check on
the Mach number at that section should always be included.

• Regarding the stator to rotor clearance, it should be observed that a
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low value is desirable only to reduce the axial length and weight of
the turbine. Vibrational stresses are induced in the rotor blades as
they pass through the wakes of the nozzle blades, and these stresses
increase sharply with decrease in axial space between the blade rows.
A value of 0.2 is the lowest to be considered safe, but values nearer to
0.5 are often used and this would reduce both the vibrational stresses
and the annulus flare.

E.3 Fluid Outlet Angles

Two correlations were implemented depending on the regime of flow. The
correlation proposed by Ainley & Mathieson (1951) for subsonic flow, and
that suggested by Vavra (1969) for supersonic flow. The correlation pro-
posed by (Ainley & Mathieson (1951)) started from the consideration that
under certain conditions the gas angles could be computed as cos−1(o/s).
Nevertheless, tests on gas turbine cascades had shown that the cos−1(o/s)
rule was an over correction for blades of small outlet angle operating with
low gas velocities. Figure 4.9, from Ainley & Mathieson (1951), shows the
relation between the rotor gas outlet angle, β3 and the blade angle defined
by cos−1(oR/sR) under these conditions. However, the curve is applica-
ble for straight-backed conventional blades operating with a relative outlet
Mach number below 0.5. On the contrary, with an exit Mach number of
unity the cos−1(o/s) rule is reasonable for all blade outlet angles, again
for straight-backed blades. At intermediate Mach numbers the outlet an-
gle can be assumed to vary linearly between β3 as given by figure 4.9 and
cos−1(o/s). Modern turbine blades are usually not straight-backed and some
corrections have been proposed. Indeed, the suction surface frequently up
to 121circ of "unguided" or "uncovered" turning from the throat to be trail-
ing edge and this is reflected in the outlet flow angle. For outlet Mach
numbers below 0.5, Ainley & Mathieson (1951) suggested that β3 was in-
creased by 4(s/e) where e is the radius of curvature of suction side of the
blade. At an exit number Mach number of 1.0 the outlet angle is given by
cos−1(o/s) + f(s/e)sin−1(o/s), where the function f was presented graphi-
cally. The function can be approximated by

f(s/e) = 0.0541(s/e)
1− 1.49(s/e) + 0.742(s/e)2 (E.2)

At intermediate Mach numbers, linear interpolation is again used. However,
this study assumed straight-backed blades profile.
For supersonic flows, equation 4.52 from Vavra (1969) was implemented.
In implementing such a correlation, the main problem was to find the Mach
number at opening of the nozzle, which was lower than the isentropic Mach
number because of the post-expansion. At this purpose, some iteration was
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used in order to findMa starting from the isentropic Mach number, given by
the familiar formula A.16. Once Ma was determined, pa was found through
equation A.37, assuming ideal conditions, i.e. ideal gas and isentropic pro-
cess. Through this pressure the fluid deviation was obtained using formula
4.52.
Equation A.37 was not used in other sections of the computational rou-
tine, since it does not lead to the downstream conditions, but to those at
the opening section. Indeed, the downstream conditions, related to the
isentropic Mach number, are those found by the adopted thermodynamic
analysis. In the space between the opening and the downstream section,
complex phenomena occur. Such phenomena are affecting the deviation of
the fluid, as predicted by Vavra (1969).
The computational function for the calculation of blade and fluid angle is
here presented.

%%=========================================================================
%=================================BLADE_R==================================
%==========================================================================

% D e f i n i t i o n o f the blade geometry : pitch , chord , number o f b lades and
% blade p r o f i l e . From the blade p r o f i l e i t i s p o s s i b l e to re−c a l c u l a t e the
% speed t r i a n g l e s with the updated ang l e s and v e l o c i t i e s .

