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Sommario

L’obiettivo di questa dissertazione è quello di studiare la struttura e il

comportamento dello Strato Limite Atmosferico, in condizioni stabili. Questo

tipo di strato limite non è ancora completemente compreso appieno, anche se

è molto importante per molti utilizzi pratici, che vanno dalla modellizzazione

previsionale, alla dispersione di agenti inquinanti in atmosfera.

Abbiamo analizzato dati provenienti dall’esperimento SABLES98 (Stable

Atmospheric Boundary Layer Experiment in Spain, 1998), e comparato il

comportamento di questi dati utilizzando le funzioni di similarità di Monin-

Obukhov, per la velocità del vento e la temperatura potenziale.

Analizzando i profili verticali di diverse variabili, in particolare i flussi di

calore e di quantità di moto, abbiamo identificato due strutture contrastanti

che descrivono due differenti stati dello strato limite stabile, uno tradizionale

ed uno sottosopra.

Siamo stati in grado di determinare le principali caratteristiche di questi

due stati in termini di profili verticali di temperatura potenziale, della ve-

locità del vento, dell’energia cinetica e dei flussi turbolenti, studiando le serie

temporali e le strutture verticali dell’atmosfera per due notti dell’esperimento,

prese come casi studio.

Abbiamo inoltre sviluppato una classificazione originale dello strato limite

stabile, per separare l’influenza dei fenomeni a mesoscala dalle caratteristiche

puramente turbolente, usando come parametri la velocità del vento e il nu-

mero di Richardson di gradiente.

Abbiamo quindi confrontato queste due formulazioni, usando i dati prove-

nienti dal dataset SABLES98, verificando la loro validità con diverse variabili

(velocità del vento, temperatura potenziale e loro differenze a diverse quote)

e con diversi parametri di stabilità (ζ oppure Rg).

Nonostante la diversa base fisica delle due formulazioni, è stato possibile

identificare dei comportamenti comuni, specialmente in condizioni di bassa

stabilità.



Abstract

The objective of this dissertation is to study the structure and behavior

of the Atmospheric Boundary Layer (ABL) in stable conditions. This type

of boundary layer is not completely well understood yet, although it is very

important for many practical uses, from forecast modeling to atmospheric

dispersion of pollutants.

We analyzed data from the SABLES98 experiment (Stable Atmospheric

Boundary Layer Experiment in Spain, 1998), and compared the behaviour

of this data using Monin-Obukhov’s similarity functions for wind speed and

potential temperature.

Analyzing the vertical profiles of various variables, in particular the ther-

mal and momentum fluxes, we identified two main contrasting structures

describing two different states of the SBL, a traditional and an upside-down

boundary layer.

We were able to determine the main features of these two states of the

boundary layer in terms of vertical profiles of potential temperature and

wind speed, turbulent kinetic energy and fluxes, studying the time series and

vertical structure of the atmosphere for two separate nights in the dataset,

taken as case studies.

We also developed an original classification of the SBL, in order to sep-

arate the influence of mesoscale phenomena from turbulent behavior, using

as parameters the wind speed and the gradient Richardson number.

We then compared these two formulations, using the SABLES98 dataset,

verifying their validity for different variables (wind speed and potential tem-

perature, and their difference, at different heights) and with different stability

parameters (ζ or Rg).

Despite these two classifications having completely different physical ori-

gins, we were able to find some common behavior, in particular under weak

stability conditions.



Chapter 1

Introduction

1.1 The Atmosphere

The atmosphere is the thin gaseous layer that surrounds the entirety of the

planet, and it is retained by the gravitational attraction of the Earth itself.

Due to gravity, the atmosphere becomes thinner with increasing altitude

without an abrupt end at any given height. Therefore, it is not possible to

find a definite boundary between the atmosphere and outer space. However,

such a separation is often considered at around 100 km, the height at which

the air becomes too thin to allow aeronautical flight. This altitude is called

“Karman line”, and it was named after Theodore von Karman (1881-1963),

a Hungarian-American engineer and physicist who was active primarily in

the field of aeronautics and astronautics.

The atmospheric stratification describes the structure of the atmosphere,

dividing it into distinct layers, each with specific characteristics such as tem-

perature or composition. The main parameter that defines the separation

between the different layers is the temperature, mainly because the tempera-

ture gradient is a fundamental parameter to define the stability of the atmo-

sphere. Within this classification one can identify four fundamental layers,

called (from the lowest to the highest) Troposphere, Stratosphere, Mesosphere

and Thermosphere, divided by relatively thin layers where the temperature

is almost constant with height called pauses.

11



12 CHAPTER 1. INTRODUCTION

1.1.1 Troposphere

The troposphere is the lowest portion of the Earth’s atmosphere. It contains

approximately 80% of the atmosphere’s mass and 99% of its water vapor and

aerosols. The average depth of the troposphere is between 10-15 km, depend-

ing strongly on latitude and time of year. It is characterized by decreasing

temperature with height, with an average temperature lapse rate of about

6.5 K/km and an elevated ability of vertical mixing between the layers closer

to the ground and the ones above.

It is possible to divide the troposphere into two different layers based on

its interaction with the surface: the lower level is called planetary boundary

layer, while the level on top is called free atmosphere, but we’ll discuss more

about this particular aspect later in the essay.

1.1.2 Stratosphere

The stratosphere is the layer above the so-called tropopause, a thin layer that

separates the troposphere and stratosphere. The pauses are always present

between layers, and are defined by the WMO as those layers at which the

lapse rate decreases to 2 K/km or less, provided that the average lapse rate

between this level and all higher levels within 2 km does not exceed 2 K/km.

Within the stratosphere, vertical mixing is strongly inhibited by the in-

crease of temperature with height caused by the strong absorption of solar

radiation in the ultraviolet region of the spectrum from the ozone, particu-

larly abundant in this layer. In addition to the high concentration of ozone,

there is a very low concentration of water vapor. For this reason, cloud

processes play a much more limited role in removing particles injected by

volcanic eruptions and human activities than they do in the troposphere, so

residence times of particles tend to be correspondingly longer in the strato-

sphere. The temperature maximum caused by the ozone activity is at about

50 km, the height that defines the stratopause, underneath which is concen-

trated approximately 99.9% of the mass of the atmosphere.
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1.1.3 Mesosphere

In the mesosphere, the temperature decreases with height once again, a pro-

cess started because the ozone chemical reactions are much less efficient here,

since density has lowered consistently, and their absorption of radiation is not

enough to counterbalance the emission to space. This in turn generates mod-

erate vertical instability and mixing, which could cause the formation of thin

cloud layers called noctilucent clouds.

1.1.4 Thermosphere

Above the mesopause, at about 80 km of height, the temperature rises again

due to the absorption of solar radiation in association with the dissociation

of diatomic nitrogen and oxygen molecules and the stripping of electrons

from atoms, processes referred to as photodissociation and photoionization.

Temperature in the Earth’s outer thermosphere varies widely in response to

variations in the emission of ultraviolet and x-ray radiation from the sun’s

outer atmosphere.

Of all these different layers, the one where the greatest number of meteoro-

logical phenomena reside, and so the most interesting for what concerns life

on the surface of the Earth, is the troposphere. In particular, in this essay

we will focus our attention on the first and lower part of the troposphere,

because of its peculiar behavior yet to be fully explored and understood, the

planetary boundary layer.
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1.2 Planetary Boundary Layer

As we previously stated, the lower portion of the troposphere is the so-called

planetary boundary layer (PBL) or atmospheric boundary layer (ABL), which

is a strongly turbulent layer immediately affected by the dynamic, thermal

and other interactions with the underlying land/water surface. Human life

and activities develop mainly in this physical space, and in this atmospheric

portion is concentrated the majority of the emissions of pollutants, both

natural and anthropogenic.

The thickness of the boundary layer is quite variable in space and time,

and can range from tens of meters (mainly in the nocturnal hours) to a few

kilometers (when the insulation of the surface is maximum). Normally this

temporal variability has a pronounced diurnal cycle, which shows how the

PBL could be considered as a huge thermal machine that transforms available

solar energy in motion of the air masses [Stull, 1988]. It is possible to see a

schematic evolution of the boundary layer in the following picture (Fig. 1.1).

Turbulence and static stability act together to tightly insert a strong

stable layer (called a capping inversion) between the boundary layer below

and the rest of the troposphere above (called the free atmosphere). This

stable layer traps turbulence, pollutants, and moisture below it and prevents

most of the surface friction from being felt by the free atmosphere.

The boundary layer is said to be unstable whenever the surface is warmer

than the air, such as during a sunny day with light winds over land, or when

cold air is advected over a warmer water surface. This boundary layer is in

a state of free convection, with vigorous thermal updrafts and downdrafts,

which is the reason why it’s called Convective Boundary Layer (CBL). In

this layer, turbulence is generated by the heat flux at the surface, causing the

virtual temperature profile to be unstable (over-adiabatic) in the vicinity of

the surface, and almost adiabatic in the middle region, well mixed. Similarly,

the gradient of the wind (wind shear) is weak in the middle portion and can

be greater at the lower or higher layers, where it can cause instabilities and

turbulence.

The boundary layer is said to be stable (Stable Boundary Layer - SBL)
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Figure 1.1: Idealized time evolution of the atmospheric boundary layer [Stull,
1988].

when the surface is colder than the air, such as during a clear night over land,

or when warm air is advected over colder water. The turbulence is generated

by the wind shear, and it is attenuated by the stable stratification. In strong

stable conditions, and in absence of shear, the turbulence can disappear or

act intermittently. Usually the wind presents great vertical velocity gradients

that at lower levels can create local maximum of velocity (called Low Level

Jet - LLJ), which determine the partial decoupling between the atmosphere

and the ground (Banta et al. [2007], Banta [2008]).

The boundary layer approaches neutrality when the thermal exchanges

between air and surface are minimal. This can be accomplished when the

air masses are in thermal equilibrium with the surface (for example over the

sea), or when the exchange due to turbulence is elevated.

Turbulent communication between the surface and the air is quite rapid,

allowing the air to quickly take on characteristics of the underlying surface.

In fact, one definition of the boundary layer is that portion of the lower

atmosphere that feels the effects of the underlying surface within about 30

minutes or less.

“Turbulence is inspiringly complex, consisting of a superposition of swirls called

eddies that interact non-linearly to create quasi-random, chaotic motions. An

infinite number of equations is required to fully describe these motions. Hence, a

complete solution has not been found.” -Wallace and Hobbs [2006]
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1.3 Static Stability

Consider a layer of the atmosphere in which the actual temperature lapse

rate is Γ with temperature T ′ and density ρ′. If a parcel of unsaturated

air with temperature T and density ρ is displaced across this layer without

any exchange of mass or energy (adiabatic motion, defined by a temperature

lapse rate Γd = 9.8K/km), and supposing that the movement is slow enough

to guarantee the pressure of the parcel adjusts immediately to the pressure of

the environment, the parcel will find itself in an environment with a different

temperature, higher or lower depending on the lapse rate Γ.

Therefore, on this parcel acts a force per unit volume calculated by the

well-known Archimedes principle, that is:

F = g · (ρ− ρ′)→ d2z

dt2
= g ·

(
ρ− ρ′

ρ

)
(1.1)

where z is the height of the air parcel. Using the gas equation (P = RdρT ),

the densities of the air parcel and the ambient air are inversely proportional

to their temperatures, leading to:

d2z

dt2
= g ·

(
T ′ − T
T

)
= g ·

(
θ′ − θ
θ

)
(1.2)

where, for the last passage, we used the definition of potential temperature

and that the pressure of the environment and the parcel are constantly equal.

