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“If one tries to force the atoms or ions to behave as exact two-level

objects one has to struggle hard with experimental difficulties

which, in real life, conspire to blur these simple pictures”
Haroche, S.

Raimond, J.M.
“Exploring the Quantum
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“It may sound crazy if you’ve learned too much quantum mechanics”
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Abstract

LA realizzazione di stati non classici del campo elettromagnetico e in sistemi di
spin è uno stimolo alla ricerca, teorica e sperimentale, da almeno trent’anni.

Lo studio di atomi freddi in trappole di dipolo permette di avvicinare questo ob-
biettivo oltre a offrire la possibilità di effettuare esperimenti su condesati di Bose
Einstein di interesse nel campo dell’interferometria atomica. La protezione della
coerenza di un sistema macroscopico di spin tramite sistemi di feedback è a sua
volta un obbiettivo che potrebbe portare a grandi sviluppi nel campo della metrolo-
gia e dell’informazione quantistica.

Viene fornita un’introduzione a due tipologie di misura non considerate nei
programmi standard di livello universitario: la misura non distruttiva (Quantum

Non Demolition-QND) e la misura debole. Entrambe sono sfruttate nell’ambito
dell’interazione radiazione materia a pochi fotoni o a pochi atomi (cavity QED e
Atom boxes). Una trattazione delle trappole di dipolo per atomi neutri e ai comuni
metodi di raffreddamento è necessaria all’introduzione all’esperimento BIARO
(acronimo francese Bose Einstein condensate for Atomic Interferometry in a high
finesse Optical Resonator), che si occupa di metrologia tramite l’utilizzo di con-
densati di Bose Einstein e di sistemi di feedback. Viene descritta la progettazione,
realizzazione e caratterizzazione di un servo controller per la stabilizzazione della
potenza ottica di un laser. Il dispositivo è necessario per la compensazione del
ligh shift differenziale indotto da un fascio laser a 1550nm utilizzato per creare
una trappola di dipolo su atomi di rubidio. La compensazione gioca un ruolo es-
senziale nel miglioramento di misure QND necessarie, in uno schema di feedback,
per mantenere la coerenza in sistemi collettivi di spin, recentemente realizzato.
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Introduction

SInce the early days of quantum physics the wave-particle duality that char-
acterizes the quantum world has inspired the formulation of thought exper-

iments involving single particles and single photons to explore and exploit their
quantum nature. Perhaps the most famous of these experiments, the photon box,
animated the debate between Einstein and Bohr at the VI Congress of Solvay
in 1930. Famous paradoxes have arisen from the quantum world, including the
renowned Schrödinger’s cat. This example brings to our eyes the astounding con-
sequences of the superposition principle applied to macroscopic systems and has
inspired a theory of the decoherence phenomena. The Einstein Podolsky Rosen
paradox, proposed in 1935, has lead to the formulation of hidden variables theo-
ries and to Bell inequalities, and opened a debate about the principle of locality in
quantum theory.

From the 1980s, scientific and technological improvement gave physicists the
chance to implement real experimental setups to perform those thought experi-
ments and to test many crucial points of quantum theory. In the field of atomic
physics such improvements include ion traps, dipole traps and laser cooling.
The 2012 Nobel Prize in physics to D.J. Wineland and S. Haroche "for ground-
breaking experimental methods that enable measuring and manipulation of indi-
vidual quantum systems"1 is the latest of a list of prizes for works in this field
of physics, that embraces the study of cold atoms, of interferometry, metrology
and the fundamental properties of the quantum world such as the measurement

1"The Nobel Prize in Physics 2012". Nobelprize.org.
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2 Introduction

process.
Quantum nondemolition (QND) measurement, first proposed in the 1970’s for
the detection of gravitational waves [14], is a special type of measurement pro-
cess in which the uncertainty of the measured observable does not increase from
its measured value during the subsequent normal evolution of the system. QND
measurements allow to attain the true nature of quantum measurements: after the
measurement process the system is collapsed in an eigenstate of the measured
observable and subsequent measurements will find the system in the same eigen-
state.
Recently single photons stored in a cavity have been measured without being ad-
sorbed by a detector using QND measurements [44]; Fock states have been gen-
erated in a controlled way in solid state systems [31]; non classical states of light
have been prepared through feedback schemes that rely on QND measurements
[51].

In the BIARO (French acronym for Bose Einstein condensate for Atom Inter-

ferometry in a high finesse Optical Resonator) experiment, Rubidium atoms are
trapped and cooled in a high finesse cavity. Ensembles of atoms are treated as
pseudo spin system and the coupling with laser radiation allows to reach all op-
tical BEC and to perform QND measurement of the population of the outermost
electronic levels. Recently it has been proposed a theoretical scheme for the re-
alization of spin squeezed states and Dicke states [54] using QND measurements
and a feedback scheme to preserve coherence of a collective spin state [55] has
been realized.

In such a dynamic context, the evolution of electronics, of microcontrollers
and of fast responding and low noise systems, is of central importance and has
been fundamental for the realization of many experiments that were unimaginable
only fourty years ago.
Such a rapid development opens now the door to new discoveries and to the evo-
lution of promising technology such as quantum computer. Furthermore weak

measurements may allow the complete measurement of the wavefunction. The
engineering of non classical states of matter and of light that may be used to
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improve the quality of interferometers and of atomic clocks.

Outline of the thesis

This Master thesis work has been done at the Institut d’Optique in the Atom

Optique group on the BIARO experiment.
The experiment focuses on quantum metrology and investigates several technolo-
gies like: optical trapping of cold atoms, Bose Einstein condensates of Rubidium
87, weak measurement and feedback to protect an ensemble from the naturally
occurring decoherence.

The first chapter is an introduction to measurements in quantum mechanics,
starting from the postulates that define the measurement, following with the defi-
nition of QND measurements and eventually treating the weak measurement.

The second chapter introduces to the dipole force, that may be used to trap
atoms with lasers: starting from the atom-field interaction the dressed states ap-
proach gives a great way to visualize what happens when single photons interact
with single atoms treated first as two-level systems.

The third chapter is a review of theoretical aspects of optical dipole traps,
common methods used to trap and techniques to cool neutral atoms. In particular
red-detuned dipole traps for neutral atoms are treated.

The first three chapters serve as introduction for the in depth description of the
BIARO experiment that is given in the fourth chapter. The experimental apparatus,
the results concerning the realization of all optical Bose Einstein condensates and
the engeneering of collective spin states through QND measurement are given, as
well as the description of a feedback scheme recently developed.

My thesis work concerned the realization of a servo controller for the power
of a fiber laser. The work has been driven by the necessity of a tuneable and stable
optical power of a laser source aimed to improve QND measurements on trapped
atoms. Chapter five is devoted to the conception and realization of such a device.





Chapter 1

MEASUREMENTS IN QUANTUM
MECHANICS

WE know from any quantum mechanics textbook that when we perform a
measure on a system the wavefunction collapses on an eigenstate of the

operator we are looking at. After collapsing the weavefunction evolves in time
following the time tependent Schroedinger equation.
An example of measurement is the detection of a photon is using a photomulti-
plier: in the process the photon is adsorbed. This kind of measurement is called a
destructive measurement because the system we were looking at is not just pro-
jected in the detected eigenstate of the operator, but essentially it is destroyed.
In the extreme case where the light field may contain either one or no photons
when we measure the presence of that photon we leave the field empty (see sec-
tion 1.2). The measurement makes the system collapse in a state which is different
from the one we measured.

