
Alma Mater Studiorum · Università di Bologna

SCUOLA DI SCIENZE
Laurea Magistrale in Scienze di Internet

PARAMETRICS EDITORS
FOR

STRUCTURED DOCUMENTS

Tesi di Laurea in Interazione Persona Computer

Relatore:
Chiar.mo Prof.
Fabio Vitali

Correlatore:
Chiar.ma Prof.ssa
Monica Palmirani

Presentata da:
Luca Cervone

Sessione II
2012/2013

To my parents, Carmela and Emanuele, and to my

childhood town Sannicandro Garganico,

they built my hardware and developed my operating system.

To Bologna and the people that I have met here,

they have fixed so many bugs . . .

Contents

Contents i

0 Introduzione 1

1 Introduction 5

2 The markup of structured documents 13

2.1 Structured documents . 13

2.2 Markup languages for structured documents 15

2.3 Descriptive markup languages 18

2.3.1 The Standard Generalized Markup Language 18

2.3.2 The HyperText Markup Language 21

2.3.3 The eXtensible Markup Language 23

2.4 XML for the markup of text-based resources 24

3 Structural differences in XML dialects 27

3.1 Different dialects for different contexts 27

3.2 Examples of dialects for textual resources 28

3.2.1 Text Encoding Initiative 29

3.2.2 DocBook . 32

3.3 Examples of dialects used in the legal context 34

3.3.1 Norme In Rete . 35

3.3.2 CEN/Metalex . 38

3.3.3 Akoma Ntoso . 41

i

CONTENTS CONTENTS

3.4 Abstraction of the XML dialects 45

3.4.1 Containers . 45

3.4.2 Hierarchical containers 46

3.4.3 Markers . 47

3.4.4 Blocks . 48

3.4.5 Inline . 49

3.4.6 Subflow . 49

3.5 A generic markup process for distinct dialects 50

4 Software for XML markup 53

4.1 WYSIWYG editors . 53

4.2 Generic XML editors . 54

4.2.1 oXygen XML editor 55

4.3 Markup editors . 57

4.4 Markup editors for the legal context 58

4.4.1 Norma editor . 59

4.4.2 Bungeni Editor . 60

4.4.3 LegisPro Web Editor 62

4.5 Open issues in markup editors 63

5 LIME, a parametric editor for structured documents 65

5.1 The importance of being parametric 65

5.2 Technologies for parametric markup editors 66

5.2.1 Ajax, javascrip and HTLM5 for in-browser software . . 66

5.2.2 Frameworks for cross-browser software 67

5.2.2.1 ExtJS . 68

5.2.3 TinyMCE . 68

5.2.4 REST style communication 68

5.2.5 eXist Database . 69

5.2.5.1 FRBR storage 69

5.2.5.2 XQuery language and XSLT 71

5.2.6 XML patterns and XML guidelines 71

CONTENTS iii

5.2.7 JSON . 71

5.3 LIME, a Language Independent Markup Editor 72

5.4 Overview of LIME features . 73

5.5 LIME architecture . 77

5.5.1 Client side components 79

5.5.2 Server side components 80

5.6 Three commandments to be parametric and language inde-

pendent . 81

5.6.1 XML guidelines and patterns used by LIME 81

5.6.1.1 Patternless, the patterns’ wildcard 82

5.6.1.2 Guidelines for elements’ unique identifiers . . 83

5.6.1.3 Guidelines for elements’ classes 83

5.6.2 JSON configuration files 84

5.6.2.1 LIME language plugins 85

5.7 Evaluating markup editors’ usability 87

6 Evaluation of LIME’s user experience 89

6.1 The study of the user experience 89

6.2 Goals of the test . 90

6.2.1 Examining the efficacy 91

6.2.2 Examining the efficiency 91

6.2.3 Examining the users’ satisfaction 93

6.3 The LIME’s user experience test 94

6.3.1 Methodology . 95

6.3.2 Choosing the testers 96

6.3.3 The complete test . 96

6.4 Analysis of the results . 103

6.4.1 Summary of the testers 103

6.4.2 Analysis of the efficacy 105

6.4.3 Analysis of the efficiency 107

6.4.4 Analysis of the users’ satisfaction 113

6.5 LIME’s strengths and weaknesses 116

iv CONTENTS

7 Conclusions 119

Bibliography 123

List of Figures 133

List of Tables 135

Listings 138

Chapter 0

Introduzione

Lo scopo di questa dissertazione è di identificare le tecnologie più appro-

priate per la creazione di editor parametrici per documenti strutturati e di

descrivere LIME, un editor di markup parametrico e indipendente dal lin-

guaggio.

La recente evoluzione delle tecnologie XML ha portato ad un utilizzo

sempre più consistente di documenti strutturati. Oggigiorno, questi vengono

utilizzati sia per scopi tipografici sia per l’interscambio di dati nella rete

internet. Per questa ragione, sempre più persone hanno a che fare con docu-

menti XML nel lavoro quotidiano. Alcuni dialetti XML, tuttavia, non sono

semplici da comprendere e da utilizzare e, per questo motivo, si rendono nec-

essari editor XML che possano guidare gli autori di documenti XML durante

tutto il processo di markup.

In alcuni contesti, specialmente in quello dell’informatica giuridica, sono

stati introdotti i markup editor, software WYSIWYG che assistono l’utente

nella creazione di documenti corretti. Questi editor possono essere utilizzati

anche da persone che non conoscono a fondo XML ma, d’altra parte, sono

solitamente basati su uno specifico linguaggio XML. Questo significa che sono

necessarie molte risorse, in termini di programmazione, per poterli adattare

ad altri linguaggi XML o ad altri contesti.

Basando l’architettura degli editor di markup su parametri, è possibile

1

2 0. Introduzione

progettare e sviluppare software che non dipendono da uno specifico linguag-

gio XML e che possono essere personalizzati al fine di utilizzarli in svariati

contesti.

A tale scopo è necessario innanzitutto caratterizzare i documenti strut-

turati. I documenti strutturati sono documenti che contengono altre infor-

mazioni in aggiunta al loro contenuto. Queste informazioni supplementari

servono per descrivere la struttura logica del documento, ossia gli oggetti che

lo compongono, e le relazioni fra questi oggetti.

Esistono diverse tipologie di linguaggi di markup per la marcatura dei

documenti strutturati ma i linguaggi più appropriati a questo scopo sono i

linguaggi descrittivi e XML è, attualmente, il più completo in questo genere.

Negli ultimi dieci anni sono stati sviluppati svariati dialetti XML per la mar-

catura di documenti testuali appartenenti a molti contesti. Questi linguaggi

devono essere specifici ma allo stesso tempo flessibili per permettere di descri-

vere al meglio tutte le varie tipologie di documento che si possono incontrare

in uno specifico contesto.

Uno dei contesti più insidiosi è quello giuridico. I documenti legali e leg-

islativi possono avere strutture molto differenti anche se creati dalla stessa

istituzione. Ad esempio la struttura delle leggi italiane può essere differente

dalla struttura delle proposte di legge. Per questo sono stati creati negli anni

molti linguaggi XML per la marcatura di documenti legali. Attualmente, il

più completo è Akoma Ntoso, che con la sua architettura basata su pattern,

può essere utilizzato per la marcatura di documenti provenienti da tutte le

istituzioni.

Gli esperti di informatica giuridica sono stati pionieri nella creazione di

editor di markup. In questo contesto, infatti, gli autori di documenti debbono

concentrarsi sulla struttura dei documenti e non possono essere distratti dalla

complessa sintassi XML. Insieme a linguaggi XML specifici sono stati creati

anche editor di markup per le varie istituzioni. Solitamente, essi sono svilup-

pati come plug-in di processori di testo esistenti, come Microsoft Word o

apache OpenOffice. Questo è molto importante in quanto fornisce agli autori

0.0 3

un’interfaccia grafica già nota e con la quale si sentono a loro agio. Tut-

tavia, è molto difficile adattare questi software alla marcatura di documenti

provenienti da istituzioni per le quali il software non è stato originariamente

pensato. Partendo dall’analisi di questi software è possibile progettare e im-

plementare un editor di markup indipendente dal linguaggio XML utilizzato.

LIME è un editor di markup open-source, parametrico e indipendente

da qualsiasi linguaggio XML. La sua architettura è basata sui pattern XML,

su alcune linee guida per la creazione di documenti XML e, soprattutto, su

parametri inseriti all’interno di file di configurazione JSON. L’idea alla base

di LIME è che è possibile astrarre un linguaggio XML assegnando ad og-

nuno dei suoi content model uno dei pattern utilizzati dal linguaggio Akoma

Ntoso. Questa astrazione può essere descritta con parametri (array associa-

tivi) all’interno di file di configurazione JSON. In questo modo, in LIME, è

possibile abilitare altri linguaggi XML semplicemente scrivendo un insieme

di file JSON impacchettati in un modo comprensibile al software. Questo

significa anche che ogni eventuale estensione non necessita di competenze

specifiche in nessun linguaggio di programmazione.

Altro scopo di questa dissertazione è quello di identificare un test di us-

abilità adatto agli editor di markup e utilizzarlo per testare LIME. Il test è

stato creato al fine di valutare l’efficacia e l’efficienza degli editor di markup

e la soddisfazione degli utenti nell’usare le loro funzionalità. Il test è stato

sottomesso a dieci utenti per valutare LIME e ha evidenziato l’eccellente us-

abilità della maggior parte delle sue funzionalità.

Numerose istituzioni parlamentare, politiche e apolitiche, attendono il ri-

lascio della prima versione beta di LIME per il markup dei loro documenti

legali e legislativi.

I successivi capitoli di questa dissertazione verranno redatti in lingua in-

glese per facilitare la comprensione a ricercatori e sviluppatori non italiani.

4 0. Introduzione

Chapter 1

Introduction

The purpose of this dissertation is to pinpoint the proper technologies

for the development of parametric editors for structured documents and to

characterize LIME, a parametric and language independent markup editor.

The recent evolution of XML-related technologies has led to a massive

use of structured documents both for typographical and for data interchange

purposes and, in the last decade, several XML languages have been developed

in order to meet the requirements of an incredibly diverse set of contexts.

Due to this, many people, with many different skills, started to handle XML

documents in their everyday work. But specific XML dialects can be difficult

to understand and to be used properly and, for this reason, XML editors that

allow users to markup documents in a proper way are needed.

In specific contexts, especially the legal one, XML drafters find help in

markup editors. Markup editors are WYSIWYG software that assist users in

the creation correct XML documents, by driving drafters through the correct

workflow of markup. On the one hand, these are powerful tools that can be

used even by people that have no knowledge of the XML syntax and XML

dialects. But, on the other hand, these software are strictly dependent from

the XML language they use to format documents and from the context they

belong to. This means that, in order to use these software in other contexts,

customization is needed and this can be expensive if the editor was not de-

5

6 1. Introduction

signed adequately in the first place.

By relying the architecture of markup editors on parameters, it is possible

to create markup editors that are independent from any specific XML lan-

guage and that can be adapted to several contexts with the minimum effort

in terms of coding.

In order to create a parametric editor for structured documents, it is im-

portant to understand what structured documents are. Structured documents

are documents that contain other information in addition to their content.

This information adds semantic meaning to documents or to fragments of

them and describe documents’ logical structure.

The logical structure is a description of the objects that compose a docu-

ment and of the relations among them. It is ascribed to documents by using

appropriate and standardized markup languages. Different kinds of markup

languages were developed in the course of time, but descriptive markup lan-

guages are the most suitable ones for the description of documents’ logical

structure.

Descriptive markup languages allow authors to describe objects and the

relations between them by labeling them with tags. In this way, authors can

focus on documents’ logical structure regardless of any particular treatment

of their rendition.

The first really standardized descriptive markup language was the Stan-

dard Generalized Markup Language, whose purpose was to define a gener-

alized markup language for documents. By using SGML it is possible to

markup structured documents according to a Document Type Declaration.

SGML laid the foundations for the two most common descriptive markup

languages: Hyper Text Markup Language and eXtensible Markup Language.

HTML is currently the most suitable technology to create web pages.

Web browsers interpret the HTML tags in the documents and present the

whole document in a readable or audible way. HTML and chiefly HTML 5

are good descriptive markup languages, but they are not intended to markup

documents that must have their specific in-context semantically relevant el-

1.0 7

ements. In these situations XML must be used.

XML defines a set of rules aimed to produce human-readable and

machine-readable documents. It was originally designed to allow a large-scale

electronic publishing, but it is currently also used to exchange data on the

web.

There are many XML dialects used for the markup of text-based re-

sources. These XML languages must be specific but at the same time they

must be as flexible as possible, in order to hit all the peculiarities of the dif-

ferent areas in the same context. For example, a novel has a quite different

structure from a scientific paper.

One of the most challenging context is the legal one. Even if legal and

legislative documents rely on recurrent structures, they have to meet the re-

quirements of a large set of different traditions, rules and users. Moreover,

different kinds of legislative documents of a single country can have different

structures. For instance, Italian bills can be quite different from Italian acts.

In the last ten years, many effective XML languages for the legal context

were developed. Some of them were designed to meet the requirements of

specific countries, like Norme In Rete, that was designed for the Italian leg-

islative documents. Other languages, like CEN/Metalex and Akoma Ntoso,

have a more flexible architecture and can describe documents coming from

a variety of countries. These languages try to abstract documents’ structure

by using XML patterns.

Like programming languages’ patterns, XML patterns describe recur-

rent markup situations. Akoma Ntoso architecture relies on six XML pat-

terns: containers, hierarchical containers, markers, blocks, inline and sub-

flow. These patterns are the most descriptive and the most common ones

and, even if other languages do not have a patternized architecture, it is

possible to abstract them and to assign one of these patterns to their content

models. XML patterns are the keystone for language independent markup

editors.

In legal context, markup editors are widely used and in the last two

8 1. Introduction

decades many editors were developed. As a matter of fact, legal informatics’

experts were pioneers in the markup editors’ field. They immediately under-

stood that XML is a powerful technology to ensure interchange, reusability,

and portability of legal and legislative documents. But they also understood

that legal and law experts can not rely on pure XML editors because of

the difficulty to write a proper XML legal document by using XML syntax.

Through legal markup editors, legal drafters are not in charge of checking

XML well-form and XML validity. They focus on the structure of the law

and the editor drive them to create a correct XML too.

The most common legal markup editors are built as plug-ins of well-

known word processors, like Microsoft Word or Apache OpenOffice. In this

way, users are facilitate in their work because they use an interface they are

already familiar with. By using macros, legal drafters ascribe the logical

structure to legal documents; the legal markup editor prompts them the cor-

rect macros to be used and, eventually, it creates the final XML document

by transforming the word processors’ format into XML.

The other side of the coin is that these software are hardly customizable

because of three reasons. Firstly, they are built on the top of other complex

software and this means that any attempt to change the business logic or

the interface of the software would be very expensive. Secondly, they are

built to comply very specific markup workflows that derive from the legal

tradition of the country where they are used. Last but not least, they rely

on a specific XML language and it is often difficult to adapt them to other

XML standards.

Starting from the analysis of legal markup editors, it is possible to design

and implement a markup editor whose architecture revolves on parameters,

in order to ensure the customizability and the independence from any XML

markup language.

LIME (Language Independent Markup Editor) is a parametric and lan-

guage independent markup editor aimed to be used with a wide variety of

different XML languages. It relies on a set of parameters that are used to

1.0 9

describe the XML languages that must be used and the markup workflow

related to the languages. It solves many of the problems of current legal

markup editor and aims to be used in any context in which XML can bring

innovation.

LIME is an open-source stand-alone web application and its architecture

is based on a set of technologies that ensure its independence from any XML

language. Firstly and most importantly, LIME relies on XML patterns. In

order to be used in LIME, XML languages must be analyzed and a pattern

must be assigned to each content model. Secondly, LIME follows specific

XML guidelines in order to create homogeneous XML documents. Thirdly,

LIME parameters are specified in JSON configuration files. To create the

configuration for a new XML language, a language plugin must be writ-

ten. A language plugin is a set of configuration files packaged in a specific

way that LIME can understand. This means that LIME configuration files

are independent from the programming language used to develop LIME and

it is possible to create a LIME language plugin without any skill in code

developing. Lastly, LIME stores files in a native XML database and as-

signs them URI according to the Functional Requirements for Bibliographic

Records (FRBR). In this way, produced documents are immediately pub-

lished on the web and can be accessed by humans and machines by using the

Representational State Transfer (REST).

As a markup editor, LIME drives users to create XML files even if they

do not have any knowledge of XML, and moreover, even if they do not have

any knowledge of the specif XML language they are using to markup docu-

ments. Users select the parts of the text they want to markup and the editor

displays the elements that they can use to markup these parts. For example,

when users are marking up an act in Akoma Ntoso language and they select

a text inside an article, the editor allows to markup it as a section and does

not allow to create another article inside it.

By creating LIME configuration files it is also possible to define the

markup workflow associated to each XML language. This means that it

10 1. Introduction

is also possible to modify a part of the LIME business logic without any

effort in terms of coding.

The other challenge for LIME is to ensure users a great user experience.

Since users are driven by the editor to create a proper XML file, in some

situations they may feel frustrated because this can be interpreted as a lack

of freedom during the markup workflow. To evaluate the LIME interface’s

usability a usability test appropriate for markup editors was created.

The usability test was submitted to ten users during a hackaton held

at CIRSFID (Centro Interdipartimentale di Ricerca in Storia del Diritto,

Filosofia e Sociologia del Diritto e Informatica Giuridica) of the University

of Bologna. The hackaton was also intended to find the bugs of the first alpha

version of LIME. The test was performed on LIME with its Akoma Ntoso

configuration. After a brief introduction to LIME overall features and to the

structure of legislative documents, two questionnaires were submitted to the

users and they were asked to perform nineteen tasks in order to evaluate the

LIME efficacy, the LIME efficiency and the users’ satisfaction while they

use LIME.

The test’ results demonstrate that users are able to easily use the LIME

features related to the navigation system, such as import, export files, open

files and save them. It also demonstrated that, even if users have no knowl-

edge of legislative documents, they are able to simply markup the main

structure of acts and bills, such as their preface, their preamble and their

article and sections. The test also highlighted that users are quite satisfied

while using LIME. They were asked to foresee the expected effort to complete

some tasks and, after the completion, they were asked to indicate the real

effort they experienced. The majority of the users found the main part of

the tasks as simple as they expected or, in some situations, they found them

even simpler.

The test also highlighted some issues related to the LIME usability and

some bugs that will be fixed in the next version of the editor.

LIME is currently requested by several parliaments, political and apoliti-

1.0 11

cal organizations from overall the world, to markup their legal and legislative

documents. It is also requested by history scholars to markup descriptions

and transcriptions of ancient manuscripts. Hopefully, after the release of the

first beta version, many language plugins will be developed by third parties

and that LIME will be widely used both in the legal context and in other

contexts.

12 1. Introduction

Chapter 2

The markup of structured

documents

The aim of this chapter is to give an introduction about structured doc-

uments, about their evolution in time and about the markup languages used

to create them.

In the first section I will produce a definition of structured documents.

The second section aims to briefly navigate through the history of the markup,

exploring the different styles of markup. The third section is about the de-

scriptive markup languages and explores examples of them. Finally, in the

fourth section, I will introduce some notions about the markup of text based

resources and the currently most used languages to markup them.

2.1 Structured documents

A structured document is an electronic document which embeds other

information in addition to its content. This supplementary information is

used to give semantic meaning to the whole document or to specific parts of

it and is fitted in the document using some kind of embedded coding, such

as markup. 1 .

1Extracted from the wikipedia’s definition of structured document.

13

http://en.wikipedia.org/wiki/Structured_document

14 2. The markup of structured documents

Typically, a document contains at least three different conceptual struc-

tures 2. The first one is the logical structure, that is a description of the

objects that compose the document and the relations among them. Then

there is the layout structure, that specifies the document’s layout, i.e. the

pages’ format, the elements that must be underlined or the text’s parts that

must be centered. Last but not least is the physical structure that describes,

for example, the fact that a book must be divided into pages and that a page

must be divided into sections 3. In any type of document, including paper

ones, it is possible to identify these three conceptual frameworks.

In a structured document, the focus is on the logical structure of the

document, with no concerns about how it must be printed. For this reason a

structured document contains a lot of semantic information about its logical

structure, which can be easily interpreted by computers in order to create

different kinds of presentations suitable for a variety of devices (computers’

screens, mobile phones, paper sheets and so on), or in order to perform com-

plex computations on large sets of documents.