Let z = z0 be the equilibrium level of the air parcel and z′ = z−z0 be the

vertical displacement of the air parcel from its equilibrium level, and let T0 be

the environmental air temperature at z = z0. If the air parcel is adiabatically

lifted through a distance z′ from its equilibrium level, its temperature will

then be T ′ = T0 − Γd · z′, therefore T ′ − T = −(Γd − Γ)z′. Substituting this

last expression into the equation of the motion, we obtain:

d2z′

dt2
= − g

T
(Γd − Γ) z′ (1.3)

which could be rewritten using the definition of the Brunt-Vaisala frequency

N2 = g
T

(Γd − Γ) as a second order differential equation in the form of:
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d2z′

dt2
= −N2z′ (1.4)

This equation can be solved depending on the sign of the constant −N2,

which depends only over the sign of the difference between the environment

and the adiabatic lapse rates Γd and Γ.

• If Γd > Γ, or in terms of potential temperature if dθ
dz
> 0, the Brunt-

Vaisala frequency is positive, the differential equation solution is a

buoyancy oscillation, which means the PBL is statically stable.

• If Γd < Γ, or in terms of potential temperature if dθ
dz
< 0, the Brunt-

Vaisala frequency is negative, the differential equation leads to an un-

stable situation where the solution is diverging per every displacement

of the parcel of air.

• If Γd = Γ, or in terms of potential temperature if dθ
dz

= 0, the Brunt-

Vaisala frequency is also zero, leading to the trivial solution of uniform

motion after the parcel displacement (condition of static neutrality).

Because these concepts of the stability of the atmosphere are not sufficient

to portray the behavior of the planetary boundary layer, we need to describe

another very important aspect that represents the PBL: the atmospheric

turbulence.
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1.4 Turbulence and Turbulent Motion

The motion of a viscous fluid can be classified in two different ways: laminar

and turbulent.

A laminar motion is ordinate, where adjacent layers of fluid flow on top

of each other with a very small mixing and with an exchange of properties

merely at molecular scale. In a laminar motion, the fields associated to the

fluid (such as temperature, velocity and concentration) are highly regular

and can vary only slowly in time and space. An interesting aspect of a

laminar motion is its behavior in the proximity of a rigid boundary due to its

intrinsic viscosity. In fact, the particles of the fluid stick to the solid surface

with which they are in direct contact, causing no relative motion between

the latter and the fluid, an effect called “no-slip condition”.

The analysis of the velocity profile of such a fluid shows that this condition

illustrates that the velocity is null by the surface and raises until it reaches an

equilibrium value far away from said surface. Therefore there can be found

a layer with a depth of h where the motion is disturbed by the surface called

boundary layer.

This is indeed an ideal case that can however be recreated with highly

viscous fluids in slow motion over a very smooth surface. In reality, when

the surface is rough, the velocity greater and the viscosity lower, the motion

shows a dramatically different face, with many irregularities both in space

and time. In this frame of reference, the most important parameters that

characterize the fluid are the velocity U , the depth of the boundary layer h

and the kinematic viscosity ν.

Reynolds introduced a proxy to determine the different flow regimes using

precisely these parameters, called the Reynolds number, that gives a measure

of the ratio of the inertial forces to the viscous forces of a given flow:

Re =
Uh

ν
(1.5)

Varying the values of the parameters, namely varying the value of the

Reynolds number, one can recognize three different regimes (Sozzi et al.

[2002]):
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• for low Reynolds numbers (of the order of 101−102), the motion of the

fluid is very regular, showing a laminar behavior.

• Above this critical value, which can vary depending over many factors

like the roughness of the surface or its geometry, but always of the

order of 103, the fluid starts showing the first signs of turbulence, with

two-dimensional instabilities that can become three-dimensional with

increasing Reynolds numbers.

• At high Reynolds numbers, these three-dimensional random distur-

bances rise in number, frequency, intensity; they mix together and

break apart, until they affect all the fluid in the boundary layer. The

motion of the fluid is now very different from its original state: a mo-

tion that resembles a laminar flow can be still identified, but with a

superimposed component of more or less intense disturbances, that can

be described as quasi-random, chaotic, or turbulent.

It is quite challenging trying to give a specific definition of turbulence,

however, it is possible to define it through some of its main characteristics

and properties (Sozzi et al. [2002]):

1. Irregularity: The most evident feature in a turbulent fluid its the

extreme irregularity in its main variable’s fields. These irregularities

resemble those of a stochastic phenomena, suggesting a statistical ap-

proach to describe it.

2. High Reynolds numbers: Turbulence is generated only at high

Reynolds numbers, meaning that the inertial forces (which act towards

the destabilization of the motion of the fluid) prevail over the viscous

forces (which instead regulate the motion).

3. Diffusivity: The irregularities of a turbulent fluid determine a quick

mixing of the different portions that compose the fluid, acting to in-

crease the transfer of mass, momentum, and heat.
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4. Dissipation: the viscous forces generate deformation work on the

fluid, which increase the internal energy of the latter at the expense

of its kinetic energy. Therefore, in order to maintain a turbulent mo-

tion, a constant input of energy is required.

5. Continuity: The turbulence is not a microscopic phenomena, but

macroscopic, therefore it is governed by the laws of fluid mechanics.

This statement might seem to conflict with the first one listed, however,

it does not. It is possible to create a theoretical apparatus using the

laws of fluid mechanics, nevertheless the presence of non-linear effects

within it can explain the chaotic behavior of the turbulence and show

that this construct is not able to produce a complete model.

For what concerns the planetary boundary layer, using the typical values

for vertical extension (of the order of 103 m) and wind speed (about 5 −
10m/s), the approximate value of the Reynolds number is around 108− 109,

implying a very turbulent motion. This aspect it’s noticeable in field obser-

vations, like in Fig. 1.2, which represents the temporal evolution of the wind

components. The extreme irregularity that can be seen is the fingerprint of

the turbulence itself. Bearing in mind the idea of a stochastic description,

Reynolds advanced the hypothesis of separating the motion in two compo-

nents: an average motion, essentially deterministic, and a turbulent set of

fluctuations of stochastic nature.

Following Reynolds’ hypothesis, a generic variable U in a determined

point in space and time could be expressed by the following relation:

U(x, t) = U(x, t) + u′(x, t) (1.6)

where U is the average value, x is a generic point is space, and u′ is the

turbulent fluctuation. Reynolds also defined a set of conditions that this

variables have to follow:
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Figure 1.2: Time series of the three components of the wind speed in the
surface layer, from Trombetti and Tagliazucca [1994].

U + V = U + V , (1.7a)

aU = aU, a = const. (1.7b)

a = a, (1.7c)

∂U

∂xi
=
∂U

∂xi
, xi = {x, y, z, t} (1.7d)

U · V = U · V (1.7e)

From these rules, and remembering that the mean value of a fluctuation

is always zero, the mean value of the product of two variables A and B can

be easily determined:
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(A ·B) = (A+ a′) · (B + b′)

= (A ·B + A · b′ + a′ ·B + a′ · b′)

= (A ·B) + (A · b′) + (a′ ·B) + (a′ · b′)

= (A ·B) + (A · b′) + (a′ ·B) + (a′ · b′)

= A ·B + a′ · b′

(1.8)

In reality, what we usually measure is not the continuous time evolution

of a meteorological variable U , but only a discretization of the real behavior

through a set of points separated by a time interval ∆t, depending on the

sampling frequency. So, the time average between two instants t1 and t2 =

t1 +N ·∆t is given by

U =
1

N

N∑
i=1

Ui (1.9)

that represents a good estimator of the true average value if the number of

samples is sufficiently elevated. In order to measure the dispersion of the data

from the average, we need to introduce the variance, and a good estimator

is going to be:

σ2
u =

1

N − 1

N∑
i=1

(Ui − U)2 (1.10)

that can be re-written using Eq. 1.6, becoming:

σ2
u =

1

N − 1

N∑
i=1

(u′)2 = u′2 (1.11)

It is also very useful to know how much two meteorological quantities A

and B that evolve in time are correlated to each other. One of the best tools

to determine this is the covariance, defined by:

Cov(A,B) =
1

N

N∑
i=1

[(
Ai − A

)
·
(
Bi −B

)]
=

1

N

N∑
i=1

a′b′ = a′b′ (1.12)
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This statistical approach is very powerful because it allows us to relate

the velocity variances to the kinetic energy associated with the motion of the

turbulence. Similarly the covariance is a measure of the flux caused by these

motions.

1.4.1 Turbulent Kinetic Energy

The classical formulation for the specific kinetic energy (per unit mass) of a

moving object with mass m and velocity v is:

KE

m
=

1

2
v2 (1.13)

By extension, we can define the mean kinetic energy of an air parcel

using the three components of its velocity, and using Reynolds’ hypothesis

(Eq. 1.6) we obtain:

KE

m
=

1

2
(u2 + v2 + w2)

=
1

2

[(
u2 + v2 + w2

)
+
(
u′2 + v′2 + w′2

)]
= MKE + TKE

(1.14)

where we defined the first term of the sum Mean Kinetic Energy (MKE),

which describes the kinetic energy of the mean flow, and the second term is

the Turbulent Kinetic Energy (TKE), that is the kinetic energy generated by

the turbulence itself. With this formulation, we see that for a laminar flow,

which contains no microscale motions, the TKE will be zero.

1.4.2 Turbulent Fluxes

The motion of the air masses in the planetary boundary layer implies that in

a generic point P (x, y, z, t) will develop fluxes of momentum, heat and other

variables. It is possible to see that these fluxes are related to the covariances

of some of the variables of interest.

For example, in the case of the heat, the flux in the direction ı̂ is:
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Qi = ρCp · T · ui

where ρ is the air density, Cp is the specific heat at constant pressure, T

the temperature and ui = (u, v, w) the wind speed in the ı̂ direction . This

quantity is going to have the same stochastic behavior of the three wind

components and the temperature, so we need to calculate the mean flux over

a time interval τ :

Qi =
ρCp
τ

∫ t1+τ

t1

ui(t) · T (t)dt = ρCp · ui(t) · T (t) (1.15)

Using Reynolds’ hypothesis and in particular Eq. 1.8, we can find that

the mean flux is composed by two parts:

Qi = ρCpui · T + ρCpu′i · T ′ = Qi kin +Qi turb (1.16)

where we defined Qi kin as the kinematic heat flux due to the transport of heat

done by the mean motion of the air masses and the Qi turb as the turbulent

heat flux caused by the turbulent motions. It is worth noting that, even in

absence of a mean motion of the fluid, the sole turbulence is able to transfer

heat.

Similar considerations could be done for the flux of momentum, made

slightly more complicated by the fact that the momentum is a vectorial vari-

able, not scalar as is the temperature. In fact, it can be easily demonstrated

that the mean flux of momentum is a 3x3 tensor, which can be expressed like

this:

Fp = ρ ·

∣∣∣∣∣∣∣
U · U V · U W · U
U · V V · V W · V
U ·W V ·W W ·W

∣∣∣∣∣∣∣+ ρ ·

∣∣∣∣∣∣∣
u′u′ v′u′ w′u′

u′v′ v′v′ w′v′

u′w′ v′w′ w′w′

∣∣∣∣∣∣∣ (1.17)

As for the mean heat flux in Eq. 1.16, we can recognize that the first

addend represent the Kinematic Flux of Momentum, while the second is the

Turbulent Flux. We can now see how covariances can be interpreted as fluxes
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Figure 1.3: Illustration of how to anticipate the sign of turbulent heat flux
for small-eddy (local) vertical mixing across a region with a linear gradient
in the mean potential temperature (from Wallace and Hobbs [2006]).

using the following concept. Consider a portion of the atmosphere with a

constant gradient of potential temperature as sketched in Fig. 1.3. Consider

an idealized eddy circulation consisting of an updraft portion that moves

an air parcel from the bottom to the top of the layer and a compensating

downdraft that moves a different air parcel downward. The moving parcels

carry with them air from their starting points, which preserves its potential

temperature as it moves. We can see that as the parcels move up (w′ > 0) or

down (w′ < 0), depending on the vertical gradient of potential temperature,

they will end up in a portion of atmosphere hotter (θ′ < 0) or colder (θ′ > 0),

which determines the sign of the product w′·θ′. Thus, positive w′θ′ covariance

is associated with warm air moving up and/or cold air moving down, namely a

positive heat flux, and negative covariance is associated with cold air moving

up and/or warm air moving down, namely negative heat flux.

