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“What we do for ourselves dies with us.

What we do for others and the world remains,

and is immortal.”

- Albert Paine





Abstract

Data Distribution Management (DDM) is a core part of High Level Archi-

tecture standard, as its goal is to optimize the resources used by simulation

environments to exchange data. It has to filter and match the set of informa-

tion generated during a simulation, so that each federate, that is a simulation

entity, only receives the information it needs. It is important that this is done

quickly and to the best in order to get better performances and avoiding the

transmission of irrelevant data, otherwise network resources may saturate

quickly.

The main topic of this thesis is the implementation of a super partes DDM

testbed. It evaluates the goodness of DDM approaches, of all kinds. In fact

it supports both region and grid based approaches, and it may support other

different methods still unknown too. It uses three factors to rank them:

execution time, memory and distance from the optimal solution. A prear-

ranged set of instances is already available, but we also allow the creation of

instances with user-provided parameters.

This is how this thesis is structured. We start introducing what DDM

and HLA are and what do they do in details. Then in the first chapter we

describe the state of the art, providing an overview of the most well known

resolution approaches and the pseudocode of the most interesting ones. The

third chapter describes how the testbed we implemented is structured. In the

fourth chapter we expose and compare the results we got from the execution

of four approaches we have implemented.
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The result of the work described in this thesis can be downloaded on

sourceforge using the following link: https://sourceforge.net/projects/

ddmtestbed/. It is licensed under the GNU General Public License version

3.0 (GPLv3).[11]

Figure 1: DDMTestbed download link

https://sourceforge.net/projects/ddmtestbed/
https://sourceforge.net/projects/ddmtestbed/


Prefazione1

Questa tesi tratta di diversi aspetti riguardanti il Data Distribution Man-

agement (DDM), nell’ambito degli ambienti di simulazione distribuiti ader-

enti allo standard High Level Architecture (HLA).

Il DDM si occupa di gestire la trasmissione dei messaggi tra i vari ambi-

enti di simulazione, chiamati federati. Il suo compito è quello di ottimizzare

le risorse di rete, facendo in modo che vengano trasmesse soltanto le in-

formazioni veramente necessarie ai vari federati, in modo che non vengano

saturate.

Abbiamo sviluppato un testbed in C per la valutazione degli approcci

di risoluzione in quanto, al momento, non è liberamente disponibile alcun

software super partes riguardante questo campo di ricerca.

La tesi è cos̀ı strutturata: nei primi due capitoli è descritto lo stato

dell’arte, introducendo il DDM e HLA ed evidenziando con particolare cura

i pro e i contro di ogni approccio di risoluzione, fornendo lo pseudocodice

dei principali. Il capitolo 3 descrive come è stato implementato il testbed

per la valutazione di quest’ultimi. Nel quarto capitolo vengono esposti e

confrontati i risultati ottenuti dall’esecuzione di quattro diversi approcci di

risoluzione noti in letteratura da me implementati secondo le specifiche del

testbed. Questi sono stati poi valutati utilizzando istanze con diverse pecu-

liarità e dimensioni.

1This section was added to fulfil “Università di Bologna”’s requirements for non-Italian

thesis. The rest of the thesis is written in English.
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Questa tesi è scritta interamente in inglese. Ho preso questa decisione

in quanto ormai la quasi totalità dei testi scientifici sono pubblicati in tale

idioma, la lingua de facto dell’informatica e delle pubblicazioni scientifiche.

È infatti l’unica che può essere utilizzata per predisporre e consentire la

massima diffusione dei risultati scientifici ottenuti.
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Chapter 1

Introduction to Data

Distribution Management

This chapter explains what Data Distribution Management (DDM) is and

why it plays a major role in distributed simulations. To do so we’ll need to

quickly explain what is High Level Architecture, the architecture whose DDM

belongs to. Afterwards we describe different approaches and algorithms that

have been created during the last 15 years to handle DDM.

1.1 High Level Architecture

High Level Architecture (HLA) is a distributed computer simulation stan-

dard that allows interoperability between heterogeneous simulation systems.[1]

Nowadays simulations can be so high detailed that they can’t be executed

on a single machine any longer. Many computers can be linked together

via a computer network, forming a cluster, and exchanging information and

state updates. HLA ensures that simulation environments built by different

manufacturers are able to communicate one another using a common set of

rules and protocols.

1
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1.1.1 Version History

The U.S. Department of Defense (U.S. DoD) Architecture Management

Group (AMG), under the leadership of the Defense Modeling and Simulation

Office (DMSO), started developing HLA baselines in 1995. These baselines

were approved by the U.S. Department of Defense in 1996.[23] The first

complete version of the standard was published in 1998 and was known as

HLA 1.3. It was later standardized as IEEE standard 1516 in 2000[1].

The most recent version of the standard was published in 2010 and it

includes the current U.S. DoD standard interpretations.[2]

1.1.2 HLA Structure

HLA is made up of 3 components:

Interface specification: Defines how HLA compliant simulation environ-

ments interact using a Run-Time Infrastructure (RTI). RTI is a sup-

porting software that consists of an implementation of six groups of ser-

vices (whose complete implementation is not compulsory), provided as

programming libraries and application programming interfaces (APIs),

as defined by the HLA specifications.

Object Model Template (OMT): It states what information are exchanged

between simulations and how they are documented.

Rules: Simulations must obey to these rules to be HLA compliant.

In HLA technical jargon, every simulation environment is known as a

federate, whereas a collection of federates sets up a federation.

This is all you need to know to understand the topics discussed in the

rest of this thesis. Now we can start to introduce the main argument of this

thesis: Data Distribution Management.
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1.2 Data Distribution Management

A centralized simulation would have full access to the system memory

assigned to its process, and so all information are fully available to each task.

In a distributed environment, federates would certainly need to exchange

information too. This is where Data Distribution Management comes in.[16]

DDM is the service included in RTI that provides a scalable, efficient

mechanisms for distributing information between federates. Its task is to

handle data transmission and state updates that are sent between the various

simulations. Its goal is to optimize the available resources, that is minimizing

the volume of data transmitted over the network that links the federates

together.

In fact it’s very common that a federate only needs a subset of all the

available data. For example, if we had a federation that is simulating traffic

flow in a big metropolis or in an entire nation, we probably would have a

federate that simulates the state of all the traffic lights located in the case

in question. A travelling car would only be interested to the state of traffic

lights place in the upcoming intersections. The state of all the other traffic

lights would be completely irrelevant to that car’s driver.

Federates during each message exchange can be divided in two groups:

the ones that publish information, called publishers, and the ones that want

to receive that information, called subscribers. DDM has to match their

transfer intents in an optimal way in order to minimize network’s usage.

On each transmission session DDM goes through the following steps:

1. Subscribers declare what information they want to receive, publishers

declare what information they intend to send.

2. A matching algorithm detects the intersections between these transfer

intents.

3. All subscribers that match with a certain publisher must receive data

from the relative publisher. In some implementations,[15] this is achieved
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creating multicast groups.1

4. Publishers send their data via their multicast group. Subscribers may

need to execute an additional filtering to select the information they

wanted.

The final filtering is only necessary if the matching algorithm is not op-

timal, that is when is allowed to obtain false positives in the result (i.e.

solution provided is sub-optimal). This can be allowed, in certain circum-

stances, when a limited amount of superfluous data entails an improvement

in the computational complexity of the matching algorithm.

The opposite case is not allowed; all the matching intents has to be de-

tected by the matching algorithm, otherwise at least a subscriber won’t re-

ceive at least a chunk of information it has legitimately requested.

1Multicast groups allows one-to-many communication over an IP infrastructure. The

sender just sends one message that is then delivered to all the intended recipients.



Chapter 2

The State of the Art

If DDM would not be implemented by RTI, the only way to ensure that

each subscriber would receive all the data it needs is that all publishers would

send their data to each subscriber. Every subscriber then would waste time

filtering the required data by itself, moreover a lot of network bandwidth

would be wasted. It’s trivial to see that this method is completely inefficient

as it allows to a huge amount of useless data to occupy network’s resources.