%%
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−L i s t o f Parameters−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% − s t a t i o n 1 = i n l e t o f the nozz l e
% − s t a t i o n 21 = o u l e t o f the nozz l e
% − s t a t i o n 2 = i n l e t o f the r o t o r
% − s t a t i o n 3 = e x i t o f the r o t o r
% − omin = nozz l e throat [m]
% − or = r o t o r opening ( r o t o r i s cons ide r ed only converg ing ) [m]
% − sn = nozz l e p i t ch [m]
% − s r = r o t o r p i t ch [m]
% − cn = nozz l e chord [m]
% − cr = r o t o r chord [m]
% − hn = mean nozz l e he ight [m]
% − hr = mean r o t o r he ight [m]
% − zn = nozz l e number o f b lades
% − zr = r o t o r number o f b lades
% − theta = blade ang le [ degree s ]
% − imin = minimum i n c i d e n c e [ degree s ]
% − T01 = t o t a l temperature at s t a t i o n 1 [K]
% − R = u n i v e r s a l gas constant [ J/kmol−K]
% − M = molar mass o f the working f l u i d [ kg/kmol ]
% − gam = s p e c i f i c heat r a t i o o f the working f l u i d
% − Cp = cos tant p r e s s u r e s p e c i f i c heat [ J/kg−K]
% − phi = stage f low c o e f f i c i e n t
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% − Um = p e r i p h e r a l speed at mean rad iu s [m/ s ]
% − N = r o t a t i o n a l speed [ rev / s ]
% − rm = mean rad iu s [m]
% − on = nozz l e opening [m]
% − alpha = f l u i d abso lu t e ang le at mean rad iu s [ degree s ]
% − alpha2r = f l u i d abso lu t e ang le at s t a t i o n 2 at root rad iu s [ degree s ]
% − alpha2t = f l u i d abso lu t e ang le at s t a t i o n 2 at t i p rad iu s [ degree s ]
% − alpha3r = f l u i d abso lu t e ang le at s t a t i o n 3 at root rad iu s [ degree s ]
% − alpha3t = f l u i d abso lu t e ang le at s t a t i o n 3 at t i p rad iu s [ degree s ]
% − beta2 = f l u i d r e l a t i v e ang le at s t a t i o n 2 at mean rad iu s [ degree s ]
% − beta2r = f l u i d r e l a t i v e ang le at s t a t i o n 2 at root rad iu s [ degree s ]
% − beta2t = f l u i d r e l a t i v e ang le at s t a t i o n 2 at t i p rad iu s [ degree s ]
% − beta3 = f l u i d r e l a t i v e ang le at s t a t i o n 3 at mean rad iu s [ degree s ]
% − beta3r = f l u i d r e l a t i v e ang le at s t a t i o n 3 at root rad iu s [ degree s ]
% − beta3t = f l u i d r e l a t i v e ang le at s t a t i o n 3 at t i p rad iu s [ degree s ]
% − br = backbone l enght f o r the r o t o r blade [m]
% − Csound = spped sound [m/ s ]
% − M3 = abso lu t e Mach number
% − Mw2 = r e l a t i v e Mach number

%%
func t i on [ sn , sr , zn , zr , theta1 , theta21 , theta21r , theta21t , theta2 , theta2r , theta2t , theta3 , . . .

theta3r , theta3t , alpha2 , alpha2r , alpha2t , alpha3 , alpha3r , alpha3t , beta2 , beta2r , . . .
beta2t , beta3 , beta3r , beta3t ] = Blade_R . . .
( alpha1 , phin , phir , iminn , iminr , cr , Ca2 , Ca3 , on , or , omin , osn , osr ,Um,N,M2,Mw3, . . .
kn , kr , p01 , p02 , p2 , p3 , rr2 , rt2 , rr3 , rt3 , onomin )

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−Pitch and Number o f Blades−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
sn = on / osn ;
s r = or / os r ;
rm = Um / (N∗2∗ pi ) ;
zn = f l o o r ( (2 ∗ pi ∗ rm) / sn ) ;
z r = f l o o r ( (2 ∗ pi ∗ rm) / s r ) ;

% I t i s known that the nozz l e number o f b lades should be even , whi l e the
% r o t o r number o f blade should be prime .

i f mod( zn , 2 ) == 0 ;
zn = zn ;

e l s e
zn = zn + 1 ;

end
i f i sp r ime ( zr ) == 1

zr = zr ;
e l s e

zr = c e i l ( ( 2 ∗ pi ∗ rm) / s r ) ;
end

%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−Blade P r o f i l e and Fluid Deviat ion−−−−−−−−−−−−−−−−−−−
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
% For subson ic f low the f l u i d e x i t ang l e s are c a l c u l a t e d with the
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% Ainley−Mathieson c o r r e l a t i o n , whi l e f o r the supe r son i c f low the f l u i d
% e x i t ang l e s are c a l c u l a t e d with the Vavra c o r r e l a t i o n .

theta21 = acos ( on / sn ) ;
i f M2 <= 1

alow = (1 .151 ∗ acos ( on / sn ) − 0 . 1 9 4 4 ) ;
alpha2 = alow ;
i f M2 > 0 .5

alpha2 = alow + (M2 − 0 . 5 ) ∗ ( theta21 − alow ) / 0 . 5 ;
end

e l s e
K = ( kn − 1) / kn ;
pap0cr = (2 / ( kn + 1))^(1 / K) ;
T1T0cr = 2 / ( kn + 1 ) ;
ex = 0 .5 + 1 / ( kn − 1 ) ;
i f on == omin

Ma = 1 ;
Ma2 = 1 ;
p2pa = ( p2 / p01 ) / pap0cr ;

e l s e
Ma = M2;
Ma2 = Ma ∗ Ma;
q = ( ( ( ( kn − 1) / ( kn + 1)) ∗ Ma2 + . . .