Such structure can be ascribed to the document using appropriate and

standardized markup languages that are used to add semantic markup to

each section of the document that is relevant to its logical organization.

In the next section I will explain how these languages can be used to

create the logical structure of the document and the differences among the

most known markup languages used to create structured documents.

2Although some studies highlight four conceptual structures, for example the one of
Nenad Marovac [Mar92], this research is focused on only three of them.

3It is important not to confuse the logical structure, that refers to the organization as
it is seen by the author, and the physical structure that is the organization as it is seen
by the publisher.

http://web.cs.wpi.edu/~kal/elecdoc/EDstrucdoc.html
http://trsat.sdsu.edu/~deta/research/docrec/docrec.html

2.2 15

2.2 Markup languages for structured docu-

ments

A markup language is a language used to annotate some parts of the text

in order to highlight its logical structure and to make this structure under-

standable both by software and, if the markup language is human readable,

by human beings [Gol81].

The term markup is derived from the publishing practice of marking-

up a manuscript[CRD87] according to which a reviewer adds some instruc-

tions, usually with a blue pencil, on the margins and on the text of a paper

manuscript to indicate what typeface, style and size should be applied to

each part of the text 4. In electronic markup the blue pencil was replaced by

some kind of instructions that are embedded in the text in binary format or

surround the text like labels.

There are three categories of electronic markup, the presentational markup,

the procedural markup and the descriptive markup [Gol81, CRD87].

The presentational markup is the markup used by traditional words’ pro-

cessing systems (such as Microsoft Word’s versions prior to 2002 5). These

kinds of software embed the markup in the text in binary code. Such markup

is intended to be hidden from the author and the editors.

With the procedural markup, the markup is embedded in the text and

provides information for programs that need to process the text. The text

is marked up in a visible way and directly manipulated by the author and

usually, during the compiling phase, the software runs through the text from

the beginning to the end following the instruction as encountered. First ex-

amples in the history of procedural markup languages can be roff, nroff and

troff, all typesetting packages for the UNIX operating system that read a file

written with a special syntax and output another file suitable for the presen-

tation. For example, the listing 2.1 shows how to set a line spacing and how

4See the markup language page on wikipedia to read more about the history of the
markup.

5Read more about Microsoft Word on the word web page.

http://office.microsoft.com/en-us/word/
http://en.wikipedia.org/wiki/Markup_language

16 2. The markup of structured documents

to center the text using groff, a Linux porting of nroff and troff 6.

Listing 2.1: An example of groff markup language

.ls 2

.ce 1

Hello world! I’m a centered text in a document

with a specific line spacing

Another typesetting program, introduced in 1978, is TeX, that uses the meta-

font language for font description and the modern typefaces to allow the users

to produce well formatted documents with a minimum effort. Later in time,

in early 1980s, LaTeX was introduced, a document markup language for the

TeX typesetting program. LaTeX allows to create high-quality documents

with a reasonably simple syntax [Lam86]. For instance, the code in listing

2.2 produces the document in figure 2.1 7.

Procedural markup languages was massively used in the 1980s and 1990s

and LaTeX remains till today the most used instrument to edit scientific

papers (this dissertation is written in LaTeX too).

Even if both procedural markup languages and presentational markup

languages are useful to decouple the logical structure from the document

content, this work focuses on the descriptive markup languages that I will

extensively explain in the next section.

6For more information read the groff’s project page.
7Courtesy of wikipedia.

http://en.wikipedia.org/wiki/LaTeX
http://www.gnu.org/software/groff/

2.3 17

Figure 2.1: The output generated by the lines of code in the listing 2.2

Listing 2.2: An example of LaTeX markup language

\documentclass[12pt]{article}

\usepackage{amsmath}

\title{\LaTeX}

\date{}

\begin{document}

\maketitle

\LaTeX{} is a document preparation system for the \TeX{}

typesetting program. It offers programmable desktop

publishing features and extensive

facilities for automating most aspects of typesetting and

desktop publishing, including numbering and cross-referencing

, tables and figures,

page layout, bibliographies, and much more. \LaTeX{} was

originally written in 1984 by Leslie Lamport and has become

the dominant method for using

\TeX; few people write in plain \TeX{} anymore. The current

version is \LaTeXe.

\end{document}

18 2. The markup of structured documents

2.3 Descriptive markup languages

Descriptive markup is used to ascribe a semantic meaning to each part of

the document through labels (called tags). In this way, the author can focus

on the document’s logical structure, regardless of any particular treatment

of rendition of it. Unlike the procedural or the presentational markup, the

goal of the descriptive markup languages is to institute a one to one mapping

between the logical structure of the text and the markup of elements that

constitute it 8.

A first attempt of markup standardization for the encoding and analysis

of literary texts was made by the COCOA encoding scheme [Van04] that was

originally developed for the COCOA program in the 1960s and 1970s [Rus67],

but that was later used as an input standard by the Oxford Concordance Pro-

gram in the 1980s [HM88] and by the Textual Analysis Computing Tools in

the 1990s [LBM+96]. Another language that reached a certain level of stan-

dardization was the Beta-transcription/encoding system, that was used to

transcript and encode the classical Greek texts [BSJ86].

The first descriptive markup language that was really standardized and

that accomplished to the task of formally separating information from meta-

data, also ensuring interchange, reusability, and portability, was the Standard

Generalized Markup Language; as I will explain in the next sections, this per-

mitted the creation of the HyperText Markup Language and later evolved into

the eXtensible Markup Language.

2.3.1 The Standard Generalized Markup Language

The Standard Generalized Markup Language [Bry88] (henceforth referred

to as SGML) is an ISO-standard technology 9 whose purpose is to define gen-

eralized markup languages for documents. It is important to underline that

8A more detailed reading about the differences between the procedural and the descrip-
tive markup languages can be found on the TEI’s manual page.

9ISO 8879:1986, Information processing – Text and office systems – Standard Gener-
alized Markup Language (SGML)

http://www.iso.org/iso/catalogue_detail.htm?csnumber=16387
http://teibyexample.org/modules/TBED00v00.htm

2.3 19

the ISO standard also introduced for the first time a definition of generalized

markup. According to the standard, a generalized markup should be declar-

ative, because it must describe the document’s structure rather than specify

the processing to be performed on it, and it should be rigorous in order to

allow computer programs to process the documents in the right way.

SGML descends from the Generalized Markup Language that was devel-

oped in the 1960s by Charles Goldfarb, Edward Mosher, and Raymond Lorie

[Gol91]. It was originally designed to mark up large set of documents in a

machine readable format. These documents should be preserved in time and

should be easily shared between public offices and industries.

The standard defines that each document intended to be compliant to

SGML must be composed of three parts. the SGML declaration, the pro-

logue containing a DOCTYPE definition that refers to a Document Type

Definition, and the content itself, that is composed by a root element con-

taining all the other elements of the document.

The document type declaration defines the rules that the logical struc-

ture of the document must follow and other information that is useful for

the documents’ processors, such as the attribute values and their types. It

is used to check one of the two validity kinds of the SGML documents: the

so-called type-validity. In order to be type-valid, a SGML document must be

compliant to its document type declaration. A fragment of a document type

declaration is reported in listing 2.3

Although the document can be type-valid, it should also be tag-valid in

order to be full-valid. To accomplish this, the text in the document must be

completely tagged.

It is important to keep in mind that the type validity check is the first

one to be performed because a failure means that the document is not syn-

tactically correct, so it is not possible to process it in any way. On the other

hand, even if the type validity check can be performed or not, it is the most

important one because, if the documents does not follow the rules specified

in its document type declaration, it has no semantic meaning.

20 2. The markup of structured documents

Listing 2.4 reports a SGML document that is tag valid and type valid

according to the document type declaration in listing 2.3 10.

SGML is still used for small-scale and general purpose applications. One

of its derivative is the HyperText Markup Language that is described in the

next section.

Listing 2.3: A fragment of a document type declaration

<!ELEMENT anthology - - (poem+)>

<!ELEMENT poem - - (title?, stanza+)>

<!ELEMENT title - O (#PCDATA) >

<!ELEMENT stanza - O (line+) >

<!ELEMENT line O O (#PCDATA) >

Listing 2.4: A type and tag valid SGML document

<!DOCTYPE anthology SYSTEM "anthology.dtd">

<anthology>

<poem>

<title>The SICK ROSE</title>

<stanza>

<line>O Rose thou art sick.</line>

<line>The invisible worm,</line>

<line>That flies in the night</line>

<line>In the howling storm:</line>

</stanza>

<stanza>

<line>Has found out thy bed</line>

<line>Of crimson joy:</line>

<line>And his dark secret love</line>

<line>Does thy life destroy.</line>

</stanza>

</poem>

<!-- more poems go here -->

</anthology>

10Courtesy of the stanford.edu site

http://www-sul.stanford.edu/tools/tutorials/html2.0/gentle.html

2.3 21

2.3.2 The HyperText Markup Language

The HyperText Markup Language [BLC95] (hereafter HTML) is a World

Wide Web Consortium recommendation 11 and it is the most used markup

language to create web pages. Web browsers interpret the HTML tags in the

documents and present the whole document in a readable or audible way.

The history of HTML started in 1980 when Tim Berners-Lee proposed

ENRIQUE, a system whose purpose was to allow researchers to share docu-

ments. Later, in 1989, Berners-Lee wrote an article where he advanced the

idea of an internet based hypertext system [BL89] . In 1990 he designed

HTML and developed the language and the first web browser that was able

to read HTML documents. The first article related to HTML was published

in 1991, it was called ”HTML tags” and described eighteen elements and a

first simple design of HTLM [BLB]. The first HTML standardized specifica-

tion was completed in 1995, when HTML 2.0 was released [BLC95]. Since

1996, the HTML specifications have been maintained by the World Wide

Web Consortium 12 but in 2000 HTML also became an international stan-

dard 13. The current stable standardized version is HTML 4.01, that was

published in 2001. In 2004 development began on HTML 5 14, that will

be officially released in 2014. The design of HTML was inspired by SGML

and, still nowadays, it has SGML-based specification. But on January 26,

2000 the World Wide Web Consortium released XHTML 1.0 [P+00], that

has XML-based specification. XHTML is intended to be identical to HTML

4.01 except where limitations of XML over the more complex SGML require

workarounds.

The content of a HTML document is usually formed by a head element

and a body element. The head contains information abut where to retrieve

11See the W3C’s page for HTML 4.01 specification
12The World Wide Web Consortium (W3C) is an international community that develops

open standards to ensure the long-term growth of the Web.
13ISO/IEC 15445:2000 Information technology – Document description and processing

languages – HyperText Markup Language (HTML).
14HTML 5.1 Nightly, A vocabulary and associated APIs for HTML and XHTML, Edi-

tor’s Draft 23 September 2013.

http://www.w3.org/html/wg/drafts/html/master/
http://www.w3.org/TR/REC-html40/
http://www.w3.org/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=27688

22 2. The markup of structured documents

the files related to the HTML document (like script files and style files), and

contains important metadata about the whole document (such as its title

and its keywords). The body contains the actual content of the document.

As is it possible to see in listing 2.5, HTML 4.01 is not a pure descrip-

tive markup language, due to the fact that it mixes descriptive markup and

presentational markup. Elements like h1 are used to specify that the inside

text represents a heading (in this case a first level heading) and they do not

denote a specific markup style, even if most web browsers have a default style

in order to format these kind of elements. On the other side of the coin, ele-

ments such as b and u are used to indicate that the devices should render the

text in bold face or underlined, respectively. But the use of presentational

markup was discouraged in all the HTML versions, it is deprecated in the

current versions of HTML and XHTML and it is illegal in HTML 5.

HTML and chiefly HTML 5 are good descriptive markup languages but,

as pointed out in the introduction of this paragraph, they are intended to

be used to create web pages and not to markup documents that must have

their specific in-context semantically relevant elements (for example a cook-

ing recipe or a law). In these cases, as I will explain in the next section,

we find solace in the eXtensible Markup Language, that consents to create

specialized dialects for different contexts.

Listing 2.5: An sample HTML 4.01 document

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3

.org/TR/html4/strict.dtd">

<html>

<head>

<title>HTML example document</title>

<meta name="keywords" content="HTML, example,

paragraph, bold">

</head>

<body>

<h1>Hello wolrd! I’m an HTML document</h1>

<p>

This is my content. I have a paragraph

2.3 23

and a bold face text inside!

</p>

</body>

</html>

2.3.3 The eXtensible Markup Language

The eXtensible Markup Language (henceforth referred to as XML) is a

simple and flexible descriptive markup language derived from SGML [BB+99].

It defines a set of rules aimed to producing human-readable and machine-

readable documents and it was originally designed to allow a large-scale elec-

tronic publishing, but it is currently also used to exchange a large variety of

data on the web.

The first version of XML (XML 1.0) was defined in 1998 and it is cur-

rently in its fifth edition, published on November 26th, 2008. The second

version of XML (XML 1.1) was published on February 4th, 2004 and it is

currently in its second edition published on August 16th, 2006. Prior to the

fifth edition XML 1.0 differed from XML 1.1 because it had stricter require-

ments for characters used in elements’ names, attribute names and unique

identifiers. The fifth edition adopted the mechanism of XML 1.1, specifying

that only certain characters are forbidden in names and everything else is

allowed. Even if no organization has announced plans to work on an hypo-

thetical version 2.0, a skunkworks written by one of the XML developers 15

contains some ideas of what an XML 2.0 could be.

As I said previously, a big part of XML comes from SGML unchanged.

XML, like SGML, uses the angle-brackets syntax, it separates the logical and

the physical structure of the document, and it supports a grammar-based va-

lidity through a document type declaration. It also allows mixed content and

processing instructions (used to separate the processing from the representa-

tion) and it permits the separation of data and metadata by using elements

15Extensible Markup Language - SW (XML-SW), Skunkworks 10 February 2002, Tim
Bray.

http://www.textuality.com/xml/xmlSW.html

24 2. The markup of structured documents

and attributes. The differences between the two standards regard the SGML

declaration, that in XML is substituted by the XML own declaration, and

the character set, because XML adopts unicode [US91].

Like SGML, valid XML documents must pass two kinds of validation, the

well-formed validation and the schema validation. The well-formed valida-

tion is a kind of syntax validation. For example, it ensures that the document

has a unique root container and that all elements are formed by an opening

tag and a closing tag. The schema validation checks if the document fol-

lows the rules that are defined in the schema referred by its document type

declaration. The schema of XML documents can be created using different

technologies such as DTD, XML Schema [Tho04, BMC+04], RELAX NG

[CM01], Schematron [Jel01] and others.

XML is nowadays the most used descriptive markup language and it is

used to markup a large variety of documents ranging from the documents

that describe user interfaces 16 to the documents that express actions within

business processes 17, but it is especially suitable for the markup of text-based

resources.

2.4 XML for the markup of text-based re-

sources

In this chapter we have seen that a structured document, both a proce-

dural one and a text-based one, is a resource formed at least by a logical

structure, a human readable content and some other background informa-

tion usually referred as metadata. Earlier in section 2.1 I gave a definition

of logical structure, that must be intended as the description of the objects

forming the document and the relations between them. The content of a

textual resource is obviously the readable text inside it and the metadata are

16The XML User Interface Language, is a markup language developed by Mozilla, whose
aim is creating user interfaces of applications like the Firefox web browser.

17The Business Process Execution Language is an OASIS standard executable language
that enables users to describe business process activities.

https://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
https://developer.mozilla.org/en-US/docs/XUL

2.4 25

data that describe other data. In some situations metadata can be mixed

in the content of the document but they are often peripheral data contained

in resources related to the main one, for example a book’s cover, or in a

specific part of the document that, if missing, does not jeopardize the actual

readability of the document.

For instance, a book is constituted by chapters, sections, the actual text

of the chapters and of the sections and by other relevant information like its

author, the publication date and the publisher’s name. On the other hand,

a law is made by sections and their text, pointed lists and their text, and by

a lot of legal info such as the efficacy date, the number of the law and the

law’s proponent.

In section 2.2 I described three different families of markup languages

and in section 2.3 I explained thoroughly the descriptive markup languages

that are the currently most adopted languages for the markup of structured

documents.

The rest of this research is focused on XML and on the textual resources.

XML, due to its intrinsic nature and syntax, is the best suitable choice for

the markup of text-based documents. It allows to characterize their structure

by using elements, it enables the creation of metadata by using elements’ at-

tributes and, last but not least, thanks to XML it is possible to evidence the

document’s structure without changing or disassembling the textual content

of the document.

In chapter 3 I will explore various XML dialects in order to highlight

differences and similarities between them.

26 2. The markup of structured documents

Chapter 3

Structural differences in XML

dialects

In this chapter I will deeply explore the use of XML to markup textual

resources. In the first section I will give an introduction about the differences

among the XML dialects that are used for documents belonging to different

contexts. In the second section I will examine some examples of dialects that

are used for the markup of generic textual resources and then, in the third

section, I will show the most popular XML dialects that are used to create

structured laws. In section 3.4 I will the describe how it is possible to abstract

the logical structure of the documents using patterns. I will conclude this

chapter examining the possibility to identify a generic markup process that

can be used for the markup of all the textual based resources.

3.1 Different dialects for different contexts

Currently, there are a lot of XML 1 dialects used in a large variety of

contexts.

Many of them are used for the markup of text-based resources. There

1At the time of writing, it is possible to count two hundred twenty-two languages in
the wikipidia’s page, that lists the most known XML dialects.

27

http://en.wikipedia.org/wiki/List_of_XML_markup_languages

28 3. Structural differences in XML dialects

are XML used for the markup of medical resources [GNK+99] (that enable,

for example, predictive medicine) [TDK+99], there are XML dialects used

for markup recipes 2 (that are useful for the creation of internationalized

cookbooks) [Raa03], and there are even languages used for the markup of

theological texts [Cov00] (that should be suitable for online sharing of ser-

mons).

Some of these languages are really specific for the context they belong

to and, for this reason, are composed by elements and attributes that de-

scribe exactly the items of their framework. Other languages need to be

more generic because, even if they are intended for the markup of textual

resources residing in a clear-cut area, they have to face up a big set of differ-

ences, due, for instance, to the diversity of the traditions of the documents’

creators or to the laws that regulate that kind of documents in the country

of the documents’ writers’.

In the next sections I will show some examples of XML languages that

are used for the markup of generic textual resources and for the markup of

legal resources.

3.2 Examples of dialects for textual resources

A book, a technical manual, or a description of an ancient manuscript are

all examples of textual resources. For the markup of these documents XML

languages are needed. These must be specific but at same time as flexible as

possible, in order to hit all the peculiarities of the different areas in the same

context.

For example, a book about Oscar Wilde’s aphorisms [Wil98] has a quite

different structure from a novel regarding a pseudoscientific book that promises

everlasting life [Tho10]. Similarly the structure of a technical manual about

2RecipeML, also known as DESSERT (Document Encoding and Structuring Specifica-
tion for Electronic Recipe Transfer), is an XML language created in 2000 by the company
FormatData and provides detailed markup for ingredients, cooking time and so on.

http://www.formatdata.com/recipeml/

3.2 29

a programming language 3 is completely different from the structure of a

manual about an airplane made with LEGO(TM) construction toys. Differ-

ences can also be identified in ancient manuscripts and for this reason, using

a specific XML dialect that I will describe in the next section, it is possible

to markup the description of extremely different manuscripts, i.e the descrip-

tion of the Voynich manuscript [D’I78] and the description of a legal ancient

manuscript [PC13].

3.2.1 Text Encoding Initiative

The Text Encoding Initiative [IV95] (hereafter TEI) is a community cre-

ated in the 1980s that aims to support the digitization of texts, chiefly in the

humanities, social sciences and linguistics. The result of the collaboration is

an XML standard [Prz09] and a set of guidelines [SMB+94] for the creation

of digital text.

The first version of the TEI guidelines was released in 1990, but the third

version of the guidelines (P3), released in 1994, was the first to be widely

used. XML was introduced in 2001 with the release of the fourth version of

the standard (P5). The latest version (P5) was published in 2001.

The task of flexibility is achieved by TEI standard because it does not

specify a fixed set of rules but it is intended to be customized both for the

users that need to select subsets of TEI’s elements, and for users that have

to add elements for the particular features that they need in order to markup

their texts. TEI permits local variation of usage and it is not different human

languages; it supports idiomatic usage, dialects and local usage.