The same considerations can be done for every component of the flux

of momentum (e.g. u′w′). In a normal situation, where the wind increases

with height, a positive vertical displacement of the parcel (w′ > 0) will cause

a negative difference in the horizontal velocity (u′ < 0), and vice versa,

therefore the horizontal turbulent flux of momentum is always negative.
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1.5 Equations and Closure Problem

1.5.1 Equations for the istantaneous quantities

Theoretically, in order to describe a mathematical model of the planetary

boundary layer, it is reasonable to find the equations for the istantaneous

variables. In other words, ignore the stochastic nature of these variables and

focus the attention on the physical relations that describe and relate them

in space and time.

In the following sections, we will consider every variables composed by

different terms. For example, the density and the potential temperature can

be written as:

ρf = ρ00 + ρ0(z)︸ ︷︷ ︸
ρa

+ ρ(x, t) + ρ′(x, t)︸ ︷︷ ︸
ρ

θf = θ00 + θ0(z)︸ ︷︷ ︸
θa

+ θ(x, t) + θ′(x, t)︸ ︷︷ ︸
θ

where (ρa, θa) are the values of the variable in hydrostatic condition (the first

term is the reference value while the second is the variation over the height),

and (ρ, θ) represent the dynamical variation of the variables, divided in

average and turbulent terms (Tampieri [2010]).

Continuity Equation

Let’s consider a parcel of air of volume V , enclosed by a lateral surface Σ

(the vector normal to this surface is dΣ), with density ρ and crossed by a

wind whose components are u, v and w.

The variation of mass of the parcel depends only by the outgoing flux

from the surface Σ, so the equation of the conservation of the mass is:

− ∂

∂t

∫∫∫
V

ρf dV =

∫∫
Σ

(ρfv) · dΣ (1.18)

Supposing that the volume V doesn’t change in time, using Gauss theorem

and considering that the continuity equation must be valid for every volume
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V , the equation can be re-written as:

∂ρf
∂t

+∇(ρfv) = 0 (1.19)

Remembering that the divergence of a vector is ∇v = ∂uj/∂xj and the

definition of total derivative is d/dt = ∂/∂t + uj∂/∂xj, the Eq. 1.19 can be

transformed in:

d ρf
d t

+ ρf
∂uj
∂xj

= 0 (1.20)

Considering that the air is in very good approximation an incompressible

fluid, the first term of Eq. 1.20 is neglectable in respect to the second term

( dρf/dt << ρf∂uj/∂xj ), so the continuity equation can be written as:

∂uj
∂xj

= 0 (1.21)

It is worth noting that when the approximation of incompressibility is

valid, this relation turns into a diagnostic equation, non-time-dependent,

meaning that the wind components have to always respect this condition

during the entirety of the motion.

Conservation of a scalar

The equation for the conservation of a scalar quantity ς, such as the concen-

tration of a chemical species or the potential temperature, can be obtained

similarly to the continuity equation. The kinematic equation for the conser-

vation of a quantity ς is:

∂ς

∂t
= −∂Fi

∂xi

where Fi is the flux of ς, that can be expressed with Fick’s law through the

coefficient of molecular diffusivity specific for the considered variable κς :

Fi = uiς − κς
∂ς

∂xi

Combining these two equations, a general expression for the conservation
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of a scalar can be found, which can be written as follows:

∂ς

∂t
+ uj

∂ς

∂xj
= κς

∂2ς

∂xjxj
(1.22)

Therefore, in the case of the potential temperature, the appropriate con-

stant is the thermic diffusivity χ, and the equation becomes:

∂θ

∂t
+ uj

∂θ

∂xj
= χ

∂2θ

∂xjxj
(1.23)

Navier-Stokes equations

The Navier-Stokes equations (named after Claude-Louis Navier (1785-1836)

and Sir George Stokes (1819-1903)) describe the motion of a fluid and arise

from applying Newton’s second law to the fluid.

Considering, as in the case of the continuity equation, a parcel of air of

volume V enclosed by a lateral surface Σ, the time variation of momentum

depends on the combined action of volume forces (acting on the entirety of

the volume of the parcel) and superficial forces (acting on the surface of

the parcel, representing the interaction with the air surrounding the parcel).

This can be formalized with the following relation for a generic direction ı̂:∫∫∫
V

ρf
dui
dt

dV︸ ︷︷ ︸
Variation of Momentum

in the volume V

=

∫∫
Σ

Ti · dΣ︸ ︷︷ ︸
SurfaceForces

+

∫∫∫
V

ρfGi dV︸ ︷︷ ︸
V olumeForces

(1.24)

where Gi is the i-th component of the external force G that acts on the whole

volume, and Ti is a surface force (dependent on the fluid velocity) acting in

the direction ı̂.

Applying the Gauss theorem, it is possible to reformulate this equation

like this:

ρf
dui
dt

= ∇Ti + ρfGi (1.25)

where all the vectors Ti represent the stress tensor, which describes the stress

on the particles caused by the interaction with the fluid all around the parcel.
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After expressing all the forces analytically, the Navier-Stokes equation

can be written as follows:

∂ui
∂t

+ uj
∂ui
∂xj

= −δi3g︸ ︷︷ ︸
(a)

+ εij3 fuj︸ ︷︷ ︸
(b)

− 1

ρf

∂pf
∂xi︸ ︷︷ ︸
(c)

+ ν
∂2ui
∂x2

j︸ ︷︷ ︸
(d)

(1.26)

The left-hand side of the equation is the total derivative (lagrangian) of

the wind velocity component ui, while the right-hand side terms are:

• (a): gravitational term, limited only to the third component;

• (b): Coriolis effect, describing the effect of the rotation of the Earth

on the fluid;

• (c): pressure term, describes the forces linked to the pressure gradient;

• (d): viscous term, describes the influence of the viscous stress.

If we consider an homogeneous and in-quiet fluid, the Navies-Stokes equa-

tion represent the hydrostatic equation, that can be simplified as:

0 =
1

ρa

∂pa
∂xi

+ δi3g (1.27)

where pa is the hydrostatic pressure (for a fluid in quite) and ρa the corre-

spondent density.

Subtracting the hydrostatic equation to the Navier-Stokes equation (Eqs.1.26

and 1.27), we can finally write the equation for the dynamical part of the

atmosphere:

∂ui
∂t

+ uj
∂ui
∂xj

= −δi3g + f εij3 uj −
1

ρ00

∂p

∂xi
+ ν

∂2ui
∂x2

j

(1.28)

1.5.2 Equation for the first moments

Using the Reynolds’ hypothesis on the Navier-Stokes equations (Eq. 1.28)

and applying the average operator on the result, it is possible to derive the
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equation for the mean of the velocities components (from now on the Coriolis

term will be neglected). This equation is called Reynolds equation, and reads:

∂

∂t
ui + uj

∂ui
∂xj

= − 1

ρ00

∂p

∂xi
+ ν

∂2ui
∂xj∂xj

− δi3
g

ρ00

ρ− ∂

∂xj
u′iu
′
j (1.29)

Using the same methodology as for the previous equation, but on Eq.

1.23, the conservation of the potential temperature can be expressed as:

∂θ

∂t
+ uj

∂θ

∂xj
= χ

∂2θ

∂xjxj
− ∂

∂xj
u′jθ
′ (1.30)

We can thus see that, as a consequence of the Reynolds’ hypothesis and

the averaging process, it has been introduced in each of the previous equations

a new term of the second order. This causes the set of equations to be not

closed, because we would always need an additional term of an high order to

solve any of the equations.

1.5.3 Equation for the second moments

As seen in the previous section, all the first order equations contain a term

of the second order, so we need to find an expression for those as well. After

a series of long but straightforward calculations, we can write the equation

for the second moments of the momentum:

∂u′iu
′
k

∂t
+ uj

∂u′iu
′
k

∂xj
=−

(
u′iu
′
j

∂uk
∂xj

+ u′ku
′
j

∂ui
∂xj

)
−
∂u′iu

′
ju
′
k

∂xj

− g

ρ00

(
δk3u′iρ

′ + δi3u′kρ
′
)

− 1

ρ00

(
u′k
∂p′

∂xi
+ u′i

∂p′

∂xk

)
+ ν

∂2u′iu
′
k

∂xj∂xj
− 2ν

∂u′i
∂xj

∂u′k
∂xj

(1.31)
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The meaning of the different terms is:

• The first term is the product of the covariances of the wind components

fluctuations (in other terms, the flux of momentum as we demonstrated

in Section 1.4.2) and the gradient of the mean wind components, and

it represents the production of momentum from the mean shear of the

wind.

• The second term is a third order moment, and it represents the trans-

port of momentum due to the turbulence.

• The third term is the coupling between the fluctuations of density and

velocity and represents the creation/removal of momentum due to the

turbulence.

• The fourth term is also a third order moment (because the pressure

scales on the square of the velocity), and it represents the transport of

momentum.

• The fifth term is composed by the molecular diffusion of the second

order moment u′iu
′
k and the correlation between the gradients of the

velocity fluctuations. Considering the turbulence at small scale homo-

geneous and isotropic, in the latter term the components of the product

with i 6= k disappear, so we can approximate this term to:

ε = ν

(
∂u′i
∂xj

)2

which is a (always positive) term, representing the molecular destruc-

tion of momentum due to the viscosity of the fluid.

Using Eq. 1.31 with the condition i = k, we can find an expression for

the evolution of the Turbulent Kinetic Energy, which we defined in Section

1.4.1 as TKE = 1/2u′iu
′
i, and the equation reads:
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d(TKE)

dt
=− u′iu′j

∂ui
∂xj
− 1

ρ00

∂p′u′j
∂xj

− 1

2

∂u′iu
′
iu
′
j

∂xj

− g

ρ00

δi3ρ′u′i − ν
∂2(TKE)

∂xj∂xj
− ε

(1.32)

In this equation the term −u′iu′j ∂ui∂xj
is the mechanical generation of tur-

bulence due to wind shear, while the fourth term g
ρ00
δi3ρ′u′i is the buoyant

production or destruction of turbulence due to heat fluxes. The other terms

are either transport of turbulence (second and third terms) or viscous dissi-

pation of turbulence.

The balance between the terms of generation and consumption of turbu-

lence tells us if TKE is been produced or dissipated, and the ratio of these

two terms defines the dimensionless flux Richardson number Rf , which can

be written:

Rf =

g
ρ00
ρ′w′

u′iu
′
j
∂ui
∂xj

=

g
θ00
w′θ′

u′iu
′
j
∂ui
∂xj

(1.33)

Similarly to the case of the momentum, the equation for the variance of

a scalar can be derived (in this case, the potential temperature θ):

∂θ′2

∂t
+ uj

∂θ′2

∂xj
= −2u′iθ

′ ∂θ

∂xi
− ∂u′iθ

′2

∂xi
+ χθ′

∂2θ′

∂xi∂xi
(1.34)

As we saw, the correlation between the velocity and the temperature can

be associated to the (cinematic) heat flux u′iθ
′. In particular, the equation

for the vertical flux (i = 3→ ui = w) is:

∂w′θ′

∂t
+ uj

w′θ′

∂xj
= −u′jw′

∂θ

∂xj
+

g

θ00

θ′2 −
∂w′u′jθ

′

∂xj
− 1

ρ00

θ′
∂p′

∂z
(1.35)

In all the previous equations we can see that there is at least a term of

the third order, proving once again that, using the Reynolds’ hypothesis, this

set of equations is not closed.
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1.5.4 Closure problem

We saw that if we try to describe any equation of the generic n-th order,

due to the non-linearity of the fluid-dynamics’ equations, we must introduce

a term of the (n+1)-th order. Mathematically speaking, this means the

equations are not closed, we always need an infinite amount of equations to

describe the turbulence.