(2 / ( kn + 1 ) ) ) ^ ( ex ) ) / Ma;
whi l e q > onomin | | Ma > 1.004

p01pa = (1 + Ma2 ∗ ( kn − 1) / 2)^(1 / K) ;
Ma = Ma − 0 . 0 0 5 ;
Ma2 = Ma ∗ Ma;
q = ( ( ( ( kn − 1) / ( kn + 1)) ∗ Ma2 . . .

+ (2/( kn + 1 ) ) ) ^ ( ex ) ) / Ma;
end
p01pa = (1 + Ma2∗ ( kn − 1) / 2)^(1 / K) ;
p2pa = ( p2 / p01 ) ∗ p01pa ;

end
x = p2pa ∗ (1/K) ∗ tan ( theta21 ) ;
y = ( kn+1)/(kn −1);
z = (1−p2pa )∗ (2∗ (1/K)∗Ma2−1−(y∗p2pa ) ) ;
t = z + x∗x ;
i f t<0

t =0;
end
s = ((−x+s q r t ( t ) ) / (1+kn∗Ma2−p2pa ) ) ;
alpha2 = theta21 + atan ( s ) ;

end
theta21 = radtodeg ( theta21 ) ;
alpha2 = ( radtodeg ( alpha2 ) ) ;
a lpha2r = atand ( ( rm/ rr2 ) ∗ tand ( alpha2 ) ) ;
a lpha2t = atand ( ( rm/ r t2 ) ∗ tand ( alpha2 ) ) ;

i 21 = abs ( theta21−alpha2 ) ;

theta21r = alpha2r − i 21 ;
theta21t = alpha2t − i 21 ;
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beta2 = atand ( tand ( alpha2 ) − (1/ phin ) ) ;
beta2r = atand ( ( ( rm/ rr2 ) ∗ tand ( alpha2 ) ) − ( ( r r2 /rm) ∗ (Um/Ca2 ) ) ) ;
beta2t = atand ( ( ( rm/ rt2 ) ∗ tand ( alpha2 ) ) − ( ( r t2 /rm) ∗ (Um/Ca2 ) ) ) ;

theta3 = acos ( or / s r ) ;
i f Mw3 <= 1

alow = (1 .151 ∗ acos ( or / s r ) − 0 . 1 9 4 4 ) ;
beta3 = alow ;
i f Mw3 > 0 .5

beta3 = alow + (Mw3 − 0 . 5 ) ∗ ( theta3 − alow ) / 0 . 5 ;
end

e l s e
K = ( kr − 1) / kr ;
pap0cr = (2 / ( kr +1))^(1/K) ;
T1T0cr = 2 / ( kr +1);
ex =0.5 + 1/( kr −1);

Ma = 1 ;
Ma2 = 1 ;
p3pa = ( p3/p02 )/ pap0cr ;

x = p3pa ∗ (1/K) ∗ tan ( theta3 ) ;
y = ( kr+1) / ( kr −1);
z = (1−p3pa ) ∗ (2 ∗ (1/K) ∗ Ma2 − 1 − ( y∗p3pa ) ) ;
t = z + x ∗ x ;
i f t < 0

t = 0 ;
end
s = ((−x+s q r t ( t ) ) / (1 + kr ∗ Ma2 − p3pa ) ) ;
beta3 = theta3 + atan ( s ) ;

end

theta3 = radtodeg ( theta3 ) ;
beta3 = radtodeg ( beta3 ) ;

i 3 = abs ( theta3−beta3 ) ;

alpha3 = atand ( tand ( beta3 )−(1/ ph i r ) ) ;
a lpha3r = atand ( ( rm/ rr3 )∗ tand ( alpha3 ) ) ;
a lpha3t = atand ( ( rm/ r t3 )∗ tand ( alpha3 ) ) ;

beta3r = atand ( ( ( rm/ rr3 )∗ tand ( alpha3 ) ) + ( ( r r3 /rm)∗ (Um/Ca3 ) ) ) ;
beta3t = atand ( ( ( rm/ rt3 )∗ tand ( alpha3 ) ) + ( ( r t3 /rm)∗ (Um/Ca3 ) ) ) ;
the ta3r = beta3r − i 3 ;
the ta3t = beta3t − i 3 ;

theta1 = alpha1 + iminn ;
theta2 = beta2 + iminr ;
the ta2r = beta2r + iminr ;
the ta2t = beta2t + iminr ;

end
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F
Craig & Cox Figures

This appendix provides all the figures proposed by Craig & Cox (1971),
which were used during for the thesis. The computational function related
to the losses evaluation is not reported here because too long.

