Alma Mater Studiorum \cdot Università di Bologna

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Matematica

STUDIO DELLA DINAMICA DEL TRAFFICO SU UNA RETE STRADALE

Tesi di Laurea in Fisica Matematica

Relatore: Chiar.mo Prof. ARMANDO BAZZANI Presentata da: ELEONORA ANDREOTTI

II Sessione 2012/2013

Indice

1	Des	crizione del modello	7
	1.1	Introduzione della dinamica	10
	1.2	Equilibri del sistema non perturbato	16
2	Din	amica sulla singola strada	21
	2.1	Perturbazioni sul dato iniziale	24
	2.2	Perturbazioni costanti sul flusso	25
		2.2.1 Tempi di rilassamento	29
	2.3	Perturbazioni sul flusso dipendenti dal tempo	31
		2.3.1 Stabilitá	34
	2.4	Perturbazioni random	39
	2.5	Interpretazione dei risultati	44
3	Din	amica sull'intera rete	47
	3.1	Analisi qualitativa della correlazione tra le strade	50
	3.2	Ripercussioni delle perturbazioni sulla singola strada	53
	3.3	Studio del rumore	56
	3.4	Correlazione temporale tra le strade	67
	3.5	Tempi di congestionamento della rete	71

INDICE

Introduzione

Il presente lavoro si colloca in un ampio percorso che ha visto diversi studi interessati nella problematica del traffico urbano, e quindi delle congestioni stradali (Takashi Nagatani, The physics of traffic jams), il cui impatto nella qualitá della vita nelle grandi cittá é diventato sempre piú rilevante con il processo di urbanizzazione. Dalle prime ricerche compiute, risalenti alla prima metá del 900, e aventi come oggetto di studio la singola strada, il ricorso alla modellizzazione matematica di recente si é sviluppato in particolar modo per quel che concerne la rete urbana.

Le problematiche che si incontrano affrontando il contesto delle reti urbane si possono riassumere sinteticamente innanzitutto nella mutevolezza del flusso del traffico nell'arco della giornata. In secondo luogo nell'esistenza di punti critici variabili nel corso del tempo. Incidenatmente puó accadere che si verifichino eventi eccezionali dovuti tanto all'ambiente naturale, quanto sociale.

Ogni modello nella sua natura riduzionista consente di prendere in esame alcune problematiche specifiche e la scelta di operare in modo selettivo risponde alla complessità del fenomeno.

Con queste indicazioni di metodo si é pensato di concentrarsi sullo studio degli effetti delle fluttuazioni endogene dei flussi di traffico in una stradale di tipo Manhattan.

Per modellizzare il traffico utilizzeremo un sistema dinamico, nel quale la velocitá ottimale si basa sulla relazione del Diagramma Fondamentale postulato da Greenshields (1935), Fig.(1.1).

Fondamentali per le nostre scelte sono stati gli studi sulla rete di Carlos F. Daganzo e Nikolas Geroliminis e i risultati di Nils Berglund per quanto concerne la parte analitica della tesi.

C. F. Daganzo e N.Geroliminis si sono occupati dell'approssimazione analitica per il Diagramma Fondamentale nel traffico urbano, mostrando che esistono cittá con bassa dispersione ed é servito al nostro studio per giustificare la scelta della velocitá ottimale utilizzata nel modello.

N. Berglund si é interessato alla teoria delle perturbazioni stocastiche nei sistemi dinamici, in particolar modo ci siamo serviti dei risultati ottenuti sul tempo medio di transizione di una particella tra i minimi locali in uno scenario di potenziale.

Nel capitolo 1 introduciamo il nostro modello partendo dalla descrizione della rete urbana analizzata, per poi passare alla descrizione della dinamica e alla scelta del modello per la velocitá ottimale. Abbiamo inoltre fatto un preliminare studio sugli equilibri del sistema, quando esso non é soggetto ad alcuna perturbazione. Nel capitolo 2 consideriamo la dinamica di una singola strada della rete e ne abbiamo studiato gli effetti di diverse tipologie tipi di perturbazioni: perturbazioni sul numero di particelle e perturbazioni sul flusso, variabili sia per intensitá che per durata, per poi studiarne la stabilitá.

Nell'ultimo capitolo studiamo l'intera rete. Utilizzando i risultati ottenuti nei capitoli precedenti, ci siamo inizialmente chiesti come una perturbazione sulla singola strada potesse influenzare l'intera rete. Abbiamo studiato la correlazione tra le strade e poi perturbato l'intera rete e osservato che il tipo di distribuzione del rumore ottenuto ha le caratteristiche del rumore bianco. Abbiamo quindi descritto la dinamica della rete tramite equazioni differenziali stocastiche e, grazie ai risultati di N. Berglund sui tempi di transizione, siamo giunti a prevedere, in campo probabilistico, i tempi di congestionamento della rete.

Elenco delle figure

1.1	Velocitá corrispondente ad una data densitá media. Curva ot-	
	capacity 1935	10
1.2	Modello di Greenshield lineare	11
1.3	Flusso dei veicoli in funzione della densitá. In questo grafico sono	
	rappresentati i dati sperimentali raccolti in un mese di osservazioni	
	in un punto su una superstrada. La densitá critica é quasi 25	
	(veicoli $km^{-1}).$ I dati sono stati rilevati dal Japan Highway Public	
	Cooperation. Le misurazioni del flusso di traffico sono divise in	
	due parti dal valore critico della densitá di veicoli, la prima parte	
	parte prende il nome di flusso libero e la seconda di flusso di	
	supporte che un ingerge appare appare altre la densité critica	
	Diagrammi fondamentali mostrano forme simili	12
1.4	Rete stradale	13
2.1	Perturbazione massima sul numero di veicoli, affinché non si svi-	
0.0	luppi una congestione	25
2.2	luppi una congestione	25 26
2.2	luppi una congestione	25 26
2.2 2.3	luppi una congestione	25 26 29
2.22.32.4	luppi una congestione	25 26 29
2.22.32.4	luppi una congestione	25 26 29 30
 2.2 2.3 2.4 2.5 	luppi una congestione	25 26 29 30
 2.2 2.3 2.4 2.5 	luppi una congestione	 25 26 29 30 32
 2.2 2.3 2.4 2.5 2.6 	luppi una congestione	 25 26 29 30 32
 2.2 2.3 2.4 2.5 2.6 2.7 	luppi una congestione	 25 26 29 30 32 32
 2.2 2.3 2.4 2.5 2.6 2.7 	luppi una congestione	25 26 29 30 32 32
 2.2 2.3 2.4 2.5 2.6 2.7 2.8 	luppi una congestione	25 26 29 30 32 32 32 33 39

2.9	Probabilitá di sviluppare congestioni su una strada quando $\phi^{eq} =$	
	.2475, $c_i \in [1, .1], \Delta t = 4 \ 10^{-2} \ \ldots \ $	41
2.10	Probabilitá di sviluppare congestioni su una strada quando $\phi^{eq} =$	
	.2475, $c_i \in [075, .075], \Delta t = 4 \ 10^{-2} \ldots \ldots \ldots \ldots \ldots \ldots$	41
2.11	Probabilitá di sviluppare congestioni su una strada quando $\phi^{eq} =$	
	.2475, $c_i \in [1, .1], \Delta t = 4 \ 10^{-2}$. Risultati in scala logaritmica.	42
2.12	Probabilitá di sviluppare congestioni su una strada quando $\phi^{eq} =$	
	.2475, $c_i \in [075, .075], \Delta t = 4 \ 10^{-2}$. Risultati in scala logarit-	
	mica	42
2.13	Probabilitá di sviluppare congestioni su una strada quando $\phi^{eq} =$	
	.2475, $c_i \in [015, .015], \Delta t = 4 \ 10^{-2} \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	43
2.14	Probabilitá di sviluppare congestioni su una strada quando $\phi^{eq} =$	
	.2475, $c_i \in [015, .015], \Delta t = 4 \ 10^{-2}$. Risultati in scala logaritmica.	43
2.15	Probabilitá di sviluppare congestioni su una strada quando $\phi^{eq} =$	
	.2475, $c_i \in [1, .1], \Delta t = 8 \ 10^{-2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	45
2.16	Probabilitá di sviluppare congestioni su una strada quando $\phi^{eq} =$	
	.2475, $c_i \in [1, .1], \Delta t = 8 \ 10^{-2}$. Risultati in scala logaritmica.	45
21	Numero i voicoli gullo strado al variare del tempo	51
3.1 3.9	Numero di voicoli sulle strade non porturbate in funzione del pu	51
5.2	mare di veicoli sulla strada perturbata, colorata secondo i vicini	
	all'indiotro	51
22	Numero di veicoli sulle strade non perturbate in funzione del nu-	91
0.0	mero di veicoli sulla strada perturbata, colorate secondo i vicini	
	all'indietro	52
3.4	Numero di veicoli sulle strade quando viene perturbata una singola	02
0.1	strada	53
3.5	Effetti del rumore sulla rete stradale	56
3.6	Distribuzione del rumore sulle strade in scala logaritmica	57
3.7	Risultati numerici di varianze e covarianze	66
3.8	Risultati numerici e analitici delle varianze	66
3.9	Risultati numerici e analitici di covarianze tra strade vicine	66
3.10	Autocorrelazione per numero medio di particelle sulla strada ri-	
	spettivamente $n = .44$ e $n = .20$	68
3.11	Âutocorrelazione per numero medio di particelle sulla strada $n =$	
	.30, e perturbazioni rispettivamente $pert_1 > pert_2$	69
3.12	correlazione tra due strade l'una conseguente all'altra	71
3.13	Massimi e minimi del potenziale V al variare di ϕ^{eq}	73
3.14	Massimo e minimo del potenziale V per ϕ^{eq} fissato	74
3.15	Tempo medio di transizione dal punto di equilibrio n^{eq} al punto	
	z^* , al variare di σ	75

ELENCO DELLE FIGURE

3.16	Risultati analitici: Probabilitá che $\exists k \in 1,, K$ t.c. $\tau < s$, al	
	variare di K	77
3.17	Risultati numerici: Probabilitá che $\exists k \in 1,, K$ t.c. $\tau < s$, al	
	variare di K	77
3.18	Risultati analitici: Tempi del primo congestionamento per un	
	flusso $\phi^{eq} = .2 \ (80\% \ di \ \phi^*), K = 24 \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	78
3.19	Risultati numerici: Tempi del primo congestionamento per un	
	flusso $\phi^{eq} = .2$ (80% di ϕ^*), $K = 24$, $\sigma = 1$ (in giallo) e $\sigma = .8$ (in	
	blu) \ldots	78

ELENCO DELLE FIGURE

Capitolo 1

Descrizione del modello

Capitolo 1. Descrizione del modello

Abstract

In questa prima sezione introdurremo il modello scelto per lo studio della dinamica del traffico su una rete stradale.

Alla base del modello vi é la dinamica sulle strade definita utilizzando l'Optimal Velocity Model secondo cui la velocitá di un veicolo dipende dalla distanza del veicolo stesso e il veicolo che lo precede conformemente ad una relazione non lineare che tende a zero quando i veicoli sono attaccati e tende ad una velocitá limite quando la distanza tra i veicoli diventa infinita.

Di conseguenza possiamo definire una relazione tra il flusso e la densitá media su una strada, detto Diagramma Fondamentale: questo diagramma é utilizzato per caratterizzare i regimi di flusso di traffico (libero o congestionato) di una strada.

È stato fatto un grosso lavoro sperimentale per misurare il diagramma fondamentale nella dinamica autostradale (Greenshields (1935)) ma le misure mostrano una grande dispersione nella parte instabile del diagramma (dopo il massimo locale). Tuttavia si è trovato empiricamente per la città di Yokohama che una tale relazione con bassa dispersione esiste (Geroliminis & Daganzo 2008).

Per modellizzare la rete stradale ci serviremo della teoria dei grafi (Frank Kelly, The Mathematics of Traffic in Networks), e in particolar modo considereremo il grafo duale della rete, ossia il grafo che ha per nodi le strade, e i cui link orientati esprimono la possibilitá di transitare da una strada ad un'altra.

Figura 1.1: Velocitá corrispondente ad una data densitá media. Curva ottenuta sperimentalmente da Greenshields in A Study Of Traffic Capacity, 1935

1.1 Introduzione della dinamica

Modellizziamo la rete stradale come sistema dinamico su un network. Consideriamo un impianto stradale ortogonale composto da r strade: $\frac{r}{2}$ orizzontali e $\frac{r}{2}$ verticali.

In questo impianto individuiamo s punti di intersezione che definiamo nodi, cioé gli incroci.

Dunque il numero di strade e il numero di nodi saranno legati dalla relazione

$$r = s(s - 1).$$

Nel network ad esso associato le strade prendono origine da un nodo ed hanno come termine il nodo successivo.

Prevedendo la percorribilità delle strade in entrambi i sensi di marcia, il numero dei collegamenti possibili tra i nodi diviene doppio rispetto al numero delle strade. Denotiamo con K il numero di collegamenti totali, ossia K = 2r.

Il network di cui ci serviremo sará il network duale, nel quale i nodi rappresentano le strade, e i link orientati collegano le strade separate da un unico incrocio e tali per cui il senso di marcia delle strade permetta il proseguimento: non considereremo inversioni di marcia.

Procediamo ora con il descrivere la dinamica del sistema: ognuna delle strade verrà denotata con k e caratterizzata da una popolazione

Figura 1.2: Modello di Greenshield lineare

media di n_k particelle che varia con il tempo, una capienza massima d_k , una velocità $v_k := v(n_k)$ e una lunghezza l_k .

La popolazione totale si considera costante, perció

$$\sum_{k} n_k = N, \ N \in \mathbb{N}.$$

Poiché l_k sono le lunghezze delle strade k e d_k le rispettive capacità massime, abbiamo che, data d_{min} la distanza minima tra un veicolo e il successivo, possiamo scrivere

$$d_k = \frac{l_k}{d_{min}}$$

Definiamo inoltre il tempo di percorrenza t_k della k-esima strada

$$t_k = \frac{l_k}{v_k}.$$

In funzione delle scelte fatte per le lunghezze, le capacità delle strade e i tempi di percorrenza, introduciamo l'OVM definendo la velocitá di percorrenza nella

Figura 1.3: Flusso dei veicoli in funzione della densitá. In questo grafico sono rappresentati i dati sperimentali raccolti in un mese di osservazioni in un punto su una superstrada. La densitá critica é quasi 25 (veicoli km^{-1}). I dati sono stati rilevati dal Japan Highway Public Cooperation. Le misurazioni del flusso di traffico sono divise in due parti dal valore critico della densitá di veicoli, la prima parte parte prende il nome di flusso libero e la seconda di flusso di traffico congestionato. Nella parte del flusso congestionato, é facile supporre che un ingorgo appare appena oltre la densitá critica. Diagrammi fondamentali mostrano forme simili.

