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Introduction

Quantitative analysis in linguistics has consistently grown in the last few

decades, also thanks to the interest of many mathematicians, statisticians

and physicists who, using techniques borrowed from statistics and informa-

tion theory, discovered many structural properties of language streams. Up

to now obtained results are still quite modest, but they are still able to

discover some previously unknown linguistic features; furthermore new dis-

coveries are always made, in order to contribute to a new and more complete

perspective of our understanding on language. In this thesis my main aim is

to review some of these results, focusing my analysis on analogies and dif-

ferences of statistical properties between different languages. We will start

from two general linguistic laws, Zipf’s and Heaps’ laws, and we will later fo-

cus on more particular statistical features of texts, burstiness and long-range

correlations, whose origins will be studied in this thesis.

In the first chapter, there will be an introduction to two of the most fam-

ous laws (not in a rigorous sense, but just from an empirical point of view)

in quantitative linguistics: Zipf’s law and Heaps’ law. Zipf’s law, introduced

by G. K. Zipf in 1949, studies the relation between the rank of a word r

(the position in a classification of all used words, ordered in decreasing order

by their frequency) and its frequency f(r) (f(r) ∝ r−z), while Heaps’ law,

introduced by H. S. Heaps in 1978, studies the relation between the number

of different words N(k) and the total number of used words k (N(k) ∝ kγ).

Along this chapter we will study the relation between these two laws, ob-
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ii Introduction

taining a particular asymptotic relation between the two exponents z and γ.

Moreover we will analyze some interesting models for creating random texts

which, using completely different approaches, exhibit these laws. In particu-

lar the last model we will study, proposed by M. Gerlach and E. G. Altmann

in 2013, is very interesting, in fact this model merges many different ideas

present in various previous models, obtaining results that seem consistent

with real data.

In the second chapter we will analyze Zipf’s and Heaps’ laws from an

experimental point of view. In the first part we will observe results of how

Zipf’s and Heaps’ laws fit on a series of random texts created using Simon’s

model, one of the models studied in the first chapter, and using monkey

texts. In the second part we will analyze how Zipf’s and Heaps’ laws fit on

real texts, using War and Peace in four different languages: English, French,

German and Italian. As said before, we will compare these results for all

languages studied, observing different and similar behaviors.

In the third chapter there will be a theoretic introduction to a recent

model (2012) proposed by E. G. Altmann, G. Cristadoro and M. Degli Espo-

sti, that, building a hierarchy of language, whose levels are established from

sets of both semantically and syntactically similar conditions, studies the ori-

gins of long-range correlations in texts and how long-range correlations and

burstiness behave moving up and down in the hierarchy built. Moreover,

after a detailed explanation of this model, there will be a statistical analysis

that will be used in the experiments for the approximation of the long-range

correlations exponent (σ2
X(t) ∝ tγ), necessary when working with finite time

sequences, as in the case of texts.

This model will be better analyzed thanks to experiments on real texts

in the fourth chapter and, even in this case, will be used War and Peace in

four different languages: English, French, German and Italian. After a pre-
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liminary study language per language, in which we will observe long-range

correlations and burstiness for each book, there will be a combined analysis

in order to observe differences and analogies of long-range correlations and

burstiness between different languages.

Finally in the fifth chapter there will be a comparison between two differ-

ent approaches for quantitative analysis on texts: the one studied along this

thesis, and the other one, studied and analyzed by two colleagues of mine,

Filippo Bonora and Giulia Tini, in their theses, that consider a text as a

network. After an introduction to their method, results obtained for various

books with these two different approaches will be shown.
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Chapter 1

Zipf’s and Heaps’ laws: theory

In qualitative studies on language the frequency with which different

words are used in writing or in speech is clearly the most elementary stat-

istical property of human language. That’s why it has been the first to be

quantitatively characterized and the most studied. Therefore in this chapter

we will analyze two of the most important laws based on frequency: Zipf’s

and Heaps’ laws.

1.1 Zipf’s law

In this section we will study Zipf’s law and a mathematical model whose

purpose is to explain it.

1.1.1 Origins

In his book Human Behavior and the Principle of Least Effort, published

in 1949, George Kingsley Zipf, a philologist, proposed a principle, the so

colled Principle of Least Effort, that argue that a person will always ”strive

to solve his problems in such a way as to minimize the total work that he

must expend in solving both his immediate problems and his probable future

problems”. In his explanation, which clearly lacked of a mathematical for-

mulation, he revisited a finding which he had already advanced more that

1



2 1. Zipf’s and Heaps’ laws: theory

a decade earlier in his The Psycho-Biology of Language (Zipf, 1936), now

known as Zipf’s law.

Its original formulation establishes that, in a sizable sample of language

(a text or a speech) the number of words K(n) which occur exactly n times

decays with n as

K(n) ∝ n−ζ (1.1)

for a wide range of values of n. The exponent ζ changes from text to text

but it was often found that ζ ∼ 2.

Figure 1.1: K(n) in a log-log plot for the book War and Peace in English

Later, in the book Human Behavior and the Principle of Least Effort, Zipf

proposed an alternative, but equivalent to the first one (we will prove this

in a while), formulation: if we rank the words of a chosen text in decreasing

order by their frequency (with rank 1 the most frequent word, at rank 2 the

second most frequent word and so on), we can observe that the frequency

f of the word with rank r follows, to a good approximation, the following
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relation with r:

f(r) ∝ r−z (1.2)

where it was often found that z ∼ 1.

Figure 1.2: f(r) in a log-log plot for the book War and Peace in English

Proposition 1.1.1. The equations K(n) ∝ n−ζ and f(r) ∝ r−z are

equivalent.

Proof. The rank of a word with n occurrences is equal to the number of words

with n or more occurrences: r(n) =
+∞∑
n′=n

N(n′) ≈
∫ +∞

n

N(n′)dn′ where N(n)

is the number of words with appears exactly n times.

If N(n) satisfies the first equation, then f(r) satisfies the second one and

there is a relation between the two coefficients ζ and z:

z =
1

ζ − 1
. (1.3)
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Vice-versa, if f(r) satisfies the second equation, then N(n) satisfies the

first one and the following relation is valid:

ζ = 1 +
1

z
(1.4)

Zipf proposed a qualitative explanation of this relation between the num-

ber of words and the number of occurrences using the Principle of Least

Effort, on the basis of the equilibrium between the ”work” done by the two

agents involved in a communication event: the speaker and the hearer. From

the speaker’s point of view, the most economic vocabulary consists of a single

word that contains all the desired meanings to be verbalized. The hearer,

on the other hand, ”would be faced by the impossible task of determining

the particular meaning to which the single word in a given situation might

refer” [2]. This conflict between the speaker’s and the hearer’s tendencies to

respectively reduce and increase lexical diversification, is solved by develop-

ing a vocabulary where a few words are used very often, while most words

occur just a few times.

1.1.2 A mathematical model for Zipf’s law

Despite its apparent robustness, Zipf’s law is just an empirical observa-

tion and not a law in a rigorous sense: in fact this law has been assumed but

never explained in models for the evolution of communication. Moreover it

can be observed that this law works well for the smallest ranks, but it doesn’t

fit for bigger ranks (see Fig. 1.2).

In order to solve the second problem, R. F. i Cancho and R. V. Solè [20],

observed, analyzing the rank ordering plot of their data (they used BNC,

British National Corpus, a corpus of modern English, both spoken -10%-

and written -90%-), the presence of two different exponents in the same rank

ordering plot. The first exponent z1 ∼ 1 for ranks r < b ∈
(
103, 104

)
and
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the second one z2 ∼ 2 for ranks r > b. Thus the frequency of words follows

the following mathematical law: a double power law, composed by the initial

Zipf’s law and a more sloping decay.{
f(r) ∝ r−z1 r < b,

f(r) ∝ r−z2 r > b
(1.5)

The presence of this double power law can be easily observed in the

following figure, caught from [20].

Figure 1.3: Probability of a word as a function of its rank i,P (i). The

first and the second power law decays have exponent z1 = 1.01 ± 0.02 and

z2 = 1.92±0.07, respectively. Statistics on the whole BNC, that has a lexicon

of 588030 words.

The two observed exponents divide words in two different sets: a kernel

lexicon formed by ≈ b versatile words and an unlimited lexicon for spe-

cific communication. The existence of a kernel lexicon raises the issue of

how small can be a lexicon without drastically pauperize communication.

Some examples of languages with a very small lexicons are pidgin languages.

Pidgin languages are ”on-the-spot” languages that develop when people with
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no common language come into contact with each other. For example, the

establishment of plantation economies in the Caribbean, with large groups of

slaves from different language backgrounds, gave life to a number of pidgins

based on English, French, Spanish, Dutch, and Portuguese. Estimates of

the number of words of the kernel lexicon of a pidgin language vary from

about 300 to 1500 words and, as expected, words of such small lexicons are

very multi-functional and circumlocutions are often used in order to cover

this lexical gap. On the contrary the number of words of the kernel lexicon

is about 25000 − 30000 for ordinary languages, clearly not enough for the

588030 words of BNC. So they suggested that the finiteness of this kernel

lexicon is hidden by an unlimited specific lexicon. In fact, although the size

of the lexicon of a speaker can be extremely big, what counts for a successful

communication are the common words shared with the maximum number of

speakers, that is to say, the words in the kernel lexicon.

Now that we have a mathematical law which fits quite good real data, we

have to solve the main problem, the complete lack of a quantitative model

that explains the process by which a vocabulary diversifies and communic-

ation evolves under the pressure of the Principle of Least Effort on both

speaker and hearer. In 2003 R. F. i Cancho and R. V. Solè proposed [27] a

new explanation mathematical model.

In this model the process of communication implies the exchange of in-

formation from a set of m objects of reference, the meanings, R = {r1, ..., rm},
using a set of n signals, the words, S = {s1, ..., sn}. The interactions between

meanings and words (a word can have different meanings and various mean-

ings can be expressed with different words) can be modeled with a binary

matrix A = {ai,j}, where 1 ≤ i ≤ n, 1 ≤ j ≤ m and ai,j = 1 if the ith word

refers to the jth meaning and ai,j = 0 otherwise. We define p(si) and p(rj) as

the probability of si and rj, respectively and p(si, rj) as the joint probability.
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If synonymy is forbidden, we would have

p(si) =
∑
j

ai,jp(rj), (1.6)

because words are used for referring to meanings. We assume p(rj) = 1/m

hereafter. If synonymy is allowed, the frequency of a meaning has to be

divided between all its words. The frequency of a word p(si) is defined as

p(si) =
∑
j

p(si, rj). (1.7)

According to Bayes theorem we have

p(si, rj) = p(rj)p(si|rj) (1.8)

and

p(si|rj) = ai,j
1

ωj
(1.9)

where ωj =
∑
i

ai,j is the total number of synonyms of the jth meaning.

Combining the last two equations, we get

p(si, rj) = ai,j
p(rj)

ωi
(1.10)

and thus

p(si) =
∑
j

p(si, rj) =
1

m

∑
j

ai,j
ωj

(1.11)

The effort for the speaker will be defined in terms of the diversity of

words, here measured by means of the word entropy

Hn(S) = −
n∑
i=1

p(si) logn p(si). (1.12)

So if a single word is used for every meaning, the effort is minimal and

Hn(S) = 0. Indeed

p(si) =

{
0, if i 6= i

1, if i = i
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and so p(si) logn p(si) = 0, ∀i, so Hn(S) = 0. Vice-versa when all words have

the smallest (6= 0) possible frequency ( 1
n
), then the frequency effect is in the

worst case for all words ⇒ Hn(S) = 1.

The effort for the hearer when si is heard, is defined as

Hm(R|si) = −
m∑
j=1

p(rj|si) logm p(rj|si) (1.13)

where p(rj|si) =
p(rj, si)

p(si)
by the Bayes theorem. The effort for the hearer is

defined as the average effort for all possible words he can hear, that is

Hm(R|S) = −
n∑
i=1

p(si)Hm(R, si). (1.14)

An energy function combining the effort for both the speaker and the

hearer is defined as

Ω(λ) = λHm(R|S) + (1− λ)Hn(S), (1.15)

where 0 ≤ λ, Hm(R|S), Hn(S) ≤ 1. In this way the energy function depends

on a single parameter λ, which represents the contribution of each term to

the total effort.

R. F. i Cancho and R. V. Solè performed numerical simulations for

n,m = 150 where, at each step, a few elements of the matrix A were switched

between 0 and 1 or vice-versa, and the change was accepted if the energy func-

tion Ω(λ) decreased. They expected that, if Zipf’s hypothesis were valid, the

probabilities p(si) would converge to a distribution compatible with the in-

verse relation between frequency and rank for some intermediate value of

λ. As a measure of communication accuracy, they also recorded the mutual

information between the probability distributions of words and meanings,

defined as

I(S,R) =
m∑
j=1

p(rj)
n∑
i=1

p(si|rj) logn p(si|rj)−
n∑
i=1

p(si) logn p(si), (1.16)
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and the relative lexicon size, L, defined as the ratio between the number of

effectively used words and the total number of available words n.

In the following figure, caught from [27], there is a schematic represent-

ation of the results of simulations, after a large number of iterations of the

dynamical process of switching the elements of A. The left panel shows the

word-meaning mutual information I(S,R) as a function of λ. Two different

regimes are clearly identified, separated by a sharp transition at λ∗ ≈ 0.41.

For λ < λ∗, there is practically no informational correlation between words

and meanings, which is to say that communication fails. Accordingly, the

relative lexicon size L vanishes. Vice-versa for λ > λ∗, both I(S,R) and L

attain significant levels, and approach their maximal values for λ→ 1.

Figure 1.4: Schematic representation of numerical results from the quant-

itative model for the Principle of Least Effort applied to the evolution of

language. Left panel: the word-meaning mutual information I(S,R) as a

function of the parameter λ. Right panel: relative lexicon size L as a func-

tion of λ. Labels indicate the regimes of no communication and animal com-

munication, and the transition at λ∗, which has been identified with human

language.
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Moreover, as shown in the insert of the left panel of the figure, the ana-

lysis of the frequency-rank relation from the results of simulations satisfy

Zipf’s law with exponent z ∼ 1 at the critical value λ∗, while the power-law

relation breaks down for other values of λ. In the context of this model,

human language seems the result of the Principle of Least Effort, that let the

system reach the edge of transition.

In conclusion, R. F. i Cancho’s and R. V. Solè’s evolutionary model

demonstrates that a convenient mathematical formulation of the Principle

of Least Effort leads to Zipf’s law, with z ∼ 1. However, this result must

be interpreted cautiously. In fact, this model describes the evolution of the

frequencies of word usage in language as a whole. On the other hand, Zipf’s

law is known to be valid for single (or a small number of) texts. When many

unrelated samples of the same language are joined into a single corpus, the

resulting lexicon does not necessarily satisfy Zipf’s law, as has been discussed

by the same authors in [20].

1.2 Heaps’ law

In this section we will analyze Heaps’ law and two mathematical models

that, starting from Zipf’s law, show the validity of Heaps’ law.

1.2.1 Origins

Another important linguistic law is Heaps’ law, discovered in the 1960

by Gustav Herdan and later published and better analyzed also by Harold

Stanley Heaps. This empirical law describes the number of distinct words,

N , in a document (or set of documents) as a function of the document length,

k: the classical result for this relation is the following law:

Nk = N(k) ∝ kγ, (1.17)

with γ ∈ [0, 1].
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Figure 1.5: N(k) in a log-log plot for the book War and Peace in English

Studying this relation, we can note that Heaps’ law has the same problems

of Zipf’s law: there isn’t a quantitative model that describes it and real data

don’t follow a power-law but a double power-law:

{
Nk ∝ kγ1 k �Mb,

Nk ∝ kγ2 k �Mb

(1.18)

where γ1 ∼ 1, γ2 ∈ [0, 1], Mb is the number of words such that NMb
= b and

b is the same b present in Eq. (1.5) (in the following part of this chapter we

will study the relation between Zipf’s and Heaps’ laws and especially in the

last section there will be an explanation of this particulare relation).

The presence of this double power law can be easily observed in the

following figure, caught from [45].
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Figure 1.6: Number of different words as a function of the total number of

words (in the graph its notation is M). The first and the second power law

decays have exponent γ1 = 1 and γ2 = 1
1.77

, respectively. Statistics on the

whole google n-gram database, a corpus of more than over 5.2 million books

published in the last centuries and digitized by Google Inc.

1.2.2 A formal derivation of Heaps’ law

The relation between Zipf’s law and Heaps’ law is one of the most in-

teresting research argument in linguistic research area. In this part we will

study a model with which we will derive Heaps’ law directly from the Man-

delbrot distribution, which has the original Zipf’s law as a special case.

First of all we have to define the Mandelbrot distribution. Given the

parameters N ∈ Z, c ∈ [0,+∞) and θ ∈ R+, the Mandelbrot distribution is

a discrete probability distribution: given r ∈ {1, 2, ..., N} (r represents the
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rank of the data), the probability mass function is given by:

f(r;N, c, θ) =
(r + c)−θ

HN,c,θ

, (1.19)

where HN,c,θ =
∑N

k=1
1

(k+c)θ
.

Proposition 1.2.1. Original Zipf ’s law is a particular case of the Mandelbrot

distribution.

Proof. If we set c = 0 and θ = 1 we obtain the following:

f(r;N, 0, 1) =
r−1

HN,0,1

(1.20)

which is exactly the original Zipf’s law.

Notation 1.2.1. We will often use pr = f(r;N, 0, 1) = aNr
−1, where aN =

H−1N,0,1.

Now, starting from these definitions, we can analyze this model, proposed

by D.C. van Leijenhorst and Th.P. van der Weide [29] in 2004.