TEI is extensively used to markup detailed descriptive information about

ancient manuscripts because it supplies a specific module that is generic

enough to permit to describe any kind of handwritten resource 4. The stan-

dard also permits to create electronic documents for different purposes; for

3See the PHP’s documentation page to have an idea of how programming language’s
documentation are written.

4See the TEI’s module’s documentation page to read more about this module and its
usage.

http://www.tei-c.org/release/doc/tei-p5-doc/en/html/MS.html
http://php.net/docs.php

30 3. Structural differences in XML dialects

example, it is suitable both for those projects that may simply wish to trans-

late an existing catalogue into a format that can be displayed on the web,

and for the projects whose aim is to create detailed databases of highly struc-

tured information that are useful for the quantitative codicology 5

A TEI P5 document contains a msDesc root element in which it is possi-

ble to specify information like its cataloging (with the msIdentifier element),

its content (using msContents elements) and its history (marked up whit the

physDesc element). Listing 3.1 shows the markup of the sample manuscript’s

description in figure 3.1 6.

The TEI standard is approved by a lot of organizations like the National

Endowment for the Humanities 7 and the Modern Language Association 8

and should be used in the future to create a big standardized online digital

library.

Figure 3.1: A sample of a manuscript’s description

Listing 3.1: A TEI document describing the source in figure 3.1

<msDesc>

<msIdentifier>

5The quantitative codicology is the ability to make complex queries on large sets of
manuscripts’ description such as: ”Find all manuscripts that have the same distribution
of jer letters and the same watermarks”, ”Find all manuscripts that share at least three
descriptive features with one another” and so on.

6Courtesy of the Text Encoding Initiative
7The National Endowment for the Humanities is an independent federal agency and is

one of the largest funders of humanity programs in the United States.
8The Modern Language Association is an association founded in 1983 by teachers and

scholars that promotes the study and the teaching of languages.

http://www.mla.org/
http://www.tei-c.org/release/doc/tei-p5-doc/en/html/MS.html
http://www.neh.gov/

3.2 31

<settlement>Oxford</settlement>

<repository>Bodleian Library</repository>

<idno>MS. Add. A. 61</idno>

<altIdentifier type="SC">

<idno>28843</idno>

</altIdentifier>

</msIdentifier>

<msContents>

<p>

<quote>Hic incipit Bruitus Anglie,</quote> the

<title>De origine et gestis Regum Angliae</title>

of Geoffrey of Monmouth (Galfridus Monumetensis):

beg. <quote>Cum mecum multa & de multis.</quote>

In Latin.</p>

</msContents>

<physDesc>

<p>

<material>Parchment</material>: written in

more than one hand: 7 1/4 x 5 3/8 in., i + 55 leaves, in

double

columns: with a few coloured capitals.</p>

</physDesc>

<history>

<p>Written in

<origPlace>England</origPlace> in the

<origDate>13th cent.</origDate> On fol. 54v very faint is

<quote>Iste liber est fratris guillelmi de buria de ...

Roberti

ordinis fratrum Pred[icatorum],</quote> 14th cent. (?):

<quote>hanauilla</quote> is written at the foot of the page

(15th cent.). Bought from the rev. W. D. Macray on March

17, 1863, for

L 1 10s.</p>

</history>

</msDesc>

32 3. Structural differences in XML dialects

3.2.2 DocBook

DocBook [Wal99] is a descriptive and semantic markup language that

aims to allow the creation of technical documentations. Originally it was in-

tended for the markup of programming languages’ documentation but, cur-

rently, it can be used for any kind of technical documentation or also for

other purposes, such as the markup of e-learning materials [MOMGSFM06].

O’ Reilly 9 and HaL Computer Systems 10 started the developing of Doc-

Book in 1991 in a discussion group on Usenet 11 and moved in 1998 to the

SGML Open Consortium which is now known as OASIS. DocBook started

as a SGML application but, later, an equivalent version in XML (that now

has replaced the SGML one for the majority of the uses) was developed. The

latest version of DocBook is the 5.1 and it is still maintained by OASIS 12.

The DocBook language is defined by a RELAX-NG schema and by a set

of Schematron rules that are integrated in the main schema. Like the other

descriptive markup languages, its aim is to give tools to describe the meaning

of the content rather than the way in which it should be presented. Doc-

Book’s elements can be clustered in three main groups: the structural-level

elements, the block-level elements, and the inline-level elements.

The structural-level elements are those ones that are used to describe the

logical structure of the document. To this category belong elements like ar-

ticle that is used to markup unnumbered collections of block-level elements,

chapter, that is used to define numbered collections of block-level elements,

and part, that is used to markup a titled collection of chapters.

Block-level elements are used to markup sequential parts of the content

but they can or they can not contain text. Paragraphs, lists and titles are

9O’Reilly is an American media company that publishes books and web sites and
produces technical conferences regarding computer technology.

10HaL Computer Systems is a Californian computer company funded in 1990 by Andrew
Heller whose goal was to build computers for the commercial market.

11Usenet is a worldwide distributed discussion system that enables users to create and
follow discussions about new technologies, reading and posting messages on the system.

12At write moment, the technical committee is discussing the version 5.1b2 of the stan-
dard.

http://www.docbook.org/specs/docbook-5.1b2-spec-ed-01.html
http://oreilly.com/
http://www.hal-sa.net/

3.2 33

samples of block-level elements. These elements cause a vertical break of the

text in the position they are fitted in.

The inline-level elements are used to wrap a part of the text and to give

to it some kind of different presentational rules or semantic meaning. Unlike

block-level elements they do not split the text.

Listing 3.2 reports an example of a simple resource marked up using Doc-

Book 13.

The DocBook’s distinction among different clusters of elements is really

important because, as I will discuss in section 3.4 and later in chapter 5, the

languages based on this kind of element’s abstraction lay the foundations for

a definition of a generic markup process.

Listing 3.2: An example of DocBook markup language

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE article PUBLIC "-//OASIS//DTD Simplified DocBook XML

V1.0//EN"

"http://www.oasis-open.org/docbook/xml/simple/1.0/sdocbook.dtd">

<article>

<title>DocBook Tutorial</title>

<articleinfo>

<author>

<firstname>Adrian</firstname>

<surname>Giurca</surname>

</author>

<date>April 5, 2005</date>

</articleinfo>

<section>

<title>What is DocBook ?</title>

<para>DocBook is an SGML dialect developed by O’Reilly and

HaL Computer

Systems in 1991. It is currently maintained by the

Organization for the

Advancement of Structured Information Standards (OASIS).

DocBook describes

13Courtesy of www.informatik.tu-cottbus.de

http://www.informatik.tu-cottbus.de/~agiurca/tutorials/DocBook/

34 3. Structural differences in XML dialects

the content of articles, books, technical manuals, and other

documents.

Although DocBook is focused on technical writing styles, it

is general

enough to describe most prose writing. In this article, I’ll

discuss an

XML variant of the DocBook DTD that is also available.

</para>

</section>

</article>

3.3 Examples of dialects used in the legal con-

text

Laws, judgments, amendments and all the documents that belong to the

legal context are resources whose logical structure is really difficult to markup

with a generic markup language. Due to the fact that parliamentary work-

flows can be completely different among different countries, the laws should

be written in different ways and should follow formal or informal rules dic-

tated by the country’s legal system. Moreover, even in the same country, it

is possible to find different kinds of laws that should be written in different

ways, for example a bill can follow determinate drafting rules and an act can

follow other rules.

In the last two decades a large community of scholar worked to accom-

plish this task and they produced four generations of legal documents’ XML

standards [PCR09]. For the aim of this dissertation I consider two of these

generations.

The second generation of legal XML languages (i.e. Norme In Rete de-

scribed in the next section) is focused on the document’s modelling and on

the description of the text, but it does not contemplate a previous abstrac-

tion of the classes of the elements in the legal documents.

The third generation of legal XML standards includes languages like

3.3 35

CEN/Metalex and Akoma Ntoso (described in section 3.3.2 and 3.3.3 re-

spectively), that are based on patterns. This means that all the elements

that belong to the standard are grouped in classes (henceforth referred to as

patterns). Each of these patterns has its own semantic meaning, behavior

and hierarchy in respect to the other classes.

The XML dialects that belong to the third generation are the perfect test

case for the purpose of this research. Indeed, a legal XML standard that

hopes to be widely used in the world must be very flexible and extensible

to hit all the countries’ needs and should also be able to abstract a generic

logical structure of the laws. This inspires the design of a generic markup

process for all the laws and legal resources.

3.3.1 Norme In Rete

Norma In Rete (hereafter NIR) is an XML standard, created in 1999,

financed by the Italian Authority for Information Technology in the Public

Administration 14 and it was coordinated in conjunction with the Italian

Ministry of Justice [BFST03].

The NIR standard was designed around the Italian legislative system and

its schema is specified using DTD. NIR supplies three different schemata

that are used for specific purposes. The flexible DTD (nirloose) does not

specify any mandatory rule and is used for those documents that do not

have to follow drafting rules. The basic DTD (nirlight) is a subset of the

complete schema and is used for purposes other than the legal drafting, for

example for teaching purposes. The complete DTD (nirstrict) contains about

one hundred and eighty elements, specifies a lot of mandatory legal drafting

rules, and permits to completely markup the Italian laws.

As a second-generation legal XML standard, NIR does not try to abstract

the logical structure of the laws in order to be reused. I have to point out

14AIPA, Autorità per l’informatica nella pubblica amministrazione . Currently it is
known as CNIPA, Centro nazionale per l’informatica nella pubblica amministrazione (Na-
tional Center For The Information Technology in the Public Administration).

http://www.cnipa.gov.it
http://www.aipa.it/

36 3. Structural differences in XML dialects

that this does not mean that NIR is not able to markup the structure of the

document: of course it can, because it is a descriptive markup language. But

NIR identifies the logical structure of Italian laws and uses elements that are

specific for the Italian legal system. In the example reported in listing 3.3,

it is possible to see that the main body of an Italian law is marked up with

the element articolato, that is basically a container of numbered hierarchical

structure.

These kinds of numbered hierarchical structure are used all over the world

for drafting laws, even if other terms are used. For this reason it is possible to

generalize the schema and the legal XML standards of the third generation

try to introduce an abstraction layer in order to guarantee the reusability of

the standard.

Listing 3.3: A fragment extracted from an Italian law marked up using NIR

<?xml version="1.0" encoding="UTF-8"?>

<NIR xmlns="http://www.normeinrete.it/nir/2.2/"

xmlns:dsp="http://www.normeinrete.it/nir/disposizioni/2.2/"

xmlns:h="http://www.w3.org/HTML/1998/html4"

xmlns:xlink="http://www.w3.org/1999/xlink"

tipo="monovigente">

<Legge>

<meta>

<descrittori>

<pubblicazione norm="20130831" num="204" tipo=" "/>

<redazione id="13G00144" nome="" norm=""/>

<urn valore="urn:"/>

</descrittori>

</meta>

<intestazione>

<tipoDoc>monovigente</tipoDoc>

<dataDoc norm="20130831">31 agosto 2013</dataDoc>

<numDoc>101</numDoc>

<titoloDoc>Disposizioni urgenti per il perseguimento

di obiettivi di

razionalizzazione nelle pubbliche amministrazioni. (13G00144)

3.3 37

</titoloDoc>

</intestazione>

<formulainiziale/>

<articolato>

<capo id="1">

<num>

CAPO I Disposizioni urgenti per il perseguimento di obiettivi di

razionalizzazione della spesa nelle pubbliche

amministrazioni e nelle societa’ partecipate

</num>

<articolo id="1">

<num> Art. 1 .</num>

<comma id="art1-com1">

<num>1</num>

<corpo>

<h:p h:style="text-align: center;">IL

PRESIDENTE DELLA REPUBBLICA</h:p>

<h:br/>

<h:p h:style="padding-left:2px;">Visti gli

articoli 77 e 87 della Costituzione;</h:p>

<h:p h:style="padding-left:2px;">

Ritenuta la straordinaria necessita’ ed urgenza di emanare

disposizioni in materia di pubblico impiego al fine di

razionalizzare e ottimizzare i meccanismi assunzionali e di

favorire la mobilita’, nonche’ di garantire gli standard

operativi e i livelli di efficienza ed efficacia dell’

attivita’ svolta dal Corpo nazionale dei vigili del fuoco e

in altri settori della pubblica amministrazione;

</h:p>

... omissis

</comma>

... omissis ...

</articolo>

... omissis ...

</capo>

... omissis ...

</articolato>

</Legge>

38 3. Structural differences in XML dialects

<NIR>

3.3.2 CEN/Metalex

The CEN/Metalex [BHV+08] standard is a standard proposed in 2006

during the CEN workshop on an Open XML interchange format for legal

and legislative resources 15. The first version of the standard was released in

April 2007 and the final version was released later in January 2010.

Originally, the CEN/Metalex standard was not intended for the actual

markup of legal documents, but it aimed to be an interchange format for le-

gal and legislative resources. This is useful when public administrations need

to manage sets of documents coming from different countries. For instance,

the European Parliament needs to receive documents from all the European

countries, that format them with their favorite standard, and needs to trans-

late them into another format, i. e. Akoma Ntoso [PC09].

To accomplish this, CEN/Metalex strongly relies on the concepts of “con-

tent models instead of elements”. With this approach the elements’ names

are not semantically-charged (as they have to do according to the descriptive

markup philosophy) because they do not exactly specify the elements’ role in

the logical structure of the document, but they simply are labels that identify

the content model they belong to.

Introducing content models like hierarchical containers, containers, blocks

and inlines, and elements with names that strongly reflect their content

model like hcontainer, container, block and inline, CEN/Metalex aims to

completely separate the descriptive role of the element from its role in the log-

ical structure of the document. It is possible to see an example of CEN/Met-

alex in listing 3.4.

The CEN/Metalex approach could seem perfect for legal drafting, but

15The CEN Workshop on Open XML interchange format for legal documents -
(WS/METALEX) officially started on July 7th 2006 and ended in April 2007. The second
phase of the meeting started on June the 4th 2008 and ended in January 2010 with the
release of the final version of the Metalex standard.

http://www.cen.eu/cen/Sectors/Sectors/ISSS/Activity/Pages/WS_METALEX.aspx
http://www.cen.eu/cen/Sectors/Sectors/ISSS/Activity/Pages/WS_METALEX.aspx

3.3 39

this has a long tradition and countries often have their own standard that

has to be strictly followed. On the other hand, there are a lot of exceptions in

concrete examples of laws and the possibility to rely on very generic elements

would be a real godsend. Akoma Ntoso tries to fill the gap between complete

elements’ abstraction and strict descriptive markup.

Listing 3.4: A fragment extracted from an Italian law marked up using

CEN/Metalex

<?xml version="1.0" encoding="utf-8"?>

<root name="NIR" id="metalex_EA" tipo="originale" xmlns="metalex

" xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" xs:

schemaLocation="metalex ../../../../DTD/e_fork_four.xsd">

<container name="DecretoLegislativo" id="1992_01_25_dlgs_84"

xml:lang="it">

<container name="meta" id="metalex_EFAA">

<mcontainer name="descrittori" id="metalex_ECFAA">

<mcontainer name="pubblicazione" id="metalex_EDCFAA" >

<meta id="metalex_ACDCFAA" name="pubblicazione-tipo" ></

meta>

<meta id="metalex_ABDCFAA" name="pubblicazione-num"></meta>

<meta id="metalex_AADCFAA" name="pubblicazione-norm"></meta

>

</mcontainer>

</mcontainer>

</container>

<basic name="intestazione" id="metalex_EEAA" >

<htitle name="tipoDoc" id="metalex_EFEAA">DECRETO LEGISLATIVO

</htitle> 25 gennaio 1992, n.

<inline name="numDoc" id="metalex_ECEAA">84</inline>

<milestone name="h:br" id="metalex_EBEAA" xml:lang="it"></

milestone>

<htitle name="titoloDoc" id="titolo" xml:lang="it">

Attuazione delle direttive n. 85/611/CEE e n. 88/220/CEE

relative agli organismi di investimento collettivo in

valori mobiliari,

operanti nella forma di societa’ di investimento a capitale

variabile (SICAV).

40 3. Structural differences in XML dialects

</htitle>

</basic>

... omissis ...

<basic name="articolato" id="metalex_ECAA">

<hcontainer name="articolo">

<htitle name="num" id="metalex_EEPCAA">Art. 1.</htitle>

<htitle name="rubrica">

Societa’ di investimento a capitale variabile e

autorizzazione alla costituzione

</htitle>

<hcontainer name="comma">

<htitle name="num" id="metalex_EBCPCAA">1.</htitle>

<basic name="corpo" id="metalex_EACPCAA">

La societa’ per azioni costituita ed operante in

conformita’ alle disposizioni

del presente decreto, che ha per oggetto esclusivo l’

investimento

collettivo in valori mobiliari del patrimonio raccolto

mediante

l’offerta al pubblico in via continuativa di proprie

azioni,

e’ denominata societa’ di investimento a capitale

variabile (SICAV).

</basic>

</hcontainer>

... omissis ...

</hcontainer>

... omissis ...

</basic>

... omissis ...

</container>

... omissis ...

</root>

3.3 41

3.3.3 Akoma Ntoso

Akoma Ntoso 16 is an XML standard developed in 2005 under a project

of the United Nations Department for Economics and Social Affairs 17 whose

aim is to aid the African legislatures to better accomplish their democratic

functions using the information technologies [VZ07].

The standard went through various versions till today and, nowadays, it

is in its third version and is an OASIS’ standard. In order to match the nam-

ing convention of the OASIS’ XML standard, the Akoma Ntoso namespace

was renamed in LegalDocumentML but it is still referred to as Akoma Ntoso

in literature and in technical documentations.

Akoma Ntoso has a lot of features that make it usable in a large variety

of countries respecting their specific legal system: it separates the authorita-

tive content from the non-authoritative one, it clearly separates the metadata

from the data, and above all it is constituted by simple and reusable pattern-

based content models [BPVC11].

The pattern-based design has two purposes. On the one hand, it allows

future extensions of the schema to be carried out in a simple and backward-

compatible way. On the other hand, it permits to specify a small set of

patterns to which all the elements of the schema must belong to in order to

define, in a way as simple as possible, how every element interacts with the

other. For example, elements that belong to the block pattern can contain

elements that belong to the inline pattern, but can not contain other block

elements. I will describe deeply the Akoma Ntoso patterns in the next sec-

tion.

The Akoma Ntoso standard differs from the CEN/Metalex standard, be-

cause it does not supply only very generic elements that reflect the pattern-

based content models. It also supplies a full legal vocabulary that can be

16Akoma Ntoso means ”united hearts” in Akan language of West Africa and it is
an acronym for Architecture for Knowledge-Oriented Management of African Normative
Texts using Open Standards and Ontologies.

17UNDESA, a department of the United Nations that helps countries around the world
to meet their economic, social and environmental goals.

http://www.un.org/en/development/desa/what-we-do.html
http://www.akomantoso.org

42 3. Structural differences in XML dialects

used by the majority of legal drafters from all over the world. For instance,

Akoma Ntoso supplies elements for the creation of sections and articles and

it provides elements for the markup of the preamble and the preface of the

laws. But, like CEN/Metalex, it also supplies generic elements with the same

name of the patterns in order to allow also the markup of elements that are

not provided as basic elements by the schema.

For instance, the comma element that is largely used in the Italian laws

is not supported by Akoma Ntoso but it can be marked up using the line of

code in the listing 3.5 that have exactly the same semantic meaning of the

markup in listing 3.6.

Listing 3.5: A sample of Akoma Ntoso for the markup of a comma of an Italian

law using the hcontainer element

<article id="art1">

<hcontainer name="comma" id="art1_com1">

<num>comma 1</num>

<content>A hierarchical container with the name "comma" is

equivalent to a "comma" element</content>

</hcontainer>

</article>

Listing 3.6: A sample of Akoma Ntoso for the markup of a comma of an Italian

law using the comma element

<article id="art1">

<comma name="comma" id="art1_com1">

<num>comma 1</num>

<content>A hierarchical container with the name "comma" is

equivalent to a "comma" element</content>

</comma>

</article>

The fragment of document in listing 3.7 is a full example of Akoma Ntoso and

it is extracted by a markup of a Swiss law. In this example it is possible to

see how the use of patterns in the markup makes immediately identifiable all

the hierarchical containers and how it harmonizes the whole markup. In the

3.3 43

next section I will explain how to abstract the logical structure of documents

starting by the identification of the patterns that they contain.