Figura 1.4: Rete stradale

k-esima strada

$$v_k = v(n_k) := v_0 \left(1 - \beta \frac{n_k}{d_k}\right)^{\alpha} \qquad \beta \in [0, 1]$$

se $n_k \leq d_k$, dove β determina la velocitá di deflussi in caso di congestione con $v_k = v_0 (1 - \beta)^{\alpha}$.

Nella definizione di velocitá imponiamo $\alpha = 1$.

Se definiamo il flusso

$$\phi_k = \phi(n_k) := v_k n_k$$

osserviamo in Fig.(1.3) che i dati empirici del flusso in funzione della densitá di veicoli su una strada sembrano disegnare una parabola.

Introduciamo ora una dinamica:

Scriviamo l'equazione della densitá della k-esima strada all'istante $(t + \Delta t)$

$$\rho_k(t + \Delta t) = \rho_k(t) - \frac{v_k(t)}{l_k} \rho_k(t) \Delta t + \frac{\phi_{in}(t)}{l_k} \Delta t$$
(1.1)

dove $\rho_k(t)$ é la densitá dei veicoli sulla k-esima strada, e ϕ_{in} é il flusso in entrata.

Se d_{min} é la distanza tra ogni veicolo, che consideriamo puntiforme, quindi d_{min} é lo spazio medio occupato dalla singola vettura, allora possiamo riscrivere la velocitá v_k come segue

$$v_k(t) = v_0 \left(1 - \frac{n_k(t)d_{min}}{l_k} \right)$$

dove v_0 é la velocitá dei veicoli sulla strada a flusso libero, cioé la velocitá massima che possono raggiungere se non hanno limitazioni di flusso, e quindi l'equazione (1.1) diventa

$$\rho_k(t+\Delta t) = \rho_k(t) - \frac{v_0}{l_k} \left(1 - \frac{n_k(t)d_{min}}{l_k}\right) \rho_k(t)\Delta t + \frac{\phi_{in}(t)}{l_k}\Delta t.$$
(1.2)

Poiché $\rho_k(t) = \frac{n_k(t)}{l_k}$ possiamo definire $\bar{\rho} = \rho d_{min}$ e riscrivere l'equazione

$$\bar{\rho_k}(t+\Delta t) = \bar{\rho_k}(t) - \frac{v_0}{l_k} \left(1 - \bar{\rho_k}(t)\right) \bar{\rho_k}(t) \Delta t + d_{min} \frac{\phi_{in}(t)}{l_k} \Delta t \qquad (1.3)$$

Ora osserviamo che $\frac{v_0}{l_k}$ é il tempo impiegato dalle vetture a percorrere la strada

di lunghezza l_k se non vi sono rallentamenti dovuti al flusso. Poiché é un tempo, possiamo inglobare $\frac{v_0}{l_k}$ in Δt . E quindi l'equazione della densitá diventa

$$\bar{\rho_k}(t+\bar{\Delta}t) = \bar{\rho_k}(t) - \left(1-\bar{\rho_k}(t)\right)\bar{\rho_k}(t)\bar{\Delta}t + \frac{d_{min}}{v_0}\phi_{in}(t)\bar{\Delta}t \tag{1.4}$$

dove $\bar{\Delta}t = \frac{v_0}{l_k}\Delta t$.

Equivalentemente l'equazione del numero di veicoli risulta essere

$$n_k(t + \Delta t) = n_k(t) - \frac{v_0}{l_k} \left(1 - \frac{n_k(t)d_{min}}{l_k}\right) n_k(t) \Delta t + \phi_{in}(t) \Delta t.$$
(1.5)

$$n_{k}(t + \bar{\Delta}t) = n_{k}(t) - \left(1 - \frac{n_{k}(t)d_{min}}{l_{k}}\right)n_{k}(t)\bar{\Delta}t + \frac{l_{k}}{v_{0}}\phi_{in}(t)\bar{\Delta}t \qquad (1.6)$$

 $\operatorname{con}\,\bar{\Delta}t = \frac{v_0}{l_k}\Delta t.$

Quindi tutti i parametri come la lunghezza delle strade e la velocitá dei veicoli, che non compaiono nell'equazione, sono invece implicitamente inglobati in $\overline{\Delta}t$. Normalizziamo ad 1 le lunghezze l_k delle strade e le capacitá massime d_k , dunque anche $d_{min} = 1$, e le velocitá v_0

$$n_k(t + \Delta t) = n_k(t) - \left(1 - n_k(t)\right)n_k(t)\Delta t + \phi_{in}(t)\Delta t \qquad (1.7)$$

Una volta introdotta la dinamica sulla singola strada cerchiamo di dare un significato a $\phi_{in}(t)$.

A tale scopo definiamo il network costruendo una matrice C, la matrice di connessione, le cui componenti $c_{kj} \in \{0,1\}$ sono tali che $c_{kj} = 1$ se e solo se é possibile transitare dalla strada k alla strada j.

$$n_k(t + \Delta t) = n_k(t) + \delta_{n_k < d_k} \sum_j p_{jk} \phi_j(t) \Delta t - \sum_j p_{kj} \phi_k(t) \Delta t$$

dove P é la matrice delle probabilitá, ossia la sua componente p_{kj} é la probabilitá che un veicolo proveniente dalla strada k vada nella strada j.

La matrice P é stocastica per righe, cioé $\sum_j p_{kj} = 1$.

Prendendo le componenti della matrice equiprobabili, nel nostro caso $p_{ij} = 1/2$ se la strada *i*-esima ha due sbocchi e $p_{i'j'} = 1/3$ se la strada *i'*-esima ha tre sbocchi, allora la matrice delle probabilità risulta essere stocastica anche per

colonne.

Il fattore $\delta_{n_k < d_k}$ sta ad indicare che il flusso della strada k aumenta solo se non é congestionata.

Questa aggiunta va a modificare il numero di veicoli delle strade in entrata, e quindi la loro velocitá, in quanto se $n_k = d_k$ allora imponiamo che $p_{jk}\phi_j = 0$, dunque $\frac{1}{p_{jk}}$ del flusso della strada j resterá nella strada j.

Ció comporta che la curva della velocitá in funzione della densitá, che inizialmente abbiamo preso lineare, in realtá risulta essere lineare per $N < \frac{N^{max}}{2}$, dove $N^{max} = \sum_k d_k$, tale condizione verrá spiegata meglio nella sezione successiva.

Con queste premesse anche il flusso di k non avrá la forma parabolica mostrata in Fig.(1.2), tale forma si manterrá solo per un numero di particelle della rete $N < \frac{N^{max}}{2}$, mentre se $N > \frac{N^{max}}{2}$ avremo una curva che assomiglia alla curva ottenuta sperimentalmente in Fig.(1.3).

Scriviamo la dinamica del network in forma differenziale facendo il limite per $\Delta t \to 0$

$$\frac{n_k(t + \Delta t) - n_k(t)}{\Delta t} = \delta_{n_k < d_k} \sum_j p_{jk} \phi_j(t) - \sum_j p_{kj} \phi_k(t)$$

e quindi, se la rete non é congestionata,

$$\dot{n}_k(t) = \sum_j p_{jk} \phi_j(t) - \sum_j p_{kj} \phi_k(t).$$
(1.8)

Sostituiamo al flusso la sua definizione, secondo le opportune normalizzazioni, e abbiamo

$$\dot{n}_k = \sum_j p_{jk} (1 - n_j) n_j - (1 - n_k) n_k.$$

1.2 Equilibri del sistema non perturbato

Riscriviamo l'equazione differenziale in forma matriciale

$$\dot{n} = (P^T - I)\phi(n)$$

Poiché P é una matrice stocastica per righe e nulla sulla diagonale, allora abbiamo che $(P^T - I)$ é una matrice Laplaciana per colonne, ossia della forma (D - A) $\operatorname{con} d_j - \sum_i a_{ij} = 0 \ \forall j.$

Osserviamo che la matrice $P^T - I$, in quanto laplaciana, ha autovalori con parte reale negativa, ad eccezione di $\lambda_0 = 0$. Quindi il sistema lineare $\dot{n} = (P^T - I)n$ é stabile. Il sistema che dobbiamo studiare noi é peró del tipo

$$\dot{n} = (P^T - I)n - (P^T - I)n^2.$$

Poiché l'analisi della stabilitá per sistemi lineari si puó ottenere semplicemente studiando la parte reale e la molteplicitá degli autovalori, se fosse possibile ricondurre l'analisi di stabilitá di uno stato di equilibrio di un sistema non lineare all'analisi della stabilitá di un sistema lineare, il lavoro da fare sarebbe notevolmente semplificato.

Sotto opportune ipotesi é possibile, nell'intorno di un punto di equilibrio, considerare equivalenti il comportamento di un sistema non lineare e quello di un particolare sistema lineare.

Il procedimento di linearizzazione ci consente di determinare l'equivalente lineare di un sistema non lineare nell'intorno di un punto di equilibrio.

Un punto di equilibrio per il sistema non lineare si ricava imponendo la condizione

$$(P^T - I)\phi(n) = 0,$$

perció gli equilibri del sistema saranno tutti e soli gli \tilde{n} t.c.

$$(\tilde{n} - \tilde{n}^2) \in Ker(P^T - I).$$

Determinare tali equilibri equivale a risolvere il sistema di R equazioni

$$\sum_{j} p_{ji}(1-n_j)n_j - (1-n_i)n_i = 0$$

dove

$$\sum_{i} n_{i} = N$$

$$n_i \ge 0 \quad \forall i$$

Supponiamo che \tilde{n} sia un equilibrio e che soddisfi le condizioni sopra citate. Allora sviluppando in serie attorno ad \tilde{n} il campo vettoriale si ottiene

$$\dot{n} = A(n - \tilde{n}) + \dots$$

dove A é la matrice Jacobiana di $X(n) := (P^T - I)\phi(n)$ valutata in \tilde{n} , cio
é la matrice di componenti

$$A_{ij} = \frac{\partial X_i}{\partial n_j}(\tilde{n}),$$

ed i puntini denotano termini di grado superiore al primo in $n - \tilde{n}$. Vicino all'equilibrio questi termini sono piccoli rispetto a quelli lineari. Si puó dunque pensare che sia possibile ottenere delle informazioni sul comportamento delle soluzioni dell'equazione $\dot{n} = X(n)$, almeno vicino al punto di equilibrio, studiando l'equazione linearizzata

$$\dot{n} = A(n - \tilde{n}).$$

La matrice A ha la forma

$$(P^T - I)(1 - 2n).$$

Quando tale matrice ha tutti e soli autovalori con parte reale negativa l'equilibrio del sistema risulta essere asintoticamente stabile.

Facendo variare N, con $N < N^{max} = \sum_k d_k = K$, all'interno del programma in matlab si nota che aumentando il numero di veicoli all'interno del sistema, gli equilibri che si ottengono non sono più stabili, bensí instabili.

Per determinare il flusso massimo, e successivamente studiarne la stabilitá, consideriamo il sistema linearizzato

$$\dot{n} = A(n)$$

dove la matrice A ha la forma

$$(P^T - I)(1 - 2n)$$

e con il prodotto $(P^T - I)n$ si intende che ogni k-esima colonna della matrice $(P^T - I)$ viene moltiplicata per lo scalare n_k .

Poniamo il sistema identicamente nullo e otteniamo che gli n che soddisfano

questa condizione sono quelli della forma

$$n^* = \frac{1}{2}.$$

Sostituendo la soluzione n^* all'interno del flusso abbiamo

$$\phi^* := \phi(n^*) = v^* n^* = (1 - n^*) n^* = \left(1 - \frac{1}{2}\right) \frac{1}{2} = \frac{1}{4}.$$

Il vertice della parabola $\phi(n) = (1 - n)n$ é

$$V\left(\frac{1}{2},\frac{1}{4}\right).$$

Per studiarne la stabilitá consideriamo $\phi(n)$ funzione di n, tale funzione é una parabola, dunque é monotona crescente fino al suo vertice V, per poi diventare monotona decrescente.

Dunque il comportamento del sistema non lineare

$$\dot{n} = (P^T - I)\phi(n)$$

é lo stesso del sistema lineare

$$\dot{n} = (P^T - I)n$$

fino al vertice. Perció dalla stabilitá del sistema lineare segue la stabilitá del sistema non lineare per n minori dell'n corrispondente al vertice.

Quindi tutti gli equilibri che il sistema può assumere per $n < n^*$ sono stabili.

Capitolo 1. Descrizione del modello

Capitolo 2

Dinamica sulla singola strada

Capitolo 2. Dinamica sulla singola strada

Abstract

In questo capitolo ci occuperemo di analizzare il comportamento della dinamica del modello di traffico su una singola strada quando ad essa vengono impartite delle perturbazioni.

Inizialmente assegneremo perturbazioni sul numero di veicoli fino al raggiungimento della congestione stradale. A tale risultato di criticitá possiamo associare una perturbazione sul flusso.

Successivamente ci occuperemo di perturbazioni sul flusso che si mantengano al di sotto della soglia critica e tali che discretizzato l'intervallo temporale, restino costanti per ogni sottintervallo della partizione.

In questo modo, raffinando la partizione, potremo passare ad uno studio della dinamica nel continuo.

Se da un lato possiamo approssimare la dinamica nel continuo, dall'altro osserviamo che tale dinamica, seppur continua, resterá correlata all'ampiezza del sottintervallo temporale.

2.1 Perturbazioni sul dato iniziale

Un punto di equilibrio del sistema é detto stabile (secondo Lyapunov), se per ogni intorno U del punto esiste un intorno V dello stesso punto contenuto in U tale che le orbite che partono da punti interni a V rimangono dentro U per tutti i tempi t > 0.

Vogliamo dunque determinare l'intorno V entro il quale le orbite che partono da punti interni a V rimangono dentro U per tutti i tempi t > 0, ossia vogliamo mostrare che se $n_i^{eq} \leq n_i^*$, allora n_i^{eq} é un equilibrio stabile.

Consideriamo dunque il caso $n_i^{eq} \leq n_i^* \quad \forall i$, e perturbiamo istantaneamente una singola strada.