In this chapter we will focus on the notion of measurement in quantum me-
chanics starting from the postulates of quantum measurement in section 1.1. In the
section 1.4 we define and discuss the weak measurement as defined by Aharonov
[2] and as used later.
Finally in the last section we present and discuss the model of Quantum Non

5



6 MEASUREMENTS IN QUANTUM MECHANICS

Destructive1 measurement and how can we use it to obtain information from a
quantum system without destroing it.

This chapter is meant to be a brief introduction at the theoretical aspects that
lie behind the work of the BIARO experiment.

1.1 Postulates of measurement

We start by the postulates of measurement as given in the book from Cohen-
Tannoudji and Laloe [20]. There it is possible to find a comprehensive discussion
of the postulates, their physical interpretation and a detailed mathematical discus-
sion2.

First postulate: at a fixed time t0 the state of a physical system is defined by
specifing a ket |y(t0)i belonging to the state space S.

Second postulate: every measurable physical quantity A is described by an op-
erator A acting in S; this operator is an observable.

Third postulate: the only possible result of a measurement of a physical quantity
A is an eigenvalue of the corrisponding observable A.

Fouth postulate (discrete spectrum): when the physical quantity A is measured
on a system in the normalized state |yi, the probability P(an) of obtaining
the eigenvalue an of the corresponding observable A is

P(an) =
gn

Â
i=1

|hui
n|yi|2

where gn is the degeneracy and the |ui
ni form a set of orthonormal vectors

which form a basis in the eigensubspace Sn associated with the eigenvalue
an.

1Often reported as quantum non demolition or QND.
2Our discussion of the postulates is deliberately non-technical from the mathematical point of

view.
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Fifth postulate: if the measurement gives the result an the state of the system
immediately after the measurement is the normalized projection onto the
eigensubspace associated with an: Pn|yip

hy|Pn|yi
.

Sixth postulate: the time evolution of the state vector |y(t)i is governed by the
Schroedinger equation:

ih̄
d
dt
|y(t)i= H(t)|y(t)i

.

It is the fifth postulate, otherwise described as the reduction of the wave packet,
that stresses out the concept that goes under the name of projective measurement.
The meaning is simple and at the same time extremely important: before perform-
ing a measurement we should think in terms of probability to find a given result;
this is due to the intrinsic nature of quantum mechanics and it is a consequence
of the superposition principle3. But right after performing a measurement we do
know in which particular state the system is: this is exactly the information we
aquire through the measurement. If we could repeat it quickly enough we will get
the same result. The time scale is fixed by the sixth postulate, the Schroedinger
equation that tells us how the system will evolve with time.

1.2 Photodetection

Let’s describe what happens when we measure how many photons are there in
a certain field. The standard way of doing this kind of measurement is in striking
contrast with the projection postulate.

When we perform a photo-detection process applied to a field mode, the mea-
sured quantity is the photon number operator N̂ = â†â. The eigenvalues of this
operator are the the natural numbers and the eigenstates associated are the well

3Which is implicit in the first postulate, given that we provide a correct mathematical definition
of the state space.
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known Fock states with a definite number of photons. The counting of the pho-
tons, however, relies on the conversion of the photons into electric charges through
the photo-electric effect. Therefore the measured photons are destoyed in this pro-
cess. The effect of the measurement is to project the state into the vacuum instead
of projecting it into a random photon number state as required by the projection
postulate. This kind of measurement does not "project" the state: it "demolishes"
it. This kind of measurement takes therefore the name of demolition measure-
ment.
The destruction of the state is not required by the measurement postulates; it is
then natural to ask ourself if is it possible to perform measurements which do not
demolish the state. A measurement that has the effects we expect from the postu-
lates.
In the limiting case of a field that may contain either one or no photons we should
ask ourself if is it possible to see the same photon more than once. This question
leads us into the domain of quantum non-demolition measurement that we are
going to treat in section 1.3.

1.3 Quantum Non Demolition measurements

A comprehensive introduction to QND may be found in [13]; from the histor-
ical point of view it may be interesting to note that the first proposal of this kind
of measurement were made in the context of gravitational wave detection in the
1970’s by Braginsky and Vorontosov.
Following the textbook approach of Haroche and Raimond [29] we start by stating
the properties of a QND measurement: it is a detection process wich projects the
state of the system into the eigenstate corresponding to the result of the measure-
ment instead of erasing entirely the information of the state it has detected. The
second essential feature in the definition of a QND process is the repeatability:
two successive measurement should yeld the same result4.

4Given that the system has not evolved in the meantime due to some kind of perturbation or a
’long’ time evolution
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Let’s point out that this kind of measurement are the only measurement that fol-
low strictly the postulates of measurement: this are the only true quantum mea-
surements.

1.3.1 Conditions for QND

Here we state the conditions for a measurement to be QND.
Suppose we have a system S and that we want to measure an observable OS of
this system. The mechanism relies on the coupling of the system with a meter
M that evolves among an ensemble of pointer states each "pointing towards" an
eigenvalue of OS. The ensemble of this pointing states should form an eigenbasis
of an observable of the meter OM. The full Hamiltonian takes the form:

H = HS +HM +HSM, (1.1)

where the third term is the coupling between the system and the meter. The con-
ditions for QND are that:

1. there must be some information about OS encoded in the pointer states after

the interaction: the system-meter interaction Hamiltonian must not com-
mute with the meter observable.

[HSM,OM] 6= 0.

This is a necessary condition that ensures that the interaction has some ef-
fect on the evolution of the meter.

2. The measurement should not affect the eigenstates of OS. Often it is easier
to express this condition in a sufficient form5:

[HSM,OS] = 0.

5For a detailed discussion of this point, including the necessary form of this condition, refer to
[13].



10 MEASUREMENTS IN QUANTUM MECHANICS

3. The measurement must be repeatable; excluding extremely fast processes
we can require that the observable of the system should be an integral of
motion for the free system Hamiltonian:

[HS,OS] = 0.

The latter condition tells us that some quantities may never be measured in a QND
way; the simplest exemple is the coordinate X of a free particle in a one dimen-
sional motion: here the free Hamiltonian is proportional to P2 and therefore does
not commute with OS = X . In this situation we have a huge ’back-action’ of the
measurement on the system that makes it impossible to repeat the measurement
and get the same result: if with the first detection we project the system into a posi-
tion eigenstate, according to Heisenberg uncertainity relation, the state has infinite
momentum dispersion. Therefore during the time between two subsequent mea-
surement we have an evolution of the system that have the effect of a complete
dispersion of the results obtained for X .

1.3.2 Single-photon measurement

It may be useful to follow how a QND measurement is done in a specific sit-
uation. In [29] there are several ones discussed both theoretically and from an
experimental point of view. Here we report part of the discussion about the detec-
tion of the presence of a single photon in a cavity using a Rydberg circular atom6

with a standard cavity QED setup using a Ramsey interferometer as in picture
1.1a.

The QND meter is a single Rydberg atom; three states with different principal
quantum number |ei, |gi and |ii are involved. The coupling is provided by the
resonant vacuum Rabi oscillation7 on the |ei ! |gi transition. The atom-cavity
interaction time t is set for a 2p Rabi pulse on this transition.

6Rydberg atoms have high principal quantum number and in their circular configuration the
atomic angular momentum may reach macroscopic values.