To mitigate this difficulty, we can make closure assumptions. Namely, we

can retain a finite number of equations and then approximate the remaining

unknowns as a function of the knowns. The resulting parameterization will

not give a perfect answer, but it will give an approximate answer that often

is good enough.

One can categorize the turbulence closure assumptions with their sta-

tistical order, named after the highest order forecast equation retained. A

common, local first-order closure is called eddy diffusivity theory or K-theory,

which assumes (similarly to molecular diffusion) that the flux is linearly pro-

portional to and directed down the local gradient, so in the case of heat and

momentum fluxes:

w′θ′ = −Kh
∂θ

∂z
(1.36)

u′w′ = −Km
∂u

∂z
(1.37)

where the eddy diffusivities, Km and Kh, are used instead of the molecular

diffusivity. The closure in Eq. 1.36 is a local closure in the sense that the

heat flux at any altitude depends on the local flux at that same altitude.

Namely, it implicitly assumes that only small-size eddies exist.



34 CHAPTER 1. INTRODUCTION

1.6 Similarity Theory

The experimental observations of the meteorological quantities that describe

the PBL often show repeatable characteristics, suggesting the possibility of

developing semi-empiric relationships between them. This is obviously very

important, because of all the different closure models that always require

new connections between different variables.

This hypothesis has had a very unexpected success, introducing the idea

of finding a totally semi-empiric description of the PBL, but valid (at least

in first approximation) in most cases.

In theory, there are an infinite number of subjective ways in which to find

diagnostic semi-empiric relationships (only describing the spatial evolution,

not the time evolution). In this regard, an objective and rigorous method-

ology has been developed, based on dimensional analysis, called similarity

theory. This theory is based on the Π -Theorem or Buckingham Theorem,

which allows the organization of different variables in a logical and unique

way (Sozzi et al. [2002]).

The similarity analysis is based on four separate steps:

• Selection of the variables that are considered important

• Organization of these variables in adimensional groups

• Execution of experiments, or data analysis of previously made experi-

ments, in order to determine the value of these non-dimensional groups

• Determination of analytic relations in order to quantitatively describe

the connections between the groups

The entire theoretical construct is based on the dynamical similarity con-

cept, which states that two fluids are dynamically similar if it is possible

to describe one knowing the experimental characteristic of the other. The

procedure described above tends to collapse similar situations in a more gen-

eralized and universal one, identifying which adimensional groups of variables

define it.
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1.6.1 The Buckinghan Theorem

In 1914, Buckingham proposed a systematic approach in order to analyze

experimental measurements, consisting in a series of steps here illustrated.

Step 1:

Identify all the fundamental variables of interest and their dimensions.

This is a very delicate step that requires a careful theoretical and ex-

perimental knowledge of the problem.

Step 2:

Identify a subset of the fundamental variables (the key variables), which

must satisfy the following restrictions:

• the number of key variables must be equal to the number of the

fundamental variables;

• all the dimensions found for the fundamental variables must be

present in the key variables subset;

• it must be impossible to create non-dimensional variables combin-

ing the key variables.

Step 3:

Write the equations for the non-key variables (NKi) expressed in func-

tion of the key variables (Ki) in the form of the product of powers of

the key variables, i.e.:

[NK1] = [K1]a1 [K2]b1 . . . [Ki]
n1

[NK2] = [K1]a2 [K2]b2 . . . [Ki]
n2

...

[NKm] = [K1]am [K2]bm . . . [Ki]
nm

(1.38)

Find the correct values for the exponents so that the previous equations

are verified.

Step 4:

Take the ratio between the LHS and the RHS of each equation, ob-
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taining non-dimensional groups (Π). The number of non-dimensional

groups will always be the number of the fundamental variables minus

the numbers of the key variables, hence reducing the number of inde-

pendent variables.

It is possible to introduce different non-dimensional groups combining

the existing one, keeping in mind that:

• The number of variables cannot change;

• All the key variables must be present;

• The groups must be independent.

After this analysis, the result is that we can expect to find semi-empiric

relationships between these non-dimensional groups, which can be found ex-

perimentally.

1.6.2 The Monin-Obukhov Similarity Theory (MOST)

A very important application of the similarity theory is in the Surface Layer,

that is the lowest layer of the PBL where the fluxes can be considered con-

stant (i.e. they vary less than 10%). Considering spatially homogeneous and

stationary conditions and orientating the frame of reference with the wind

streamline, we are interested in investigating the possibility of describing in

universal terms the vertical profile of the main variables that describe the

turbulence (i.e. wind shear du
dz

, thermal stratification dθ
dz

, etc. ).

Following the steps of the Buckingham Theorem, Monin and Obukhov

[1954] used as fundamental variables:

• z: the height inside the Surface Layer;

• u∗ = (u′w′
2

+ v′w′
2
)
1
4 : friction velocity : indicator of shear turbulence

• w′θ′ = u∗θ∗: indicator of thermal turbulence (θ∗ temperature scale);

• β = g
θ0

: buoyancy parameter;

• f : generic variable of which we are interested in its vertical profile.
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Amongst all these variables, it is possible to define two different non-

dimensional groups, the first is a scale length ζ = z
LMO

, where LMO is the

Monin-Obukhov length defined as:

LMO = − u3
∗

κg
θ00
w′θ′

(1.39)

and the second variable is f
f0

, where f0 has the same dimensions of f and

is defined using the other fundamental variables. This variable depends on

the ratio between the shear (mechanical) and thermal turbulence, therefore

it can be used as a stability discriminant. In fact, considering what has been

said in Section 1.4.2, while u∗ > 0, w′θ′ depends on stability, therefore if

positive we are in a convective situation (LMO < 0), otherwise we are in a

stable situation (LMO > 0).

The absolute value of LMO can be taken as the height where there is

balance between the turbulent fluxes of heat and momentum. In other words,

for z < |LMO| → | z
LMO
| < 1 the shear turbulence predominates the PBL,

while for z > |LMO| → | z
LMO
| > 1 the thermal turbulence prevails.

From these observations, the Monin-Obukhov similarity theory states

that, in general, it is possible to find (for every variable f that describes the

turbulence in the surface layer) only one universal vertical profile, expressed

by the following relation:

f

f0

= Ff (ζ)⇒ f = f0 · Ff (ζ) (1.40)

where Ff (ζ) is the universal similarity function for the variable f. Of course,

the dimensional analysis does not provide the form of these universal func-

tions; that can be found only through experiments.
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1.6.3 Similarity Functions for the wind Shear and Pro-

file

If we consider the wind shear du
dz

, it is easy to define the variable f0 as u∗
κz

.

Therefore, we can write equation (1.40) as:

du

dz
=
u∗
κz
φm(ζ) (1.41)

where φm(ζ) is the universal similarity function for the wind shear.

Integrating the previous equation (between z0m and z), one can obtain

the function for the wind profile, expressed by the following equation:

u(z) =
u∗
κ

∫ z

z0m

φ(ζ)

z
dz (1.42)

which can be written in this form:

u(z) =
u∗
κ

[
ln

(
z

z0m

)
−Ψm(ζ, ζ0m)

]
=
u∗
κ

Υm(ζ, ζ0m) (1.43)

where ζ = z
LMO

and ζ0m = z0m
LMO

and

Ψm(ζ) =

∫ ζ

ζ0m

[1− φm(ζ)] · dζ
ζ

(1.44)

Eq. 1.43 is the universal similarity function for the wind profile, and

Ψm(ζ) is called the universal relative similarity function.

The analytical form of the universal similarity functions φm and Ψm has

been determined by numerous field campaigns and experiments.

1.6.4 Similarity Functions for the Temperature Gradi-

ent and Profile

Similar consideration can be done regarding the potential temperature gra-

dient dθ
dz

, hence in this case Eq. 1.40 can be written as:

dθ

dz
= − θ∗

κz
φh(ζ) (1.45)
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where φh(ζ) is the universal similarity function for the temperature gradient.

Again, the previous equation can be integrated (between the limit z0h and

z), and the final form is:

θ(z)− θ(z0h) = −θ∗
κ

[
ln

(
z

z0h

)
−Ψh(ζ)

]
= −θ∗

κ
Υh(ζ, ζ0) (1.46)

Eq. 1.46 is the universal similarity function for the mean potential tem-

perature and Ψh(ζ) is the universal relative similarity function.

Again, the analytical form of the universal similarity functions φh and

Ψh has been determined by numerous field campaigns and experiments.

1.6.5 Richardson Numbers

We already defined in Section 1.5.3 the flux Richardson number. Combining

the definitions of Rf (Eq. 1.33), of the friction velocity u∗, and the similarity

function for the wind shear (Eq. 1.41), we can see that:

Rf =

g
θ00
w′θ′

u′w′ du
dz

=

g
θ00
w′θ′

(−u2
∗)
u∗
κz
φm(ζ)

= ζφ−1
m (ζ) (1.47)

which allows us to take the Richardson number as a stability parameter.

Considering that sometimes the measurements of the fluxes can be diffi-

cult, it is possible to consider instead the gradient of temperature and wind

speed, easier to obtain in a field experiment. In order to achieve this, it is pos-

sible to use the flux-gradient relationships defined in Chapter 1.5.4 directly

in the definition of Rf :

Rf =
g

θ00

w′θ′

u′w′ du
dz

=
g

θ00

Kh
∂θ
∂z

Km

(
∂u
∂z

)2

from which it is possible to define the gradient Richardson number as:

Rg =
g

θ00

∂θ
∂z(
∂u
∂z

)2 (1.48)
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Using the similarity functions for the wind shear (Eq. 1.41) and the

temperature gradient (Eq. 1.45), we can write another formulation of Rg

which depends on the stability:

Rg =
g

θ00

∂θ
∂z(
∂u
∂z

)2 =
g

θ00

− θ∗
κz
φh(ζ)(

u2∗
κz

)2

φ2
m(ζ)

= ζ
φh(ζ)

φ2
m(ζ)

(1.49)

It is also possible to evaluate the Richardson number if there are only

discretized measurements of wind and temperature (temperature at z1, z2

and wind at z3, z4). In this case it is called bulk Richardson number, and we

can replace the wind and temperature gradients with finite differences (e.g.
du
dz

= ∆u
∆z

) to obtain:

Rb =
g

θ00

θ(z1)− θ(z2)

[u(z3)− u(z4)]2
· (z3 − z4)2

z1 − z2

Using the similarity functions for the profiles (Eqs. 1.43 and 1.46), we

can write a stability dependent formulation for Rb:

Rb =
1

LMO

∆z2
m

∆zh

Υh(ζ, ζ0h)

Υ2
m(ζ, ζ0m)

(1.50)



Chapter 2

Data Analysis

2.1 Origin of the data: SABLES98

The entirety of the data used in this work originated from a campaign ex-

periment called Stable Atmospheric Boundary Layer Experiment in Spain

(henceforth SABLES98). This experiment took place at the Research Cen-

tre for the Lower Atmosphere (CIBA) over the northern Spanish plateau (the

Torozos plateau), in the period 10-28 September 1998. This center belongs to

the University of Valladolid and the Spanish Meteorological Institute (INM),

and has been previously used for a number of experiments related to research

on the atmospheric boundary layer (Cuxart et al. [2000]). The purpose of

the experiment was to study the characteristic of the Stable Boundary Layer

in mid-latitudes in fairly-flat and homogeneous conditions. It is possible to

see a schematic representation of the position of the CIBA site in Fig. 2.1,

and a schematic cross section of the Torozos plateau in Fig. 2.2.