Let W be a set of N words numbered 1, ..., N and let pi the probability

that word i is chosen. The underlying text model is the following: words are

taken randomly with replacement from the set W according to its probability

distribution and we are interested in the asymptotic behavior (for N → +∞)

of the expected resulting number of different words taken. After taking k

words w1, ..., wk from W , let Dk be the set of different words and let Nk be

the number of such words, Nk = #Dk. Obviously Nk ≤ N . We analyze the

drawing of the kth word for k > 0 in detail. There are two possibilities: the

kth word has been drawn before or not. Let a ≤ k, then:

P (Nk = a) = P (Nk−1 = a− 1 ∧ wk 6∈ Dk−1) + P (Nk−1 = a ∧ wk ∈ Dk−1) =

= P (Nk−1 = a− 1)P (wk 6∈ Dk−1) + P (Nk−1 = a)P (wk ∈ Dk−1)

(1.21)

Note that P (Nk = a) = 0, ∀a > k and P (N1 = 1) = 1.
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Finally note that P (wk ∈ Dk−1) = 1− P (wk 6∈ Dk−1), where

P (wk 6∈ Dk−1) =
∑
i∈W

P (wk = i ∧ i 6∈ Dk−1) =
∑
i∈W

pi(1− pi)k−1 (1.22)

Hereafter we will use the following notation: Sk =
∑
i∈W

pi(1 − pi)k−1 and

Mk =
∑
i∈W

(1 − pi)k. We will refer to Mk as the kth reverse moment of the

probability distribution. Then, clearly: Sk = Mk−1−Mk. Now, if we use the

following notation, N(k, a) = P (Nk = a), we get the following recurrence

relation:
N(1, 1) = 1

N(k, a) = 0 if a > k

N(k, a) = N(k − 1, a− 1)Sk +N(k − 1, a)(1− Sk) if a ≤ k

(1.23)

Now we can study the expected number of different words Nk after taking

k words randomly from the set W of words. Before studying this, we are

going to observe the following lemma.

Lemma 1.2.2. The expected number of different words in a radom selection

of k words is Nk = N −Mk.

Proof. From the previous recurrence relation,

Nk =
∑k

a=1 aN(k, a) =
∑k

a=1 aN(k − 1, a− 1)Sk +
∑k

a=1 aN(k − 1, a)(1− Sk) =

(1.24)

= Sk

(∑k
a=1 aN(k − 1, a− 1)−

∑k
a=1 aN(k − 1, a)

)
+

∑k
a=1 aN(k − 1, a) =

q q∑k−1
a=1(a+ 1)N(k − 1, a)−

∑k−1
a=1 aN(k − 1, a) Nk−1

q
1

(1.25)

= Sk +Nk−1 (1.26)

Now we have to show that Nk = N −Mk, so it’ sufficient to prove that

Nk + Mk = N . In order to prove this statement we can use the principle of

induction.
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• k = 1: N1 +M1 = 1 +
∑
i∈W

(1− pi) = 1 +N − 1 = N X

• k′ = k + 1: Nk′ = Nk′−1 + Sk′ = Nk + Sk+1 = N − Mk + Sk+1 =

N −Mk +Mk −Mk+1 = N −Mk′ X.

Now, before proving the following theorem, we have to add two hypo-

thesis: c > 0 and 1 < θ ≤ 2.

Theorem 1.2.3. The expected number Nk of different words in a random

selection of k words from N is

Nk = αkβ(1 + o(1)) +O

(
k

N θ−1

)
,

(
N, k →∞, k

N θ−1 → 0

)
(1.27)

where β = θ−1 and α = aβ∞Γ(1− β) with a∞ = limN→∞ aN and Γ is the well

known gamma function, Γ(x) =

∫ ∞
0

tx−1 exp(−t)dt.

Proof. First of all it’s convenient to have these further notations:

A = βaβN , µ = −1− β, t(x) = an(c+ x)−θ, (1.28)

φk(x) = (1− t(x))k, ψ(t) = (1− t)k−1tµ+1. (1.29)

In order to prove this theorem we may split it in points.

• Fixed k > 0 and N , φk(x) is a monotonically increasing function:

[1,∞)→ (0, 1), so

N−1∑
i=1

φk(i) ≤
∫ N

1

φk(x)dx ≤
N∑
i=2

φk(i). (1.30)

Hence,

Mk =
N∑
i=1

φk(i) =

∫ N

1

φk(x)dx+ ε (1.31)

with error |ε| ≤ φk(1) + φk(N). Now, because of aN is uniformly

bounded in N and k, then even ε is uniformly bounded in N and k. In

this way, the reverse moment Mk is approximated by an integral.
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• By substitution of t(x) = aN(c+ x)−θ, we have dx = −Atµdt and∫ N

1

φk(x)dx = A

∫ t(1)

t(N

(1− t)ktµdt. (1.32)

• Integrating by parts the previous integral, we obtain:

A

∫ t(1)

t(N

(1− t)ktµdt =

[
A

(1− t)ktµ+1

µ+ 1

]t(1)
t(N)

− Aθk
∫ t(1)

t(N)

ψ(t)dt. (1.33)

Now, the first part of A

∫ t(1)

t(N

(1 − t)ktµdt is equal to (c + N)φk(N) −

(c + 1)φk(1). By Taylor expansion φk(N) =
(
1− aN(c+N)−θ

)k
=

1 + O

(
k

(c+N)θ

)
,

(
k

(c+N)θ
→ 0

)
. In this way the first part of

A

∫ t(1)

t(N

(1− t)ktµdt has been estimated as O(1) +N +O(
k

N θ−1 ). Thus

we obtain approximately the number of words N in the set W .

The second part of A

∫ t(1)

t(N

(1 − t)ktµdt is −Aθk
∫ t(1)

t(N)

ψ(t)dt that can

be split into three terms as: −Aθk
∫ 1

0

ψ(t)dt + Aθk

∫ t(N)

0

ψ(t)dt +

Aθk

∫ 1

t(1)

ψ(t)dt.

1. The second term Aθk

∫ t(N)

0

ψ(t)dt = Aθk

∫ t(N)

0

(1 − t)k−1tµ+1dt.

Since t(N)→ 0 if N →∞, this term has order

AθkO

(∫ t(N)

0

1 tµ+1dt

)
= O(kt(Nµ+2)) = O

(
k

N θ−1

)
.

2. By partial integration the third term

Aθk

∫ 1

t(1)

ψ(t)dt = (1.34)

=

[
Aθk(1− t)k−1 t

µ+2

µ+ 2

]1
t(1)

+
Aθk(k − 1)

µ+ 2

∫ 1

t(1)

(1− t)k−2tµ+2dt
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Now, A is bounded and µ+ 2 > 0, so

[
Aθk(1− t)k−1 t

µ+2

µ+ 2

]1
t(1)

=

O(k(1 − t(1))k−1), (k → ∞). Similarly,
Aθk(k − 1)

µ+ 2

∫ 1

t(1)

(1 −

t)k−2tµ+2dt ≤ Aθk(k − 1)

µ+ 2

∫ 1

t(1)

(1− t)k−2dt = O((k2(1− t(1)))k−1),

(k → ∞). Thus we can observe that the third term decreases

exponentially with k.

Summarizing: up to now we have proved that

Mk = −Aθk
∫ 1

0

ψ(t)dt+N +O(1) +O

(
k

kθ−1

)
(1.35)

where N, k →∞, k

N θ−1 → 0.

• The integral in the previous equation can be recognised as

−AθkΓ(k)Γ(µ+ 2)

Γ(k + µ+ 2)
, (1.36)

valid only for µ+2 6= 0 ⇔ θ 6= 1. Now, using Stirling’s approximation

of the Γ function
(

Γ(x+ 1) ∼
√

2πxxx exp(−x)
)

, we have

−AθkΓ(k)Γ(µ+ 2)

Γ(k + µ+ 2)
∼ (1.37)

∼ −AθΓ(µ+ 2)k−µ+1 = −aβNΓ(1− β)kβ (1.38)

Finally, aβN = aβ∞ (1 + o(1)), so we have

−Aθk
∫ 1

0

ψ(t)dt = aβ∞Γ(1− β)kβ (1 + o(1)) (1.39)

Substituting this into Mk = −Aθk
∫ 1

0

ψ(t)dt+N +O(1) +O

(
k

kθ−1

)
and using Nk = N −Mk we complete the proof of the theorem.
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An immediate consequence of this theorem is Heaps’ law.

Corollary 1.2.4 (Heaps’ law). Nk = αkβ for k,N →∞.

One of the main results of this model is the relation between Zipf’s coef-

ficient z and Heaps’ coefficient γ. In fact in this model z and γ are relatively

1 < θ ≤ 2 and β, where β = θ−1.

1.2.3 From Zipf’s law to Heaps’ law

In the last subsection we have analyzed a stochastic model which, starting

from Zipf’s law, leads to Heaps’ law. Now we will analyze a recent discovery,

published in 2010 by L. Lü, Z.-K. Zhang, T. Zhou [39] and our goal will be

to prove that for an evolving system with a stable Zipf’s exponent, Heaps’

law can be directly derived from Zipf’s law without the help of any specific

stochastic model. Morover the relation γ =
1

z
is only an asymptotic solution

hold for very large size systems with z > 1. This model also refines this

result for finite size systems with z & 1 and complete it with z < 1.

First of all we can note that r − 1 is the number of distinct words with

frequency larger than f(r). So, denoting by k the total number of word

occurrences and Nk the corresponding numbers of distinct words

r − 1 =

∫ t(1)

t(r)

Nkp(t
′)dt′ (1.40)

where t(r) = f(r)k is the number of occurrences of a word of rank r.

Remembering from Eq. (1.1) that p(t) = At−ζ with A constant and

according to the normalization condition

∫ t(1)

1

p(t)dt = 1,

A =
ζ − 1

1− t(1)1−ζ
≈ ( when ζ > 1 and t(1)� 1) ≈ ζ − 1. (1.41)

Substituting p(t′) in the equation before by (ζ − 1)t′−ζ , we have

r − 1 = Nk

[
t(r)1−ζ − t(1)1−ζ

]
. (1.42)
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According to Zipf’s law and the relation between the Zipf’s and power-law

exponents ζ = 1 +
1

z
, the right part of the last equation can be written in

the following way

r − 1 = Nk

[
t(1)−

1
z (r − 1)

]
. (1.43)

Combining r − 1 =

∫ t(1)

t(r)

Nkp(t
′)dt′ and r − 1 = Nk

[
t(1)−

1
z (r − 1)

]
we can

obtain the estimation of t(1), as

t(1) = N z
k . (1.44)

Obviously, the text size k is the sum of all words’ occurrences, that is to say

k =

Nk∑
r=1

t(r) ≈
∫ Nk

1

t(r)dr =
t(1)

(
N1−α
k − 1

)
1− α

(1.45)

Note that the summation

Nk∑
r=1

t(r) is larger than the integration

∫ Nk

r=1

t(r)dr

but

Nk∑
r=1

t(r) can be approximated with

∫ Nk

r=1

t(r)dr because the relative error

of this approximation

∑Nk
r=1 t(r)−

∫ Nk
r=1

t(r)dr∑Nk
r=1 t(r)

increases with the increasing

of z and decreases with the increasing of N .

Now it’s clear the following relation:

k =
Nk

(
N1−z
k − 1

)
1− z

. (1.46)

This equation is clearly not a simple power law form as described in Heaps’

law, but we will see that Heaps’ law is an approximate result that can be

derived from this. Actually, when z is considerably larger than 1, N1−z
k � 1

and Nk ≈ [k(z − 1)]
1
z , while if z is considerably smaller than 1, N1−z

k ≈
(1− α)k. This approximated result can be summarized as

γ =

{
1
z
, z > 1,

1, z < 1,
(1.47)
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Although Eq. (1.46) is different from a power law, numerical results indicate

that the relationship between Nk and k can be well fitted by a power law

function.

To validate these numerical results we can propose a stochastic model.

Given the total number of occurrences k, there are at most k distinct words

that may appear. The initial occurrence number of each of these k words

is set at 0. At each time step, these k words are sorted in decreasing order

by their frequency and the probability a word with rank r will occur in this

time step is proportional to r−z. The whole process stops after k time steps.

The distribution of word occurrence clearly follows Zipf’s law with a stable

exponent z, and the growth of Nk approximately follows the Heaps’ law with

γ dependent on z. In the following figure, caught from [39] it’s clearly shown

how the simulation results of this stochastic model about γ vs. z strongly

support the validity of Eq. (1.46).

Figure 1.7: Relationship between the Zipf’s exponent z, x axis, and the

Heaps’ one γ, y axis. For the numerical result and the result of the stochastic

model, the total number of word occurrences is fixed at k = 105.
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1.3 Statistical model for vocabulary growth

In this section we will analyze a new model, proposed in 2013 by M. Ger-

lach and E. G. Altmann [45], for the number of different words in a given

database. The main feature of this model is the existence of two different

classes of words: a finite number of core-words which have higher frequency

and don’t influence the probability of a new word to be used, and the remain-

ing potentially infinite number of noncore-words which have lower frequency

and, once used, reduce the probability of the appearance of a new word.

This model is based on an analysis of the google-n-gram database (a corpus

of more than over 5.2 million books published in the last centuries and di-

gitized by Google Inc) and its main result is the generalization of Zipf’s and

Heaps’ laws to double power law regimes, Eq.(1.5) and Eq. (1.18).

But before studying specifically this model, it’s useful to introduce Si-

mon’s model, proposed in [3] and later better analyzed in [42].

1.3.1 Simon’s model

In 1955 the sociologist H. A. Simon [3] proposed a model, based on a

multiplicative stochastic process for the recurrent use of words and its main

feature is that it is able to quantitatively exhibit Zipf’s law.

Here it follows the rigorous explanation of this model.

Consider the process of text generation as a sequence of events where one

word is added at each step, and let Kk(n) be the number of different words

that appear exactly n times when the text has reached a length of k words.

Simon’s model proposes the following two dynamical rules for each step:

• with constant probability α, the word added at step k+1 is a new one,

which has not occured in the first k steps. Namely, new words appear

in a text at a constant rate α;
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• the probability that the (k + 1)th word that has already appeared

exactly n times is proportional to nNk(n), that is to the total number

of occurrences of all the words that have appreared exactly n times.

This latter rule can be modified and substituted with the following rule,

alternative and equivalent to the previous:

• with probability 1 − α the word added at step k + 1 is one of the

words that have already occurred in the text; this recurrent word is

chosen with a probability proportional to the number of its previous

appearances.

Approximating the expectation value of the number of different words

with exactly n at step k + 1 by Kk+1(n) itself, these rules let us write the

following recursive equation for Kk(n):{
Kk+1(1)−Kk(1) = α− 1−α

k
Kk(1), for n = 1

Kk+1(n)−Kk(n) = 1−α
k

[(n− 1)Kk(n− 1)− nKk(n)] , ∀n > 1

(1.48)

The first term in the right part of the first equation represents the contri-

bution to Kk+1(1) of the word that appears for the first time at step k + 1.

Other terms in both equations are gain and loss contributions associated to

the appearance of a word with, respectively, n−1 and n previous occurrences.

Thanks to this formulation, Simon’s model can be seen as a dynamical system

for the function Kk(n), where k plays the role of a discrete ”time” variable.

The above equations for Kk(n) should be solved for a given ”initial condi-

tion”, Nk0(n), which represents the distribution of occurrences of the words

that have already been addes to the text at the point k0 at which the model’s

dynamical rules begin to act.

Equations in (1.48) don’t have a stationary solution, in the sense that an

asymptotic k-indipendent form for Kk(n) doesn’t exist. In fact, as k grows,

then obviously k =
∑

n nKk(n) must increase accordingly. A ”steady-state”
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solution, however, can be reached by assuming that for large k, the number

of different words with n occurrences satisfies

Kk+1(n)

Kk(n)
=
k + 1

k
, ∀n. (1.49)

This is equivalent to postulate the existance of a stationary profile P (n) for

Kk(n) such that Kk(n) = kP (n). Indeed equations in Eq. (1.48) produce

k-independent equation for P (n), whose solution is

P (n) =
α

1− α
β(n, ζ), (1.50)

where β is the Beta function and ζ = 1 + (1− α)−1.

For small values of α (. 0.1) and ∀n ≥ 1, the above solution for the

profile P (n) is very well approximated by the power-law function

P (n) ≈ α

1− α
Γ(ζ)n−ζ , (1.51)

where Γ(ζ) is the Gamma function. This leads for Kk(n) the form given by

Zipf’s law, Eqs. (1.1) and (1.2) with z = 1 − α. Since the probability of

appearance of new words must necessarily be larger than 0, the exponent of

the frequency-rank relation predicted by Simon’s model is always: z < 1.

The characteristic value z = 1 is obtained in the limit α → 0, when the

appearance of new words becomes extremely rare, condition expected as the

text grows and becomes longer and longer.

Note that Kk(n) = kP (n), with the profile P (n) given by Eq. (1.50) is

an exact solution to Simon’s model equations: it doesn’t represent a general

solution, but a solution just for a specific initial condition Kk0(n) = k0P (n)

which already exhibits the profile P (n). Due to the linearity of Eqs. (1.48),

the general solution to Simon’s model is a sum of the above special solution,

kP (n), plus a contribution from the initial condition.

Hence, Simon’s model predicts that a power-law dependance between

number of words, occurrences and ranks should hold for small to moderately
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large values of n, or, in other words, for the lower ranks in Zipf’s word list

(large r). For the higher ranks, on the other hand, deviations from Zipf’s

law are expected.

1.3.2 Gerlach’s and Altmann’s model

Now that we have introduced Simon’s model, we can analyze Gerlach’s

and Altmann’s model which generalizes Simon’s one. Its main innovation

is that it uses in a statistical model the idea of the presence of two distinct

classes of words, idea already present (but studied only from a qualitative

point of view) in the work, cited before, of R. F. i Cancho and R. V. Solè [20].

Here it follows the rigorous explanation of this model.

At each step a word is drawn (k → k+ 1) and the choice of the word follows

the rules specified below. The total number of different words is given by

N = Nc +Nc, where (Nc) Nc is the number of (non)core-words. The drawn

word can either be a new word (N → N + 1) with a probability pnew or

an already existing word (N → N) with probability 1 − pnew. In the latter

case, a previously used word is chosen with probability proportional to the

number of times this word has occurred before. In the former case, the new

word can either originate from a finite set of Nmax
c core-words (Nc → Nc+1)

with probability pc or come from a potentially infinite set of noncore-words

(Nc → Nc + 1).