7For a discussion about the Rabi problem see section 2.1.
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Figure 1.1: a) Atoms cross the cavity C one at a time; the cavity mode (shown in
red) stores the field to be measured. The e, g and i atomic levels are shown in the
inset. The cavity mode is resonant with the e ! g transition. Atoms are subjected
in zones R1 and R2 (in green) to auxiliary pulses (frequency n), quasi-resonant
with the g ! i transition (frequency ngi). Detector D, downstream, measures the
states of the atoms. b) Diagram depicting the interfering paths followed by an atom
initially in g when there is no photon in the cavity mode. The atom travels between
R1 and R2 either in g (violet line) or in i (blue line). The probability amplitudes
associated with these two paths interfere, leading to fringes in the probability Pg

of detecting the atom in g when n is scanned (shown at right). c) As b but when
the cavity mode stores one photon. The atom, if in level g, undergoes a full re-
versible cycle of photon absorption and emission, finally leaving the photon in C.
In the process, the corresponding amplitude has undergone a p phase shift and the
fringes are reversed (as shown at right). Image and caption taken from [44].
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If the atom is initially in |gi and there is one photon the atom-field system un-
dergoes a complete oscillation passing through |ei and comes back, up to a phase
shift, to the initial state when the atom leaves the cavity. The state, depending on
the presence of the photon, may undergo one of the following transformations:

|g,1i ! �|g,1i; |g,0i ! |g,0i,

where |n = 1i (|n = 0i) represent the presence (absence) of a photon.
What is remarkable is that the presence of a photon produces a p-phase shift of
the atomic state; the information is stored into the atom without destroying the
photon making this a genuine QND process.

The atomic state |ii comes into play to detect this phase shift: the transitions
from this level to the |gi level are far detuned from the cavity mode so that this
state stays invariant passing through the cavity; it is therefore possible to use it as
a phase reference.

The complete procedure to obtain the information about the cavity is the fol-
lowing: first, a p/2 microwave pulse is applied to the atom before it enters the
cavity, so as to put it in a coherent superposition of the |gi and |ii states:

|gi ! (|gi+ |ii)/
p

2. (1.2)

The atom then passes through the cavity and is later probed at the end exit of it
using a second p/2 pulse that completes the Ramsey interferometer setup realizing
the transformations:

|gi ! (|gi+ eif |ii)p
2

; |ii ! (|ii� e�if |gi)p
2

. (1.3)

Adjusting the microwave pulse around the |ii ! |gi transition it is possible to
tune the relative phase f ; the probability Pg|n of finding the atom in the state |gi
depends on the presence of the photon in the cavity:

Pg|0 = (1� cos(f))/2; (1.4a)

Pg|1 = (1+ cos(f))/2, (1.4b)

If we choose the relative phase to be 0 it is easy to see that the probability to find
the atom in the ground state is 0 if there are no photons in the cavity and 1 if
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there is one. Therefore we have a way to detect the presence of the photon in the
cavity. Is the state of the system destroyed after the measurement? When there
are initially no photons in the cavity nothing happens: the atom was in the |gi
state before entering the cavity and remains in the same state. The cavity remains
empty. What happens to the photon if the cavity is not empty in the beginning?
The Rydberg atom enters the cavity, absorbs the radiation and goes transiently
through |ei before finally returning to |gi and releasing the photon. Therefore in
the cavity there was a photon in the beginning and there remains one when the
atom leaves the cavity.
Single photon cavity QND has been realized and a complete discussion of the
(many) experimental subtleties may be found in Nouges et al 1999 [44].
Let’s stress out that this simple configuration is so effective only if the cavity is in
the subspace spanned by |0i and |1i: if the cavity is allowed to be in a Fock state
with more than one photon the 2p Rabi rotation is not exact anymore and there
is probability of absorbing one photon after the complete rotation. We restrict to
this simple situation which presents all the elements of a QND and we will not
discuss the methods to realize a QND measurement of this type for a broader
Fock subspace.

1.3.3 Standard Quantum Limit

One of the feature of QND measurement is that it makes possible to overcome
the standard quantum limit (SQL). We know from the Heisenberg uncertainity
principle that we cannot measure at the same time a pair of conjugate variables A

and B with arbitrary precision:

DADB � h̄.

Anyway nothing prevents us from detecting one of the variables with arbitrary
precision at the price of losing information on the conjugate. The SQL has to
do with the continuous observation of a variable and in this section we discuss a
simple example to introduce what this limit is following [13].
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Suppose that the coordinate x(t) of the mass of an oscillator with eigenfre-
quency w is continuously monitored. The value x(t) may be expressed by two
quadrature amplitudes X1 and X2 related to x by:

x(t) = X1 cos(wt)+X2 sin(wt). (1.5)

The measurement errors satisfy the uncertainity relation:

DX1DX2 �
h̄

2mw
. (1.6)

The continuous monitoring of the coordinate is equivalent to the simultaneous
measurement of the quadrature amplitudes with symmetrical uncertainity DX1 =

DX2. If we substitute the symmetrical uncertainity condition in equation 1.5 we
obtain the standard quantum limit fo the coordinate of the oscillator:

DSQL =

r
h̄

2mw
. (1.7)

Different physical systems and observables have different SQLs and some exam-
ples are given in [13] and in the references cited therein.

QND measurements allows us to extract information only on a single observ-
able disturbing noncommuting ones precisely to the extent that provides satisfac-
tion of the uncertainity principle. Using Braginsky’s words:

[...] the ideal QND measurement is an exact one: the meter does
not add any perturbation, and possible variance is the consequence of
the a priori uncertainity of the value to be measured.

1.4 Weak measurements

In this last section we introduce the concept of weak measurement first pro-
posed by Aharonov et al. in 1988 in [2]. The idea of realizing this kind of mea-
surement is becoming very common and there are several experiments nowadays
that use this procedure to obtain information with a probe characterized by a re-
duced strenght. An interesting and non technical review of these experiments may
be found in [16] while a detailed one is [12].
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Weak measurement is a generalization of the projective measurement that re-
lies on a weak coupling between the system and the meter to gather some informa-
tion about the system almost without perturbing it. The meter is usually a quantum
object and to obtain the weak value of a quantum variable of the system we have
to perform a strong measurement on the meter.

The standard measurement procedure has an Hamiltonian of the type [56]:

H =�g(t)QMAS, (1.8)

where g(t) is a normalized function with a compact support near the time of mea-
surement t; QM is a canonical variable of the meter with conjugate variable PM

8

and AS is the observable we want to measure.
In an ideal situation the initial state of the meter has a well defined PM value p.
The value of AS after the interaction described by H is related to the final value of
PM.
In real situations we may assume the initial state of the meter to be a Gaussian
in the QM and PM representations. Therefore, if the initial state of the system is

Âi ai|AS = aii, the Hamiltonian (1.8) evolves the system to:

e�i
R

Hdte�p2/4(Dp)2 Â
i

ai|AS = aii= Â
i

aie�(p�ai)2/4(Dp)2 |AS = aii. (1.9)

If Dp is much smaller than the spacing between the eigenvalues ai then after the
measurement we shall be left with the mixture of Gaussians located around ai

correlated with different eigenstates of AS. A measurement of PM will then indicate
the value of AS.
What if the Dp is much bigger than all ai? The final probability distribution will
still be a Gaussian but now we have a huge spread. The center of the Gaussian will
be at the mean value of AS: hASi= Âi |ai|2ai. A single measurement like this will
give us almost no information because the spread of the Gaussian is much higher
than the hASi.