Even though the campaign took place over a period of 18 days, only

the days between the 14th and the 21st of September were considered to be

the best for studying the SBL. During these days, the Azores high pressure

system extended over Spain, and the general situation was quite stationary,

with weak synoptic winds from the north-east which tend to increase at the

end of the period.

41
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Figure 2.1: Location of the CIBA site within a schematic description of
the topographical features of the north-western Iberian peninsula. The light
shaded areas are mountain ranges, while the dark shaded area is the Torozos
plateau (Cuxart et al. [2000]). The short dashed lines over the plateau area
are the cross sections for Fig.2.2.

All data was collected into a vast database. For each day the recorded

measurements went from 18:05 to 05:50 (Local Time, GMT+2), with an

averaging period of 5 minutes.

In order to collect the data, two meteorological masts were available at

the CIBA site, with heights of 100 m and 10 m. High precision meteorological

instruments were mounted on these masts, and a list of these instruments

and their height from the ground is given below (Cuxart et al. [2000]).

• The 100 meter mast was instrumented with a vertical array of 15 ther-

mocouples (0.22m, 0.88m, 2m, 3.55m, 5.55m, 8m, 10.88m, 14.22m,

18m, 22.22m, 26.88m, 32m, 37.55m, 43.55m, 50m), three sonic anemome-

ters (5.8m, 13.5m, 32m), a fast humidity sensor (13.5m), an infrared

surface temperature sensor (2m), a radiometer (2m) and a barometer

(surface). In addition, lower response measurements were made of wind
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Figure 2.2: Upper diagram: north-west to south-east schematic cross section
of the Torozos Plateau; lower diagram: north-east to south-west schematic
cross section (Cuxart et al. [2000]).

speed (3m, 10m, 20m, 50m, 100m), wind direction (10m, 20m, 100m),

temperature (10m, 20m, 50m) and humidity (3m, 20m).

• The goal of the equipment on the 10 meter mast was to give measure-

ments within the surface layer. Low response instruments were used

to measure temperature, humidity, wind speed and direction at three

different levels (2.5m, 5.5m, 10m). In addition, two sonic anemometers

(3.5m, 7.5m) and two net radiometers (1m, 6m) were also deployed.

• A triangular array of cup anemometers was installed, at a height of

1.5m from the ground. The purpose of this array was to detect gravity

waves, however at times the wind speed was so low that not much

information could be obtained from them.
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2.2 Surface Roughness Length z0

From the similarity equations 1.43 and 1.46, we introduced a pair of constants

during the integration process, called respectively z0m and z0h. These are

basically the heights that give us the lower limits of integration for the two

similarity functions for the wind and the temperature profiles. Even though

these two constants are not necessarily equal, they are very often considered

so, and they are called just Surface Roughness Length z0 (Mahrt [1998]).

This number represents the height over the ground where wind and tem-

perature reach their surface value, height that is not always zero due to the

roughness of the surface (hence the name). This number is very small, much

smaller than a meter, usually of the order of the centimeter, depending on

the type of surface (farmland, grass, crops, etc.).

It is possible to evaluate these constants taking into account the behaviour

of the similarity functions in proximity to the ground. In this surface layer,

the vertical profiles of wind and potential temperature are well described

by the Monin-Obukhov similarity theory (as seen in Chapter 1.6.2). It is

interesting to note that, if the parameter z/LMO → 0, all the relations are

less dependent on stability, and they become logarithmic profiles (Φ(ζ)→ 1).

The universal similarity functions for the wind shear (equation 1.43) and

for the temperature profile (equation 1.46) will read:

u(z) =
u∗
κ
ln

(
z

z0m

)
(2.1)

θ(z)− θ(z0h) = −θ∗
κ
ln

(
z

z0h

)
(2.2)

It is now possible to invert these formulas in order to evaluate the surface

roughness z0m and z0h, considering of course only cases close to neutrality. In

fact, as we defined in Chapter 1.2, the boundary layer approaches neutrality

when the thermal exchanges between air and surface are minimal, namely

when the thermal fluxes approaches zero (w′θ′ → 0). If we use this in the

definition of the stability parameter ζ = z/LMO (Eq. 1.39), we find that

neutrality is achieved when ζ → 0. For the analysis we considered only
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Figure 2.3: Histogram of the frequencies of the wind’s directions throughout
the entire period. The green bars indicate the directions considered in the z0m

analysis.

values of 1/LMO < 0.03 at an height z = 5.8m.

Observing the topographical features of the territory around the CIBA

site (Fig. 2.2), it is reasonable to assume that z0m could depend on the

direction from which the wind is blowing. In order to analyze this problem,

we divided the set of directions found in the data in intervals of 5 degrees,

from -50 (north-westerly winds) to 250 (south-westerly winds), and plotted a

histogram (Fig. 2.3). From here it is possible to see that the main directions

from which the wind is blowing throughout the seven days of observation can

be taken between 15 (north-east) and 145 (south-east).

With this information, using as parameters k = 0.4 (the Von Karman

constant), u(z) and u∗(z) from the dataset, and with z = 5.8, it is possible

to evaluate z0m for each time step. The characteristic value of z0m for the

CIBA site has then been evaluated as z0m = 0.049m, taking the average of

all of them (Fig. 2.4). We repeated the same procedure in order to calculate

z0h. In this case the data was much more scattered, mainly because the
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Figure 2.4: Values of z0m in near-neutral conditions. The horizontal line
represents the calculated average value of z0m = 0.049m.

values of θ∗ in this range of stability is very close to zero. Although, we

approximated a value of about z0h ' 0.0003m. The ratio between the two

surface roughness is z0m/z0h ' 160. Calculation of z0h is very sensitive to how

the surface temperature are measured (Edwards [2009]). Common estimates

of this ratio (Luhar et al. [2009], Garratt [1992]) are with order of magnitude

between 10 ÷10000.

2.3 Vertical structure of the SBL

Following Mahrt [1999] ”any attempt to divide the stable boundary layer into

a few classes or states is an oversimplification”. The classes that we are going

to use in this study must be taken as prototypes and must be considered as

an attempt to find some organization in the study of the stable boundary

layer.

Boundary-layer meteorology has long distinguished between cases of tra-

ditional stable boundary layer with continuous turbulence, and those with

stronger stability and often intermittent turbulence (Mahrt [1998], Grachev

et al. [2005], Sorbjan and Grachev [2010]). In the first case, generation of tur-

bulence is due to surface roughness and its transport is upward or weak. The
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thermal and momentum fluxes decrease with height and become small near

the top of the SBL. In the second case, instead, the vertical structure does

not satisfy the traditional concept of boundary layer, and surface-based pro-

cesses are not the main driving mechanisms to the generation of turbulence.

This in fact can be generated at higher levels above the ground, causing the

fluxes to increase with height, and granting this class of SBL the name of

upside-down boundary layer (Mahrt and Vickers [2002]).

To classify these different types of boundary layers, we considered the

vertical profiles of thermal and momentum fluxes measured at three heights

(5.8m, 13.5m, and 32m), in order to define different cases based on how the

slopes of the fluxes behave. With only three levels available and defining

”slope down” the slope in the lower layer (between 5.8m and 13.5m), and

”slope up” the slope in the top layer (between 13.5m and 32m), it is possible

to define four different cases:

• Case 1: slope down < 0 and slope up < 0

• Case 2: slope down < 0 and slope up > 0

• Case 3: slope down > 0 and slope up < 0

• Case 4: slope down > 0 and slope up > 0

The first case, with fluxes decreasing with height, is characteristic of a

traditional SBL, while the last one, with fluxes increasing with height, is

representative of an upside-down SBL. The other two cases are intermediate

situations, and they are not easily definable as traditional or upside-down

without further investigations.

2.4 Time Series

Time series of the main variables that we have available are a useful tool to

help visualize at first sight how the SBL is behaving. In this section we are

going to show some of the time series extrapolated from the dataset and show



48 CHAPTER 2. DATA ANALYSIS

Figure 2.5: Time series of the potential temperature over the period 16-17
September 1998.

how it is possible to identify if the SBL is in a traditional or upside-down

state.

Considering only data from the third night of the experiment (between

16-17 September), we can see in Fig. 2.5 the time series of the potential

temperature at different heights (0.22m, 3.55m, 22.22m and 50m). It is

possible to notice that θ increases with height, with a stronger gradient near

the ground, while toward higher levels the increase slows down. This is

compatible with a typical nocturnal situation, where the ground cools faster

than the atmosphere and the top of the SBL meets the residual well-mixed

layer.

In Fig. 2.6, it is shown the time series of the wind speed for the same time

period. We can see here that the wind is stronger at higher levels, and very

weak near the ground, in accordance with the no-slip condition. It is possible

to notice an abrupt increase in the velocity at the highest level (100m), which

could indicate the presence of a low-level jet (LLJ). It is also possible to note

that a decrease in the potential temperature occurred at approximately the
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Figure 2.6: Time series of the wind speed over the period 16-17 September
1998.

same time as the increase of the wind speed.

The next graph (Fig. 2.7) shows the time series of the gradient Richardson

number. Here it is very apparent that the changes in wind speed and/or

potential temperature noted before had some influence on the stability of the

SBL. In fact, after those changes, Rg decreased significantly at all heights to

values closer to zero, near neutral conditions.

In Fig. 2.8 is shown the turbulent kinetic energy TKE. This parameter

is used to detect where the turbulence is generated: in case of a traditional

SBL it decreases with height, while it can increase if turbulence is produced

aloft, as in the case of an upside-down boundary layer. In this graph we can

see, corresponding to the abrupt increase of wind speed, an evident increase

in production of turbulence. The TKE, in fact, goes from values or the order

of 10−2 to values of an order of magnitude bigger, around 0.2− 0.5.

In the same graph, it is easy to notice that the TKE decreases with height

toward the end of the night (after 03:00 LT), suggesting that the SBL is in a

traditional state. To verify this, it is possible to overlay an indicator of the
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Figure 2.7: Time series of the gradient Richardson number Rg over the period
16-17 September 1998.

Figure 2.8: Time series of the turbulent kinetic energy TKE at three different
heights (5.8m, 13.5m and 32m) over the period 16-17 September 1998.
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Figure 2.9: Time series of the turbulent kinetic energy TKE at 5.8m over
the period 16-17 September 1998. Plotted on the graph there are indicators
for the different cases which can define the state of the SBL. Where no points
are shown, the fluxes couldn’t be calculated or the heat and momentum fluxes
didn’t have the same behaviour.

Figure 2.10: Like Fig. 2.8 but only the time period 03:00-05:50 Local Time.



52 CHAPTER 2. DATA ANALYSIS

Figure 2.11: Time series of the TKE at 00:00-02:00 LT, 16-Sep during an
upside-down SBL.

cases that we defined in Chapter 2.3 on the graph. We already stated that in

a traditional SBL, the thermal and momentum fluxes should decrease with

height, so we are going to indicate on the graph only the cases where both

of these quantities have the same behaviour with height. It is possible to see

in Fig. 2.9 that in the period considered, the fluxes are in fact decreasing.

Therefore, the SBL can be considered in a traditional state.

During the study of the various time series, we noted that this type

of boundary layer appears more often than its upside-down counterpart.

Nonetheless, during the second night of observations (16 September, 00:00-

02:00), a period when the fluxes and the kinetic energy are increasing with

height is visible. In Fig. 2.11 is shown the time series of the TKE, which as-

sumes average values of 0.02m2/s2 at 5.8m, 0.04m2/s2 at 13.5m and 0.06m2/s2

at 32m. Therefore in this period the boundary layer can be considered in an

upside-down state.