Supponiamo che a un dato istante m veicoli entrino nella k-esima strada

$$\sum_{i \neq k} n_i^{eq} + (n_k^{eq} + m) = N + m \le N^* \quad \text{dove} \ N^* = \sum_i n_i^*.$$

Il problema di Cauchy da risolvere, relativo alla $k\mbox{-esima strada, risulta quindi essere}$

$$\begin{cases} \dot{n}_k(t) &= \sum_i p_{ik}\phi_i(t) - \sum_i p_{ki}\phi_k(t) \\ n_k(0) &= n_k^{eq} + m \end{cases}$$

Supponiamo fissato il flusso di entrata nella strada k, il quale corrisponde ad una popolazione di equilibrio $n^{eq} \quad \forall j$ si ha allora che il termine del flusso in entrata risulta essere

$$\sum_{i} p_{ik}\phi_i(t) = n^{eq} \left(1 - n^{eq}\right) = \phi\left(n^{eq}\right)$$

in quanto la matrice p_{ik} é stocastica sia per righe che per colonne. Dunque riscrivendo il sistema in termini di popolazione si ha

$$\begin{cases} \dot{n}_k(t) = -n_k(t) \left(1 - n_k(t)\right) + \phi(n^{eq}) \\ n_k(0) = n^{eq} + m \end{cases}$$

L'equazione da risolvere é un'equazione di Riccati avente soluzione

$$n_k(t) = n^{eq} + \left(\left(\frac{1}{m} + \frac{-1}{1 - 2n^{eq}} \right) - \frac{-1}{1 - 2n^{eq}} e^{-\left(1 - 2n^{eq}\right)t} \right)^{-1} e^{-\left(1 - 2n^{eq}\right)t}$$

Osserviamo che per $t \to \infty$ si ha $n_k(t) \to n^{eq}$ a patto che

$$\frac{1}{m} + \frac{-1}{1 - 2n^{eq}} > 0.$$

Figura 2.1: Perturbazione massima sul numero di veicoli, affinché non si sviluppi una congestione

Tale condizione si verifica se $m < 1 - 2n^{eq}$, dunque l'equilibrio si ristabilizza se $m < \tilde{m} = 2(n_k^* - n^{eq})$. Perció l'intorno entro cui é possibile prendere la perturbazione m é $[-n^{eq}, \tilde{m}]$, ossia l'intorno V esiste ed ha la forma $V = [0, n^{eq} + \tilde{m}]$. Gli equilibri $n^{eq} < n^*$ del nostro sistema sono stabili.

2.2 Perturbazioni costanti sul flusso

Consideriamo la dinamica della k-esima strada

$$\dot{n}_{k}(t) = \sum_{i=1}^{K} p_{ik}\phi_{i}(t) - \sum_{i=1}^{K} p_{ki}\phi_{k}(t)$$

$$= \sum_{i=1}^{K} p_{ik}\Big(1 - n_{i}(t)\Big)n_{i}(t) - \Big(1 - n_{k}(t)\Big)n_{k}(t).$$
(2.1)

Figura 2.2: Numero di ve
icoli sulla strada perturbata per diversi valori della perturbazion
e \boldsymbol{m}

Supponiamo che il flusso di entrata sia perturbato dalla situazione di equilibrio

$$\dot{n}_k(t) = \phi(n^{eq}) - \phi_k(t) + c$$

associamo a tale dinamica una condizione iniziale

$$n_k(0) = n^{eq}$$

e risolviamo il problema di Cauchy. Rendiamo omogenea l'equazione differenziale attraverso la trasformazione

$$n_k(t) = -\frac{\dot{u}(t)}{u(t)}$$

cosí facendo abbiamo il problema di Cauchy del secondo ordine

$$\begin{cases} \ddot{u}(t) = -\dot{u}(t) - \left(\phi(n^{eq}) + c\right)u(t) \\ u(0) = 1 \\ \dot{u}(0) = -n^{eq} \end{cases}$$

$$(2.2)$$

L'equazione caratteristica associata all'equazione differenziale del problema di Cauchy (2.2) é

$$\lambda^2 + \lambda + \left(\phi(n^{eq}) + c\right) = 0$$

le cui soluzioni sono

$$\lambda = \frac{-1 \pm \sqrt{1 - 4\left(\phi(n^{eq}) + c\right)}}{2}.$$

Per valori di ctali che $c<\frac{1}{4}-\phi\bigl(n^{eq}\bigr)$ abbiamo λ reali e distinti e quindi soluzioni del tipo

$$n_{k}(t) = -\frac{C_{1}\lambda_{1}e^{\lambda_{1}t} + C_{2}\lambda_{2}e^{\lambda_{2}t}}{C_{1}e^{\lambda_{1}t} + C_{2}e^{\lambda_{2}t}} = \\ = -\left[\frac{C_{1}\lambda_{1}e^{\lambda_{1}t}}{C_{1}e^{\lambda_{1}t} + C_{2}e^{\lambda_{2}t}} + \frac{C_{2}\lambda_{2}e^{\lambda_{2}t}}{C_{1}e^{\lambda_{1}t} + C_{2}e^{\lambda_{2}t}}\right] = (2.3) \\ = -\left[\frac{\lambda_{1}}{1 + \frac{C_{2}}{C_{1}}e^{(\lambda_{2} - \lambda_{1})t}} + \frac{\lambda_{2}}{\frac{C_{1}}{C_{2}}e^{(\lambda_{1} - \lambda_{2})t} + 1}\right]$$

Osserviamo che la condizione $c < \frac{1}{4} - \phi(n^{eq})$ equivale a chiedere che la perturbazione, in termini di flusso, sia inferiore alla distanza tra il flusso massimo e il flusso all'equilibrio.

Denotiamo questa quantitá con

$$c^* := \frac{1}{4} - \phi(n^{eq}).$$

Sostituendo i valori di C_1, C_2 , tramite l'imposizione dei dati iniziali, abbiamo che

$$C_{1} = \frac{\dot{u}(0) - \lambda_{2}}{\lambda_{1} - \lambda_{2}} \quad C_{2} = 1 - \frac{\dot{u}(0) - \lambda_{2}}{\lambda_{1} - \lambda_{2}}$$
(2.4)

perció

$$\frac{C_1}{C_2} = \frac{C_1}{1 - C_1} = \frac{-n^{eq} - \lambda_2}{\lambda_1 + n^{eq}}.$$
(2.5)

dunque

$$n_k(t) = -\left[\frac{\lambda_1}{1 - \frac{\lambda_1 + n^{eq}}{n^{eq} + \lambda_2}}e^{(\lambda_2 - \lambda_1)t} + \frac{\lambda_2}{1 - \frac{n^{eq} + \lambda_2}{\lambda_1 + n^{eq}}}e^{(\lambda_1 - \lambda_2)t}\right]$$

Per $t \to \infty$ la soluzione $n_k(t) \to -\lambda_1$, and ando a sostituire il valore di $\lambda_1 = \frac{-1 + \sqrt{1 - 4\left(\phi\left(n^{eq}\right) + c\right)}}{2}$ otteniamo

$$n_k(t) \to -\left(\frac{-1+\sqrt{1-4\left(\phi(n^{eq})+c\right)}}{2}\right)$$

Osserviamo che se c = 0 abbiamo $n_k(t) \to n^{eq}$ quando $t \to \infty$.

Se $0 < c < c^* = \frac{1}{4} - \phi(n^{eq})$ il valore di $n_k(t)$ per $t \to \infty$ supera il valore n^{eq} di un fattore che é costante rispetto al tempo, perció introducendo una perturbazione di questo tipo abbiamo che il sistema riesce a riequilibrarsi da solo, indipendentemente dal tempo di osservazione.

Se
$$c > c^* = \frac{1}{4} - \phi(n^{eq})$$
 abbiamo λ complessi e quindi, posto $\lambda_{1,2} = a \pm ib$ con
$$a = -\frac{1}{2} \qquad b = \frac{1}{2}\sqrt{\left|1 - 4\left(\phi(n^{eq}) + c\right)\right|}$$

abbiamo soluzioni del tipo

$$n_k(t) = -\left[\frac{(aC_1 + bC_2)\cos(bt) + (aC_2 - bC_1)\sin(bt)}{C_1\cos(bt) + C_2\sin(bt)}\right]$$

Figura 2.3: Numero di veicoli sulla strada perturbata per diversi valori della perturbazione $c,\,c < c^*$

ricavando ${\cal C}_1$ e ${\cal C}_2$ attraverso l'imposizione delle condizioni iniziali otteniamo

$$= -\left[\frac{-n^{eq}\cos(bt) + (-\frac{1}{4b} + \frac{1}{2b}n^{eq} - b)\sin(bt)}{\cos(bt) + \frac{1-2n^{eq}}{2b}\sin(bt)}\right]$$

Per $t \to \infty$ questo tipo di perturbazione porta ad una congestione, come vediamo in Fig.(2.3) e Fig.(2.4).

2.2.1 Tempi di rilassamento

Abbiamo visto che i tempi di rilassamento per l'equazione perturbata costantemente sul flusso sono dati dalla

$$n_k(t) = -\left[\frac{\lambda_1}{1 - \frac{\lambda_1 + n^{eq}}{n^{eq} + \lambda_2}}e^{(\lambda_2 - \lambda_1)t} + \frac{\lambda_2}{1 - \frac{n^{eq} + \lambda_2}{\lambda_1 + n^{eq}}}e^{(\lambda_1 - \lambda_2)t}\right]$$

Figura 2.4: Numero di veicoli sulla strada perturbata per diversi valori della perturbazione \boldsymbol{c}

e se $c < c^*$

$$n_k(t) \to -\lambda_1.$$

Confrontiamo tali risultati con i tempi di rilassamento ottenuti dall'equazione linearizzata

$$\dot{n}_k = -(1 - 2n^{eq})n_k + (1 - 2n^{eq})n^{eq} + c.$$

Tale equazione ha soluzione

$$n_k(t) = n^{eq} + \frac{c}{1 - 2n^{eq}} \left(1 - e^{-(1 - 2n^{eq})t} \right)$$

dunque

$$n_k(t) \to n^{eq} + \frac{c}{1 - 2n^{eq}}.$$

In Fig.(2.5) rappresentiamo i tempi di rilassamento al variare di $c < c^*$ in entrambi i casi.

Nel caso dell'equazione linearizzata calcoliamo i tempi di rilassamento anche per $c > c^*$ e rappresentiamo in Fig.(2.7)

2.3 Perturbazioni sul flusso dipendenti dal tempo

Per comprendere la dinamica della rete é necessario studiare la dinamica della strada in presenza di perturbazioni dipendenti dal tempo.

Ovviamente siamo interessati a perturbazioni $c > c^*$, almeno per alcuni intervalli di tempo, in quanto le perturbazioni minori di c^* vengono riassorbite dal sistema.

Siamo quindi interessati a studiare il sistema la cui dinamica sulla $k-{\rm esima}$ strada é

$$\dot{n}_k(t) = \sum_{i=1}^{K} p_{ik}\phi_i(t) - \phi_k(t) + c(t)$$

dove supponiamo costante il numero di veicoli $n_i = n^{eq}$ in entrata. Consideriamo una perturbazione periodica costante a tratti per poter effettuare esplicitamente i calcoli

$$c(t) = c_0 + \begin{cases} c & \text{se } t \in [2kT, 2kT + T[\\ -c & \text{se } t \in [2kT + T, 2kT + 2T[& k \in \mathbb{N} \end{cases}$$

Figura 2.5: Tempi di rilassamento al variare della perturbazione $c < c^*,$ per $\phi^{eq}=.2475~(99\%~{\rm di}~\phi^*),$ con tolleranza 10^{-4} in norma infinito

Figura 2.6: Tempi di rilassamento al variare della perturbazione $c < c^*,$ per $\phi^{eq}=.2275~(91\%~{\rm di}~\phi^*),$ con tolleranza 10^{-4} in norma infinito

Figura 2.7: Tempi di rilassamento al variare della perturbazione $0 < c < \phi^{eq}$, per $\phi^{eq} = .2475$ (99% di ϕ^*), con tolleranza 10^{-4} in norma infinito

Grazie ai risulati ottenuti nella sezione precedente sappiamo che al termine del primo intervallo di tempo, cio
é $t\in[0,T[$ il numero di veicoli nella k-esimastrada s
ará

$$n_k(T) = -\left[\frac{-n^{eq}\cos(bT) + (-\frac{1}{4b} + \frac{1}{2bn^{eq}} - b)\sin(bT)}{\cos(bT) + \frac{1-2n^{eq}}{2b}\sin(bT)}\right]$$
(2.6)

ora per determinare il numero di veicoli all'istante 2T occorre imporre la (2.6) come condizione iniziale per l'equazione differenziale che si vuole studiare. Il problema di Cauchy risulta quindi essere

$$\begin{cases} \dot{n}_k(t) = n_k^2(t) - n_k(t) + \phi(n^{eq}) + c_0 - c \quad t \in [T, 2T[\\ n_k(T) = -\left[\frac{-n^{eq}\cos(bT) + (-\frac{1}{4b} + \frac{1}{2b}n^{eq} - b)\sin(bT)}{\cos(bT) + \frac{1 - 2n^{eq}}{2b}\sin(bT)}\right]$$
(2.7)

Supponiamo che $c_0 - c < c^*$.

Scriviamo il problema di Cauchy del secondo ordine associato alla (2.7)

$$\begin{cases} \ddot{u}(t) = -\dot{u}(t) - \left(\phi(n^{eq}) + c_0 - c\right)u(t) \\ u(0) = 1 \\ \dot{u}(0) = \frac{-n^{eq}\cos(bT) + \left(-\frac{1}{4b} + \frac{1}{2b}n^{eq} - b\right)\sin(bT)}{\cos(bT) + \frac{1 - 2n^{eq}}{2b}\sin(bT)} \end{cases}$$
(2.8)

Poiché i dati iniziali li utilizziamo solo per ricavare C_1 e C_2 dalla (2.3), allora possiamo utilizzare gli stessi risultati ottenuti nella sezione precedente. E quindi

$$n_k(t) = -\left[\frac{\lambda_1}{1 + \frac{C_2}{C_1}e^{(\lambda_2 - \lambda_1)t}} + \frac{\lambda_2}{\frac{C_1}{C_2}e^{(\lambda_1 - \lambda_2)t} + 1}\right]$$

 con

$$C_{1} = \frac{\dot{u}(0) - \lambda_{2}}{\lambda_{1} - \lambda_{2}} \quad C_{2} = 1 - \frac{\dot{u}(0) - \lambda_{2}}{\lambda_{1} - \lambda_{2}}$$
(2.9)

perció

$$\frac{C_1}{C_2} = \frac{C_1}{1 - C_1} = \frac{\dot{u}(0) - \lambda_2}{\lambda_1 - \dot{u}(0)}.$$
(2.10)

Poiché $\frac{C_1}{C_2}$ dipende da $\dot{u}(0)$, il quale dipende dalla scelta di T, come dipendono dalla scelta di T anche λ_1 e λ_2 , concludiamo che l'andamento di $n_k(t)$ dipende non solo da come abbiamo preso la perturbazione c(t) ma anche dall'ampiezza dell'intervallo [0, T].

