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Abstract

Network Theory is a prolific and lively field, especially when it approaches Biology.
New concepts from this theory find application in areas where extensive datasets are
already available for analysis, without the need to invest money to collect them. The
only tools that are necessary to accomplish an analysis are easily accessible: a comput-
ing machine and a good algorithm. As these two tools progress, thanks to technology
advancement and human efforts, wider and wider datasets can be analysed.
The aim of this paper is twofold. Firstly, to provide an overview of one of these con-
cepts, which originates at the meeting point between Network Theory and Statistical
Mechanics: the entropy of a network ensemble. This quantity has been described
from different angles in the literature.1 Our approach tries to be a synthesis of the dif-
ferent points of view. The second part of the work is devoted to presenting a parallel
algorithm that can evaluate this quantity over an extensive dataset. Eventually, the
algorithm will also be used to analyse high-throughput data coming from biology.

The work is divided into many chapters. Here is a list of their titles, along with a
brief description of their content.

Introduction In this chapter we shall examine the context in which the work is set,
providing the reader with a short introduction to Systems Biology. We will start
by defining what Systems Biology is, and how Physics is related to this subject.
Then, in order to illustrate how the data we will analyse were collected, a very basic
description of Cell Biology has been provided, focusing on cellular structure, main
molecular components and the process of gene expression. Finally the two types
of data we will make use of are presented, along with a description of how they
were collected: gene expression profiling, obtained making use of DNA micro-array
analysis, and protein-protein interaction networks, retrieved from on-line protein
interactions databases. We will also briefly discuss the reasons why a physicist
could prove a helpful figure in researches conducted in such a field.

1Cf. [3], [12].



Statistical Mechanics of Networks The aim of this chapter is to present to the
reader the concepts of network and entropy, and combine them in the calcula-
tion of the entropy of a network ensemble. We start by defining what a network
is, and giving an overview of Graph Theory, introducing the main properties we
can define on a graph and describing the important role played by the adjacency
matrix. Then we proceed by illustrating Erdős-Rényi model of a random graph,
and how we can extrapolate interesting ideas from it, like the idea of evolution of
a network and of network ensemble. The chapter continues with an exposition of
the main concept of Statistical Mechanics that will prove useful in our analysis:
microstates and macrostates of a system, the different kinds of constraints we can
impose on our system, and the definition of Boltzmann Entropy and Gibbs En-
tropy. Also Shannon Entropy, a concept belonging to Information Theory we will
make use of, is presented. Finally, we apply Statistical Mechanics on networks. We
define the micro-canonical and the canonical network ensemble, and the different
measures of entropy we can implement on these sets.

The Algorithm This chapter is devoted to the description of an algorithm for the
calculation of the network entropy of a canonical network ensemble, subject to
constraint extracted from a single real network. We will first describe the meaning
of this value, and how we can obtain a formula that allows us to actually calculate
this quantity. In the second part we will describe the translation of these operation
into code in C++ language, explaining the considerable advantages of such an
implementation. We will also illustrate its features, focusing on four main aspects:
input-output, memory allocation, parallelization and customization.

Performance and Data Analysis In this chapter, after the algorithm has been de-
scribed, we analyse its performance. The code is integrated with a random network
generator, capable of providing the algorithm with user-customized data on which
to test the precision and computation time of the program. After examining the
properties of these computer-generated data, we finally analyse the performance of
the algorithm, comparing a non-parallel version with a parallel version running on
a 8 cores machine and a 32 cores hpc machine. In the second part of the chapter we
illustrate the results of the analysis conducted on high-throughput data extracted
from biological samples. The meaning of these data is explained through some
references to concepts included in the first chapter. A possible interpretation of
the results is provided, along with some suggestions on possible future applications
of the algorithm in totally different contexts.

Conclusions Finally, we draw the conclusions of our work. We try to sum up the main
passages of our paper in an organic description, and illustrate the main results we
achieved.

vii



Sommario

La Teoria dei Network rappresenta oggi un campo vivo ed in via di sviluppo, special-
mente nelle sue applicazioni vicine alla Biologia. Nuovi concetti provenienti da questa
teoria trovano applicazione in aree dove grandi moli di dati sono già disponibili, senza che
sia necessario investire denaro per raccoglierle. Gli unici strumenti necessari per l’analisi
sono ampiamente accessibili alla maggior parte dei laboratori: un calcolatore ed un buon
algoritmo. Con il progredire di questi strumenti, grazie all’avanzamento tecnologico e
all’intuizione umana, è possibile processare insiemi di dati sempre più consistenti.
Lo scopo di questa tesi è duplice: innanzitutto quello di illustrare al lettore il concetto di
entropia di un ensemble di network, concetto che nasce dall’incontro fra la Teoria
dei Network e la Meccanica Statistica. Esso è già presente in letteratura,2 affrontato
da punti di vista leggermente diversi. Nell’elaborato si è cercato di operare una sintesi
fra questi approcci. Il secondo scopo è quello di presentare al lettore un algoritmo
parallelo in grado di valutare questa quantità partendo da un consistente insieme di
dati. L’algoritmo viene inoltre utilizzato per l’analisi di un set di dati high-throughput
provenienti da analisi biologiche.

Il lavoro è diviso in capitoli. Presentiamo di seguito una loro breve descrizione.

Introduction In questo capitolo si esamina il contesto in cui è inserito il lavoro, present-
ando al lettore una breve introduzione alla Systems Biology. Iniziamo definendo
cosa sia la Biologia Sistemica e indicando le sue relazioni con la Fisica. Quindi,
per arrivare a descrivere il significato dei dati che analizzeremo e come essi siano
stati prelevati, abbiamo inserito una breve introduzione alla Biologia Cellulare, sof-
fermandoci sulla struttura della cellula, sui principali componenti molecolari e sui
processi coinvolti nell’espressione genica. È quindi presentato il significato delle
due misure utilizzate nella nostra analisi: l’analisi di espressione genica (gene-
expression profiling), ottenuta tramite l’utilizzo di microarray di DNA, e i network
di interazione proteina-proteina (protein-protein interaction networks), estratti da
database virtuali e disponibili in rete. Nello stesso capitolo discuteremo anche
brevemente le ragioni per cui la figura del fisico rappresenta una risorsa import-
ante in questo campo.

2Cfr. [3], [12]



Statistical Mechanics of Networks Lo scopo di questo capitolo è quello di present-
are al lettore i concetti di network ed entropia, e infine di combinarli definendo
l’entropia di un ensemble di network. Per fare ciò iniziamo con la definizione di
network e presentiamo le basi della Teoria dei Grafi. Sono esposte le principali pro-
prietà definite su un grafo, e la descrizione tramite matrice di adiacenza. Si procede
quindi illustrando il modello di grafo random introdotto da Erdős e Rényi, e come
da esso sia possibile estrarre idee interessanti, quali quella di evoluzione di un net-
work e di ensemble di network. Il capitolo continua con un’esposizione dei principali
concetti della Meccanica Statistica, concetti che si dimostreranno utili nella nostra
successiva analisi. In particolare tratteremo la differenza fra microstati e macrostati
di un sistema, i diversi tipi di vincoli a cui un sistema termodinamico è soggetto e
le tre differenti ma compatibili definizioni di entropia fornite da Boltzmann, Gibbs
e Shannon. Infine la meccanica statistica è applicata ai network. Si definiscono gli
ensemble microcanonico e canonico di network, e le diverse misure di entropia che
possiamo applicare su di essi.

The Algorithm Il capitolo è dedicato alla descrizione di un algoritmo per il calcolo
dell’entropia di un ensemble canonico di network, soggetto a vincoli estratti da un
network reale. In una prima parte si descrive il significato di questo valore, e come
possiamo ottenere una formula che ci permette effettivamente di calcolarlo. Nella
seconda parte è presentata una vantaggiosa implementazione di questo algoritmo
in linguaggio C++, facendo uso di programmazione parallela. L’implementazione
è analizzata sotto quattro aspetti: input-output di dati, allocazione di memoria,
parallelizzazione e adattabilità alle diverse esigenze degli utenti.

Performance and Data Analysis In questo capitolo, dopo aver descritto le caratter-
istiche dell’algoritmo, ne analizziamo le prestazioni. Il codice è integrato con un
generatore di random network, in grado di fornire dati provenienti da un toy-model
secondo parametri scelti dall’utente. Tramite questi dati è possibile testare la pre-
cisione e il tempo di computazione dell’algoritmo. Presenteremo prima le proprietà
dei dati generati dal programma e quindi le prestazioni sull’analisi di questi dati,
confrontando una versione non parallela dell’algoritmo con una versione parallela
eseguita su macchine ad 8 e 32 cores. Nella seconda parte del capitolo illustriamo
i risultati di un analisi condotta su dati high-throughput provenienti dall’analisi
di campioni biologici. Il significato di questi dati è spiegato facendo riferimento
a concetti introdotti nel primo capitolo. È anche accennata una possibile inter-
pretazione dei risultati ottenuti. Infine sono suggerite alcune possibili applicazioni
dell’algoritmo in contesti totalmente differenti dai network biologici.

Conclusions Nell’ultimo capitolo forniamo un riassunto organico dei passaggi più im-
portanti e dei maggiori risultati ottenuti nella trattazione.

ix
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Chapter 1

Introduction

Identifying all the genes and proteins in an organism is like listing all the
parts of an airplane... By itself is not sufficient to understand the complexity
underlying the engineered object.

Hiroaki Kitano1

The study of Complex System is receiving more and more attention from the scientific
community. In Complex System studies Physics and Mathematics meet other important
fields, such as Biology, Sociology and Economics. From their intertwining, new inter-
esting concepts and new approaches to the study of modern problems are born. In this
paper we will concentrate on a particular field, where a complex system approach can
yield interesting results: Systems Biology. But what is Systems Biology? And what is
the role of a physicist in such a field?

The two questions are obviously linked, and in order for us to answer the latter, we
first have to face the former. We ask the reader for a little faith while we do so. It may
seem we are going astray, but it will be worth the while. This field is full of interesting
problems which cannot be answered but making use of some Physics.

1.1 Systems Biology
How could we define Systems Biology? We shall try to do so quoting a work by the
biologist Ludwig von Bertalanffy,2 who is considered a precursor theorist for Systems
Biology.

1Cf. [7]
2The work in question is the introduction to his book “General System Theory, Foundations, Devel-

opment, Applications.” published in 1969.

1
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In the biologist’s opinion, old-fashioned science “tried to explain observable phenomena
by reducing them to an interplay of elementary units investigatable independently of
each other.” On the other hand, contemporary science recognized the importance of
“wholeness”, defined as “problems of organization, phenomena not resolvable into local
events, dynamic interactions manifest in the difference of behavior of parts when isolated
or in higher configuration, etc.; in short, ‘systems’ of various orders not understandable
by investigation of their respective parts in isolation.”
This kind of approach is what identifies Systems Biology: the attention given to studying
biological systems in their “wholeness”. In fact, we often tend to analyse phenomena by
breaking up a system in its components. In spite of making things easier, this kind of
approach is not capable of explaining some behaviours, the ones in which a system acts
as more than just the sum of its parts. And this often happens in Biology, when we try
to investigate how an organism works. Complexity is inevitable, when we study life.

Some time passed between these early pronouncements and following results. This
time was necessary to accumulate sufficient knowledge on biological systems and ways
to analyse and interpret this knowledge. As a matter of fact, in order to understand a
complex behaviour, we first need to collect data on the state of the system and its evol-
ution over time; and in the case of biological systems, data are extensive. In particular
our analysis could not have been possible, if not for a technique called Micro-array DNA
analysis, which will be illustrated later in this chapter. Secondly, given the big amount
of data to be analysed, computational tools are needed. Finally, and most importantly,
data have to be interpreted. There has to be a shift of paradigm, from the compre-
hension of the behaviour of single small components, to the wider comprehension of the
way the whole systems works. Biologist are really good at the components analysis, but
sometimes to understand the way a whole-system works we have to make use of concepts
and tools coming from Physics. Concepts such as entropy, which we will be using in this
paper.
We are approaching the answer to the second question: “what is the role of a physicist
in such a field?”. He is not an expert on Biology, so he would not be able to conduct
a research without the help of someone who is more familiar with this subject. But he
possesses skills that enable him to analyse great amounts of data, and create models of
the complex behaviour of the system. We will discuss this in more detail in the last
section of this chapter: “A place for Physics”.