In the simplest model, we consider pc to be a constant, that is p0c / 1,

which becomes 0 only if all core-words are drawn (Nc = Nmax
c ):

pc(Nc) =

{
p0c , if Nc < Nmax

c

0, if Nc = Nmax
c

(1.52)

The final element of this model, which establishes the distinguishing as-

pects of core-words, is the dependence of pnew on N . So we choose pnew

depending from N and not from k because an increase in N necessarily im-

plies that fewer undiscovered words exist, while an increase in k is strongly
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affected by repetitions of frequently used words.

By definition, we think of core-words as necessary in the creation of any

text and, therefore, the use of a new core-word in a particular text should be

expected and thus not affect the probability of using a new noncore-word in

the future, that is pnew = pnew(Nc). On the other hand, if a noncore-word is

used for the first time (Nc → Nc + 1) the combination of this word with the

previously used (core and noncore) words lead to a combinatorial increase

in possibilities of expression of new ideas with the already used vocabulary

and thus to a decrease in the marginal need for additional new words. This

argument hints that pnew should decrease with Nc.

Considering these factors, we can propose an update rule for pnew after

each occurrence of a new noncore word as

pnew → pnew

(
1− α

Nc + s

)
, (1.53)

with the decay rate α and the constant s � 1 which is introduced simply

in order to muffle the decrease of pnew for small Nc (for simplicity, we use

s = Nmax
c ). The main justification for the exact functional form in Eq. (1.53)

is that it allows us to recover the empirical observations.
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In the following figure there is a brief explanation of this model.

Figure 1.8: Illustration of this generative model forthe usage of new words

(M = k)

Now we can show how this model implies the validity of Eq. (1.5) and

(1.18). We require that 1 − p0c � 1, which simply means that it is much

more likely to draw core-words than noncore-words initially. In this case we

can obtain approximately exact solutions for Nk in the two limiting cases

considered in Eq. (1.18). When N � Nmax
c , which implies Nc, Nc � Nmax

c ,

it follows from Eq. (1.52) and (1.53) that pnew ≈ c, with c constant, so

we obviously get: N ∝ k1. This case describes the very beginning of the

vocabulary growth, when most of new words belong to the set of core-words.

In the case N � Nmax
c , pc = 0 and N ≈ Nc, Eq. (1.53) becomes in the
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continuum limit:
d

dN
pnew(N) = −αpnew(N)

N
(1.54)

for which it follows that pnew ∝ N−α.

We now obtain the expected growth curve Nk. Note that this model can

be considered a biased random walk in N , which, as an approximation, can

be mapped into a binomial random walk by the coordinate transformation Nk

such that pnew(N) = pnew (Nk). The resulting Poisson-binomial process can

be treated analytically, so Nk can be given by the average of the vocabulary

growth:

Nk =

∫ k

0

pnew(k′)dk′ =

∫ Nk

N0

pnew(N ′)

∣∣∣∣ dk′dN ′

∣∣∣∣ dN ′. (1.55)

Using pnew ∝ N−α, this equation holds by assuming a sub-linear growth

for the vocabulary N ∝ kλ, where the relation λ = (1 + α)−1 is established.

Now we can identify the following relation between the parameters: Nmax
c = b

and α = z − 1. The fitting parameters of Eq. (1.5) can thus be interpreted

as: b is the size of the core vocabulary and z controls the sensitivity of the

probability of using new words to the number of already used words in Eq.

(1.54).
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Chapter 2

Zipf’s and Heaps’ law:

experiments

Up to know we have studied research evolution and some mathematical

models about Zipf’s ad Heaps’ law. Now we will focus on some experiments

on these two laws. First of all we will study two models for creating random

texts that exhibit Zipf’s and Heaps’ laws, while, in the last part of the chapter

we will analyze these two laws on real texts (we will use War and Peace by

Leo Tolstoj), focusing our study on eventual differences between different

languages.

2.1 Random texts

In this section we will analyze two different kind of random texts, the first

one created using Simon’s model, already explained in the previous chapter,

and the second one created using monkey texts, focusing our study on Zipf’s

and Heaps’ laws.

29
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2.1.1 Experiments on Simon’s model

In subsection 1.3.1 we analyzed a model for the creation of a random

text which exhibits Zipf’s law and we will see directly, thanks to some ex-

perimental results, what we have just proved in the previous subsection.

I wrote a program which, using different values of α, creates random texts

using conditions of Simon’s model and corresponding Zipf’s and Heaps’ plots.

In fact Simon’s model exhibits even Heaps’ law, as we can see in the following

proposition.

Proposition 2.1.1. Simon’s model exhibits Heaps’ law with the coefficient

of Eq. (1.16) γ ≈ 1.

Proof. We know that the probability of a new word is α, so, using the nota-

tion E(X) as the expected value of the random variable X, we have that

E(Nk) = E(Nk−1)+α and, given N(1) = 1, we can get E(Nk) = 1+α(k−1) =

(1− α) + αk, so Nk ∝ k1.

In the following part of this subsection these results are shown and ex-

plained, accordingly to what we have up to now studied.

First of all, we can observe, in the following figures, the behavior of Zipf’s

and Heaps’ laws for two cases studied in my analysis.

Remark 2.1.1. For figures and approximation I’ve used the program Grace.
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Figure 2.1: Zipf’s law, in a log− log plot, for a random text of 500000 words,

created using Simon’s model with α = 0.04. z = 0.96117± 1.0074× 10−3

Figure 2.2: Heaps’ law, in a log− log plot, for a random text of 500000 words,

created using Simon’s model with α = 0.04. γ = 0.99283± 0.15057× 10−3
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Figure 2.3: Zipf’s law, in a log− log plot, for a random text of 500000 words,

created using Simon’s model with α = 0.08. z = 0.93191± 0.41580× 10−3

Figure 2.4: Heaps’ law, in a log− log plot, for a random text of 500000 words,

created using Simon’s model with α = 0.08. γ = 1.0195± 0.72510× 10−6



2.1 Random texts 33

As predicted in the previous subsection, we can easily note that Zipf’s

and Heaps’ laws are valid and their coefficients follow all the laws we have

proved. In fact z < 1 for both our cases and γ ≈ 1.

Morover these behaviors confirm the relation between z and γ, exposed

in Eq. (1.46): z < 1 ⇒ γ = 1. These considerations can be observed even

better in the following tab, where all results of my experiments on Simon’s

model are shown.

α z γ

0.02 1.0337 1.0504

0.02 0.96564 1.0474

0.02 1.0834 1.1125

0.02 1.0732 0.92077

0.02 (average) 1.038985 1.0327675

0.04 0.93458 1.044

0.04 0.98318 1.0153

0.04 0.96117 0.99283

0.04 0.95308 1.0687

0.04 (average) 0.9580025 1.0302075

0.06 0.91211 1.0694

0.06 0.95761 0.98874

0.06 0.97772 0.97153

0.06 0.95987 1.0004

0.06 (average) 0.9518275 1.0075175

0.08 0.95182 0.98488

0.08 0.94473 0.98184

0.08 0.93191 1.095

0.08 0.98915 0.98634

0.08 (average) 0.9544025 0.99314
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The only part in contrast with our study is the case α = 0.02, in which

Zipf’s coefficient z 6< 1, but this is probably due to statistical fluctuations for

the choice of a small value of α. In fact, as we said before, the limit z = 1 is

reached for α→ 0 and the obtained γ ≈ 1.

Now, for concluding our study on Simon’s model, we can observe the

following figures, where Zipf’s and Heaps’ plots are shown for all random

texts created (4 texts for each α).

Figure 2.5: Zipf’s law, in a log− log plot, for all random texts of 500000

words, created using Simon’s model
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Figure 2.6: Heaps’ law, in a log− log plot, for all random texts of 500000

words, created using Simon’s model

2.1.2 Monkey texts

In the last subsection we have observed the results of a model created for

exhibiting Zipf’s law. Now, on the contrary, we will prove, using [41], that

a more general random text, in particular a monkey book, exhibits Zipf’s law.

Imagine an alphabet with A letters and a typewriter with a keyboard

with one key for each letter and a space bar. For a monkey randomly typing

on the typewriter the chance for hitting the space bar is assumed to be qs

and the chance for hitting any of the letters is
1− qs
A

. A word is then defined

as a sequence of letters surrounded by blanks.
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Theorem 2.1.2. Given a monkey book, the wfd (word frequency distribu-

tion), P (n) =
K(n)

k
, where K(n) is the the number of words which occur n

times and k is the total number of words, in the continuum limit, is a power

law. Denoting the wfd by p(n), in the monkey book it is given by

p(n) ∝ n−ζ (2.1)

with

ζ =
2 lnA− ln(1− qs)
lnA− ln(1− qs)

. (2.2)

Proof. This monkey text has a certain information content given by the en-

tropy of the letter configurations produced by the monkey. These configura-

tions result in wfd P (n) and the corresponding entropy S = −
∑
n

P (n) lnP (n)

gives a measure of the information associated with this frequency distribu-

tion. The most likely P (n) corresponds to the maximum of S under the

appropriate constraints. This can equivalently be viewed as the minimum

information loss, or cost, in comparison with an unconstrained P (n). Con-

sequently, the minimum cost P (n) gives the most likely wfd for a monkey.

Let n be the frequency with which a specific word occurs in a text

and let the corresponding probability distribution be p(n)dn. This means

that p(n)dn is the probability that a word belongs to the frequency inter-

val [n, n+ dn]. The entropy associated with the probability distribution

p(n) is S = −
∑
n

p(n) ln p(n) (
∑

implies an integral whenever the in-

dex is a continuous variable). Let M(l)dl be the number of words in the

word-letter length interval [l, l + dl]. This means that the number of words

in the frequency interval [n, n+ dn] is M(l)
dl

dn
dn in the degeneracy of a

word with frequency n. The number of distinct words in the same inter-

val is K(n)dn = kp(n)dn, which means that
M(l)

K(n)

dl

dn
is the degeneracy of

a word with frequency n. The information loss due to this degeneracy is

ln

(
M(l)

K(n)

dl

dn

)
= ln

(
M(l)

dl

dn

)
− ln p(n)+const. So the average information
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loss is given by

Icost =
∑

p(n)

[
− ln p(n) + ln

(
M(l)

dl

dn

)]
(2.3)

and this is the appropriate information cost associated with the words: the

p(n) which minimized this cost corresponds to the most likely p(n). The

next step is to express M(l) and
dl

dn
in terms of the two basic probability

distributions, p(n) and the probability for hitting the keys. M(l) is just

M(l) ≈ Al. The frequency n for a word containing l letters is

n ≈
(

1− qs
A

)l
qs. (2.4)

Thus n ≈ exp(al) with a = ln(1 − qs) − lnA so that
dn

dl
= na and, con-

sequently,

Iloss = −
∑
n

p(n) ln p(n) +
∑
n

p(n)
[
lnAl − lnna

]
. (2.5)

Furthermore, ln

(
Al

na

)
= l lnA − lnn − ln a and from Eq. (2.4) we get

l =
ln n

qs

ln 1−qs
A

, from which follows that

ln
Al

na
=

(
−1 +

lnA

ln(1− qs)− lnA

)
lnn+ const.

Thus the most likely distribution corresponds to the minimum of the inform-

ation word cost

Icost = −
∑
n

p(n) ln p(n) +
∑
n

p(n) lnn−ζ (2.6)

with

ζ =
2 lnA− ln(1− qs)
lnA− ln(1− qs)

. (2.7)

Morover, it can be easily proved that even Heaps’ law is valid for monkey

book.
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Theorem 2.1.3. Monkey books exhibit Heaps’ law with the tyical relation

γ =
1

z
.

Proof. Suppose that a book of size k has a wfd Pk(n) created by sampling

a fixed theoretical probability distribution p(n) ∝ n−ζ , like a monkey book,

where the normalization constant in only weakly dependent on k. The num-

ber of different words, Nk, for a given size is then related to k through the

relation

k = Nk

k∑
n=1

np(n) (2.8)

and, since in the present case

k∑
n=1

np(n) ∝ 1

2− ζ
(
M2−ζ − 1

)
, (2.9)

it follows that

Nk ∝ kζ−1 = k
1
z . (2.10)

We have now proved that a monkey text exhibit both Zipf’s and Heaps’

laws and all relations between thier coefficients are valid. In order to confirm

what we have up to now proved, I will show the results of some experiments

I made with monkey books.

I wrote a program which, using different values of A and fixed qs = 0.2,

creates monkey texts and corresponding Zipf’s and Heaps’ plots. First of all,

we can observe, in the following figures, the behavior of Zipf’s and Heaps’

laws for two cases studied in my analysis.
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Figure 2.7: Zipf’s law, in a log− log plot, for a monkey text of 250000 words,

with A = 2 and qs = 0.2. z = 1.3747± 0.31323× 10−3

Figure 2.8: Heaps’ law, in a log− log plot, for a monkey text of 250000 words,

with A = 2 and qs = 0.2. γ = 0.75272± 0.50854× 10−6
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Figure 2.9: Zipf’s law, in a log− log plot, for a monkey text of 250000 words,

with A = 5 and qs = 0.2. z = 1.1753± 0.41098× 10−3

Figure 2.10: Heaps’ law, in a log− log plot, for a monkey text of 250000

words, with A = 5 and qs = 0.2. γ = 0.88417± 0.13048× 10−6
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As predicted, both Zipf’s and Heaps’ laws are valid in monkey books and

we will see in the following tab that their coefficient follow all rules proved:


ζexA = 2 lnA−ln(1−qs)

lnA−ln(1−qs)

zexA = 1
ζexA −1

γexA = ζexA − 1

(2.11)

A ζexA zexA γexA z γ

2 1.756471 1.321928 0.756471 1.3721 0.78246

2 1.756471 1.321928 0.756471 1.3747 0.75272

2 1.756471 1.321928 0.756471 1.3849 0.76465

2 1.756471 1.321928 0.756471 1.3842 0.76075

2(average) 1.756471 1.321928 0.756471 1.378975 0.765145

3 1.831176 1.203114 0.831176 1.2341 0.82561

3 1.831176 1.203114 0.831176 1.2462 0.82785

3 1.831176 1.203114 0.831176 1.2453 0.82359

3 1.831176 1.203114 0.831176 1.2456 0.83186

3(average) 1.831176 1.203114 0.831176 1.2428 0.8272275

4 1.861353 1.160964 0.861353 1.1863 0.85702

4 1.861353 1.160964 0.861353 1.1833 0.85461

4 1.861353 1.160964 0.861353 1.1867 0.86414

4 1.861353 1.160964 0.861353 1.1858 0.86597

4(average) 1.861353 1.160964 0.861353 1.185525 0.860435

5 1.878335 1.138647 0.878335 1.1753 0.88417

5 1.878335 1.138647 0.878335 1.1614 0.88338

5 1.878335 1.138647 0.878335 1.1689 0.87543

5 1.878335 1.138647 0.878335 1.1736 0.87786

5(average) 1.878335 1.138647 0.878335 1.1698 0.88021
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A ζexA zexA γexA z γ

6 1.889253 1.124539 0.889253 1.1184 0.89472

6 1.889253 1.124539 0.889253 1.1201 0.89451

6 1.889253 1.124539 0.889253 1.1177 0.88443

6 1.889253 1.124539 0.889253 1.1211 0.89082

6(average) 1.889253 1.124539 0.889253 1.119325 0.89112

Now, for concluding our study on monkey books, we can observe the

following figures, where Zipf’s and Heaps’ plots are shown for all random

texts created (4 texts for each A).

Figure 2.11: Zipf’s law, in a log− log plot, for all monkey texts of 250000

words, with qs = 0.2
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Figure 2.12: Heaps’ law, in a log− log plot, for all monkey texts of 250000

words, with qs = 0.2

2.2 Real texts

In the previous chapter and section we have studied some models for the

creation of texts which exhibit Zipf’s and Heaps’ laws, but, as I said before,

these are just empirical observations and not laws in a rigorous sense. In this

section we will observe Zipf’s and Heaps’ laws on real data, using the text

War and Peace by Leo Tolstoj. Moreover we will analyze and study analo-

gies and differences of these laws between different languages, using different

translations of the same book in English, French, German and Italian.
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Before beginning our Zipf’s and Heaps’ analysis, we should make a pre-

liminary study on general informations about these different translations. In

the following tab there are some basic statistical information about these

texts.

Language English French German Italian

Tot. n. characters 3086648 2789763 3602335 3458573

Tot. n. words 572625 505476 582729 583357

N. different words 17543 21455 33202 31169

N. different words

Tot. n. words
0.030636 0.042445 0.056977 0.053430

Length sentences (avg.) 19.474003 23.555870 21.562566 18.717179

Length sentences (st.dev.) 16.900486 21.573885 16.978340 17.892272

Length words (avg.) 4.390364 4.519087 5.181843 4.928764

Length words (st.dev.) 2.326076 2.768519 2.801607 2.870766

As predictable, although these values are of the same book in different

translations, they are strongly dependent on language. Now we will see if

even Zipf’s and Heaps’ laws depend on language.

First of all, in the following figures there are Zipf’s and Heaps’ plots for

all studied languages.
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Figure 2.13: Zipf’s law in a log-log plot for the book War and Peace in

English. z1 = 0.93346± 0.011811, z2 = 1.3819± 1.6770× 10−3.

Figure 2.14: Zipf’s law in a log-log plot for the book War and Peace in

French. z1 = 0.98807± 0.027223, z2 = 1.2074± 1.0761× 10−3.
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Figure 2.15: Zipf’s law in a log-log plot for the book War and Peace in

German. z1 = 0.82067± 0.013216, z2 = 1.2703± 0.86616× 10−3.

Figure 2.16: Zipf’s law in a log-log plot for the book War and Peace in

Italian. z1 = 0.92571± 0.014773, z2 = 1.2656± 1.0137× 10−3.
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Figure 2.17: Heaps’ law in a log-log plot for the book War and Peace in

English. γ1 = 0.97596± 4.5446× 10−3, γ2 = 0.65486± 0.28741× 10−3.

Figure 2.18: Heaps’ law in a log-log plot for the book War and Peace in

French. γ1 = 0.98008± 8.0107× 10−3, γ2 = 0.6756± 0.15711× 10−3.
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Figure 2.19: Heaps’ law in a log-log plot for the book War and Peace in

German. γ1 = 1.0± 0, γ2 = 0.6542± 0.14241× 10−3.