If we want to measure the value of AS of a particle in an ensemble of N par-
ticles prepared in the same state we can reduce the relevant uncertainity by the

8They satisfy [QM,PM] = ih̄.
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factor 1/
p

N leaving unchanged the mean value of the average hASi. Enlarging
the number N we can obtain a measurement with the desired precision.

1.4.1 Postselection

For a sufficiently large ensemble, as said in the previous section, we are able
to obtain the value hASi by taking the average of the outcome of the strong mea-
surement of PM.
We may now change the outcome of hASi by averaging on a particular subensem-
ble and taking account only of the values of PM of this part of the original ensem-
ble after the measurement has been done. We call the operation of chosing the
subensemble a postselection. Surprisingly enough some postselections about the
particles may yield values of hASi outside the expected range [min(ai),max(ai)].
The procedure of the measurement starts with a large ensemble of particles pre-
pared in the same initial state. Every particle should interact with a separate mea-
suring device. Then we perform the measurement wich selects the final state. In
the end we take into account only the values of PM corresponding to the postse-
lected particles.

Consider an ensemble of particles with initial state |yii and a final state |y f i.
In between we switch on the interaction described in eq.1.8 with an initial state of
the meter proportional to e�q2/4D2

. After the postselection the state of the meter
(up to a normalization factor) is

hy f |e�i
R

Hdt |yiie�q2/4D2 ⇠= hy f |yiie
iq

hy f |AS|yii
hy f |yii e�q2/4D2

. (1.10)

The congruence holds if the spread D is sufficiently small:

D ⌧ maxn
|hy f |yii|

|hy f |An
S|yii|1/n . (1.11)

In the p representation the state of the meter after the postselection is approxi-
mately

exp[�D2(p�
hy f |A|yii
hy f |yii

)2];
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this state gives us the weak value for AS:

ASW ⌘ hy f |A|yii/hy f |yii. (1.12)

It is important to stress out that the uncertainty of p for each of the meters is much
bigger than the measured value: Dp = 1

2D � ASW therefore a single measurement
does not provide a precise information about the observable AS. But the average on
N system+meter devices allows us to come to the situation where Dp/

p
N ⌧ ASW

and is therefore possible to ascertain the value of ASW with arbitrary precision.
A discussion of the mathematics beheind the weak value may be found in the
original paper by Aharonov [2] and in [3]. Weak measurement has opened the
doors for a deeper understanding of the quantum world but has also introduced
some strangeness that we won’t discuss here. For the interested reader there are
recent experimental works (and open problems) about the possibility to measure
the trajectories of particles passing through an interferometer [35] and about the
complete measurement of a wavefunction [40]. In 1992 Lucien Hardy suggested
a paradoxical thought experiment that uses weak measurements [28] and the first
experimental realizations are now being published [58].





Chapter 2

DIPOLE FORCE

IN this chapter we introduce the concept of dipole force raising from what is
called the lighshift of the levels of an atom due to strong coupling with a light

field. The basic idea is that an electromagnetic field can be used to shift the energy
levels of an atom; the energy shift is dependent on the intensity of the beam (and
therefore, in a real situation, on the shape of the beam and the position of the atom
inside it). Due to this dependance of the energy shift on the position the atoms in
a laser beam experience a force dependent on their position and the detuning of
the laser with respect to the atomic frequency.
In section 2.1 we introduce the results of the Rabi two-level problem as a starting
point for the following sections. We then expose in section 2.2 the main results of
the dressed states picture that are very useful to visualize radiation pressure and
dipole force acting on atoms in a laser field.

2.1 Atom-Field interaction

Consider an atom in a radiation field: the time evolution of the system is given
by the time dependent Schroedinger equation:

Ĥy(�!r , t) = ih̄
∂y(�!r , t)

∂ t
, (2.1)
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where Ĥ is the total Hamiltonian for the atom in the field which is given by a field
free, time indipendent, atomic part Ĥ0 and the interacting part Ĥi(t). The field free
part have eigenvalues En = h̄wn and eigenfunctions fn(

�!r ) which form a complete
set that can be used to expand the solution of 2.1:

y(�!r , t) = Â
k

ck(t)fk(
�!r )e�iwkt . (2.2)

If we substitute the expansion in 2.1, after a simple manipulation1 we get to the
following system of equations that are equivalent to the starting equation:

ih̄
dc j(t)

dt
= Â

k
ck(t)H 0

jk(t)e�iw jkt , (2.3)

where H 0
jk(t) = hf j|Ĥ 0(t)|fki and w jk = (w j �wk).

2.1.1 The Rabi two-level problem

To evaluate the solution of such a system in the case of our interest we can
make the following approximations:

1. consider an atom with the inner shells filled, so that only two atomic levels
are available in first approximation; this means that in 2.3 we can truncate
the sum just to two levels, ground (k=1) and excited (k=2). This gives the
Rabi two-level problem first studied in [47].

2. If we use a narrow band laser (with angular frequency wl) as a radiating field
it is useful to make the rotating wave approximation (RWA) that consists
in neglecting terms of the order 1/wl compared to terms of the order 1/d
where d = wl � wa is the detuning of the laser compared to the atomic
resonance frequency.

3. We may consider the the electric field E (�!r , t) to be constant in space in
the region of interest: the wavelenght is typically of the order of 102nm
compared to the dimension of the fk(t) that usually are contained in a radius
 1nm. This results in the electric dipole approximation.

1For details in the derivation see, for instance, [43] and references cited therein.
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As a result of the approximation we can obtain the uncoupled differential
equations for the cg(t) and the ce(t):

d2cg(t)
dt2 � id

dcg(t)
dt

+
W2

4
cg(t) = 0, (2.4)

d2ce(t)
dt2 + id dce(t)

dt
+

W2

4
ce(t) = 0; (2.5)

here we introduced the Rabi frequency2 W defined as

W =
�eE0

h̄
he|r̂|gi,

where E0 is the amplitude of a light field in the form of a plane wave propagating
in the z direction. To get an idea of what these equations imply let’s look at the
solution for the simple initial conditions cg(0) = 1, ce(0) = 0:

cg(t) =
✓

cos
W0t
2

� i
d
W0 sin

W0t
2

◆
e+id t/2, (2.6)

ce(t) =�i
W
W0 sin

W0t
2

e�id t/2. (2.7)

The generalised Rabi frequency W0 is defined as:

W0 =
p

W2 +d 2.

The solutions clearly suggest that the electron is oscillating between the two levels
with frequqncy W0 that increases with the detuning d . The probability to find the
electron in the exicted state is proportional to W2

W02 that is the amplitude decreases
as we increase the detuning.

2.1.2 Introducing the Light Shifts

The effect of the field on the atom can be more subtle than what we considered
until now. The energies En, eigenvalues of E0 are no longer eigenvalues of the full
Hamiltonian due to off-diagonal terms in H 0.

2This definition of the Rabi frequency is made to be the real oscillation frequency of |ck(t)|2 in
the case of exactly resonating field (i.e. d = 0).
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If we evaluate the equations 2.3 using a time-indipendent perturbation H 0
ge and

absorb the time dependence e�iwkt into each coefficient ck(t) we would get the
following set of equations3:

ih̄
dc0g(t)

dt
= c0e(t)

h̄W
2
, (2.8)

ih̄
dc0e(t)

dt
= c0g(t)

h̄W
2

� c0e(t)h̄d , (2.9)

where the primed coefficients are related to the non primed ones by:

c0g(t) = cg(t),

c0e(t) = ce(t)e�id t .