All'istante t = 2T avremo $n_k(2T)$ veicoli, ossia

$$n_k(2T) = -\frac{d}{\beta} \left[\frac{\lambda_1}{1 + \frac{\lambda_1 - \dot{u}(0)}{\dot{u}(0) - \lambda_2} e^{(\lambda_2 - \lambda_1)2T}} + \frac{\lambda_2}{\frac{\dot{u}(0) - \lambda_2}{\lambda_1 - \dot{u}(0)} e^{(\lambda_1 - \lambda_2)2T} + 1} \right]$$

2.3.1 Stabilitá

Consideriamo la dinamica della k-esima strada perturbata da una funzione dipendente dal tempo c(t)

$$\dot{n}_k(t) = -n_k(t) \left(1 - n_k(t) \right) + \phi^{eq} + c(t)$$
(2.11)

dove abbiamo preso $\phi^{eq} = \sum_{i \neq k} p_{ik} n_i^{eq} (1 - n_i^{eq}).$ Attraverso due cambiamenti di variabile

$$n_k = -\frac{\dot{u}_k}{u_k}$$
$$u_k = e^{-\frac{t}{2}}v_k$$

abbiamo che l'equazione differenziale (2.11) diventa

$$\ddot{v}_k(t) = -\left(c(t) + \phi^{eq} - \frac{1}{4}\right)v_k(t)$$
(2.12)

 Se

$$c(t) + \phi^{eq} - \frac{1}{4} < 0 \tag{2.13}$$

la soluzione dell'equ
zione (2.12) risulta essere

$$v_k(t) = C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t}$$
(2.14)

 con

$$\lambda_1 = \sqrt{|c(t) + \phi^{eq} - \frac{1}{4}|} = \sqrt{\frac{1}{4} - c(t) - \phi^{eq}}$$
$$\lambda_2 = -\sqrt{\frac{1}{4} - c(t) - \phi^{eq}}$$

e quindi

$$u_k(t) = e^{-\frac{t}{2}} (C_1 e^{\lambda_1 t} + C_2 e^{\lambda_2 t})$$

e

$$n_k(t) = \frac{1}{2} - \frac{\dot{v}_k(t)}{v_k(t)}.$$

Imponendo le condizioni iniziali e rinominando $\lambda = \lambda_1, -\lambda = \lambda_2$ abbiamo

$$n_k(t) = \frac{1}{2} - \lambda \frac{e^{\lambda t} - Ce^{-\lambda t}}{e^{\lambda t} + Ce^{-\lambda t}}$$

dove C determina $n_k(0)$ nel seguente modo

$$C = \frac{-2n_k(0) - 2\lambda + 1}{2n_k(0) - 2\lambda - 1}.$$

Facendo il limite $t \to \infty$ otteniamo

$$n_k(t) = \frac{1}{2} - \lambda = \frac{1}{2} - \sqrt{\frac{1}{4} - c(t) - \phi^{eq}}$$

che é una soluzione regolare ed accettabile. La matrice associata alla dinamica di v_k é la matrice

$$M = \begin{pmatrix} \cosh(\lambda \Delta t) & \frac{1}{\lambda} \sinh(\lambda \Delta t) \\ \lambda \sinh(\lambda \Delta t) & \cosh(\lambda \Delta t) \end{pmatrix}.$$

Analogamente, se facciamo lo stesso ragionamento nel caso

$$c(t) + \phi^{eq} - \frac{1}{4} > 0 \tag{2.15}$$

abbiamo che la matrice associata risulta essere

$$N = \begin{pmatrix} \cos(\lambda \Delta t) & \frac{1}{\lambda} \sin(\lambda \Delta t) \\ -\lambda \sin(\lambda \Delta t) & \cos(\lambda \Delta t) \end{pmatrix}.$$

Posto

$$c^* = \frac{1}{4} - \phi^{eq} \in \left[0, \frac{1}{4}\right].$$

abbiamo che

$$C_2 > c^*$$
 e $C_1 < c^*$.

Dunque

$$c_2 \in \left[c^*, 1\right]$$
 $c_1 \in \left[-1, c^*\right]$

е

$$\phi^{eq} + c_2 \in \left[\frac{1}{4}, 1\right] \qquad \phi^{eq} + c_1 \in \left[-1, \frac{1}{4}\right].$$

Alterniamo ora due perturbazioni, c_1 del primo tipo e c_2 del secondo tipo, per intevalli di tempo rispettivamente Δt_1 e Δt_2 .

Vogliamo che il valor medio delle perturbazioni c_1 e c_2 si mantenga attorno al flusso ϕ^{eq} , quindi

$$\frac{(\phi^{eq} + c_1)\Delta t_1 + (\phi^{eq} + c_2)\Delta t_2}{\Delta t_1 + \Delta t_2} = \phi^{eq}$$
(2.16)

dunque

$$c_1 = -c_2 \frac{\Delta t_2}{\Delta t_1}.\tag{2.17}$$

Se prendiamo $c_1 \in [-\frac{1}{4} + \phi^{eq}, \frac{1}{4} - \phi^{eq}]$, allora $c_2 = -c_1 \frac{\Delta t_1}{\Delta t_2} < \frac{1}{4} - \phi^{eq}$ e quindi entrambe le perturbazioni sono stabili, in quanto appartengono al primo caso. Le perturbazioni che risultano interessanti da studiare sono perció quelle tali che

$$c_2 > \frac{1}{4} - \phi^{eq}$$

e quindi

$$c_1 < \left(\phi^{eq} - \frac{1}{4}\right) \frac{\Delta t_2}{\Delta t_1}.$$

Per studiare la stabilitá di una composizione di perturbazioni di questo tipo possiamo calcolare la traccia del prodotto delle matrici e verificare che essa sia minore di 2.

Tale richiesta non sará sufficiente a garantire la stabilitá effettiva della dinamica, in quanto ampie perturbazioni c_2 per valori di tempo Δt_2 altrettanto ampi possono causare l'instabilitá seppure la traccia resta < 2.

Prendiamo un vettore di perturbazioni $v = (c_1, c_2, ..., c_n)$ ognuna delle quali di durata rispettivamente $\Delta t_1, ..., \Delta t_n$ e supponiamo che h perturbazioni siano del primo tipo
en-h del secondo tipo, allora la stabilitá della dinamica dipende da

$$tr(M_1...M_hN_1...N_{n-h}).$$
 (2.18)

Nel caso semplice in cui alterniamo n volte due perturbazioni c_1 e c_2 , una del primo tipo e una del secondo tipo, per intervalli di tempo Δt_1 e Δt_2 rispettivamente, abbiamo che la (2.18) diventa $tr(M^nN^n)$. Per qualsiasi valore di n ho che

$$tr(M^n N^n) < 2 \Leftrightarrow tr(MN) < 2.$$
(2.19)

Dunque, nel caso in cui abbiamo n matrici del primo tipo e n del secondo tipo che si alternano, é sufficiente verificare che

$$tr(MN) = 2\cosh(\Delta t_1\lambda_1)\cos(\Delta t_2\lambda_2) + \left(\frac{\lambda_1}{\lambda_2} - \frac{\lambda_2}{\lambda_1}\right)\sinh(\Delta t_1\lambda_1)\sin(\Delta t_2\lambda_2) < 2.$$
(2.20)

dove λ_1 é l'autovalore positivo relativo alla perturbazione c_1 , e λ_2 l'autovalore positivo relativo alla perturbazione c_2 . Poiché

$$\cos(\Delta t_2 \lambda_2) = \cosh(\Delta t_2 \lambda_2 i)$$

$$\sin(\Delta t_2 \lambda_2) = -i \sinh(\Delta t_2 \lambda_2 i)$$
(2.21)

allora la (2.20) diventa

$$tr(MN) = 2\cosh(\Delta t_1\lambda_1)\cosh(\Delta t_2\lambda_2 i) - i\left(\frac{\lambda_1}{\lambda_2} - \frac{\lambda_2}{\lambda_1}\right)\sinh(\Delta t_1\lambda_1)\sinh(\Delta t_2\lambda_2 i)$$
(2.22)

Poiché siamo interessati a perturbazioni che soddisfino la condizione

$$c_1 = -c_2 \frac{\Delta t_2}{\Delta t_1},\tag{2.23}$$

allora $\lambda_1 = \sqrt{c^* + c_2 \frac{\Delta t_2}{\Delta t_1}}$ e $\lambda_2 = \sqrt{c_2 - c^*}i$. Ponendo $\Delta t_1 = \Delta t_2$ si ha $\lambda_1 = -\lambda_2$, dunque

$$-\left(\frac{\lambda_1}{\lambda_2} - \frac{\lambda_2}{\lambda_1}\right) = 2 \tag{2.24}$$

Figura 2.8: traccia in funzione di $c_2, \Delta t_1 = \Delta t_2$, per diversi n

allora, per la formula di addizione del coseno iperbolico, si ha che

$$tr(MN) = 2\cosh(\Delta t_1\lambda_1 + \Delta t_2\lambda_2 i)$$

e quindi l'argomento del coseno iperbolico é nullo, perció

$$tr(MN) = 2$$

Dunque, posto $c_1 = -c_2 \frac{\Delta t_2}{\Delta t_1}$, se $\Delta t_2 > \Delta t_1$ la dinamica di v_k é stabile, mentre n_k risulta stabile per $\Delta t_2 < \Delta t_1$.

In figura (2.8) vediamo che per diversi valori di n, la curva della traccia al variare di c_2 interseca la retta costante $tr(M^nN^n) = 2$ sempre nello stesso punto, ossia per lo stesso valore di c_2 , indipendentemete da n.

2.4 Perturbazioni random

Consideriamo una successione $(c)_{i=1,\dots,n}$ di perturbazioni, h del primo tipo $(c_i < c^*)$ e n - h del secondo tipo $(c_i > c^*)$, ognuna delle quali ha durata costante Δt_i .

Sia $(c)_{i=1,\dots,n}$ generata a random secondo distribuzione uniforme con valori $c_i \in [-a, a]$, e rispettive durate delle perturbazioni Δt_i , che inizialmente prendermo tutte uguali all'unitá, per concentrarci sulle c_i .

Realizziamo diverse prove e rappresentiamo i tempi di decadimento, ossia dopo quanto tempo, se ció accade, la strada si congestiona.

In Fig (2.9) abbiamo preso un valore medio del flusso $\phi^{eq} = .2475$ (99% del flusso $\phi^* = .25$), quindi piuttosto alto, e $c_i \in [-a_1, a_1]$ con $a_1 = .1$ ($c^* = .0025$).

Si osserva che la probabilitá di sviluppare congestioni va via via decrescendo, secondo un andamento che sembrerebbe esponenziale.

In Fig.(2.11) rappresentiamo i risultati in scala logaritmica.

Lasciando fisso il flusso medio $\phi^{eq} = .2475$ e le durate $\Delta t = 4 \ 10^{-2}$ delle perturbazioni, ripetiamo lo studio con un'intensitá della perturbazione minore rispetto alla precedente, $c_i \in [-a_2, a_2]$ con $a_2 = .075 < a_1$ Fig (2.10).

All'aumentare di a il tempo minimo affinché si evolva la congestione é piú basso rispetto al tempo che occorre se a é minore.

In tutti e due i casi tutte le strade prima o poi si congestionano, ma per a minori impiegheranno mediamente piú tempo.

L'andamento del decadimento sembrerebbe in tutti e due i casi un andamento esponenziale, rappresentiamo dunque i risultati in scala logaritmica in Fig.(2.11) e Fig.(2.12).

Diminuiamo ulteriormente l'ampiezza a, Fig (2.13): prendiamo $a_3 = .015$. In questo caso i tempi di decadimento aumentano di molto rispetto ai casi analizzati precedentemente. Osserviamo che la curva di decadimento si é abbassata notevolmente, ma l'andamento ricorda sempre un'esponenziale.

A questo punto possiamo concludere che, nonostante il valor medio delle perturbazioni sia sotto soglia critica c^* , in quanto $\phi^{eq} < \frac{1}{4}$ e in tutti i casi analizzati sia il medesimo, le strade prima o poi si congestionano tutte. La rapiditá di tale congestionamento dipende dalla perturbazione, maggiore é la perturbazione in modulo prima si svilupperá la congestione e maggiore sará la probabilitá che si congestioni in breve tempo, minore é la perturbazione e minore sará la probabilitá che si congestioni nei primi tempi.

Ora prendiamo gli stessi valori dell'ultimo esempio e aumentiamo le unitá temporali: come unitá temporale consideriamo Δt doppie rispetto alle precedenti, quindi $\Delta t = 8 \ 10^{-2}$.

In Fig. (2.15) rappresentiamo i risultati nel caso $c_i \in [-.1, .1]$.

Ció che si osserva rispetto alla Fig. (2.9) é che l'andamento del decadimento

Figura 2.9: Probabilitá di sviluppare congestioni su una strada quando ϕ^{eq} = .2475, $c_i \in [-.1,.1], \Delta t = 4 \ 10^{-2}$

Figura 2.10: Probabilitá di sviluppare congestioni su una strada quando ϕ^{eq} = .2475, $c_i \in [-.075, .075], \Delta t = 4 \ 10^{-2}$

Figura 2.11: Probabilitá di sviluppare congestioni su una strada quando $\phi^{eq} = .2475$, $c_i \in [-.1, .1]$, $\Delta t = 4 \ 10^{-2}$. Risultati in scala logaritmica.

Figura 2.12: Probabilitá di sviluppare congestioni su una strada quando $\phi^{eq} = .2475$, $c_i \in [-.075, .075]$, $\Delta t = 4 \ 10^{-2}$. Risultati in scala logaritmica.

Figura 2.13: Probabilitá di sviluppare congestioni su una strada quando $\phi^{eq}=.2475, \ c_i\in[-.015,.015], \Delta t=4\ 10^{-2}$

Figura 2.14: Probabilitá di sviluppare congestioni su una strada quando $\phi^{eq} = .2475$, $c_i \in [-.015, .015], \Delta t = 4 \ 10^{-2}$. Risultati in scala logaritmica.

risulta essere piú ripido: la probabilitá di congestione aumenta nei primi tempi, per cui si sviluppa piú velocemente quando Δt é maggiore.

Diminuiamo ulteriormente l'ampiezza a, Fig (2.13): prendiamo $a_3 = .015$. Possiamo concludere che la velocitá di evoluzione delle congestioni dipende non solo dal valor medio delle perturbazioni, ma anche dall'ampiezza delle perturbazioni e dalla durata.

2.5 Interpretazione dei risultati

Scriviamo la dinamica della rete non normalizzata

$$n_{k}(t + \bar{\Delta}t) = n_{k}(t) - \left(1 - \frac{n_{k}(t)d}{l_{k}}\right)n_{k}(t)\bar{\Delta}t + \frac{l_{k}}{v_{0}}\phi_{in}(t)\bar{\Delta}t$$
(2.25)

 $\operatorname{con} \bar{\Delta}t = \frac{v_0}{l_k} \Delta t.$

quindi tutti i parametri come la lunghezza delle strade e la velocitá dei veicoli, che non compaiono nell'equazione, sono inglobati in $\overline{\Delta}t$.