As we have said before, a physicist is not supposed to be an expert in Biology, and
he can not be either. That is not his strong point. But it may be useful for him, matter-
of-factly, to have some knowledge of the field he is working on. This can help him in
comprehending the meaning of the data he is analysing, what is the best approach he
can have and what results he expects to find. We shall therefore give a short overview
on the subject of Cellular Biology and some of its main concepts, and explain the origin
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and the meaning of the data we will later analyse. This brief overview has no claim of
completeness, it will just be enough for the reader to get an idea of the concepts we will
make use of later in the work. So any reader who is already familiar with these concepts
may as well skip what follows, without compromising the comprehension of what comes
next.

1.2 Cell Biology in short
Cell Biology is quite a wide subject, and it would not be possible to cover it all in this
paper. We shall therefore illustrate only the concepts strictly related to our work. We
will first see what a cell is, and how important is the role of proteins in the cell. Secondly,
we will analyse the process of protein synthesis, that consists in the translation of DNA
strands into amino-acids chains.

Figure 1.1: Image of a human cell.

1.2.1 Cell structure
A cell is the simplest subunit of life. But even so, it is an extremely complicated system.
First of all, let us analyse its structure. Every cell is surrounded by a membrane, which
separates it from the surrounding environment. It is called the cell membrane or plasma
membrane. It is semi-permeable, and the traffic of substances going in and out of it is
restricted to some specific molecules, or regulated by proteins incorporated in the mem-
brane. There is another main compartment inside the cell, called nucleus. It is separated
from the rest of the cell by a nuclear membrane, and contains the DNA, a macro-molecule
fundamental for life, which will be analysed later. The remainder of the cell is called
the cytoplasm. It contains small structures, called organelles, that fulfill specific cellular
functions. Among these we will just mention ribosomes, the endoplasmic reticulum and
the Golgi complex, which are the ones where protein formation takes place. What we
have just described is the general structure of an animal cell. If we were to consider also
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plant cells, or even bacteria, we would have had to make some distinctions. But again,
there is no need for it in this work.
Many physiological processes take place inside a cell every instant: molecules are disas-
sembled to extract energy from their chemical bonds, or to make their subunits available
for the construction of other molecules. Some other molecules are assembled, or undergo
changes. The molecules which make up a cell belongs to four main categories. We have
already named some of them. They are carbohydrates, lipids, proteins and nucleic acids.
Carbohydrates serve mainly as energy storage molecules. Energy can be extracted from
them through chemical reactions, and used in other physiological processes. Lipids have
many functions. They are made up mainly of non-polar groups; for this reason they
are not soluble in polar solvents, and used to separate different compartments inside the
cell. They make up the cell membrane. As carbohydrates, energy can be extracted from
them. Finally some lipids, such as steroids, have the function of hormones.
We will now describe nucleic acids and proteins more extensively.

1.2.2 Nucleic Acids
There are two main nucleic acids: DNA (deoxyribonucleic acid) and RNA (ribonucleic
acid). The former is the storage molecule for hereditary information, while the latter is
fundamental for protein synthesis and the formation of ribosomes. All nucleic acids are
polymers built up of single structural units, called nucleotides. Each nucleotide consists
of three parts: a nitrogen-containing base, a pentose sugar and one or more phosphate
groups. In DNA’s nucleotides only one phosphate group is present. The typical structure
of a nucleotide is represented in figure 1.2.

Nucleotide

phospatexgroup

R

Base

Purines

Pyrimidines
Adenine Guanine

Cytosine Uracil Thymine

pentose

OHx=xribose
Hx=xdeoxyribose

Figure 1.2: The structure of a nucleotide.

There are five bases, divided in two groups: Purines and Pyrimidines. Adenine (A)
and Guanine (G) are the two Purines, while Cytosine (C), Thymine (T) and Uracil
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(U) are Pyrimidines. Each nucleotide in the polymer is linked to the next one through
covalent bonds: a carbon of the pentose sugar forms the bond with an oxygen of the
phosphate group belonging to the next nucleotide. This creates a long chain of nuc-
leotides. In DNA single chains couple together, thanks to hydrogen bonds that form
between the nitrogen-containing bases. These bonds are allowed only between specific
bases though: Guanine with Cytosine (G-C), and Adenine with Thymine or Uracil (A-T
or A-U). The result of these bonds is a coupling of complementary chains of DNA in a
double-helix structure, firstly discovered in 1953, by famous scientists J. Watson and F.
Creek. The twin chains have to be compatible in order to link, so at each base in one
chain corresponds the complementary base in the other chain. This structure is repres-
ented in figure 1.3, altogether with an example of the bonds between the subunits of DNA.
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DNA
Deoxyribonucleic acid

Figure 1.3: DNA chemical structure.

In the nucleotides of DNA and RNA only four of the five possible nitrogen-containing
bases are present. In the case of DNA, the absent one is Uracil, while in RNA it is Thym-
ine. This is the first main structural difference between DNA and RNA. Secondly, DNA’s
pentose sugar is deoxyribose, while RNA’s pentose sugar is ribose. Finally, DNA usually
assumes the double-helix conformation, while RNA is usually present in a single filament.
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1.2.3 Proteins
The last class of substances we shall consider are proteins.
They fulfill many highly important functions inside and outside the cell: amongst their
many functions, they act as catalytic enzymes for biochemical reactions, control the
metabolism and are responsible for the degradation of other proteins. They even control
the transcription and translation of genes into other proteins, a process which we shall
soon illustrate.
A protein in an assembly of one or more polypeptides. Each polypeptide consists of
a polymer chain of amino acids. The common features of all amino acids are amine
(NH2) and carboxylic acid (COOH) functional groups. They are linked to a central
carbon atom, which also carry a residual group, different for each amino acid and thus
displaying different physiochemical properties. Two amino acids can link to each other
through a covalent bond, called peptide bond, as illustrated in figure 1.4. In this bond
the amine group of the first amino acid links to the carboxylic group of the second amino
acid. Proceeding this way, a chain of these molecules can be formed.

Figure 1.4: Formation of a peptide bond

There is a total of 20 different amino acids in human cells. They differ from each other
in the residual group, and therefore also in chemical and physical properties. By forming
chains of these molecules, with amino acids in the right order, one can obtain a macro-
molecule with specific properties, which could, for example, act as catalyst for reactions,
or combine with other molecules to form bigger structures. This is why proteins are so
important in the physiological processes of a cell. But what are the right sequences of
amino acids that form human proteins? How is this information stored inside the cell?
It is stored into the nucleus of the cell, coded into the DNA.



CHAPTER 1. INTRODUCTION 7

1.2.4 Gene Expression
We say that the genetic information is “coded” in the DNA because there is actually
a code through which the DNA can be interpreted and translated into proteins. What
matters is the order of the nitrogen-containing bases in the DNA strand. Each triplet of
bases corresponds to a specific amino acid. These strands are read in sequence, and the
corresponding amino acids are subsequently added in the chain, slowly forming a protein.
Not every section of the human DNA codes for proteins though. Some fragments are
translated in ribosomal RNA (rRNA), which makes up ribosomes, or transport RNA
(tRNA) which has an important role in the formation of proteins. However, most of the
fragments3 are transcribed into mRNA, but can not be translated into proteins. The
collection of these fragments is called non-coding DNA.
Each fragment of DNA that is actually translated into a protein is called “gene”. And
the process of translation is called gene expression. This process is performed in many
steps, illustrated in the following list:

Transcription Firstly, a fragment of DNA encoding a gene is transcribed in a comple-
mentary strand of messenger RNA (mRNA). This step takes place in the nucleus.
It is performed by a special enzyme called RNA polymerase, and always starts
from DNA sequences called promoters, to whom the enzyme binds with a special
affinity. As the enzyme proceeds along the DNA string, a complementary mRNA
strand is created, until a specific sequence, called the terminator, is encountered.
At this sequence the transcription process ends. The resulting strand of mRNA is
called pre-mRNA.

Processing of mRNA Before getting out of the nucleus, the strand of pre-mRNA
undergoes a series of structural changes: some specific sequences in the string,
called introns, are removed. The ones that remain are named exons instead. This
process is called splicing. The removed fragments will not take part in the formation
of the protein, and now the resulting mRNA strand is no more complementary to
the initial DNA strand.

Translation The mRNA strand gets out of the nucleus, and it reaches a ribosome, in
which the next step takes place. The ribosome is a macro-molecule composed of
rRNA and proteins. It has a site where the mRNA can bind, and the process
of translation can take place. Translation occurs according to the genetic code, a
correspondence between triplets of mRNA bases (called codons) and amino acids.
During the translation process each codon is scanned in the ribosome, and the
corresponding amino acid chained to the forming protein. Since there are four
possible bases, the number of all possible codons is bigger than the total number of
amino acids (43 = 64 > 20), so more than one codon often codes for the same amino

3Up to 98.5% of human genome is non-coding DNA. (Lander et al. 2001, Venter et al. 2001)
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Second Base
First Base U C A G Third Base

U

UUU Phe UCU Ser UAU Tyr UGU Cys U
UUC Phe UCC Ser UAC Tyr UGC Cys C
UUA Leu UCA Ser UAA Stop UGA Stop A
UUG Leu UCG Ser UAG Stop UGG Trp G

C

CUU Leu CCU Pro CAU His CGU Arg U
CUC Leu CCC Pro CAC His CGC Arg C
CUA Leu CCA Pro CAA Gln CGA Arg A
CUG Leu CCG Pro CAG Gln CGG Arg G

A

AUU Ile ACU Thr AAU Asn AGU Ser U
AUC Ile ACC Thr AAC Asn AGC Ser C
AUA Ile ACA Thr AAA Lys AGA Arg A
AUG Met ACG Thr AAG Lys AGG Arg G

G

GUU Val GCU Ala GAU Asp GGU Gly U
GUC Val GCC Ala GAC Asp GGC Gly C
GUA Val GCA Ala GAA Glu GGA Gly A
GUG Val GCG Ala GAG Glu GGG Gly G

Table 1.1: The genetic code

acid. The genetic code is represented in table 1.1, in the form of a list of all possible
codons, each one accompanied by its corresponding amino acid. It is interesting to
notice that the codon AUG (corresponding to the amino acid Methionine) is the
one that always starts the translating sequence. The codons UAA, UAG and UGA
are the ones that always stop the translation instead.
An important role in translation is played by RNA transfer (tRNA), which is

the link between the “nucleic acid language” and the “protein language”. Each
tRNA molecule carries an amino acid on one side, and an anticodon (a codon
complementary to the one corresponding to the amino acid it carries) on the other
side. When the anticodon meets the corresponding codon on the mRNA, the amino
acid is released and chained to the forming protein. Adding one amino acid after
the other, the protein slowly takes form, until the stop sequence is reached and the
protein is released from the ribosome.

Sorting and Post-translational modifications The cell has also a complicated sort-
ing and distribution system, thanks to whom each protein is directed to the place
where it is needed. Most of the proteins are not yet ready to perform their task
though: the last step required for the formation of a protein is the folding process.
The specific function of a protein can often be fulfilled only if the protein takes
a specific form. The long chain of amino acid has to fold on itself, assuming a
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determined structure. Once this is done, the protein is ready to be released, and
to take part in the biological processes of the cell.

Transcription

Splicing

Translation

DNA

pre-mRNA

mRNA

protein

Exon

Introns

Promoter
Terminator

Exon Exon Exon Exon

Figure 1.5: Schematic representation of the gene expression process.

The whole process of gene expression is represented schematically in figure 1.5.
There is one last thing worth noticing: the amount of protein produced from a gene is
directly proportional to the amount of mRNA transcribed from the gene. This proves
useful when we face the problem of measuring how much a gene is expressed, because it
spares us the trouble of having to actually measure how much of each protein is present
in the cell: it is sufficient to measure the amount of the corresponding mRNA sequence.

1.2.5 Gene Expression Regulation
Human genome has a total of 20’000 - 25’000 protein-coding genes, each on average
having a length of 30’000 bases4. Not all these proteins are produced in every cell
though. The difference between cells belonging to one tissue or the other consists mainly
on the difference in the expression level of specific genes. For example, detoxification
enzymes produced by liver cells are not present in epidermal cells; or secretions produced
by stomach cells are absent in the muscular tissue.

4The sum of all the coding sequences corresponds to just a 1.5% of human genome.
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These different levels of expression are controlled by a very complex regulation system
in eukaryotic cells. Expression can be regulated in many ways: through transcription
control, by inhibition of the promoter in the DNA sequence, blocking the export of
mRNA from the nucleus, controlling the translation ratio or the decay rate of mRNA
and specific proteins.
Expression levels can change from one person to the other, and also in the same person
with age. Errors in the regulation of genes expression levels are the cause of serious
illness. Because of its importance and complexity, the regulatory network is nowadays
the object of many studies and researches.