The energies of the ground and excited states, shifted by the field, are therefore
found diagonalizing the matrix of the system to obtain:

DEe,g = h̄/2(�d ⌥W0). (2.10)

2.2 Dressed states picture

The eigenstates corresponding to the DEg,e are the so called dressed states

discussed in [20]; as in the whole chapter we will briefly report the results of our
intrest: for an insightful discussion refer to [23].

We start by writing the Hamiltonian for the atom-laser coupled system

Ĥ = ĤA + ĤR +V̂ (2.11)

with the three terms in their second quantized version:

ĤA =
P2

2m
+ h̄wab†b; (2.12)

here b = |gihe| and b† = |eihg| are the lowering and raising operators.

ĤR = Â
l

h̄wl a†
l al , (2.13)

3There are different ways to get this result, including the rotating frame transformation; dis-
cussion of the different methods can be found in [43], in [8] or in the many references cited therein.
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where a†
l and al are the creation and destruction operators of a photon in the

mode l amongst which there is l = l, the one corresponding to the laser field4.
The interaction term is expressed (in the dipole approxmation and RWA) using
the positive and negative frequency components of the electric field taken for the
atomic average position r = hr̂i5:

E+(r) = Â
l

El (r)al ;

E�(r) = Â
l

E ?
l (r)a

†
l .

The expression for the interaction is then just:

V̂ =�
�!
d [̇b†E+(r)+bE�(r)]. (2.14)

In the following we neglect the kinetic term in the atomic Hamiltonian6. When the
atom laser mode coupling is not taken into account (i.e.

�!
d = 0) we get a picture

which is easy to visualize:
"the eigenstates of the dressed Hamiltonian are bunched in manifolds En, n integer,
separated by the energy h̄wl , each manifold consisting of two states |g,n+1i and
|e,ni"[23] separated by the energy h̄(wa �wl) = h̄d as in figure 2.1a.

Introducing the atom-laser coupling further splits the energy of states belong-
ing to the same manifold. It is possible to re-define the (real) Rabi frequency W(r)

and to introduce a phase f(r) related by7 8:

2
h̄
he,n|V |g,n+1i= W(r)eif(r). (2.15)

4The electromagnetic field is quantized on a complete set of orthonormal field distributions
El (r).

5A more complete treatment would use the position operator instead: the use of this semiclas-
sical approssimation is valid as the extension Dr of the atomic wave packet is small compared with
the laser wavelength l .

6This is equivalent to solve the equations at a given point �!r .
7The Rabi frequency defined in this way depends on the number of photons in the field. In a

coherent laser field with Poissonian distribution and sufficiently large mean number of photons we
can neglect the dependance and thus recover the previous definition.

8The definition given in section 2.1.1 for the generalized Rabi frequqncy holds.
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Figure 2.1: Dressed states energy leveles. a) Shows the energy levels for two dif-
ferent manifolds when the atom-laser mode is not taken into account. b) Effect of
the laser-atom couplig on the energy levels. c) Position dependent energy levels
in a gaussian laser beam: outside the beam we recover the situation of uncoupled
states.. Image taken from [23].

The energies for the full dressed Hamiltonian are still folded in manifolds En (see
fig.2.1b) but the coupled levels are now shifted by the amount found in the pre-
viuos section in eq. 2.10. It is now useful to sighty change the notation to better
appreciate the dressed states formalism:

E1,2;n(
�!r ) = (n+1)h̄wL �

h̄
2
�
d ±W0(�!r )

�
(2.16)

corresponding to the eigenstates:

|1,n;�!r i=+eif(�!r )/2 cos(q)|e,ni+ e�if(�!r )/2 sin(q)|g,n+1i; (2.17a)

|2,n;�!r i=�eif(�!r )/2 sin(q)|e,ni+ e�if(�!r )/2 cos(q)|g,n+1i. (2.17b)

Here the angle q is position dependent and defined as:

cos(2q(�!r )) =� d
W0(�!r )

, sin(2q(�!r )) =
W(�!r )

W0(�!r )
.
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The importance of this result is due to two different facts:

1. the dressed states are combination of the ground and excited states of the
bare Hamiltonian;

2. in an inhomogeneus laser field both the energies and the states will depend
on the position of the atom in the field (figure 2.1c depicts the situation for
a gaussian beam).

2.2.1 Spontaneous emission

Spontaneus emission in the dressed picture allows to easily interpret the triplet
structure of the spontaneus emission in terms of a princpial band (frequency wL)
and two sidebands (frequency wL ±W0(�!r )).
Since states |1,n;�!r i and |2,n;�!r i are superposition of the ground and excited
states of the bare Hamiltonian we have four possible couplings when we con-
sider the pair of manifolds En and En�1 that correspond to the three different fre-
quencies. The matrix elements between | j,n;�!r i and |i,n� 1;�!r i are the di j =

hi,n�1;�!r |d(b̂+ b̂†)| j,n;�!r i:

d11 =�d22 =
�!
d cos(q)sin(q)eif ; (2.18a)

d12 =�
�!
d sin2(q)eif ; (2.18b)

d12 =
�!
d cos2(q)eif . (2.18c)

Here the diagonal terms correspond to the principal band as it is easy to infer from
figure 2.2.

2.2.2 Radiation pressure and dipole force

Now that the states are defined and the possible interaction delined it would
be possible to study the evolution of the density operator r writing a master equa-
tion for the populations Pi(

�!r ) and coherences ri j(
�!r ) as function of the rates of

transfer Gi j (that are proportional, as one would expect, to the square of dipole
matrix elements di j). This goes over the purpose of this work and we suggest the
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Figure 2.2: Spontaneus emission between dressed states and corresponding fre-
quencies. Image taken from [23].

interested reader to refer to the many available references [18][23].
Here we are mainly interested at the effect in terms of force that the atoms experi-
ence in a laser field so we report the result obtained for the average force9 which
is related only to the gradient of the atom-laser mode coupling:

�!
f (�!r ) = hb†aL—[

�!
d EL]+ba†

L—[
�!
d E q

L ]i, (2.19)

it is then possible to recover the well known equation:

�!
f (�!r ) =

h̄W
2

i—f(rege�if �rgeeif )� h̄—W
2

(rege�if �rgeeif ). (2.20)

Here the terms reg = Ânhe,n|r|g,n+ 1i and rge = Ânhg,n+ 1|r|e,ni are the off
diagonal terms of the density matrix of the states of the bare Hamiltonian.

The physical interpretation of the two terms in equation 2.20 is that the first
part, proportional to the gradient of the phase f(r), is the radiation pressure term
while the second one, proportional to the gradient of the Rabi frequency W, is the

9Note that the results are still in the semiclassical approximation used before and the position
operator is replaced by it’s average value.
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dipole force which we are mostly interested in.
To get a view of how the dipole force behaves it is useful to express it as a function
of the populations and coherences of the dressed states:

�!
f dip = h̄—W0(P2 �P1)� h̄W0—q(r12 +r21). (2.21)

Since the dipole force is related to the difference in the populations the effect is
connected with the specific situation we are considering and the relative solution
of the master equation for the density operator. The simplest case is the one for
atoms at rest. It is important to notice that we are interested to cold atoms so that
the atoms at rest situation is a good starting point and that the effects due to motion
of the atoms10 in the beam could be treated as corrections to this specific situation.