Figure 2.20: Heaps’ law in a log-log plot for the book War and Peace in

Italian. γ1 = 0.98036± 5.4577× 10−3, γ2 = 0.67777± 0.14564× 10−3.
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In the following tab there is a summary of these results.

Language z1 z2 γ1 γ2 γex2

English 0.93346 1.3819 0.96742 0.655366 0.723641

French 0.98807 1.2074 0.98008 0.6756 0.828226

German 0.82067 1.2703 1.0 0.6542 0.787215

Italian 0.92571 1.2656 0.98036 0.67777 0.790139

where γex2 =
1

z2
is the expected value of γ2 as in Eq. (1.47).

Observing these figures and this tab, we can immediately note how both

Zipf’s and Heaps’ laws follow a double power law, as previously exposed in

Eqs. (1.5) and (1.18). In fact z1 and γ1 are both ∼ 1 for all languages (except

for the case of German language in Zipf’s law) and there is a ”turning point”

in which the exponents change. We even have to note how γ2 6≈ γex2 but this

is probably due to the fact that in this experiment we don’t use a book long

enough to describe an asymptotic behavior.

Another fundamental observation we can do is that Zipf’s and especially

Heaps’ asymptotic coefficients don’t show a strong dependence on the chosen

language and the only couple of values which deviate consistently from the

other values are z2 for English and French. This result was anyway unex-

pected, in fact different languages are so different from lexical and grammat-

ical point of view (for example in German and Italian there are many words

which are combination of other words) that we expected that, even if they

follow the same laws, their coefficients were different. Anyway it should be

very interesting to continue the investigation on this particular result, maybe

using a bigger corpus and other languages belonging to other families of lan-

guage (all languages I used for my study are Indio-European languages), like

Japanese, Russian, Chinese and so on.
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In these first two chapter we have shown that, not only real texts, but

also many texts created using various models, exhibit Zipf’s and Heaps’ laws,

and it should be very interesting to study differences and similarities between

Zipf’s and Heaps’ laws in texts created using various models and real texts.

This particular research was introduced by R. F. i Cancho and B. Elev̊ag

[40]. They compared Zipf’s law in real texts and in monkey books, obtaining

the result that, using different values of A and qs, Zipf’s law obtained is

extremely different from Zipf’s law exhibited in real texts. This result can

be easily observed in the following figure, caught from [40], in which there

are Zipf’s plots for real texts and for monkey books with parameters caught

from real texts (qs is the average of word length in real texts and A = 26).

Figure 2.21: Differences between Zipf’s law in real texts (thin black line) and

two control curves of the expected histogram of a monkey text of the same

length in words (dashed lines) involving four English texts, Alice’s Adventures

in Wonderland (AAW), Hamlet (H), David Crockett (DC) and The Origin

of Species (OS). f(r) is the number of occurrences of a word of rank r.
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R. F. i Cancho and B. Elev̊ag began this research and it should be inter-

esting to continue following this basic idea.

Another interesting question to be answered is the following: how Zipf’s

and Heaps’ exponents of various models depend on features of language?

First of all we should check if parameters of different models depend on

language and how these parameters influence Zipf’s and Heaps’ exponents.

In the following tab there is exactly this preliminary analysis for models

analyzed above. LEAST is the model proposed by R. F. i Cancho and R.

V. Solè [27] and explained and analyzed in 1.1.2; SIMON is Simon’s model

[3] explained and analyzed in 1.3.1 and in 2.1.1; GE.ALT. is Gerlach’s and

Altmann’s model [45] explained and analyzed in 1.3.2; MONKEY is the

model for creating a monkey text [41] explained and analyzed in 2.1.2. Note

that in the following tab, in the third column there is a Xif and only if there

is a Xin both other columns.

Parameters Exponents Exponents

Model depend on depend on depend on

language? parameters? language?

LEAST × × ×
SIMON X X X

GE.ALT. X X X

MONKEY × X ×

Model z γ

LEAST 1 ?

SIMON 1− α 1

GE.ALT. 1 + α (1 + α)−1

MONKEY 1− ln(1−qs)
lnA

(
1− ln(1−qs)

lnA

)−1
Moreover, from subsection 1.3.1 and section 2.1 we can easily note how

Simon’s model’s results are inconsistent with results obtained for real texts.

In fact γsimon = 1 and zsimon < 1, while for real texts z, γ > 1.



52 2. Zipf’s and Heaps’ law: experiments

Hence it may be interesting to do some experiments on Gerlach’s and Alt-

mann’s model, the most complete one, in order to check if results, obtained

with different values of parameters dependent on different languages, are able

to consistently explain the differences in Zipf’s and Heaps’ exponents in real

texts.



Chapter 3

Long-Range Correlations and

Burstiness

In the previous chapters we have studied two linguistic laws, that detect

some global statistical features of texts. Now we will concentrate our study

on two other features that, on the contrary, study particular properties of

chosen words or conditions: burstiness and long-range correlations. For this

chapter I mainly used [43] by E. G. Altmann, G. Cristadoro and M. Degli

Esposti.

3.1 Introduction

Following the information theory approach, we consider a literary text as

the output of a stationary and ergodic source that takes values in a finite

alphabet and we search information about the source through a statistical

analysis of the text.

In this section we will mainly focus our study on correlation functions,

which are defined after specifying an observable and a product over the

defined observables. Given a symbolic sequence s, we denote by sk the sym-

bol in the kth position and by smn (m ≥ n) the subsequence (sn, sn+1, ..., sm).

53
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We define observables as functions f that map symbolic sequences s into

a number sequence x (we will use binary sequences of 0 and 1). If we focus

on local mappings, we define xk = f
(
sk+rk

)
, for a fixed r ≥ 0 and any k. Its

autocorrelation function is defined as:

Cf (t) = 〈f
(
si+ri )f

(
si+t+ri+t

)
〉 − 〈f

(
si+ri

)
〉〈f
(
si+t+ri+t

)
〉 (3.1)

where t plays the role of the time (counted in numbers of symbols) and 〈.〉
denotes an average over sliding windows. In order to better understand this

definition we have to analyze the previous equation.

Remark 3.1.1. Given an ergodic and stationary process, correlation functions

are defined as

Corrx(j, t) = E(xjxj+t)− E(xj)E(xj+t) (3.2)

where E(.) is an average over different realizations x of the process. Station-

arity guarantees that Corr(j, t) depends on time lag t only. In our case, any

binary sequence x is obtained from a single text of length N using a given

map. In such cases it is possible to assume ergodicity to approximate the

Eq. (3.2) by

Cx(t) = 〈xjxj+t〉 − 〈xj〉〈xj+t〉 (3.3)

where 〈.〉 means the average, for each fixed t, over all pairs xj and xj+t as

〈.〉 ≡ 1

N − t

N−t∑
j=1

. (3.4)

Now, the choice of the observable f is fundamental to determine which

”memory” of the source we want to quantify. Only once a class of observables

with the same properties shows the asymptotic autocorrelation, it is possible

to think about long-range correlations of the text as a whole. The observable

we will use is the following.

Definition 3.1.1.

xk = fα(sk) =

{
1, if condition α is verified,

0, if condition α is not verified.
(3.5)
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Once obtained the binary sequence x associated to the chosen condition

α we can study the asymptotic behavior of its Cx(t). We are particularly

interested in the long-range correlated case

Cx(t) = 〈xjxj+t〉 − 〈xj〉〈xj+t〉 ∝ t−β, 0 < β < 1, (3.6)

for which
∞∑
t=0

Cx(t) diverges.

Before continuing our analysis we have to show two fundamental results,

especially the second one, the Theorem 3.1.2, for the study and the imple-

mentation of algorithms we will use next.

The following theorem is caught from [18].

Theorem 3.1.1. In the long-range correlated case explained above, the power

spectrum, defined as S(f) = Cx(0)+2
∞∑
t=1

Cx(t) cos(2πft), follows the follow-

ing

S(f) ∝ f−α (3.7)

for small f where α = 1− β.

Proof. If Cx(t) obeys the scaling relation in Eq. (3.6) then

S(f) ≈ 2
∞∑
t=1

t−β cos(2πft). (3.8)

Consider the Taylor expansion of the function (1− y)−δ−1,

(1− y)−δ−1 =
∞∑
t=0

Aδty
t, (3.9)

where by definition we have Aδ0 = 1 and, for t ≥ 1,

Aδt =
(δ + 1)(δ + 2)...(δ + t)

t!
≈ tδ

Γ(δ + 1)
. (3.10)

This means

∞∑
t=1

tδyt ≈ Γ(δ + 1)
[
(1− y)−δ−1 − 1

]
. (3.11)
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Replacing δ = −β, y = r exp(i2πf) and 0 ≤ r < 1 in the above equation

leads to

∞∑
t=1

t−βrt exp(i2πtf) ≈ Γ(1− β)
[
(1− r exp(i2πf)β−1 − 1

]
. (3.12)

Letting r → 1 and f → 0, and taking the real part, we obtain

∞∑
t=1

t−β cos(2πtf) ≈ Γ(1− β)(2πf)β−1 cos
[π

2
(1− β)

]
(3.13)

Substituting this into Eq. (3.8) yields

S(f) ≈ 2Γ(1− β)(2πf)β−1 cos
[π

2
(1− β)

]
∝ fβ−1 = f−α (3.14)

Theorem 3.1.2. In the long-range correlated case explained above, the as-

sociate random walker X(t) =
t∑

j=0

xj spreads super-diffusively as

σ2
X(t) = 〈X(t)2〉 − 〈X(t)〉2 ∝ tγ (3.15)

where γ = 2− β.

Proof.

〈X(t)2〉 =
t∑
i=1

〈x2i 〉+ 2
t−1∑
s=1

(t− s)〈xixi+s〉 =

= t〈x2i 〉+ 2t
t−1∑
s=1

Cx(s)− 2
t−1∑
s=1

sCx(s) + 2t
t−1∑
s=1

〈xi〉〈xi+s〉 − 2
t−1∑
s=1

s〈xi〉〈xi+s〉 =

= t〈x2i 〉+ 2t
t−1∑
s=1

Cx(s)− 2
t−1∑
s=1

sCx(s) + 2t(t− 1)〈xi〉2 − 2
t(t− 1)

2
〈xi〉2 =

= t〈x2i 〉+ 2t
t−1∑
s=1

Cx(s)− 2
t−1∑
s=1

sCx(s) + t(t− 1)〈xi〉2 (3.16)

while

〈X(t)〉 = t〈xi〉. (3.17)
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Thus

σ2
X(t) = 〈X(t)2〉 − 〈X(t)〉2 =

= t〈x2i 〉+ 2t
t−1∑
s=1

Cx(s)− 2
t−1∑
s=1

sCx(s) + t(t− 1)〈xi〉2 − t2〈xi〉2 =

= t〈x2i 〉+ 2t
t−1∑
s=1

Cx(s)− 2
t−1∑
s=1

sCx(s)− t〈xi〉2 =

= 2t
t−1∑
s=1

Cx(s)− 2
t−1∑
s=1

sCx(s) + t〈xi〉 (1− 〈xi〉) (3.18)

Now let Cx(s) obey the scaling law in Eq.(3.6). The sums in the above

equation are estimated as

t−1∑
s=1

Cx(s) ∝
t∑

s=1

s−β ≈
∫ t

1

s−β = t1−β (3.19)

and
t−1∑
s=1

sCx(s) ∝
t∑

s=1

s1−β ≈
∫ t

1

s1−β = t2−β (3.20)

For 0 < β < 1, this means

σ2
X(t) = 〈X(t)2〉 − 〈X(t)〉2 ∝ t2−β (3.21)

for large t.

Our study on the possible origins of the long-range correlations will be

based on the relation between the power spectrum S(f) at f = 0 and the

statistics of the sequence of inter-event times τi’s (one plus the numbers of

zeros between two consecutive ones). For the short range correlated case,

S(0) is finite and given by:

S(0) =
σ2
τ

〈τ〉3

(
1 + 2

∑
k

Cτ (k)

)
. (3.22)

On the contrary, for the long-range correlated case S(0) → ∞ and Eq.

(3.22) implies two possible origins:
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• burstiness measured as the broad tail of the distribution of inter-event

times p(τ) (divergent στ );

• long-range correlations of the sequence of τi’s (not summable Cτ (k)).

3.2 Hierarchy of Natural Language

In this section we will introduce a hierarchy of language and study how

moving from different hierarchical levels affects long-range correlations and

burstiness.

3.2.1 Explanation of hierarchy

Our hierarchy is built in the following way. Levels are established from

sets of semantically or syntactically conditions α’s (for example vowels- con-

sonants, different letters, different words, different topics). Each binary se-

quence x is obtained by mapping the text using the observable fα given above

and will be indicated by the fixed condition α. For example, prince indicates

the sequence x obtained from the condition α : sk+8
k = ” prince ”. A se-

quence z is linked to x if ∀j such that xj = 1 we have zj+r′ = 1 for a fixed

constant r′. In such a case we say that x is on top of z and that x belongs to

a higher level than z. Obviously, there are no links between sequences at the

same level and a sequence at a given levels is on top of all those sequences at

lower levels, linked with a direct path. For example, ” prince ” is on top of

”e”, ”e” is on top of vowels, so ” prince ” is on top of vowels. As will be clear

later from the results, the concept of link can be extended to a probabilistic

meaning (for example ” prince ” is more probable to appear in a part whose

topic is connected to war).

This hierarchy can be better understood thanks to the following figure,

caught from [43].
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Figure 3.1: Hierarchy of levels at which literary texts can be analyzed. De-

picted are the levels vowels-consonants (ν/c), letters (a-z), words and topics.

3.2.2 Moving in the hierarchy

In this subsection we will show how correlations behave between two

linked sequences. Let x be a sequence on top of z and y be the unique

sequence on top of z such that z = x + y, that means zi = xi + yi, ∀i. The

spreading of the walker Z, associated to z, is

σ2
Z(t) = σ2

X(t) + σ2
Y (t) + 2C (X(t), Y (t)) , (3.23)

where C(A,B) = 〈AB〉 − 〈A〉〈B〉.

Lemma 3.2.1. If z = x+ y, then

σZ(t) ≤ σX(t) + σY (t). (3.24)

Proof. Using the Cauchy-Schwarz inequality we know that |C (X(t), Y (t))| ≤
σX(t)σY (t). Using this in Eq. (3.23) we obtain σZ(t) ≤ σX(t) + σY (t).
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Now defining x as the sequence obtained inverting 0 ↔ 1 on each of its

elements xi = 1− xi.

Lemma 3.2.2. If z = x+ y, then x = z + y and y = z + x.

Proof. We know that zi = xi + yi, then 1− zi = 1− xi + yi ⇒ xi = zi + yi.

In an analogous way, 1− zi = 1− yi + xi ⇒ yi = zi + xi

Lemma 3.2.3. σX(t) = σX(t).

Proof. X(t) =
t∑
i=1

1− xi = t−
t∑
i=1

xi = t−X(t). Then

σ2
X

(t) = σ2(t) + σ2(X(t)) = σ2
X(t).

Theorem 3.2.4. If z = x+ y, the following equations are valid

σX(t) ≤ σZ(t) + σY (t) (3.25)

σY (t) ≤ σZ(t) + σX(t). (3.26)

Proof. We know from Lemma 3.2.2 that

x = z + y and y = z + x,

so, from Lemma 3.2.1, we obtain that

σX(t) ≤ σZ + σY (t) and σY (t) ≤ σZ + σX(t).

Using Lemma 3.2.3 we obtain

σX(t) ≤ σZ(t) + σY (t) and σY (t) ≤ σZ(t) + σX(t).

If now we suppose that σ2
i (t) ∝ tγi with i ∈ {X, Y, Z}, then, in order to

satisfy the above inequalities, at least two of the three γi have to be equal to

maxi {γi}.

Now we discuss the implications of this result to the behavior of correla-

tions moving up and down in the hierarchy.
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Up: Supposing that at a given level we have a binary sequence z with long-

range correlation γZ > 1, then we know from the result explained

above that there is at least a sequence x on top of z with long-range

correlation γX ≥ γZ . This implies, for example, that if we observe

long-range correlations in the sequence associated to a letter then we

can argue that its anomaly comes from the anomaly of at least a word,

where this letter appears.

Down: Supposing that x is long-range correlated γX > 1, then from Eq. (3.23)

and from the result obtained above, in order to get γZ < γX , we

should have γX = γY , which is extremely unlikely in the typical case

of sequences z, which receive contributions from different sources (for

example a letter receives contribution from different words). So we

can consider z to be composed by n sequences x(j), j = 1, ..., n with

γX(1) 6= γX(2) 6= ... 6= γX(n) , obtaining γZ = maxj {γX(j)}. In conclusion,

correlations typically flow down in our hierarchy of levels.

3.2.3 Finite time effects

While the results up to now shown are valid asymptotically (infinitely

long sequences), in the case of a real text we only have a finite time estimate

γ̂ of the real value of γ. Always from Eq. (3.23) we can note that, adding

sequences xj with different γX(j) and following the procedure used for moving

down in the hierarchy, leads to γ̂Z < γZ if γ̂Z is computed at a time when the

asymptotic regime is still not dominating. This fact, as we will see later, is a

fundamental feature in the analysis of long-range correlations in real books.

Now, in order to give quantitative estimates, we consider a sequence z that

is the sum of the most long-range correlated sequence x (the one with γX =

maxj {γX(j)}) and another independent non overlapping sequence (y is non

overlapping with x if xi = 1 ⇒ yi = 0). So, defining y = ξ(1 − x) with

ξi I.I.D. binary random variable, then z = x + y corresponds to a random

addition of ones with probability 〈ξ〉 to the zeros of x.
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Theorem 3.2.5. The associated random walker Z spreads super-diffusively

with the same exponent of X.

Proof. As written in Eq. (3.23), we know that

σ2
Z(t) = σ2

X(t) + σ2
Y (t) + 2C (X(t), Y (t)) .