Dunque, l'effetto di una perturbazione c(t) di durata $\overline{\Delta}t$, non dipende solo dal tempo e dalla perturbazione, ma anche da v_0 e l_k .

In una strada cittadina, la velocitá massima dei veicoli, quando la strada é sufficientemente sgombra, é di $50\frac{km}{h}$ che equivale a $v_0 = 14\frac{m}{s}$.

La distanza minima, in sistuazione di congestione, tra un veicolo e il suo successivo é di 5m.

Prendiamo una strada di lunghezza $l_k = 400m$, e supponiamo che su k ci siano $n_k = 15$ macchine e perturbiamo k con m = 1, aggiungiamo quindi una vettura per istante temporale $\overline{\Delta}t$ unitario.

L'istante temporale $\overline{\Delta}t$ equivale peró a $\frac{v_0}{l_k}\Delta t$, quindi la perturbazione che andiamo ad aggiungere ogni $\overline{\Delta}t$ viene aggiunta in realtá ogni $\Delta t = \frac{l_k}{v_0}\overline{\Delta}t = 28s$.

Quindi sulla nostra strada stiamo aggiungendo un veicolo ogni 28s. E' una piccola perturbazione.

Un flusso in entrata di 0.24, che come abbiamo visto é un flusso piuttosto sostenuto, a cosa corrisponde nella realtá?

Se $\frac{d}{v_0}\phi_{in} = 0.24$ abbiamo che sulla strada si immettono $\frac{l_k}{v_0}\phi_{in} = \frac{l_k}{d}0.24 = 8$ veicoli ogni $\overline{\Delta}t$, cioé ogni 28*s*. Dunque i risultati che abbiamo visto per flussi in entrata pari a 0.24 si verificano, nella realtá, quando un veicolo passa ogni 4s circa.

Figura 2.15: Probabilitá di sviluppare congestioni su una strada quando $\phi^{eq} = .2475, c_i \in [-.1, .1], \Delta t = 8 \ 10^{-2}$

Figura 2.16: Probabilitá di sviluppare congestioni su una strada quando $\phi^{eq} = .2475$, $c_i \in [-.1, .1], \Delta t = 8 \ 10^{-2}$. Risultati in scala logaritmica.

Capitolo 2. Dinamica sulla singola strada

Capitolo 3

Dinamica sull'intera rete

Capitolo 3. Dinamica sull'intera rete

Abstract

A partire dai risultati ottenuti nel capitolo precedente, in quest'ultima parte dell'elaborato ci occuperemo di analizzare il comportamento del traffico sull'intera rete soggetta a perturbazioni e l'influenza che le perturbazioni hanno sulle strade vicine.

Le perturbazioni che andremo ad impartire alle singole strade saranno distribuite uniformemente all'interno di una data ampiezza e, come nel capitolo precedente, resteranno costanti per ogni sottintervallo temporale del lasso di tempo che vogliamo studiare.

Mostreremo che, raffinando la partizione dell'intervallo temporale, tali perturbazioni genereranno sulla rete un rumore con le caratteristiche del rumore bianco. Descriveremo quindi la dinamica della rete tramite equazioni differenziali stocasiche, dove la parte stocastica resterá correlata all'intervallo della durata della perturbazione.

Infine, enunceremo due teoremi che garantiranno, sotto opportune ipotesi e per tempi significativamente minori al tempo di Kramer, la vicinanza dei risultai stocastici ai risultati deterministici.

3.1 Analisi qualitativa della correlazione tra le strade

Al fine di sviluppare un approccio di fisica statistica per la rete stradale é necessario studiare l'andamento delle correlazioni tra gli stati delle strade connesse.

Vediamo pertanto come influisce su tutta la rete la perturbazione costante generata dalla singola strada, che chiameremo k.

Definiamo primi vicini in avanti l'insieme delle strade su cui si immette k, secondi vicini in avanti l'insieme delle strade su cui si immettono le strade della primi vicini in avanti e via cosí.

Analogamente, definiamo primi vicini all'indietro l'insieme delle strade che si immettono in k, secondi all'indietro l'insieme delle strade che si immettono nelle strade dei primi vicini all'indietro.

Osservamo che k fará parte dei quarti vicini in avanti e dei quarti vicini all'indietro, e ovvaimente di tutte le fasce multipli di 4.

In Fig.(3.1) abbiamo rappresentato in rosso il numero di veicoli sulla strada perturbata al variare del tempo, in blu il numero di veicoli sulle strade su cui kconfluisce, cioé dei *primi vicini in avanti*, in azzurro il numero di *secondi vicini in avanti*, in verde il numero di *terzi vicini in avanti*.

In Fig.(3.1) la perturbazione non é sufficientemente grande da innescare una congestione, tuttavia l'aumento del numero di particelle in k influenza le strade su cui essa si immette.

Vediamo, infatti, che il numero di vetture sulle strade dei *primi vicini in avanti* (curve in blu) é maggiore rispetto al numero di vetture dei *secondi vicini in avanti*.

Quindi se la perturbazione non é sufficiente ad innescare una congestione le strade che risentono maggiormente della perturbazione sono quelle su cui k si immette.

In Fig. (3.3) abbiamo rappresentato il rispettivo diagramma di dispersione tra il numero dei veicoli sulle strade e il numero di veicoli sulla strada k.

Le Fig.(3.3) e (3.2) rappresentano entrambe i diagrammi di dispersione: nel primo caso abbiamo scelto di colorarli secondo i *vicini in avanti*, nel secondo caso secondo i *vicini all'indietro*.

Aumentiamo ora la perturbazione, in modo tale da poter analizzare la correlazione all'innescarsi di una congestione.

In Fig.(3.4) abbiamo il numero di veicoli raggruppati secondo i vicini all'indietro: le prime strade a congestionarsi, dopo la strada k, sono le strade dei primi

Figura 3.1: Numero i veicoli sulle strade al variare del tempo

Figura 3.2: Numero di veicoli sulle strade non perturbate in funzione del numero di veicoli sulla strada perturbata, colorate secondo i vicini all'indietro

Figura 3.3: Numero di veicoli sulle strade non perturbate in funzione del numero di veicoli sulla strada perturbata, colorate secondo i vicini all'indietro

vicini all'indietro (curve blu) e in seguito le strade dei secondi vicini all'indietro (curve azzurre).

Per quanto riguarda le curve dei *terzi vicini all'indietro*, alcune di esse sono molto influenzate dai primi *vicini in avanti*, in quanto fanno parte anche dei *primi vicini in avanti*.

La strada k, infatti, prima di congestionarsi ha influenzato le strade dei suoi primi vicini in avanti.

Concentriamoci proprio su queste strade, ossia quelle che appartengono ai terzi vicini all'indietro e ai primi vicini in avanti. É evidente che siano i migliori candidati per innescare un congestionamento, in quanto ricevono la perturbazione che proviene dal congestionamento della strada k, e la perturbazione a cui sono soggetti prima che k si congestioni, in quanto appartengono ai primi vicini in avanti. Tuttavia questi vicini, non appena la strada k si congestiona, smettono di ricevere veicoli. Perció le strade prese in esame non solo si congestionarsi si svuotino, in quanto non ricevono.

Ed ecco spiegato il perché in Fig.(3.4) alcune delle curve in verde prima hanno una crescita, come se volessero congestionarsi, e poi una decrescita.

Ció che risulta interessante osservare é la gerarchia con cui le strade si conge-

Figura 3.4: Numero di veicoli sulle strade quando viene perturbata una singola strada

stionano: per perturbazioni che non portano al congestionamento l'aumento dei veicoli sulle strade segue i *vicini in avanti*, se invece le perturbazioni portano al congestionamento, allora tali congestionamenti si propagheranno seguendo i *vicini all'indietro*. Questi ragionamenti posso essere fatti via via per tutti i vicini, e quindi possiamo concludere che la gerarchia dei vicini viene rispettata. Tale fenomeno prende il nome di effetto a cascata.

3.2 Ripercussioni delle perturbazioni sulla singola strada

Per modellizzare la dinamica del traffico su tutta la rete stradale soggetta a perturbazioni random introduciamo $\forall k, \xi_{kj}(t)$ un processo random, indipendente dalla strada n_k , tale che

$$\sum_{j} \xi_{kj} = 1 \tag{3.1}$$

con valor medio $\langle \xi_{kj} \rangle = p_{kj}$.

La varianza di ξ_{kj} dipende dal grado del nodo k,cio
é dal numero di connessioni

in uscita che ha la strada k. Se il grado é 3 abbiamo che due su tre degli ξ_{kj} avranno varianza ϵ^2 , mentre il terzo avrá varianza $4\epsilon^2$, calcolando la varianza complessiva abbiamo che

$$\sigma_{\xi}^{2} = \frac{1}{3}\epsilon^{2} + \frac{1}{3}\epsilon^{2} + \frac{1}{3}4\epsilon^{2} = 2\epsilon^{2}.$$

Se invece il grado del nodo k é 2 la varianza sará $\sigma_{\xi}^2 = \frac{1}{2}\epsilon^2 + \frac{1}{2}\epsilon^2 = \epsilon^2$ come anche nel caso di grado 1.

Poiché vale la (3.1), ossia la matrice delle ξ_{kj} é stocastica per righe, abbiamo che la dinamica sulla singola strada risulta essere

$$\dot{n}_k(t) = -\phi_k(t) + \sum_j \xi_{jk} \phi_j(t)$$
 (3.2)

la matrice ξ_{kj} non é piú stocastica per colonne e quindi introduce delle perturbazioni (in entrata) sulla k-esima strada, che chiameremo

$$\eta_k = \sum_j \eta_{jk} = \sum_j \left(p_{jk} - \xi_{jk} \right), \tag{3.3}$$

e quindi possiamo riscrivere la dinamica della strada nella forma

$$\dot{n}_k(t) = -\phi_k(t) + \phi^{eq} - \sum_j \eta_{jk} \phi^{eq}.$$
(3.4)

Queste perturbazioni che provengono dalle strade che si immettono sulla k-esima strada, hanno valore atteso nullo

$$\mu_{\eta} = <\sum_{j} \eta_{jk} \phi^{eq} > = \phi^{eq} \sum_{j} < \eta_{jk} > = 0$$

e varianza

$$\sigma_{\eta}^2 = \sum_j < \eta_{jk}^2 > \phi^{eq2}$$

in quanto le η_{jk} sono indipendenti e quindi $\langle \eta_{jk}\eta_{ik} \rangle = \langle \eta_{jk} \rangle \langle \eta_{ik} \rangle = 0, \ \forall j \neq i.$ Calcoliamo quindi

$$<\eta_{jk}^{2}>=<\left(\xi_{jk}-p_{jk}\right)^{2}>=\left(<\xi_{jk}^{2}>-2< p_{jk}\xi_{jk}>+< p_{jk}^{2}>\right).$$

Se deg j é il grado del nodo j, ossia il numero di strade su cui la strada j si immette, allora

$$\langle p_{jk}^2 \rangle = \frac{1}{\deg j^2}$$

e poiché abbiamo preso il processo ξ_{jk} con valore atteso $\langle \xi_{jk} \rangle = p_{jk}$ e varianza σ_{ξ}^2 abbiamo che $\langle \xi_{jk} \rangle = \frac{1}{\deg j}$ e $\langle \xi_{jk}^2 \rangle = \sigma_{\xi}^2 + \frac{1}{\deg j^2}$, quindi

$$\sigma_{\eta}^2 = \sum_j \sigma_{\xi}^2 \phi^{eq2}.$$

Definiamo K il numero di strade che si immettono in k, la perturbazione $c_k = \left(-\sum_j \eta_{jk} \phi^{eq}\right)$ ha perció media nulla e scarto quadratico medio $K \sigma_{\xi}^2 \phi^{eq^2}$.

Supponendo che le strade che si immettono in k abbiano tutte lo stesso grado, ad esempio negli incroci se tutte le strade hanno il doppio senso avremo deg $j = 3 \quad \forall j$, allora lo scarto quadratico medio della perturbazione c_k risulta essere $\sqrt{3\frac{2}{3}}\epsilon \phi^{eq} = \sqrt{2}\epsilon \phi^{eq}$.

Se invece il grado in entrata K fosse 2 avrei che lo scarto quadratico medio della perturbazione c_k risulta essere sempre $\sqrt{2}\epsilon \phi^{eq}$.

Quindi che il grado del nodo sia 2 o 3 avremo che lo scarto quadratico medio sulla k-esima strada resta invariato.

Se consideriamo, ad esempio, la fig (2.9), abbiamo che una situazione di questo tipo si puó verificare se sulla strada k si immettono K strade, su ognuna delle quali i veicoli scelgono di curvare in k con probabilitá $\langle \xi_{jk} \rangle = \frac{1}{K}$ e scarto quadratico medio $\sigma_{\xi} = \frac{0.1}{\sqrt{K}\phi^{eq}}$. Se K = 3 abbiamo $\sqrt{\frac{2}{3}}\epsilon = 0.23$. Uno scarto di questo tipo é piuttosto alto alto: si nota infatti nel grafico che la strada si congestiona in brevi tempi.

Al contrario, perturbazioni del tipo fig (2.13) impiegano molto tempo prima di sviluppare congestioni sulla k-esima strada, nonostante il flusso sia piuttosto alto; perturbazioni di questo tipo si verificano ad esempio se sulla strada si immettono K = 3 strade, su ognuna delle quali lo scarto della probabilitá é appena 0.03.

Dunque le perturbazioni provenienti dalle strade che si immettono sulla kesima strada, le quali sono indipendenti tra loro, producono una perturbazione c_k sulla k-esima strada di media nulla e varianza $2(\epsilon \phi^{eq})^2$.

3.3 Studio del rumore

In Fig.(3.5) abbiamo rappresentato il numero di particelle su ogni strada, al variare del tempo, quando queste sono soggete a perturbazioni che variano nel tempo.

Il tipo di rumore considerato é disordinato, non si ripete mai allo stesso modo, é indipendente dall'intensitá dei rumori precedenti, eppure possiede delle caratteristiche che permettono di classificarlo.

Figura 3.5: Effetti del rumore sulla rete stradale

Osservando l'istogramma(3.5) del numero di particelle sulle strade si nota che le intensitá del rumore si distribuiscono simmetricamente attorno ad un certo valor medio, seguendo una distribuzione che approssima una Gaussiana. Calcolando il coefficiente di asimmetria di Fisher e il coefficiente di curtosi di Pearson osserviamo che, per qualsiasi scelta del numero di particelle che inseriamo nel sistema, a patto che questo abbia equilibrio minore di n^* , il primo risulta

Figura 3.6: Distribuzione del rumore sulle strade in scala logaritmica

essere positivo, mentre il secondo é positivo per perturbazioni sufficientemente piccole e per valori dell'equilibrio non prossimi al valore critico.