Figure F.1: Craig & Cox (1971) Fig. 1

Figure F.2: Craig & Cox (1971) Fig. 3
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Figure F.3: Craig & Cox (1971) Fig. 4

Figure F.4: Craig & Cox (1971) Fig. 5
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Figure F.5: Craig & Cox (1971) Fig. 6

Figure F.6: Craig & Cox (1971) Fig. 7

Figure F.7: Craig & Cox (1971) Fig. 8
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Figure F.8: Craig & Cox (1971) Fig. 9

Figure F.9: Craig & Cox (1971) Fig. 17
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Figure F.10: Craig & Cox (1971) Fig. 18

Figure F.11: Craig & Cox (1971) Fig. 19
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Figure F.12: Craig & Cox (1971) Fig. 21
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G
Validation of the

Computational Model

In chapter 5, only a partial description of the validation process for a multi-
stage configuration was described. This appendix reports the single-stage
validation for the ideal gas model and the multi-stage validation for the real
fluid model.

G.1 Ideal Gas Model

G.1.1 Single-Stage Gas Turbine

Stabe et al. (1984)

The validation followed the same path described in Section 5.3 for a real
fluid. The input data were the same; they can be found in table 5.5.
The same considerations made for the real fluid model can be repeated
for the ideal gas model. Table G.1 reports the results of the validation
in terms of turbine performance, blade geometry, thermodynamic states
and velocity diagram. The table compares computational and experimental
results, reporting the relative error, ∆εrel. Table G.1 shows that the only
parameter affected by a relative error greater than 3% is the fluid outlet
angle α3, i.e. angle formed by the absolute velocity at the exit of the rotor.
However, although the relative error is above the acceptable threshold, the
result can be consider satisfying since the absolute error is equal to ∆εabs =
1◦.
Velocity triangles, geometry and T-s diagram at the mean radius were similar
to those obtained for an real fluid. They are reported in figures G.1, G.2
and G.3, respectively.
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Table G.1: Validation results for the single-stage gas turbine. Ideal
gas computational model.

Comp. Result Experim. Result ∆εrel
Performance
ηtt, [%] 0.891 0.89 0.11 %
P [MW] 0.813 - -
Geometry
zN 26 26 0 %
zR 49 48 2.041 %
sN [m] 0.057 0.058 1.7 %
sR [m] 0.0306 0.0306 0 %
rm [m] 0.234 0.233 0.47 %
h2 [m] 0.0364 0.0356 2.292 %
h3 [m] 0.0359 0.0356 0.956 %
Λ 0.4559 - -
Thermodynamic States
T02 [K] 422.2 - -
p02 [bar] 2.961 - -
T03 [K] 340.7 - -
p03 [bar] 1.315 - -
Velocity Triangles
Um [m/s] 221 218 1.717 %
Ca,2 [m/s] 81.2 - -
Ca,3 [m/s] 118 - -
C2 [m/s] 316.1 - -
W3 [m/s] 310.3 - -
α2 [◦] 75.1 75 0.156 %
β2 [◦] 45.8 45 1.88 %
α3 [◦] 29.2 30.2 3.39 %
β3 [◦] 67.67 67.9 0.373 %
M2 0.823 0.833 0.85 %
M3,rl 0.849 0.863 1.55 %
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Figure G.1: Velocity triangles for the single-stage gas turbine. Ideal
gas computational model.

Figure G.2: Blade geometry for the single-stage gas turbine. Ideal
gas computational model.
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Figure G.3: T-s static diagram for the single-stage gas turbine. Ideal
gas computational model.

G.1.2 Multi-Stage Gas Turbine

Kotzing & Evers (1985): Diagrams

Figures G.4 - G.6 show the velocity triangles for the second, third and fourth
stage of the expander, respectively.
Figures G.7 - G.8 show the blade geometry for the second and third stage
of the expander, respectively.
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Figure G.4: Velocity triangles for stage 1 of the multi-stage gas
turbine. Computational results.

Figure G.5: Velocity triangles for stage 2 of the multi-stage gas
turbine. Computational results.
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Figure G.6: Velocity triangles for stage 3 of the multi-stage gas
turbine. Computational results.

Figure G.7: Blade geometry for stage 2 of the multi-stage gas tur-
bine. Computational result.
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Figure G.8: Blade geometry for stage 3 of the multi-stage gas tur-
bine. Computational result.