1.3 Dataset: Gene-Expression, Protein-Protein In-
teraction

If we want to understand the way a whole system works, we need to extract comprehens-
ive data, enough to provide us with a complete description of the state of the system.
Nowadays, thanks to progresses in molecular analysis, we can do so. But even describing
the state of “simple” systems like cells requires a great amount of information. This in-
formation is collected with automated methods, through what are called high-throughput
measurements. Data are often stored in virtual databases, and made available to anyone
who may need them. As we have said, the big amount of information makes a calculator
necessary in order to analyse the data. We will now illustrate the meaning of the data
we will make use of, and what kind of measurements have been used to collect them.

1.3.1 Gene-expression Profiling
The first information we will need for our analysis is how much a gene is expressed into
a cell, or equivalently how much of the corresponding protein is present in the cell. This
has to be measured simultaneously for all the genes, starting from a small sample. How
to perform such a complicated measure? The best technique is through what is called a
DNA Micro-Array.
This technique was developed at the end of last century (DeRisi et al. 1997) and rep-
resents a high-throughput method for the analysis of gene expression. It allows us to
monitor the expression of several thousand genes in a single experiment, and have a
global picture of the cellular activity. This is as close as we can get to knowing the state
of our system. This technique is based on the correlation we previously pointed out,
between the amount of mRNA related to a particular gene, and the produced amount of
corresponding protein. It measures the first in order to know the second. It is performed
in the following steps, represented in figure 1.6:

1. The DNA chip is fabricated. It is made by spotting samples of DNA from a DNA
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library on a glass slide or a nylon membrane, following a matrix pattern. Each site
of the matrix has a different DNA sample, and they are all mapped in a digital
software. This passage is performed by automated machines. The samples from
the DNA library are obtained through reverse transcription from mRNA strands5.

2. Total mRNA is extracted from the samples we want to analyse. It is the ensemble
of all the mRNA strings present in the cell, coding for all the expressed genes.

3. Through reverse transcriptase complementary DNA (cDNA) is created from the
mRNA strands, and labelled with a fluorescent dye (usually red or green).

4. The solution containing the labelled cDNA is now put in contact with the surface
of the DNA chip. They hybridize to the spot where the complementary strand of
DNA has been spotted. The cDNA strands that do not undergo hybridization are
washed away from the chip.

5. After washing, the DNA chip is put into a scanner and the intensity of the fluores-
cence is measured for each spot. If the intensity of a spot is high, it means that a
considerable amount of the relative labelled mRNA was present in the sample, so
probably also the corresponding protein was there in good quantity. If the intensity
is low instead, there was little mRNA in the sample, and little protein too.

RT
and labeling

DNA Micro-array
fabbrication

Figure 1.6: Micro-Array Analysis

5Reverse transcription is performed easily thanks to a particular enzyme, reverse transcriptase, which
performs the opposite of transcription: given an mRNA strand, it builds the complementary DNA
strand. Notice that because of the splicing, the resulting DNA fragments are not present in the original
DNA, because all the introns have been eliminated.
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A single DNA chip can have up to 2.1 million probes spotted on it, allowing the
experimenter to monitor the expression of several thousand genes simultaneously, in
a single experiment. Later in the work we will make use of data obtained with this
technique.

1.3.2 PPI Network
We already showed how important is the role of proteins inside the cell. They perform
many tasks and are involved in many physiological processes, they often combine with
other proteins or physically interact with them to perform their function. In order for
us to understand the way a biological system works, we need a further important in-
formation. Every single protein is not capable of interacting with all the other proteins
in the system, it physically couples with only a specific fraction of them. If we had this
information, and knew precisely which proteins can interact with each other, we could
create a network6, a sort of net where the nodes represent the proteins of our system,
and the lines connecting the nodes represent interactions between two proteins. This is
what is called a Protein-Protein Interaction Network (PPI network in short), and from
the analysis of this model we can extract many important information on our system.

Figure 1.7: PPI network of yeast.

There are several experimental techniques that allows researchers to understand
which proteins can interact with each other. For example using protein chips: they

6The concept of network will be discussed in detail in the next chapter.
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are similar to DNA chips, and work in the same way. However, they are subject to
more experimental problems: protein interaction can often take place only under certain
condition (e.g. the presence of an enzyme, or a particular temperature), and are thus
not so easy to detect.
Results of these experiments are put together and stored in on-line databases, easily
accessible from all over the world. Because of the complexity and heterogeneity of the
data, particular tools are available, that allow the user to perform simultaneous queries
to many databases at once. The data are then collected, integrated and presented to the
user, ready to be analysed.
In particular, the protein-protein interaction data we will be using were extracted using
“Pathway Commons”7, an on-line data mining tool. It collects the data from many pub-
lic databases and integrates them, offering also additional information to the user, such
as an indicator of the quality and reliability of each data.

1.4 A place for Physics
Now that the reader has an idea of what Systems Biology is, and what concepts and
tools it makes use of, we can finally face the question: what is the role of a physicist in
SB?
We already pointed out that he is not an expert in Biology. He has an important role in
this field nonetheless, thanks to two useful qualities.

The first is his analysis ability. He has the competence and statistical tools to in-
terpret great amounts of data and extract relevant information from them. Given the
considerable number of dimensions of the variable space in all living systems, it is a very
helpful quality in this field.
The second ability is the interpretation he can give to the data. A physicist possesses a
wide set of concepts coming from many areas of the physical knowledge, that allows him
to create models that account for complex behaviours, and give the data a significant
interpretation.

Our work is set on both these abilities: we will have to handle a consistent dataset8

and also interpret it making use of the concept of Entropy, which comes from Statistical
Mechanics and Information Theory.

7It can be accessed from the web address http://www.pathwaycommons.org
8The great number of data in our dataset, obtained by high-throughput measurements, is what justifies

a statistical mechanics approach.

http://www.pathwaycommons.org


Chapter 2

Statistical Mechanics of Networks

One of the many tools used in System Biology are Networks. The concept of network
is very general and has a wide applicability: it is used in Sociology as well as Commu-
nication Theory, Mathematics, Biology and Physics. But the rigorous language for the
description of networks comes form Graph Theory, a mathematical theory whose origin
traces back to the work of Euler, solving the Königsberg bridges problem (1736). In
particular, we will make use of the concept of Random Network, introduced by the work
of Erdős and Rényi.

Entropy, on the other hand, was firstly introduced by Rudolf Clausius in Classical
Thermodynamics as a state function. This quantity reflected the reversibility of thermo-
dynamic processes. Later Ludwig Boltzmann gave a new description of the same concept,
in the context of Statistical Mechanics, in terms of the relationship between macroscopic
and microscopic states of the system. In his description, Entropy is a measure of the
number of microstates a system can be into, given its measured macrostate. Also J.W.
Gibbs gave a similar interpretation, based on the concept of statistical ensemble. Finally,
C. E. Shannon defined Entropy in Information Theory, as a measure of the information
coded in a message.
In recent studies1 the same concept was applied to networks, in order to quantify the
variabiliy of a network ensemble, and the information coded in the constraints.

In this chapter we will briefly provide a mathematical description of graphs and
the properties they have. We will also introduce Random Graphs, and try to describe
some of their main features as well as their importance in network science. It is a basic
introduction, so any reader who is familiar with these concepts may simply skip this
chapter. Then we will introduce the concept of Entropy, in the context of Statistical
Mechanics and Information Theory. Finally, we shall apply this concept to networks.

1In particular cf. [3], [4], [12]

14
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2.1 What is a network?
In general terms, a network is any system that can be mathematically represented as a
graph. Thus, it can be reduced to a set of elements, called nodes, and a series of relations
amongst them, called edges, visualized as links going from one node to the other.
This description is very general, so this model suits a wide variety of systems. This broad
applicability of graph theory is the one feature that allows us to compare systems really
different from each other (e.g. network of links between web pages, network of scientific
collaborations, communication networks...), and try to find common features.
Graph are present in a wide variety, and a wide variety of properties over them has
been introduced. We will provide a very basic description of these objects, just to the
extent useful for our aim. We shall not consider multigraphs, in which more than one
edge between the same pair of nodes is allowed, nor pseudo-graphs, which can present
both multiple edges and “loop” edges, that is edges going to and from the same node.
These require some more mathematical tools, and are not necessary for our aim. We will
therefore just describe simple graphs, in which no more than one edge can connect two
different nodes, and a node can not be connected to itself.

2.2 Basics of Graph Theory
An undirected simple graph G is mathematically defined as a pair of sets G = (V , E). V
is a countable set whose elements are called “vertices” or “nodes”; E is a set whose ele-
ments, called edges, are unordered pairs of elements of nodes. Each pair in E represents
a link between two nodes. If we consider ordered pairs of nodes as elements of E instead,
we can describe directed simple graphs, where each link has also a direction. Given two
elements of the set V , namely i and j, if the pair (i, j) belongs to the set E : (i, j) ∈ E ,
then the two nodes are said to be adjacent or connected.

The order of the graph, denoted with N , is defined as the cardinality of the set V , i.e.
the number of nodes in the graph. On the other hand, the cardinality of E is referred to
as the size of the graph, and denoted with E. With simple combinatorial calculations2

we can show that the maximum number of edges for a graph of order N is equal to
Emax =

(
N
2

)
= N !

2!(N−2)! . Such a graph, where all the N edges are connected, is said
complete N-graph.

2In fact, a graph can have as many edges as the number of different unordered pairs of vertices we
can form, which is the number of all the possible combinations of 2 elements out of a set of N
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2.2.1 Representation of a Graph
Undirected graphs are often graphically depicted as a set of dots connected by lines. The
dots corresponds to the nodes, and the lines to the edges. A directed graph is represented
in a similar fashion, the only difference being in the lines, replaced with arrows to convey
the directionality of the link. As we have seen, the presence of an edge between nodes i
and j in an undirected graph grants a connection in both directions. On the contrary,
in directed graphs the fact that node i is linked with node j does not imply that node j
is linked with node i.

In figure 2.1 we show an example of a directed graph, followed by the description
of its own nodes set, and edges set. The couples of nodes that represent an edge are
ordered, and this conveys the directionality of the link. In this case, the set of edges is
a subset of the Cartesian product of the set of nodes with itself: E ⊆ V × V .

6

4
5

1

2
3

V = {1, 2, 3, 4, 5, 6}

E =
{

(6, 4), (4, 6), (4, 5), (5, 1)
(1, 2), (2, 5), (2, 3), (3, 4)

}

Figure 2.1: Directed Graph

In figure 2.2 instead, we have an example of undirected graph. The arrows are
replaced with lines, since there is no directionality in the link. Moreover, the ordered
pair is now replaced with a simple unordered set.

6

4
5

1

2
3

V = {1, 2, 3, 4, 5, 6}

E =
{
{6, 4}, {4, 5}, {5, 1}

{1, 2}, {2, 5}, {2, 3}, {3, 4}
}

Figure 2.2: Undirected Graph
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2.2.2 Adjacency Matrix
If the order of the graph is known, all the information we need to reconstruct a graph is,
given any couple of nodes, whether they are linked or not. This information is encoded
in the adjacency matrix : AN×N = {aij}i,j. It is a square matrix, whose number of lines
and columns is equal to N , the order of the graph. The value of the element aij tells us
if node i and node j are linked or not, according to the following rule:3

aij =

 0 if (i, j) /∈ E thus if node i is not linked with node j
1 if (i, j) ∈ E thus if node i is linked with node j

(2.1)

We can thereby write the two matrices, for the directed and undirected graph of figure
2.1 and 2.2. Notice that, as a result of the non-directionality of the link, the adjacency
matrix of an undirected graph is always symmetrical: A = AT . Moreover, since we
excluded the possibility of a “loop” edge, in both directed and undirected graphs all the
elements on the diagonal of the matrix have null value: ∀ i ∈ {1, . . . , N} aii = 0

A =



0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 1 0 0
0 0 0 0 1 1
1 0 0 0 0 0
0 0 0 1 0 0


(2.2) A =



0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0


(2.3)

Matrix (2.2) is referred to the directed graph, while matrix (2.3) refers to the undir-
ected graph.