Il coefficiente di asimmetria positivo indica che la funzione di probabilitá della nostra distribuzione é spostata verso destra, ossia la Gaussiana ha delle code per valori piú alti rispetto alla media.

Se rappresentiamo il logaritmo dell'istogramma notiamo che la distribuzione é effettivamente una gaussiana, in quanto il grafico del logaritmo é una parabola con concavitá rivolta verso il basso, come si nota in Fig.(3.6). Infatti la funzione gaussiana é una funzione della forma

$$f(x) = e^{-(x-b)^2/c^2}$$

se la rappresentiamo in scala logaritmica abbiamo il grafico di

$$log(f(x)) = -(x-b)^2/c^2$$

dunque di una parabola rivolta verso il basso.

Possiamo quindi pensare di approssimare il nostro rumore con un rumore bianco.

Descriviamo la dinamica della rete attraverso l'equazione alle differenze finite

$$n_k(t + \Delta t) - n_k(t) = -\phi_k(t)\Delta t + \sum_j \xi_{jk}(t)\phi_j(t)\Delta t$$
(3.5)

dove $\xi_{jk}(t)$ dipende dal tempo nel senso che ogni Δt le probabilitá di svolta cambiano.

Riscriviamo

$$\Delta t = \sqrt{\Delta t} \sqrt{\Delta t}$$

e fissiamo uno dei due fattori, $\sqrt{\Delta t} =: c$, dunque la (3.5) diventa

$$n_k(t + \Delta t) - n_k(t) = -\phi_k(t)\Delta t + \sum_j \xi_{jk}(t)\phi_j(t)tc\sqrt{\Delta t}.$$
(3.6)

Se Δt é sufficientemente piccolo possiamo considerare il limite $\Delta t \to 0$. Osserviamo che la variazione dell'ultimo termine dell'equazione, con c costante, é proporzionale a $\sqrt{\Delta t}$, dunque quando Δt é piccolo, $\sqrt{\Delta t}$ é molto piú grande di Δt .

Detto ció, per le osservazioni fatte nella sezione 14 possiamo approssimare il rumore con un rumore bianco, e quindi la dinamica della rete é perció descritta dall'equazione differenziale

$$dn_k(t) = -\phi_k(t)dt + \sum_j p_{jk}\phi_j(t)dt + \sum_j \eta_{jk}(t)\phi_j^{eq}c \ dW_t.$$
 (3.7)

Posto \boldsymbol{n}_k^{eq} un equilibrio della k-esima strada, linearizzando la dinamica abbiamo

$$dn_{k} = -\frac{\partial \phi_{k}}{\partial n_{k}} \bigg|_{n_{k}=n_{k}^{eq}} n_{k} dt + \sum_{j} p_{jk} \frac{\partial \phi_{j}}{\partial n_{j}} \bigg|_{n_{j}=n_{j}^{eq}} n_{j}^{eq} dt + \sum_{j} \eta_{jk} \phi_{j}^{eq} c \ dW_{t} + \sum_{j} p_{jk} \frac{\partial \phi_{j}}{\partial n_{j}} \bigg|_{n_{j}=n_{j}^{eq}} (n_{j} - n_{j}^{eq}) dt$$

$$(3.8)$$

Poiché le strade sono omogenee la (3.8) diventa

$$dn_{k} = -(1-2n^{eq})n_{k}dt + (1-2n^{eq})n^{eq}dt + \sum_{j}\eta_{jk}\phi^{eq}c \, dW_{t} + \sum_{j}p_{jk}(1-2n^{eq})(n_{j}-n^{eq})dt$$
(3.9)

in forma matriciale

$$dn = (1 - 2n^{eq})Lndt - (1 - 2n^{eq})Ln^{eq}dt + \eta\phi^{eq}c \ dW_t$$
(3.10)

dove $L := (-I + P^T)$ é una matrice laplaciana e n il vettore del numero di veicoli sulle strade.

L'equazione differenziale (3.9) ha soluzione

$$n_{k}(t) = n^{eq} e^{-(1-2n^{eq})t} + e^{-(1-2n^{eq})t} \int_{0}^{t} \sum_{j} p_{jk} (1-2n^{eq})(n_{j}-n_{k})e^{(1-2n^{eq})s} ds + e^{-(1-2n^{eq})t} \int_{0}^{t} \sum_{j} \eta_{jk} \phi^{eq} \sqrt{\Delta t} e^{(1-2n^{eq})s} dW_{s}$$

$$= n^{eq} e^{-(1-2n^{eq})t} + e^{-(1-2n^{eq})t} \sum_{j} p_{jk} (n_{j}-n_{k}) \left[e^{(1-2n^{eq})s} \right]_{s=0}^{s=t} + e^{-(1-2n^{eq})t} \int_{0}^{t} \sum_{j} \eta_{jk} \phi^{eq} \sqrt{\Delta t} e^{(1-2n^{eq})s} dW_{s}$$

$$= n^{eq} + e^{-(1-2n^{eq})t} \int_{0}^{t} \sum_{j} \eta_{jk} \phi^{eq} \sqrt{\Delta t} e^{(1-2n^{eq})s} dW_{s}$$

$$(3.11)$$

nella quale abbiamo considerato

$$\sum_{j} p_{jk} n_j = n_k$$

e quindi della parte deterministica resta solo $n^{eq}.$ Perció media e varianza sono rispettivamente

$$E[n_k(t)] = n^{eq}$$

$$\operatorname{var}(n_{k}(t)) = \frac{1}{2} \int_{0}^{t} \sum_{j} \eta_{jk}^{2} \phi^{eq2} \Delta t e^{-2(1-2n^{eq})(t-s)} ds$$
$$= \frac{\sum_{j} \eta_{jk}^{2} \phi^{eq2} \Delta t e^{-2(1-2n^{eq})t}}{4(1-2n^{eq})}$$
$$= \frac{\sigma_{k}^{2} \Delta t e^{-2(1-2n^{eq})t}}{2(1-2n^{eq})}$$
(3.12)

Calcoliamo ora la varianza di $\boldsymbol{n}_k(t)$ senza assumere la condizione

$$E[n_k(t)] - n^{eq} = 0.$$

Per calcolare la varianza consideriamo

$$\frac{d}{dt}\operatorname{var}(n_k(t)) = \frac{d}{dt}E[n_k^2(t)] - \frac{d}{dt}E[n_k(t)]^2$$

dove

$$E[n_k(t)] = n^{eq} \quad \Rightarrow \quad \frac{d}{dt} E[n_k(t)]^2 = 0$$

e quindi

$$dvar(n_{k}(t)) = (1 - 2n^{eq}) \left(\sum_{j} (L)_{kj} E[n_{j}(t), n_{k}(t)] + E[n_{k} \sum_{i} (L)_{ki} n_{i}(t)] \right) dt + \frac{1}{2} E\left[\sum_{ij} \eta_{ik} \eta_{jk} \right] (\phi^{eq})^{2} c^{2} dt = (1 - 2n^{eq}) \left(\sum_{j} (L)_{kj} cov(n_{j}(t), n_{k}(t)) + \sum_{i} cov(n_{k}(t), n_{i}(t))(L)_{ki} \right) dt + \frac{1}{2} E\left[\sum_{ij} \eta_{ik} \eta_{jk} \right] (\phi^{eq})^{2} c^{2} dt$$

$$(3.13)$$

denotiamo $(C)_{jk} := \operatorname{cov}(n_j(t), n_k(t))$

$$= (1 - 2n^{eq}) \left(\sum_{j} (L)_{kj} (C)_{jk} + \sum_{i} (C)_{ki} (L)_{ki} \right) dt + \frac{1}{2} E \left[(\eta^{T} \eta)_{kk} \right] (\phi^{eq})^{2} c^{2} dt$$
$$= (1 - 2n^{eq}) \left((LC)_{kk} + (CL^{T})_{kk} \right) dt + \frac{1}{2} E \left[(\eta^{T} \eta)_{kk} \right] (\phi^{eq})^{2} c^{2} dt$$
(3.14)

sostituiamo $L = (-I + P^T)$

$$= (1 - 2n^{eq}) \Big(((-I + P^{T})C)_{kk} + (C(-I + P))_{kk} \Big) dt + \\ + \frac{1}{2} E \Big[(\eta^{T} \eta)_{kk} \Big] (\phi^{eq})^{2} c^{2} dt \\ = 2(1 - 2n^{eq}) \Big(-C_{kk} + (P^{T}C)_{kk} \Big) dt + \frac{1}{2} E \Big[(\eta^{T} \eta)_{kk} \Big] (\phi^{eq})^{2} c^{2} dt \\ = 2(1 - 2n^{eq}) \Bigg(-\cos(n_{k}(t), n_{k}(t)) + \sum_{j} p_{jk} \cos(n_{j}(t), n_{k}(t)) \Bigg) dt + \\ + \frac{1}{2} (\phi^{eq})^{2} \sigma^{2} c^{2} dt$$

$$(3.15)$$

dove $E[\sum_{j} \eta_{jk}^2] = \sigma^2$.

Piú in generale

$$dcov(n_{k}(t), n_{k'}(t)) = (1 - 2n^{eq}) \left(\sum_{j} (L)_{kj} E[n_{j}(t), n_{k'}(t)] + E[n_{k} \sum_{i} (L)_{k'i} n_{i}] \right) dt + + \frac{1}{2} E\left[\sum_{ij} \eta_{ik} \eta_{jk'} \right] (\phi^{eq})^{2} c^{2} dt = = (1 - 2n^{eq}) \left(\sum_{j} (L)_{kj} cov(n_{j}(t), n_{k'}(t)) + + \sum_{i} cov(n_{k}(t), n_{i}(t))(L)_{k'i} \right) dt + \frac{1}{2} E\left[\sum_{ij} \eta_{ik} \eta_{jk'} \right] (\phi^{eq})^{2} c^{2} dt = = (1 - 2n^{eq}) \left(\sum_{j} (L)_{kj} (C)_{jk'} + \sum_{i} (C)_{ki} (L)_{k'i} \right) dt + + \frac{1}{2} E\left[\sum_{ij} \eta_{ik} \eta_{jk'} \right] (\phi^{eq})^{2} c^{2} dt = = (1 - 2n^{eq}) \left((LC)_{kk'} + (CL^{T})_{kk'} \right) dt + \frac{1}{2} E\left[(\eta^{T} \eta)_{kk'} \right] (\phi^{eq})^{2} c^{2} dt = = (1 - 2n^{eq}) \left(((-I + P^{T})C)_{kk'} + (C(-I + P))_{kk'} \right) dt + + \frac{1}{2} E\left[(\eta^{T} \eta)_{kk'} \right] (\phi^{eq})^{2} c^{2} dt = = (1 - 2n^{eq}) \left(-2cov(n_{k}(t), n_{k'}(t)) + \sum_{j} p_{jk} cov(n_{j}(t), n_{k'}(t)) + + \sum_{i} p_{ik'} cov(n_{i}(t), n_{k}(t)) \right) dt + \frac{1}{2} E\left[\sum_{j} \eta_{jk} \sum_{i} \eta_{ik'} \right] (\phi^{eq})^{2} c^{2} dt$$
(3.16)

Dunque possiamo scrivere in forma matriciale

$$dC = (1 - 2n^{eq}) \left(LC + CL^T \right) dt + \frac{1}{2} (\phi^{eq})^2 \sigma^2 H c^2 dt$$
 (3.17)

dove C é la matrice delle covarianze e $H=\frac{1}{\sigma^2}E[\eta^T\eta].$

L'equazione differenziale (3.17) é un'equazione differenziale lineare. Nel caso della varianza la soluzione della (3.17) é la seguente

$$C_{kk} = e^{-2(1-2n^{eq})t} 2(1-2n^{eq}) \int_0^t \sum_j p_{jk} C_{jk} e^{2(1-2n^{eq})s} ds + e^{-2(1-2n^{eq})t} \int_0^t \frac{1}{2} (\phi^{eq})^2 \sigma^2 c^2 H e^{2(1-2n^{eq})s} ds$$
(3.18)

Poiché la matrice ${\cal H},$ sulla diagonale ha elementi del tipo

$$(H)_{kk} = \frac{1}{\sigma^2} E[\sum_{i} \eta_{ik} \sum_{j} \eta_{jk}] = \frac{1}{\sigma^2} E[\sum_{i} \eta_{ik}^2] = 1$$

l'equazione (3.18) risulta essere

$$C_{kk} = \left(2(1-2n^{eq})\sum_{j} p_{jk}C_{jk} + \frac{1}{2}(\phi^{eq})^2\sigma^2c^2\right) \frac{e^{-2(1-2n^{eq})(t-s)}}{2(1-2n^{eq})} \bigg|_{s=0}^{s=t}$$

$$= \left(2(1-2n^{eq})\sum_{j} p_{jk}C_{jk} + \frac{1}{2}(\phi^{eq})^2\sigma^2c^2\right) \frac{1-e^{-2(1-2n^{eq})t}}{2(1-2n^{eq})}$$
(3.19)

Vogliamo soluzioni stazionarie, quindi calcoliamo il limite per $t \to \infty$

$$C_{kk}^{s} = \lim_{t \to \infty} \left(2(1 - 2n^{eq}) \sum_{j} p_{jk} C_{jk} + \frac{1}{2} (\phi^{eq})^{2} \sigma^{2} c^{2} \right) \frac{1 - e^{-2(1 - 2n^{eq})t}}{2(1 - 2n^{eq})}$$
$$= \frac{1}{2(1 - 2n^{eq})} \left(2(1 - 2n^{eq}) \sum_{j} p_{jk} C_{jk}^{s} + \frac{1}{2} (\phi^{eq})^{2} \sigma^{2} c^{2} \right)$$
$$= \frac{(\phi^{eq})^{2} \sigma^{2} c^{2}}{4(1 - 2n^{eq})} + \sum_{j} p_{jk} C_{jk}^{s}$$
(3.20)

Osserviamo dunque che la soluzione dipende dalle C^s_{jk}

$$dC_{jk} = (1 - 2n^{eq}) \left(-2C_{jk} + \sum_{i} p_{ij}C_{ik} + \sum_{i} p_{ik}C_{ij} \right) dt + \frac{1}{2}E[\sum_{i} \eta_{ij} \sum_{i} \eta_{ik}](\phi^{eq})^{2}c^{2}dt = (1 - 2n^{eq}) \left(-2C_{jk} + \sum_{i} p_{ij}C_{ik} + p_{jk}C_{jj} \right) dt + \frac{1}{2}E[\sum_{i} \eta_{ij} \sum_{i} \eta_{ik}](\phi^{eq})^{2}c^{2}dt$$
(3.21)