G.2 Real Fluid Model

G.2.1 Multi-Stage Gas Turbine

Kotzing & Evers (1985)

The real fluid model was tested for a multi-stage configuration. The input
data for the design routine were those of the ideal gas model, reported in
table 5.1. Table G.2 shows the validation results for the first two stages,
while G.3 displays the those for the third and fourth stage.
The validation gave results very similar to those described in Chapter 5 for
the ideal gas model. Table G.4 reports the overall total-to-total efficiency
and power output of the four-stage turbine. The computational results
proved to be accurate for both the parameters. Figures G.9 - G.12 show the
velocity triangles for first, second, third and fourth stage of the expander,
respectively.
Furthermore,figures G.13 - G.16 show the blade geometry for first, second,
third and fourth stage of the expander, respectively.
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Table G.2: Part A - Validation results for Stage 1 and stage 2 of the
multi-stage gas turbine. Real fluid computational model.

Stage 1 Stage 2
CR ER ∆εrel CR ER ∆εrel

Blade Geometry
h1 [m] 0.0661 0.064 1.77% 0.0721 - -
h2 [m] 0.0723 - - 0.0763 - -
h3 [m] 0.0755 - - 0.0768 - -
rm [m] 0.1357 0.135 0.51% 0.144 0.1425 1.04%
Λ 0.493 0.5 1.42% 0.502 0.5 0.58%
Thermodynamic States
T03 [K] 388.9 384 1.18% 367.1 364 0.58%
p03 [bar] 2.10 2.13 1.44% 1.69 1.71 1.58%
p3 [bar] 2.05 2.08 1.87% 1.65 1.67 1.53%
Velocity Diagram
Um [m/s] 106.6 - - 113.4 - -
C3 [m/s] 78.81 78 0.11% 90.09 90 0.11%
α2 [◦] 67.81 68 0.28% 68.16 68 0.23%
β2 [◦] 38.7 39.6 2.47% 39.66 39.6 0.15%
β3 [◦] 66.03 66 0.05% 66.03 66 0.05%
α3 [◦] 22.4 20 10.8% 24.1 20 17.0%
M2 0.426 - - 0.473 - -
M3,rel 0.413 - - 0.467 - -

Table G.3: Part B - Validation results for the Stage 3 and Stage 4
of the multi-stage gas turbine. Real fluid computational model.

Stage 3 Stage 4
CR ER ∆εrel CR ER ∆εrel

Blade Geometry
h1 [m] 0.0791 - - 0.098 - -
h2 [m] 0.101 - - 0.104 - -
h3 [m] 0.103 - - 0.104 0.102 2.19%
rm [m] 0.139 0.161 15.8% 0.146 0.183 25.39%
Λ 0.507 0.5 1.38% 0.495 0.5 0.88%
Thermodynamic States
T03 [K] 345.1 341 1.13% 326.3 319 2.24%
p03 [bar] 1.33 1.35 2.16% 1.051 1.05 0.14%
p3 [bar] 1.28 1.31 2.42% 1.021 1.01 0.96%
Velocity Diagram
Um [m/s] 109.8 - - 114.7 - -
C3 [m/s] 76.75 77 0.87% 86.6 86.5 0.28%
α2, [◦] 68.16 68 0.23% 68.16 68 0.23%
β2 [◦] 38.67 39.6 2.35% 38.75 39.6 2.19%
β3 [◦] 66.03 66 0.05% 66.03 66 0.05%
α3 [◦] 21.87 20 8.55% 22.67 20 11.3%
M2 0.444 - - 0.501 - -
M3,rel 0.442 - - 0.494 - -
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Table G.4: Efficiency and power of the four-stage low speed gas
turbine. Real fluid computational model.

Comp. Result Experim. Result ∆εrl
ηtt 0.906 0.913 0.77 %
P [MW] 0.694 0.703 2.59 %

Figure G.9: Velocity triangles of stage 1 of the multi-stage gas tur-
bine. Real fluid computational model.
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Figure G.10: Velocity triangles of stage 2 of the multi-stage gas
turbine. Real fluid computational model.

Figure G.11: Velocity triangles of stage 3 of the multi-stage gas
turbine. Real fluid computational model.
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Figure G.12: Velocity triangles of stage 4 of the multi-stage gas
turbine. Real fluid computational model.

Figure G.13: Blade geometry of stage 1 of the multi-stage gas tur-
bine. Real fluid computational model.
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Figure G.14: Blade geometry of stage 2 of the multi-stage gas tur-
bine. Real fluid computational model.

Figure G.15: Blade geometry of stage 3 of the multi-stage gas tur-
bine. Real fluid computational model.
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Figure G.16: Blade geometry of stage 4 of the multi-stage gas tur-
bine. Real fluid computational model.

Finally, figure G.17 shows the T-s diagram at mean radius for the four-stage
expansion.