2.5 Vertical Profiles

We stated before that the two main states in which we can find the SBL are

the traditional and the upside-down states. In this section, we are going to

analyze some vertical profiles of different variables, differentiating these two

cases.

During the different analysis, we noticed that the thermocouples mounted

on the 100m mast at the heights of 2m and 18m are probably damaged and

the measurements are incorrect. For this reason, all the data taken at these

two levels have been discarded.

2.5.1 Traditional Boundary Layer

In the previous section we noted that, toward the end of the third night

of observation (17th of September, 03:00-05:50 Local Time), a decrease in
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Figure 2.12: (a) Left panel: profile of the TKE at 03:00 LT, 17-Sep. (b)
Right panel: profile of the momentum flux (u2

∗) and the thermal flux (|θ∗u∗|)
at 17-Sep, 03:00 LT.

the TKE with height is visible, on average 0.12m2/s2 at 5.8m, 0.07m2/s2

at 13.5m and 0.03m2/s2 at 32m (Fig. 2.8, Fig. 2.10 for a close-up). In

Fig. 2.12, we can see an example of the profiles of the turbulent kinetic

energy and of the fluxes of momentum and heat taken at the beginning of

the period (03:00 LT). The heat flux should be negative (θ∗ < 0), so we

plotted the absulute value of the thermal flux to have a better comparison.

It is immediately apparent that they decrease with height, therefore we can

consider this portion of the night as representative of a traditional boundary

layer.

In the next figure (Fig. 2.13), we can see the potential temperature

profiles at two different times, at the beginning and the end of the considered

period. It is possible to note how the ground is cooler than the atmosphere

above, and that, as time passes, the temperatures decrease at every level

but remain almost constant at the top, connecting to the residual well-mixed

layer above.

Different methods have been developed in order to estimate the height of

the stable boundary layer (Zilitinkevich and Baklanov [2002]). The charac-
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teristic of the temperature profile described above allows us to estimate the

so-called temperature height ht of the stable boundary layer. In fact, know-

ing that the residual layer above the SBL is what remains of the diurnal

well-mixed convective boundary layer, we can assume that said temperature

is almost constant. Calculating the derivative of the potential temperature

profile, we can evaluate ht as the height at which the slope of the potential

temperature tends to zero. Fig. 2.14 illustrates the derivative of the profiles

shown in Fig. 2.13, and it also shows the threshold under which we con-

sider the slope approximately zero. This threshold is set to 0.03K/m, the

accuracy of the thermocouple (Cuxart et al. [2000]). As time progresses, the

height increases; at 03:00 LT it is around 26.88m, while at 05:00 LT it is

around 37.55m. This is only a rough estimate of the height of the SBL. More

accurate methods are needed to give a better evaluation.

In Fig. 2.15 is shown a graph of all the wind speed profiles in the time

period at the same time. We see that the velocity of the wind doesn’t change

very much over time, and does not present any particular increase with height

(which might indicate the presence of a low level jet). The Rg ∼ 0.1 at

all heights, which suggests that the SBL is in a near neutral stage, well

represented by the Monin-Obukhov similarity theory. In this scenario, the

turbulence is generated near the ground where the shear is greater, and then

transported upward.

2.5.2 Upside-Down Boundary Layer

We defined the SBL as upside-down when the fluxes are increasing with

height, therefore when the production of the turbulence is not near the

ground but at higher levels and transported downward. As we saw in Section

2.4, the period between 00:00-02:00 LT of the second night (16-September)

shows these characteristics. In this section, we are then going to use this time

period. In Fig. 2.16, we can see an example of the profiles of the turbulent

kinetic energy and of the fluxes of momentum and heat, taken at 01:00 LT.

Similarly to Fig. 2.12 we plotted the absolute value of the heat flux for better

comparison. The increasing trend of TKE and fluxes with height is appar-
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Figure 2.13: Potential temperature profiles at two different times (03:00 and
05:00 LT).

Figure 2.14: Derivative of the potential temperature profiles represented in
Fig. 2.13. The vertical lines indicate the threshold under which the slope is
considered zero, while the horizontal lines are the estimate of the temperature
height ht of the SBL.
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Figure 2.15: Cumulative wind speed profile showing all the different values of
the wind speed over the time period 03:00-05:00 LT, 17-Sep.

Figure 2.16: (a) Left panel: profile of the TKE at 01:00 LT, 16-Sep. (b)
Right panel: profile of the momentum flux (u2

∗) and the thermal flux (|θ∗u∗|)
at 01:00 LT, 16-Sep.
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ent, therefore we can consider this portion of the night as representative of

an upside-down boundary layer.

In Fig. 2.17, the wind speed profiles for the time frame considered are

shown all together, illustrating a marked increase of the velocities from the

ground to the upper layers. It is worth noting that, in the hours before the

considered time frame, a strong low level jet developed in the SBL. We can

see in Fig. 2.18 that the speed maximum (or nose) of the LLJ moved upward

with time, from about 32m at 20:30 LT, to 100m at 00:00 LT. Therefore, it

is possible to assume that the jet is still present in the time frame considered

(from 00:00 LT to 02:00 LT), but at a height above the mast height, outside

of the range of the instruments. Its effects are still visible though, because

the localized increase of wind speed and shear generates turbulence, which is

transported downward by the fluxes, causing the development of the upside-

down SBL (Banta et al. [2002], Banta et al. [2003], Banta et al. [2006]).

The potential temperature profiles (Fig. 2.19) show the same character-

istic behaviour for the lower layers, with colder ground and warmer atmo-

sphere. Although an increase of θ from a height of approximately 32m is

noticeable, which can be attributed to the fact that the thermal flux is trans-

porting down the heat from the warm layers above. In this case, since we

don’t have a real connection to the residual well-mixed layer, it is difficult to

define a temperature height of the SBL.

2.6 MultiResolution Flux Decomposition (MRF)

MultiResolution is an orthogonal decomposition algorithm used for comput-

ing variances and turbulent fluxes (Howell and Mahrt [1997], Voronovich and

Kiely [2007]). In the dataset used in this paper, these parameters were ini-

tially calculated from the raw data with a fixed time scale of 300 seconds

(referred to as EC data, which stands for Eddie Covariance).

Analyzing the cospectra of these variables, it is possible to identify a gap

that separates small-scale turbulence and mesoscale structures. Fitting the

cospectra with a 5th-order polynomial, the time scale of the spectral gap

is estimated according to a criterion based on the first occurrence of a zero
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Figure 2.17: Cumulative wind speed profile showing all the different values of
the wind speed over the time period 00:00-02:00 LT, 16-Sep.

Figure 2.18: Wind profiles showing the development of a low level jet during
the second night of observations at different times.
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Figure 2.19: Potential temperature profiles at two different times (00:00 and
02:00 Local Time).

crossing or inflection point after the maximum value. This new time scale

is then used to re-calculate variances (σw, σθ), turbulent fluxes (u∗, θ∗) and

the Monin-Obukhov length LMO (which depends on the fluxes), referred to

henceforth as MRF data.

To compare the two sets of data (e.g. for the u∗), we evaluated the

percentual relative differences

∆%
r =

|uEC∗ − uMRF
∗ |

uEC∗

In Fig. 2.20 are shown the time series of these errors for the second night

(15-16 Sep) and the third night (16-17 Sep), and we can see that the errors

are sometimes very large, even reaching 100%. This does not mean that this

information is wrong or that the procedure is incorrect. Rather, it illustrates

that the process of cutting part of the spectrum is eliminating processes at

scales bigger than the turbulence, which we do not need to analyze.

In Fig. 2.21 is shown how ∆%
r varies with stability, using the gradient

Richardson number Rg. It is possible to see that the errors increase with

increasing Rg. In fact, in stable conditions (considered for Rg ' 0.1), the
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Figure 2.20: Time series of ∆%
r during the second (left panel) and third (right

panel) nights of the experiment.

fluxes are very small, which increase the errors due to the small sensitivity

of the instruments. This behaviour is also visible in Fig. 2.22, where we

plotted ∆%
r as a function of uMRF

∗ . The accuracy of the cup anemometers is

0.2m/s (Cuxart et al. [2000]), and the order of magnitude of the ratio u/u∗

at Rg ' 0.1 is approximately 10 (evaluated later in this study). This means

that the accuracy of u∗ can be taken of the order of 0.02. This value is in

agreement with Fig. 2.22, which shows an increase of the relative error for

values of u∗ smaller than the accuracy.

In the rest of this study, where not otherwise specified, we are going to

use only the MRF set of variables, considered more representative of the

turbulence.



2.6. MULTIRESOLUTION FLUX DECOMPOSITION (MRF) 61

Figure 2.21: The variation of ∆%
r with stability using Rg.

Figure 2.22: The variation of ∆%
r with uMRF

∗ .
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2.7 Personal Case Selection

2.7.1 Wind Threshold

As we saw in the previous section, we used the MR decomposition in order to

separate the contributions of the turbulence and of the mesoscale processes

from the variances and fluxes cospectra. For example, we can see in Fig.

2.23 a scatter plot of ζ = z/LMO evaluated with the two different methods

(EC and MRF) at a height of 5.8m. It is possible to see that the data

points are mostly around the bisector ζEC = ζMRF , but that some of them

are quite scattered. In this section, we are trying to find a way to reduce

this scatter, therefore the points that will remain after the removal will be

the most representative of the turbulence. We used as a parameter the wind

speed between 0m/s and 8m/s, with intervals of 0.05m/s, and for each speed

vi, we defined the function:

δ(vi) =
∑
∀t

|ζEC − ζMRF | ∀v < vi (2.3)

We then plotted the normalized functions with respect to the velocity

(Fig. 2.24). We can see that, with increasing speeds, the differences between

EC and MRF data are decreasing. We defined as not significantly scattered

the data with a normalized δ ≤ 0.2, therefore we need to estimate the cor-

respondent velocity for each height. To fit the data, we used a function as

follows (B,C parameters of the fit):

Fit (δ(v)) =
(

1 + e
v−B
C

)−1

which allowed us to determine the wind speed limit for each height (2.1m/s

at 5.8m, 3.6m/s at 13.5m and 5.5m/s at 32m).
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Figure 2.23: Scatter plot of ζ(5.8m), calculated with EC and MRF methods.

Figure 2.24: Normalized δ(v) and correspondent fits functions at 5.8m, 13.5m
and 32m.
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2.7.2 Anisotropy

Fig. 2.25 shows the variation of the wind speed (at 5.8m) with the gradient

Richardson number Rg calculated at the same height, and we can observe

that the wind speed decreases as the SBL becomes more stable.

Turbulence in the SBL is produced by wind shear and destroyed by buoy-

ancy effects (and viscous dissipation). As the stratification becomes stronger,

the vertical turbulence exchange is dampened, leading to the development

of strong spatial anisotropy. Turbulence anisotropy is defined as the ratio of

the vertical and horizontal turbulent velocity variances (Luhar et al. [2009])

as expressed by the following formula:

Anisotropy =
σ2
w

σ2
u + σ2

v

(2.4)

In Fig. 2.26 is shown the turbulence anisotropy as a function of differ-

ent stability parameters (ζ, Rg and Rb, the last one calculated using data

measured at 3m and 10m). We can see that, with increasing stability, the

anisotropy becomes stronger. Considering the bulk Richardson numbers, we

calculated the average anisotropy for intervals of Rb of 100.1, and then we

tried to fit these averaged data with the following function (B,C parameters

of the fit):

Fit(Anisotropy) =
(

1 + e
v−B
C

)−1

We then evaluated the bulk Richardson number that separates the two

stability regimes as the value at which the fit function reaches 95% of its

initial value, finding Rb ' 0.163 (Fig. 2.27).
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Figure 2.25: Scatter plot of wind speed at 5.8m versus Rg.