Listing 3.7: A sample of Akoma Ntoso for the markup of a comma of an Italian

law using the comma element

<?xml version="1.0" encoding="UTF-8"?>

<akomaNtoso

xmlns="http://docs.oasis-open.org/legaldocml/ns/akn/3.0/

CSD05"

xmlns:html="http://www.w3.org/1999/xhtml">

<bill>

<meta>

<identification source="#somebody">

<FRBRWork>

<FRBRthis value="/za/bill/2003-09-04/76/main"/>

<FRBRuri value="/za/bill/2003-09-04/76"/>

<FRBRdate name="enactment" date="2003-09-04"/>

<FRBRauthor as="#author" href="#parliament"/>

<FRBRcountry value="za"/>

</FRBRWork>

... omissis ...

</identification>

</meta>

<preface id="prfc1">

<p class="heading">REPUBLIC OF SOUTH AFRICA</p>

<p class="subheading">

<docTitle id="prfc1-dcTtl1">TRADITIONAL LEADERSHIP AND

GOVERNANCE FRAMEWORK BILL</docTitle>

</p>

... omissis ...

</preface>

... omissis ...

<body id="bdy1">

<chapter id="cha1">

<num id="cha1-nm1">CHAPTER 1</num>

<heading id="cha1-hdng1">INTERPRETATION AND APPLICATION</

heading>

44 3. Structural differences in XML dialects

<section id="sct1">

<num id="sct1-nm1">1.</num>

<heading id="sct1-hdng1">Definitions and application</

heading>

<clause id="sct1-cla1">

<num id="sct1-cla1-nm1">(1)</num>

<content>

<blockList id="sct1-cla1-ul1">

<listIntroduction id="sct1-cla1-ul1-lstntrdctn1">In

this Act, unless the context indicates otherwise</

listIntroduction>

<item id="sct1-cla1-itm1">

<def id="sct1-cla1-itm1-df1">"area of jurisdiction"</

def>means the area of jurisdiction designated for

a traditional community and traditional council

that have been recognised as provided for in

... omissis ...

</item>

</blockList>

</content>

</clause>

<clause id="sct1-cla2">

<num id="sct1-cla2-nm1">(2)</num>

<content>

<p>Nothing contained in this Act may be construed as

precluding members of a traditional community from

addressing a traditional leader by the traditional

title accorded to him or her by custom, but such

traditional title does not derogate from, or add

anything to, the status, role and functions of a

traditional leader as provided for in this Act.</p>

</content>

</clause>

</section>

</chapter>

... omissis ...

</body>

</bill>

3.4 45

</akomaNtoso>

3.4 Abstraction of the XML dialects

The XML patterns are the key element for the abstraction of documents’

logical structure. Indeed, in order to abstract the logical structure of a docu-

ment, we need to highlight the parts of its structure that recurs several times,

and we need to markup them in the same (or in a similar) way. And, identify

a pattern means exactly the same think. We find content models that are

shared between more elements.

There are a lot of officially recognized patterns 18 that can describe, more

or less, all the most used content models. Akoma Ntoso uses six of these

patterns that I will describe in the following sections.

3.4.1 Containers

A container is an element that contains sequences of specific elements.

Each container has its specific list of contained element. For this reason, it is

not possible to create a generic content type for all the containers, but they

share the same basic characteristics: Some of the elements that they contain

can be optional and they can not contain directly text.

An example of container in Akoma Ntoso is the act element that is used

to markup the main container of an act. Figure 3.2 shows the content model’s

diagram of the act element as extracted from the Akoma Ntoso schema.

18The XML patterns’ community currently lists twenty-eight patterns.

http://www.xmlpatterns.com/

46 3. Structural differences in XML dialects

Figure 3.2: The content model of the act element in Akoma Ntoso

3.4.2 Hierarchical containers

A hierarchical container is a set of titled and numbered nested sections.

Each section can contain other sections or a container (if it is the last in the

hierarchy). Like the containers, no text is allowed directly in the hierarchy.

The diagrams in figure 3.3 shows a part of the content model of article

elements in Akoma Ntoso and the main hierarchical elements allowed inside

them.

3.4 47

Figure 3.3: The content model of the article elements in Akoma Ntoso

3.4.3 Markers

Markers are elements with empty content model that are meaningful for

their name, their attributes, or their position in the text. They are used to

insert metadata in the document or to markup placeholders in the text.

The figure 3.4 displays the content model of the Akoma Ntoso noteRef

element that is used to markup a reference to a note.

48 3. Structural differences in XML dialects

Figure 3.4: The content model of the noteRef elements in Akoma Ntoso

3.4.4 Blocks

Blocks are elements that splits vertically the text and that can contains

text, inline elements or markers. Usually there is only one content model

shared by all the blocks. This means that wherever any block is allowed, all

blocks are allowed too.

The p elements in the listing 3.8 are examples of blocks elements.

Listing 3.8: A fragment of an Akoma Notoso document showing the usage of

blocks and inline elements

<?xml version="1.0" encoding="UTF-8"?>

<akomaNtoso xmlns="http://docs.oasis-open.org/legaldocml/ns/akn

/3.0/CSD05" xmlns:html="http://www.w3.org/1999/xhtml">

... omissis ...

<preface id="prfc1">

<p class="heading">REPUBLIC OF SOUTH AFRICA</p>

<p class="subheading">

<docTitle id="prfc1-dcTtl1">TRADITIONAL LEADERSHIP

AND
 GOVERNANCE FRAMEWORK BILL</docTitle>

</p>

</preface>

... omissis ...

3.4 49

</akomaNtoso>

3.4.5 Inline

Inline elements are similar to blocks elements because they can contain

other inline, text and markers. Unlike block elements they do not split the

text but are used to add presentational markup to the document or to give

specific semantic meaning to specific parts of text.

The docTitle element and the b element in the listing 3.8 are examples of

inline elements.

3.4.6 Subflow

Subflow elements are containers appearing in the middle of sentences but

containing full structures. They are used when a foreign structured text,

with its own markup rules, must be inserted in the middle of the text of the

document.

The fragment of markup in listing 3.9 shows the usage of the Akoma

Ntoso mod element.

Listing 3.9: A fragment of an Akoma Notoso document showing the usage of the

mod element

<?xml version="1.0" encoding="UTF-8"?>

<akomaNtoso xmlns="http://docs.oasis-open.org/legaldocml/ns/akn

/3.0/CSD05" xmlns:html="http://www.w3.org/1999/xhtml">

... omissis ...

<body>

<article id="art1">

<num> Article 1</num>

... omissis ...

<content>

<p> by inserting the following new subsection immediately

after

50 3. Structural differences in XML dialects

<ref id="ref5" href="/ak/act/2010-08-27/1/main#sec47A-sub3

">subsection (3)</ref> --

<mod id="sec2-lst1-itmb-mod1">

"<quotedStructure id="sec2-lst1-itmb-mod1-qtd1">

<section id="sec2-lst1-itmb-mod1-qtdS1-sec47A-sub3">

<num>(3A) </num>

<content>

<p>Notwithstanding the provisions of this section,

but without prejudice to

<ref id="ref6" href="/ak/act/2010-08-27/1/main#

sec47A-sub2-itmb">(2) (b)</ref>, an

Act of Parliament may provide for re-publication of the

draft Constitution and its re-introduction into the

National Assembly for re-consideration.</p>

</content>

</section>

</quotedStructure>’";

</mod>

</p>

</content>

... omissis ...

</article>

... omissis ...

</body>

... omissis ...

</akomaNtoso>

3.5 A generic markup process for distinct di-

alects

In this chapter I pointed out differences and similarities among different

XML languages. I described examples of dialects used to markup textual

resources and examples of standards used for the markup of legal and leg-

islative documents. I ended my XML languages review with Akoma Ntoso

3.5 51

that supplies a well pattern-based architecture.

Patterns are really important concepts. If used correctly, they enable a

generic markup process for distinct documents marked up with different di-

alects. The Akoma Ntoso developers are strongly convinced that the logical

structure of every kind of document can be described using only six pat-

terns. Nothing more true than this. Even if a schema is not designed to be

pattern-based, we can abstract its content models and we can assign one of

these six patterns to each element. In chapter 5, section 5.6.1.1 I will explain

that exceptions, i.e. elements that do not belong to any pattern, can simply

be labeled as patternless, and this does not jeopardize a hypothetical generic

markup process.

But well-designed schemata are not the only think that we need in or-

der to enable such kind of markup process. We need powerful and usable

software that guide us thorough a markup process that results in documents

compliant to the specific schema and to the patterns.

As for the legal’ standards, in the last two decades, example of software

were produced. These software aim to allow the users to markup legal and

legislative documents even if they do not know the XML syntax. In the next

chapter I will describe some of the legislative markup software and I will

compare them to the software used for the pure XML editing.

52 3. Structural differences in XML dialects

Chapter 4

Software for XML markup

This chapter aims to introduce the software used for XML markup.

Firstly, I will give an introduction about WYSIWYG editors. In the sec-

ond section I will describe generic editors for XML documents. In section

4.3, I will introduce markup editors and later, in section 4.4, I will describe

the most common markup editors used to markup legal and legislative docu-

ments. Lastly, in section 4.5 I will discuss the challenges that markup editors

still have to meet in order to be independent from a specific markup language.

4.1 WYSIWYG editors

WYSIWYG (What You See Is What You Get) describes document edi-

tors in which the document displayed during the editing mode is quite similar

to the one that will be eventually printed on paper.

The first software that incorporated WYSIWYG features was the BRAVO

editor [New12] developed in 1974 at Xerox PARC 1. It was intended to be

used with a specific monitor in which users could see a full page of text.

Doing so, users can adjust the document’s layout while they are editing the

page and, then, they can print it out obtaining a similar result that they saw

1Xerox PARC is a research and development company located in Palo Alto, California,
that is the mind behind a lot of innovative products such as graphical user interfaces, laser
printing and object-oriented programming.

53

http://www.parc.com/

54 4. Software for XML markup

on the screen. The phrase WYSIWYG was later coined in 1982 by Larry

Sinclair, an engineer at Triple I 2 to express the idea that what users see on

the screen is what they finally get on paper.

In the XML context, the WYSIWYG paradigm is used in two different

ways. The first type includes the ones that allow users to create XML doc-

uments, by directly editing XML elements and attributes. Other editors

(markup editors) do not allow users to directly manipulate XML code, but

they allow users both to describe the logical structure of the document (ac-

cording to the XML dialect which the document must be compliant to), and

to format the document in the exact way they want to present it.

In the next section I will describe an example of generic XML editors

belonging to the first category and in section 4.4 I will describe the most

common editors that are used in the legal context and that belong to the

second category.

4.2 Generic XML editors

Generic XML editors are independent from the XML dialects used for

document markup. They let users create any kind of XML document and

they can to check the well-formedness and the validity of the document (if a

document type declaration is set).

While using this kind of editors, users are focused on the quality of the

created XML and not on the final presentation of the document. For this

reason, here the WYSIWYG ability indicates that users can directly ma-

nipulate the XML code and that the final result will be exactly the XML

document that they created.

These editors assume that users have a perfect knowledge of XML and

of the XML dialect they are using, but they can supply some kind of tools

to help users to create a correct markup. For example, parsing the schema

of the XML language, editors are able to give hints about the elements that

2Triple-i is a computer company located in Los Angeles, California.

http://triplei.com/

4.2 55

can be inserted in a specific position of the document or they can give the

list of the attributes allowed in each element.

Generic XML editors are usually used by XML experts because they are

comfortable with the XML syntax. However, the use of these editors is dis-

couraged when a lot of documents must be created. The following section

describes the Oxygen XML editor that is one of the most used generic XML

editors.

4.2.1 oXygen XML editor

The Oxygen XML editor [Sof03] is a multi-platform software written in

Java. It runs on Windows, Mac OS X, and Linux as a standalone software or

it can be installed as an Eclipse IDE’s plugin 3. It is a proprietary software

and has been developed since 2002 by SyncRO Soft 4. Oxygen is currently

released in its 15.1 version.

Oxygen offers a lot of features for editing XML documents. As a generic

XML editor it supplies tools to check the well-formness and to validate them

against a schema. Schema compliance can be checked both when the docu-

ment is completely marked up or while it is being edited. It is also possible

to create plug-in software in order to extend the Oxygen’s native validation

system.

Oxygen supplies three different views that users can exploit to edit XML

documents. The first one is the classical text view. It simply shows the XML

document as text and users can directly manipulate the code finding solace

in tags’ auto-completion or live validation. The grid view displays the doc-

ument like a spreadsheet. The left column shows the document’s elements,

while the right column displays a contextual list of the children and the at-

tributes of the element selected in the left column. The author view is an

intermediate view between the regular text view and a WYSIWYG markup

3Eclipse is a free and open source Integrated Development Environment (IDE). It sup-
plies a base workspace and can be extended or customized using its plug-in system

4Syncro Soft is a software development company located in Craiova, SW of Romania.
It is specialized in developing Java-based XML solutions

http://www.sync.ro/
http://www.eclipse.org/

56 4. Software for XML markup

editor. Indeed, in author view, XML elements are presented in a more human

readable way, but the semantic and the nesting of XML documents remain

clear and accessible. In figure 4.1 5 and figure 4.2 6 it is possible to see the

oxygen grid and author view respectively.

Oxygen natively supports the most popular XML dialects (including Doc-

Book, TEI and XHTML) and, currently, it is widely used both by XML

experts and by new XML users.

Figure 4.1: The grid view in Oxygen editor

5Courtesy of oxygenxml.com.
6Courtesy of brothersoft.com.

http://www.brothersoft.com/
http://www.oxygenxml.com/img/xmlGridEditor.gif

4.3 57

Figure 4.2: The author view in Oxygen editor

4.3 Markup editors

Markup editors are WYSIWYG editors that do not allow users to di-

rectly modify the XML code. On the one hand, markup editors are identical

to classical WYSIWYG words’ processors because, during the edit mode,

documents are displayed in a view that is very similar to the final result. On

the other hand, they differ from other WYSIWYG editors because they force

users to create documents that are compliant to the XML schema, but they

assure at the same time a certain freedom of editing.

The difference between markup editors and the Oxygen’s author view is

that users are not required to have any knowledge of the rules specified by

the document type declaration.

58 4. Software for XML markup

For example, if a user is editing a TEI document, the editor does not al-

low him to insert a physDesc element inside a msContents element (because

the TEI schema does not allow this) but it is the editor’s interface itself that

guides the user not to do it.

In the same way, markup editors drive users to create documents that

are also semantically correct. For instance, the Akoma Ntoso schema allows

to insert articles inside paragraphs. This is not semantically correct, but

Akoma Ntoso creators allowed it for the sake of modularity, extensibility and

customizability. In these situations, inexperienced users can make semantic

mistakes and, moreover, if the editor is limited to infer the rules from the

schema, it would not be able to report these kinds of errors.

For these reasons it is very difficult to design markup editors that can

be used with more than one XML schema or that can be used in different

contexts. In the next section I will describe the most used markup editors in

the legal context.

4.4 Markup editors for the legal context

In the last two decades, a lot of markup editors for legislative and legal

documents were produced. The legal context is one of the most difficult to

handle because there are many constraints originated by parliaments and

public offices. Moreover, users of legal markup editors have their own tra-

ditions and have to follow either stricter or looser workflows. This means,

for example, that editors of the Italian Camera dei Deputati should use a

markup editor in a completely different way from the one of the drafters

belonging to the Italian Senato.

For these reasons, legal markup editors are usually created to permit the

markup of the legislative and legal documents of a specific tradition. In the

next sections, I will describe three legal markup editors created for the Ital-

ian parliament, the African parliaments, and the United States parliaments

respectively.

4.4 59

4.4.1 Norma editor

The Norma editor [PB03] was developed starting by 2002 as a compo-

nent of the Norma-System project [PB02]. It is built on Microsoft Word

and allows the creation of XML documents compliant to the NIR XML stan-

dard. The software was intended to be used by the Italian parliament’s legal

drafters and by legal drafters from many Italian public offices (such as the

ones from the Italian Supreme Court of Cassation).

The Norma editor can acquire all the unstructured formats that Microsoft

Word supports, as well as documents already marked up in Norma format.

Users can then markup the document and insert all the elements of the Ital-

ian laws’ structure. For example they can insert the basic information of the

laws such as the opening formula, the closing formula and the main body of

the law, and then they can refine the markup by adding more articles and

sections to the laws’ body.

The editor supports either a manual markup of the law and a semi-

automatic markup. Through the manual markup, users select the fragment

of the text they need to markup and then they use a toolbar to assign to it

the correct label and semantic meaning. They repeat these actions until the

document is completely marked up and valid against the NIR schema.

The semi-automatic markup tries to parse the document in order to un-

derstand its structure. This is possible because all the Italian laws contain

some keywords in specific parts of the document. For example articles start

with the word articolo and some pointed lists start with the words i seguenti

punti. After the parser finished their job, the drafter can integrate or modify

the inferred markup.

The Norma editor lacks in modularity and portability because it is widely

based on Microsoft Word macros and for the same reason it can not be dis-

tributed as an open source software 7. Another problem of the Norma editor

is that it does not manage documents using directly the NIR XML. Doc-

7The Italian law nr. 4 of 2004 January 9th (also known as Legge Stanca) and the
European parliament encourage Italian public offices to use open source software.

60 4. Software for XML markup

uments are edited and saved in the Microsoft Word format and only in a

second step they are translated to NIR.

However, this editor was the first noteworthy legal markup editor. It is

still used in some Italian public offices and some of its ideas (like the use of

an interface the users are comfortable with and the legal document parsing)

lay the foundations for more recent legal editors.

Figure 4.3: A screenshot of the Norma editor

4.4.2 Bungeni Editor

The Bungeni editor is the successor of the Norma Editor [BvE11] and it

is a markup editor built on the Apache OpenOffice 8 suite. It is a component

of the Bungeni project 9 and was developed under the supervision of the

8Apache Open Office is an open-source software suite for word processing. It stores the
data in an international open standard format called Open Document Format (ODF)

9Bungeni is a Parliamentary and Legislative Information System that aims to make
Parliaments more accessible to citizens

http://www.bungeni.org/
http://www.openoffice.org/

4.4 61

United Nations Department for Economics and Social Affairs.

The Bungeni editor solved many problems of the Norma editor. First

of all, it was created on the Apache OpenOffice suite. This means that

the editor can be released as an open source software because OpenOffice is

released under the apache license [Ros04]. This also means that documents

are natively stored in an XML format (the ODF format) and this is of great

help, because they can be simply translated into any other XML format using

XML related technologies, like XSLT 10.

Another improvement in the Bungeni editor is that it is designed around

Akoma Ntoso. In this way, the editor can be adapted to a lot of legal tradition

simply modifying some of its interface’s components and the XSLT that

transforms the final document into an Akoma Ntoso document.

The other side of the coin is that the Bungeni editor still carries some

problems because it is created as an extension of an existing software, like

Norma editor. Its interface is strictly related to the OpenOffice’s one. For

this reason users can get confused because they can find a lot of tools that

are not useful in the legal context. This also forces designers and developers

to use the technologies that OpenOffice supports. Last but not least, as a

desktop software, it must be installed on the computer it will be used on. In

some complex situation, like a parliament, this can be a big problem because

it must be installed on hundreds of machines.

The Bungeni editor is used in a lot of African parliaments and its open

source-ness makes it the most reliable solution in case a desktop application

is strictly needed.

10XSLT is a language used to transform document from many formats (XML, plain text,
HTML and so on) to any XML dialects.

http://www.w3.org/TR/xslt

62 4. Software for XML markup

Figure 4.4: A screenshot of the Bungeni editor

4.4.3 LegisPro Web Editor

LegisPro - WebAuthor is a in-browser markup editor developed by Xec-

ntial 11. It is based on LegisPro - Author, an XML editing tool used to

markup the authoring and amending of local, state and federal government

legislation. It has been developed using HTML5, designed to work natively

with Akoma Ntoso, and it can run in the most recent web browsers.

On the one hand, LegisPro was the first legal markup editor completely

in-browser and resolved the issues of the Norma and the Bungeni editors re-

lated to the easiness of customization and portability. Also, its interface was

not derived from the one of a word-processor software and, for this reason,

it is focused on the legal drafters’ needs.

On the other hand, LegisPro is not an open-source software and, as said

in section 4.4.1, this is a big problem if the editor aims to be used in Eu-

ropean parliaments. Another criticism about LegisPro is that, even if it is

based on Akoma Ntoso, it does not exploit the patterns specified by Akoma

Notoso and, as I will explain in the next section, this could be the keystone

to create a language independent editor.