Let n,m be the number of publishers and subscribers respectively. The

amount of data that is transmitted over the network can be quantified as:

n∑
i=0

DataSize(i) ∗m

This would quickly saturate network’s resources when the number of federates

increases.

In order to overcame this waste of resources, many DDM approaches have

been developed in the last 15 years. The following sections describe the most

well-known.

5
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2.1 How Information are Matched: the Rout-

ing Space

In order to declare what information publishers intend to transmit and

subscribers intend to receive, federates generate extents on a routing space.

A routing space is a multidimensional coordinate system whereon the sim-

ulation takes place. Federates create extents on it to indicate the area they

want to receive/provide information. An extent is a rectangular subspace of

the routing space; a group of extents sets up a region.1 Regions submitted

by publishers are called update regions, regions submitted by subscribers are

named subscription regions.

When a subscription region is superimposed to an update region, the

subscriber which made the subscription must receive data from the relative

publisher.

Figure 2.1: Update and subscription extents inside a 2D routing space.

Figure 2.1 shows three update extents (marked with a capital U) and three

subscription extents (marked by a capital S) placed inside a bidimensional

1It is common practice to consider a region as an indivisible part, making the terms

“extent” and “region” interchangeable.
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routing space. U1 and S1 are not overlapped to any other extent, hence they

shouldn’t send nor receive any data in this session. On the other hand, U2 is

superimposed to S2 whereas U3 is overlapped to S3. This means that U2 will

send data to S2 as U3 will provide data to S3. The fact that S2 is overlapped

to S3 is not to be taken into consideration by the matching algorithm as

two subscribers don’t exchange data one another. This would apply to two

update extents too.

For example, we could simulate smartphones’ GPS and network reception

in a certain area using a 3D routing space. Two dimensions would be used to

indicate the position of the smartphones and of the the antennas and GPS

satellites, whereas the third would be used to distinguish between between

GPS and network coverage. Hence we can treat smartphones as subscribers

and the antennas and satellites as publishers. Update extents would represent

the coverage area of the publishers whereas the subscription extent would

represent the signal strength of the subscribers. When a publisher extent

overlaps an update extent the relative mobile phone is considered able to

communicate with the relative cell or satellite.

2.2 Matching Approaches

Matching approaches are mainly divided in two categories: grid-based

and region-based approaches. In the following sections we’ll describe the

most relevant ones. These two categories are not mutually exclusive; they

can be combined to appraise their strong points and lessen their weak points.

In the following sections, when it will be possible to state the computa-

tional cost of an approach, it will be shown consistently using n,m as the

number of publishers and subscribers respectively and d as the number of

dimensions.
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2.2.1 Region-based Approaches

Region-based approaches require that a centralized coordinator compares

extents one another, or that each federate compare its extents with the one

generated by the others. Region Based approaches usually have a higher

computational cost than Grid-based approaches, but they tend to generate

less false positives than Grid-based ones (in fact most of them provide an

optimal solution).

2.2.1.1 Brute Force

This approach performs all the possible comparisons between every up-

date extent and each subscription extent. If two extents are superimposed

on every dimension they are considered matched.

Pro: Easiness of implementation, straightforward, provides an optimal so-

lution.

Cons: Not scalable; this method produces the maximum number of com-

parisons.

Let m be the number of subscribers’ extents and n the number of publishers’

extents. Computational complexity of the brute force approach is:

Θ(d · (m · n))

The pseudocode of a possible implementation of this approach can be found

in section A.1 on page 63.

2.2.1.2 Sort Based

This approach lowers the number of comparisons ordering the extents’

edges.[20] Sort based method works on a dimension at a time, projecting

extents’ bounds on each dimension as shown in figure 2.2. We recall that an

extent is considered matched to another if and only if is matched on every

dimension.
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According to this approach a vector for each dimension is created. It

contains the relative extents’ edges in a given dimension. Hence edges are

sorted and read sequentially.

Figure 2.2: Extents edges projection on a given dimension.

This approach takes advantage of the ordered relation that states that an

extent can only precede, include or follow another extent. When we extract

edges from the list we can obtain a subscription or an update edge. We can

keep trace of the state of the subscription extents using two lists so defined:

SubscriptionSetBefore: contains all the subscription extents that are al-

ready ended (whose upper edge has already been pulled out from the

vector).

SubscriptionSetAfter: contains all the subscription extents that follows

(whose lower edge has not been extracted from the vector yet).
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When we extract an edge that is part of an update extent we can draw some

conclusions analysing the state of the two lists just described. If we extract

the lower bound we can state that all the subscribers in the Subscription-

SetBefore are not overlapped to the current update extent, whereas if we

extract an upper bound we can say the same for the subscribers that are still

in SubscriptionSetAfter.

As scanning the vectors has a linear cost, sort based computational com-

plexity depends on the sort complexity. If we use Introspective sort algo-

rithm2 we could consider it linearithmic in the number of edges[17], hence

we get:

Θ(d · ((m+ n) · log(m+ n)))

Pro: The number of comparison is lowered compared to the brute force

approach, so it’s more scalable.

Cons: It requires a little more memory to perform matching (as d additional

vectors has to be stored).

Algorithm A.2 on page 64 shows a possible sort based implementation.

2.2.1.3 Binary Partition

This method uses a divide et impera approach, similar to the one adopted

by the Quicksort algorithm.[13] As well as the sort based, also binary partition

approach examines one dimension at a time. Edges are then sorted and

recursively binary partitioned using the median as the pivot value. We obtain

two subsets so defined:

Left (L): A set that contains all the extents that terminates before the pivot

value.

Right (R): A set that contains all the extents that begin after the pivot

value.

2Introspective sort is an improved version of the Quicksort algorithm that has a com-

plexity of Θ(n · log(n)) even in the worst case, when Quicksort would have a Θ(n2) cost.
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This partition would not be complete as it not includes the extents that

include the pivot value. We call this group of extent P. These are unnaturally

included in the L partition, even if they don’t strictly belong to it. The key

factor of this approach is that the extents that belong to this P partition are

automatically considered matched as they share a common value. The next

step involves the following comparisons:

• L subscription extents with P update extents

• L update extents with P subscription extents

• R subscription extents with P update extents

• R update extents with P subscription extents

After this L and R are recursively partitioned until their both empty.

Considering that the computational cost depends on the extents distri-

bution in the routing space, it’s difficult to estimate its cost. As the vec-

tors are initially sorted, as for the sort based approach, the cost would be

ω(d · (n+m) · log(n+m)).

This algorithm works better if the pivot falls in zones where most extents

overlaps, as comparison cost is lowered this way. The opposite case is not

dramatic either, as the four comparison would not take place if the P partition

would be empty. The worst case (i.e. the highest number of comparisons)

happens when L, R, and P have a similar size.

Figure 2.3 on page 12 shows a partition example. Extents S1 and U2 are

placed in the L partition as they end before the pivot value. Extent S6 is

placed on the R partition as it begins after the pivot. Extent U3, S4 and S5

are placed in the P partition as they include the pivot value. We get, at no

cost, that U3, S4 and S5 are overlapped on the given dimension. The next

step is to check whether S1 is superimposed to U3, if U2 is overlapped to S4

or S5, etc. (i.e. the same goes for the extents in the R set).

Pro: The number of comparison is lowered compared to the brute force
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Figure 2.3: Binary partition on a given dimension

approach. It works best in clustered instances, as more extents would

fall in the P partition.

Cons: More complicated data structures has to be stored. If partition isn’t

performed in place six vectors (three for the subscribers, and three for

the publishers) has to be allocated on each node of the recursion tree.

The pseudocode of a possible implementation of this approach can be

found in section A.3 on page 65.

2.2.2 Grid-Based

Grid-based approaches treat the routing space as a chessboard, that is

they divide it in a grid of cells. An extent can lay on one or more contiguous

cells. Approaches that belong to this categories tend to be less restricting

than region-based ones, wasting more network bandwidth. Their advantage

is that their computational cost is often lower.