Dipole force for atom at rest

If the atom is at rest we can replace the populations with their steady state
values Pst

i and express the dipole force as a function of the forces experienced by
the different dressed states —E1,2 as:

f st
dip =�Pst

1 —E1 �Pst
2 —E2, (2.22)

this is simply the mean between the two forces weighted by the probability of
occupation. In terms of Rabi frequency and detuning it becomes:

f st
dip =�—

✓
h̄d
2

log(1+
W2

2d 2 )

◆
. (2.23)

Finally we can explain the connection between the sign of the dipole force and
the sign of the detuning. Citing from [23]:

We would like to show ow the dressed-atom approach gives a sim-
ple understanding of the connection between the sign of the dipole
force and the sign of the detuning d = wL � wa between the laser
and the atomic frequencies. If the detuning is positive the levels 1

10These effects include, but are not limited to, Doppler shift and variation of the force over a
wavelenght.
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are those that coincide with |g,n+ 1i outside the laser beam. It fol-
lows that they are less contaminated by |e,ni than levels 2 and that
fewer spontaneous transitions start from 1 than from 2. This shows
that levels 1 are more populated than levels 2 (Pst

1 iPst
2 ). The force re-

sulting from levels 1 is therefore dominant, and the atom is expelled
from high-intensity regions. If the detuning is negative, the conclu-
sions are reversed: Levels 2 are more populated, and the atom is at-
tracted toward high-intensity regions. Finally, if d = 0, both states 1
and 2 contain the same mixture of e and g, they are equally populated
(Pst

1 = Pst
2 ), and the mean dipole force vanishes.

This gives account for the two different possibilities to use the dipole force
to cool atoms: blue detuned lasers (d i0) can be used to trap the atoms in the low
intensity region of the beam whereas red dutuned one (d h0) do the opposite. We
will further discuss the concept of dipole trap in chapter 3.



Chapter 3

OPTICAL DIPOLE TRAPS

IN this chapter we discuss the way to use the dipole force introduced in chapter
2 to trap, and eventually cool by evaporative cooling, atoms using a detuned

laser.
We will mainly refer to the article of Grimm et al. of 1999 [27] and Philips of
1998 [45] in the this chapter.

3.1 Trapping atoms

3.1.1 Dipole potential: another approach

The optical dipole force arises form the interaction between induced atomic
dipole moment and intensity gradient of the driving field ([27]). Here we report
briefly the main results wich are useful for our work. The reader is urged to note
that while the approach of the previous chapter was useful to introduce and under-
stand the nature of the interactions giving rise to the dipole force and the radiation
pressure from a quantum point of view, now it may be convenient to think of the
dipole moment �!p in terms of the complex polarizability a and express its ampli-
tude as

p = aE, (3.1)

29
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where E is the amplitude of the electric field expressed in complex notation
�!
E = êEe�iwt + c.c.

The interaction potential is therefore

Udip =�1
2
h�!p �!

E it =� 1
2e0c

¬(a)I(�!r ), (3.2)

where the angular brackets denote the time average over rapid oscillating terms
and the intensity of the field is given by I = 2e0c|E|2.
The polarizability is a function of the damping rate G (corresponding to the spon-
taneus decay rate from the excited level)[27]:

a = 6pe0c3 G/w0

w2
0 �w2 � i(w3/w2

0 )G
. (3.3)

The calculation of G may be done in a classical way using the Larmor formula, in
a semiclassical approximation (two level atoms + classical radiation) or even in a
fully quantized approach. For most purposes with alkali atoms using the classical
formula G = e2w2

6pe0mec3 is enough, but for coherence with the previous chapter we
express it in the semiclassical approximation:

G =
w3

0
3pe0h̄c3 |he|d̂|gi|

2. (3.4)

In the usual RWA and in the limit of large detuning and negligible saturation
(the excited level is far from being fully occupied) the expression for the dipole
potential is derived as:

Udip =
3pc2

2w3
0

G
d

I(�!r ) (3.5)

and the scattering rate may be expressed as:

Gsc =
3pc2

2h̄w3
0
(
G
d
)2I(�!r ). (3.6)

Even in this semiclassical approximation we have recovered the dependance of
the potential (and therefore of the force) on the sign of the detuning d . It may be
useful to express the scattering rate as a function of the dipole potential:

Gsc =
G
d

Udip,

therefore a large detuning is often used to reduce the scattering rate keeping the
depth of the trap constant.
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3.1.2 Alkali atoms

Many experiments in atom cooling are done with alkali atoms. This is due to
their rich internal structure that on one side blurs the simple ’two-level system’
picture, on the other offers plenty of opportunities for deeper investigation and
sub-doppler cooling [43],[45] and [7]. At the BIARO experiment (see chapter 4)
Rubidium atoms (87Rb) are used.
The ns ! np transition, for a nuclear spin I = 3

2 , has a complex scheme due to
fine splitting DFS and hyperfine splitting DHFS for each level (see fig: A.2). Let’s
remind that the energy scale is h̄D0

FS � h̄DHFS � h̄D0
HFS, where the prime refers

to the excited state.

For unresolved hyperfine splitting of the excited level (i.e. all optical detunings
d � DHFS), the ground state of an atom with total angular momentum F and
magnetic quantum number mF ’feels’ a light polarization potential [27]:

Udip(r) =
pc2G
2w3

0

✓
2+PgFmF

d2,F
+

1�PgFmF

d1,F

◆
I(r). (3.7)

Here gF is the Landé factor, P refers to the polarization of the light (P = 0,±1,
for linearly and circularly s± polarized light) and the detunings d1/2,F refer to the
energy splitting between the ground state 2S1/2,F and the center of the hyperfine
split of the the excited levels 2P3/2 and 2P1/2 respectively.

3.1.3 Blue-detuned and red-detuned dipole traps

We have seen in sections 2.2.2 and 3.1.1 that the sign of the dipole force and
potential (as well as lightshift of the energy levels) depends on the sign of the
detuning d . Traps realized with d > wa are called red-detuned dipole traps while
the ones realized with d < wa are called blue-detuned dipole traps.
The main difference is that red detuning provides a minimum of the potential in
the high laser intensity region (e.g. the focus of the laser beam) whereas blue
detuned light ’repels’ the atoms toward regions of low intensity (see Figure 3.1).
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Figure 3.1: Dipole traps with red (left) and blue (right) detuning. For the red-
detuned trap a Gaussian profile is assumed for the laser beam whereas a Laguerre-
Gaussian LG01 mode is taken for the blue-detuned one. Image taken from [27].

Red-detuned optical dipole traps

As stated in previous sections for a red detuning the focus of a laser beam
provides the first example of a stable dipole trap; in fact it is the simplest one,
but there are other possible solutions (see Figue: 3.2), like standing wave traps

(that are useful to realize a 1D lattice of shallow potential minima) and crossed-

beam traps on which we will focus more. Crossed-beam traps are used to resolve
the anisotropy of the confinement that in a single laser beam trap is strong in the
transverse direction and weak in the propagation direction.