11Xcential is a Californian vendor of legislative products and services to governmental
bodies at all levels.

http://xcential.com/

4.5 63

LegisPro is currently used for the bill drafting and publishing system

in the State of California and many American and world’s parliaments are

considering using the software for their drafting purposes.

Figure 4.5: A screenshot of the LegisPro Web editor

4.5 Open issues in markup editors

In this chapter I described existing WYSIWYG editors and markup edi-

tors. I analyzed some of the most used markup editors for legal and legislative

documents.

The legal context is the perfect use case to understand the problems that

the markup editors have to face if they aim to be completely customizable

and portable. Even if they allow users to markup documents using just one

XML language, they need to be extremely modular in order to fit all the

specifics needs of the legal traditions.

Current markup editors have some strengths and some weaknesses. Some

of them are not open-source software and can not be used in some parlia-

ments in which open-sourceness is required. Others are hardly customizable

64 4. Software for XML markup

because they are built on desktop software and are strictly related to a spe-

cific XML language. Most recent legal markup editors are based on Akoma

Ntoso and this give to them a certain portability and customizability, but

their can not be used with other markup languages (maybe not related to

the legal context).

My challenge is to create a language independent editor that can be used

both in the legal context and in other contexts where XML can bring inno-

vation.

In the next chapter I will explain how, starting by the experience gained

in the legal context, we created a parametric editor that is suitable for the

creation of structured documents marked up with any XML dialect.

Chapter 5

LIME, a parametric editor for

structured documents

In this chapter I will describe LIME, a parametric editor for structured

document that is independent from the markup language. In the first section

I will describe what I mean for parametric. The second section is aimed to de-

scribe the technologies that can be used for the development of a parametric

editor. Then, in section 5.3, I will deeply describe LIME and its architec-

ture. The last section of this chapter makes a brief introduction about the

methodology that should be used to evaluate the usability of markup editors.

5.1 The importance of being parametric

A parametric software is a software that relies on a set of parameters to

ensure customization. For example, a software aimed to forecast the sales of

a videogame should be built around specific parameters like the videogame

type, the area in which it must be sold, the gamers’ attitudes of that area

and so on. In this way the software can be easily adapted to be used for any

videogame.

In the same way, a parametric markup editors must rely on a set of pa-

rameters that abstract the structure of XML dialects. Doing so, it is possible

65

66 5. LIME, a parametric editor for structured documents

to use the same editor with all XML languages without changing its code,

but simply modifying its parameters.

There are a lot of technologies suitable for the creation of a language inde-

pendent markup editor. In the next section I will describe the requirements

that these technologies must meet.

5.2 Technologies for parametric markup edi-

tors

A good parametric markup editor must meet many requirements.

First of all, It must be an open-source software because it should be

used in contexts where open-sourceness is required. It must also be an on-

line in-browser software so that users can avoid installing software on their

computers, but at the same time it must run correctly on all the most used

browsers. Moreover, the editor must have a Model View Controller (MVC)

[KP+88] architecture because its interface must be easily modifiable in or-

der to meet the users’ requirements. Furthermore, the software must use

an XML storage because it is intended to manage XML files and all the

communication with the database must be done using a REST [RR08] style

infrastructure. It must also exploit all the XML patterns to abstract XML

languages and, last but not least, all of its parameters must be specified in

configurations files that must be read and edited also by those who have no

knowledge in programming languages.

In the next sections I will describe the technologies that can be used in

order to create a markup editor that follows all the above requirements.

5.2.1 Ajax, javascrip and HTLM5 for in-browser soft-

ware

Ajax [G+05], javascript [GME07] and HTML5 [HH10] are the leading

technologies used for developing in-browser software.

5.2 67

Ajax (Asynchronous Javascript and XML) is a programming paradigm

according to which a group of interrelated technologies are used to create

web applications. By using javascript and HTML5 with the Ajax paradigm,

it is possible to create dynamic in-browser applications. Ajax application

can send data to or retrieve data from the server without interfering with

the behavior of the page displayed on the browser.

HTML5 supplies some interesting features that are useful for creating of

in-browser markup editors. For example, HTML5 allows web applications’

users to directly modify elements of web pages displayed in the browser and

provides some technologies for in-browser storage. Moreover, HTML5 docu-

ments are already structured documents compliant to some XML patterns.

Javascript is the most used script language for the developing of dynamic

in-browser applications but, because it is an interpreted language, different

browsers can execute it in different ways. For this reason it is important to

use javascript cross-browser frameworks that ensures the same application’s

behavior in the most known browsers.

5.2.2 Frameworks for cross-browser software

Javascript syntax can be very verbose and difficult to understand. More-

over, since it is an interpreted language and each browser has its own inter-

preter, sometimes a javascript code that works on a browser could not work

properly on another browser.

Javascript frameworks supply objects and methods that abstract the orig-

inal javascript’s ones and behave in the same way on different browsers.

Most recent frameworks also allow to quickly create animations, visual

effects, and to easily communicate with the server side of the software.

Other javascript frameworks, known as component-based frameworks [Lew98],

allow developers to create, with few lines of code, visual elements that are

similar to the ones used in desktop applications. These are the most suitable

ones for the creation of a parametric markup editor.

68 5. LIME, a parametric editor for structured documents

5.2.2.1 ExtJS

ExtJS [OPKJ09] is a component-based javascript framework for building

interactive web applications. It allows to create easily the core of the appli-

cation by following the Model View Controller pattern.

ExtJS comes along with a big range of user interface widgets, but it is

possible to extend it by creating new components and these can be combined

with the default ones to create rich user interfaces.

ExtJS is completely cross-browser and applications that exploit Ext JS

can be used both on all browsers (running on all operating systems), and on

modern tablets and smart phones.

5.2.3 TinyMCE

TinyMCE [AH08] is a platform-independent web-based javascript HTML

WYSIWYG editor control. It can convert HTML5 text area fields or other

HTML5 elements into editor instances.

It relies on an user interface very similar to the one of the most used word

processors, like Microsoft Word and Open Office. The editor offers the most

common formatting tools, like bold, italic, underline, lists and so on, and can

be configured in order to display only subsets of these tools.

TiniMCE is designed to be easily integrated in content management sys-

tems, but it is possible to integrate it in ExtJS, by developing a new compo-

nent. This component preserves all the functionality of TinyMCE editor but

the effects of them are intercepted by the core of the ExtJS application.

5.2.4 REST style communication

REST stands for Representational State Transfer and is the foundation of

the RESTful architecture [Fie00]. It emphasizes the abstraction of data and

services as resources that can be requested by clients, by using the resources’

name and address, specified as a Uniform Resource Locator (URL).

It revolves around five fundamental notions: a resource (e.g., a document

5.2 69

or image), the representation of a resource, synchronous request-response

interaction over HTTP to obtain or modify such representations, a web page

as an instance of the application state, and engines (e.g., browser, crawler)

to move from one state to the next.

REST specifies a client-stateless-server architecture in which each request

is independent from the previous ones, inducing the property of scalability.

For example, the following request:

DELETE /photos/17

will be mapped to the photo whose ID is seventeen, and will perform the

desired action, so it will delete that resource.

REST is a natural style for the architecture of web applications.

5.2.5 eXist Database

eXist is a native XML database [Mei03] that is completely built on XML

technology.

The database interacts with Ajax applications, by supplying a RESTful

interface. A unique resource locator (URI) is assigned to each resource in

the database, which can be accessed using it. This is important because, by

using a standard conceptual schema for the creation of the URI, for instance

FRBR, it is possible to navigate the storage without using a query language.

The query language must be used to perform more complex actions, for

instance to modify specific fragments of documents or to retrieve specific

subsets of documents.

Unlike relational database management systems, eXist uses XQuery to

access and manage the data that are stored in it.

5.2.5.1 FRBR storage

FRBR (Functional Requirements for Bibliographic Records) [O’N02] is

a conceptual entity-relationship model that allows users, for example, to

retrieve and access resources in an online library by using a human-friendly

70 5. LIME, a parametric editor for structured documents

syntax.

FRBR provides hierarchical links to navigate resources that are composed

by a specific set of items. The main entities in FRBR are the work, the

expression, the manifestation and the item.

The work ”represents a distinct intellectual or artistic creation” [Pla98].

For example, in video game contexts the concept The Legend of Zelda(TM) is

a work. In a FRBR URI this concept must be expressed as the following:

/jp/zelda/21-02-1986

The URI expresses that Zelda is a work, published in Japan on February the

21st, 1986.

The expression is ”the specific intellectual or artistic form that a work

takes each time it is realized” [Pla98]. In Zelda example, an expression

can describe the Ocarina of the time(TM) episode of the game released in

November 1998 in Japanese. The URI of this expression is the following:

/jp/zelda/21-02-1986/ocarina/jp@11-1998

The manifestation is ”the physical embodiment of an expression of a work. As

an entity, manifestation represents all the physical objects that bear the same

characteristics, in respect to both intellectual content and physical form.”

[Pla98]. For the Zelda work, a manifestation can be the Ocarina of the time

version stored on Nintendo Optical Disk (TM), released for Nintendo Game

Cube(TM). The URI of this manifestation can be the following:

/jp/zelda/21-02-1986/ocarina/jp@11-1998/game.nod

The item is ”a single exemplar of a manifestation. The entity defined as
item is a concrete entity.” [Pla98]. For example an item of Zelda Ocarina of
the Time(TM), in its Game Cube(TM) version, can be the file character.png,
describing the physical file that contains the art of the main character of the
game. Items can be expressed in URI format as the following:

/jp/zelda/21-02-1986/ocarina/jp@11-1998/game.nod/Link.png

5.2 71

5.2.5.2 XQuery language and XSLT

XQuery [RCDS] is a functional programming language used to query large

sets of structured documents in XML format. It relies on a set of XPath

[CD+99] expression used to address specific fragments of XML documents.

XQuery can also be used to create or modify XML documents; indeed, it

supplies functions to dynamically or statically create nodes and attributes.

Even if, like XSLT, XQuery can be used to transform XML documents

into other XML documents, it is better to rely on XQuery only to query,

create and modify documents. This because XSLT is stronger for simple

tasks, such as to transform all div elements to span elements. Moreover, the

template architecture of XSLT is perfectly suitable for transformations based

on patterns.

5.2.6 XML patterns and XML guidelines

As said in section 3.4, XML patterns are powerful instruments that can

be used to abstract XML dialects. A parametric markup editor must rely

on patterns in order to specify common procedures for elements belonging

to the same pattern.

Also XML guidelines are useful in the design and the developing of a para-

metric markup editor. XML guidelines specify requirements for the usage of

XML that are not strictly required by the schema, but that simplify the pro-

duction of homogeneous documents. A parametric markup editor that aims

to be used for the markup of many XML languages must specify and follow

some XML guidelines; these are useful, for example, to create generic parser

and generic queries for documents retrieval.

5.2.7 JSON

JSON (JavaScript Object Notation) [Cro06] is a text-based and human-

readable open standard used for data interchange. It is specifically designed

to represent data structures using associative arrays.

72 5. LIME, a parametric editor for structured documents

Even if JSON is language-independent and there are many parser avail-

able for many programming languages, it was derived from Javascript and,

for this reason, it is the leading solution used for javasript applications’ con-

figurations files.

JSON is also often used in Ajax applications to pass data from the server

to the client and viceversa. This is useful for parametric editors because

JSON is less verbose than XML and this results in smaller files.

An in-browser parametric markup editor must use XML to describe struc-

tured documents and JSON to describe all the configuration files both for

the client and the server side of the software and all the applications’ data

that must be interchanged between the two sides.

5.3 LIME, a Language Independent Markup

Editor

LIME is the parametric web-based language independent markup editor

that I designed and partially developed to prove my thesis. It drives users

through the markup of non-structured documents into well-formed (option-

ally valid) structured XML documents compliant to the XML language cho-

sen by the user.

The LIME editor is an open-source software and relies on many open-

source technologies. It is currently under development by CIRSFID 1 and

the University of Bologna.

Works on LIME started when some parliaments asked professor Monica

Palmirani and professor Fabio Vitali to create a web markup editor to markup

their legal and legislative documents. At the same time, some scholars of his-

tory requested a markup editor that would be able to markup descriptions

of ancient manuscripts.

1CIRSFID is an inter-departmental research center of the University of Bologna. Its
main legal researches are focused on legal informatics, law and philosophy and sociology
of law

http://www.cirsfid.unibo.it/CIRSFID/default.htm

5.4 73

Even if the two contexts are completely different, by revolving on our

experience on XML languages, we started to imagine a markup editor that

would be suitable for all XML dialects without the need to modify the code.

We started to focus on the legal context and, by using the technologies

reviewed in previous sections, we designed and developed the first parametric

and language independent markup editor.

Figure 5.1: A screenshoot of the LIME editor

5.4 Overview of LIME features

The LIME editor permits to markup documents in various XML lan-

guages by using an interface that is quite similar to the one of desktop word

processors.

LIME allows users to register and to create and save their documents (no

matter the language they are marked up) in the cloud. So users can import

documents, edit them and save them in their dedicated eXist database space.

These functionality are all managed using the top toolbar of LIME that is

showed in figure 5.2.

74 5. LIME, a parametric editor for structured documents

Figure 5.2: A screenshoot of the LIME top bar

In order to enable documents markup and to write new documents, LIME

supplies an editor displayed in the center of the application’s main window

(figure 5.3). This also supplies buttons for cross-language markup features

like buttons for bold text, inline text and so on. The document that users

see in this editor is formatted in HTML5, because it is currently the best

suitable format for the visualization of pages on browsers. When users save

documents, they are immediately translated to the markup language users

are using.

In this part of the application is it also possible (if enabled in configuration

files) to see the preview of the final XML result and the PDF preview of the

document.

As said before, LIME does not simply allow users to markup documents,

but also drives them to create a correct markup even if they do not have a

5.4 75

deep knowledge of the XML language they are using.

Figure 5.3: A screenshoot of the LIME word processor

In order to allow users to do it, LIME supplies a markup menu in the right

side of the interface that is contextual to the part of the document users are

editing. For example, if users are marking up an Akoma Ntoso document,

in the first step of the markup the menu will display the top level elements

made available by Akoma Ntoso. Later, when they have already marked

up some chapters or articles, users can position the mouse’s cursor inside

these elements and the markup menu will display the elements enabled in

that position. Figure 5.4 displays the LIME markup menu for Akoma Ntoso

documents.

The last part of the LIME editor’s interface is the document outline,

which is displayed in figure 5.5. It is used to display the outline of the

76 5. LIME, a parametric editor for structured documents

document. This is useful to see the hierarchical nesting of the already marked

up document and to quickly navigate among them.

Figure 5.4: A screenshoot of the LIME markup menu

5.5 77

Figure 5.5: A screenshoot of the LIME documents’ outline

LIME architecture revolves on the getting real method [God06]. For this

reason we started from the application interface and created the system ar-

chitecture on it.

5.5 LIME architecture

LIME is based on a four tier architecture. The application logic of LIME

completely relies on its client side components and the server side compo-

nents are charged to manage documents and database transaction.

LIME uses two database. The first one is a classic relational MySQL

database and it stores information related to users and statistic information

about the access to the system. The second database is an eXist database

instance and is used to store the XML documents marked up through the

editor. This database is hosted by a Tomcat Application Server and resides

on a separate machine from the one that hosts the server side script of the

applications.

78 5. LIME, a parametric editor for structured documents

The server side components are hosted by an Apache web server and are

responsible for the parsing of the documents and act as proxy for the two

database of the software.

The client components have in charge the business logic of the system.

They draw the user interface, intercept the interaction of the user with it,

supply the features for the markup of documents, and interact with the server

side components to manage documents and users.

Figure 5.6 shows the LIME architecture. In the next sections I will deeply

explain the roles of the client side components and of the server side compo-

nents

Figure 5.6: The LIME editor architecture

5.5 79

5.5.1 Client side components

The core of the application is constituted by a small set of ExtJS com-

ponents. When the application starts the main viewport is loaded by the

application and the editor, the marking menu, the explorer and the main

toolbar are instantiated inside it.

The editor is the central part of the application, but when something hap-

pens to the document, the editor fires events that are handled by the other

components of the application. By doing so, even if the editor is currently

based on TinyMCE and is the most important component of the application,

it can be easily substituted by other third parts WYSIWYG editors.

The explorer is the component of LIME that has in charge to display the

hierarchical structure of marked up documents. When a part of the docu-

ment is marked using the marking menu, the editor also asks the explorer to

update itself.

The marking menu is the component that creates the buttons used to

markup documents. When users click buttons in marking menu, it asks the

editor to modify the displayed document and the editor replies updating the

marking menu.

The main toolbar aims to supply all the common operations of a WYSI-

WYG editor, such as the operations to load and save files and the operations

to change users’ preferences.

The JSON configuration files are the client side components of LIME that

allow to specify its parameters. I will describe them later in section 5.6.2.

Figure 5.7 shows how the client side components interact among them-

selves.

80 5. LIME, a parametric editor for structured documents

Figure 5.7: The interaction among LIME client side components

5.5.2 Server side components

The server side components have three main tasks; proxying, parsing and

translating.

The requests proxy is a PHP module that simply dispatches the requests

towards the two kinds of database used by the application. When a docu-

ment is requested (or must be saved), the module retrieves (or sends) the

document to the web services built on the top of the eXist database. When

users’ information must be retrieved (or must be saved) from the MySQL

database, it sends the request to the MySQL server and returns the informa-

tion to the client.

The document parsing component is used for the smart markup function-

ality provided by the editor. This permits to parse the document trying to

automatically find and markup some parts of the document. For instance, if

5.6 81

a law file opened in the editor contains some references to other laws, they

will be found and labeled as ref elements.

The document translations component is the module that translates the

document from the HTML version created in the editor into the XML format

that users need.

5.6 Three commandments to be parametric

and language independent

In order to be parametric and language independent, LIME relies on

three main concepts; XML guidelines, XML patterns and JSON configura-

tions files.

Guidelines and patterns are used to abstract XML languages and to al-

low LIME to markup many of them. When a document is marked up on

LIME, a pattern is assigned to each element and its behavior is described by

parameters stored in JSON configurations’ files.

5.6.1 XML guidelines and patterns used by LIME

The LIME editor relies on six patterns, the same used by Akoma Ntoso.

When a LIME configuration for a specific language is created, the contents

model of the language are matched with one of the following patterns: inline,

block, hierarchical container, container, marker or subflow.

Sometimes a content model can not be abstracted using one of the above

patterns. In this situation the elements using that content model are labeled

as patternless elements.

LIME also follows XML guidelines for the creation of elements’ unique

identifiers and elements’ classes.

82 5. LIME, a parametric editor for structured documents

5.6.1.1 Patternless, the patterns’ wildcard

A patternless element is an element that does not belong to any known

markup pattern. Patternless elements are really complicated to manage but

are also useful to abstract XML languages that have not a patternized archi-

tecture.

An example of patternless elements can be seen in the listing 5.1. In

the example the element called patternlessExample is obviously a patternless

element because it contains text, a block and a hierarchical container and,

for this reason, it does not belong to any of the six XML patterns supported

by LIME.

LIME manages patternless elements by simply transforming them into

structures that are compliant to HTML. So the example in listing 5.1 is

translated into the markup in listing 5.2.

In a nutshell, patternless elements are wildcards that can be used every-

where and that do not follow any rule.

Listing 5.1: An example of patternless element

<?xml version="1.0" encoding="UTF-8"?>

<root>

<patternlessExample>

Hello <block> world!</block>

<hcontainer>

<inline>I am</inline>

<container><block>a patternless element</block></

container>

</hcontainer>

</patternlessExample>

</root>

Listing 5.2: A translated patternless element

<?xml version="1.0" encoding="UTF-8"?>

<root>

<div>

5.6 83

Hello <div> world!</div>

<div>

<div>I am</div>

<div><div>a patternless element</div></div>

</div>

</div>

</root>

5.6.1.2 Guidelines for elements’ unique identifiers

LIME follows guidelines for elements’ unique identifiers. Unique identi-

fiers are built in specific ways that allow both to infer some semantic infor-

mation of the document just looking at them, and to aid automatic processes

that have to parse documents.

First of all, all elements in a LIME document have unique identifiers that

are composed by three letters of the element’s name and by a sequential

number. In this way documents parser can analyze the unique identifiers of

the element and can immediately understand what is the type of the element

and the numbers of the same elements in the document.