One of the most important element for the success of these approach is to

correctly set the size of the cell, in fact this is a key factor and many studies
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has been carried out about this topic.[5, 21] Smaller cells bring a higher level

of precision in matching detection but they involve the use of more resources

during the execution of the matching algorithm. Bigger cells, on the other

side, require less matching resources but tend to provide worse results.

2.2.2.1 Static Approach

Static approach (also known as Fixed Approach) is the most straightfor-

ward grid-based approach. It just considers matched two extents if they lay,

even partially, on the same cell. This means that two extents might not

be superimposed at all, anyway they would be considered matched if they

occupy the same cell, causing the generation of false positives.

There is a multicast group preallocated for each cell. Publishers and sub-

scribers join a group if one of the extents they generated lays even partially

on the relative cell. This means that publishers who are the only federates in

a cell would send data even if there is nobody to receive it in that multicast

group.[7]

Figure 2.4 shows how crucial can the dimension of the cells be when using

this approach. In figure 2.4(a) small cells are used, whereas in figure 2.4(b)

bigger cells are shown. Applying the static grid-based approach, it’s easy to

see that the number of false positive increases as the area of the cells grows

(see fig.2.4(c) and 2.4(d)).

Pro: No matching performed.

Cons: Lots of wasted bandwidth, depending on the size of the cells and the

extents.

2.2.3 Miscellaneous Approaches

This section reports three approaches that don’t lay completely in the

previous categories, as they try to get the best from both.
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(a) Small cells (b) Large cells

(c) Matches detected using small cells (d) Matches detected using large cells

Figure 2.4: Comparison between large and small grid cells. A dashed arrow

indicates an erroneous match whereas a plain one shows a correct match.

2.2.3.1 Hybrid Approach

This kind of approach, in some situation, “can reduce both the number

of irrelevant messages of the grid-based DDM and the number of matching

of the region-based approach”.[22] It consists in applying a static grid-based

and then filtering the result using the brute force region-based approach. This

allows to reduce the complexity of the brute force algorithm and decrease the

number of false positives identified by the static grid-based approach.

It’s possible to use other region-based approaches to improve the last

filtering. When the number of matched extents detected by the static grid-

based approach is high enough to justify the overhead of more complex data

structures, a more sophisticated approach should be used.
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Pro: The second filtering permits to reach an optimal solution.

Cons: Its efficiency depends on the grid size.

2.2.3.2 Grid-filtered region-based

This approach is very similar to the Hybrid Approach described in the

previous section. The difference is that the region-based matching is not

performed on any cell, but only on cells that are occupied over a certain per-

centage by extents. Choosing the correct threshold is as thorny as choosing

the best cell size in a grid-based approach.[6]

This method should be used when networks’ resources are highly available

and a limited amount of false positives can be acceptable.

Pro: It performs less matching than the other miscellaneous approaches.

Cons: Produces false positives. It has to be fine-tuned choosing the right

cell size and threshold based on the given instance.

2.2.3.3 Dynamic Approach

Each federate is the owner of one or more cells and knows every sub-

scribers’ and publishers’ related activity. This makes a central coordinator

unnecessary.

When the owner detects a match it allocs the relative multicast group

and notifies the involved extents.[7]

Pro: Distributed, more efficient than grid-based, the second filtering permits

to reach an optimal solution.

Cons: Its efficiency depends on the grid size.

2.3 Summary

In this chapter the most well-known matching approaches have been anal-

ysed. Table 2.1 shows a quick view of the properties of the approaches we
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Table 2.1: Approaches comparison

Approach Matching Performed Distributable Optimal Match

Static Grid-Based X

Brute Force X X X

Sort Based X X

Binary Partition X X

Hybrid X X

Grid-Filtered X X

Dynamic X X X

described.

There is a huge variety of different approaches, and establishing which

one works best on a given instance it’s not so obvious. Choosing the right

cell size in grid-based approaches is a key factor that can’t be underrated.

The testbed we implemented wants to be useful in making clear when it’s

convenient to use a certain approach instead of another.

The following chapter explains how we tried to achieve this goal.



Chapter 3

The Testbed

This chapter explains how the testbed was designed and projected. We

start by explaining the testbed’s goals, then we proceed explaining its struc-

ture and describing in detail how it is structured and how its components

work.

At the end of this chapter, an explanation about how to implement an

approach on our testbed can be found.

3.1 The Testbed’s Goals

We wanted to create a testbed to easily compare different approaches

and different parameters within the same approach, producing a useful and

handy tool that would allow researchers to focus on their innovative approach

rather than losing time in implementing a new ad hoc benchmark to execute

their evaluation tests.

Moreover, in some papers, it looks like authors simulate a routing space

specifically built to just disclose the strong points of their algorithms, with

the result that each approach is “better” than all the others.

To remove all doubt, we want to provide a standard and independent

measuring instrument to compare the goodness of a proposed approach on a

fixed set on instances whose solution is known. Researchers can implement

17
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their approaches, run them on our benchmark and compare their results

with the one got by other approaches already implemented. Obviously we

encourage researches to share their code to perform efficiency comparisons

on a wider set of resolutive methods and instances.

It is however possible to use our tool only to check for the validity of a

proposed algorithm; our testbed, among other things, checks that the pro-

vided solution is acceptable and returns the number of false positives if the

solution is sub-optimal.

As we’re supporting OpenMP[19] too, our testbed can be used to test

parallel code and easily test the solutions. Repeating the test an appropriate

number of time may unmask the presence of race conditions or other parallel

critical situations that randomly cause wrong results.[18]

3.2 The Testbed Structure

The testbed has been written in C (C89 ).[4] It has been mainly devel-

oped using Code::Blocks open source IDE[8] running on an Ubuntu 13.04

x64 machine. We chose to use the C language to obtain top performances

and full control on the generated code. As we’re working a lot on bitwise

operations, we think that the C++ additional features weren’t needed.

At the beginning we tried to keep it Windows R© compatible, but as com-

plexity grew we realized that this would be such a huge effort and it wouldn’t

be worth it. For this reason, our code is compatible with Unix-like operating

systems only.

The testbed is released under the GNU General Public License version 3

(GPLv3)[11] and can be downloaded using the link provided at the end of

the abstract.

It is composed by two parts:

DDMInstanceMaker: handles the generation of the instances.

DDMBenchmark: permits the execution of a DDM approach on one of
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the generated instances at a time, checks for the solution validity and

computes a score for the proposed resolution approach.

All the most important parts of the code has been documented using the

DoxyGen tool,[9] hence it is possible to find a detailed HTML documentation

attached to our project.

3.3 DDMInstanceMaker

DDMBenchmark comes along with a set of instance already generated.

These instances have different size and different peculiarity, so they are per-

fect to deeply test a proposed method. Their characteristic are shown in

details in table 3.1 on page 20.

Moreover there are some multi-step instances1 that have the same size

of their main instance, but they represent the evolution of the instance in

a certain number of consecutive steps. We called them to represent their

parameters’ values: for example MEDIUM20U represent a 20 step instance with

the same characteristics of the MEDIUM one. The U or S at the end of

the name states that update/subscriber extents stand still between all the

iterations.

Of course we didn’t want to constraint the final users in using these

instances only, so we created DDMInstanceMaker. It allows them to create

their own instances providing a rich set of parameters.

3.3.1 DDMInstanceMaker parameters

DDMInstaceMaker accepts the following compulsory parameters:

-d number of dimensions it represents the number of dimensions that are

used within this routing space. For efficiency purposes it has to be lower

that the MAX DIMENSION define. This allows the proposed methods to

1See section 3.3.3 on page 24 for further details about this topic.
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Table 3.1: Default Instances

Dimensions Publisher Extents Subscribers Extents

Tiniest 1 5 3

Tiny 2 10 15

Smallest 3 1000 1000

Sparse 2 1000 500

Small 3 1700 1800

Average 2 4000 3500

Medium 2 5000 6000

Grande 2 9000 8500

Big 2 10000 11000

Huge 2 14500 15000

Huger 2 20000 30000

Cluttered 2 50000 45000

partially declare their data structure statically, reducing the number of

dynamic memory allocation and deallocation calls.

-u number of update extents it represents the number of update extents

that will be created on this routing space.