2.2.3 Connectivity Degree of a Node
One of the most important properties we can define in a graph is the connectivity degree
(or simply degree) of a vertex. We shall indicate the degree of vertex i with the symbol
ki. It is defined as the number of edges in the graph that share a link with the specified
node. This measure gives us information on the relevance of the vertex in the graph.
The connectivity of every node can be extracted easily from the adjacency matrix: con-
nectivity of node i corresponds to the sum of all the elements in the i-th row of the
matrix.

ki =
∑
j

aij (2.4)

3In equation 2.1, the notation (i, j) presumes a notion of order, and is valid for directed graphs. In
case of undirected graphs, it is sufficient to replace it with the notation: {i, j}.



CHAPTER 2. STATISTICAL MECHANICS OF NETWORKS 18

Moreover, if we were to sum all the elements of the matrix, we would sum all the
connectivities of the nodes. In this sum, each edge is considered twice: once for each
node it connects. As a consequence, the sum of all elements of the adjacency matrix is
equal to twice the size of the graph E:∑

i,j

aij =
∑
i

ki = 2E (2.5)

Actually, the definition of degree of a node presents some ambiguity when we start to
consider directed graphs. To solve this problem we can define an in-degree kini and an
out-degree kouti as follows:

kini =
∑
j

aij kouti =
∑
j

aji (2.6)

If we consider again an undirected graph, we have A = AT , so for all nodes kini = kouti =
ki.
In addition to this, we can introduce one more quantity to evaluate how many links a
node has on average: the average connectivity 〈k〉.

〈k〉 = 1
N

∑
i

ki = 2E
N

(2.7)

The last equation comes easily from (2.5), N being the order of the graph.

Finally, we can define the degree sequence of a graph as a vector ~k = (k1, k2, . . . , kN)
containing a list of the connectivity degrees of all the nodes in the graph. This vector will
have an important role in the further analysis we will perform. In fact it will represent
one of the constraint we will extract from our real network, in a sense that will become
clear to the reader later.

2.2.4 Metric on a Network
Often modelling a system making use of just a simple network would be too vast a sim-
plification. It would mean neglecting part of the information the system has in itself;
information which is important in order to understand the way the system works. Some-
times this information can be included in our model if we code it as a further property
of our network. In our case this property will be the distance between nodes.
We define a distance matrix DN×N . It has the same dimensions of the adjacency matrix,
and each element dij of the matrix represents the distance of the node i from the node
j. We can derive some properties of the distance matrix starting from the mathematical
definition of distance.

A distance function defined on a set χ is any binary function d : χ×χ→ R, satisfying
the following four properties:
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1. Non negativity: ∀x, y ∈ χ d(x, y) ≥ 0

2. Coincidence axiom: ∀x, y ∈ χ d(x, y) = 0⇔ x = y

3. Symmetry: ∀x, y ∈ χ d(x, y) = d(y, x)

4. Triangle Inequality: ∀x, y, z ∈ χ d(x, y) + d(y, z) ≥ d(x, z)

If these properties are satisfied, d(x, y) represents the distance between the element x
and the element y of the set χ. In our case, the set χ will obviously be the set of the
nodes of our graph V .

From the first property we notice that every element of our distance matrix is a pos-
itive real number. Then, from symmetry it follows that ∀i, j ∈ {1, 2 . . . N} dij = dji,
thus the distance matrix is symmetrical: DT = D. Furthermore, because of the co-
incidence axiom all the elements on the diagonal of the matrix have null value: ∀i ∈
{1, 2 . . . N}, dii = 0. Finally, the triangle inequality sets a number of constraints4 on
the distance matrix.
We called this property “distance”. Needless to say, it does not have to be a physical
distance. It can be any feature of our system that can be represented as a matrix of real
numbers satisfying the properties we just listed.

2.3 Random Graph and Network Ensembles
Random Graphs are very important tools for the study of real networks. They are defined
as graphs whose formation occurs according to some kind of random rule. In their article
“On Evolution of Random Graphs”5 Erdős and Rényi write: “The evolution of random
graphs may be considered as a (rather simplified) model of the evolution of certain real
communication-nets, e. g. the railway, road or electric network system of a country or
some other unit, or of the growth of structures of inorganic or organic matter, or even
of the development of social relations.”

Random Graphs can indeed provide a model for network growth; a model capable
of explaining data coming from many different contexts. They proved crucial for the
comprehension of some properties of real networks, and they allowed scientists to get a
deeper understanding of how a real network works.
We will briefly introduce the main example of random graph. This will eventually lead
us to the concept of network ensemble.

4If we have N nodes in our graph, then there are 3 ·
(

N
3
)
inequalities that have to be satisfied.

5Cf. [6]
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2.3.1 Erdős–Rényi model
In the same article, the two mathematicians proposed a simple model for a random graph:
let us suppose we have a particular set of nodes, V , having N elements. At time t = 0
there are no edges in our graph. At every unit of time, an edge is added to the graph,
chosen at random amongst all the possible combinations of two nodes still not linked by
an edge, which at time t = 1 are

(
N
2

)
. At time t = 2 the second edge will be chosen from

a set of
(
N
2

)
− 1 possibilities, and so on. The process ends at time t = M ≤ N , the final

graph having a total of M edges.

Can we make any prediction on the outcome of this process? We know for sure that
the result will be a graph having N nodes and M edges. Let us denote with GN,M the
set of all the graphs that satisfy such conditions. If we are to evaluate the cardinality of
GN,M , we can consider that to build a graph belonging to this set we have to choose M
edges from the set of all the possible edges we could draw between our N nodes, this last
set counting

(
N
2

)
elements, as we have already explained. As a result, the cardinality of

GN,M is equal to the number of combinations of M elements from a set of
(
N
2

)
.

card(GN,M) =
((N

2

)
M

)

What is the probability that a given graph G ∈ GN,M is the outcome of the random pro-
cess we just described? We can notice that each graph in GN,M has the same probability
of resulting from such a process. As a consequence, if we indicate the probability of the
graph G being the result of the process as P (G), we have that:

P (G) = 1
card(GN,M) =

((N
2

)
M

)−1

It is interesting to notice that the connectivity degree distribution of the nodes follows
a well known pattern. In fact for each couple of nodes there is a M ×

(
N
2

)−1
probability

of being connected by a link. For the sake of simplicity, let us call this probability π. As
a result, considering a node in our network, the probability of it having a connectivity
degree equal to a value k is:

p(k) =
(
N − 1
k

)
(π)k (1− π)N−1−k (2.8)

This is exactly the binomial distribution. For large values of N , it can be approximated
with the Poisson ditribution:

p(k) = (Nπ)k

k! e−(Nπ) (2.9)
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2.3.2 Evolution and Network Ensembles
The work of Erdős and Rényi continues with the investigation of the arising of some
properties in the graph as time passes and links are added. This does not concern
our paper, but two interesting ideas have already been introduced, which will be really
important for what will follow:

Evolution of a network. Networks are not stable and immutable entities: they evolve.
Nodes can be added, new edges can form between existing nodes. Sometimes
the arising of edges is totally random, other times it follows some kind of rule.
But considering the fact that the specific real network we are investigating has
an history can always help us understand many of its properties. Many of them
originated from the way the network evolved. This leads us to the second important
idea.

A real network is one particular instance of a wider set of possible networks.
This set, which we will call Network Ensemble henceforth, reunites all the networks
whose features are somehow similar to the ones of the real network we are consid-
ering. It provides us with an environment whose analysis can give us additional
information on the real network. It will be of capital importance in this paper.

Ensembles are built according to a number of constraints we require the networks that
belong to them to satisfy. In the previous example, we required a fixed number of edges
M for every network. The result was the set GN,M . But we could make other kinds of
requests: for example, we could fix the connectivity of each node; or even the distance
between nodes, if we have previously defined a distance function on our network. The
result would be another set, necessarily a strict subset of the previous one, since we
added some constraints.

This kind of language may have already triggered a comparison in the mind of the
reader. We are using terms such as “ensemble” and “constraint”, which, combined with
a certain knowledge of Physics, recall a whole different context: Statistical Mechanics.
If we persist in this direction, we will see that this parallel is consistent. It gives us the
opportunity to analyse the subject from a new perspective, and it can yield interesting
results.

2.4 Statistical Mechanics and Entropy
Statistical Mechanics, also known as Statistical Thermodynamics, is the branch of Phys-
ics that studies the behaviour of a thermodynamic system, but with a perspective really
different from the one of Classical Thermodynamics. It originates from the necessity of
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explaining the meaning of thermodynamic quantities, such as Temperature and Entropy,
from a microscopic point of view, making use of two tools: Classical Mechanics laws and
Statistical considerations (thus the name “Statistical Mechanics”).

A Statistical Mechanics system is composed by a great number of sub-units (e.g.
particles, oscillators...) and is analysed under two points of view: the microscopic one,
which accounts for the state of every single sub-unit, and a macroscopic one, which
describes the global state of the system, without specifying the state of every single sub-
unit. By microstate we thus mean a microscopic description of the state of our system.
On the contrary, by macrostate we indicate a macroscopic description, which carries
much less information than the microscopic one.

2.4.1 Ergodicity, Microstates and Macrostates
Our system is required to have a fundamental property, if we want a Statistical Mech-
anics analysis to be effective over it.
This property is Ergodicity. It is generally caused by frequent and random6 collisions
between the sub-units of the system, which are responsible for sudden changes of the
microstate of the system. If a system is ergodic, then there is no privileged microstate
amongst all the ones accessible by the system.7 If we were somehow able to measure the
microstate of our system at regular intervals of time, we would find a uniform distribu-
tion over all the possible microstates.

Before proceeding into further considerations we have to state the nature of what we
called “macrostates”, and of Classical Thermodynamics measures. These measures are
what allow us to define a macrostate. From the microscopic point of view, they are but
average measure of microscopic quantities in our system. They involve a consistent loss
of information on our system, compared to the measure of every microscopic quantity.
In fact, given the set of all possible microstates Σ and the set of all possible macrostates
Γ of our system, there is always a function f : Σ → Γ. This function is not injective
in general though. So, given a macrostate, we are not able to know in which microstate

6They are not actually “random”, since they are often governed by exact laws (e.g. the laws of
Mechanics), but their overall effect on the system is comparable to sudden random transfers of energy
from one sub-unit to the other.

7This is actually an over-simplification. To be more precise, ergodicity states that if we map the
state of our system in a phase space, after a long period of time the probability of finding our system
in any subregion of the accessible phase space is proportional to the integral measure of the subregion.
Combined with Liouville’s theorem, this property allow us to transform average quantities evaluated on
the trajectory of the system in the phase space, in average quantities evaluated on the accessible phase
space itself.
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our system is. But we can make an interesting consideration.

While every accessible microstate is equiprobable with respect to the others, this is
no more true for macrostates: when we measure the macrostate of our system, it is more
likely the measure results in a macrostate with thousands of microstates mapping on
it, than resulting in a macrostate realized by just a dozen microstates. This is why the
equilibrium state of the system is the one that maximizes Boltzmann’s Entropy, in a
sense that will become clear later. In fact, because of the great number of sub-units
present in our system, there is in general a macrostate which is by far more probable
than any other possible macrostate.

But what do we mean by “accessible states”? In Statistical Mechanics systems are
often subject to constraints. These constraints limit the possible states of the system to
a particular subset of the phase space. We shall give a short description of the different
categories of constraints.

2.4.2 Categories of constraints
Three different kinds of constraints are used in Statistical Mechanics, distinguished ac-
cording to the system’s number of sub-units and total energy:

Microcanonical Constraint This kind of constraint is the one to whom isolated ther-
modynamic systems are subject. Both the total number of sub-units N and the
total energy E are constant over time.

Canonical Constraint This constraint is milder than the previous one, and character-
izes systems subject to a thermal bath. The total number of sub-units N is still
fixed, but this is no more true for the total energy E. What is maintained constant
is the temperature T .

Grand Canonical Constraint This is the kind of constraint we refer to when we con-
sider small systems put in contact with bigger systems, without any kind of barrier.
The total energy E is not constant, nor the total number of sub-units N . What is
invariant over time is the temperature T and the chemical potential µ.8

We shall now analyse a simple model to introduce the concept of Boltzmann’s En-
tropy, and later use the same concept on networks.

8The chemical potential is defined as the free energy Φ = E−TS which we have to add to the system
if we want to add a single sub-unit and maintain the temperature and entropy constant.
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2.4.3 Boltzmann’s Entropy: a simple model
Let us consider a system composed by N small sub-units - we shall call them particles -
labelled with indices going from 1 to N . Each particle has an energy (we call ej the en-
ergy of the j-th particle) belonging to an infinite discrete spectrum {εi}i∈N. We identify
the microstate of the system by providing a configuration vector ~e = (e1, e2, . . . , eN)
containing the energy of every single particle. The discreteness of the spectrum of con-
fined systems comes from quantum theory, and it is fundamental in our model.9 Let
us define the population of the i-th energy level by the number ni = ∑N

j=0 δ(εi − ej)10,
which is the number of particles having an energy equal to εi. The macrostate of the
system is described by the population vector ~n = (n1, n2, . . .) having infinite components.