The other guideline that LIME follows is the one that specifies that ele-

ments must have unique identifiers that explicate their nesting. This allow

to understand the nesting of the document and the relations among the ele-

ments in the documents.

In listing 5.3 it is possible to see examples of the unique identifiers as-

signed to elements belonging to an Akoma Ntoso document in editing mode.

5.6.1.3 Guidelines for elements’ classes

LIME also relies on guidelines for elements’ classes. Classes in LIME

documents contain the name of the element that users want to create and

the pattern it belongs to.

This is useful because in this way it is possible to create generic XSLT

stylesheets to translate the document displayed in edit mode into the final

84 5. LIME, a parametric editor for structured documents

one, independently from the language to which the final document must be

compliant to.

In listing 5.3 it is possible to see how LIME assigns classes to documents’

elements.

Listing 5.3: A sample of the elements’ unique identifiers and elements’ classes

assigned to a LIME document

<div class="akomaNtoso container">

<div id="bll1" class="bill container">

... omissis ...

<div id="bll1-bdy1" class="body container">

<div id="bll1-bdy1-cha1" class="chapter hcontainer">

CHAPTER 1</

span>

INTERPRETATION AND APPLICATION

<div id="bll1-bdy1-cha1-sct1" class="section inline">

... omissis ...

</div>

<div id="bll1-bdy1-cha1-sct2" class="section inline">

... omissis ...

</div>

</div>

<div id="bll1-bdy1-cha2" class="chapter inline">

... omissis ...

</div>

... omissis ...

</div>

</div>

</div>

5.6.2 JSON configuration files

JSON configuration files are used to specify LIME parameters for each

XML language. These files are collected in packages called language plugins.

A language plugin is a collection of settings regarding both the language

5.6 85

used to markup documents and the behavior of the user interface when that

language is used. Each element specified in the plugin is connected with one

or more buttons and one or more markup elements. Many buttons can be

inserted in a single configuration file.

5.6.2.1 LIME language plugins

A language plugin is not made of just one file of configuration. Each plu-

gin provides a set of well-structured directories and JSON files that describe

the whole plugin. Each file describes a different layer of the plugin: from the

user interface to the patterns mapped to each element and the set of elements

specified by the language.

The root directory of all languages’ configurations files is languagesPlug-

ins in which some directories and one file are stored. The resources contained

in the languagesPlugins folders are the following:

• One or more directories having the name of the XML language whose

markup must be enabled in the editor. These directories contain two

nested folders and a file:

– client: an optional folder containing plugins written in pure javascript.

– interface: the main folder of language configuration.

– structure.json: a JSON file containing the structure of interface

folder.

• default: this is a directory containing a dummy language which con-

tains some default files that every language can override

• config.json A configuration file that contains the list of the languages

enabled in the editor.

The interface directory contains all the files used to describe the configuration

of a specific XML language. It contains the following files:

86 5. LIME, a parametric editor for structured documents

• viewConfigs.json: a file containing configurations about views in the

editor, it allows to enable or disable views.

• markupMenu.json: in this file all the elements of the language with

their patterns are stored.

• markupMenu rules.json: a file that contains the specific configura-

tion for each element and the hierarchy to be used for the buttons in

the markup menu.

• custom buttons.json: a file containing custom style rules regarding

buttons and elements marked by it. It also contains optional rules

regarding the structure of the document.

• custom patterns.json: a file that allows to specify custom patterns

and to customize the ones already existing.

All these files can be inserted in nested directories to specify different con-

figurations for different sub-types of documents. For example, Akoma Ntoso

allows to create bills, acts, judgments and other document types. The config-

uration for these documents’ types is different from one another and, for this

reason, it is possible to create a different folder for each document type in-

side the interface directory. This folder must contain all the above described

configuration files.

System administrators that want to enable LIME to markup other XML

languages have simply to write these configuration files and to package them

properly inside a language plugin folder. The configuration files are really

simple to read and modify but at the same time are very powerful.

In listing 5.4 it is possible to see a fragment of a configuration file used in

the Akoma Ntoso language plugin. With few lines of human readable code,

the fragment describes a button called act that has some children buttons.

When these buttons are clicked, the editor must markup the text selected

by users with an element having the same name of the button. The other

described button is docTitle that, when pressed, must markup the selected

5.7 87

text with the docTitle element and must display a widget asking for a short

title. Then, the text that users input in the widget will be inserted in the

docTitle element’s attribute called shortTitle.

Listing 5.4: Am example of a LIME configuration file

"elements": {

act: {

"children": [preface, preamble, ..., conclusions]

},

...

docTitle: {

"askFor": {

docTitle: {

"label": "short title"

"type": "text"

"insert": {

"attribute": {

"name": "shortTitle"

}

}

},

}

}

}

5.7 Evaluating markup editors’ usability

In this chapter I described the technologies suitable for the creation of a

parametric markup editor and I explained how we used these technologies

to design and develop LIME, that is the first in-browser parametric and

language independent markup editor.

LIME is not simply a markup editor. It is also supposed to drive the

documents’ drafters to obtain a correct markup, even if they do not know

the XML language they are using. The second challenge of my thesis is to

88 5. LIME, a parametric editor for structured documents

demonstrate that LIME is absolutely suitable for this task because it relies

on a usable user interface.

In the next chapter I will describe how I created a usability test for

markup editors and I will show the results that I obtained applying it to

LIME.

Chapter 6

Evaluation of LIME’s user

experience

The aim of this chapter is to describe the process for the evaluation of

LIME’s user experience. In the first section I will synthetically explain what

is user experience and what are the goals of a generic user experience’s test.

In the second section I will show the goals of LIME’s user experience’s test,

and in the third section I will deeply describe the methodologies used to

develop the test, to submit it, and to collect the data that it produces. In

the fourth section I will analyze the results of the test and, eventually, I will

point out the strengths and the weaknesses of the LIME editor.

6.1 The study of the user experience

Even if many scholars gave their own definition of user experience (here-

after UX) [LRV+08], the most of them agree that it describes the thoughts,

the feelings, and the perceptions that result from an interaction between a

human and an artifact (no matter if it is a computer or a corkscrew) [TA08].

For this reason, the aim of a user experience’s test is to collect the behav-

iors, the attitudes, and the emotions that emerge from an interaction with a

system.

89

90 6. Evaluation of LIME’s user experience

For example, if we are analyzing the user experience of a person who

wants to bake parmigiana, we will count how many movements he performs

in order to open the oven, put the dish inside it, and set the oven to one

hundred seventy degrees. We will also check if he expected the oven handle

on the right side and his feelings during the whole process (for example we

check if he feels frustrated because he can not figure out how to set the alarm

clock of the oven).

In the same way, the aim of a user experience’s test on a markup editor,

is, generally speaking, to check three different things. Firstly, we need to

examine the actions that the user performs in order to open, save and close

files; secondly, his behavior in documents’ markup; and last but not least,

his feelings during the overall process.

This test must then be refined for specific editors in order to identify the

issues related to their specific context. In the next section I will explain the

goals of the user experience’s test created to evaluate LIME editor.

6.2 Goals of the test

The aim of this test is to evaluate the usability of LIME. The test is

structured as a summative usability test [TA08]. Therefore, it is created to

examine how well the editor and its functionality meet their objectives. In

order to do this, the efficacy and the efficiency of the editor, and the satis-

faction of the users will be evaluated [Sha91].

Efficacy and efficiency are about what users actually do when they inter-

act with the editor, trying to accomplish a task. In the sections 6.2.1 and

6.2.2 I will explain the tasks that where chosen to examine these character-

istics.

Satisfaction is about the users’ feelings while they interact with the edi-

tor or when they are performing tasks. In section 6.2.3 I will explain how I

examined users’ satisfaction.

6.2 91

6.2.1 Examining the efficacy

The aim of this part of the test is to evaluate the editor’s navigation

system that should be used to navigate and manage files and to handle the

editor’s interface. The navigation system is the very first part of the software

to which the users are exposed.

To evaluate this part of the software I have chosen to submit to users

nine tasks that are fairly representative of the interaction with the navigation

system. The nine tasks are listed below:

• Can you sign up to the system?

• Can you log in with your account?

• Can you change the editor’s language to your preferred one?

• Can you import a Microsoft word’s file from your desktop?

• Can you open one of the examples supplied by the editor?

• Can you save the file under a different name?

• Can you open the XML preview of the example you are looking at?

• Can you save the XML version of the document on your desktop?

• Can you log out?

These are critical tasks that users must complete successfully. Therefore it

is important to check both that the user can complete the tasks (because a

negative response results in a fatal interaction’s issue), and the ease of the

interaction (because an uneasy interaction with the navigation system can

lead the user to think that the editor is not working properly).

6.2.2 Examining the efficiency

This part of the test is intended to evaluate how much effort users make

when they use the editor to markup a legislative document. In order to

92 6. Evaluation of LIME’s user experience

markup a legislative document, users must identify the legal parts of the

document and must assign to each of them the correct label. On the one

hand, the markup’s tasks are secondary because the users start to use them

only after they feel comfortable with the navigation system. On the other

hand, they are fundamental tasks because they are performed to accomplish

the editor’s main objective.

In order to evaluate the markup features of the editor, I asked the testers

to perform the following tasks:

• After a partially marked-up document was opened:

– Can you set the preface of this document?

– Can you set the document date?

– Can you set the main body of the document?

– Can you set an article, its number, and its heading?

– Can you markup a bold text in the article that you created?

– Can you create a table in the article that you created?

– Can you set a quoted structure in the article that you created?

• After a complete marked-up example was opened:

– Can you show me the subsection 2 of the section 3 of this docu-

ment?

– Can you un-mark the preface of this document and all the elements

that it contains?

– Can you save this document as a new expression in the same

work?

In order to evaluate the efficiency, it is important to check how much time

users need to complete these tasks and the actions that they perform in

order to do that. It is important to underline that a failure in these tasks

is admissible because it should not result in user’s frustration, but leads the

6.2 93

user to find a different way to markup the document. For example, if users

are not able to markup bold text, they can simply decide to skip it (maybe

because they think that the editor does not supply this feature), or they can

try other strategies to achieve a similar result (for example using a generic

inline and setting its class to bold).

This does not mean that failures must be ignored, indeed a lot of failures

can make the user to feel frustrated and abandon the system. Therefore, in

this part of the test, it is important to check the number of successes, the

number of failures, and the users’ behavior while they perform the tasks.

6.2.3 Examining the users’ satisfaction

Satisfaction is evaluated collecting a set of users’ self-reported data. Self-

reported data are really important because they capture users’ actual feelings

while they are using the system. Indeed, the data that come out of a summa-

tive usability test can be very different from the data that come out of users’

self-reported data, and in some situations the latter can be more significant.

For example, a task can be rated as dreadful by the usability expert because

it takes five minutes rather than the expected one minute. But then the

users can rate the same task as amazing because they had a lot of fun while

performing it and, as said before, in some situations this can be the only

thing that matters.

The testers where asked to answer two sets of questions. The first ques-

tionnaire was completed before they performed the tasks listed in section

6.2.1 and section 6.2.2. The second one was compiled after they have com-

pleted the tasks. The following are two examples of questions asked before

and after the task completion respectively:

94 6. Evaluation of LIME’s user experience

An example of a question submitted before the users completed

the task

1a. How difficult do you expect it will be to sign up to the

system?

Very difficult !—!—!—!—!—!—! Very easy

An example of a question submitted after the users completed the

task

1c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

After each task was completed, users were asked to indicate the degree

of difficulty they found in the task’s completion using the same scale they

used in foreseeing their effort for the same task. The complete questionnaire

is reported in section 6.3.3.

Thanks to this kind of tests it is possible to compare the expectation

rating and the experience rating [TA08]; this can be used to improve the

user experience.

6.3 The LIME’s user experience test

The LIME’s user experience test was built on Akoma Ntoso markup lan-

guage and was intended to capture both users’ performance and satisfaction.

For these reasons it was submitted using specific methodologies and users

were chosen in order to meet specific requirements. In this section I will

explain the methodologies that I used to submit the tests, how I chose the

testers and, eventually, I will report the complete questionnaires submitted

to the subjects.

6.3 95

6.3.1 Methodology

The user experience’s test was divided in four sessions: A registration

session, a presentation session, an effort foresee session and a task perform-

ing session. All the subjects were volunteers and I will explain in the next

section how I recruited them.

For the registration I asked testers their age, their degree of experience in

certain fields, and how often they uses some kinds of software. I have chosen

not to ask their name and their surname in order to ensure their anonymity

during the results’ evaluation, and for this reason, I assigned to each of them

an individual ID number. The other information were asked in order to make

it possible to cluster the results and infer more specific data.

During the presentation session, a teacher in legal informatics and cre-

ator of Akoma Ntoso (Monica Palmirani) explained testers the basis of the

language and shared all the knowledge needed in order to accomplish the

simple test’s tasks. This session lasted thirty minutes and was performed in

a lab of the University of Bologna.

After the presentation, during the foresee session, users were asked to

compile a questionnaire in which they foresaw the effort that they presumed

to make to accomplish all the test’s tasks. I gave them a copy of the question-

naire and I asked them to sign it with the ID they had previously received.

This session had no time limit.

In the last session, I asked the users to individually perform some tasks

while I was observing and timing them. For this session I produced my per-

sonal sheet in which I reported the information related to users while they

were performing the task. I divided the tasks into two groups.

The first group contained the tasks developed to examine the navigation

system. Tasks in this group was labeled with a NS ID, and was treated as

binary data [TA08]; for this reason I assigned them a time limit. If users

finished the task in time I rated it as accomplished, otherwise I rated it as

not accomplished.

The second group contained the tasks used to examine LIME’s efficiency.

96 6. Evaluation of LIME’s user experience

Tasks in this group were labeled with a MU ID, and were treated as time

tasks [TA08]. For items in this group I simply reported the time users spent

to accomplish the task.

After the completion of each task, I asked the users to report the degree

of difficulty they found in accomplishing the task.

In section 6.3.3 I will report the questionnaires and the sheet that I used

to collect the information.

6.3.2 Choosing the testers

In order to recruit the testers we, at CIRSFID, organized a hackaton 1.

Its objective was to markup, by using Akoma Ntoso, as many documents as

possible in five hours.

During the hackaton I asked the users to join me in a separate room to

perform the fourth session of the user experience’s test.

Ten people joined the hackaton and ten people agreed to do the test. In

section 6.4.1 I will summarize the users information.

6.3.3 The complete test

The following are the questionnaires submitted to the users and the sheets

that I used to report information.

The questionnaire submitted before the users’ performed the tasks

About you

1. Your ID number:

2. How old are you? I am years old.

3. What is your knowledge in computer science?

None !—!—!—!—!—!—! I’m an expert

1A hackaton is an event in which individuals are involved to collaboratively contribute
to a project. A lot of software or software’ functionality were prototyped or implemented
during hackatons, for example the Facebook’s chat [PL09].

6.3 97

4. What is your knowledge in law and jurisprudence?

None !—!—!—!—!—!—! I’m an expert

5. What is your knowledge in legal informatics?

None !—!—!—!—!—!—! I’m an expert

6. How often do you use computers?

Never !—!—!—!—!—!—! Very often

7. How often do you navigate the web?

Never !—!—!—!—!—!—! Very often

8. How often do you use desktop applications?

Never !—!—!—!—!—!—! Very often

9. How often do you use online applications?

Never !—!—!—!—!—!—! Very often

10. How often do you use desktop word processors (i.e. word,

open office)?

Never !—!—!—!—!—!—! Very often

11. How often do you use in browser word processors (i.e. google

docs)?

Never !—!—!—!—!—!—! Very often

12. How often do you use desktop XML editors (i.e. oxygen

XML, altova XML spy)?

Never !—!—!—!—!—!—! Very often

13. How often do you use legislative markup editors (i.e. NIR

editor, bungeni editor)?

Never !—!—!—!—!—!—! Very often

Foresee the effort you will make to complete the following tasks

1a. How difficult do you expect it will be to sign up to the

system?

Very difficult !—!—!—!—!—!—! Very easy

2a. How difficult do you expect it will be to log in to the system?

Very difficult !—!—!—!—!—!—! Very easy

98 6. Evaluation of LIME’s user experience

3a. How difficult do you expect it will be to change the editor’s

language to your preferred one?

Very difficult !—!—!—!—!—!—! Very easy

4a. How difficult do you expect it will be to import a Microsoft

word’s file from your desktop?

Very difficult !—!—!—!—!—!—! Very easy

5a. How difficult do you expect it will be to open one of the

examples supplied by the editor?

Very difficult !—!—!—!—!—!—! Very easy

6a. How difficult do you expect it will be to save a file under a

different name?

Very difficult !—!—!—!—!—!—! Very easy

7a. How difficult do you expect it will be to open the XML

preview of a document?

Very difficult !—!—!—!—!—!—! Very easy

8a. How difficult do you expect it will be to save the XML ver-

sion of a document on your desktop?

Very difficult !—!—!—!—!—!—! Very easy

9a. How difficult do you expect it will be to log out from the

system?

Very difficult !—!—!—!—!—!—! Very easy

10a. Having a partially marked-up document, how difficult do

you expect it will be to markup its preface?

Very difficult !—!—!—!—!—!—! Very easy

11a. Having a partially marked-up document, how difficult do

you expect it will be to markup its document date?

Very difficult !—!—!—!—!—!—! Very easy

12a. Having a partially marked-up document, how difficult do

you expect it will be to markup its main body?

Very difficult !—!—!—!—!—!—! Very easy

6.3 99

13a. Having a partially marked-up document, how difficult do

you expect it will be to markup one of its articles with its

number and its heading?

Very difficult !—!—!—!—!—!—! Very easy

14a. Having a marked-up article, how difficult do you expect it

will be to markup a bold text inside it?

Very difficult !—!—!—!—!—!—! Very easy

15a. Having a marked-up article, how difficult do you expect it

will be to markup a table inside it?

Very difficult !—!—!—!—!—!—! Very easy

16a. Having a marked-up article, how difficult do you expect it

will be to markup a quoted structure inside it?

Very difficult !—!—!—!—!—!—! Very easy

17a. How difficult do you expect it will be to find the subsection

2 of section 3 in a complete marked-up document?

Very difficult !—!—!—!—!—!—! Very easy

18a. Having a complete marked-up document, how difficult do

you expect it will be to un-mark the preface and all the

elements inside it?

Very difficult !—!—!—!—!—!—! Very easy

19a. Having a complete marked-up document, how difficult do

you expect it will be to save it as a new expression in the

same work?

Very difficult !—!—!—!—!—!—! Very easy

The task submitted to users and the questionnaire the compiled

after the tasks’ completion

1b. Can you sign up to the system?

1c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

2b. Can you log in with your account?

100 6. Evaluation of LIME’s user experience

2c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

3b. Can you change the editor’s language to your preferred one?

3c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

4b. Can you import a Microsoft word’s file from your desktop?

4c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

5b. Can you open one of the examples supplied by the editor?

5c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

6b. Can you save the file under a different name?

6c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

7b. Can you open the XML preview of the example you are

looking at?

7c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

8b. Can you save the XML version of the document on your

desktop?

8c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

9b. Can you log out?

9c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

10b. Can you set the preface of this document?

10c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

11b. Can you set the document date?

11c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

12b. Can you set the main body of the document?

6.3 101

12c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

13b. Can you set an article, its number, and its heading?

13c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

14b. Can you markup a bold text in the article that you created?

14c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

15b. Can you create a table in the article that you created?

15c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

16b. Can you set a quoted structure in the article that you cre-

ated?

16c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

17b. Can you show me the subsection 2 of the section 3 of this

document?

17c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

18b. Can you un-mark the preface of this document and all the

elements that it contains?

18c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

19b. Can you save this document as a new expression in the

same work?

19c. How difficult was to complete this task?