In this case we have

〈Y (t)〉 = 〈ξ〉t (1− 〈x〉) (3.27)

and

〈Y (t)2〉 = 〈
t∑

i,j=1

(xiξi)(xjξj)〉 = 〈
t∑
i=1

(x2i ξ
2
i )〉+ 〈

t∑
i,j=1;i 6=j

(xiξi)(xjξj)〉 =

=
t∑
i=1

〈x2i 〉〈ξ2〉+
t∑

i,j=1;i 6=j

〈xixj〉〈ξ〉2 =

=
t∑
i=1

〈x2i 〉〈ξ2〉 −
t∑
i=1

〈x2i 〉〈ξ〉2 +
t∑
i=1

〈x2i 〉〈ξ〉2 +
t∑

i,j=1;i 6=j

〈xixj〉〈ξ〉2 =

= 〈ξ〉2〈X(t)2〉+ σ2(ξ)
t∑
i=1

〈x2i 〉. (3.28)

From Eqs. (3.27) and (3.28), from
t∑
i=1

〈x2i 〉 =
t∑
i=1

〈xi〉 and from σ2
X

(t) =

σ2
X(t) we obtain

σ2
Y (t) ≡ 〈Y (t)2〉 − 〈Y (t)〉2 = 〈ξ〉2σ2

X(t) + tσ2
ξ (1− 〈x〉). (3.29)

The correlation term in Eq.(3.23) can be directly calculated:

C(X(t), Y (t)) = 〈X(t)Y (t)〉 − 〈X(t)〉〈Y (t)〉 =

= 〈
t∑

i,j=1

xi(1− xj)ξj〉 − 〈X(t)〉〈
t∑

j=1

(1− xj)ξj〉 =

= 〈X(t)〉〈ξ〉t− 〈X(t)2〉〈ξ〉 − 〈X(t)〉 [〈ξ〉t− 〈X(t)〉〈ξ〉] =

= −〈ξ〉σ2
X(t). (3.30)
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Now, combining Eqs. (3.29), (3.30) and (3.23) we have

σ2
Z(t) = σ2

X(t) + σ2
Y (t) + 2C (X(t), Y (t)) =

= σ2
X(t) + 〈ξ〉2σ2

X(t) + tσ2
ξ (1− 〈x〉)− 2〈ξ〉σ2

X(t) =

= tσ2
ξ (1− 〈x〉) + σ2

X(t) (1− 〈ξ〉)2 =

= 〈ξ〉 (1− 〈ξ〉) (1− 〈x〉) t+ (1− 〈ξ〉)2 σ2
X(t). (3.31)

In conclusion, if X spreads super-diffusively, then even Z spreads super-

diffusively too and they both have the same exponent and hence the asymp-

totic behavior.

We even have to consider that the asymptotic regime is hidden at short

times by a pre-asymptotic normal behavior, given by the linear term in t.

We can even emphasize that, even if the condition for y not to be over-

lapping forces both σ2
Y (t) and C (X(t), Y (t)) to have the same asymptotic

behavior of σ2
X(t), their cumulative contributions don’t vanish unless 〈ξ〉 = 1.

We can now give a bound on the transition time tT to the asymptotic

diffusion exposed in Eq. (3.31). Consider the case in which even the asymp-

totic anomalous behavior of X is hidden by a generic pre-asymptotic A(t)

such that

σ2
X(t) = 〈x〉 (1− 〈x〉) [(1− g)A(t) + gtγX ] , (3.32)

with 0 < g ≤ 1 and A(t) increasing and such that
A(t)

tγX
→ 0 for t → ∞

and A(1) = 1. The first condition guarantees that the asymptotic beha-

vior is dominated by tγX , while the second one guarantees that σ2
X(1) =

〈x〉 (1− 〈x〉).

The asymptotic behavior σ2
X(t) ∝ tγX in Eq. (3.31) dominates only after

a time tT such that:

〈ξ〉tT + (1− g)〈x〉 (1− 〈ξ〉)A(tT )

g (1− 〈ξ〉) 〈x〉
= tγXT . (3.33)
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We even know that (1− g)〈x〉 (1− 〈ξ〉)A(tT ) > 0 and that tγX is mono-

tonically increasing, so we finally have

tT ≥ t∗T =

(
〈ξ〉

(1− 〈ξ〉) g〈x〉

) 1
γX−1

(3.34)

In conclusion, any finite time estimate γ̂X is close to the real asymptotic

γX only if the estimate is performed for t � tT , otherwise γ̂X < γX and

γ̂X ≈ 1 if t� tT .

As noted before in Lemma 3.2.2, if z = x+ y then x = z+ y. Applying

the procedure used above to this relation, similar pre-asymptotic normal dif-

fusion and transition time appear in the case of random subtraction, moving

up in the hierarchy. In practice, starting from a sequence z that asymptot-

ically behaves as σ2
Z(t) w g〈z〉 (1− 〈z〉) tγZ and constructing x = ζz, with ζ

a binary sequence independent from z, we obtain a transition time tT for x

given by:

tT ≥ t∗T =

(
1− 〈ξ〉

(1− 〈z〉) g〈ξ〉

) 1
γZ−1

, (3.35)

which corresponds to Eq. (3.34) after properly replacing 〈x〉 → (1− 〈z〉),
〈ξ〉 → (1− 〈ξ〉) and γX → γZ .

In contrast with correlations, burstiness, due to the tails of the inter-event

time distribution p(τ), isn’t preserved through a movement up and down in

the hierarchy. If we consider going down by adding sequences with different

tails of p(τ), then the tail of this new sequence will be bound by the shortest

tail of the individual sequences. Considering the random addition example,

explained above, z = x + ξ(1 − x) where x has a broad tail in p(τ), then

p(τ) for z has short tails because the cluster of zeros in x is cut randomly

by ξ. Going up in the hierarchy, if we take a sequence on top of a given

bursty binary sequence, for example using the random subtraction explained

above x = ζz, then the probability of finding a large inter-event time τ in z

increases as the number of times the random elimination joins two or more
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clusters of zeros in x, and decreases as the number of times the elimination

destroys a pre-existent inter-event time τ . Even accounting for the change

in 〈τ〉, this moves cannot lead to a short ranged p(τ) for x if p(τ) of z has

a long tail (we will show it later in the end of this subsection). All in, we

expect burstiness to be preserved moving up, and destroyed moving down in

the hierarchy of levels.

As we said above, from Eq. (3.22), long-range correlations γ > 1 can

be originated by to two possible sources: the tail of p(τ) (burstiness) and

the tail of Cτ (k). The analysis above shows their different role at different

levels in the hierarchy: γ is preserved moving down, but there is a transfer of

information from p(τ) to Cτ (k). This can be better understood considering

the following simplified set-up: suppose that at a level we observe a sequence

x coming from a renewal process such that

p(τ) ∝ τ−µ and Cτ (k) = δ(k) (3.36)

with 2 < µ < 3. Now we can consider the behavior of z, obtained by adding

to x other independent sequences. The long τ ’s (a long sequence of zeros)

in Eq. (3.36) will be divided in two long sequences introducing at the same

time a cut-off τc in p(τ) and non trivial correlations Cτ (k) 6= 0 for large k.

In such a case, long-range correlations (γZ = max {γX , γY } > 1) is solely due

to Cτ (k) 6= 0. Burstiness affects only γ̂ for times t < τc. An analogous result

is expected in the generic case of a starting sequence x with broad tails in

both p(τ) and Cτ (k).

Now we consider the simplified set-up exposed in Eq. (3.36): z is a se-

quence coming from a renewal process such that p(τ) ∝ τ−µ and Cτ (k) =

δ(k). Once given a fixed 0 ≤ 〈ζ〉 ≤ 1, if we consider the random subtraction

x = ζz where each zj = 1 is set to zj = 0 with probability 〈ζ〉, then the

inter-event times’ distribution of this new process is

p̃(τ) = (1− 〈ζ〉) p(τ) +
∞∑
k=1

〈ζ〉k
∑

t1+t2+...+tk=r

k∏
j=1

p(tj). (3.37)
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Asymptotically p̃(τ) is dominated by the long tails of (1− 〈ζ〉) p(τ). In fact,

if τ is large enough, once fixed k > 0 eventually diverging with τ → ∞ and

divided accordingly the sum over k in the second term of the right hand

side, then the term corresponding to the sum k > k is dominated by ζk and

arbitrary small, while the remaining finite sum over k ≤ k is controlled again

by the tail of p(τ).

3.3 Confidence Interval for Long-Range Cor-

relation

The finite time estimator of the long-range correlation γ̂ will be computed

fitting Eq. (3.6) for a range of t, t ∈ [ts′ , ts]. Now we will analyze the pro-

cedure used to obtain values for ts′ and ts proposed by E. G. Altmann, G.

Cristadoro and M. Degli Esposti in [43].

As we already know, the distinction between long-range and short-range

correlation needs a finite-time estimate γ̂ of the asymptotic exponent γ of the

random walker associated to a binary sequence, that means estimating the

σ2
X(t) ∝ tγ relation and it is therefore essential to estimate the upper limit

in t, ts, for which we have enough accuracy to obtain an acceptable estimate

γ̂. They adopted the following procedure to estimate ts. Considering a

alternative binary sequence with the same length N and a series of ones

randomly placed in the sequence. For this sequence we know that γ =

1. They then considered a sequence of times ti equally distributed in the

logarithmic scale of t (they considered
ti+1

ti
= 1.2, with i integer and t0 = 1)

and estimated the local exponent as

γ̂local(ti) =
log10 ∆σ2

X(ti+1)− log10 ∆σ2
X(ti)

log10(1.2)

For small t, γ̂local ≈ 1 but as t became larger, statistical fluctuations

increased due to the finiteness of N . So they chose ts as the smallest ti

for which {γ̂local(ti+1), γ̂local(ti+2), γ̂local(ti+3)} were all outside [0.9, 1.1]. They
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also verified that ts scales linearly with N .

Based on these results, a good estimate of ts is ts =
N

100
. This rule have

been used in the estimate of γ̂ for all the experiments that we will analyze

in the following chapter. The ts is only the upper limit and the estimate γ̂ is

performed through a linear regression fit (using the program Grace) in the

time interval ts′ < t < ts =
N

100
, where ts′ ≈

ts
100

.

This result can be better understood thanks to the following figure, caught

from [43].

Figure 3.2: Determination of the time interval for the estimate of the long-

range correlation exponent γ̂. σ2
X(t) is shown as •for a random binary se-

quence of size N = 106 and 10% of ones. The local derivative is shown as �

and agrees with the theoretical exponent γ = 1 until fluctuations starts for

large t (axis on the right). The time ts denotes the end of the interval of safe

determination of γ, as explained above.
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Chapter 4

Long-Range Correlations and

Burstiness in different

languages

Equipped with previous chapter’s theoretical framework, here we will in-

terpret observations in real texts, focusing on the comparison of our results

between different languages and looking for differences and similarity in dif-

ferent translations.

4.1 Preliminary analysis

Before beginning our study on different languages we will do a prelimin-

ary analysis, using War and Peace by Leo Tolstoj in English, in which we

will observe, thanks to real data, the behavior of σ2
X(t) ∝ tγ and we will

propose a measure for the burstiness,
στ
〈τ〉

.

First of all we introduce the measure for the burstiness. In line with what

we have studied in the previous chapter, that is that burstiness is measured

as the broad tail of the distribution of inter-event times p(τ) (divergent στ ),

using the proposal of K. I. Goh and A. L. Barabasi in [36], we can immediatly

69
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reach our measure. In fact K. I. Goh and A. L. Barabasi proposed as a

measure for the burstiness the following:

B ≡
στ
〈τ〉 − 1
στ
〈τ〉 + 1

=
στ − 〈τ〉
στ + 〈τ〉

= 1− 2
〈τ〉

στ + 〈τ〉
=

= 1− 2

(
στ + 〈τ〉
〈τ〉

)−1
= 1− 2

(
1 +

στ
〈τ〉

)−1
(4.1)

Hence we can consider B′ =
στ
〈τ〉

as a measure for the burstiness.

It’s easily observable that our burstiness measure for a Poisson process is

equal to 1.

Now we can study and observe long-range correlations and burstiness on

real data. First of all in the following figures there are linear and log− log

plots of σ2
X(t) for the space ” ”, the symbol ”e” and the word ” prince ”.
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Figure 4.1: σ2
X(t) plot for the space ” ”

Figure 4.2: σ2
X(t) log− log plot for the space ” ”
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Figure 4.3: σ2
X(t) plot for the symbol ”e”

Figure 4.4: σ2
X(t) log− log plot for the symbol ”e”
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Figure 4.5: σ2
X(t) plot for the word ” prince ”

Figure 4.6: σ2
X(t) log− log plot for the word ” prince ”
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As it can be easily seen in the previous figures, especially in the log− log

plots, σ2
X(t) follows Eq. (3.32) in all these 3 cases, in fact in the first part

of the plot, σ2
X(t) isn’t dominated by an exponential increase, but after a

certain time it’s clear that it follows his asymptotical behavior described by

σ2
X(t) ∝ tγ. In the following figures there are the same log− log plots shown

before with relative approximation in the range described in Section 3.3.

Figure 4.7: σ2
X(t) log− log plot for the space ” ”, γX = 1.5052± 0.611149×

10−4
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Figure 4.8: σ2
X(t) log− log plot for the symbol ”e”, γX = 1.3738± 0.24585×

10−3

Figure 4.9: σ2
X(t) log− log plot for the word” prince ”, γX = 1.6324 ±

0.14617× 10−3
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Similarly we can study our burstiness measure for these words. First of

all, in the following figures there are their relative plots of distribution of

P (τ).

Figure 4.10: P (τ) log− log plot for the space ” ”
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Figure 4.11: P (τ) log− log plot for the symbol ”e”

Figure 4.12: P (τ) log− log plot for the word ” prince ”
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From these plots, and even from our experience, we may expect that ” ”

and ”e” should have a small burstiness coefficient (we expect that they are

almost equally distributed all along the text), while the word ” prince ”, that

is much more present in particular contexts, should have a bigger burstiness

coefficient. And this is exactly what happens, in fact B′(” ”) = 0.52744,

B′(”e”) = 0.92777 and B′(” prince ”) = 3.9227.

4.2 Distinct analysis on languages

Now that we have observed on real data what we had up to now only

theorically studied, we can go on with our analysis and focus our attention

on analogies and differences of burstiness and long-range correlations in dif-

ferent languages.

First of all we will analyze, language per language, long-range correlation

and burstiness behaviors for various condition α in different translations of

the same book, War and Peace by Leo Tolstoj. For this analysis we will use

the procedure used and exposed by E. G. Altmann, G. Cristadoro and M.

Degli Esposti in [43].

For each language 43 binary sequences will be analyzed separately: vowels

and consonants, 20 at the letter level (blank space and the 19 most frequent

characters), and 21 at the word level (7 most frequent words, 7 most fre-

quent nouns, and 7 words with frequency matched to the frequency of the

nouns). In the following tabs there are all the results, obtained thanks to

my experiments. In particular, for each condition α (and consequently each

binary sequence), are shown number of occurrences (f), burstiness measure

(B′), long-range correlation exponent evaluate (γ̂) and standard deviation of

γ̂ (σγ̂).
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Moreover, as we said in the previous chapter, we are interested in search-

ing the origin of long-range correlations, so in distinguishing if the obtained

value of γ̂ is due to burstiness corresponding to p(τ) with diverging στ or

diverging
∑
Cτ (k). In order to be able to distinguish between these two

possible origins we will compare asymptotic behavior of x with the asymp-

totic behavior of two fictitious sequences x1 and x2 obtained from x in the

following ways:

• x1 is obtained shuffling the sequence of {0, 1} and this particular shuffle

destroys every kind of correlations;

• x2 is obtained shuffling the sequence of inter-event times τi and this

particular shuffle destroys correlations due to
∑
Cτ (k) and preserves

correlations due to p(τ).