Let us consider the case in which our system is subject to a microcanonical constraint,
the total energy being equal to E, and the total number of particles to N . Because of
these constraints, the population vector ~n and the configuration vector ~e are forced to
belong to two particular subsets:

~e ∈ Σ , Σ =
{
~e s.t.

(
ei ∈ {εi}i∈N ∀i ∈ {1, . . . , N}

)
∧
(

N∑
i=1

ei = E

)}

~n ∈ Γ , Γ =
{
~n s.t.

(
ni ∈ N ∪ {0} ∀i ∈ N

)
∧
( ∞∑
i=1

ni = N

)
∧
( ∞∑
i=1

ni εi = E

)}

Both of these sets are necessarily finite. We can also map each microstate ~e to a macro-
state ~n by a function f : Σ→ Γ, defined as follows: f(~e)i = ∑N

j=0

(
4 θ(ej − εi) θ(εi − ej)

)
=

ni. This function is in general not injective, so we can ask ourselves again: “how many
microstates map on a given macrostate”? This time we can answer precisely to that
question making combinatorial considerations.

Given a macrostate ~n ∈ Γ the number of microstates that map into it (we shall call
this number Wboltz(~n)) can be calculated as the product of the number of different ways
we can shuffle the particles in each energy level, given by the combination of ni elements
chosen from a set of N − n1 − . . .− ni:

Wboltz (~n) =
(
N

n1

)
·
(
N − n1

n2

)
·
(
N − n1 − n2

n3

)
· . . . ·

(
N − . . .− nk−1

nk

)

= N !∏k
i=1 nk!

9A second quantum concept, namely indistinguishability, is not taken into account instead. According
to quantum theory in fact, it is not possible to assign a label to each particle, and a switching of two
particles in the same state can not be considered a switch of microstate. In this case, microstates would
be identified by the vector ~n.

10In this case δ(x) stands for the discrete delta function, whose value is 1 when x = 0 and 0 elsewhere.
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Where nk is the last non-null value of the infinite vector ~n, which has to exist because
of the condition imposed on the set Γ.

We suppose that our system is ergodic, and thus has the same probability to be in
any microstate ~e ∈ Σ. The probability P (~n?) of finding our system in the macrostate
~n? ∈ Γ is therefore equal to:

P (~n?) = Wboltz (~n?)∑
~n∈Γ Wboltz (~n)

As a result, the most probable macrostate in which our system can be found is the one
in Γ that maximizes the probability function P (~n). Or equally, the one which maximizes
the function:

SB(~n) = kb ln (Wboltz(~n)) (2.10)
Where kb is Boltzmann constant, equal to 1.3806488× 10−23J ·K−1.
This function is Boltzmann’s definition of Entropy.

2.4.4 Gibbs’ Entropy
W. Gibbs introduced a different definition of Entropy; even though it can be proved that
it is consistent with Boltzmann’s definition.11 Instead of considering a single system
which can be found in many states, Gibbs refers to a Statistical Ensemble, defined in
the following way: let us consider a system, and sample the position of its state in the
phase space at regular intervals of time. Doing so, we obtain a collection of n points of
the phase space: (s1, s2, . . . , sn). In order for us to apply Statistics on it, we will work
in the limit n→∞.
Now, instead of considering these points as different states of the same system measured
at different times, we consider them as states of different systems, measured in a single
instant of time. The collection of these systems is called Statistical Ensemble.

For every microstate ω ∈ Ω (Ω being the set of all possible microstates) we can build
a statistic, and have the probability to pick a system in microstate ω in our ensemble.
We shall call this probability P (ω). Given a macrostate A, we call ΩA ⊆ Ω the set of
all possible microstates compatible with A. The Gibbs Entropy of macrostate A is now
defined as:

SG(A) = −k
∑
ω∈ΩA

P (ω) logP (ω) (2.11)

In Gibbs Entropy we do not require the equiprobability of all microstates,12 but by
imposing it we obtain Boltzmann’s formula. In fact, if we consider a system where all

11Cf. [8]
12Or equally, we do not require the ergodicity of the system.
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microstates are equally alike, and also there is one major macrostate A to whom most
of them map, for which is valid WA = card(ΩA) ≈ card(Ω) = W ,13 then:(
∀ ω ∈ Ω P (ω) = 1

W

)
⇒

SG(A) = −k
WA∑
i=1

1
W

log 1
W

= −kWA

W
log 1

W
≈ k log(WA) = SB(A) (2.12)

2.4.5 Entropy in information theory
The last definition of Entropy we will analyse is Shannon Entropy. It was introduced by
C. E. Shannon (1948) in a whole different context, but it presents evident similarities
with Gibbs’ formulation.
Let us consider a communication channel, in which a source S transmits informa-
tion to a receiver, in form of a sequence of symbols belonging to a finite alphabet
A = {a1, a2, . . . , aN}, N being the cardinality of the alphabet. Each symbol appears
in the sequence with a particular frequency, thus we are able to associate it an occur-
rence probability, that is a probability that the symbol is the next one transmitted in
the sequence by the source. We name pi the probability of the i-th symbol. These prob-
abilities obviously have to satisfy the equation ∑a∈A p(a) = 1.

Shannon’s aim is to find a function H(S) capable of measuring the amount of inform-
ation the source S produces, or better, the rate at which the information is produced.
This has to be done with the only knowledge of the occurrence probabilities of each sym-
bol. Shannon individuates three properties that have to be satisfied by such a function:

1. H(S) should be continuous in the pi

2. If all the pi are equal, and thus pi = 1
N
, H(S) should be a monotonic increasing

function of N . In fact, if the alphabet has more symbols, more information can be
transmitted with messages of the same length.

3. The third property concerns an increase of complexity of an alphabeth: let us
consider two sources, S and S ′. They are identical, if not for the fact that the
symbol ai in S, with associated probability pi, is replaced with a pair of symbols
a′i, a′i+1 in S ′, with associated probabilities p′i and p′i+1. It is also valid that, for
what we have just stated, that p′i + p′i+1 = pi.
We require that the increase of complexity causes an increase of the H function,
according to the following equation: H(S ′) = H(S) + pi H(S ′ \ S), where S ′ \ S is
the source for whom A = {a′i, a′i+1} and the respective probabilities are (p

′
i

pi
,
p′
i+1
pi

).
13This second assumption can be showed to be valid also in the previous Boltzmann Entropy model

in the limit N →∞.
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It can be proved that the only function which can satisfy all these requests is the
function:14

SS = H(S) = −k
∑
a∈A

p(a) log p(a) (2.13)

Where k is a positive constant.

This function is called Shannon Entropy, named this way after the similarity with
the Statistical Mechanics concept.

2.5 Statistical Mechanics of networks
Finally, it is time to analyse the parallel we so far just outlined, between Network En-
sembles and Statistical Ensembles. Here we introduce the fundamental idea that justifies
every further analysis. In section 2.3.2 we introduced considerations on a real network
being the result of a process of evolution, and being a particular instance of a wider set
of possibilities. This idea and its consequences have been examined by G. Bianconi in
the article “the entropy of randomized network ensembles”.15 In this article the author
states that:

“Every real network can be considered as a specific instance of a particular
network evolution compatible to its functional constraints... We propose here
to consider a real network as belonging to an ensemble of networks which
would perform the same task equally well.”

This is especially true in biology, where we can observe a certain variability of biological
networks performing the same function across different species. Therefore, let us suppose
that a real network is a particular instance belonging to an ensemble of networks. What
are the common features of all the elements in our ensemble? Can we somehow infer
them from the only information we have: the real network?

It is reasonable to think that every other possible network has to be able to perform
the task the real network performs equally well, but we do not know precisely what
features are essential in order for this to happen. We can proceed by successive approx-
imations, adding every time a further constraint, to make all the graphs in our ensemble
more and more similar to the real graph. The result of this process is an increasing
complexity of the networks in our ensemble, and a decrease of the variability, that is the

14The choice of a base for the logarithm corresponds to a choice of a unit to measure information.
There are two conventional choices: either base 2 is used, the unit of measure being called bit, meaning
“binary digit”; or base e, ant the corresponding unit natural unit.

15Cf. [4]
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number of network in the ensemble.

Now the parallel with Statistical Mechanics suggest that every network belonging to
the ensemble represents a microstate, and the whole ensemble groups all the networks
mapping in the same macrostate. With these considerations we can easily define a
measure of Entropy of the network ensemble. We will use the words of G.Bianconi, from
the same article:16

The entropy of a given network ensemble is proportional to the logarithm
of the number of networks belonging to the ensemble. We expect that a
very complex network is belonging to an ensemble of functionally equivalent
networks of small entropy. Since it is difficult to characterize the minimal en-
tropy ensemble a real network belongs to, we take successive approximations
of the real network.

By measuring the decrease of entropy caused by the addition of a constraint, we have a
measure of the “strength” of the constraint, the information coded into it, and somehow
its importance.
There are two main approaches we can follow, according to the strength of the constraints
we require the network in our ensemble to satisfy: the microcanonical approach and the
canonical approach.17 In both of these approaches the number of nodes in the network
corresponds to the number of sub-units in the thermodynamical system, and the other
constraints, such as the number of links, are assimilated to the energetic constraint.

2.5.1 Microcanonical Ensemble of Networks
In this first kind of approach, we consider a microcanonical ensemble of networks, that
is to say an ensemble of networks each of whom has a definite number of nodes N , and
which precisely satisfies all the constraints we require it to satisfy. We shall refer to
this ensemble as Emic. From what we stated in the previous section, it follows that the
definition of entropy Σ of the microcanonical ensemble is:

Σ(Emic) = log (card(Emic)) (2.14)

Which is similar to Boltzmann’s definition of Entropy.
In Statistical Mechanics this kind of approach requires that the number of sub-units is
constant. Our microcanonical ensemble must thus contain only networks with a fixed
total number of nodes N . Also the total energy must be exactly the same for all mi-
crostates. We can translate this request in many ways. In the first example, which is

16As before, cf. [4]
17Also a grand canonical approach is possible, in which the number of nodes in the network can vary,

but it will not be examined in this paper.
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also the simpliest one, we shall assimilate the total energy to the total number of links L.

Under these conditions, our microcanonical ensemble Emic is exactly the set G(N,L)
which we presented in section 2.3.1. We already showed the cardinality of this set is
card(G(N,L)) =

((N2 )
L

)
and so the entropy of the ensemble is:

Σ = log (card(Emic)) = log
((N2)

L

)
This is the simplest model we can present. The next constraint we can impose on our
ensemble is the degree sequence: we can reduce our ensemble to only the networks with a
given degree sequence ~k?.18 This constraint presents a considerable difference with Stat-
istical Mechanics though, in fact it is extensive. The system has to satisfy N equations:
∀ i ∈ {1, . . . , N} ki = k?i .
The evaluation of the number of networks that exactly satisfy this constraint is a com-
plicated matter. We can approximate it in the large limit network (N → ∞), building
the partition function of the ensemble; but we will not tackle this particular problem in
our work.19

2.5.2 Canonical Approach
In this last kind of approach, the requests of the constraint are milder: the number of
nodes N is fixed, as in microcanonical approach, but the other conditions only have to
be satisfied on average in our canonical ensemble Ecan. This means that, for example, if
we request the total number of nodes to be L? on average, it has to be true that:

〈L〉 =
∑
G∈Ecan

L(G)
card(Ecan) = L? (2.15)

Where by G we indicate a particular graph in our ensemble, and L(G) is the total number
of links of that graph. The total number of links can be replaced by any measurable
property on our graph X(G) and the previous definition would still hold. Basically, even
networks that do not satisfy the requested properties can be part of the ensemble, if the
properties are still satisfied on average by all the networks.