Very difficult !—!—!—!—!—!—! Very easy

102 6. Evaluation of LIME’s user experience

Table 6.1: The sheet used to collect user’s data

U
se
r
ID

:
S
ta
rt

ti
m
e:

E
n
d

ti
m
e:

T
a
sk

n
u
m
b
er

T
a
sk

ty
p
e

T
im

e
L
im

it
(s
ec

.)
E
la
p
se
d

ti
m
e
(s
ec

.)
T
a
sk

a
cc

o
m
p
li
sh

ed
(y

es
o
r
n
o
)

ta
sk

1
b

N
S

18
0

ta
sk

2
b

N
S

30

ta
sk

3
b

N
S

12
0

ta
sk

4
b

N
S

12
0

ta
sk

5
b

N
S

60

ta
sk

6
b

N
S

60

ta
sk

7
b

N
S

60

ta
sk

8
b

N
S

60

ta
sk

9
b

N
S

30

ta
sk

1
0
b

M
U

N
A

ta
sk

1
1
b

M
U

N
A

ta
sk

1
2
b

M
U

N
A

ta
sk

1
3
b

M
U

N
A

ta
sk

1
4
b

M
U

N
A

ta
sk

1
5
b

M
U

N
A

ta
sk

1
6
b

M
U

N
A

ta
sk

1
7
b

M
U

N
A

ta
sk

1
8
b

M
U

N
A

ta
sk

1
9
b

M
U

N
A

6.4 103

6.4 Analysis of the results

The usability test was successfully completed in six hours and all ques-

tionnaires except one were filled in properly. Indeed, an user completely

forgot to fill in the questionnaire related to the evaluation of satisfaction and

I excluded it in the analysis of the results. So, for the analysis of the results,

I used the remaining nine tests.

6.4.1 Summary of the testers

The information about users show that my sample of users was quite

representative of the scenario in which a legal markup editor should be used.

I expected the users of a new legal markup editor to be professionals and to

have a good knowledge of computer science or laws and jurisprudence. I also

expected them to be skilled in computers, online and desktop applications,

and words processors and that some of them also had some knowledge of

legal informatics and XML editors.

Indeed, we can see in table 6.2 that the average age of the users was

thirty-three years old. Almost all of them use often computers, web, desktop

applications, web applications and desktop words processors. The majority

of them have a good experience in computer science or law and use quite often

online word processors. The minority of them are experts of legal informatics

and use desktop XML editors.

I failed to recruit enough people skilled in other existent legal markup

editors. This would have been useful to compare the LIME usability to the

one of the other editor. However, as already said, this was intended to be a

summative usability test and not a comparative test and for this reason the

testers were enough reliable for my purposes.

104 6. Evaluation of LIME’s user experience

Table 6.2: The summary of the testers

Question p1 p2 p3 p4 p5 p6 p7 p8 p9 Average

age 37 38 29 30 39 26 25 38 37 33

knoweledge in
computer
science

5 4 4 5 2 7 6 4 7 4.9

knoweledge in
law and
jurisprudence

6 7 7 1 7 1 1 7 3 4.4

knoweledge in
legal
informatics

3 4 5 1 5 1 5 6 4 3.8

use of
computers 7 7 7 7 7 7 7 7 7 7

use of web 7 7 6 7 7 7 7 7 7 6.9

use of desktop
applications 7 7 6 7 6 7 7 7 7 6.8

use of online
applications 7 3 5 7 6 7 7 7 6 6.1

use of desktop
word
processors

7 7 6 7 7 5 7 7 5 6.4

use of online
word
processors

5 7 3 2 6 5 7 6 3 4.9

use of desktop
XML editors

6 3 2 7 2 7 1 1 3 3.6

use of
legislative
markup
editors

1 3 1 1 2 1 1 2 3 1.8

6.4 105

6.4.2 Analysis of the efficacy

The efficacy of the editor was evaluated asking the users to complete nine

binary tasks. These tasks had a time limit and if users did not complete

them in time, the task was classified as not completed. Table 6.3 shows the

tasks used to evaluate the editor efficacy, their time limit and their code.

Table 6.3: The tasks used to evaluate LIME efficacy

Task Task code Time limit (sec)

Sign up to the system T1b 180

Log in to the system T2b 30

Change the editor’s language T3b 30

Import a Microsoft word’s file from
the user’s desktop

T4b 120

Open one of the examples supplied by
the editor

T5b 60

Save a file under a different name T6b 60

Open the XML preview of a file T7b 60

Save the XML version of a document
on the user’s desktop

T8b 60

Log out from the system T9b 30

In table 6.4 and in figure 6.1 the results of the efficacy evaluation are

displayed.

106 6. Evaluation of LIME’s user experience

Table 6.4: The summary of the tasks completed by users (1 indicates completed
tasks, 0 indicates not completed task)

T1b T2b T3b T4b T5b T6b T7b T8b T9b avg

p1 0 1 1 1 0 1 1 1 1 78%

p2 1 1 1 1 0 1 1 1 1 89%

p3 1 1 1 1 1 0 1 1 1 89%

p4 0 0 1 1 0 1 1 1 1 67%

p5 1 1 1 0 1 1 1 1 1 89%

p6 1 1 1 1 0 1 1 1 1 89%

p7 1 1 1 1 1 1 1 1 1 100%

p8 1 1 1 1 0 1 1 0 1 78%

9 1 1 1 1 0 0 1 1 1 78%

avg 78% 89% 100% 89% 33% 78% 100% 89% 100% 84%

The eighty-four percent of the tasks was successfully completed. More

than fifty percent of the task was successfully completed by all users.

The only exception was found when the users were asked to open one of

the marked-up examples supplied by the editor. The majority of the users

were not able to figure out how to do it.

In order to open an example in LIME, users have to click on the file

menu and then on the open menu. Examples are stored in a folder called

example and can be opened like any other file. When I asked the users to

open a marked-up example, they seemed puzzled and started to look for the

example allover the application, except in the open menu.

Other two tasks were completed only by seventy-eight percent of the

users. Some users got confused when they had to sign up to the system

and when they had to save the file under a different name. I expected this

difficulty because the LIME registration mask is still a prototype and the

save functionality needs a certain expertise in FRBR.

Overall, the efficacy evaluation of LIME gave good results. Except for

6.4 107

one critical issue and two improvable functionality, I can consider LIME an

effective markup editor.

Figure 6.1: The efficacy evaluation by tasks

6.4.3 Analysis of the efficiency

To evaluate the efficiency of LIME I asked the users to complete nineteen

tasks. In addition to the tasks described in the previous section, I asked

the users to perform ten additional tasks. All tasks were treated as timed

task. For this reason, I timed the users and reported the time that it took

to complete the tasks. Table 6.5 lists the tasks and their code.

108 6. Evaluation of LIME’s user experience

Table 6.5: The tasks used to evaluate the LIME efficiency

Task Task code

Sign up to the system T1b

Log in to the system T2b

Change the editor’s language T3b

Import a Microsoft word’s file from the user’s desktop T4b

Open one of the examples supplied by the editor T5b

Save a file under a different name T6b

Open the XML preview of a file T7b

Save the XML version of a document on the user’s desktop T8b

Log out from the system T9b

Markup the preface of a document T10b

Markup the document’s date T11b

Markup the main body of the document T12b

Markup an article, its number, and its heading T13b

Markup a bold text T14b

Create a table T15b

Markup a quoted structure T16b

Find the subsection 2 of the section 3 of a document T17b

Unmark the preface of a document and all the contained elements T18b

Save a document as a new expression in the same work T19b

As said in the previous section, the first nine tasks were considered com-

pleted if users respected the time limit. The other tasks did not have a time

limit. They were considered completed if users properly finished them inde-

pendently from the time it took. Tasks were considered not finished if users

abandoned them before their completion. Table 6.6 lists the completed and

not completed tasks.

6.4 109

Table 6.6: The summary of the tasks performed by users (1 indicates completed
tasks, 0 indicates not completed tasks)

p1 p2 p3 p4 p5 p6 p7 p8 p9 avg

T1b 0 1 1 0 1 1 1 1 1 78%

T2b 1 1 1 0 1 1 1 1 1 89%

T3b 1 1 1 1 1 1 1 1 1 100%

T4b 1 1 1 1 0 1 1 1 1 89%

T5b 0 0 1 0 1 0 1 0 0 33%

T6b 1 1 0 1 1 1 1 1 0 78%

T7b 1 1 1 1 1 1 1 1 1 100%

T8b 1 1 1 1 1 1 1 0 1 89%

T9b 1 1 1 1 1 1 1 1 1 100%

T10b 1 1 1 1 0 1 1 1 1 89%

T11b 1 1 1 0 1 1 1 1 1 89%

T12b 0 1 1 1 1 1 1 1 1 89%

T13b 1 0 1 1 1 0 1 1 1 78%

T14b 1 1 1 1 0 1 1 0 1 78%

T15b 0 1 1 1 1 1 1 1 1 89%

T16b 1 1 1 1 1 0 1 1 0 78%

T17b 1 0 1 1 1 1 1 1 1 89%

T18b 0 1 1 1 1 1 1 1 1 89%

T19b 1 1 1 1 1 1 0 1 0 78%

As table 6.7 shows, I took the time each user needed to complete each

task and the average time needed by all users.

110 6. Evaluation of LIME’s user experience

The average completion time and the task completion rate allow us to

measure the efficiency of the editor. The Common Industry Format For

Usability Reports specifies that the ”core measure of efficiency” is the ratio

of the task completion rate to the mean time per task [TA08]. Table 6.8 and

figure 6.2 show the efficiency task by task.

Table 6.7: the average time in seconds for completion of tasks (NC indicates the
tasks that were not completed)

p1 p2 p3 p4 p5 p6 p7 p8 p9 avg

T1b NC 100 87 NC 118 163 65 89 151 110

T2b 6 5 12 NC 27 17 11 5 11 12

T3b 17 10 8 5 9 15 4 13 4 10

T4b 20 14 23 11 NC 12 15 10 16 15

T5b NC NC 24 NC 48 NC 11 NC NC 28

T6b 13 15 NC 14 17 11 15 14 NC 14

T7b 7 8 23 10 15 11 6 16 21 13

T8b 12 9 38 6 7 17 8 NC 12 13

T9b 6 17 23 22 4 18 15 21 11 15

T10b 13 10 14 15 NC 15 12 37 8 15

T11b 6 5 33 NC 5 43 13 4 7 14

T12b NC 11 13 13 13 20 16 7 23 14

T13b 3 NC 41 19 26 NC 17 20 28 22

T14b 10 12 10 5 NC 6 4 NC 50 14

T15b NC 13 10 16 12 13 8 16 16 13

T16b 24 12 48 10 18 NC 78 35 NC 32

T17b 7 0 11 31 20 11 11 20 17 14

T18b NC 7 30 23 6 10 10 8 19 14

T19b 23 17 25 18 15 26 NC 31 NC 22

6.4 111

Table 6.8: The evaluation of LIME efficiency

Task completion rate Task time (cs) Efficiency (%)

T1b 78% 1100 7

T2b 89% 120 74

T3b 100% 100 100

T4b 89% 150 59

T5b 33% 280 11

T6b 78% 140 55

T7b 100% 130 76

T8b 89% 130 68

T9b 100% 150 66

T10b 89% 150 59

T11b 89% 140 63

T12b 89% 140 63

T13b 78% 220 35

T14b 78% 140 55

T15b 89% 130 68

T16b 78% 320 24

T17b 89% 140 63

T18b 89% 140 63

T19b 78% 220 35

112 6. Evaluation of LIME’s user experience

Figure 6.2: The efficiency evaluation by tasks

The evaluation of the LIME efficiency proves that, for the majority of the

tasks, LIME is efficient. Only five of the nineteen tasks had an evaluation

below fifty percent. The inefficiency (and inefficacy) of two of these tasks

(T1b and T5b) was already proved by the LIME efficacy evaluation. This

means that the parts of the LIME user interface involved in these tasks must

severely be redesigned.

Another task that revealed big issues in usability was the one that in-

volved the user in the creation of a new version (expression) of a document.

Like in the efficacy evaluation, users failed again in using the save system of

the LIME editor and spent a lot of time to completely save new versions of

the document. This is surely related to the complexity of the FRBR notation,

but the test proved that this part of the LIME interface must be improved.

The other two tasks that were rated less than fifty percent were the ones

that involved the user in the markup of legal elements of documents. I no-

6.4 113

ticed slowdowns when users had to markup an article with its number and

its heading and when they had to markup an element called quoted structure.

In order to markup an article, its number and its heading, users had to

select the text of the article in the document and click the set article button

on the right. Then they had to select the number of the article and click

the button set num in the markup toolbar and, again, they had to select the

heading of the article and click the button set heading in the markup toolbar.

The problem in this workflow was that, even if users had no problem marking

up the article, they struggled to find the buttons to markup the number and

the heading.

In order to markup a quoted structure, users had to select the text that

had to be marked up and then they had to click on a toolbar called com-

mon elements ; finally, they had to find and click the button called set quoted

structure. The common elements’ toolbar contains buttons grouped by their

thematic area. Users failed to find the button to markup a quoted structure

because the majority of them did not know which was the correct thematic

area that had to be open and abandoned before they had inspected all the

areas.

There are other parts of the interface that must be surely improved, but

must not be considered as problematic. These are the ones involved in those

tasks that got an efficacy rating barely above fifty-percent.

The test meets my requirements and demonstrates that, overall, LIME is

an efficient markup editor specially in the legal context.

6.4.4 Analysis of the users’ satisfaction

In order to measure the users’ satisfaction, I asked them to foresee the

effort needed to complete the nineteen tasks. Then, after they completed

each task, I asked them how difficult it had been to complete the task. Table

6.9 lists the average expectation and experience ratings for each task.

114 6. Evaluation of LIME’s user experience

Table 6.9: the average expectation rating and the average experience rating

Task Expectation rating (avg) Experience rating (avg)

T1b 6.4 3.4

T2b 6.7 6.3

T3b 6.7 6.6

T4b 6.1 3

T5b 6.4 3

T6b 6.6 4.7

T7b 6.3 6.6

T8b 6.8 6.0

T9b 5.2 6.9

T10b 3.2 6.0

T11b 2.7 5.4

T12b 2.8 5.7

T13b 3.3 3.5

T14b 5.7 6.9

T15b 4.7 6.8

T16b 5.4 5.2

T17b 5.8 6.3

T18b 5.4 6.7

T19b 2.7 2.8

After this phase, I inserted the average expectation and average experi-

ence ratings in the scatterplot as shown in figure 6.3.

6.4 115

Figure 6.3: Average Expectation and Experience Ratings per Task

The diagram in the figure above must be divided in four sectors in order

to be read properly .

In the lower-right sectors, there are the tasks that users thought would

be easy but actually turned out to be difficult. These are the problematic

tasks already highlighted by the efficacy and efficiency measurements and

precisely: the tasks where users were asked to sign up to the system, to open

examples and to save documents under a different name. The fact that they

are in the lower-right sectors means that they need to be fixed as soon as

possible.

In the upper-left sectors there are the tasks that users thought would be

difficult and were actually easy. In these tasks users were asked to markup

legal parts of documents, such as the preface, the documents data and their

main body. This is a very useful data because, even these tasks do not have

a very high efficiency score (fifty-nine percent, sixty-three percent and sixty-

116 6. Evaluation of LIME’s user experience

three percent respectively), the fact that they belong to the upper-left sector

of the scatterplot means that they must be promoted and, maybe, improved.

Very difficult tasks to analyze are the ones belonging to the lower-left

sector of the diagram. In this sector there are the tasks where users had to

markup an article, its number and its heading and the one where users were

asked to save documents as new expressions. Users thought that these tasks

would be difficult and, indeed, they were so. This data means that there are

no big surprises here, although combining this data with the one received in

the efficiency evaluation of the same tasks, it is clear that there are many

opportunities of improvement.

The last sector is the upper-right one. To this sector belong tasks that

users thought would be easy and, indeed, they were. This means that these

features of LIME must not be changed and that it is already usable for the

completion of those tasks.

Having eleven points in the upper-right sector of the diagram and three

points in the upper-left sector, I can conclude that, except for five tasks,

users are overall satisfied when they use LIME.

6.5 LIME’s strengths and weaknesses

In this chapter I analyzed the LIME usability. Firstly, I described the

usability test that I created to evaluate markup editors and then I described

the results that I obtained applying it to LIME.

Results demonstrated that LIME is effective and efficient and that users

are quite satisfied when they use it. LIME seems to be very usable for

markup. Users take advantage of its functionality to quickly mark up the

structure of legal documents. Except for some tasks, they feel comfortable

with the markup toolbar supplied by the editor. Moreover, they can use

easily the interface when they have to navigate through documents and their

various views.

However, other tasks, like the save system, frustrated users. This is due

6.5 117

both to the particular LIME storage system and to the interface that is

probably not simple to understand.

Future versions of LIME will try to fix these issues and to improve the

LIME overall usability.

Chapter 7

Conclusions

In this essay I described how to create a parametric editor for structured

documents and then I described LIME, a parametric and language indepen-

dent markup editor.

Currently, there are many software suitable for the creation of structured

documents. Some of them are able to markup all XML languages but users

need a good knowledge of the XML language they wish to use.These editors

are the WYSIWYG editors.

Other editors permit to markup XML documents without a deep knowl-

edge of the XML language, but they are created for only one specific dialect.

These are called markup editors and some of these are used in the legal con-

text.

LIME is a mix of these two types of editors. On the one hand, LIME

allows users to markup documents through many XML languages and, on

the other hand, it drives users to create a correct markup, even if they do

not know the XML language.

In order to be independent, LIME relies on parameters. Its architecture

is completely based on JSON configuration files and, by creating packages

of these files, called language plugins, it is possible to allow LIME users to

markup documents through any XML language. Currently LIME supports

three XML languages, Akoma Ntoso (in its 2.0 and 3.0 versions), TEI, and

119

120 7. Conclusions

legal RuleML. Even if this demonstrates that the requirement of indepen-

dence was met, LIME could be improved in many ways. For example, two of

the most requested features are the possibility not to use the FRBR storage

system and the independence of the LIME core from its interface.

The FRBR storage is one of the mandatory LIME requirements because,

for example, parliaments’ legal drafters want both to markup documents and

to easily catalog resources. This is true, but it is also true that, creating a

LIME API would enable the creation of plugins. In this way, LIME should

continue to use the FRBR storage system but plugins can be created with

the purpose to override the LIME default storage system and supply storage

system more suitable for other specific contexts.

The independence of the LIME core from its interface is not a trivial task,

but it can be achieved because LIME relies on the Model View Controller

architectural style. For this reason, it is possible to detach LIME from its

interface and to supply a LIME core framework that others can use with

their own interface.

However, the current LIME interface is specifically designed to meet the

second requirement of a markup editor. A markup editor must drive users

to correctly markup XML documents.

To evaluate the LIME interface I designed an usability test for markup

editors and applied it to LIME. The test inspected the efficacy and the effi-

ciency of LIME and the satisfaction of users when they were using it.

The test highlighted that for the majority of the tasks LIME is usable.

Even if users have no experience in Akoma Ntoso, they were able to markup

documents using many of the elements that the standard supplies. This

proves that the LIME interface actually guides users through a markup pro-

cess that results in a complete and, if needed, valid XML document. The

usability test also pointed out some LIME weaknesses. Not all users were

able to use properly the save functionality and some of them failed to figure

out how to markup some elements specifically related to the legal context.

The problems of the storage system, as said before, can technically be

7.0 121

solved by enabling plugins. But this would not fix the usability issues re-

lated to the interface’s parts that allow users to save documents by taking

advantage of FRBR notation. It would be ideal if LIME users could prop-

erly use the storage system even they are not skilled in FRBR. This can

be achieved by improving the save functions’ parts of the interface and by

making them, in some way, more easily learnable. By doing so, users would

spend few minutes to learn the usage of the interface, but then they could

take advantage of it. In order to understand how to create a learnable inter-

face, I will organize other hackatons and comparative usability tests in which

I will ask users to exploit different interfaces to complete the same task.

Usability issues related to the difficulty of marking up specific legal ele-

ments can probably be fixed by observing large sets of legal experts during

the markup workflow. Next usability tests can be divided in usability tests

with legal drafting experts and usability tests without them. In this way, I

will be able to understand what are the issues strictly related to the legal

context.

The hackaton during which I proposed the usability test was also the

first time in which LIME was massively used. This highlighted many bugs:

indeed, over thirty bugs were reported by users. This was expected because

the software is in its alpha version but, of course, I cataloged each bug and

rated it in a severity scale and scheduled their fix.

Several parliaments and many political and apolitical institutions are cur-

rently waiting the first official LIME release to markup their legal and legisla-

tive documents. Also some history scholars are waiting a first stable version

of LIME to markup ancient manuscripts’ descriptions and transcriptions. In

the future, I will create language plugins for many common XML languages

and I hope that LIME will be used by business and common people to markup

all kind of XML documents.

122 7. Conclusions

Bibliography

[AH08] Andy Austin and Christopher Harris. Chapter 9: Case

studies. Library Technology Reports, 44(4):31–36, 2008.