Figure 2.26: Variation of anisotropy with (a) the stability parameter ζ, (b)
gradient Richardson number Rg and (c) bulk Richardson number Rb.



66 CHAPTER 2. DATA ANALYSIS

Figure 2.27: Variation of anisotropy with the bulk Richardson number, fit
function and Threshold value for Rb.

2.7.3 New Classification of Cases

In the previous section, we were able to define different thresholds in wind

speed at different heights (5.8m, 13.5m and 32m) and in stability parameters

(Rg or Rb). In the first case, we defined that, for winds stronger than a

certain speed limit (ut(5.8m) = 2.1m/s, ut(13.5m) = 3.6m/s and ut(32m) =

5.5m/s), the turbulence in the SBL is better represented due to the cut in

the cospectra of the turbulent fluxes and variances. Furthermore, we noticed

that high winds are connected to weaker stability, and we found a threshold

for the stability parameters Rg ' Rb = 0.163 analyzing the behaviour of the

anisotropy of the turbulence.

We are going to use these two parameters (wind speed and stability) to

define a different set of cases, which are intended to represent the turbulence

of the SBL in a better way. In particular, the case that we are most interested

in is the one defined by strong wind speed (u > ut dependent on the height)

and weak stability (Rg < 0.163).



Chapter 3

Similarity Theories

3.1 Local MOST

Monin-Obukhov similarity theory (MOST) for the PBL was developed for a

stationary atmospheric surface layer over horizontally homogeneous terrain.

As we saw in Chapter 1.6.2, the structure of the turbulence is determined

by the kinematic stress τ0/ρ, the heat flux w′θ′|0, the buoyancy parameter β

and the height above the ground z (Pahlow et al. [2001]), where the fluxes

are calculated at ground level. These parameters are necessary to define the

different scales for velocity (u∗), temperature (θ∗) and length (LMO), chosen

as surface-layer scales.

In near-neutral conditions, the K-theory determined that the natural

length scale in a turbulent boundary layer is the distance z from the surface

(Tennekes and Lumley [1972],Mahrt et al. [1979], Caughey et al. [1979]).

Loosely speaking, the largest eddies at height z would have a size limited

only by the distance to the surface itself.

As stability increases, however, the effect of the turbulence is to limit

vertical movements, consequently turbulent eddies cannot extend across the

whole boundary layer anymore. Therefore, the distance to the surface ceases

to play any role in the structure of the turbulence, which becomes decoupled

with the surface fluxes and acts in relation to the fluxes at the same height

(Nieuwstadt [1984], Dias et al. [1995], Yagüe et al. [2006]).

67
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This is called local Monin-Obukhov similarity theory, and we are going to

use it throughout the rest of this study. The Monin-Obukhov length is now

evaluated with the local fluxes and called ΛMO.

3.2 Similarity Functions

3.2.1 Equations

In this section we are going to list the different universal similarity func-

tions φm(ζ), φh(ζ) and the universal relative similarity functions ψ(ζ, ζ0m),

ψ(ζ, ζ0h) that we are going to use, formulated from four different authors.

Since we are using local MOST, ζ = z/ΛMO, ζ0m = z0m/ΛMO and ζ0h =

z0h/ΛMO.

• Högström [1996], (from now on referred as H96), with αm3 = 6.0,

αh0 = 0.95, αh2 = 7.99:

φH96
m (ζ) = 1 + αm3ζ, (3.1a)

φH96
h (ζ) = αh0 + αh2ζ, (3.1b)

ΨH96
m (ζ, ζ0m) = αm3(ζ − ζ0m), (3.1c)

ΨH96
h (ζ, ζ0h) = (αh0 − 1) ln

(
ζ

ζ0h

)
+ αh2(ζ − ζ0h) (3.1d)

• Webb [1970], (from now on referred as W70), with β1 = 4.2, α = 0.95,

β2 = 7.03:

φW70
m (ζ) = 1 + β1ζ, (3.2a)

φW70
h (ζ) = α + β2ζ, (3.2b)

ΨW70
m (ζ, ζ0m) = β1(ζ − ζ0m), (3.2c)

ΨW70
h (ζ, ζ0h) = (α− 1) ln

(
ζ

ζ0h

)
+ β2(ζ − ζ0h) (3.2d)
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• Cheng and Brutsaert [2005], (from now on referred as CB05), with

a = 6.1, b = 2.5, c = 5.3, d = 1.1:

φCB05
m (ζ) = 1 + a

(
ζ + ζb(1 + ζb)

1−b
b

ζ + (1 + ζb)
1
b

)
, (3.3a)

φCB05
h (ζ) = 1 + c

(
ζ + ζd(1 + ζd)

1−d
d

ζ + (1 + ζd)
1
d

)
, (3.3b)

ΨCB05
m (ζ, ζ0m) = a · ln

(
ζ + (1 + ζb)

1
b

ζ0m + (1 + ζb0m)
1
b

)
, (3.3c)

ΨCB05
h (ζ, ζ0h) = c · ln

(
ζ + (1 + ζd)

1
d

ζ0h + (1 + ζd0h)
1
d

)
(3.3d)

• Beljaars and Holtslag [1991], (from now on referred as BH91), with

a = 0.7, b = 0.667, c = 5.0, d = 0.35:

φBH91
m (ζ) = 1 + aζ + bζ(1 + c− dζ)e−dζ , (3.4a)

φBH91
h (ζ) = 1 + aζ(1 + abζ) + bζ(1 + c− dζ)e−dζ , (3.4b)

ΨBH91
m (ζ, ζ0h) = a(ζ − ζ0m)+

+ b
[
(ζ − c

d
)e−dζ − (ζ0m −

c

d
)e−dζ0m

]
, (3.4c)

ΨBH91
h (ζ, ζ0m) = (1 + abζ)

1
b + b(ζ − c

d
)e−dζ+

− (1 + abζ0h)
1
b − b(ζ0h −

c

d
)e−dζ0h (3.4d)
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3.2.2 Similarity Functions for Wind

The relationship between Υm(ζ, ζ0m) and Λ−1
MO can be seen in Fig. 3.1 for

the three height studied (5.8m, 13.5m and 32m). As we defined in Eq. 1.43,

we plotted:

κ
u(z)

u∗(z)
= Υm(ζ, ζ0m) = ln

(
z

z0m

)
+ Ψm(ζ, ζ0m) (3.5)

where κ = 0.4, z0m = 0.049m, u(z) and u∗(z) are taken from the dataset,

and we defined the different Ψm(ζ, ζ0m) functions for different authors in the

previous section (Eqs. 3.1c, 3.2c, 3.3c and 3.4c). The value of the scale

coefficient between u(z) and u∗(z) in near neutral conditions (Λ−1
MO → 0) is

in average u/u∗ ' 15, for the different heights.

It is possible to observe that the data points are more scattered as the

height increases, especially for lower stability. The vertical lines plotted in

Fig. 3.1 are at Λ−1
MO = 1/z, where z is the considered height for each graph.

This represents the separation between the region of the SBL dominated

by mechanical turbulence and the one dominated by thermal turbulence,

respectively below and above this value. As height increases, the wind shear

(therefore the momentum flux) decreases, so the heat flux is more efficient

in damping the turbulent eddies, increasing the stability of the SBL.

Another consequence of this behavior is that, while the considered sim-

ilarity functions seem to well represent the data for low stability, for high

values of Λ−1
MO the data are overestimated, and they appear to level off. This

is particularly noticeable in the third graph (at z = 32m). The high strat-

ification in this layer inhibits vertical motion and tends to reduce the size

of the turbulent eddies. When their length scale becomes smaller than the

height above the ground, turbulence doesn’t feel the presence of the surface

(it is decoupled from it), and an explicit dependence on z disappears. This

behavior is often referred as z-less stratification (Dias et al. [1995], Klipp and

Mahrt [2004]).

In Fig. 3.2 we plotted the similarity functions Υm(ζ, ζ0m), this time sep-

arating the cases 1 and 4 (when the momentum fluxes are monotonically

increasing or decreasing with height), as we defined in Chapter 2.3. We can
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Figure 3.1: Υm(ζ, ζ0m) versus Λ−1
MO for all the data in the dataset at: (a)

5.8m, (b) 13.5m and (c) 32m. Similarity functions found by different authors
are also shown for comparison.

notice that the two cases are well separated only at the lower level (5.8m),

while at higher levels the data points are mixed together. This is because

the instruments at z = 5.8m are within the surface layer, where the influence

of the ground is great, and the turbulence generated is transported upwards

(the condition for a traditional SBL). At higher levels, the stability increases

and the turbulence is produced locally, therefore the increase or decrease of

the fluxes with height does not strongly depend on what happens on the

surface.

In Fig. 3.3 we followed the same procedure as for the previous set of

figures, but this time separating the data with the new classification of the

cases using the wind speed and the gradient Richardson number, as we de-

fined in Chapter 2.7. In this analysis, it is possible to see that the data with

strong winds and weak stability are very well represented by the similarity

functions at every height and with very low scatter.
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Figure 3.2: Like Fig. 3.1, separating Case=1,4.

Figure 3.3: Like Fig. 3.1, separating cases where u > ut(z), Rg < 0.163 and
cases where u < ut(z), Rg > 0.163. The different values of ut(z) were defined
in Chapter 2.7.
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3.2.3 Similarity Functions for Temperature

In Fig. 3.4 we represented the relationship between Υm(ζ, ζ0m) and Λ−1
MO. As

we defined in Eq. 1.46, we plotted:

−κθ(z)− θ(z0h)

θ∗
= Υh(ζ, ζ0) = ln

(
z

z0h

)
+ Ψh(ζ, ζ0h) (3.6)

where κ = 0.4, z0h = 3 · 10−4m, θ(z), θ(z0h) and θ∗(z) are taken from the

dataset, and we defined the different Ψh(ζ, ζ0h) functions for different authors

in the previous section (Eqs. 3.1d, 3.2d, 3.3d and 3.4d). The data for the

temperatures were not taken at the same heights as the Λ−1
MO, therefore we

used different levels for the θ(z), 5.55m, 14.22m and 32m.

As Fig. 3.4 shows, the results are much more scattered then those for

Υm, which could be attributed to lower accuracy in the measurements, or

to the fact that turbulent scaling laws assume stationary situations, but the

SBL is frequently non-stationary due to intermittent turbulence (Klipp and

Mahrt [2004], Mahrt [2007], Mahrt [2011], Coulter and Doran [2002]).

In Fig. 3.5 we plotted the similarity functions Υh(ζ, ζ0h), this time sepa-

rating the cases 1 and 4 (when the heat fluxes are monotonically increasing

or decreasing with height), as we defined in Chapter 2.3. As for the wind

similarity function, we plotted vertical lines in this figure at Λ−1
MO = 1/z,

where z is the considered height for each graph. We can see that the scatter

increases in the region dominated by the thermal fluxes, where Λ−1
MO > 1/z.

The scatter for the higher levels (14.22m and 32m) is very high, and cases 1

and 4 are not easily distinguishable. Otherwise, at the lower level (5.55m),

data for case 1 follows the similarity functions with reasonable agreement.

In Fig. 3.6 we plotted the Υh(ζ, ζ0h), separating the data using the new

classification of the cases based on wind speed and gradient Richardson num-

ber, as we defined in Chapter 2.7. The scatter is still present at every level

(especially at 32m), but we can see a better agreement with the similarity

functions for strong winds and weak stability.
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Figure 3.4: Υh(ζ, ζ0h) versus Λ−1
MO for all the data in the dataset at: (a) 5.8m,

(b) 13.5m and (c) 32m. Similarity functions found by different authors are
also shown for comparison.