Unfortunately, there are often multiple ways to realize such an ensemble. We shall
limit this freedom of choice with two possible alternative descriptions. In the first, instead
of defining the canonical ensemble as a set of equiprobable networks, we use an approach
similar to the one used by Gibbs. We define our ensemble Ecan as the set of all possible

18For the definition of degree sequence, see section 2.2.3
19For a solution to this problem, cf. [3].
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networks with N nodes, and assign each of them a probability P (G) of being the one
real network we consider. This results in a probability distribution over our ensemble.
Obviously it has to be true that ∑G∈Ecan P (G) = 1. Then the constraints are satisfied on
average if, taking any measure X(G) on a graph whose average value has to be X?:

〈X〉 =
∑
G∈Ecan

P (G) X(G) = X? (2.16)

And Entropy is defined, in accordance with Gibbs’ approach, as:

Σ = −
∑
G∈Ecan

P (G) logP (G) (2.17)

This still leaves us with a considerable amount of freedom. In the second description
we define our ensemble in a very different way, starting from a single network having N
nodes. We assign to any possible edge a link-probability. We shall call pij the probability
of a link between node i and node j. This results in a link-probability matrix P , which
has to be symmetrical (P T = P ) since we consider undirected graphs; moreover all the
elements on the diagonal must have null value (pii = 0 ∀ i ∈ {1, . . . , N}).
In this second description, we impose the constraints in the following way. We consider
a measure on the network X(A), acting on the adjacency matrix A. We ask the average
value of this measure to be equal to X? in our ensemble, by imposing the following
equation:

〈X〉 = X(P ) = X? (2.18)
For example, if we requested the total number of links to be equal to L? as in the previous
example, we could write:

〈L〉 =
∑
i<j

pij = L? (2.19)

Entropy, in this last kind of approach, is defined as:

Σ = −
∑
i<j

(pij log pij + (1− pij) log(1− pij)) (2.20)

This definition presents evident similarity with Shannon Entropy. In fact we are dealing
with a two-bits alphabet: the element of the adjacency matrix aij takes the value 1 with
probability pij, and the value 0 with probability 1 − pij. We have to consider both of
these values when we calculate entropy.
We can turn this in the previous description, if we consider that for any graph G having
an adjacency matrix A:

P (G) =
∏
i<j

p
aij
ij (1− pij)|1−aij | (2.21)

This second kind of approach, involving the probability matrix P , will be the one used
in the next chapter. We will describe and implement an algorithm capable of evaluating
the entropy of a canonical network ensemble that satisfies particular constraints extracted
from a real network.



Chapter 3

The Algorithm

This chapter is devoted to the description of the algorithm used to analyse the biolo-
gical data. Starting from a real network, the algorithm can evaluate the entropy of the
corresponding maximum-entropy canonical ensemble. This quantity can be an indicator
of the strictness of the constraints that act on our network. By comparing entropies of
networks coming from different samples, for example old and young samples, or healthy
and ill samples, we can try to understand how a given illness, or simply old age, act on
the constraints of our biological network.
But why, amongst all possible network ensembles that satisfy the same constraints our
real network satisfies, are we looking for the one with maximum entropy? First of all, be-
cause this is the biggest ensemble we can consider, and thus the most probable. Secondly,
it is the ensemble created with the minimum number of hypotheses, just the ones con-
tained in our constraints.
We shall begin by describing the mathematical procedure we will use, and then com-
ment on its implementation in C++ language. A Matlab version of the algorithm was
already available, developed by G.Bianconi et al.1 and subsequently modified by G.
Menichetti in her Master Degree graduation paper2. Matlab is an high-level language,
and in spite of being easier to write instructions into code, the compiled result is not al-
ways optimized, and this slows the computation when many iterative cycles are present.
We considerably enhanced the algorithm performance by implementing the algorithm
in C++ language, and especially by employing parallel computation. This allows us to
process more extensive dataset than it was previously possible in a reasonable amount
of time.

1G. Bianconi, P. Pin and M. Marsili: Assessing the relevance of node features for network structure,
Proceedings of the National Academy of Science 106, 11433 (2009).

2Cf. [11]

31
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3.1 Mathematical framework
The first step we shall do describe our algorithm is illustrating to the reader the math-
ematical procedure we make use of in the code. Starting from the data we have at our
disposal concerning a particular real network, we try to define precisely how to extract
topological and spatial constraints from it. Then we associate to these constraints a set
of canonical network ensembles. Finally, we shall find a way to select amongst all the
possible ensembles the one with the maximum entropy. Once this will have been done,
the reader will have a rather precise idea of how the algorithm works.

3.1.1 Input data
The data at our disposal, as we have already stated, have biological origin. They are:

1. The protein-protein interaction network of human cells, common to all the samples.3

2. The gene-expression profile of a sample.4

The first kind of data provides us with a network containing N nodes, each one repres-
enting a protein. The edges in the network are associated with an interaction between
the two proteins. The second kind of data is a vector containing N positive real numbers,
each one representing the level of expression of the gene coding for that protein. Each
number is proportional to the logarithm of the number of molecules of the corresponding
protein, within some inevitable experimental error.
The data will thus be provided to the algorithm in the form of:

1. An adjacency matrix A = {aij}i,j∈{1,...,N}.

2. A vector ~g = (g1, . . . , gN) containing the level of expression of each gene.

This second kind of data is immediately processed by the algorithm, and a distance
matrix D is extrapolated from it in the following way: we define the distance dij between
node i and node j as

dij = |gi − gj|

This is by all means a distance function, and satisfies all the properties listed in section
2.2.4.5

3In particular, cf. section 1.3.2. This data was retrieved from www.pathwaycommons.org.
4These data come from the analysis of liver cells, extracted from organs destined to transplant. The

measure was carried out with the DNA micro-array technique, as described in section 1.3.1
5We will use a distance matrix, but this is not strictly necessary. Even a matrix whose members does

not satisfy the triangular inequality is fit for the same kind of analysis, if it represents some property of
the network.
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3.1.2 Requested constraints
We use this data to impose two different kinds of constraints on our network:

• The connectivity degree of each node.

• The number of nodes in a certain interval distance.

Let us translate this constraints in the language of canonical network ensembles. The
connectivity of our real network is extracted from the adjacency matrix, as illustrated in
section 2.2.3. The result is a vector ~k = (k1, . . . , kN). If our ensemble is described by the
probability matrix P , we impose this constraint on our network, as described in section
2.2.3, by requesting the following N equations to be satisfied:

∀i ∈ {1, . . . , N} ,
N∑
j=1

pij = ki (3.1)

As for the constraint on the distance matrix, we proceed as follows. We find the max-
imum element dmax and the minimum non-null element dmin of the distance matrix
D. Then we divide the interval [dmin; dmax] in a number B of bins,6 defining a vector
~λ = (λ1 = dmin, λ2, . . . , λB+1 = dmax) containing the edges of the bins.7 We call χl(x)
the characteristic function of the l-th bin, defined as follows:

χl(x) =

1 if x ∈ [λl;λl+1]
0 if x /∈ [λl;λl+1]

(3.2)

Once the binning operation is completed, we count the number of links present in each
bin, obtaining a bin-population vector ~b = (b1, . . . , bB). The l-th element of the vector
is evaluated as follows:

bl =
∑
i<j

(χl(dij) · aij) (3.3)

Finally, we are able to impose the distance constraint, requesting that the average pop-
ulation of each distance bin is equal to the bin-population of the real network. This
results in the following set of B equations.

∀l ∈ {1, . . . , B} ,
∑
i<j

(χl(dij) · pij) = bl (3.4)

6Usually a linear binning is used, but for particular distance distributions a logarithmic binning could
be more suitable. In our analysis we will test them both, to compare the effect of such a choice on the
total entropy value.

7Obviously, λ1 < λ2 < . . . < λB+1
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3.1.3 Maximization of Entropy
Entropy can be easily evaluated knowing the matrix P . But still, the matrix has N(N−1)

2
degrees of freedom, and we imposed a total of just N+B equations. How can we evaluate
the pij?
We are seeking the maximum-entropy ensemble, that is to say, the one ensemble of
network amongst all the ones satisfying the constraints, that has the maximum entropy.
The easiest way to find the parameters that maximize the values of a function, and are
subject to constraints, is using Lagrange multipliers.

Σ(P ) = −∑i<j (pij log pij + (1− pij) log(1− pij)) Entropy function, to be maximized
∀i ∈ {1, . . . , N} ,

∑N
j=1 pij = ki Connectivity constraints

∀l ∈ {1, . . . , B} ,
∑
i<j (χl(dij) · pij) = bl Spatial constraints

We thus write the Lagrangian function:

Λ(P ) = Σ(P ) +
N∑
i=0

αi
 N∑
j=1

pij − ki

+
B∑
l=0

βl
∑
i<j

(χl(dij) · pij)− bl

 (3.5)

The variables αi, i ∈ {1, . . . , N} being the connectivity Lagrange multipliers, and the
βl, l ∈ {1, . . . , B} being the spatial Lagrange multipliers.

We can estimate the value of the elements of P and of the Lagrange multipliers by
imposing the constraints, plus the set of N(N−1)

2 equations:

∀ i, j ∈ {1, . . . , N} , i < j
∂Λ
∂pij

= 0 (3.6)

Which translates into:

∀ i, j ∈ {1, . . . , N} , i < j log pij
1− pij

+ αi + αj +
B∑
l=1

χ(dij)βl = 0 (3.7)

We isolate the pij from each equation:

pij = e−(αi+αj+∑B

l=1 χl(dij)βl)

1 + e−(αi+αj+∑B

l=1 χl(dij)βl)
=

B∑
l=0

χl(dij)
e−(αi+αj+βl)

1 + e−(αi+αj+βl)
=

B∑
l=0

χl(dij)
zizjwl

1 + zizjwl
(3.8)

In the last member of the equation we considered zi = e−αi and wl = e−βl . We shall call
these values the generalized Lagrange multipliers.
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3.1.4 Iterative process for the calculation of Lagrange multipli-
ers

The fastest way to solve such a complex system of equations is the iterative algorithm
proposed by G.Menichetti,8 to calculate iteratively the values of the generalized Lagrange
multipliers.
We start from the sets of equations 3.1 and 3.4, and substitute the expression of the pij
obtained in equation 3.8:

ki =
N∑
j=1

[
B∑
l=0

χl(dij)
zizjwl

1 + zizjwl

]
=
∑
j 6=i

zizje
∑

l
χl(dij)gl

1 + zizje
∑

l
χl(dij)gl

(3.9)

bl =
∑
i<j

[
χl(dij) ·

B∑
t=0

χt(dij)
zizjwt

1 + zizjwt

]
=
∑
i<j

χl(dij)
zizjwl

1 + zizjwl
(3.10)

Now we can easily isolate zi in the first equation, and wl in the second, obtaining the
expressions:

zi = ki∑
j 6=i

zje

∑
l
χl(dij)gl

1+zizje
∑

l
χl(dij)gl

(3.11)

wl = bl∑
i<j χl(dij)

zizj
1+zizjwl

(3.12)

These last two equations are the fundamental equations for the iterative cycle. Let us
suppose to have an approximation of the correct Lagrange multipliers in the vectors ~zold,
~wold. By making use of the previous equations we write:

znewi = ki∑
j 6=i

zoldj e

∑
l
χl(dij)gold

l

1+zoldi zoldj e

∑
l
χl(dij)gold

l

(3.13)

wnewl = bl∑
i<j χl(dij)

zoldi zoldj
1+zoldi zoldj wold

l

(3.14)

The two resulting vectors ~znew, ~wnew are a better approximation to the real values of
the Lagrange multipliers ~z, ~w. Our algorithm iterates these successive approximations,
improving the precision of the solution. The iteration ends when both the Chebyshev
distances9 dCheb(~znew, ~zold) and dCheb(~znew, ~zold) are smaller than a threshold precision

8Cf. [11].
9The Chebyshev distances between two vectors is equal to the maximum distance between every

single component: dCheb(~a,~b) = maxi{|ai − bi|}
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ptresh. The smaller this value, the bigger the number of iterations required to reach the
desired precision.
This number can be diminished if we adopt a good starting guess for our Lagrange
multipliers. Our choice is obtained from the following considerations. From equation 3.8
we approximate:

pij ≈
∑
t

χt(dij)zizjwt = zizjwl (3.15)

And also, from 2.5 and 2.7 we have: ∑
i,j

pij = N〈k〉 (3.16)

Then a good choice for our starting guess is:

zi ≈
ki√
N〈k〉

(3.17)

wl ≈
bl

N〈k〉
(3.18)

After the computation of the Lagrange multipliers has been accomplished, the program
calculates the elements of the matrix P using equation 3.8. Finally, the Entropy of the
ensemble is evaluated through equation 2.20.

3.2 Implementation of the Algorithm
The reader should now have a precise idea of what the algorithm does: it Now that
we have described the theory that lies under the algorithm and the operations we need
to perform, we can concentrate on more practical matters. In particular on three main
aspects of the implementation of our algorithm in C++ language: input-output, memory
allocation, parallelization and customization.