-s number of subscription extents it represents the number of subscrip-

tion extents that will be created on this routing space.

-n name of the instance it is the name of the instance the user is about

to produce. It will be used to create a subfolder called like the given

name that will contains all the files related to this new instance. This

name has to be unique and a folder with the same name must not exist

(otherwise execution will terminate with an error message). Although

blank spaces are allowed, we recommend to keep this name short and

to use a single word.
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And these optional parameters:

-r random seed this is the unsigned int that will be used to initialize the

C rand function. If not provided it will be initialized using the current

timestamp.

-a name of the instance author This info will be saved as a comment

inside the instance info file.

-v version number of the instance It allows you to include a version num-

ber to the instance you are generating. If not provided the default value

is 1.0.

-l sequence length this positive number represents the number of input

instances that will be generated as consecutive steps. If not provided

the default value is 1.

-R movement restrictions 0|1|2 Provided as an integer value, in case se-

quence length is greater than 1, it is possible to choose to make all

the extents move (0, this is the default behaviour), or to move the

subscription extents only (1), or to move the update extents only (2).

-S averageSize This parameters allows the user to provide the average ex-

tent size. Higher is this value more cluttered will be the result, a lower

value would generate a sparser instance. If not provided the extents

size will be randomly generated. DDMInstanceMaker will try to create

extents whose average dimension is the provided value. We randomly

generate the lower bound, then we generate a random value between

[0, averageSize ∗ 2], that is the size of the extent (so upperBound =

lowerBound + RandomV alue). For the law of large numbers,[10] for

an infinite number of extents, the exents’ average size will tend to the

expected value of the discrete uniform distribution, that is:

minV alue+maxV alue

2
=

0 + averageSize · 2
2

= averageSize
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For this reason, it is inadvisable to use this parameter on really small

instances, as the result may not be accurate (in the worst cases you’ll

get an average size of 0 or averageSize · 2).

-k skip confirmation prompt if this parameter is provided DDMInstance-

Maker executes in batch mode, without any user interaction.

-h help Provides an help screen.

DDMInstanceMaker firstly evaluates the correctness of the input parame-

ters, then it generates an instance that respects the given parameters. The In-

stance is resolved using the brute force algorithm described in section 2.2.1.1

on page 8, as it’s the only method known that is guaranteed to produce an

optimal solution (as it performs all the possible comparisons).

For each new instance a folder called <instanceName> is created. It

will contain the text files that stores the generated instances and the binary

files that contains the optimal results.

The file that stores the info about the parameters that generated the

current instance is named info.txt. We report an example of this file.

1 #Ins tance name : smal l

2 #Ins tance ve r s i on : 1 . 0

3 #Created on Tue Jun 11 15 : 13 : 28 2013

4 #Author : Francesco Bedini

5 #Random Seed : 234234234

6 #Sequence l ength :

7 1

8 #Dimensions

9 2

10 #Subsc r ip t i on Regions

11 5

12 #Update Regions

13 10
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The lines that start with a # symbol are comments, they won’t be read by the

testbed. We use the same format for the input files, the ones that contain the

edge state of a given step. They are named input-i.txt, where i is an integer

in the interval [0, ..., s − 1], and s is the length of the generated sequence.

The same applies to the output files, which are called output-i.dat.

Here’s an example of an input-0.txt file:

1 #Su b s c r i p t i o n s <id> <D1 edges> [<D2 edges > ] . . .

2 0 522225 6275355 −30396036507 7593553

3 1 −409933 −4169 −249428622392 8342166002

4 2 −66112659340 1503439 −892267956 −66918

5 . . .

6 4 −89869243 4795295688 −5677652 7198

7 #Updates <id> <D1 edges> [<D2 edges > ] . . .

8 0 −184066 363577 −7957130 569659

9 1 −79366143 47952500 −6260736 71989568

10 . . .

11 9 −5763996 −9770 −6094673 104120

As is shown by the comments in the file, each row represent an extent.

The first number represents its ID which is unique between extents of the

same type. We guarantee that IDs are in the range [0,m− 1] for the update

extents and [0, n− 1] for the subscription extents. This allows users to store

the extents in a vector and use the ID as the index to access them.

The following d pairs of value represents the bounds of the extent on

each dimension. Regarding the extents’ edges we guarantee that for each

dimension they are ordered in non-descending order (i.e we guarantee that

the lower bound is always smaller than the upper bound).

3.3.2 How the Optimal Solution is Stored

The result is saved in a data structure called bitmatrix. It consists of

a vector of unsigned integers whose bit are referenced as in a matrix, that
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is providing a row and a column index. We arbitrarily decided to consider

the update extents’ IDs as the rows indexes and the subscribers extents’ IDs

as the columns indexes. If the bit placed in the position (i, j) is set to 1 it

means that the update extent whose ID is i is matched to the subscription

extent whose ID is j.

This is how the coordinates are converted to access a single bit. When we

create it, we firstly compute how many 64 bit unsigned integers are needed

to store all the subscribers. To do so we simply use this formula to get the

ceiling of #Subscribers/DataSizeInBit:

ElementsNeeded = (DataSizeInBit+ #Subscribers− 1)/DataSizeInBit

Then we alloc sizeof(DataSize) ·ElementsNeeded ·#Updates bytes and we

create an additional array of #Updates pointers and we make each element

point to a row of subscribers.

Once that the result has been processed, we can store the bitmatrix on

a binary file. We decided to use binary file other that text files because,

aiming to store and analyse large instances, the size of the result file might

be a constrictive factor. Moreover saving the bitmatrix as a text file takes

more time (due to the translation from bit to char), and the ability to let the

result to be readable from humans would not be useful nor usable at all on

bigger instances.

Then, when we need to compare two matching results, we just perform an

eXor between the proposed solution and the bitmatrix previously computed

by DDMInstanceMaker. The number of ones obtained as result represents

the absolute distance between the two solutions.

3.3.3 Multi-step Instance Generation

Usually testbeds tend to be unrealistic when they only generate random

instances. In distributed simulation, an update extent might be, for example,

the area detected by a radar, whereas the subscription extents might be ships

or planes. In a real simulation we could suppose that radars would remain
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still, while the latter would move. We took this into account and so we

implemented the following criteria:

1. Movement restrictions: It is possible to set which extents will move:

subscribers’, updates’ or both.

2. Plausible movements: Extent position is not randomly generated

on each step but depends on the extent’s previous location and future

destination.

Moreover, as a design choice, we decided that extents can’t disappear

during the iterations: all the extents that are declared in the first instance

file will persist until the last iteration.

To achieve criteria number 2 we implemented a modified version of a

standard random waypoint mobility model.[12]

We first consider as the first waypoint the actual position of the extent,

and we mark it as reached. Then for each iteration we generate a random

number between RAND MAX and RAND MIN. We take the rest of the

division per a given value c. If it equals 0 we generate a new waypoint and

the extent will begin to linearly move towards it, else the extent would remain

still for another turn.

Assuming the random numbers are generated with a uniform probability

between RAND MAX and RAND MIN we can define X ∼ G̃(1
c
), where G̃

represents the shifted geometric distribution.2

Hence the probability that the extent would start to move exactly on the

k − th attempt for k = 1, 2, ...,+∞ is:

P (X = k) = p · (1− p)k−1

where p = 1
c
.

2We refer to the probability distribution of the number of X Bernoulli trials needed to

get one success, supported on the set 1, 2, 3, ...,+∞
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The average number of attempts before the points starts to move again

is:

E[X] =
1

p
=

1
1
c

= c

We have implemented it this way in order to allow the extents to start to

move randomly, a little at a time.

On each iteration a changelog file is generated. Its format is similar to the

one shown on paragraph 3.3.1 on page 23, but it only contains the extents

which has been moved on that session. Moreover, as only one kind of extents

may be present on a changelog file, we had to put an ’s’ and a ’u’ before listing

the subscription extents and the publisher extents to distinguish them (as

IDs are not unique).