Le uniche perturbazioni η non indipendenti tra loro sono le η_{ij} rispetto ad η_{jk} , dunque dell'ultimo termine resta solo

$$E[\sum_{i} \eta_{ij} \sum_{i} \eta_{ik}] = E[\eta_{jk} \sum_{i} \eta_{ij}],$$

perció

$$dC_{jk} = (1 - 2n^{eq}) \left(-2C_{jk} + \sum_{i} p_{ij}C_{ik} + p_{jk}C_{jj} \right) dt + \frac{1}{2} E[\eta_{jk} \sum_{i} \eta_{ij}] (\phi^{eq})^2 c^2 dt$$
(3.22)

$$C_{jk}^{s} = \lim_{t \to \infty} \left((1 - 2n^{eq}) \left(\sum_{i} p_{ij} C_{ik} + p_{jk} C_{jj} \right) + \frac{1}{2} (\phi^{eq})^{2} E[\eta_{jk} \sum_{i} \eta_{ij}] c^{2} \right) \frac{e^{-2(1 - 2n^{eq})(t - s)}}{2(1 - 2n^{eq})} \Big|_{s=0}^{s=t}$$

$$= \frac{1}{2} \left(\sum_{i} p_{ij} C_{ik}^{s} + \frac{1}{3} \left(\frac{(\phi^{eq})^{2} \sigma^{2} c^{2}}{4(1 - 2n^{eq})} + \sum_{i} p_{ij} C_{ij}^{s} \right) + \frac{1}{2(1 - 2n^{eq})} (\phi^{eq})^{2} E[\eta_{jk} \sum_{i} \eta_{ij}] c^{2} \right)$$

$$= \frac{\sum_{i} p_{ij} C_{ik}^{s}}{2} + \frac{(\phi^{eq})^{2} \sigma^{2} c^{2}}{12(1 - 2n^{eq})} + \frac{\sum_{i} p_{ij} C_{ij}^{s}}{6} + \frac{(\phi^{eq})^{2} E[\eta_{jk} \sum_{i} \eta_{ij}] c^{2}}{4(1 - 2n^{eq})}$$

$$= \frac{\sum_{i} p_{ij} C_{ik}^{s}}{2} + \frac{(\phi^{eq})^{2} \sigma^{2} c^{2}}{12(1 - 2n^{eq})} + \frac{\sum_{i} p_{ij} C_{ij}^{s}}{6} + \frac{(\phi^{eq})^{2} \sigma^{2} c^{2}}{12(1 - 2n^{eq})}$$

$$(3.23)$$

con $E[\eta_{jk}\sum_i \eta_{ij}] = \frac{1}{3}\sigma^2$. Poiché $C_{jk}^s = C_{ij}$ se $p_{jk} \neq 0$ e $p_{ij} \neq 0$ possiamo portare $\sum_i p_{ij}C_{ij}^s$ al primo membro

$$\begin{pmatrix} 1 - \frac{1}{6} \end{pmatrix} C_{jk}^{s} = \frac{\sum_{i} p_{ij} C_{ik}^{s}}{2} + \frac{(\phi^{eq})^{2} \sigma^{2} c^{2}}{6(1 - 2n^{eq})}$$

$$C_{jk}^{s} = 3 \frac{\sum_{i} p_{ij} C_{ik}^{s}}{5} + \frac{(\phi^{eq})^{2} \sigma^{2} c^{2}}{5(1 - 2n^{eq})}$$

$$(3.24)$$

Analogamente ripetiamo il ragionamento per le ${\cal C}^s_{ik}$

$$dC_{ik} = (1 - 2n^{eq}) \left(-2C_{ik} + \sum_{j} p_{jk}C_{ji} + \sum_{j} p_{ji}C_{jk} \right) dt + \frac{1}{2}E[\sum_{j} \eta_{ji}\sum_{r} \eta_{rk}]$$

$$C_{ik}^{s} = \sum_{j} p_{jk}C_{ji} + \sum_{j} p_{ji}C_{jk} + \frac{1}{2(1 - 2n^{eq})}E[\sum_{j} \eta_{ji}\sum_{r} \eta_{rk}] =$$

$$= 3\frac{\sum_{r} p_{ri}C_{rj}^{s}}{15} + \frac{(\phi^{eq})^{2}\sigma^{2}c^{2}}{5(1 - 2n^{eq})} + \frac{1}{2(1 - 2n^{eq})}E[\sum_{j} \eta_{ji}\sum_{r} \eta_{rk}]$$

$$\left(1 - \frac{1}{5}\right)C_{ik}^{s} = \frac{(\phi^{eq})^{2}\sigma^{2}c^{2}}{5(1 - 2n^{eq})} + \frac{1}{18(1 - 2n^{eq})}E[\sum_{j} \eta_{ji}\sum_{r} \eta_{rk}]$$

$$C_{ik}^{s} = \frac{(\phi^{eq})^{2}\sigma^{2}c^{2}}{4(1 - 2n^{eq})} + \frac{5(\phi^{eq})^{2}\sigma^{2}c^{2}}{72(1 - 2n^{eq})}$$

$$= \frac{23(\phi^{eq})^{2}\sigma^{2}c^{2}}{72(1 - 2n^{eq})}$$
(3.25)

e troncando la gerarchia abbiamo

$$C_{kk}^{s} = \frac{(\phi^{eq})^{2} \sigma^{2} c^{2}}{4(1-2n^{eq})} + \sum_{j} p_{jk} C_{jk}^{s}$$

$$C_{jk}^{s} = \frac{(\phi^{eq})^{2} \sigma^{2} c^{2}}{5(1-2n^{eq})} + 3 \frac{\sum_{i} p_{ij} C_{ik}^{s}}{5}$$

$$C_{ij}^{s} = \frac{23(\phi^{eq})^{2} \sigma^{2} c^{2}}{72(1-2n^{eq})}$$
(3.26)

Dunque

$$C_{kk}^{s} = \frac{13}{20} \frac{(\phi^{eq})^2 \sigma^2 c^2}{(1 - 2n^{eq})}$$
(3.27)

Figura 3.7: Risultati numerici di varianze e covarianze

Figura 3.8: Risultati numerici e analitici delle varianze

Figura 3.9: Risultati numerici $\overset{\sigma^2}{\mathrm{e}}$ analitici di covarianze tra strade vicine

In Fig.(3.8) abbiamo rappresentato i risultati numerici (asterischi) della varianza e i risulatati analitici.

Con i rombi abbiamo evidenziato i risultati ottenuti senza considerare i contributi delle covarianze, con i quadrati i risultati ottenuti troncando la gerarchia alle strade vicine e con i cerchi alle strade che distano una strada.

3.4 Correlazione temporale tra le strade

In questa sezione ci occuperemo di mostrare la legge che lega la correlazione temporale tra una strada e se stessa e tra le varie strade. Per correlazione si intende il rapporto

$$\operatorname{corr}(n_k(t), n_k(t+\tau)) = \frac{\operatorname{cov}(n_k(t), n_k(t+\tau))}{\operatorname{var}(n_k)}$$

Calcoliamo ora l'autocovarianza imponendo la condizione

$$\sum_{j} p_{jk} n_j = n_k$$

$$\begin{aligned} \operatorname{cov}(n_{k}(t), n_{k}(t+\tau)) &= E\left[\left(n_{k}(t) - E[n_{k}(t)]\right)\left(n_{k}(t+\tau) - E[n_{k}(t+\tau)]\right)\right] = \\ &= E\left[\left(\int_{0}^{t} e^{-(1-2n^{eq})(t-s)}\phi^{eq}\sigma c \ dW_{s}\right)\left(\int_{0}^{t+\tau} e^{-(1-2n^{eq})(t+\tau-s)}\phi^{eq}\sigma c \ dW_{s}\right)\right] \\ &= e^{-(1-2n^{eq})\tau}\left(\int_{0}^{t} e^{-2(t-s)(1-2n^{eq})}\phi^{eq2}\sigma^{2}c^{2}ds\right) \\ &= e^{-(1-2n^{eq})\tau}\phi^{eq2}\sigma^{2}c^{2}\left[\frac{1}{2(1-2n^{eq})}e^{-2(t-s)(1-2n^{eq})}\right]_{s=0}^{s=t} \\ &= e^{-(1-2n^{eq})\tau}\phi^{eq2}\sigma^{2}c^{2}\frac{1}{2(1-2n^{eq})}(1-e^{-2(1-2n^{eq})t}) \end{aligned}$$

$$(3.28)$$

dunque la funzione di autocovarianza é esponenziale in τ . La varianza della strada k, che abbiamo calcolato nella sezione precedente, é data da

$$\operatorname{var}(n_k) = \phi^{eq_2} \sigma^2 c^2 \frac{1}{2(1-2n^{eq})} (1 - e^{-2(1-2n^{eq})t}),$$

perció l'autocorrelazione sará

$$\operatorname{corr}(n_k(t), n_k(t+\tau)) = e^{-(1-2n^{eq})\tau}.$$
 (3.29)

Nelle Fig.(3.10) abbiamo rappresenato l'autocorrelazione quando il numero me-

Figura 3.10: Autocorrelazione per numero medio di particelle sulla strada rispettivamente n = .44 e n = .20

dio di particelle sulla strada é n = .44 e n = .20.

Dunque nel primo caso il numero di particelle é piuttosto vicino al valor critico $n^* = .50$, al contrario del secondo caso.

In entrambi i casi il tipo di perturbazione é lo stesso.

I punti in blu rappresentano i risultati numerici, mentre la curva in rosso é la curva ottenuta dalla Eq. (3.29).

Quando il valor medio del numero di particelle sulle strade si avvicina al valore critico osserviamo che i risultati numerici si discostano dalla curva ottenuta analiticamente, e questo allontanamento é imputabile al fatto che in prossimitá del valore critico su alcune strade la perturbazione é tale da far si che il numero di particelle raggiunga il valore critico.

Infatti, se manteniamo costante il numero medio di particelle sulle strade, e impartiamo due perturbazioni di ampiezza diversa noteremo un effetto analogo, come si nota in Fig.(3.11).

Figura 3.11: Autocorrelazione per numero medio di particelle sulla stradan=.30,e perturbazioni rispettivamente $pert_1>pert_2$

Calcoliamo ora la correlazione tra il numero di particelle su due diverse strade generiche:

$$\operatorname{corr}(n_k(t), n_j(t+\tau)) = \frac{\operatorname{cov}(n_k(t), n_j(t+\tau))}{\sqrt{\operatorname{var}(n_k)}\sqrt{\operatorname{var}(n_j)}},$$

come nel caso precedente

$$\begin{aligned} \operatorname{cov}(n_{k}(t), n_{j}(t+\tau)) &= E\left[\left(n_{k}(t) - E[n_{k}(t)]\right)\left(n_{j}(t+\tau) - E[n_{j}(t+\tau)]\right)\right] = \\ &= E\left[\left(\int_{0}^{t} e^{-(1-2n^{eq})(t-s)}\eta_{k}\phi^{eq}c \ dW_{s}\right)\left(\int_{0}^{t+\tau} e^{-(1-2n^{eq})(t+\tau-s)}\eta_{j}\phi^{eq}c \ dW_{s}\right)\right] \\ &= e^{-(1-2n^{eq})\tau}\left(\int_{0}^{t} e^{-2(1-2n^{eq})(t-s)}E[\eta_{k}\eta_{j}]\phi^{eq^{2}}c^{2} \ ds\right) \\ &= e^{-(1-2n^{eq})\tau}E[\eta_{k}\eta_{j}]\phi^{eq^{2}}c^{2}\left[\frac{1}{2(1-2n^{eq})}e^{-2(t-s)(1-2n^{eq})}\right]_{s=0}^{s=t} \\ &= e^{-(1-2n^{eq})\tau}E[\eta_{k}\eta_{j}]\phi^{eq^{2}}c^{2}\frac{1}{2(1-2n^{eq})}(1-e^{-2(1-2n^{eq})t}) \end{aligned}$$

$$(3.30)$$

dunque anche la correlazione spaziale é una funzione esponenziale se le m_k e m_j non sono indipendeti, in caso contrario le due strade non saranno correlate.

In generale non é detto che siano dipendenti, al contrario, se le strade sono lontane la loro dipendenza sará molto piccola e quindi anche la correlazione sará piuttosto bassa.

Supponiamo che j = k + 1, cioé che j riceva direttamente dalla strada k, quindi j parte della fascia 1 all'avanti di k.

Abbiamo allora che $\eta_{k+1} = p_{kk+1}\eta_k + p_{lk+1}\eta_l + p_{ik+1}\eta_i = \frac{1}{3}\eta_k + \frac{1}{3}\eta_l + \frac{1}{3}\eta_i$, con $l \neq k, i \neq k$.

Per semplicitá supponiamo che $\eta_l \in \eta_i$ siano indipendenti da η_k , dunque

$$\operatorname{corr}(n_k(t), n_{k+1}(t+\tau)) = \frac{\operatorname{cov}(n_k(t), n_{k+1}(t+\tau))}{\sqrt{\operatorname{var}(n_k)}\sqrt{\operatorname{var}(n_k+1)}},$$

come nel caso precedente

$$\begin{aligned} \operatorname{cov}(n_{k}(t), n_{j}(t+\tau)) &= E\left[\left(n_{k}(t) - E[n_{k}(t)]\right)\left(n_{j}(t+\tau) - E[n_{j}(t+\tau)]\right)\right] = \\ &= E\left[\left(\int_{0}^{t} e^{-(1-2n^{eq})(t-s)}\eta_{k}\phi^{eq}c \ dW_{s}\right)\left(\int_{0}^{t+\tau} e^{-(1-2n^{eq})(t+\tau-s)}\eta_{j}\phi^{eq}c \ dW_{s}\right)\right] \\ &= e^{-(1-2n^{eq})\tau}\left(\int_{0}^{t} e^{-2(1-2n^{eq})(t-s)}\frac{1}{3}\sigma^{2}\phi^{eq2}c^{2} \ ds\right) \\ &= e^{-(1-2n^{eq})\tau}\frac{1}{3}\sigma^{2}\phi^{eq2}c^{2}\left[\frac{1}{2(1-2n^{eq})}e^{-2(t-s)(1-2n^{eq})}\right]_{s=0}^{s=t} \\ &= e^{-(1-2n^{eq})\tau}\frac{1}{3}\sigma^{2}\phi^{eq2}c^{2}\frac{1}{2(1-2n^{eq})}(1-e^{-2(1-2n^{eq})t}) \end{aligned}$$

$$(3.31)$$

dunque la correlazione tra due strade, l'una conseguente all'altra, é

$$\operatorname{corr}(n_k(t), n_{k+1}(t+\tau)) = \frac{1}{3}e^{-(1-2n^{eq})\tau}.$$
(3.32)

Rappresentiamo in Fig(3.12) la correlazione tra queste due strade: in rosso abbiamo il grafico ottenuto dai risultati numerici, in blu la curva ottenuta analiticamente, cioé dall'Eq(3.32).