3.2.1 Input-output
The first aspect we shall analyse is the input and output of data. The program acquires
input data from data files, and also the output is written on a file, in order for it to be
available for further data elaboration. Only the main information about the network and
the computation status is printed on the terminal. The format we choose for the input
and output is text format (i.e. files whose extension is .txt). This has both advantages
and disadvantages. For example, text format files occupy more memory than binary
format files, and they sometimes generate compatibility issues. However, it is the most
suitable format for our aim, since the data we analysed were extracted from databases
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and pre-processed with Matlab, and the result could easily be exported in text format.
Moreover, since the results of the calculation were to be read by the user, or processed
with high-level languages such as Python to plot graphics, the text format was suitable
also for output files.

The source code is customizable, and the user can chose which of the following in-
formation are evaluated and eventually displayed in the output file:

• General information on the analysed network, such as: total number of nodes in
the network, total number of links, average connectivity, minimum and maximum
value of distance between nodes, total number of bins and population per bin.

• Precision reached in the approximation of the Lagrange multipliers at every itera-
tion of the cycle.

• Total number of iterations required to reach the desired precision.

• Final values of the Lagrange multipliers.

• Values of the elements of the probability matrix P .

• Amount of time employed to accomplish the computation.

• Entropy of the network ensemble.

• Single Node Entropy of every node of the ensemble.10

3.2.2 Memory Allocation
Memory management represented a delicate issue in the implementation of the algorithm
for two main reasons. The first was the flexibility in the input data. We want the pro-
gram to evaluate the size of the network we are providing in the input file, and allocate
the necessary memory consequently. In C++ language this issue can be easily solved by
a wise use of pointers.

The second issue concerns memory usage. In fact we want to enhance the performance
of our algorithm and enable it to handle big datasets. This is necessary when we handle
high-throughput data. In fact the size of the networks we want to analyse is about 104

nodes. This translates into 108 distance elements into the distance matrix, coded into
double variables, each of whom occupies 8 bytes. The total size of such a matrix would

10The Single Node Entropy measure is a local measure of entropy, that concern a single node of the
network. It can be easily evaluated from the probability matrix P and the connectivity vector ~k. We
will not describe this measure further.
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be about 0.75Gb, which is of the same order of magnitude of an average RAM memory.
Since we have to analyse more than one sample in the same run of the program, this could
lead to a depletion of the available memory. In order for us to avoid this condition, we
need to dis-allocate the memory occupied by data that are no longer necessary. Pointers
can again be of help, and avoid the re-allocation of memory when specific functions are
called.

3.2.3 Parallelization
The main improvement from the previous version of the code is the use of parallel com-
putation. Through this technique, a list of operations can be split in more sub-lists -
called threads - than can be performed independently. Each sub-list is executed from a
different core. Thanks to the sharing of the computation load on more processors, the
computation time can be reduced up to 1

N . of cores the original time. It is not usually
possible to reach this level of optimization because of the threading time, which is the
time needed to split the main list in its sub-units. If this time is more than the time
needed to perform the operations in a thread, the parallelization is not a suitable solution
to diminish the computation time, in fact it has the opposite effect. For this reason we
created a highly customizable source code, as we will later explain.

The parallelization has been performed making use of OpenMP,11 an open-source
library created to implement parallel calculation in Fortran and C/C++ languages.
OpenMP directives are really easy to use, and the parallelization of a program can
be easily accomplished adding just a few lines in the right places. In particular, paral-
lelization is usually really effective if performed on a cycle, on condition that the next
iteration of the cycle is independent from the previous. In our algorithm, this is the
case of the computation of the generalized Lagrange multipliers vectors ~znew and ~wnew
starting from ~zold and ~wold. In fact the computation of each component can be carried
out independently.12 In the next chapter we will see that this parallelization causes a
considerable improvement of the computation time on a multi-core machine.

3.2.4 Customization
Finally, one of the most important features of a program is its customization and versat-
ility, its ability to satisfy different requests that the user may have. For example, this is
achieved by the program being able to analyse networks of different size. But on a wider

11The library is available at http://openmp.org/wp
12On average, for the networks we will analyse the number of components of these vectors are re-

spectively N ≈ 104 and B ≈ 102. In this case the computation load for each thread is enough to grant
a beneficial parallelization.
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level, this is realized in the source code. In fact, by just changing some numeric values
in the initial pre-processor directives different versions of the programs can be created.
The difference lies in three main points:

Output customization The user can select which of the values listed in section 3.2.1
are to be printed in output. This avoids unnecessary confusion in the output
file, and waste of calculation efforts and time to evaluate quantities which are not
requested by the user.

Data from input file / data generated from a toy model The second customiza-
tion is the opportunity for the user to select, instead of the acquisition of data from
a file, the creation of data according to a toy model. In this second case the user
can select the size, number of nodes and maximum distance at which the nodes
are distributed. The program then generates a random adjacency matrix and a
random distance matrix, and proceeds then with the analysis. This can be useful
to test the efficacy of the algorithm or of the parallelization in particular conditions
(e.g. for network with a given connectivity).

Parallel / non-parallel Sometimes (e.g. the analysis of many particularly small net-
works, or the case in which the machine used has just one core) the parallelization
is not a beneficial solution. If this is the case, the user can easily obtain a non-
parallel version of the algorithm from the same source code. In this version minor
improvements which were not compatible with the parallelization have been made
on the code.



Chapter 4

Performance and Data Analysis

In this chapter we shall analyse the performance of our parallel algorithm running on
a hpc machine, and compare it with the performance of a non-parallel version of the
algorithm. We will see that the parallelization enables us to carry out the computa-
tions considerably faster, and on networks of bigger size than it was previously possible.
Moreover, we will illustrate the results of an analysis of real biological data.

4.1 Performance on toy models
As we stated in the previous chapter, from the same source code we can easily obtain
a version of the program which generates a random network and then carries out its
analysis. Thanks to this program, we can test the performance of our algorithm on
networks of different size.

4.1.1 Generation of random networks
In the random network generator, the user can select the number of nodes N and links
L he wants the random network to have. He can also select the maximum distance dmax
at which the nodes are distributed, and optionally, the number of bins B used to create
the spatial constraint. If he does not specify this value, it is automatically selected equal
to the square root of the number of links: B = floor[

√
L].

The adjacency matrix A is generated starting from a null-values matrix, selecting ran-
domly L different elements of the upper triangular matrix (the elements on the diagonal
are excluded) and setting them to “1”. Then the values of the lower triangular matrix
are copied symmetrically from the upper one. As a result we have the same probability
of obtaining any of the graphs belonging to the microcanonical ensemble G(N,L).1. The

1This ensemble was described in section 2.3.1

40
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distance matrix D is generated from a uniform distribution of the distance elements dij
in the interval [0; dmax]. Since we do not require the elements to satisfy the triangular
inequality, this does not necessarily result in a “distance matrix” strictly speaking. The
analysis is effective nonetheless, in fact we already pointed out that its validity is ex-
tended to any matrix which somehow represents a property of the network, even if this
property is not akin to distance.

At the same time, since the networks generated are random, we need to analyse more
than one sample for each size, in order for us to get an average value of entropy. In
figure 4.1.1 we plot the distribution of entropy values for 15’000 random networks having
N = 100, L = 200.
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Figure 4.1: Entropy distribution

The standard deviation of this distribution is relatively bigger for networks of smaller
size. This is due to the fact that constraints on smaller networks play a stronger role,
they can be satisfied in a fewer number of ways, but with a relatively bigger difference
of entropy. On the contrary, in bigger networks the effect of constraints is statistically
lessened by the large number of nodes.
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4.1.2 Precision and computation time
In order to test the performance of our program, we carried out the analysis of some
sets of random networks in three different ways: with the non-parallel version of the
algorithm (plotted in red), with the parallel version on a 8 cores machine (in green) and
again with the parallel version on a 32 cores machine (in blue). We selected group of
graphs with size varying from 10 to 20’000 nodes, but all of them having an average
connectivity 〈k〉 = 2.2 In figure 4.2 we plotted the average entropy of different groups of
networks. Each group is composed by elements of G(N, 2N), as we just specified. We
plot the size N of these groups of networks on the x-axis, and the relative entropy on
the y-axis. The measures on both the axes are in logarithmic scale.
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Figure 4.2: Entropy distribution of random networks generated by the program.

The results are the same for all the different versions of the program. This proves
that they are equivalent, and there is not one more precise than the other. We also
notice that entropy increases exponentially with the increase of the number of nodes of
the network.

In figure 4.3 instead we plotted the value of the average convergence time for the dif-
ferent kinds of algorithms. The subject of the analysis were the same groups of random

2This means that for every graph the number of links is two times the number of nodes: L = 2N .
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networks considered before. Again, both of the axes are in logarithmic scale.
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Figure 4.3: Average convergence time.

We notice there are two main regions in the plot, the first including the small net-
works, from 10 to 50 nodes, and the second including big networks, counting from 50 to
20’000 nodes. In the first region a non-parallel algorithm is the most effective solution
for the analysis of networks in a short time.3 In the second region the parallel algorithm
is the fastest to compute the entropy of a network ensemble. All the more if it runs on
a machine with a significant number of cores, as in the case of a 32-cores machine.
The bigger the network, the more substantial the difference between the computation
time of the three versions. Since in the region going from networks with 2’000 nodes
on, the three lines in the graph are parallel, we deduce that there is a constant ratio
between the computation time of the different versions of the algorithm: the parallel
version on a 8-cores machine is about 6 times faster than the non parallel version, while
the parallel version on a 32-cores machine is more than one order of magnitude faster
(about 14 times).
The result is that with a 32-cores machine and the parallel algorithm we can evaluate the
entropy associated to a real network having 20’000 nodes (so we operate with matrices of

3The reader shall notice that by a short time we mean intervals of the order of 10−2 / 10−3 seconds.
It is not really a big difference if we are to analyse a single network. It may be appreciable if we have
to analyse many thousands of networks.
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4× 108 elements) faster than the time it takes for the non-parallel algorithm to compute
the entropy of a network with just 8’000 nodes (matrices having 1.6× 107 elements, 30
times smaller).
It is also important to notice that many different factors other than the number of nodes
in the network can contribute to the increase or decrease of entropy and convergence time:
factors such as average connectivity, required precision, number of spatial bins employed.

In conclusion, the performance improvement is relevant. It is what allowed us to
perform the analysis of 32 real networks having about 104 nodes each in a little more
than an hour, instead of it taking almost a whole day. The next section will be devoted
to the description of the results of this analysis.

4.2 Data analysis
In this last section we will present the results of an analysis conducted on biological
high-throughput data. The data, as we already stated, concern human liver cell, extrac-
ted from organs destined to transplant. The donors’ age vary from a minimum of 13
to a maximum of 87 years. For each of the 32 samples we have the results of the gene
expression profiling, describing the different expression levels of 9994 genes. The second
kind of data is the protein-protein interaction network, which, since we refer to the same
genes in all the samples, is common for all the networks.4 This means that the topology
of all the networks we are going to analyse is exactly the same. What differs from one
sample to the other is the distance matrix D, obtained from the gene-expression profile
of each sample as described is section 3.1.1. In particular, from this matrix we extract
the spacial constraint that has to be satisfied by our canonical network ensemble, and
we do so by dividing the distance interval in a number of bins, and counting the number
of connections belonging to each bin. As a consequence, the resulting value of entropy
should be somehow sensitive to the kind of binning we use.

In order to prove how stable this measure is, we used three kinds of binning: a ca-
nonical logarithmic binning, a logarithmic binning realized with a different exponent and
a linear binning. In all the three cases we considered a total of 50 bins. In figure 4.4
we plot the number of connected nodes in each of the bins for the three different kinds
of binning. This is referred to the first sample we will analyse, but the same trend is
maintained also in the other samples.

We can see that the linear binning (plotted in green) has an elevated number of nodes
in the first bins, while the last ones are empty. The opposite is valid for the classical log-

4For the meaning of these two kinds of data, see section 1.3.1 and 1.3.2.
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Figure 4.4: Connections per bin for the three different kinds of binning.

arithmic binning (in red). That is why we chose a third binning, which is a logarithmic
binning (in blue), but realized with a different base than the natural one: we used the
value e0.1. In this last kind of binning the nodes are distributed more evenly.
An empty bin is a strong constraint on the probability matrix, in fact it forces all the
elements of the matrix that are referred to couple of nodes whose distance would be in
that bin, to be equal to zero.