Figure 3.5: Like Fig. 3.4, separating Case=1,4.
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Figure 3.6: Like Fig. 3.4, separating cases where u > ut(z), Rg < 0.163 and
cases where u < ut(z), Rg > 0.163. The different values of ut(z) were defined
in Chapter 2.7.

3.2.4 Eliminating the Dependence on z0

As we saw in the previous section, the similarity functions depend on the

surface roughness length for wind z0m and for temperature z0h. These two

parameters have been determined by extrapolation of the data in near-neutral

condition, therefore they are greatly affected by the errors in the data.

In this section, we are going to eliminate the dependence on these vari-

ables, in order to reduce the scatter due to experimental errors. This method

consists of evaluating the difference between wind speed (or potential tem-

perature) at two specific heights, therefore all the terms in the equations

that depend on z0 will cancel out. It is worth noting that, in Eqs. 3.5 and

3.6, the scale variables (u∗ and θ∗) are evaluated at the height where the

measurements are taken. This means that, in the following equations, since

we have two different heights, the value of these scale variables needs to be

representative of the layer analyzed. For wind speed, we took z1 = 13.5m,

z2 = 5.8m and evaluated u∗ = (u∗(z1)+u∗(z2))/2. For potential temperature
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we considered z1 = 10.88m, z2 = 0.88m and θ∗ = θ∗(5.8m).

The similarity equations for the differences of wind speed and potential

temperature are listed here, where ζ1 = z1/ΛMO and ζ2 = z2/ΛMO.

κ
u(z1)− u(z2)

u∗
= Υm(ζ1, ζ2) = ln

(
z1

z2

)
+ Ψm(ζ1, ζ0m)−Ψm(ζ2, ζ0m) (3.7)

−κθ(z1)− θ(z2)

θ∗
= Υh(ζ1, ζ2) = ln

(
z1

z2

)
+ Ψh(ζ1, ζ0h)−Ψh(ζ2, ζ0h) (3.8)

In Figs. 3.7 and 3.8 we plotted the similarity functions Υm(ζ1, ζ2) and

Υh(ζ1, ζ2) for all data (top-left panel), separating the cases 1 and 4 (top-

right panel) and separating the cases with the new classification based on

wind speed and gradient Richardson number (bottom panel).

For both wind speed and potential temperature, we notice that the scatter

has been greatly reduced. Data for case 1 and for u > 2.1m/s, Rg < 0.163

(i.e. data of traditional SBL) are well represented by the similarity functions.

For the wind speed this data seems to follow the linear functions (H96 and

W70) even for stronger stability, although the same cannot be said for the

potential temperature.

3.2.5 Richardson Numbers

We described in Chapter 1.6.5 the relationships between the different Richard-

son numbers and the stability parameter ζ, using the various similarity func-

tions φ(ζ) and Υ(ζ, ζ0).

In Fig. 3.9 we can see the behaviour of the Richardson numbers at

z=5.8m, and the analytic functions described in Eqs. 1.47, 1.49 and 1.50

using similarity functions found by different authors. The values for Rf and

Rg can be directly found in the dataset, while Rb has to be evaluated between

different levels. We used z1 = 8.0m, z2 = 3.55m as levels for the temperature,

and z3 = 10.0m, z4 = 3.0m for the wind speed, taking z = 5.8m as reference

height to evaluate the fluxes.
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Figure 3.7: Υm(ζ1, ζ2) versus Λ−1
MO for all the data in the dataset. Wind speeds

are calculated at z1 = 13.5m and z2 = 5.8m, and u∗ is evaluated averaging
u∗(5.8) and u∗(13.5). Similarity functions found by different authors are also
shown for comparison.

Figure 3.8: Υh(ζ1, ζ2) versus Λ−1
MO for all the data in the dataset. Potential

temperatures are calculated at z1 = 10.88m and z2 = 0.88m, and θ∗ is evalu-
ated at 5.8m. Similarity functions found by different authors are also shown
for comparison.
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The gradient Richardson number is a widely used stability parameter

relating thermal stratification to wind shear (Yagüe et al. [2006]). When

relationships between turbulent and stability parameters are studied, one

problem is self-correlation, i.e. the parameters share one or more variables.

In our case, one example is that both φm and ζ contain u∗. This feature

was analyzed by Klipp and Mahrt [2004] who concluded that the gradient

Richardson number will produce less self-correlation than the stability pa-

rameter ζ.

In this section we are going to use the Rg as stability parameter to define

the behaviour of the wind speed and potential temperature profiles thanks

to the similarity functions Υm(ζ, ζ0m) and Υh(ζ, ζ0h). We don’t have an

analytical formula for Υm(Rg), therefore we had to extrapolate its behaviour.

Both the gradient Richardson number Rg and the similarity functions Υ

depend on ζ, therefore we can find a correlation between them. We calculated

both this parameters varying ζ between 10−3 ÷ 102. Therefore we wrote all

data in a table having in each row the value for ζ, the values for Rg calculated

with Eq. 1.49 for different authors (H96, W70 and BH91), and the value

of Υm(ζ, ζ0m) and Υh(ζ, ζ0h) calculated with Eqs. 1.43,1.46 for the same

authors. We then used the Rg and Υ columns to plot the required functions.

In Fig. 3.10 is shown the dependence of Υm on the gradient Richardson

number Rg for three levels (5.8m, 13.5m and 32m). The data plotted seem

to follow the trend described by the new similarity functions, with a large

scatter for high stability, especially at increasing height.

Fig. 3.11 is the same as the previous one, but we used the classification

for the cases based on the wind speed defined in Section 2.7. The resulting

data is well separated between those with u > ut(z), which better follow

the overlayed functions, and those with u < ut(z), which are much more

scattered.

The same behaviour can be seen in Figs. 3.12 and 3.13. In the first one

is shown the dependence of Υh on the gradient Richardson number Rg for

three levels (5.55m, 14.22m and 32m), while in the second one the same data

is plotted, but in this case they are separated by the cases defined by the

wind speed.
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Figure 3.9: Richardson numbers versus stability parameter Λ−1
MO at z=5.8m.

(a) Rf , (b) Rg and (c) Rb.

We also note that for strong stability, Υm tends to level off while Υh

has a positive trend. This evolution produces a ratio Υm/Υh < 1, which

is equivalent to a greater turbulent transport of momentum compared to

the transfer of heat. This result, not visible when ζ = z/ΛMO is used as

stability parameter, has been related to the presence of internal gravity waves

(which can transport momentum but not much heat, unless they break), and

associated intermittent processes (Finnigan et al. [1984], Coulter and Doran

[2002], Mahrt [1989], Newsom and Banta [2003]).
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Figure 3.10: Υm versus Rg(z) for all the data in the dataset. Functions calcu-
lated from similarity functions of different authors are shown for comparison.

Figure 3.11: Υm versus Rg(z) for all the data in the dataset, divided by the
wind speed as we defined in Chapter 2.7. Functions calculated from similarity
functions of different authors are shown for comparison.
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Figure 3.12: Υh versus Rg(z) for all the data in the dataset. Functions calcu-
lated from similarity functions of different authors are shown for comparison.

Figure 3.13: Υh versus Rg(z) for all the data in the dataset, divided by the
wind speed as we defined in Chapter 2.7. Functions calculated from similarity
functions of different authors are shown for comparison.



Chapter 4

Conclusions

The first section of this work was an introductory overview of the structure

of the atmosphere (Chapter 1.1), and in particular of its lower part, the

atmospheric boundary layer (Chapter 1.2).

We described the turbulence (Chapter 1.4) and the equations that de-

scribe it (Chapter 1.5), noting that they form a non-closed system of equa-

tions, causing the impossibility to solve them analytically. For this reason,

several closure methods have been developed over the years, and in particular

we introduced Monin-Obukhov’s similarity theory (Chapter 1.6).

The main objective of this study was to use the construct of this theory to

analyze data collected during stable atmospheric conditions when the surface

is cooler than the atmosphere, conditions achieved especially at night. The

data was collected during the SABLES98 experiment, in Spain, during the

month of September 1998 (Chapter 2.1).

We were interested in particular on the different structures that the sta-

ble boundary layer shows, mainly differentiating its behaviour based on the

vertical fluxes of momentum and heat. We separated the SBL in two differ-

ent categories, the traditional boundary layer (with decreasing fluxes with

height) and the so called upside-down boundary layer (with increasing fluxes

with height).

82
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We analyzed portions of two different nights from the dataset, which

represented the two contrasting structures of the stable boundary layer. We

dedicated the following sections to the first analysis of the data for these two

case studies, studying their behaviour in time and space (Chapters 2.3, 2.4).

We then developed an original criterion in order to distinguish and sepa-

rate the influence of mesoscale phenomenons from turbulent behavior, using

as parameters the wind speed and the gradient Richardson number (Chapter

2.7).

In the final chapter we tested different similarity functions developed by

different authors. We compared them with the data from the experimental

campaign and studied their behavior for the wind and for the temperature.

We also used a method in order to eliminate some of the scatter of the

data, removing from the equations the dependence on the surface roughness,

parameter determined from the data, which can introduce errors.

We then determined how these similarity functions behave if expressed in

terms of a different stability parameter, not ζ as defined in M-O similarity

theory, but the gradient Richardson number Rg.

The primary result achieved in this study is the comparison between the two

different classifications of the states of the stable boundary layer. The first

one was based on the behavior of the vertical profiles of momentum and heat

fluxes (defined as case 1 and 4). The second one, developed by the author,

was based on the differentiation, through an analysis of the fluxes cospectra,

of mesoscale phenomenons and the smaller scale turbulence.

The first difference that can be noticed is in regard of the height of the

measurements. With the first classification, with increasing height, the cases

tend to mix up and be undistinguishable from one another (e.g. Figs. 3.2,

3.5). Instead, with the second classification, the data tends to remain sepa-

rated, and it is more clear the correlation with the similarity functions (e.g.

Figs. 3.3, 3.6).

The similarity functions for wind and temperature, in both formulations
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depending on the stability parameter ζ or Rg, seem to work well only for weak

stability. In this case, the data follows with good agreement the trend of the

similarity functions with relatively low scatter. In high stability conditions,

instead, the scatter increases strongly, and in some cases the data presents

a trend that is different from the one described by the similarity functions

(e.g. Fig. 3.10).

Another difference between the considered classification of the cases is

about the physics of the processes involved in them. In the first, we divided

the cases based on the behavior of the fluxes, if they showed an increasing

(case 4) or decreasing (case 1) trend with height. This distinction is based

on the estimation of where the turbulence is produced, and therefore on how

the transport of momentum and heat will shape the stable boundary layer.

The second classification instead takes into account an original interpreta-

tion of the Multi-Resolution Flux decomposition, in order to find different

parameters (in this study we decided for the gradient Richardson number Rg

and the wind speed) which can separate the influence of mesoscale processes

and the smaller scale turbulence.

Despite having different origins, there is a common point to both of these

formulations. In fact, as it is possible to see in most of the figures in Chapter

3, the personal cases with weak stability (Rg < 0.163) and strong winds

(u(z) > ut(z)) tend to describe the same situations as those described with

cases 1 (decreasing fluxes with height). This is in agreement with the previous

statement that the similarity theories are better represented by the data in

weak stability conditions.

A comparison of these two classification is visible in Figs. 4.1 and 4.2.

We plotted the Υm and Υh similarity functions, and we showed only the

data points which are shared between the two formulations. It is possible

to see, comparing the first with Figs. 3.2, 3.3 and the second with Figs.

3.5, 3.6, that a good amount of the data points are shared between these two

formulations, despite the very different physical processes that they describe.
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Figure 4.1: Υh versus Λ−1
MO for all the data in the dataset, showing the com-

mon data points between the different cases formulations.

Figure 4.2: Υh versus Λ−1
MO for all the data in the dataset, showing the com-

mon data points between the different cases formulations.
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