[BB+99] Jon Bosak, Tim Bray, et al. Xml and the second-generation

web. Scientific American, 280(5):89–93, 1999.

[BFST03] C Biagioli, E Francesconi, P Spinosa, and M Taddei. The

nir project: Standards and tools for legislative drafting and

legal document web publication. In Proceedings of ICAIL

workshop on e-government: modelling norms and concepts

as key issues, pages 69–78, 2003.

[BHV+08] Alexander Boer, Erik Hupkes, Fabio Vitali, Monica Palmi-

rani, and Balazs Ratai. Metalex cen workshop proposal.

Technical report, CEN Workshop on an Open XML Inter-

change Format for Legal and Legislative Resources (Met-

alex), 2008.

[BL89] Tim Berners-Lee. Information management: A proposal.

1989.

[BLB] Tim Berners-Lee and XHTML Basic. First specifications.

[BLC95] Tim Berners-Lee and Dan Connolly. Hypertext markup

language-2.0. Technical report, RFC 1866, November, 1995.

123

124 BIBLIOGRAPHY

[BMC+04] Paul Biron, Ashok Malhotra, World Wide Web Consor-

tium, et al. Xml schema part 2: Datatypes. World

Wide Web Consortium Recommendation REC-xmlschema-

2-20041028, 2004.

[BPVC11] Gioele Barabucci, Monica Palmirani, Fabio Vitali, and

Luca Cervone. Long-term preservation of legal re-

sources. In KimNormann Andersen, Enrico Francesconi,

Ake Grönlund, and TomM. Engers, editors, Electronic Gov-

ernment and the Information Systems Perspective, volume

6866 of Lecture Notes in Computer Science, pages 78–93.

Springer Berlin Heidelberg, 2011.

[Bry88] Martin Bryan. SGML. Addison-Wesley, 1988.

[BSJ86] Luci Berkowitz, Karl A Squitier, and William Allen John-

son. Thesaurus Linguae Graecae canon of Greek authors

and works. Oxford University Press, 1986.

[BvE11] Alexander Boer and Tom van Engers. A metalex and

metadata primer: Concepts, use, and implementation. In

Legislative XML for the Semantic Web, pages 131–149.

Springer, 2011.

[CD+99] James Clark, Steve DeRose, et al. Xml path language

(xpath), 1999.

[CM01] James Clark and Makoto Murata. {Relax NG} specifica-

tion. 2001.

[Cov00] R Cover. Theological markup language (thml). The XML

Cover Pages (http://www. oasis-open. org/cover/thml.

html), 2000.

7.0 125

[CRD87] James H. Coombs, Allen H. Renear, and Steven J. DeRose.

Markup systems and the future of scholarly text processing.

Commun. ACM, 30(11):933–947, November 1987.

[Cro06] Douglas Crockford. The application/json media type for

javascript object notation (json). 2006.

[D’I78] Mary E D’Imperio. The voynich manuscript: an elegant

enigma. Technical report, DTIC Document, 1978.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design

of Network-based Software Architectures. PhD thesis, UNI-

VERSITY OF CALIFORNIA, IRVINE, 2000.

[G+05] Jesse James Garrett et al. Ajax: A new approach to web

applications, 2005.

[GME07] Danny Goodman, Michael Morrison, and Brendan Eich.

Javascript R© bible. John Wiley & Sons, Inc., 2007.

[GNK+99] David T Gering, Arya Nabavi, Ron Kikinis, W Eric L

Grimson, Noby Hata, Peter Everett, Ferenc Jolesz, and

William M Wells. An integrated visualization system for

surgical planning and guidance using image fusion and in-

terventional imaging. In Medical Image Computing and

Computer-Assisted Intervention–MICCAI’99, pages 809–

819. Springer, 1999.

[God06] Seth Godin. Getting Real. 37signals, 2006.

[Gol81] C. F. Goldfarb. A generalized approach to document

markup. In Proceedings of the ACM SIGPLAN SIGOA

symposium on Text manipulation, pages 68–73, New York,

NY, USA, 1981. ACM.

[Gol91] Charles F Goldfarb. The sgml handbook. 1991.

126 BIBLIOGRAPHY

[HH10] David Hyatt and Ian Hickson. Html 5. World Wide Web

Consortium WD WD-html5-20100304, 2010.

[HM88] Susan Hockey and Jeremy Martin. Oxford Concordance

Program: User’s Manual: Version 2. Oxford University

Computing Service, 1988.

[HPH10] Dracine Hodges, Cyndi Preston, and Marsha J Hamilton.

Resolving the challenge of e-books. Collection Management,

35(3-4):196–200, 2010.

[IV95] Nancy M Ide and Jean Véronis. Text encoding initiative:

Background and contexts, volume 29. Springer, 1995.

[Jel01] Rick Jelliffe. The schematron: An xml structure validation

language using patterns in trees. URL: http://xml. ascc.

net/resource/schematron/schematron. html, 2001.

[KP+88] Glenn E Krasner, Stephen T Pope, et al. A description

of the model-view-controller user interface paradigm in the

smalltalk-80 system. Journal of object oriented program-

ming, 1(3):26–49, 1988.

[Lam86] Leslie Lamport. LaTeX: A Document Preparation System.

Addison-Wesley, 1 edition, 1986.

[LBM+96] Ian Lancashire, John Bradley, Willard McCarty, Michael

Stairs, and TR Wooldridge. Using TACT with Electronic

Texts: A Guide to Text-analysis Computing Tools: Version

2.1 for MS-DOS and PC DOS. Modern Language Associ-

ation of America, 1996.

[Lew98] Scott M Lewandowski. Frameworks for component-

based client/server computing. ACM Computing Surveys

(CSUR), 30(1):3–27, 1998.

7.0 127

[LRV+08] Effie Law, Virpi Roto, Arnold P.O.S. Vermeeren, Joke Kort,

and Marc Hassenzahl. Towards a shared definition of user

experience. In CHI ’08 Extended Abstracts on Human Fac-

tors in Computing Systems, CHI EA ’08, pages 2395–2398,

New York, NY, USA, 2008. ACM.

[Mar92] Nenad Marovac. Document recognition: concepts and im-

plementations. SIGOIS Bull., 13(3):28–38, December 1992.

[Mar94] Fred Garth Martin. Circuits to control: Learning engineer-

ing by designing LEGO robots. PhD thesis, Massachusetts

Institute of Technology, 1994.

[Mei03] Wolfgang Meier. exist: An open source native xml

database. In Web, Web-Services, and Database Systems,

pages 169–183. Springer, 2003.

[MOMGSFM06] Iván Mart́ınez-Ortiz, Pablo Moreno-Ger, José Luis Sierra,

and Baltasar Fernández-Manjón. Using docbook and xml

technologies to create adaptive learning content in technical

domains. IJCSA, 3(2):91–108, 2006.

[Mye98] Brad A Myers. A brief history of human-computer interac-

tion technology. interactions, 5(2):44–54, 1998.

[New12] William Newman. Design case study: the bravo text editor.

interactions, 19(1):75–80, 2012.

[O’N02] Edward T O’Neill. Frbr: Functional requirements for bibli-

ographic records. Library resources and technical services,

46(4):150–159, 2002.

[OPKJ09] Leslie M Orchard, Ara Pehlivanian, Scott Koon, and Harley

Jones. Professional JavaScript Frameworks: Prototype,

YUI, ExtJS, Dojo and MooTools. Wrox Press Ltd., 2009.

128 BIBLIOGRAPHY

[P+00] Steven Pemberton et al. XhtmlTM 1.0 the extensible hy-

pertext markup language. W3C Recommendations, pages

1–11, 2000.

[PB02] Monica Palmirani and Raffaella Brighi. Norma-system: A

legal document system for managing consolidated acts. In

Database and Expert Systems Applications, pages 310–320.

Springer, 2002.

[PB03] Monica Palmirani and Raffaella Brighi. An xml editor for

legal information management. In Electronic government,

pages 421–429. Springer, 2003.

[PC09] Monica Palmirani and Luca Cervone. Legal change man-

agement with a native xml repository. In Proceedings of

the 2009 conference on Legal Knowledge and Information

Systems: JURIX 2009: The Twenty-Second Annual Con-

ference, pages 146–155, Amsterdam, The Netherlands, The

Netherlands, 2009. IOS Press.

[PC13] Monica Palmirani and Luca Cervone. A multi-layer digital

library for mediaeval legal manuscripts. In Digital Libraries

and Archives, pages 81–92. Springer, 2013.

[PCR09] Monica Palmirani, Giuseppe Contissa, and Rossella Ru-

bino. Fill the gap in the legal knowledge modelling. In

Guido Governatori, John Hall, and Adrian Paschke, editors,

Rule Interchange and Applications, volume 5858 of Lecture

Notes in Computer Science, pages 305–314. Springer Berlin

Heidelberg, 2009.

[PL09] Christopher Piro and Eugene Letuchy. Functional program-

ming at facebook. In Commercial Users of Functional Pro-

gramming Conference, 2009.

7.0 129

[Pla98] Marie-France Plassard. Functional requirements for bib-

liographic records: Final report. IFLA Study Group on

the Functional Requirements for Bibliographic Records, KG

Saur Verlag GmbH & Co. KG, München, 1998.

[Prz09] Adam Przepiórkowski. Tei p5 as an xml standard for tree-

bank encoding. In Proceedings of the Eighth International

Workshop on Treebanks and Linguistic Theories (TLT8),

pages 149–160, 2009.

[Raa03] Sebastian Raaphorst. Cookbook: A usability study. 2003.

[RCDS] J Robie, D Chamberlin, M Dyck, and J Snel-

son. Xquery 3.0: An xml query language, 2011.

Availab le: http://www. w3. org/TR/2011/WD-xquery-30-

20111213/(visited on 01/11/2012).

[Ros04] Lawrence Rosen. Open source licensing. Prentice Hall PTR,

2004.

[RR08] Leonard Richardson and Sam Ruby. RESTful web services.

O’Reilly, 2008.

[Rus67] DB Russel. Cocoa: A word count and concordance gener-

ator for atlas. Atlas Computer Laboratory: Chilton, 1967.

[Sha91] Brian Shackel. Usability-context, framework, definition, de-

sign and evaluation. Human factors for informatics usabil-

ity, pages 21–37, 1991.

[SMB+94] C Michael Sperberg-McQueen, Lou Burnard, et al. Guide-

lines for electronic text encoding and interchange, volume 1.

Text Encoding Initiative Chicago and Oxford, 1994.

[Sof03] SyncRo Soft. oxygen/¿ xml editor, 2003.

130 BIBLIOGRAPHY

[TA08] Tom Tullis and Bill Albert. Measuring the user experi-

ence. Collecting, Analyzing, and Presenting Usability Met-

rics, 2008.

[TDK+99] Charles A Taylor, Mary T Draney, Joy P Ku, David Parker,

Brooke N Steele, Ken Wang, and Christopher K Zarins.

Predictive medicine: computational techniques in thera-

peutic decision-making. Computer Aided Surgery, 4(5):231–

247, 1999.

[Tho04] Henry S Thompson. Xml schema part 1: Structures second

edition, 2004.

[Tho10] Scarlett Thomas. Our tragic universe. Canongate Books,

2010.

[US91] CORPORATE Unicode Staff. The Unicode Standard:

Worldwide Character Encoding. Addison-Wesley Longman

Publishing Co., Inc., 1991.

[Van04] Edward Vanhoutte. An introduction to the tei and the tei

consortium. Literary and linguistic computing, 19(1):9–16,

2004.

[VZ07] Fabio Vitali and Flavio Zeni. Towards a country-

independent data format: the akoma ntoso experience. In

Proceedings of the V legislative XML workshop, pages 67–

86. Florence, Italy: European Press Academic Publishing,

2007.

[Wal99] Norman Walsh. DocBook: the definitive guide, volume 1.

Oreilly & Associates Incorporated, 1999.

[Wil98] Oscar Wilde. Oscar Wilde’s wit and wisdom: A book of

quotations. Courier Dover Publications, 1998.

7.0 131

[WKLW98] Stuart Weibel, John Kunze, Carl Lagoze, and Misha Wolf.

Dublin core metadata for resource discovery. Internet En-

gineering Task Force RFC, 2413:222, 1998.

132 BIBLIOGRAPHY

List of Figures

2.1 The output generated by the lines of code in the listing 2.2 . . 17

3.1 A sample of a manuscript’s description 30

3.2 The content model of the act element in Akoma Ntoso 46

3.3 The content model of the article elements in Akoma Ntoso . . 47

3.4 The content model of the noteRef elements in Akoma Ntoso . 48

4.1 The grid view in Oxygen editor 56

4.2 The author view in Oxygen editor 57

4.3 A screenshot of the Norma editor 60

4.4 A screenshot of the Bungeni editor 62

4.5 A screenshot of the LegisPro Web editor 63

5.1 A screenshoot of the LIME editor 73

5.2 A screenshoot of the LIME top bar 74

5.3 A screenshoot of the LIME word processor 75

5.4 A screenshoot of the LIME markup menu 76

5.5 A screenshoot of the LIME documents’ outline 77

5.6 The LIME editor architecture 78

5.7 The interaction among LIME client side components 80

6.1 The efficacy evaluation by tasks 107

6.2 The efficiency evaluation by tasks 112

6.3 Average Expectation and Experience Ratings per Task 115

133

134 LIST OF FIGURES

List of Tables

6.1 The sheet used to collect user’s data 102

6.2 The summary of the testers 104

6.3 The tasks used to evaluate LIME efficacy 105

6.4 The summary of the tasks completed by users (1 indicates

completed tasks, 0 indicates not completed task) 106

6.5 The tasks used to evaluate the LIME efficiency 108

6.6 The summary of the tasks performed by users (1 indicates

completed tasks, 0 indicates not completed tasks) 109

6.7 the average time in seconds for completion of tasks (NC indi-

cates the tasks that were not completed) 110

6.8 The evaluation of LIME efficiency 111

6.9 the average expectation rating and the average experience rating114

135

136 LIST OF TABLES

Listings

2.1 An example of groff markup language 16

2.2 An example of LaTeX markup language 17

2.3 A fragment of a document type declaration 20

2.4 A type and tag valid SGML document 20

2.5 An sample HTML 4.01 document 22

3.1 A TEI document describing the source in figure 3.1 30

3.2 An example of DocBook markup language 33

3.3 A fragment extracted from an Italian law marked up using NIR 36

3.4 A fragment extracted from an Italian law marked up using

CEN/Metalex . 39

3.5 A sample of Akoma Ntoso for the markup of a comma of an

Italian law using the hcontainer element 42

3.6 A sample of Akoma Ntoso for the markup of a comma of an

Italian law using the comma element 42

3.7 A sample of Akoma Ntoso for the markup of a comma of an

Italian law using the comma element 43

3.8 A fragment of an Akoma Notoso document showing the usage

of blocks and inline elements 48

3.9 A fragment of an Akoma Notoso document showing the usage

of the mod element . 49

5.1 An example of patternless element 82

5.2 A translated patternless element 82

137

138 LISTINGS

5.3 A sample of the elements’ unique identifiers and elements’

classes assigned to a LIME document 84

5.4 Am example of a LIME configuration file 87

Special thanks

I apologize to those who do not speak Italian. But what I have to say here

must be said in my mother tongue. Anyway, thanks for reading this essay

and if you fell in love with me while reading you can give me a call at +39

3482627545.

Tutto cominciò con un commodore 16. Ma che bella invenzione! Passavo ore

a giocare con quell’artefatto. Io, lui, mio fratello Angelo e scimmia magica

formavamo un quartetto perfetto. Poi arrivarono l’Amiga 500, super frog e

sensible soccer. Spettacolo! Ma con l’Amiga non c’erano solo i giochi, c’erano

anche QBasic e l’enciclopedia del computer. Diamine, quei cosi rettangolari

non servivano solo per giocare. Si potevano programmare! Ringrazierò per

sempre i miei genitori per avermeli comperati.

Frequentai le scuole medie e le superiori, arrivò la playstation e il mio

486. Conobbi un losco figuro col nome francese, il fratello di un’amica di

famigla e suo padre che mi insegnarono a fare il vino (e a berlo), e con alcuni

cugini e cugine imparai che le feste non erano poi cos̀ı male. E intanto gli

anni delle superiori passavano, ero curioso e sperimentavo tutto. Anche le

cose più pericolose. Tipo perdere un anno di scuola.

E arrivò la dreamcast e la prima connessione internet. E arrivò la prima

chat con una tizia che mi disse: ”faccio la webmaster a Londra e mi pagano

molto bene”. La webmaster! Porca paletta, c’è gente che si guadagna da

vivere con questa roba. Quel piccolo paesino che tanto mi aveva dato, non

poteva insegnarmi a diventare uno scienziato dei computer. Dovevo andare

139

140 LISTINGS

via.

E Bologna fu! Bologna, Bologna, Bologna, quanti bei giorni che mi hai

regalato! A cominciare da quella prima casa al Lunetta Gamberini, con le

sue partite di calcio in corridoio, il mio compagno di stanza e la luce rossa

e la ciabatta, il biondo e la 500 e sempre la luce rossa mentre dormiva. E

quelle amiche delle Marche, e una in particolare, con le birre il venerd̀ı e far

mattina al sabato.

E dopo un po’ è arrivata anche la laurea triennale. E con essa il lavoro

all’università e quei docenti che mi hanno insegnato a fare lo scienziato anche

quando scienziato (certificato) non ero. E sono arrivati quei colleghi e amici

che mi hanno ricordato che in fondo se sei nerd non conta se fai il dottorato

in Olanda o la popstar. Nerd si nasce. Ed io lo nacqui! Come anche mio

fratello che mi ha regalato una giappognata e un nippotino ma sempre nerd

rimane.

E intanto è arrivata un’amica toscana, la Toscana, l’olio d’oliva e i la-

voretti in campagna. Ed è arrivata Arianna. É anche grazie a lei se questa

dissertazione è scritta in un inglese (spero) perfetto. Mi ha insegnato tanto

e non solo della lingua inglese.

Per ora la fine è questa. Ma si sa, un punto fa morale, e sono abbas-

tanza sicuro che la storia continuerà. Ma intanto cos’altro potrei dirvi per

ringraziarvi tutti di cuore?

“I’m not crazy, my mother had me tested!”

Sheldon Cooper

	Contents
	Introduzione
	Introduction
	The markup of structured documents
	Structured documents
	Markup languages for structured documents
	Descriptive markup languages
	The Standard Generalized Markup Language
	The HyperText Markup Language
	The eXtensible Markup Language

	XML for the markup of text-based resources

	Structural differences in XML dialects
	Different dialects for different contexts
	Examples of dialects for textual resources
	Text Encoding Initiative
	DocBook

	Examples of dialects used in the legal context
	Norme In Rete
	CEN/Metalex
	Akoma Ntoso

	Abstraction of the XML dialects
	Containers
	Hierarchical containers
	Markers
	Blocks
	Inline
	Subflow

	A generic markup process for distinct dialects

	Software for XML markup
	WYSIWYG editors
	Generic XML editors
	oXygen XML editor

	Markup editors
	Markup editors for the legal context
	Norma editor
	Bungeni Editor
	LegisPro Web Editor

	Open issues in markup editors

	LIME, a parametric editor for structured documents
	The importance of being parametric
	Technologies for parametric markup editors
	Ajax, javascrip and HTLM5 for in-browser software
	Frameworks for cross-browser software
	ExtJS

	TinyMCE
	REST style communication
	eXist Database
	FRBR storage
	XQuery language and XSLT

	XML patterns and XML guidelines
	JSON

	LIME, a Language Independent Markup Editor
	Overview of LIME features
	LIME architecture
	Client side components
	Server side components

	Three commandments to be parametric and language independent
	XML guidelines and patterns used by LIME
	Patternless, the patterns' wildcard
	Guidelines for elements' unique identifiers
	Guidelines for elements' classes

	JSON configuration files
	LIME language plugins

	Evaluating markup editors' usability

	Evaluation of LIME's user experience
	The study of the user experience
	Goals of the test
	Examining the efficacy
	Examining the efficiency
	Examining the users' satisfaction

	The LIME's user experience test
	Methodology
	Choosing the testers
	The complete test

	Analysis of the results
	Summary of the testers
	Analysis of the efficacy
	Analysis of the efficiency
	Analysis of the users' satisfaction

	LIME's strengths and weaknesses

	Conclusions
	Bibliography
	List of Figures
	List of Tables
	Listings