We performed the analysis of all the 32 samples with the three kinds of binning.
The average time interval required for the analysis of a network of this size is about
170 seconds. As a result, the total time necessary to carry out the three analysis is
about 4 hours and an half. If the considerations we made in the previous section about
the decrease of the computation time in the parallel version still holds, then we would
have had to wait a total of three days in order for the computation to finish. That is a
considerable gain. In figure 4.5 we plot the results of the computation for all the three
different analysis. On the x-axis we plotted the age of the donor from which the sample
comes, and on the y-axis the relative entropy.

We notice that the three analysis are consistent with each other. Differences in the
binning choice cause a global increase or decrease of entropy, but the trend across the
sample is constant in all three kinds of analysis. To quantify this similarity between
the measures, we calculated the correlation matrix of the three vectors containing the
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Figure 4.5: Entropy vs Age.

entropy evaluated with the three different binning choices:

C =

ρ11 ρ12 ρ13
ρ21 ρ22 ρ23
ρ31 ρ32 ρ33

 =

 1 0.99788294 0.99644456
0.99788294 1 0.99917003
0.99644456 0.99917003 1

 (4.1)

Where the binning choice are ordered as follows: first the logaritmic binning, then the
logarithmic binning with a different exponent factor, and finally the linear binning. And
ρij = cov(~xi,~xj)

σ(~xi)σ(~xj) is the Pearson correlation coefficient. The correlation between the three
measures is really strong. This means our measure is stable, and does not depend too
much on the binning we use.
We can also plot the difference between the entropy values obtained considering the three
different kinds of binning, to see if they actually behave similarly. In figure 4.6 we show
these differences. Each series of values is correlated with a line representing the mean
value, and an highlighted area. Points in this area are less than a standard deviation
away from the mean value.

From the analysis of the figure we conclude that the three different entropy measures
are essentially alike. The difference between them is represented by an offset.

We stress again the fact that the differences of entropy from one sample to the other
are not caused by the network topology, since the adjacency matrix (extracted from the
PPI matrix) is the same for all the samples, nor from the choice of the binning, since
we showed that the three choices are consistent with each other. The only value that
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Figure 4.6: Difference between entropy values.

changes, and causes the variation of entropy from one sample to the other, is the gene-
expression profile of each sample. This is what our algorithm highlights.

The last thing we can notice is the ratio between the magnitude of variations of
entropy from one measure to the other, and the mean value of entropy. While the latter
is about 1.1× 106, the former gets to a maximum of 8× 102. This is due to the relative
relevance of the connectivity constraints and the spatial constraints. In fact we have a
number of connectivity constraints equal to the number of nodes N = 9996, while we
just have as many spatial constraints as the number of bins B = 50. That is why the
variation we register are small compared to the average value of entropy.

4.2.1 Interpretation
Since this is not the aim of the paper, we will dedicate just a short section to the inter-
pretation of the results of our analysis. Interpreting data coming from biological systems
is never an easy matter, it requires a wide and deep knowledge of the field, which un-
fortunately we do not possess. Nonetheless, we may provide the reader with at least a
viewpoint on the subject, giving some simple key information.

What is the meaning of the analysis we make? Why do we integrate the protein-
protein interaction network, common to all the samples, with data of gene expression?
The idea is that, while genotype is equal for all the cells, phenotype is different among
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cell types (e.g. a neuron and a liver cell), and can also change in the same cell type
during replication or as a function of different perturbations (e.g. a pathology, or age-
ing).5 The phenomenology underlying network entropy (gained with other experimental
observations) is that it should represent the extent of the phenotypic landscape available
to the cell. In fact the phenotype is strictly related to the expression of genes: while all
the genes are present in every cell, not all of them are expressed equally. We could find
that a different phenotypic condition, such as the onset of an illness or just the effect
of old age (in particular this is our case), is correlated to a change of entropy; and by
examining this change we could get a better insight into complicated processes, in our
case the process of ageing.

By looking at figure 4.5 though, we notice that entropy seems not to have a uniform
monotonic trend with respect to age. This may be due to many factors, such as:

• The lack of a robust statistic. We have just 32 samples, and only one for each age.
General trends may be veiled under individual variations.

• Protein-protein interaction networks are vast entities composed of smaller sub-
networks, each one responsible for different functions of the cell. Individual and
distinct behaviours of these sub-units may contribute to the measure of entropy,
making a general point of view not effective to understand the phenomenon.

• The effective lack of relevant trends of entropy with respect to age in liver cells.
This last point is supported by the fact that in livers and their cells the process
of ageing is particularly slow. This is true to the extent that even eighty-year-old
people can be liver donors, as in the case of our samples.

We can try to partially make up for the first point, namely the lack of data, and
enhance our statistic by reuniting data in age groups. We shall call young the group of
subjects whose age is less than 40 years, middle-aged the ones going from 40 to 70 years
old, and old the remaining subjects. In figure 4.7 we plot the average entropy of each
group in a box-plot.6

From the figure we notice a growing trend, but we also see it is not significant.

5The genotype is a term indicating the organism’s full hereditary information, stored in the DNA,
which is common to all the cells of an individual. The phenotype on the contrary describes the set of the
particular physical properties of the cell, which can be different from one cell to the other. Anything that
is part of the observable structure, function or behaviour of a living organism is considered phenotype.

6A box plot is a convenient way of graphically depicting a data distribution through its quartiles. A
red line marks the mean value of the distribution. The box delimits the upper and lower quartile, and
a pair of whiskers extend to the highest point less that 1.5 times the inter-quartile range (IQR) distant
from the upper quartile, and to the lowest point less thant 1.5 times the IQR from the lowest quartile.
The remaining points are plotted as outliers.
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Figure 4.7: Average values of entropy for the three age groups.

We could try to act also on the second point, and analyse the network further by de-
composing it in smaller sub-networks. An example of this kind of analysis can be found in
the article “Network Entropy measures applied to different systemic perturbations of cell
basal state”,7 where a cell network is decomposed in six sub-networks, each one with a
specific function. In the case studied in the article some significant trends were identified.

4.2.2 Further perspectives
The algorithm we described is capable of extracting a set of constraints from a real net-
work, finding amongst all the canonical network ensemble that satisfy these constraints
the one with the maximum entropy, and eventually evaluating this entropy. We used
the algorithm to analyse data coming from Biology. In the course of our work, however,
we praised network theory for its wide applicability. Now it is the time to show the
reader the power of such a theory, meeting a fundamental concept such as entropy whose

7Cf. [10]
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applicability is no less wide.

The considerations we made were in fact based only on the concept of network and
of entropy, and were in no way shaped for our biological data. This means that they
are valid all the same for every other system with the required features, that is to say
every system that can be modelled as a network whose nodes are correlated by another
measure assimilable to a distance. The algorithm would need no modifications, we just
have to provide it the data in the form of an adjacency matrix and a distance matrix,
and it will return the value of the associated entropy. We could think of an infinity of
models satisfying such requirements: a network of social relations correlated with the
wealth of the subjects, or semantic networks correlated with a word-distance or even a
model of a spin-lattice network, correlated with the difference between the values of the
z-projection of spin. The possibilities coming from such an interesting perspective are
promising.



Chapter 5

Conclusions

Let us summarize the main passages and the most important achievement of this work.
After introducing the context of Systems Biology in order to give a meaning to the data
we later analysed, we gave an overview of Network Theory, starting from the concept of
graph, all the way up to the model of random graph by Erdős and Rényi. We drew an
interesting viewpoint from this model, which led us to the concept of network ensemble.

We presented the concept of Entropy under different points of view, from Statistical
Mechanics to Information Theory, and found an application to network ensembles. We
were in fact able to define a measure of entropy for microcanonical and canonical network
ensembles, and characterize it with respect to the constraints to which the ensemble is
subject: the information this measure yields are related to the “strictness” or “mildness”
of the constraints. In particular we analysed a case in which the constraints on the
topology of the network ensemble are integrated with spatial constraint, concerning a
generally defined distance relation between nodes.

Thanks to the wide applicability of network theory, this measure can be applied to a
sizeable variety of systems. We used it to analyse data coming from biology, in particular
protein-protein interaction networks correlated with data of gene expression, the latter
providing us with the spatial constraints for our network ensemble. The extensiveness
of the dataset made a computational approach necessary, and we developed a parallel
algorithm capable of performing the following steps, starting from data concerning a
real network: first it extracts relevant information from the real network, and turns it
into constraints. Then it selects amongst all the canonical network ensemble that satisfy
these constraints the one with the maximum entropy. Finally, it calculates the entropy
of this ensemble.

We analysed the performance of this algorithm, comparing the precision and compu-
tation time of a non-parallel version of the algorithm with the same quantities obtained
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from running a parallel version of the algorithm on a 8 cores machine and on a 32 cores
hpc machines. A considerable improvement in computation time has been observed on
the second case, showing a relevant enhancement from the previously available non-
parallel code. This improvement made the analysis of our consistent biological dataset
possible in a short amount of time. We illustrated the results of this analysis and sug-
gested a possible interpretation for them.

As we already stated, the significance of the network analysis is by no means restricted
to biological data only. We can perform the same analysis - without making any change
to the algorithm - in every situation in which there is a network structure characterizing
our system and a set of distance-alike measures associated to the nodes (i.e. the elements)
of the network. The analysis could be applied to social and economical systems, or also
physical systems (e.g. a spin glass or a random polymer). This opens the way to further
interesting developments.



Bibliography

[1] Albert-László Barabási. Scale-Free Networks: a Decade and Beyond. Science, vol.
325, 24 July 2009.

[2] A. Barrat, M. Barthélemy, A. Vespignani. Dynamical Processes on Complex Net-
works. Cambridge University Press, 2008.

[3] G. Bianconi. Entropy of a network ensemble. Physical Review E 79, 036114, 2009.

[4] G. Bianconi. The entropy of randomized network ensembles EPL (Europhysics Let-
ters), Vol. 81 n. 2. 2008.

[5] L. Chong, L. Bryan Ray. Whole-istic Biology Science, vol. 295, 1 March 2002.

[6] P. Erdős, A. Rényi. On the evolution of random graphs. Publications of the Math-
ematical Institute of the Hungarian Academy of Sciences 5: 17–61, 1961.

[7] H. Kitano. Systems biology: a brief overview. Science, vol. 295, 1 March 2002.

[8] E. T. Jaynes. Gibbs vs Boltzmann Entropies. American Journal of Physics, Vol. 33,
No. 5. pp. 391-398. 1965.

[9] E. Klipp, R. Herwig, A. Kowald, C. Wierling, H. Lehrach. Systems Biology in Prac-
tice. Wiley-VCH, 2005.

[10] G. Menichetti, G.Bianconi, E.Giampieri, G.Castellani e D.Remondini. Network En-
tropy measures applied to different systemic perturbations of cell basal state ArXiv,
e-print n. 1305.5369. May 2013.

[11] G. Menichetti, Statistical mechanics approaches to networks: the role of entropy with
applications to gene expression time series data. Master Degree graduation paper.

[12] J. Park and M. E. J. Newman. The statistical mechanics of networks. Phys. Rev. E
70, 066117. 2004.

[13] R. K. Pathria, Paul D. Beale. Statistical Mechanics. Butterworth-Heinemann, 2011.

53


	Abstract
	Sommario
	List of Figures
	Introduction
	Systems Biology
	Cell Biology in short
	Cell structure
	Nucleic Acids
	Proteins
	Gene Expression
	Gene Expression Regulation

	Dataset: Gene-Expression, Protein-Protein Interaction
	Gene-expression Profiling
	PPI Network

	A place for Physics

	Statistical Mechanics of Networks
	What is a network?
	Basics of Graph Theory
	Representation of a Graph
	Adjacency Matrix
	Connectivity Degree of a Node
	Metric on a Network

	Random Graph and Network Ensembles
	Erdos–Rényi model
	Evolution and Network Ensembles

	Statistical Mechanics and Entropy
	Ergodicity, Microstates and Macrostates
	Categories of constraints
	Boltzmann's Entropy: a simple model
	Gibbs' Entropy
	Entropy in information theory

	Statistical Mechanics of networks
	Microcanonical Ensemble of Networks
	Canonical Approach


	The Algorithm
	Mathematical framework
	Input data
	Requested constraints
	Maximization of Entropy
	Iterative process for the calculation of Lagrange multipliers

	Implementation of the Algorithm
	Input-output
	Memory Allocation
	Parallelization
	Customization


	Performance and Data Analysis
	Performance on toy models
	Generation of random networks
	Precision and computation time

	Data analysis
	Interpretation
	Further perspectives


	Conclusions
	Bibliography