A differenza dei grafici che abbiamo ottenuto per l'autocorrelazione Fig.(3.11), in questo caso le due curve non coincidono.

Prima di tutto osserviamo che la massima correlazione si verifica per intervalli

temporali sufficientemente ampi, cioé non é istantanea: ha bisogno di tempo per svilupparsi.

In secondo luogo osserviamo che l'andamento é esponenziale come previsto, ma per intervalli di tempo sufficientemente ampi é leggermente maggiore rispetto a quanto ci aspetteremmo.

3.5 Tempi di congestionamento della rete

Nelle sezioni precedenti abbiamo stimato la varianza per l'equazione linearizzata (**F9**gura 3.12: correlazione tra due strade l'una conseguente all'altra

$$dn_k = -(1-2n^{eq})n_k dt + (1-2n^{eq})n^{eq} dt + \sum_j \eta_{jk} \phi^{eq} c \, dW_t + \sum_j p_{jk} (1-2n^{eq})(n_j - n^{eq}) dt$$

trovando

$$C_{kk}^{s} = \frac{13}{20} \frac{(\phi^{eq})^2 \sigma^2 c^2}{(1 - 2n^{eq})}$$
(3.33)

ora possiamo utilizzare questo risultato per studiare l'equazione non linearizzata

$$dn_k(t) = -\phi_k(t)dt + \phi^{eq}dt + \sum_j p_{jk}\phi_j(t)dt + \sum_j \eta_{jk}\phi_j^{eq}\Delta t dW_t.$$
(3.34)

Consideriamo il potenziale

$$V(n) = \frac{1}{2}n^2 - \frac{1}{3}n^3 - \phi^{eq}n$$
(3.35)

il cui gradiente é

$$\nabla V(n) = (1-n)n - \phi^{eq} \tag{3.36}$$

cioé l'opposto della nostra dinamica non perturbata.

In Fig.(3.13) abbiamo rappresentato V per diversi valori di $\phi^{eq} \in \left[0, \frac{1}{4}\right]$, evidenziando in rosso il potenziale per $\phi^* = \frac{1}{4}$.

I rombi sulle curve sono i punti in cui ∇V si annulla, ossia i punti di massimo e minimo locale delle V,i quali hanno ascisse rispettivamente

$$n^{ins} = \frac{1 + \sqrt{1 - 4\phi^{eq}}}{2}$$
$$n^{eq} = \frac{1 - \sqrt{1 - 4\phi^{eq}}}{2},$$

dunque, per ϕ^{eq} fissato, n^{eq} é il punto di equilibrio stabile, n^{ins} é il punto di equilibrio instabile.

Per $\phi^* = \frac{1}{4}$ abbiamo che i due zeri coincidono.

Introduciamo ora dei rumori sul sistema, ossia le nostre perturbazioni random. Come visto nelle sezioni precedenti, questi rumori producono sulla dinamica delle perturbazioni di media nulla e varianza data dalla (3.33).

Possiamo quindi riscrivere l'equazione (2.11) nella seguente forma

$$\dot{n}_k(t) = -\nabla V(n_k(t))dt + \sigma m(t)dW_t$$
(3.37)

e osserviamo che si tratta dell'equazione di Langevin con

$$\nabla V(n_k(t)) = n_k(t) \left(1 - n_k(t) \right) - \phi^{eq}$$

$$V(n_k(t)) = n_k(t) \left(\frac{n_k(t)}{2} - \frac{n_k^2(t)}{3} - \phi^{eq} \right)$$
(3.38)

Figura 3.13: Massimi e minimi del potenziale V al variare di ϕ^{eq}

 W_t denota un processo di Wiener, σ misura l'intensitá dei rumori sulle perturbazionic.

Se ${\mathcal D}$ é un sottinsieme dello spazio delle fasi, possiamo definire il tempo di uscita

$$\tau_{\mathcal{D}} := \inf\{t > 0 : n_k(t) \notin \mathcal{D}\}$$

Poiché \mathcal{D} contiene un unico punto di equilibrio stabile, allora la distribuzione di $\tau_{\mathcal{D}}$ é asintoticamente esponenziale, per piccoli rumori il comportamento di $\tau_{\mathcal{D}}$ sará comparabile al tempo di Kramers

$$T_K = e^{2\frac{H}{\sigma^2}}.$$
 (3.39)

Infatti la legge di Kramers descrive il tempo medio di transizione di una particella tra due minimi del potenziale.

Nel nostro caso, per ϕ^{eq} fissato, il potenziale ha un unico minimo, possiamo dunque considerare come secondo minimo un punto qualsiasi $z^* > n^{ins}$, dove

Figura 3.14: Massimo e minimo del potenziale V per ϕ^{eq} fissato

 n^{ins} é il massimo del potenziale, come si vede in Fig.(3.14).

Abbiamo dunque che

$$E[\tau_{z^*}^{n^{eq}}] \simeq C e^{2[V(n^{ins}) - V(n^{eq})]/\sigma^2}$$

dove $\tau_{z^*}^{n^{eq}}$ é il tempo di transizione dall'equilibrio n^{eq} al punto di minimo fittizio $z^* \in C$ é una costante di normalizzazione.

La legge Eyring-Kramers é un perfezionamento della legge di Arrhenius, in quanto dá un valore approssimativo della costante C:

$$E[\tau_{z^*}^{n^{eq}}] \simeq \frac{2\pi}{\sqrt{|V''(n^{ins})|V''(n^{eq})}} e^{2[V(n^{ins}) - V(n^{eq})]/\sigma^2}$$

= $\frac{2\pi}{\sqrt{|(1 - 2n^{ins})|(1 - 2n^{eq})}} e^{2[V(n^{ins}) - V(n^{eq})]/\sigma^2}$
= $\frac{2\pi}{\sqrt{1 - 4\phi^{eq}}} e^{2\sqrt{(1 - 4\phi^{eq})^3}/6\sigma^2}$ (3.40)

cioé, la costante dipende dalle curvature nel punto di minimo n^{eq} e nel punto del massimo n^{ins} del potenziale. Curvature piú piccole portano a tempi di transizione piú lunghi, come si osserva in Fig.(3.15), dove abbiamo rappresentato $E[\tau_{z^*}^{n^{eq}}]$

Figura 3.15: Tempo medio di transizione dal punto di equilibrio n^{eq} al punto $z^*,$ al variare di σ

al crescere di ϕ^{eq} facendo variare σ .

Inoltre vale il seguente risultato

Teorema 1.

$$\lim_{\sigma^2 \to 0} P\Big(\tau > sE[\tau]\Big) = e^{-s}$$

Dunque la probabilitá che una strada fissata si congestioni al tempo s sará

$$P(\tau < sE[\tau]) = \int_0^s e^{-s_1} ds_1 = 1 - e^{-s}.$$

Se richiediamo che nella rete una strada kfissata si congestioni e tutte le altreK-1non si congestionino avremo

$$P\left(k \in \{1, ..., K\} | \tau < sE[\tau]\right) = \int_0^\infty \int_0^s e^{-s_1} \mathrm{d}s_1 e^{-(K-1)s_2} \mathrm{d}s_2 = (1 - e^{-s})e^{-(K-1)s_2} \mathrm{d}s_2$$

perció

$$P\left(\exists k \in \{1, ..., K\} | \tau < sE[\tau]\right) = K(1 - e^{-s})e^{-(K-1)s}$$
(3.41)

sará la probabilitá che una qualsiasi delle strade si congestioni e tutte le altre no.

In probabilitá, il primo congestionamento si verificherá prima se il numero di strade é maggiore, infatti notiamo, sia dai risultati numerici Fig.(3.17) che da quelli analitici Fig.(3.16), che la curva si sviluppa prima per K maggiori.

Dunque se la rete é composta da piú strade il primo congestionamento avverrá prima rispetto al primo congestionamento in una rete composta da un minor numero di strade.

Il massimo viene raggiunto per

$$s = \log\left(\frac{K}{K-1}\right)$$

e il valore che assume la probabilitá in prossimitá del massimo é

$$P\Big(\exists k \in \{1, ..., K\} | \tau < \frac{K}{K-1} E[\tau]\Big) = K\Big(\Big(\frac{K-1}{K}\Big)^{K-1} - \Big(\frac{K-1}{K}\Big)^K\Big)$$

Avendo precedentemente stimato $E[\tau_{z^*}^{n^{eq}}]$ possiamo calcolare la probabilitá

$$P\Big(\exists k \in \{1, ..., K\} | \tau_{z^*}^{n^{eq}} < s\Big) = \frac{1}{c_{norm}} K(1 - e^{-s/E[\tau_{z^*}^{n^{eq}}]}) e^{-(K-1)s/E[\tau_{z^*}^{n^{eq}}]} = \frac{1}{c_{norm}} K(1 - e^{-s\frac{\sqrt{1-4\phi^{eq}}}{2\pi}} e^{-2\sqrt{(1-4\phi^{eq})^3/6\sigma^2}}) e^{-(K-1)s\frac{\sqrt{1-4\phi^{eq}}}{2\pi}} e^{-2\sqrt{(1-4\phi^{eq})^3/6\sigma^2}}$$

con c_{norm} costante di normalizzazione

$$c_{norm} = \frac{E[\tau_{z^*}^{n^{eq}}]}{K-1}.$$

Una volta stimata la probabilitá $P(\exists k \in \{1, ..., K\} | \tau_{z^*}^{n^{eq}} < s)$ osserviamo che tale funzione risulta attendibile solo per regimi non eccessivamente elevati di flusso, a causa della forma di $E[\tau_{z^*}^{n^{eq}}]$, dunque considereremo solo regimi di flusso inferiori al valore $\phi^{eq} = .2$ (80% di ϕ^*).

Rappresentiamo in Fig.(3.18) la curva ottenuta analiticamente per un flusso $\phi^{eq} = .2 \ (80\% \text{ di } \phi^*)$ in una rete stradale composta da K = 24 strade, in Fig(3.19) i rispettivi risultati numerici per $\sigma = 1 \text{ e } \sigma = .8$.

Per confrontare i risultati numerici con i risultati analitici abbiamo considerato la correlazione temporale, nel nostro caso $\Delta t = 10^{-2}$, e la correlazione della durata della varianza σ , dunque $\frac{\sigma}{cost\sqrt{\Delta t}}$, dove cost indica per quante iterazioni abbiamo mantenuto costante la perturbazione.

Il primo tempo di congestionamento di una rete stradale dipende dunque dalla varianza, dal flusso di equilibrio e dal numero di strade della rete.

Figura 3.16: Risultati analitici: Probabilitá che $\exists k \in 1,..,K$ t.c. $\tau < s,$ al variare diK

Figura 3.17: Risultati numerici: Probabilită che $\exists k \in 1,..,K$ t.c. $\tau < s,$ al variare diK

Figura 3.18: Risultati analitici: Tempi del primo congestionamento per un flusso $\phi^{eq} = .2$ (80% di ϕ^*), K = 24

Figura 3.19: Risultati numerici: Tempi del primo congestionamento per un flusso $\phi^{eq} = .2$ (80% di ϕ^*), K = 24, $\sigma = 1$ (in giallo) e $\sigma = .8$ (in blu)

Bibliografia

- Nils Berglund, Kramers' law: Validity, derivations and generalisations. 2013
 Arxiv preprint arXiv: 1106.5799
- [2] Frederic Cerou, Arnaud Guyader, Tony Lelievre, and Florent Malrieu, On the length of one-dimensional reactive paths, preprint, arXiv:1206.0949, 2012.
- [3] Vittoria Colizza, Romualdo Pastor-Satorras and Alessandro Vespignani, Reaction-diffusion processes and metapopulation models in heterogeneous networks. In Nature Physics - Vol. 3 - Issue 4 - 2007 - pp. 276-282
- [4] C. F. Daganzo and N. Geroliminis. An analytical approximation for the macroscopic fundamental diagram of urban traffic, in Transportation Research Part B-Methodological, vol. 42, num. 9, pp. 771-781, 2008.
- [5] Martin V. Day, On the exponential exit law in the small parameter exit problem, Stochastics 8 (1983), 297-323.
- [6] J. L. Doob, Classical potential theory and its probabilistic counterpart, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 262, Springer-Verlag, New York, 1984.
- [7] M. I. Freidlin and A. D. Wentzell, Random perturbations of dynamical systems, second ed., Springer-Verlag, New York, 1998. MR 1652127 (99h:60128)
- [8] B. D. Greenshields: A study of traffic capacity. Proceedings of the Highway Research Board, Washington, D.C., Vol. 14, pp. 468 e seguenti (1935)
- [9] Michael Herrmann and Barbara Niethammer, Kramers' formula for chemical reactions in the context of Wasserstein gradient flows, Commun. Math. Sci. 9 (2011), no. 2, 623-635. MR 2815689 (2012h:35343)
- [10] F. A. Haight: Mathematical theories of traffic flow. New York; London: Academic press (1963)

- [11] Frank Kelly, The Mathematics of Traffic in Networks. In Princeton Companion to Mathematics Proof (Editor Timothy Gowers; June Barrow-Green and Imre Leader, associate editors) Princeton University Press, 2008. pp. 862-870.
- [12] H. A. Kramers, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica 7 (1940), 284-304. MR 0002962 (2,140d)
- [13] A. Mazloumian, N. Geroliminis and D. Helbing. The spatial variability of vehicle densities as determinant of urban network capacity, in Philosophical Transactions of Royal Society A: Mathematical, Physical & Engineering Sciences, vol. 368, num. 1928, pp. 4627-4648, 2010
- [14] Takashi Nagatani, The physics of traffic jams, 2002 Rep. Prog. Phys. 65 pp. 1331-1386
- [15] Zeev Schuss and Bernard J. Matkowsky, The exit problem: a new approach to diffusion across potential barriers, SIAM J. Appl. Math. 36 (1979), no. 3, 604-623.
- [16] Daniel L. Stein, Critical behavior of the Kramers escape rate in asymmetric classical field theories, J. Stat. Phys. 114 (2004), 1537-1556.
- [17] A. D. Ventcel' and M. I. Freidlin, Small random perturbations of a dynamical system with stable equilibrium position, Dokl. Akad. Nauk SSSR 187 (1969), 506-509. MR 0249795 (40 #3036)
- [18] A. D. Ventcel' and M. I. Freidlin, Small random perturbations of dynamical systems, Uspehi Mat. Nauk 25 (1970), no. 1 (151), 3-55.