Paolo Gabrielli, s135427 - Technical University of Denmark 189



Design and Optimization of Turbo-Expanders for Organic Rankine Cycles

Figure G.17: T-s diagram for the four-stage low speed gas turbine.
Real fluid computational model.
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H
Optimization Results for

Draugen Offshore Platform
Applications

This appendix provides the optimization results used to build the efficiency
charts for the organic Rankine cycle, the steam Rankine cycle and the air
bottoming cycle axial-flow turbines, investigated in the context of the Drau-
gen offshore platform.

H.1 ORC Results

Table H.1: Optimization results for the ORC single-stage axial-flow
turbine, p01 = 30 bar.

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
20 0.685 12.17 0.311 39.14 8469 0.021 2.621
45 0.724 28.85 0.7 41.22 8626 0.0311 5.635
100 0.789 57.19 1.555 36.78 8461 0.045 14.21
200 0.812 117.8 3.111 37.88 8529 0.064 29.52
300 0.818 183.1 4.665 39.24 8599 0.079 45.09
400 0.821 237.3 6.220 38.16 8547 0.090 59.83
500 0.829 290.0 7.775 32.37 8508 0.100 75.04
600 0.818 367.0 9.330 39.34 8604 0.111 90.27
700 0.809 452.7 10.88 41.59 8704 0.122 1.056
800 0.803 480.7 12.44 38.65 8569 0.128 119.4
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Table H.2: Optimization results for the ORC single-stage axial-flow
turbine, p01 = 20 bar.

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
20.00 0.73 12.09 0.53 22.68 8105.25 0.02 2.54
45.00 0.76 30.49 1.20 25.43 8319.60 0.03 5.68
100.00 0.82 59.22 2.66 22.22 8089.57 0.05 13.63
200.00 0.83 122.47 5.33 22.98 8163.85 0.07 28.04
300.00 0.86 174.87 7.99 21.88 8073.96 0.08 42.58
400.00 0.84 236.91 10.66 22.23 8102.19 0.09 56.41
500.00 0.85 306.48 13.32 23.00 8171.58 0.11 71.21
600.00 0.84 387.88 15.99 24.26 8278.43 0.12 86.72
700.00 0.84 418.43 18.65 22.43 8120.31 0.13 98.84
800.00 0.83 485.20 21.32 22.76 8143.66 0.14 111.59

Table H.3: Optimization results for the ORC single-stage axial-flow
turbine, p01 = 10 bar.

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
20.00 0.74 13.37 1.18 11.37 7158.54 0.03 2.09
45.00 0.81 27.74 2.65 10.45 7000.76 0.04 4.96
100.00 0.86 58.93 5.88 10.02 6916.11 0.06 11.49
200.00 0.86 124.45 11.76 10.59 7039.73 0.08 23.51
300.00 0.87 178.94 17.63 10.15 6949.06 0.10 35.28
400.00 0.87 239.07 23.51 10.17 6954.58 0.11 47.21
500.00 0.85 292.62 29.39 9.96 6899.36 0.12 57.09
600.00 0.81 356.68 35.27 10.11 6920.89 0.14 65.68
700.00 0.84 438.06 41.15 10.65 7045.91 0.15 80.70
800.00 0.83 510.44 47.02 10.85 7085.84 0.16 91.79

Table H.4: Optimization results for the ORC single-stage axial-flow
turbine, p01 = 5 bar.

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
20.00 0.81 11.99 2.45 4.90 5447.67 0.03 1.58
45.00 0.86 26.52 5.51 4.81 5415.58 0.05 3.75
100.00 0.87 58.98 12.25 4.82 5421.81 0.07 8.47
200.00 0.88 117.38 24.49 4.79 5411.39 0.10 17.07
300.00 0.89 176.30 36.74 4.80 5415.66 0.12 25.74
400.00 0.87 239.17 48.99 4.88 5456.25 0.14 34.04
500.00 0.84 311.43 61.24 5.09 5552.98 0.16 42.01
600.00 0.83 377.84 73.48 5.14 5578.09 0.17 50.07
700.00 0.77 443.25 85.73 5.17 5573.58 0.19 53.67
800.00 0.83 510.44 47.02 10.85 7085.84 0.16 91.79
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H.2 SRC Results

Table H.5: Optimization results for the SRC single-stage axial-flow
turbine, p01 = 12.57 bar (design pressure).

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
5.00 0.76 83.24 1.14 73.06 29487.00 0.06 3.71
7.22 0.81 143.30 1.66 86.16 30104.60 0.08 5.64
10.00 0.81 184.26 2.28 80.86 29912.50 0.09 7.98
15.00 0.81 270.66 3.42 79.18 29830.00 0.11 11.85
20.00 0.83 361.74 4.56 79.37 29848.60 0.12 15.93
24.00 0.83 409.21 5.47 74.82 29490.10 0.13 19.21
30.00 0.81 482.98 6.61 73.09 29582.60 0.14 23.28
35.00 0.79 608.21 7.98 76.26 29654.80 0.16 26.51

H.3 ABC Results

Table H.6: Optimization results for the ABC single-stage axial-flow
turbine, p01 = 2.46 bar (design pressure).