3.3.3.1 Overflow handling

As we don’t change the original dimension of the extents while we move

them, overflow may happens. As we guarantee that the lower edge of an

extent is always smaller or equal to the upper edge, we have to handle this

situation carefully to avoid undefined results. When we detect an overflow,

we place the extent with his original size in the leftmost or rightmost point of

that dimension As you can see in figure 3.1 on page 27, we place the extent’s

lower edge in SPACE TYPE MIN and its upper edge in SPACE TYPE MIN

+ Original extent size or we place its upper edge in SPACE TYPE MAX

and its lower edge in SPACE TYPE MAX-Original extent size, depending

on which side the overflow happened.

It is important to note that this may cause a different density of the ex-

tents in the routing space. The central zone might be more densely populated

than the borders.

3.4 DDMBenchmark

DDMBenchmark is the core part of the testbed. It executes the proposed

algorithm and evaluates it using three different criteria, that are discussed
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Figure 3.1: Overflow handling

later in this section.

3.4.1 DDMBenchmark parameters

DDMBenchmark accepts the following parameters:

-i name of the instance represents the name of the instance to be solved

and it’s a compulsory parameter. A folder containing that instance

must exist on the same level of the DDMBenchmark executable file.

-h help provides help.

3.4.2 Evaluation Criteria

To appreciate the goodness of a DDM resolution approach we decided to

take into account the following parameters:

• Distance from the optimal solution

• Execution time
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• Memory occupied

The type of the variables can affect the execution time. Double precision

operations usually take longer to execute than integer ones. As our goal is

to compare algorithms one another rather than different types of data, we

arbitrarily decided to use 64 bit signed integers (int64 t, defined in stdint.h

header) as our routing space data type. The only important thing is that

every approach would use the same data type.

3.4.2.1 Distance from Optimal Solution

Computing the absolute distance from the optimal solution, thanks to

the way they are stored, it’s not a difficult problem. We can simply apply

an ⊕ (i.e. exclusive or, see table 3.2(b) on page 28) between the optimal

solution matrix computed by DDMInstanceMaker and the one computed by

the proposed resolver. Then we just have to count the number of ones that

we obtain to get the number of matching that differ one from the other.

We must previously check that all bits that are set in the optimal bitma-

trix are also set in the second one, otherwise solution is not correct. In order

to do so we just apply an ∧ (and, see table 3.2(a)) between the optimal and

the second bitmatrix. If the result is equivalent to the optimal solution then

the latter is optimal or suboptimal.

Table 3.2: Truth tables

(a) And

A B ∧
0 0 0

0 1 0

1 0 0

1 1 1

(b) eXor

A B
⊕

0 0 0

0 1 1

1 0 1

1 1 0
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Algorithm 1 Solution distance evaluation

Require: α optimal solution bitmatrix β proposed solution

if α ∧ β <> α then

. solution is not acceptable: at least one match was not detected

quit

end if

return countOnes(α
⊕

β)

Expressing the distance as a pure number is not so interesting as it won’t

allow to compare the rightness of a certain approach. For example, in an

instance with 5000 subscription extents (S) and 5000 update extents (U),

the number of possible matching (PM) is S · U = 25000000, whereas in

an instance with U = 100, S = 100 PM is 10000. The fact that we get a

distance of 1000 running a certain method on both instances, don’t mean the

same thing. It is more interesting to get a value that helps to understand

how much the solution is wrong. To make it comparable we first need to have

the maximum value of the distance (i.e. it is the distance of a full matrix,

that is a matrix that states that every update extent is matched with every

update extent), from the optimal result matrix.

Hence we can calculate a normalized D using:

d : dMAX = x : 1

where

dMAX = (S · U)−OptimalMatches

so

f(d) =

0 d = 0

d
dMAX

d > 0

where dMAX = 0 ⇒ d = 0 ⇒ f(d) = 0, otherwise the proposed solution is

unacceptable.
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3.4.2.2 Execution Time

To gauge execution time we used the OpenMP function omp get wtime

that returns the elapsed wall clock time in seconds, as a double value. We

implemented two functions, called start time and stop time, that accept

as the only parameter the number of the current iteration. They both has

to be called inside the execute algorithm function: the first after reading

the instance file and allocating required memory, while the latter has to be

called before returning to the testbed main procedure.

This parameter is clearly the most hardware dependent. To try to stan-

dardize it we thought as it’s referred to a standard cloud instance supplied

by a certain provider (for example a dedicated EC2 instance by Amazon[3]).

3.4.2.3 Size of Memory Occupied

Among the three parameters this is the most demanding to obtain. We

thought about three different ways to retrieve it:

1. Use a malloc wrapper function that increments a memory counter on

each allocation request.

2. Read peak memory from the proc virtual file system.

3. Use a memory profiling tool.

In case 1 the value that at the end of the execution was stored in the

counter variable would quantify the size of memory dynamically allocated

by the proposed algorithm. The cons of this approach are the impossibility

to compute the size of the static memory (reserved by the compiler) and

the impossibility to guarantee that the wrapper function would be called

instead of the plain malloc. The main advantage is an easy implementation

“in process”.

The second possibility was discarded because the value returned by the

virtual file system is too inaccurate (and includes the size of the shared

libraries used by the process).
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We eventually opted for the last option. This allows us to obtain the

most accurate result (that includes stack memory too), but unfortunately we

have to run a second instance of the testbed under the control of the memory

profiler. As a profiler, we are using a tool called “Massif” that is part of the

Valgrind open source memory profiler.[24]

From DDMBenchmark we execute the same instance adding the p pa-

rameter, which returns the peak memory size. This new DDMBenchmark

process executes only the first step and then quits immediately.

Via the following single-line command we are able to return an integer

that contains the peak memory size in byte.

1 // Execute Valgrind ’ s t o o l ” mass i f ” , measure a l l

memory

2 va l g r i nd −−t o o l=mass i f −−pages−as−heap=yes

3 // Set the name o f the temp f i l e generated by mass i f

4 −−mass i f−out− f i l e=mass i f . out

5 //What does Valgr ind execute ?

6 DDMBenchmark − i <Current Ins tance Name> −p

7 // Ignore va l g r i nd outputs and e r r o r s

8 1 > /dev/ n u l l 2> /dev/ n u l l ;

9 // F i l t e r mass i f output f i l e

10 cat mass i f . out | grep mem heap B |
11 //Remove non−numerica l t ex t from r e s u l t

12 sed −e ’ s /mem heap B=\\( .∗\\) /\\1/ ’ |
13 // Sort the r e s u l t and take the f i r s t one

14 s o r t −g | t a i l −n 1

15 // Delete the temp f i l e

16 && rm mass i f . out
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3.4.3 How the score is computed

When you summarize a group of irregular data into a single value, it is

expectable to introduce errors. The only thing we can do is to try to minimize

them trying to give a sense to the result weighting the data that make up

the final score.

We think that, as we are using DDM to reduce data exchanged in a com-

puter network, distance from the optimal solution is the most critical factor,

as a higher distance brings more data to be (relatively slowly) transmitted

over the network. If two algorithms are optimal, then comes the times. Ob-

viously a faster approach is better than a slower one. The less important

evaluation criteria, in our opinion, is the memory occupied. Nowadays com-

puter memory is becoming greater and greater. Although is still important

and wise not wasting it, the memory occupied by a program it’s not as critical

as it used to be in the past years.

For these reasons, we decided to weight the three parameters as shown:

Distance: (relative distance [0, 1.0]) ×106

Execution time: (in seconds) ×105

Memory peak: (in kB) ×0.5

Then the three values are summed together. A lower result means a

better method.

Of course you are not obliged to agree with us, for this reason we always

provide a detailed result for each execution that reports the three measured

values, so that it will be always be possible to look at the single results in a

more critical way.

3.4.3.1 How the results are stored

As we have just said in the previous section, results comes in different

levels of details. In the instance folder you can find a subfolder called

results. It will contain a file for each method that have resolved it. Each
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file contains a list of detailed execution results as shown in figure 3.2 on page

33.