Using this result, in the following tab there are, for all sequences obtained at

letter levels, estimates of γ1 (γ̂1) and of γ2 (γ̂2) too, where γi is the exponent

of σ2
Xi

(t) ∝ tγi .
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War and Peace in English, N = 3086648

α f B′ γ̂ σγ̂ × 103 γ̂1 γ̂2

vowel 946517 0.61797 1.5271 0.20860 1.0072 1.007

consonant 1566573 0.83332 1.445 0.11434 1.0552 1.0461

” ” 572625 0.52981 1.5052 0.061149 1.0036 0.9785

”e” 313039 0.92834 1.3738 0.24585 0.97484 1.0211

”t” 224512 0.95566 1.3767 0.14824 1.0223 1.063

”a” 204424 0.93075 1.3996 0.20916 0.9293 1.009

”o” 191494 0.96383 1.4392 0.25690 1.0109 0.98787

”n” 183129 0.91489 1.2393 0.21009 0.98852 1.0094

”i” 172641 0.94681 1.4624 0.25619 1.01 0.96923

”h” 166520 0.90050 1.4679 0.16054 1.0471 0.98485

”s” 162128 1.0089 1.3043 0.16479 1.007 0.95442

”r” 146890 0.96476 1.3514 0.079064 1.0301 1.0079

”d” 117753 0.95994 1.4482 0.17842 1.003 0.96837

”l” 96037 1.0988 1.2278 0.11851 1.0086 0.90691

”u” 64919 0.99276 1.2273 0.052257 0.98201 0.99009

”m” 61283 1.0386 1.2674 0.094954 0.95521 1.0114

”c” 60659 1.0290 1.512 0.20701 1.0679 1.0227

”w” 58930 0.99698 1.2582 0.14607 0.94662 1.025

”f” 54507 1.0829 1.4713 0.22212 1.0368 1.0302

”g” 50909 1.0314 1.4749 0.24452 1.0574 0.98835

”y” 45936 1.0513 1.3307 0.056915 1.021 1.0044

”p” 44717 1.0965 1.4642 0.23978 1.0058 0.96415
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War and Peace in English, N = 3086648

α f B′ γ̂ σγ̂ × 103 γ̂1 γ̂2

” pierre ” 1963 6.8589 1.7244 0.22683 0.94582 1.642

” prince ” 1928 3.9026 1.6324 0.14617 0.98025 1.4101

” so ” 1902 1.1816 1.1297 0.14574 0.95724 0.98121

” an ” 1628 1.1329 1.1629 0.18907 0.97498 1.0621

” natasha ” 1213 6.0441 1.6854 0.15081 0.96974 1.6652

” man ” 1189 1.4277 1.3983 0.16457 0.89977 1.0782

” t ” 1159 1.9598 1.3655 0.11500 0.94903 1.1954

” andrew ” 1143 4.1074 1.6555 0.19702 1.0186 1.4387

” could ” 1115 1.2850 1.1107 0.15293 0.97007 1.0859

” we ” 1069 1.9264 1.3716 0.30257 0.98505 1.1063

” time ” 929 1.1027 1.1091 0.082071 1.0381 1.0204

” princess ” 916 5.4370 1.6668 0.16860 1.034 1.6061

” face ” 893 1.4457 1.2249 0.059158 0.96738 1.1763

” french ” 881 2.2884 1.5068 0.17895 1.0196 1.2611

” the ” 34545 1.1409 1.5647 0.12969 0.96329 1.0262

” and ” 22227 0.8813 1.1965 0.064044 1.0127 0.93914

” to ” 16675 1.0616 1.2398 0.25609 0.98013 0.96386

” of ” 14889 1.1752 1.5587 0.20810 0.96831 1.0085

” a ” 10551 1.1230 1.1752 0.17585 0.98497 0.99979

” he ” 10002 1.9056 1.381 0.17895 0.98183 1.1786

” in ” 8979 1.0436 1.1471 0.071755 1.0164 0.95459
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War and Peace in French, N = 2789763

α f B′ γ̂ σγ̂ × 103 γ̂1 γ̂2

vowel 997609 0.67025 1.321 0.18528 1.0165 0.97224

consonant 1216851 0.79767 1.3792 0.24494 0.99687 1.0209

” ” 505476 0.61263 1.3967 0.052013 1.016 0.97946

”e” 378513 0.86628 1.3551 0.23265 0.94734 1.0257

”a” 197381 0.92865 1.3593 0.15307 0.99429 0.96052

”s” 174233 1.1071 1.2519 0.088000 1.0091 1.0023

”i” 169672 0.92964 1.2605 0.15523 1.0417 0.99406

”t” 165898 0.93999 1.2338 0.22159 0.99575 1.0594

”n” 157399 0.96502 1.1352 0.15076 0.97408 1.0377

”r” 148871 0.94514 1.3058 0.23110 1.0076 1.0032

”u” 133638 0.94943 1.2081 0.11381 1.0604 0.87378

”l” 125772 0.97877 1.2968 0.12287 1.0359 0.97792

”o” 118405 0.93921 1.3074 0.083222 1.0093 1.0219

”d” 77194 0.94100 1.3535 0.37567 0.95791 1.0294

”c” 67807 0.96454 1.2191 0.16425 1.0287 0.97332

”’” 63908 1.0309 1.2748 0.19256 0.96787 0.93485

”p” 61729 0.98386 1.3276 0.27603 0.9946 0.96828

”m” 59982 1.0788 1.2492 0.12959 0.99511 0.95589

”v” 38609 0.98788 1.2292 0.15740 0.91457 1.0258

”q” 23732 0.98872 1.2322 0.19524 0.93112 0.91942

”f” 23265 1.0956 1.2479 0.19474 0.9696 0.99861

”h” 20041 1.0290 1.3492 0.31584 0.96458 0.95534
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War and Peace in French, N = 2789763

α f B′ γ̂ σγ̂ × 103 γ̂1 γ̂2

” prince ” 1307 3.2224 1.5819 0.15491 1.0541 1.4204

” meme ” 1301 1.0409 1.0614 0.043460 0.99424 0.99619

” pierre ” 1252 4.4686 1.6915 0.23414 0.98082 1.5784

” nous ” 1156 1.9510 1.2138 0.27870 1.0123 1.105

” natacha ” 811 5.0081 1.6755 0.17735 0.96522 1.6194

” tous ” 806 1.1246 1.0814 0.10447 0.99956 1.0277

” yeux ” 754 1.2288 1.119 0.11645 0.9741 1.118

” j ” 750 1.5411 1.1634 0.11118 0.94583 1.1325

” andre’ ” 731 3.2587 1.6163 0.24708 1.021 1.4678

” ai ” 716 1.4780 1.2062 0.11077 1.0361 1.1076

” rostow ” 635 3.6402 1.6197 0.24562 0.93567 1.4483

” e’te’ ” 621 1.1495 1.0427 0.092373 0.97583 1.0067

” princesse ” 603 4.7442 1.6425 0.18251 1.0299 1.591

” fait ” 602 1.1014 1.0812 0.10262 1.0197 1.0633

” de ” 21367 1.0004 1.2472 0.16321 1.0318 0.96458

” et ” 15457 0.82029 1.1889 0.22260 1.013 1.018

” la ” 13070 1.0582 1.215 0.069586 1.0332 1.0272

” a’ ” 11825 0.99179 1.1259 0.16958 0.97377 0.99712

” le ” 11375 1.0675 1.2878 0.22378 1.0308 1.0207

” il ” 10377 1.3124 1.3239 0.22268 0.99126 1.0498

” l ” 9142 1.0755 1.3439 0.27476 1.0034 1.0404



84 4. Long-Range Correlations and Burstiness in different languages

War and Peace in German, N = 3602335

α f B′ γ̂ σγ̂ × 103 γ̂1 γ̂2

vowel 1149355 0.62397 1.3008 0.20550 0.99585 1.0509

consonant 1867357 0.89555 1.3805 0.15053 0.97903 1.033

” ” 582729 0.54066 1.5489 0.097998 0.9806 0.99867

”e” 502796 0.86223 1.5034 0.14398 1.0272 1.0129

”n” 309851 0.95298 1.2873 0.11169 1.0446 0.95613

”i” 230763 0.88366 1.4988 0.20140 0.99224 0.96838

”r” 214406 0.91988 1.4495 0.23139 0.97666 1.0106

”s” 209920 1.0148 1.3181 0.11601 0.99819 1.0518

”a” 198389 0.92288 1.5074 0.21003 0.96507 0.9691

”t” 171030 0.99021 1.1882 0.083631 0.99541 0.9404

”h” 154327 0.93429 1.4256 0.21660 0.99746 0.98877

”d” 148939 0.89580 1.4043 0.12591 1.0662 0.99609

”u” 136121 0.95034 1.2772 0.15781 0.94942 1.0204

”l” 102135 1.0801 1.2533 0.059517 0.98211 0.98513

”c” 95667 0.96185 1.3419 0.11811 1.0059 0.95614

”g” 86343 0.99539 1.2069 0.10606 0.9223 0.94324

”o” 81286 1.0334 1.5349 0.14282 1.0198 1.0404

”m” 80323 1.1216 1.299 0.19548 0.95629 0.98822

”b” 56096 0.98659 1.2601 0.095810 0.97285 0.99889

”w” 54645 1.0169 1.3357 0.15527 0.99574 1.0031

”f” 51746 1.0485 1.3739 0.16503 1.057 0.98509

”z” 38314 1.0052 1.1843 0.083416 1.0233 0.99831
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War and Peace in German, N = 3602335

α f B′ γ̂ σγ̂ × 103 γ̂1 γ̂2

” pierre ” 1947 6.7635 1.7192 0.23027 0.95166 1.626

” doch ” 1942 1.2176 1.2069 0.19368 1.0197 1.0668

” furst ” 1409 4.4620 1.636 0.12477 1.0359 1.5006

” alle ” 1409 1.2112 1.1196 0.048206 0.97702 1.0406

” natascha ” 1157 6.4678 1.6873 0.12079 1.0072 1.6031

” durch ” 1153 1.2041 1.1668 0.1482 0.93579 0.98965

” andrej ” 1138 4.0486 1.662 0.20274 1.0073 1.4835

” jetzt ” 1132 1.1804 1.0651 0.16538 1.0263 1.0238

” augen ” 878 1.3574 1.1848 0.065447 0.99162 1.1396

” gesicht ” 865 1.5477 1.2079 0.10690 0.90117 1.175

” mich ” 842 1.6716 1.3117 0.088909 0.92484 1.1625

” prinzessin ” 833 5.4406 1.6588 0.18420 1.0121 1.608

” oder ” 880 1.2541 1.1243 0.15328 1.0956 1.0106

” konnte ” 810 1.1629 1.1383 0.069934 0.97847 1.0497

” und ” 21990 0.86393 1.2799 0.18450 0.97306 1.0674

” die ” 15265 1.1412 1.3322 0.070994 0.97738 0.99942

” der ” 13509 1.1870 1.4671 0.22934 1.0352 1.0736

” er ” 10625 1.7130 1.3459 0.21846 0.9521 1.1623

” sie ” 9171 1.8521 1.5723 0.066114 1.0162 1.0998

” zu ” 8757 1.0807 1.1751 0.11354 1.038 1.0305

” in ” 7789 1.0558 1.1643 0.10103 1.026 0.95713
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War and Peace in Italian, N = 3458573

α f B′ γ̂ σγ̂ × 103 γ̂1 γ̂2

vowel 1313825 0.53241 1.4171 0.072899 0.99932 0.94296

consonant 1521057 0.85645 1.4055 0.11720 0.92064 1.0171

” ” 583357 0.58245 1.4059 0.080931 1.004 1.0064

”e” 333047 0.97890 1.4982 0.17171 0.97377 1.0564

”a” 328215 1.0211 1.5062 0.15785 0.98632 1.0016

”i” 289985 0.98436 1.3361 0.094486 0.95842 0.98606

”o” 270033 0.95758 1.405 0.13287 0.99126 1.0065

”n” 199391 0.97338 1.2253 0.063119 1.0181 1.0124

”r” 181154 0.93509 1.4043 0.26753 0.97877 0.99478

”l” 172686 1.0669 1.2655 0.17196 1.0013 1.079

”t” 168729 1.0975 1.3018 0.13559 1.0038 0.9759

”s” 167062 1.0820 1.2436 0.088212 1.0304 0.98825

”c” 130277 1.0220 1.3373 0.15669 1.0111 0.95912

”d” 102241 0.95956 1.3033 0.24882 0.96055 1.0119

”u” 92545 0.97957 1.3541 0.077144 0.99887 1.1062

”p” 84292 1.0418 1.4631 0.23805 1.0193 0.99873

”v” 70334 1.0956 1.4661 0.15796 0.89571 1.0174

”m” 69601 1.0369 1.3566 0.14720 0.97397 1.0028

”g” 48089 1.0981 1.3201 0.087395 0.9766 0.95999

”’” 36345 1.1663 1.3601 0.071071 1.0473 1.0105

”h” 30204 1.0443 1.2992 0.16014 1.026 0.97679

”f” 27381 1.1530 1.3756 0.32566 0.96241 0.95043
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War and Peace in Italian, N = 3458573

α f B′ γ̂ σγ̂ × 103 γ̂1 γ̂2

” pierre ” 2013 6.8904 1.7295 0.23561 0.92572 1.6456

” se ” 2009 1.1407 1.0945 0.041174 1.0566 0.97375

” principe ” 1935 3.8833 1.6309 0.15954 1.0039 1.4323

” alla ” 1888 1.1340 1.0874 0.17638 1.0405 0.96481

” natascia ” 1238 6.1838 1.6927 0.15411 1.022 1.6108

” cosa ” 1228 1.1998 1.1941 0.16642 1.0037 1.0349

” andre’j ” 1076 3.9794 1.661 0.21786 0.99681 1.4637

” delle ” 1072 1.2827 1.2328 0.13926 1.0183 1.1139

” rosto’v ” 931 4.4101 1.6837 0.18658 1.0173 1.4825

” questo ” 902 1.2867 1.1902 0.20203 0.95068 1.0585

” occhi ” 839 1.6834 1.2171 0.097512 0.99379 1.1707

” ha ” 837 1.5979 1.1576 0.096694 1.0411 1.1171

” viso ” 749 1.4485 1.2154 0.083104 0.99308 1.1476

” principessina ” 742 5.2575 1.6537 0.20808 0.96939 1.5782

” e ” 20515 0.94976 1.2496 0.14829 0.97573 0.97503

” di ” 18859 1.1035 1.2559 0.25132 1.0016 0.97234

” che ” 14586 1.0660 1.1966 0.15625 1.0319 1.009

” il ” 12801 1.1062 1.3223 0.069590 0.96877 1.0458

” la ” 12440 1.1171 1.392 0.10574 0.96935 0.99463

” a ” 10152 1.0839 1.1625 0.15730 0.99241 1.0877

” si ” 8776 1.1225 1.268 0.13450 0.98217 1.0381

These results are better observable in the following figures, where, for

each language, there are four graphs for different sequences of the quantities

B′ =
στ
〈τ〉

and γ̂.
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Figure 4.13: Burstiness-Correlation diagram for all 43 binary sequences stud-

ied in War and Peace in English. Green points are vowels (vow) and con-

sonants (cons), blue points are symbols and red points are words.

Figure 4.14: Burstiness-Correlation diagram for all symbols studied in War

and Peace in English.
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Figure 4.15: Burstiness-Correlation diagram for all words studied in War

and Peace in English.

Figure 4.16: Burstiness-Correlation diagram for those words studied in War

and Peace in English with high values of B′ and γ̂.
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Figure 4.17: Burstiness-Correlation diagram for all 43 binary sequences stud-

ied in War and Peace in French. Green points are vowels (vow) and conson-

ants (cons), blue points are symbols and red points are words.

Figure 4.18: Burstiness-Correlation diagram for all symbols studied in War

and Peace in French.
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Figure 4.19: Burstiness-Correlation diagram for all words studied in War

and Peace in French.

Figure 4.20: Burstiness-Correlation diagram for those words studied in War

and Peace in French with high values of B′ and γ̂.
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Figure 4.21: Burstiness-Correlation diagram for all 43 binary sequences stud-

ied in War and Peace in German. Green points are vowels (vow) and con-

sonants (cons), blue points are symbols and red points are words.

Figure 4.22: Burstiness-Correlation diagram for all symbols studied in War

and Peace in German.
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Figure 4.23: Burstiness-Correlation diagram for all words studied in War

and Peace in German.

Figure 4.24: Burstiness-Correlation diagram for those words studied in War

and Peace in German with high values of B′ and γ̂.
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Figure 4.25: Burstiness-Correlation diagram for all 43 binary sequences stud-

ied in War and Peace in Italian. Green points are vowels (vow) and conson-

ants (cons), blue points are symbols and red points are words.

Figure 4.26: Burstiness-Correlation diagram for all symbols studied in War

and Peace in Italian.
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Figure 4.27: Burstiness-Correlation diagram for all words studied in War

and Peace in Italian.

Figure 4.28: Burstiness-Correlation diagram for those words studied in War

and Peace in Italian with high values of B′ and γ̂.
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As we can see in the previous figures and tabs, all letters have B′ ≈ 1,

γ̂ > 1 and γ̂2 ≈ 1. This means that correlations is due to Cτ (k) and not

to burstiness. But the most interesting situation takes place in the level of

words. The most frequent words show B′ ≈ 1, γ̂ > 1 and γ̂2 ≈ 1 so, as in let-

ter case, correlations is due to Cτ (k) and not to burstiness. On the contrary,

the most frequent nouns with high values of B′ show also high values of γ̂

and of γ̂2; the word ” prince ”, studied in the previous section, is an example

of this kind of words, for which burstiness strongly influence correlations. In

fact, we can easily note that B′(” prince ”) = 3.9026, γ̂(” prince ”) = 1.6324

and γ̂2(” prince ”) = 1.4101.

Another important observation we can do is that, contrary to our ex-

pectations, the so-called ”key-words” reach higher values of γ̂ than letters

(γ̂e < γ̂prince). This fact contradicts the asymptotic behavior studied in the

previous chapter: ” prince ” is on top of ”e” and, from Eq. (3.23), we

should have γ̂e ≥ γ̂prince. Anyway this seeming contradiction can be easily

solved by the estimation of the transition time tT necessary for the finite time

estimate γ̂ to reach the asymptotic γ, Eq. (3.34). We can imagine a substi-

tute sequence with the same frequency of ”e” composed by ” prince ”, with

a random addition of ones. Using the fitting values of g, γ for prince in Eq.

(3.34) we obtain tT ≥ 6× 105, larger than the maximum time ts used to ob-

tain γ̂. Vice-versa, for a sequence with the same frequency of ” prince ” built

as a random sequence on top of ”e” we obtain tT ≥ 7 × 108. These results

don’t explain the reason why γ̂e < γ̂prince but we can argue that ” prince ” is

a particular meaningful (not random) sequence on top of ”e” and that ”e”

must necessarily be composed by other sequences with 1 < γ < γ̂prince which

dominate for short times. The presence of these sequences also explains the

reason why keywords show sharper transitions then letters, as we can easily

note in Figures 4.1-4.9.
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4.3 Combined analysis on languages

Up to now we have analyzed, language per language, long-range correla-

tions and burstiness for a defined set of words. Now we will focus our study

on differences and similarity between different languages, using, as above,

War and Peace in English, French, German and Italian.

Now I will present some of the results obtained from the experiment I did

for the study of the comparison of B′ and γ̂ in different languages.

For each language I choose, two keywords (” prince ” and ” pierre ”),

two frequent words (” and ” and ” in ”), two frequent symbols (” ” and ”e”)

and vowels-constants and my main goal is to discover if B′ and γ̂ depend on

language or not.

In the following tabs are presented the results of this study for these

words-symbols-sequences.