It should be noted that with red detuned focused beam traps the attainable trap
depth is of the order of mK, much smaller than thermal energy of the room tem-
perature atoms: it is therefore necessary to pre-cool the atoms before being able
to load them in such a trap.
Tipically the traps are loaded from pre-cooled atoms trapped in a magneto-optical
trap (MOT); the specific configuration of the MOT(s) and their position with re-
spect to the dipole trap depend on the purpose and on the creativity of the exper-
imenters. We will briefly describe the configuration of the BIARO experiment in
section 4.1.
After loading a crossed-beam trap it is possible to use it to perform evaporative
cooling (see [1] for a ’proof of principle’ experiment with Na atoms), a technique
that is fundamental to increase phase-space density, that has been the key to obtain
Bose-Einstein condensates [4], [24]. In order to achieve evaporative cooling the
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optical power of the laser used for the trap is ramped down to allow the atoms with
higher thermal energy to escape from the trap. After thermalization of the atoms
remaining in the trap, the temperature is decreased and the phase-space density
may increase.

Figure 3.2: Dipole traps types. a) Single focused beam trap. b) Standindg wave
trap. c) Crossed beam trap. Image taken from [27].

Blue-detuned optical dipole traps

Blue-detuned light offers the possibility to realize traps in which the atoms are
stored in a ’dark’ spot, therefore reducing the effects of light on the sample atoms.
In particular there is no or little light shift of the energy levels, photon scattering
is greatly reduced and losses due to interaction with light are limited.
There are however some disadvantages in realizing these kind of traps, mainly due
to the fact that the laser beam repels the atoms and is necessary to realize ’walls’
around the dark area in which the sample is to be confined.
The balance of these two aspects makes blue-detuned dipole traps efficient in the
situation of hard repulsive optical walls or large potential depth for tight confining
(U � kBT ). For an extensive description of the possible geometries and means to
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realize a trap using blue detuned light refer to [27] or [43].

3.2 Cooling methods in dipole traps

In this section we briefly review the most used methods for cooling samples
in dipole traps. We remind, for historical reasons, that atom cooling methods have
been enhanced greatly in the late eighties and in the nineties of the 20th century
and that the field is still growing, though at a slower pace.
The first big step has been the developement of Doppler cooling: this method is
"based on cycles of near resonant absorbtion of a photon and subsequent spon-
taneus emission resulting in a net atomic momentum change per cycle of one
photon momentum h̄k with k = 2p/l denoting the wave number of the absorbed
photon"[27]. Since spontaneus emission give rise to heating due to momentum
recoil, the limit in reacheable temperature is given by the equilibrium between
heating and cooling. Theoretical treatment of Doppler cooling relies on the simple
two-level atom picture. The minimum temperature reacheable with this method is
called Doppler temperature kBTD = h̄G/2 and is of the order of 101�2mK, just
enough to load a dipole trap.
To reach sub-Doppler temperatures one has to exploit the complex structure be-
yond the two-level picture; polarization gradient cooling is realized with standing
waves with spatially varying polarization and relies on optical pumping between
Zeeman sublevels of the ground state. The most-famous version of this method is
probably the "Sysiphus cooling" [23] in which an atom loses kinetic energy climb-
ing up the dipole potential induced by a standing wave with varying polarization;
when the polarization of the wave changes from s+ to s� the light shift of two
Zeeman sublevels must change in a correlated way in order to make a moving
atom runs up a potential hill more often than it runs down. The net effect is that
the loss in kinetic energy is greater than the gain. For a comprehensive description
and illustration of this method see [19] or [45]. Exploiting Sysiphus effect allows
to reach temperatures of the order of 10Trec where the recoil temperature, defined
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as

Trec = h̄2k2/m, (3.8)

is the gain in temperature associated with the kinetic energy gain due to the emis-
sion of one photon. For alkali atoms Trec is of the order of the µK, being equal to
0.36µK for Rubidium 87 that is used in the BIARO experiment.

To reach sub-recoil temperatures one has to introduce an absorbing mecha-
nism that is sensible to atom velocity; the idea is to make the atoms with ve-
locity close to zero dark to the absorbtion-emission mechanism. Raman cooling
[33] is realized with Raman pulses from two counterpropagating lasers that trans-
fers atoms between two ground levels |g1i and |g2i transferring 2h̄k momentum
in each absorbtion. Adjusting frequency width, detuning and propagation direc-
tion one can tailor pulses that excite all atoms but the one with velocity close to
zero. Spontaneus emission from excited atoms in |g2i, being random in direction,
brings atoms back to |g1i leaving a bigger fraction of the sample with (almost)
zero velocity. Repeating the cycle allows to accumulate atoms in a small veloc-
ity interval around v = 0 thus cooling the sample. Raman cooling allows to reach
sub-microkelvin temperature but requires pre-cooling with another mechanism
being effective on samples with starting temperature of the order of few tens of
microkelvin.

Resolved-sideband Raman cooling

Resolved-sideband Raman cooling is a tecnique developed first for laser cool-
ing in ion traps and later adjusted for trapping neutral atoms [57]. The requirement
for this method of cooling is to have a strong confinement of the atoms in at least
one dimension, with oscillation frequency wosc large enough to be resolved by
inelastic Raman transitions between two ground levels. The degeneracy of the
ground level is usually resolved with the aid of a small magnetic field, therefore
the splitting between the ground levels is of the order of a Zeeman splitting.
The atomic motion is described by a wavepacket formed of a superposition of vi-
brational states |ni; in the Lamb-Dicke regime (rms size of the wavepacket small
compared with the wavelenght of the cooling transition) almost all absorbtion-
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spontaneous emission cycles returns to the same vibrational state (Dn = 0). To per-
form resolved-sideband Raman cooling one must repeat cycles of Raman pulses
tuned to excite transitions with Dn = �1 followed by optical pumping into the
initial state with Dn = 0. The net effect the motional ground state |n = 0i is selec-
tively populated since it is the only state that is dark to the Raman pulses.

Figure 3.3: Resolved-sideband cooling scheme using the two lowest ground states
of Cs atoms. Image taken from [57].



Chapter 4

THE BIARO EXPERIMENT

IN this chapter we will describe the experimental setup and the purpose of the
BIARO experiment. In section 4.1 we will give a brief description of the appa-

ratus, the cavity and the cooling methods used in the experiment. In the subsequent
section, 4.2 we will introduce Bose Einstein condensation and describe how it has
been possible to reach it in the BIARO experiment. Section 4.3 is devoted to how
to perform a QND measurement in the experiment; from the theoretical analysis
of such measurements it has been predicted the possibility to produce non clas-
sical atomic states using QND measurements [54]. These kind of measurements
have been recently used to perform feedback which is a mean to fight naturally
occurring decoherence of a coherent spin state[55].
Section 4.4 is a brief discussion of the compensation of the differential light shift
induced by the trapping radiation on the levels involved in the D2 transition.

The setup, the theoretical analysis and all the experimental results reported in
this chapter have been realized in the years from 2009 by the scientists that have
worked on it until now. The description of the state of the experiment is important
to understand the purpose of the work described in chapter 5.

37
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4.1 Experimental setup

In this section we will describe the setup: the cavity, the trapping and the
cooling methods.

The experimental apparatus is composed of two chambers: the first is kept
under high vacuum (pressure below 7⇥10�8mbar) and a 2 dimensional magneto-
optical trap (MOT) is operated and used as a source1 of pre-cooled atoms. The
science chamber is kept under ultra-high vacuum (pressure below 10�9mbar) and
contains the coils for a 3D MOT as well as the crossed optical cavity. Experiments
are realized in the science chamber at the center of the cavity.
Technical details on this part may be found in [8] [9] [10] [37] [53] [54] [55].