1 −−−−−Matching Bench v . 0 . 5 b Mon Sep 9 00 : 27 : 12 2013

2

3 Average complet ion time : 0 .935 s std . dev : 0 .025 s

4 Memory Peak : 30769152B

5 Distance from optimal s o l u t i o n : 6967783 (1.14%)

6 Total s c o r e : 35777

7

8 −−−Deta i l ed view−−−−−−−−−−−−−
9 I t e r a t i o n Elapsed Time Distance

10 0 0 .956 3206950

11 1 0 .944 4547828

12 2 0 .924 5595948

13 3 0 .906 6498506

14 4 0 .905 7230465

15 5 0 .909 7798110

16 6 0 .920 8287036

17 7 0 .955 8572832

18 8 0 .983 8865309

19 9 0 .943 9074846

20 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Figure 3.2: Detailed result example

In the instance folder, there is also a file called rank.txt that contains a

line for each execution of that instance, ordered by score in non descending

order (see fig. 3.3 on page 34).

Moreover in DDMBenchmark there is a results.csv file, that is a comma

separated value file that stores all the execution done by the benchmark in

an easily manageable and exportable format:
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1 35777 Grid30 ( t : 0 .934584 s , d : 6 .96778 e+06 (1.14079%) ,

m: 30048kB) on Mon Sep 9 00 : 27 : 12 2013

2 37186 Grid10 ( t : 0 .1427 s , d : 1 .30059 e+07 (2.12737%) , m:

28972kB) on Mon Sep 9 00 : 24 : 39 2013

3 82936 Binary P a r t i t i o n Based ( t : 5 .99683 s , d : 0 (0%) , m

: 45936kB) on Sun Sep 8 17 : 24 : 17 2013

4 . . .

Figure 3.3: Rank file example

1 Method , Instance , Score , ” Average Time( s ) ” ,” Average

Distance ” ,” Normalized Distance ” ,”Memory Peak (B) ” ,

Timestamp

2 ”Grid2 ” ,”TINIEST

” ,11882 ,0 .000001 ,4 .000000 ,0 .500000 ,14094336 ,Mon Sep

9 00 : 22 : 16 2013

3 ”Grid2 ” ,”TINY

” ,13231 ,0 .000003 ,40 .000000 ,0 .634921 ,14094336 ,Mon Sep

9 00 : 22 : 17 2013

4 . . .

3.4.4 How to Implement an Approach

Users can implement their approach editing the Algorithm.c file that

can be found in the Default folder inside the Algorithms one. They should

copy this file in a new folder created inside the Algorithms one and name it

as their approach name.

DDMBenchmark runs your approach calling the method ExecuteAlgorithm

iterationNumber times. This is the prototype of that method:

1 ERR CODE ExecuteAlgorithm ( const char ∗ InstanceName ,

const u i n t f a s t 8 t dimensions , const u i n t 3 2 t



3.4. DDMBENCHMARK 35

s u b s c r i p t i o n s , const u i n t 3 2 t updates , const

u i n t 3 2 t c u r r e n t i t e r a t i o n , b i tmatr ix ∗∗ r e s u l t )

The benchmark provides to your algorithm the name of the instance it

has to solve, the number of the dimensions of the instance, the number of

subscription extents, the number of update extents, and the number of the

current iteration. If this last parameter is zero, you have to alloc your per-

sistent data structures (using the static specifier). The very last parameter

is a pointer to a pointer to a bitmatrix. You have to initialize it during the

first iteration and then store your result there.

After you have allocated and read the instance parameter from the file,

you have to call the function:

1 s t a r t t i m e ( c u r r e n t i t e r a t i o n ) ;

Then you execute your computation and then call the function:

1 s top t ime ( c u r r e n t i t e r a t i o n ) ;

and eventually

1 re turn er r none ; // i f everyth ing went we l l

Then you’ll return execution to the benchmark that will check for the validity

of your solution and eventually it will grade it.

The testbed includes, in the root folder, functions, procedures and dedi-

cated data structures that can be used to ease writing the code. A detailed de-

scription can be found in the Doxygen folder, opening the html/index.html

file in a browser.

DDMBenchmark comes with some useful scripts that can help you to

execute your code more easily. They are shown in table 3.4.4.

It is possible to compile the testbed using the provided compile.sh shell

script3 placed in the root folder, and passing to it as the first parameter the

exact same name that has been given to folder that contains the Algorithm.c

file. If the compilation succeeds it will be possible to try solving a certain

instance running the command:

3compile.sh can be found in appendix B.1 on page 67
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1 . /DDMBenchmark − i <instanceName>

Script Name Description Parameters

create instances.sh Creates all the default instances -purge

execute all.sh Executes all approaches on all instances none

compile.sh Compiles DDMBenchmark approach

compileInstance.sh Compiles DDMInstanceMaker none

profile.sh Profiles an approach approach instance

Table 3.3: Scripts

3.5 Summary

In this chapter we described how the testbed is structured and how its

main components work.

We have seen that the testbed is divided in two main components, DDMIn-

stanceMaker and DDMBenchmark. The first handles the generation of in-

stances with a user provided set of parameters, while the second executes a

proposed approach, checks for the validity of the solution and than rates the

goodness of the approach using three criteria.

Then we described the evaluation criteria that have been taken into ac-

count by our tested (that is distance from optimal solution, execution time

and memory occupied), and we show how we compute a representative score.

Moreover we discussed how we coped with some issues such as data over-

flows and a realistic multi-step instance generation. Then we provided all

the useful information to implement a new approach and run it under our

DDMBenchmark’s control.

Now we’re ready to create the set of peculiar instances described in table

3.1 on page 20 and to implement some resolution approaches using some of

the algorithm we described in chapter 2.
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The results we got from our test implementations are shown and discussed

in the following chapter.





Chapter 4

Implementation Results

After we finished coding the testbed we were looking forward to test it

with different kinds of approaches. We implemented three different region-

based approaches, the most important ones, and a static grid-based one,

described in chapter 1. Their commented code can be found within the

Algorithms folder.

Firstly we implemented the Brute Force (described in section 2.2.1.1 on

page 8), as we use it to solve our instances in DDMInstanceMaker. As we’ll

see, it is quite efficient as it doesn’t use any additional data structures to

perform the matching, and thanks to a short circuit logic it can avoid some

of the overlapping checks.

The second algorithm that we implemented was the sort based (see sec-

tion 2.2.1.2 on page 8). It is based on a previous work made by another

student,[14] but we adapted it to make it work with our benchmark.

It was implemented in a very efficient way: as the sort based algorithm

uses lists of a well known size, it is possible to use bitvectors (that are single

lines of a bitmatrix) to store these “lists”, other than dynamically allocate

each element. In this way all the operations are executed on a bit level, that

are the most efficient, and they don’t require system calls on each insertion.

The third one was the static grid-based (see section 2.2.2.1 on page 13).

We divide each dimension in PARTS cells (i.e. the total number of cells is

39
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PARTSdimensions). For efficiency purposes and ease of implementation, we

only support two dimensional instances. To support unlimited dimensions

we should change a nested loop with recursive calls, losing in efficiency.

This is the only approach we implemented that is not optimal (see section

1.2 on page 3 to see what we mean for optimal). For this reason, we have

made 4 versions with 4 different values for PARTS (2, 10, 30, 50) to show how

much the solution improves increasing the number of cells.

The last approach we implemented is one of the most recent in literature.

It is the partition based approach (see section 2.2.1.3 on page 10). In some

circumstances it can perform a lot of recursive calls. Moreover it uses dy-

namically allocated lists as we have to directly access all the elements of the

lists very frequently.

The following section contains the results we got running our algorithms

on five representative instances: Sparse, Average, Big, Huger and Cluttered.

4.1 DDM Instances

4.2 Results

The results you are about to read in the next sections were obtained

on a PC running Ubuntu 13.04 (x64). It has an Intel R©core i7 CPU 920

(@2.67GHz x 8) and 6GB of RAM (5,8GB of which are addressable). The

data is the result of an average of three executions ran from text mode.