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
5.00 0.78 7.48 3.58 2.09 7585.12 0.01 0.59
10.00 0.83 14.64 7.16 2.05 7524.18 0.03 1.24
20.00 0.84 29.24 14.32 2.04 7601.04 0.04 2.60
50.00 0.87 71.88 35.80 2.01 7491.63 0.06 6.54
87.50 0.89 124.01 62.65 1.98 7399.07 0.09 11.50
140.00 0.87 204.54 100.24 2.04 7635.70 0.11 18.61
200.00 0.86 286.96 143.20 2.00 7475.45 0.14 26.14
250.00 0.85 367.15 179.00 2.05 7655.35 0.15 32.95

Paolo Gabrielli, s135427 - Technical University of Denmark 193



Design and Optimization of Turbo-Expanders for Organic Rankine Cycles

194



I
Optimization Results for the

Fluid Comparison
Application

This appendix provides the optimization results used to build the efficiency
charts for the cyclopentane, MDM and R245fa axial-flow turbines.

I.1 Cyclopentane Results

Table I.1: Optimization results for the cyclopentane single-stage
axial-flow turbine, p01 = 40 bar.

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
20.00 0.74 13.37 1.18 11.37 7158.54 0.03 2.09
72.09 0.79 27.74 2.65 10.45 7000.76 0.04 5.45
100.00 0.84 58.93 5.88 10.02 6916.11 0.06 11.49
200.00 0.85 124.45 11.76 10.59 7039.73 0.08 23.51
300.00 0.86 178.94 17.63 10.15 6949.06 0.10 35.28
400.00 0.86 239.07 23.51 10.17 6954.58 0.11 47.21
500.00 0.84 292.62 29.39 9.96 6899.36 0.12 57.09
600.00 0.82 356.68 35.27 10.11 6920.89 0.14 65.68
700.00 0.83 438.06 41.15 10.65 7045.91 0.15 80.70
800.00 0.83 510.44 47.02 10.85 7085.84 0.16 91.79
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Table I.2: Optimization results for the cyclopentane single-stage
axial-flow turbine, p01 = 30 bar.

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
20.00 0.77 12.68 1.81 8.14 6303.11 0.03 1.84
72.09 0.83 27.13 4.08 7.63 6208.17 0.04 4.36
100.00 0.84 58.95 9.06 7.42 6168.96 0.06 9.98
200.00 0.87 120.92 18.13 7.69 6225.56 0.09 20.29
300.00 0.88 177.62 27.19 7.47 6182.36 0.11 30.51
400.00 0.87 239.12 36.25 7.52 6205.42 0.13 40.62
500.00 0.84 302.03 45.31 7.52 6226.17 0.14 49.55
600.00 0.83 367.26 54.38 7.63 6249.49 0.16 57.87
700.00 0.81 440.66 63.44 7.91 6309.75 0.17 67.19
800.00 0.82 510.44 47.02 10.85 7085.84 0.16 81.32

Table I.3: Optimization results for the cyclopentane single-stage
axial-flow turbine, p01 = 20 bar.

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
20.00 0.80 11.99 2.45 4.90 5447.67 0.03 1.58
72.09 0.85 26.52 5.51 4.81 5415.58 0.05 3.75
100.00 0.88 58.98 12.25 4.82 5421.81 0.07 8.47
200.00 0.89 117.38 24.49 4.79 5411.39 0.10 17.07
300.00 0.89 176.30 36.74 4.80 5415.66 0.12 25.74
400.00 0.87 239.17 48.99 4.88 5456.25 0.14 34.04
500.00 0.84 311.43 61.24 5.09 5552.98 0.16 42.01
600.00 0.83 377.84 73.48 5.14 5578.09 0.17 50.07
700.00 0.82 443.25 85.73 5.17 5573.58 0.19 58.67
800.00 0.82 510.44 47.02 10.85 7085.84 0.16 69.78

196



Appendix I. Optimization Results for the Fluid Comparison Application

I.2 MDM Results

Table I.4: Optimization results for the MDM single-stage axial-flow
turbine, p01 = 13 bar.