” prince ”

word and language B′ γ̂ γ̂2

” prince ” English 3.9026 1.6324 1.4101

” prince ” French 3.2224 1.5819 1.4204

” fürst ” German 4.4620 1.636 1.5006

” principe ” Italian 3.8833 1.6309 1.4323

Average (µ) 3.8676 1.6203 1.4408

Standard deviation (σ) 0.43906 0.022248 0.035380

Coefficient of variation

(
σ

µ

)
0.11352 0.013731 0.024555
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” pierre ”

word and language B′ γ̂ γ̂2

” pierre ” English 6.8589 1.7244 1.642

” pierre ” French 4.4686 1.6915 1.5784

” pierre ” German 6.7635 1.7192 1.626

” pierre ” Italian 6.8904 1.7295 1.6456

Average (µ) 6.2454 1.7161 1.6230

Standard deviation (σ) 1.0269 0.014690 0.026786

Coefficient of variation

(
σ

µ

)
0.16442 0.0085600 0.016504

” and ”

word and language B′ γ̂ γ̂2

” and ” English 0.88130 1.1965 0.93914

” et ” French 0.82029 1.1889 1.018

” und ” German 0.86393 1.2799 1.0674

” e ” Italian 0.94976 1.2496 0.97503

Average (µ) 0.87882 1.2287 0.99989

Standard deviation (σ) 0.046600 0.037680 0.047943

Coefficient of variation

(
σ

µ

)
0.053026 0.030666 0.047948

” in ”

word and language B′ γ̂ γ̂2

” in ” English 1.0436 1.1471 0.95459

” en ” French 1.0381 1.1724 1.0272

” in ” German 1.0558 1.1643 0.95713

” in ” Italian 1.0674 1.0711 0.956

Average (µ) 1.0512 1.138725 0.97373

Standard deviation (σ) 0.011314 0.040098 0.030884

Coefficient of variation

(
σ

µ

)
0.010763 0.035213 0.031717
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” ”

word and language B′ γ̂ γ̂2

” ” English 0.52981 1.5052 0.9785

” ” French 0.61263 1.3967 0.97946

” ” German 0.54066 1.5489 0.99867

” ” Italian 0.58245 1.4059 1.0064

Average (µ) 0.56639 1.4642 0.99076

Standard deviation (σ) 0.033150 0.064827 0.012095

Coefficient of variation

(
σ

µ

)
0.058530 0.044276 0.012208

”e”

word and language B′ γ̂ γ̂2

”e” English 0.92834 1.3738 1.0211

”e” French 0.86628 1.3551 1.0257

”e” German 0.86223 1.5034 1.0129

”e” Italian 0.97890 1.4982 1.0564

Average (µ) 0.90894 1.4326 1.0290

Standard deviation (σ) 0.048148 0.068519 0.016457

Coefficient of variation

(
σ

µ

)
0.052972 0.047828 0.015992

vowels

word and language B′ γ̂ γ̂2

vowels English 0.61797 1.5271 1.007

vowels French 0.67026 1.321 0.97224

vowels German 0.62397 1.3008 1.0509

vowels Italian 0.53241 1.4171 0.94296

Average (µ) 0.61115 1.3915 0.99327

Standard deviation (σ) 0.049761 0.089777 0.040259

Coefficient of variation

(
σ

µ

)
0.081421 0.064518 0.040531
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consonants

word and language B′ γ̂ γ̂2

consonants English 0.83332 1.445 1.0461

consonants French 0.79767 1.3792 1.0209

consonants German 0.89555 1.3805 1.033

consonants Italian 0.85645 1.4055 1.0171

Average (µ) 0.84575 1.4026 1.0293

Standard deviation (σ) 0.035568 0.026656 0.011350

Coefficient of variation

(
σ

µ

)
0.042055 0.019005 0.11028

These results can be better intrepreted thanks to the following figures,

where there are three different views of a B′ − γ̂ graph for all these words-

symbols-sequences together and singular graphs for each sequence. In the

latter case in the graphs there are also rectangles with these vertices:

(µB′ − σB′ , µγ − σγ) , (µB′ − σB′ , µγ + σγ) ,

(µB′ + σB′ , µγ + σγ) and (µB′ + σB′ , µγ − σγ)

where µ is the average and σ is the standard deviation.
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Figure 4.29: Burstiness-Correlation diagram for all those sequences studied

in War and Peace in all languages.

Figure 4.30: Burstiness-Correlation diagram for those sequences studied in

War and Peace in all languages with low values of B′.
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Figure 4.31: Burstiness-Correlation diagram for all those sequences studied

in War and Peace in all languages with high values of B′.

Figure 4.32: Burstiness-Correlation diagram for the word ” prince ”, studied

in War and Peace in all languages.
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Figure 4.33: Burstiness-Correlation diagram for the word ” pierre ”, studied

in War and Peace in all languages.

Figure 4.34: Burstiness-Correlation diagram for the word ” and ”, studied in

War and Peace in all languages.
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prince

Figure 4.35: Burstiness-Correlation diagram for the word ” in ”, studied in

War and Peace in all languages.

Figure 4.36: Burstiness-Correlation diagram for the space ” ”, studied in

War and Peace in all languages.
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Figure 4.37: Burstiness-Correlation diagram for the symbol ”e”, studied in

War and Peace in all languages.

Figure 4.38: Burstiness-Correlation diagram for the vowels, studied in War

and Peace in all languages.
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Figure 4.39: Burstiness-Correlation diagram for the consonants, studied in

War and Peace in all languages.

As we can see from the previous figures and tabs, burstiness coefficient,

especially for key-words, isn’t conserved in different languages, while, on the

contrary, long-range correlations exponent seems to be preserved precisely

for key-words. In fact σγ for ” prince ” and ” pierre ” is smaller than σγ

for all the others sequences. So we may argue that, while letters, vowels-

consonants and ”not key-words”, before reaching their asymptotic behavior,

are more influenced by the used language, key-words, reaching their asymp-

totic behavior earlier, behave in the same way, without a strong dependence

on the language chosen. An hypothesis for this result may be that, if we work

with enough ”short” sequences, the influence on long-range correlations of

the burstiness doesn’t depend on language, while the influence on long-range

correlations of Cτ (k) depends on language and the obtained values of γ̂2 seem

to confirm this idea. Obviously, this hypothesis has to be tested with other

experiments. In order to confirm or reject this hypothesis we may repeat this

experiment using other books, like The Bible.
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Before closing the chapter there is an apparently strange result observable

that I’d like to explain: the value of B′ for the word ” pierre ” in French. In

fact

B′” pierre ”(English) = 6.8589, (4.2)

B′” pierre ”(French) = 4.4686, (4.3)

B′” pierre ”(German) = 6.7635, (4.4)

B′” pierre ”(Italian) = 6.8904. (4.5)

Hence

µ(B′” pierre ”) = 6.2454, (4.6)

σ(B′” pierre ”) = 1.0269. (4.7)

It seems that the sequence ” pierre ” in French follows a behavior com-

pletely different from the other languages; but this strange value can be easily

solved searching this word in the text and observing that the word ” pierre

” means both Pierre, a character of the book, and pierre, that means stone.

For example the following paragraph presents this particular fact.

”Marche! marche! Trois roubles de pourboire!” s’écria Rostow, qui, à

quelques pas de chez lui, croyait ne jamais arriver. Le trâıneau prit sur la

droite et s’arrêta devant le perron. Rostow reconnut la corniche ébréchée, la

borne du trottoir, et s’élança hors du trâıneau avant qu’il se fût arrûté. Il

franchit les marches d’un bond. L’extérieur de la maison était aussi froid,

aussi calme que par le passé. Que faisait à ces murs de pierre l’arrivée ou

le départ? Personne dans le vestibule! ”Mon Dieu! serait-il arrivé quelque

chose?” se dit Rostow avec un serrement de coeur; il s’arrêta une minute,

puis reprit sa course dans l’escalier aux marches usées, qu’il connaissait si

bien. ”Et voilà le même bouton de porte déjeté, dont la malpropreté agaçait

toujours la comtesse, et voilà l’antichambre!” Elle n’était éclairée dans ce

moment que par une chandelle.
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In English the translation is:

”Then they’ve not gone to bed yet? What do you think? Mind now, don’t

forget to put out my new coat,” added Rostov, fingering his new mustache.

”Now then, get on,” he shouted to the driver. ”Do wake up, Vaska!” he went

on, turning to Denisov, whose head was again nodding. ”Come, get on! You

shall have three rubles for vodka–get on!” Rostov shouted, when the sleigh

was only three houses from his door. It seemed to him the horses were not

moving at all. At last the sleigh bore to the right, drew up at an entrance,

and Rostov saw overhead the old familiar cornice with a bit of plaster broken

off, the porch, and the post by the side of the pavement. He sprang out before

the sleigh stopped, and ran into the hall. The house stood cold and silent,

as if quite regardless of who had come to it. There was no one in the hall.

”Oh God! Is everyone all right?” he thought, stopping for a moment with

a sinking heart, and then immediately starting to run along the hall and up

the warped steps of the familiar staircase. The well-known old door handle,

which always angered the countess when it was not properly cleaned, turned

as loosely as ever. A solitary tallow candle burned in the anteroom.



Chapter 5

Comparison with another

approach for text analysis

In my work of thesis I focused on a particular approach for text analysis.

Two colleagues of mine, Filippo Bonora and Giulia Tini, who prepared their

master theses with Mirko Degli Esposti and Giampaolo Cristadoro at the

same time with me, used a completely different approach for text analysis,

that is considering a text as a network. In the first section there will be

a brief introduction to their approach (for a more detailed explanation see

Filippo’s and Giulia’s theses), while in the second one there will be a brief

comparison between results obtained using these two different approaches,

focusing our analysis on key-words. This second section has been written

together with Filippo and Giulia.

5.1 Texts as networks

This approach is based on the idea that a graph is a very interesting way

to describe interactions between words in a text. A useful opportunity to

build it from a text is to associate a vertex to each sign of the text (words

and punctuation) and to put a link between two vertices if they are adjacent

in the text. Hence this approach uses networks analyses to investigate and

109
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discover features of texts.

First of all, here there are some basic definitions of network theory.

Definition 5.1.1. A weighted directed graph G is defined by:

• a set N(G) of N vertices, or nodes, identified by an integer value,

i = 1, 2, ..., N ;

• a set E(G) of M edges, or links, identified by a pair (i, j) that represents

a connection starting in vertex i and going to vertex j.

• a mapping ω : E(G) → R that associate to the edge (i, j) the value

ω(i, j) = ωi,j called weight.

Definition 5.1.2. A weighted directed graph G can be represented using its

weight matrix W = (ωi,j), an N × N matrix whose elements represent the

number of directed links connecting vertex i with vertex j. In this work we

will assume that no pair of edges (i1, j1) and (i2, j2) with i1 = i2 and j1 = j2

exist.

Definition 5.1.3. The N ×N matrix A = (ai,j) is the adjacency matrix of

the graph G if

∀i, j, ai,j =

{
1, if ωi,j 6= 0

0, if ωi,j = 0

Definition 5.1.4. The neighborhood of a vertex i, νi, is the set of vertices

adjacent to i.

νi = {j ∈ N(G) : (i, j) ∨ (j, i) ∈ E(G)}

Definition 5.1.5. Eventually two non adjacent vertices i and j can be con-

nected using a walk, that is a sequence ofm edges (i, k1), (k1, k2), ..., (km−1, j).

If all the edges and all the vertices composing a walk are distinct, the walk

is called path.

Definition 5.1.6. A shortest path between two nodes is defined as the path

whose sum of edge weights is minimum.
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Given these definitions, we can compute the importance of a vertex or an

edge considering the number of paths in which it is involved and, assuming

that a vertex is reached using the shortest path, this can be measured by the

betweenness centrality.

Definition 5.1.7. The betweenness centrality of a vertex or an edge u is

defined as

Bu =
∑
i,j

σ(i, u, j)

i, j
,

where σ(i, u, j) is the number of shortest paths between vertices i and j that

pass through u while σ(i, j) is the total number of shortest paths between i

and j.

Hence, once built the graph associated to the text, we can consider as key-

words these words with the highest values of betweenness centrality. But,

as explained in the theses of Filippo Bonora and of Giulia Tini, in order

to obtain good results, it’s fundamental cleaning the text from stopwords

(articles, preposition, adverbs, ...). In their analysis they built graphs from

texts with Python and made statistical analysis on graphs with Gephi, an

open-source software for visualizing and analyzing large networks graphs.

5.2 Comparison of results

For the comparison of results we used the following books: in English

Moby Dick by Herman Melville, A naturalist’s voyage round the world by

Charles Darwin, Alice’s adventures in wonderland by Lewis Carroll, Life on

Mississippi by Mark Twain and The jungle by Sinclair Upton; in Italian I

Malavoglia by Giovanni Verga, I pirati della Malesia by Emilio Salgari, Le

avventure di Pinocchio-Storia di un burattino by Carlo Collodi, Canne al

vento by Grazia Deledda, Il fu Mattia Pascal by Luigi Pirandello and La

coscienza di Zeno by Italo Svevo.
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Comparing the words with highest betweenness centrality, found by Fi-

lippo and Giulia, with the words studied with the procedure explained in

Chapter 4, although there are some differences, we can see also many simil-

arities, especially for the longest texts used in this particular analysis.

Before going on with this analysis, it’s important to underline that, while

in my method words are chosen with a particular procedure, Filippo’s and

Giulia’s approach is much more general, because betweenness centrality is

calculated for all words present in the analyzed text, cleaned from stopwords.

In the following tabs there are results obtained using my approach.
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Moby Dick, N=1151326

α f B′ γ̂ σγ̂ × 103

” whale ” 1150 2.1503 1.555 0.67814

” not ” 1142 1.0936 1.0577 0.18287

” man ” 525 1.2805 1.1944 0.25952

” into ” 517 1.1829 1.1771 0.42026

” ahab ” 510 3.2174 1.5502 0.64730

” ship ” 509 1.5666 1.309 0.37457

” up ” 508 1.1642 1.1813 0.34409

” more ” 503 1.1474 1.0542 0.090317

” sea ” 437 1.3010 1.1959 0.32605

” would ” 426 1.1825 1.0774 0.34327

” head ” 337 1.3334 1.3466 0.41653

” time ” 332 1.0881 1.0505 0.18922

” boat ” 331 2.4121 1.4585 0.36717

” her ” 330 1.9006 1.2136 0.34803

” the ” 14168 1.0453 1.384 0.27379

” of ” 6469 1.0779 1.4589 0.62232

” and ” 6325 0.96824 1.2176 0.33535

” a ” 4630 1.1417 1.3306 0.41654

” to ” 4539 1.0233 1.1348 0.11508

” in ” 4076 1.0230 1.2816 0.57843

” that ” 3037 1.0974 1.1397 0.15402
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A naturalist’s voyage round the world, N=1153329

α f B′ γ̂ σγ̂ × 103

” water ” 426 1.5209 1.2276 0.14963

” little ” 412 1.1178 1.0691 0.20576

” sea ” 348 1.5347 1.2571 0.23099

” up ” 340 1.1912 1.1203 0.40453

” country ” 337 1.5194 1.2534 0.37560

” being ” 328 1.0600 1.0659 0.37220

” day ” 327 1.4439 1.1378 0.26183

” land ” 318 1.3876 1.2379 0.45840

” must ” 317 1.2906 1.1112 0.37057

” them ” 315 1.1098 1.1011 0.19440

” feet ” 312 1.3912 1.2036 0.12373

” may ” 311 1.1184 1.0731 0.18825

” species ” 303 2.4601 1.5192 0.25985

” if ” 302 1.1387 1.0955 0.21750

” the ” 16878 0.93709 1.1878 0.067457

” of ” 9411 0.97763 1.2284 0.15445

” and ” 5762 0.90143 1.0791 0.068272

” a ” 5333 1.1026 1.1689 0.17525

” in ” 4287 1.0255 1.1297 0.32472

” to ” 4080 1.0543 1.1863 0.29505

” is ” 2414 1.3143 1.2054 0.16060
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Alice’s adventures in wonderland, N=135006

α f B′ γ̂ σγ̂ × 103

” alice ” 397 0.90337 1.0926 1.7490

” in ” 368 0.97125 1.0423 0.10162

” queen ” 75 2.1158 1.4876 1.6266

” thought ” 74 0.91569 0.98403 0.60826

” time ” 71 0.97476 1.1338 1.0262

” how ” 68 1.1639 1.0911 0.38924

” king ” 63 2.7741 1.5343 1.7592

” your ” 62 1.3422 1.1088 1.0116

” turtle ” 59 3.6274 1.6217 1.9307

” my ” 58 1.0647 1.1319 0.59194

” way ” 56 1.0984 1.2266 0.19224

” mock ” 56 3.5250 1.6079 2.0555

” hatter ” 56 5.0412 1.6351 1.2570

” quite ” 55 1.2917 1.1747 0.55709

” the ” 1641 0.98188 1.3563 0.78243

” and ” 871 0.96193 1.1100 0.97739

” to ” 729 1.01958 1.0958 0.74467

” a ” 632 1.0767 1.0732 0.24094

” it ” 595 1.1694 1.24464 0.24464

” she ” 552 1.5668 1.3817 0.90159

” i ” 544 1.5967 1.3174 0.12501
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Life on Mississippi, N=767745

α f B′ γ̂ σγ̂ × 103

” river ” 489 2.2193 1.4259 0.63319

” which ” 482 1.2217 1.1564 0.27336

” time ” 355 1.2064 1.0932 0.54676

” down ” 341 1.3091 1.2082 0.39035

” man ” 278 1.6388 1.2553 0.42158

” its ” 276 1.5620 1.303 0.38111

” water ” 246 1.9250 1.3436 0.26651

” got ” 234 1.5849 1.2294 0.59812

” boat ” 234 2.0364 1.3421 0.67421

” these ” 231 1.5343 1.1751 0.25742

” day ” 224 1.1676 1.0052 0.21229

” can ” 219 1.4214 1.1694 0.12941

” way ” 217 1.0263 1.0284 0.20210

” did ” 216 1.5945 1.1737 0.54900

” the ” 9043 1.0510 1.355 0.19181

” and ” 5879 0.97594 1.3217 0.63667

” of ” 4363 1.0372 1.3084 0.58920

” a ” 4049 1.0971 1.1951 0.40830

” to ” 3531 1.0989 1.2252 0.35808

” in ” 2535 1.0340 1.1215 0.24779

” it ” 2369 1.3739 1.2647 0.16832
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The jungle, N=783190