In the following sections we are going to show a detailed view of the

results we got. For each instance we will show a bar graph for the execution

time, one for the memory peak and one for the final score they got. As three

out of four algorithm are exact, we won’t show a comparison for the distance

from the optimal solution for each of them, but we just compare the distance

obtained running our four static grid-based approaches.
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Sparse

Dimensions: 2

Subscribers’ extents: 1000

Publishers’ extents: 1000

As this instance has a very limited number of extents, and they have a

very small size, grid-based approaches are the best choice, as in this case they

provide a low distance even when the number of cells is limited. Brute force

approach gets the best score overall, as it consumes less memory than the

other approaches and provides an optimal solution. It has only been slightly

beaten in execution time by the partition based approach, but not that much

to justify it’s higher use of memory.

Execution Time

0 2 · 10−2 4 · 10−2 6 · 10−2 8 · 10−2 0.1 0.12 0.14

Grid2

Grid10

Grid30

Grid50

Brute

Partition

Sort
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6.14 · 10−4

1.02 · 10−3

1.43 · 10−3

4.33 · 10−2

3.49 · 10−2

0.13

Execution Time (s)
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Memory Peak
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Score

0 0.5 1 1.5 2 2.5 3 3.5

·104

Grid2

Grid10

Grid30

Grid50

Brute

Partition

Sort

32,364

8,435

7,822

8,251

7,857

8,828

9,135

DDMBenchmark Score

Average

Dimensions: 2

Subscribers’ extents: 4000

Publishers’ extents: 3500

As in the SPARSE instance, brute force remains the best choice only looking

at the score, but sort based approach executes on average twenty milliseconds

faster. As this instance has bigger extents than the Sparse one, the grid-based

approaches get worse result because of the higher distance from the optimal

solution.
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Execution Time

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35
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Distance
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Big

Dimensions: 2

Subscribers’ extents: 10000

Publishers’ extents: 11000
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As the size of the instance increases, sort based runs faster than brute force

and gets the best score if we don’t consider grid-based approaches. Partition

based dynamic allocation starts to be evident looking at its execution time.

Between the grid-based approach, Grid30 was the best compromise between

the correctness of the result and the memory and execution time taken.

Execution Time
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Distance
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Dimensions: 2
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Publishers’ extents: 30000
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Partition based still gets a very bad score, due to its high use of resources

(in time and memory). This is due to the fact that he consumes time dy-

namically allocating memory, that is very onerous as implies system calls. As

in the Big instance, sort based algorithm gets the best score (and we expect

that it will decrease as the size of the instance grows).
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Distance
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1 time seconds seconds c a l l s ms/ c a l l ms/ c a l l

name

2 38 .44 69 .05 69 .05

ExecuteAlgorithm

3 31 .67 125 .94 56 .89 410065408 0 .00 0 .00

i s S e t

4 23 .36 167 .90 41 .95 4500000000 0 .00 0 .00

r e s e t b i t m a t

Figure 4.1: The profiler revealed that these two functions took most part of

the total execution time.

The CLUTTERED instance is the one that gives us the most interesting

results. Its big and numerous extents gives us a lot to think about. Finally

the partition based gets the best score with an extraordinary low execution

time (only 1.13 seconds) that balances it’s use of the memory.

On the other hand, the sort based algorithm unexpectedly performs worse

than the Brute force. This is a clear symptom that something is not working

as it should. We profiled our sort based code using the profile.sh script

(that runs GNU gprof profiler tool), and we found out that our bit level

implementation is inefficient, but luckily it can be easily improved.

This was how the first version was implemented:

1 f o r ( j = 0 ; j<s u b s c r i p t i o n s ; j++)

2 {
3 i f ( i s S e t ( Sbefore , j ) ) // Checks i f the b i t in the

p o s i t i o n j o f the b i t v e c t o r i s s e t

4 {
5 // Reset the p o s i t i o n j o f the b i t v e c t o r that

correspond to the update id in the r e s u l t

b i tmatr ix .
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6 r e s e t b i t m a t (∗match ing re su l t , /∗update id ∗/ , j

/∗ i . e . subscr . id ∗/) ;

7 }
8 }

That can be improved in:

1 // Negate the Sbe fo re b i tve c to r , as we have to r e s e t

a l l the b i t s that are s e t in Sbe fo re

2 nega t e vec to r ( Sbefore , s u b s c r i p t i o n s ) ;

3 // Perform an AND between the /∗update id ∗/ row o f the

r e s u l t b i tmatr ix and the Sbe fo re vec to r .

4 v e c t o r b i t w i s e a n d ( match ing r e su l t [ /∗Update id ∗/ ] ,

Sbe fo re ) ;

5 // Negate the Sbe fo re vec to r again to br ing i t back to

i t s o r i g i n a l s t a t e ( t h i s avo ids c r e a t i n g another

temp vecto r )

6 nega t e vec to r ( Sbefore , s u b s c r i p t i o n s ) ;

As this piece of code was the core part of sort based, this small change

caused a huge improvement in the execution time on bigger instances. To

be coherent with the previous data, in the following graphics we continue to

report the standard sort based, in the next section you can see how much the

second sort based is faster.
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Execution Time
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4.3 Tables

In this section we include, for completeness, the results we got from the

execution of all the single-step instances in a tabular view. As you can see,

in bigger instances (starting from SMALLEST, except from SPARSE) sort based

2 is the best choice.
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Method Instance Score Avg Time(s) Mem. Peak(B)

Brute TINIEST 6878 0.000001 14086144

Partition TINIEST 6880 0.000005 14090240

Sort TINIEST 6880 0.000006 14090240

Sort2 TINIEST 6886 0,000015 14102528

Brute TINY 6878 0.000004 14086144

Partition TINY 6880 0.000055 14090240

Sort TINY 6880 0.000044 14090240

Sort2 TINY 6888 0,000216 14102528

Sort2 SMALLEST 7186 0,006491 14585856

Brute SMALLEST 7245 0.022176 14385152

Sort SMALLEST 7490 0.027896 14770176

Partition SMALLEST 7583 0.028722 14942208

Brute SPARSE 7857 0.043302 15204352

Sort2 SPARSE 7921 0,00674 16084992

Partition SPARSE 8828 0.034866 17367040

Sort SPARSE 9135 0.128344 16080896

Sort2 SMALL 7527 0,005962 15294464

Brute SMALL 7886 0.067649 14766080

Sort SMALL 8374 0.082481 15462400

Partition SMALL 8600 0.085695 15859712

Table 4.1: Results of optimal approaches - Part 1/2
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Method Instance Score Avg Time(s) Mem. Peak(B)

Sort2 AVERAGE 8707 0,012995 17567744

Brute AVERAGE 10770 0.273851 16449536

Sort AVERAGE 11029 0.245308 17563648

Partition AVERAGE 13008 0.348612 19501056

Sort2 MEDIUM 10165 0,022593 20357120

Brute MEDIUM 15063 0.591967 18726912

Sort MEDIUM 15173 0.523543 20353024

Partition MEDIUM 20693 0.879791 24363008

Sort2 GRANDE 14000 0,04906 27668480

Sort GRANDE 26801 1.329336 27664384

Brute GRANDE 27385 1.514798 25063424

Partition GRANDE 44707 2.631536 37666816

Sort2 BIG 16613 0,067118 32649216

Sort BIG 35091 1.915111 32645120

Brute BIG 36162 2.174285 29532160

Partition BIG 63735 4.076749 47038464

Sort2 HUGE 24641 0,11618 48087040

Sort HUGE 61308 3.783034 48082944

Brute HUGE 64568 4.32241 43712512

Partition HUGE 145863 10.866742 76177408

Sort2 HUGER 51606 0,253202 100503552

Sort HUGER 153056 10.398484 100499456

Brute HUGER 166428 12.087455 93294592

Partition HUGER 425050 33.86481 176951296

Sort2 CLUTTERED 162445 0,746714 317394944

Partition CLUTTERED 309659 1.13438 610951168

Brute CLUTTERED 368221 21.993312 303693824

Sort CLUTTERED 711100 55.612473 317390848

Table 4.2: Results of optimal approaches - Part 2/2
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Chapter 5

Conclusions

In this thesis we implemented a testbed to evaluate different Data Dis-

tribution Management approaches, and hopefully the ones that yet have to

come. In fact DDM is a very exciting research field that can still be im-

proved in the next years. As simulations become more and more detailed,

transmitting only the relevant data will be a more important factor.