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
20.00 0.73 2.23 0.24 9.29 2384.28 0.03 0.48
50.00 0.79 5.52 0.61 9.01 2374.84 0.05 1.29
95.64 0.83 10.66 1.15 9.27 2385.84 0.07 2.61
200.00 0.85 22.15 2.41 9.21 2379.79 0.10 5.52
300.00 0.85 33.59 3.61 9.31 2390.61 0.12 8.38
400.00 0.83 45.90 4.81 9.54 2413.33 0.14 11.07
500.00 0.82 57.91 6.01 9.63 2421.96 0.16 13.76
600.00 0.81 70.61 7.22 9.79 2436.21 0.17 16.19
700.00 0.80 83.91 8.42 9.96 2448.30 0.19 18.58

Table I.5: Optimization results for the MDM single-stage axial-flow
turbine, p01 = 8.5 bar.

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
20.00 0.76 2.50 0.43 5.76 2162.23 0.04 0.44
50.00 0.82 5.67 1.08 5.22 2171.72 0.05 1.19
95.64 0.85 10.74 2.07 5.18 2163.44 0.08 2.34
200.00 0.86 22.05 4.34 5.08 2165.42 0.11 4.97
300.00 0.85 34.15 6.51 5.25 2177.36 0.13 7.46
400.00 0.84 46.28 8.68 5.33 2193.11 0.16 9.78
500.00 0.82 58.92 10.85 5.43 2211.15 0.17 12.02
600.00 0.80 74.32 13.02 5.71 2260.94 0.19 14.30
700.00 0.76 90.17 15.19 5.94 2299.38 0.21 16.29

Table I.6: Optimization results for the MDM single-stage axial-flow
turbine, p01 = 4 bar.

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
20.00 0.80 2.13 1.04 2.05 1462.28 0.05 0.27
50.00 0.86 5.58 2.60 2.15 1419.29 0.08 0.70
95.64 0.88 10.63 4.97 2.14 1415.09 0.12 1.34
200.00 0.85 23.12 10.38 2.23 1461.51 0.16 4.34
300.00 0.82 35.05 15.57 2.25 1451.51 0.20 6.19
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I.3 R245fa Results

Table I.7: Optimization results for the R245fa single-stage axial-flow
turbine, p01 = 33 bar.

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
50.00 0.73 0.93 0.05 18.22 1345.54 0.04 0.80
100.00 0.77 2.26 0.14 16.67 1210.21 0.06 1.68
202.40 0.83 3.02 0.21 14.57 1170.87 0.07 3.29
300.00 0.74 4.35 0.31 14.17 1138.86 0.09 5.29
400.00 0.73 6.33 0.41 15.47 1205.07 0.10 7.31
500.00 0.70 7.31 0.51 14.29 1146.82 0.12 8.88

Table I.8: Optimization results for the R245fa single-stage axial-flow
turbine, p01 = 24 bar.

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
20.00 0.68 0.50 0.18 2.74 1730.91 0.02 0.28
50.00 0.77 1.25 0.46 2.73 1732.12 0.03 0.70
100.00 0.83 2.42 0.91 2.64 1697.64 0.05 1.39
202.40 0.85 4.88 1.85 2.63 1694.78 0.07 2.81
300.00 0.87 7.20 2.74 2.62 1691.85 0.08 4.17
400.00 0.87 10.04 3.66 2.74 1750.37 0.09 5.56
500.00 0.89 11.89 4.57 2.60 1680.51 0.10 6.95
600.00 0.89 14.43 5.49 2.63 1692.21 0.11 8.34
700.00 0.88 16.70 6.40 2.61 1684.72 0.12 9.73
800.00 0.88 19.23 7.32 2.63 1694.02 0.13 11.13
900.00 0.87 22.13 8.23 2.69 1723.43 0.14 12.50
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Table I.9: Optimization results for the R245fa single-stage axial-flow
turbine, p01 = 17 bar.

ṁ [kg/s] ηts V̇out [m3/s] V̇in [m3/s] ˙Vex
Vin

∆h3/4
is

[m3/2/s1/2] Ns P [MW]
20.00 0.75 0.54 0.29 1.88 1417.14 0.03 0.26
50.00 0.83 1.27 0.72 1.76 1316.22 0.04 0.59
100.00 0.88 2.51 1.44 1.75 1305.55 0.06 1.19
202.40 0.90 5.08 2.91 1.75 1307.03 0.09 2.56
300.00 0.89 7.58 4.31 1.76 1314.86 0.10 3.75
400.00 0.88 10.12 5.75 1.76 1318.14 0.12 5.08
500.00 0.88 12.52 7.18 1.74 1302.74 0.14 6.27
600.00 0.88 15.16 8.62 1.76 1315.96 0.15 7.26
700.00 0.88 17.73 10.06 1.76 1320.10 0.16 8.87
800.00 0.87 20.33 11.49 1.77 1323.90 0.17 10.08
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