α f B′ γ̂ σγ̂ × 103

” jurgis ” 1117 2.0933 1.4772 0.80927

” were ” 995 1.5754 1.3132 0.40206

” man ” 481 1.3175 1.2682 0.45402

” an ” 436 1.2217 1.2281 0.63330

” time ” 358 1.1973 1.1396 0.47247

” if ” 346 1.1691 1.0852 0.31373

” men ” 340 1.7881 1.3121 0.44895

” now ” 325 1.0770 1.0938 0.19913

” day ” 288 1.3975 1.1381 0.42269

” get ” 279 1.3328 1.1444 0.38899

” place ” 263 1.2274 1.1505 0.33420

” like ” 261 1.0561 1.0432 0.18738

” home ” 229 1.7595 1.2163 0.35910

” ona ” 225 3.7697 1.4446 0.60946

” the ” 8925 1.0286 1.3068 0.23050

” and ” 7260 0.96796 1.2425 0.20601

” of ” 4364 1.1190 1.4178 0.85064

” to ” 4187 1.0820 1.1979 0.60636

” a ” 4160 1.1554 1.2047 0.25191

” he ” 3310 2.1662 1.5723 0.30364

” was ” 3055 1.8421 1.4281 0.87478
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I Malavoglia, N=488279

α f B′ γ̂ σγ̂ × 103

” ntoni ” 557 1.5914 1.3578 1.1354

” aveva ” 480 1.2099 1.0874 0.40255

” don ” 431 2.4042 1.4901 0.87779

” piu’ ” 425 1.1696 1.1467 0.43453

” casa ” 361 1.2793 1.1593 0.30674

” ma ” 355 0.99082 1.0931 0.69757

” padron ” 333 1.5638 1.2493 0.44537

” una ” 332 0.95941 0.96133 0.42429

” zio ” 194 1.7520 1.3398 0.88481

” compare ” 194 1.6203 1.1773 0.33540

” o ” 194 1.1081 1.0638 0.14430

” quale ” 191 1.1073 1.0187 0.25939

” malavoglia ” 191 1.2946 1.1419 0.48162

” cosa ” 190 1.1135 1.0789 0.33912

” e ” 3487 0.85760 1.1211 0.42961

” che ” 2554 0.84766 1.0051 0.27934

” la ” 2310 1.0752 1.193 0.63733

” a ” 1996 0.97622 1.1233 0.68903

” di ” 1977 1.0824 1.0966 0.45521

” il ” 1873 1.0287 1.1283 0.27638

” non ” 1719 1.0158 1.1636 0.30869
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I pirati della Malesia, N=349295

α f B′ γ̂ σγ̂ × 103

” yanez ” 388 2.2748 1.3814 1.0383

” da ” 380 1.1378 0.99848 0.29047

” sandokan ” 364 2.5877 1.5032 1.7599

” disse ” 350 1.3937 1.2664 1.0460

” rajah ” 246 2.1324 1.4204 1.3580

” tigre ” 231 1.9718 1.2757 0.50372

” al ” 228 1.0200 1.0289 0.18203

” piu’ ” 212 1.2401 1.218 0.33829

” kammamuri ” 205 1.7348 1.2721 0.73514

” dei ” 196 1.1197 1.0452 0.65963

” malesia ” 170 1.7603 1.2092 0.79521

” sono ” 165 1.2613 1.0938 0.18944

” pirati ” 148 1.7240 1.231 0.72050

” aveva ” 146 1.2428 1.1948 0.40056

” di ” 1767 1.0877 1.1347 0.18108

” e ” 1600 0.95541 1.1746 0.73010

” il ” 1327 1.0633 1.1935 0.69366

” che ” 1263 0.99470 1.1195 0.39583

” la ” 1167 1.1152 1.1666 0.36438

” un ” 1006 1.1359 1.1747 0.52985

” a ” 864 1.0902 1.094 0.16491
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Le avventure di Pinocchio-Storia di un burattino, N=226749

α f B′ γ̂ σγ̂ × 103

” pinocchio ” 416 0.90728 1.0646 0.97828

” si ” 393 1.1271 1.0528 1.0272

” se ” 189 0.99442 1.0414 0.28891

” casa ” 93 1.5900 1.2095 0.94809

” nel ” 93 1.1993 1.0346 0.23003

” fata ” 80 1.9789 1.3934 2.1290

” loro ” 78 1.4340 1.1269 0.78794

” babbo ” 74 2.4542 1.1293 0.65502

” altro ” 74 1.1774 1.0086 0.27525

” cosa ” 73 1.1088 1.062 0.50570

” geppetto ” 72 3.9571 1.5674 2.2448

” ragazzi ” 69 1.6898 1.1785 1.0180

” fu ” 67 0.98177 1.0365 0.28429

” e ” 1763 0.89783 1.1505 0.50405

” di ” 1339 1.0314 0.99713 0.56542

” che ” 1019 1.0030 1.0491 0.20004

” a ” 936 0.98894 1.0347 0.32038

” il ” 925 1.0172 1.0784 0.39999

” un ” 762 1.0332 0.98896 0.32700

” la ” 711 1.1404 1.1816 0.65105
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Canne al vento, N=338621

α f B′ γ̂ σγ̂ × 103

” efix ” 502 1.7046 1.244 1.8360

” l ” 478 1.0633 1.0625 0.20155

” donna ” 281 2.4683 1.3287 0.96382

” da ” 267 1.0164 1.0545 0.39254

” noemi ” 264 2.3610 1.4505 1.6167

” della ” 262 1.1563 1.0948 0.13872

” don ” 200 1.8383 1.2731 0.86196

” giacinto ” 183 2.4431 1.3358 1.0827

” occhi ” 182 1.0094 1.0178 0.15531

” aveva ” 177 1.0854 1.0429 0.96563

” suo ” 171 1.0497 1.0492 0.20738

” predu ” 166 2.3467 1.407 1.1090

” ed ” 164 1.3342 1.0121 0.36151

” e ” 2244 0.91771 1.0199 0.37359

” di ” 1729 1.1009 1.1428 0.26812

” la ” 1282 1.0560 1.0908 0.18029

” il ” 1249 1.0248 1.0837 0.49536

” che ” 1072 1.0019 1.0942 0.41376

” e’ ” 934 1.8201 1.2749 0.39913

” a ” 917 0.98852 1.0005 0.17806
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Il fu Mattia Pascal, N=433543

α f B′ γ̂ σγ̂ × 103

” adriana ” 165 1.6743 1.4942 0.98677

” due ” 161 1.3846 1.1094 0.17369

” casa ” 152 1.2874 1.2264 0.80137

” avevo ” 151 1.4198 1.2078 0.60146

” signor ” 147 2.8318 1.388 0.89798

” via ” 147 1.1388 1.1204 0.59772

” occhi ” 138 1.2546 1.0864 0.24577

” sua ” 137 1.3290 1.1365 0.39867

” vita ” 127 1.7060 1.2852 0.74053

” questa ” 126 1.1847 1.0897 0.24447

” papiano ” 119 1.9505 1.4917 1.7917

” sul ” 117 1.2827 1.2025 0.55902

” mano ” 110 1.2167 1.0872 0.27922

” c ” 110 1.0365 1.0907 0.28188

” e ” 2236 0.90630 1.1206 0.54307

” di ” 1936 1.0455 1.1478 0.33042

” che ” 1861 0.93397 1.1323 0.58236

” la ” 1509 1.1318 1.1734 0.52039

” a ” 1492 1.0240 1.1202 0.36252

” non ” 1356 1.0228 1.1307 0.45989

” il ” 1183 1.0843 1.1858 0.47736
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La coscienza di Zeno, N=834656

α f B′ γ̂ σγ̂ × 103

” guido ” 569 3.1193 1.6058 1.0319

” al ” 566 1.0854 1.1055 0.25708

” ada ” 532 2.5366 1.5518 0.78842

” quella ” 532 1.1571 1.1135 0.11385

” augusta ” 390 1.9227 1.3848 0.40894

” lo ” 377 1.1479 1.0817 0.14321

” tempo ” 297 1.1297 1.0497 0.14001

” lui ” 290 1.6458 1.2798 0.58712

” carla ” 280 4.5974 1.6572 0.77453

” cosi’ ” 278 1.0225 1.0441 0.23481

” giorno ” 276 1.2087 1.0829 0.17055

” sempre ” 275 1.1532 1.0946 0.37360

” casa ” 262 1.4287 1.2096 0.26115

” ci ” 260 1.0940 1.1157 0.26626

” di ” 4992 0.96690 1.0433 0.80399

” che ” 4232 0.91567 1.0906 0.12420

” e ” 3412 0.90710 1.0923 0.089463

” non ” 3019 0.97300 1.0329 0.27613

” la ” 2904 1.0392 1.104 0.39155

” il ” 2319 1.0506 1.1398 0.29722

” a ” 2150 1.0396 1.0849 0.33049

In the following tabs there are, on the contrary, the words of the same

books with highest value of betweenness centrality. Moreover, for these words

there are also their values of B′ and γ̂ and an additional column with a Xif

we can consider these words as key-words for both approaches, a × if we

can’t and a ∼ if it’s not so clear.
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Moby Dick

Word B′ γ̂ Keyword?

” whale ” 2.1503 1.555 X

” man ” 1.2805 1.1944 ×
” ship ” 1.5666 1.3107 ∼
” sea ” 1.3010 1.1959 ×

” ahab ” 3.2174 1.5502 X

A naturalist’s voyage round the world

Word B′ γ̂ Keyword?

” great ” 1.1903 1.1985 ×
” water ” 1.5209 1.2276 ∼
” man ” 1.5674 1.2535 ∼

” country ” 1.5194 1.2534 ∼
” found ” 1.2172 1.1305 ×

Alice’s adventures in wonderland

Word B′ γ̂ Keyword?

” alice ” 0.90337 1.0926 ×
” man ” 1.5141 1.2116 ∼
” time ” 0.97476 1.1338 ×
”men ” 1.6074 1.1928 ∼

” work ” 0.76962 1.0145 ×

Life on Mississippi

Word B′ γ̂ Keyword?

” river ” 2.2193 1.4259 X

” time ” 1.2064 1.0932 ×
” man ” 1.6388 1.2553 ∼
” boat ” 2.0364 1.3421 X

” day ” 1.1676 1.0052 ×
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The jungle

Word B′ γ̂ Keyword?

” jurgis ” 2.0933 1.4772 X

” man ” 1.3175 1.2682 ×
” time ” 1.1973 1.1396 ×
” men ” 1.7881 1.3121 X

” work ” 1.3733 1.2341 ×

I Malavoglia

Word B′ γ̂ Keyword?

” ntoni ” 1.5914 1.3578 ∼
” casa ” 1.2793 1.1593 ×

” malavoglia ” 1.2964 1.1419 ×
” mena ” 1.4699 1.2912 ∼

” andava ” 1.2325 1.0867 ×
” nulla ” 1.1149 1.0911 ×
” fatto ” 1.0436 1.0334 ×

” nonno ” 1.5388 1.3003 ∼
” piedipapera ” 1.5026 1.2556 ∼

” sempre ” 1.0576 1.0852 ×
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I pirati della Malesia

Word B′ γ̂ Keyword?

” sandokan ” 2.5877 1.5032 X

” yanez ” 2.2748 1.3814 X

” rajah ” 2.1324 1.4204 X

” kammamuri ” 1.7348 1.2721 X

” pirati ” 1.7240 1.2298 X

” tigre ” 1.9718 1.2757 X

” verso ” 1.3050 1.1427 ×
” capitano ” 2.9022 1.5093 X

” uomo ” 1.4047 1.1308 ∼
” uomini ” 1.5331 1.2380 ∼

Le avventure di Pinocchio-Storia di un burattino

Word B′ γ̂ Keyword?

” pinocchio ” 0.90728 1.0646 ×
” burattino ” 1.1020 1.0517 ×
” sempre ” 1.0065 1.0999 ×
” dopo ” 0.97138 0.94893 ×
” fatto ” 0.73374 0.88795 ×
” casa ” 1.5900 1.2095 ∼

” povero ” 1.0187 1.0250 ×
” ragazzi ” 1.6898 1.3893 X

” fata ” 1.9789 1.3934 X

” mai ” 1.0460 0.96949 ×
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Canne al vento

Word B′ γ̂ Keyword?

” efix ” 1.7046 1.2440 X

” noemi ” 2.3610 1.4505 X

” giacinto ” 2.4431 1.3358 X

” occhi ” 1.0094 1.0178 ×
” casa ” 1.7921 1.1253 X

” donna ” 2.4683 1.3287 X

” bene ” 1.1994 1.0246 ×
” pareva ” 1.0141 1.0159 ×

” viso ” 1.1481 1.0964 ×
” sempre ” 1.2006 1.1009 ×

Il fu Mattia Pascal

Word B′ γ̂ Keyword?

” adriana ” 1.6743 1.4942 X

” forse ” 1.2617 1.1177 ×
” casa ” 1.2874 1.2264 ×
” via ” 1.1388 1.1204 ×

” occhi ” 1.2546 1.0864 ×
” vita ” 1.7060 1.2852 X

” prima ” 1.3456 1.1358 ×
” gia’ ” 0.95391 1.0065 ×

” qualche ” 1.1372 1.1074 ×
” fatto ” 1.3742 1.0644 ×
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La coscienza di Zeno

Word B′ γ̂ Keyword?

” guido ” 3.1193 1.6058 X

” ada ” 2.5366 1.5518 X

” essa ” 1.9040 1.3867 X

” augusta ” 1.9227 1.3848 X

” prima ” 1.0390 1.0590 ×
” sempre ” 1.1532 1.0946 ×
” carla ” 4.5974 1.6572 X

” qualche ” 1.0551 1.0266 ×
” grande ” 1.0724 1.0763 ×
” giorno ” 1.2087 1.0829 ×

In order to better understand these results, in the next figures there are

Burstiness-Correlation diagrams for those words extracted from Moby Dick

and from La coscienza di Zeno, using Filippo’s and Giulia’s method.

Figure 5.1: Burstiness-Correlation diagram for the key-words extracted from

Moby Dick.
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Figure 5.2: Burstiness-Correlation diagram for the key-words extracted from

La coscienza di Zeno.

As we can see from these results, the maximum analogies are obtained

for the longest novels in both languages and the main reason of this result is

probaly the fact that my approach studies asymptotic behaviors and results

obtained from this approach is probably as more precise, as longer is the text

used. This may let us argue that these two approaches may lead to similar

results for long ”enough” texts, but this fact should obviously be tested and

deepened.
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Chapter 6

Conclusions

The idea of working with different translations of the same book was born

in order to check and confirm the hypothesis, proposed by E. G. Altmann, G.

Cristadoro and M. Degli Esposti in [43] and explained in the third chapter.

They argue that, for any condition α, its associated random walker X(t) will

spread super-diffusively as σ2
X(t) ∝ tγ with the same exponent γ. This means

that, asymptotically, γ should be equal for every chosen α. Since different

translations of the same book can be considered as a particular ”shuffling”

procedure which fixes topics at the topic level in the hierarchy of language,

my approach to analyze differences and analogies between key-words’ be-

haviors had exactly this goal. Thus, the most important result to show is

certainly the fact that the choice of different languages don’t influence neither

the presence, nor the exponent of the long-range correlations. In fact, while

the most frequent words, that may have many possible translations between

different languages (for example the word ” the ” in English can be translated

in Italian with ” il ”, ” la ”, ” lo ”, etcetera) and whose use may strongly

depend on particular grammar rules, exhibit similar but consistently differ-

ent evaluates of the exponents of long-range correlations between different

languages, keywords, that are used only in particular topics (for example the

word ” prince ” in War and Peace is used only when Tolstoj is talking about

war), exhibit evaluates of the exponents of long-range correlations that are
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almost equal for every language used. This result, obtained using this par-

ticular ”shuffling” method, strongly confirms the hypothesis that, in a text,

the topic is really at the highest level of our hierarchy and it is what actually

characterizes long-range correlations exponent.

Another important result obtained in this thesis is that, although almost

every letter and most frequent words exhibit a value of B′ ≈ 1 and may

thus be imagined, from an approximate point of view, as results of a Pois-

son process, experimental results, explained in the fourth chapter, highlights

that all these sequences are long-range correlated without burstiness and so

their non-Poissonian nature, and thus their information richness, is revealed

through long-range correlations, γ > 1.



Appendix A

Texts cleaning

For my analysis I obviously couldn’t use texts as can be downloaded (the

books used for my experiments was downloaded from [48], [49] and [50]), so

I decided to clean the texts as explained in the following tab:

Original Used Original Used

character character character character

”A” ”a” ”B” ”b”

”C” ”c” ”D” ”d”

”E” ”e” ”F” ”f”

”G” ”g” ”H” ”h”

”I” ”i” ”J” ”j”

”K” ”k” ”L” ”l”

”M” ”m” ”N” ”n”

”O” ”o” ”P” ”p”

”Q” ”q” ”R” ”r”

”S” ”s” ”T” ”t”

”U” ”u” ”V” ”v”

”W” ”w” ”X” ”x”

”Y” ”y” ”Z” ”z”
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Original Used Original Used

character character character character

”,” ” ” ”;” ” ”

”.” ” ” ”:” ” ”

”-” ” ” ” ” ” ”

”#” ” ” ””” ” ”

”[” ” ” ”]” ” ”

”(” ” ” ”)” ” ”

”?” ” ” ”!” ” ”

”/” ” ” ”*” ” ”

”=” ” ” ”’” ” ”

”¡” ” ” ”¿” ” ”

”\t”(Tab) ” ” ”\n”(Newline) ” ”

”ê” ”e” ”à” ”a’”

”é” ”e’” ”ó” ”o’”

”ä” ”a” ”è” ”e’”

”ù” ”u’” ”̀ı” ”i’”

”ë” ”e” ”û” ”u”

”ô” ”o” ”o” ”o”

”ò” ”o’” ”â ”a”

”̂i” ”i” ”ö” ”o”

”ü” ”u” ”̈ı” ”i”

”õ” ”o” ”◦” ” ”

”Ü” ”u” ”β” ”ss”

”À” ”a’” ”ú” ”u’”

”Ó” ”o’” ”Ä” ”a”

”Ö” ”o” ”Ò” ”o’”

”É” ”e’” ”È” ”e’”

”Ê” ”e” ”Ç” ”ç”

”Ô” ”o” ”$” ” ”

”æ” ”ae” ”Ù” ”u”
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