We started describing the most well known approaches, providing the

pseudocode for the most relevant ones. Then we explained how we imple-

mented our testbed, what were our goals and which difficulties we faced

during this process. When our testbed was ready, we implemented three

different region-based approaches and four variants of the static grid-based

one.

We wanted to use our testbed to help us to understand which one was the

best approach. As we might have expected, there is not an absolute winner

in this “competition”.

The result we got from the execution of our algorithms on our benchmark

are overall coherent with the one exposed in the state of the art chapter. As

we expected, we noticed that the partition based method gives his best in

cluttered instances, as it gets rids of the extents as soon as they fall in the P

partition. Unfortunately it is also the approach that uses the most memory,

as it dynamically allocates 6 lists each time the partition function gets called.
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If a better implementation would be able to avoid or reduce the number of

system calls, this method can be considered as one of the best to solve bigger

instances.

Among the optimal methods, the brute force is our choice for smaller

instances. His lack of additional data structures makes it the most mem-

ory efficient, whereas his short circuit logic allows it to solve instance while

other methods allocate or sort their data, making it perform better when the

extents number is limited.

The static grid-based one, executed with the optimal grid size would be

the final method, as it can provide an almost-optimal solution very quickly

and efficiently. Its problem is the lack of knowledge beforehand about the

best number of cells to use, that mostly depends on the instance morphology.

Only looking at the first sort based implementation we would have said

that this approach should be chosen when memory is a constrictive factor

that must be preserved. In fact it provides good results on bigger instances

although it uses half of the memory taken by the partition based. After hav-

ing improved it we must say that this is, at the moment, the best method to

be used on medium-big instances. In fact in solving the CLUTTERED instance

it is 152% faster than the partition based and 2945% faster than the brute

force.

As we have seen, our testbed can be used to find the weak point of an

approach to improve it, making it easy to evaluate how much it got better,

and if it still provide an optimal solution after the changes.

We think that overall our score represents reasonably well the efficacy of

each algorithm, if optimal and approximated algorithms are analysed sepa-

rately. It can be improved attributing a higher weight to the elapsed time

and a higher penalty to suboptimal results.
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5.1 Future Works

The testbed we developed can surely be improved under many aspects.

One of these is that our testbed’s extents don’t lay uniformly on our routing

space. This is caused because we don’t consider our routing space to be

toroidal. In that case overflow won’t be a problem any longer, but we would

not be able to assume that extents’ lower bound is smaller than the extents’

upper bound. The lack of this assumption will make the approaches that

are based on it to not work any longer (for example the Sort Based and the

Partition Based, as they order the extents’ edges). Their logic has to be

changed almost completely, probably varying their efficiency.

Unfortunately we haven’t tried at all to take advantage of the multi-

step instance generation. This would have required a lot of time to reflect

about how to modify the standard implementations to get the best from the

previous solution. Doing a quick unreasoned implementation would not have

had any scientific interest, so we thought it was better to examine it in depth

at a later stage.

It would be interesting to implement a tool that can graphically show a

2D or even 3D representation of the routing space (obviously it wouldn’t sup-

port more than three dimensions), colouring the updates and the subscribers

extents in two different ways, and showing the sections where they overlap.

With this it would be nicer and maybe easier to debug or see how much is

cluttered or sparse a proposed approach, rather than looking at a bunch of

numbers within a lot of different files.

If we had had a dedicated machine we could have implemented a web

service that would have allowed users to submit their approaches. Then

they would be executed locally (one at a time) and the result would be

sent via email to the submitter. In this way we would be sure that the

submitter would share its code with other researchers in exchange of a check

of the correctness of their approach, and the elapsed time could be considered

almost stable without needing to execute all the other algorithms.
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Appendix A

Approaches Implementations

A.1 Brute Force

This algorithm is described in section 2.2.1.1 on page 8.

for all Update extents u ∈ Instance do

for all Subscription extents s ∈ Instance do

for d = 0→ Instance.dimensions do

if !((u[d].lower ≤ s[d].lower ≤ u[d].upper) ∨ (u[d].lower ≤
s[d].upper ≤ u[d].upper) ∨ (s[d].lower ≤ u[d].upper ≤ s[d].upper) ∨
(s[d].lower ≤ u[d].upper ≤ s[d].upper)) then

5: d← −1

break

end if

end for

if d 6= −1 then

10: SetMatched(u, s)

end if

end for

end for
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A.2 Sort Based

This algorithm is described in section 2.2.1.2 on page 8.

for all dimensions i ∈ Instance do

E[i] = Project(Instance, i)

Sort(E[i])

SBefore ← �
5: SAfter ← Instance.SubscriptionExtents

while ! Empty(E[i]) do

Edge← GetNextEdge(E[i])

if Edge.isSubscription then . Edge is part of a subscription

extent

if Edge.isLower then

10: SAfter.Remove(Edge.ID)

else

SBefore.Add(Edge.ID)

end if

else . Edge is part of an update extent

15: if Edge.isLower then

All subscription extents in SBefore are not superimposed to

update extent Edge.ID

else

All subscription extents in SAfter are not superimposed to

update extent Edge.ID

end if

20: end if

end while

end for
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A.3 Binary Partition Based

This algorithm is described in section 2.2.1.3 on page 10.

function Match(Update Extents U, Subscription Extents S)

for all u ∈ U do

for all s ∈ S do

if (u.lower ≤ s.lower ≤ u.upper) ∨ (u.lower ≤ s.upper ≤
u.upper) ∨ (s.lower ≤ u.lower ≤ s.upper) ∨ (s.lower ≤ u.upper ≤
s.upper) then

5: SetMatched(u,s)

end if

end for

end for

end function

10: function Partition(Edges List E, pivot)

if isEmpty(E) then

return

end if

RS, LS, PS, RU , LU , PU ← �
15: edge← GetNextEdge(E)

while (edge 6= NIL) ∧ (edge.position < pivot) do . This edge

comes before the pivot value

if edge.isSubscription then

if edge.isUpperBound then

LS ← edge.ID

20: PS.Remove(edge.ID)

else

PS ← edge.ID

end if

else

25: if edge.isUpperBound then

LU ← edge.ID
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PU .Remove(edge.ID)

else

PU ← edge.ID

30: end if

end if

edge← GetNextEdge(E)

end while

while edge 6= NIL do . This edge comes after the pivot value

35: edge← GetNextEdge(E)

if edge.isSubscription then

if edge.isLowerBound then

RS ← edge.ID

end if

40: else

if edge.isLowerBound then

RU ← edge.ID

end if

end if

45: edge← GetNextEdge(E)

end while

SetMatched(PS, PU)

Match(PS, RU)

Match(PS, LU)

50: Match(PU , RS)

Match(PU , LS)

L← LS ∪ LU

R← RS ∪RU

Partition(L, getPivot(L))

55: Partition(R, getPivot(R))

end function



Appendix B

Testbed highlights

B.1 compile.sh script

This shell scripts compiles DDMBenchmark. It requires the algorithm

name as the only parameter.

1 #!/ bin /bash

2

3 #Check that there ’ s exac t l y one parameter

4 i f [ $# −ne 1 ]

5 then

6 #i f the number o f parameters i s not 1

7 echo ” Error in $0 − I n v a l i d Argument Count”

8 echo ”Syntax : $0 approachName”

9 e x i t

10 f i

11 i f [ ! −d ” Algorithms /$1” ]

12 then

13 #i f the d i r e c t o r y does not e x i s t

14 echo ” Di rec tory ’ $1 ’ does not e x i s t s i n s i d e the

Algorithms f o l d e r ”

15 e x i t
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16 f i

17 #Compile i t

18 gcc −o DDMBenchmark . / Algorithms /$1/ Algorithm . c

b i tmatr ix . c b i t v e c t o r . c DDMBench. c DDMutils . c e r r o r .

c execut i on t ime . c ExtentMaker . c l i s t s . c −O2 −lm −
fopenmp −I . / Algorithms /$1 && echo ” Compilation

succeded ”
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