4.1.1 The high finesse cavity

Here we report a description of the main properties of the cavity; the full char-
acterization of the cavity is reported in [8] and [52]
The cavity is in a butterfly configuration (see fig 4.1), an ingenious idea to provide
high trapping (i.e. deep potential) with low power laser. The geometry of the cav-
ity allows the realization of a crossed-beam dipole trap (see section 3.1.3 and Fig:
3.2).
The cavity is made up of four mirrors placed at the corners of a square with a

diagonal of 90mm; two mirror mounts are completely fixed while one is actuated
by piezoelectric actuators, which allow for a coarse alignment of the cavity. The
last mount is a piezo-actuated three-axis nano-positioning system with a maximal
angular displacement of 2mrad and a translation of 50µm. It is used to finely ad-
just the cavity crossing angle and dynamically control the cavity length [8]. The
four mirrors of the cavity are highly reflecting at both 1560nm and 780nm. The
free spectral range (FSR) of the cavity is 976.2MHz and the cavity’s full width at
half maximum (FWHM) linewidth is g = 546kHz at 1560 nm.
The finesse2 of the cavity has been studied a priori for the two resonating wave-

1The source of atomic background pressure is the vapor pressure of a 1g 87Rb sample.
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Figure 4.1: a)Scheme of the butterfly cavity.b)The inner vacuum setup with the
suspended cavity and the coils generating the MOT magnetic field; image taken
from [9]

Figure 4.2: Tomographic images of the optical potential. The images are obtained
setting the probe frequency to different detuning D with respect of the D2 line. The
images represent atoms with energy levels lightshifted in a position-dependent
manner. Atoms which are sensitive to higher detuning are experiencing a higher
lightshift i.e. they are deeper in the optical potential. Image taken from [9].
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lenghts and then measured [9] for 1560nm obtaining F1560 = 1788.
The trapping laser radiation at 1560nm is injected in the cavity and excites the
fundamental transverse electromagnetic (TEM00) mode: both the magnetic and
the electric field are perpendicular to the direction of propagation3. Tomographic
images of the optical potential have been obtained with light-shift tomography

[15]. The 1560nm laser has been locked to the cavity using a Pound-Drever-Hall
technique [25] that allows to fast correct the frequency with an acousto-optic mod-
ulator in double pass [8] [9]. Frequency stabilization of the trapping radiation has
been improved using serrodyne modulation as described in [37]. The 780nm prob-
ing radiation is obtained by doubling the frequency of the trapping laser.

Higher modes of the cavity

The use of phase masks allows an efficient injection of modes of the cavity
different from the fundamental TEM00. In particular in [10] there is the full de-
scription of the method used to lock the 1560nm laser to the TEM10 and TEM20
modes. These modes may be used in the future to trap atoms in a well defined
lattice, cool the atoms down to the BEC temperature (see section 4.2) and obtain a
lattice of BECs. This geometry can be superimposed to the fundamental mode of
the cavity during an experimental sequence: therefore it may be used to split the
condensate trapped in the fundamental mode and perform experiments on conden-
sates in each lattice site and then regroup the condensate by removing the higher
modes. It may be possible in the future to exploit this feature to perform high
precision atomic interferometry using the BECs [8].

4.1.2 The trapping

The Gaussian profile of the 1560nm beam that excites the fundamental mode
of the cavity produces a position dependent lightshift on the levels of our interest,

2The finesse F of the resonator is defined as the ratio of the FSR and the FWHM of a resonance
for a specific resonance wavelength.

3See, for instance, [36] or R. Paschotta Encyclopedia for Photonics and Laser Technology,
Wiley-VCH in the open access online version available at rpp-enc.com.
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Figure 4.3: . Image taken from [9].

that realize an optical dipole trap. Considering only the relevant D1 and D2 tran-
sitions, the ground level 5S1/2 is downshifted for a maximum of the intensity so
atoms will be trapped in the ground state at the center of the Gaussian beam. The
5P3/2 state would be, if we consider only the D lines, blue-shifted and would expel
the atoms at the maximum of the intensity. Since the 5P3/2 ! 4D5/2,3/2 transitions
are at 1529nm it is important to take them into account; for these transitions the
trapping radiation is red-detuned so the 5P3/2 level is red-shifted; the proximity of
these 1529nm resonances makes the light shift on the 5P3/2 level large compared
to the one of the ground state resulting in a differential light-shift of the relevant
level as shown in Fig: 4.4. The trapping of the atoms is done in three steps: using
the 2D MOT an array of cold atoms it is realized and eventually directed towards
the 3D MOT [52]. The array of cold atoms is then trapped in a 3D MOT centered
on the cavity crossing region (and 3mm above the 2D MOT jet to avoid direct
collisions with thermal atoms). In this situation it is possible to obtain an atomic
cloud of a few 109 atoms after 3 seconds of loading [9].
The last step, described in [9], is the transfer of the atoms from the 3D MOT to
the dipole trap realized with the trapping radiation at 1560nm.
After the loading sequence about 25⇥ 106 atoms are trapped at the crossing re-
gion of the dipole trap at a temperature T = 230µK. The number of atoms in
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Figure 4.4: . Image taken from [8].

the trap decreases with exponential behaviour (lifetime t = 6.7s); the temperature
was measured to be constat in the dipole trap, meaning that the trap itself do not
heat the atomic sample: the heat is exactly compensated by the energy lost trough
evaporation of the most energetic atoms.

4.1.3 Cooling

The optical cooling of the atomic sample requires two lasers. The first one is
tuned of about 3G on the red side of the cycling transition |F = 2i ! |F 0 = 3i;
the photon is absorbed with higher probability from the direction against velocity
of the atom. The momentum transfer gives a kick in the opposite direction slow-
ing down the atom. Since there is non zero probability to excite the transition
|F = 2i ! |F 0 = 2i and since from |F 0 = 2i the atoms can decay to the ground
level |F = 1i which is dark to the cooling laser, a repumper tuned on the transition
|F = 1i ! |F 0 = 2i that repumps the atom on the |F = 2i level is used [8] [53].
The two lasers are extended cavity laser diode: the repumper is locked to the hy-
perfine |F = 1i! |F 0 = 2i transition through frequency modulation spectroscopy
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and the cooling laser is frequency locked to the repumper. The frequency of the
cooling laser may be changed with respect to the atomic transition and this is es-
sential to load the optical dipole trap from the MOT. The two lasers used for the
cooling are injected in a fiber cable and used both for the 2D and the 3D MOTs
[8], [9], [53].

Evaporative cooling

To obtain Bose Einstein condensation (see section 4.2) in the dipole trap, evap-
orative cooling is used. The quantum degenerate regime for the BEC requires
small interatomic spacing in the sample which is obtained with high trapping fre-
quency. It is then important to measure the frequencies of the trap to define an op-
timal ramp for the evaporative cooling: the chosen ramp must result in increased
phase space density of the sample. A theoretical analysis of the frequencies of the
trap is reported in [8] and [53].

Measuringthe trap frequencies

It is worth citing two experimental methods to measure the trap frequencies:
the first exploits parametric heating whereas the second measures the modes of
oscillation after a sudden change of the geometry of the trap [53].
To measure the trapping frequencies exploiting parametric heating a sinusoidal
modulation is applied on the trapping depth after loading the trap. After a fixed
number of oscillation (500 in the context of BIARO) the number of atoms at the
center of the trap is measured. Sweeping over a range of frequencies it is possible
to find the resonance frequency, characterized by important losses in the number
of atoms. In parametric heating the resonance frequency is twice of the frequency
of the system (in our case of the trap). The horizontal frequency wx = wy is found
to be equal to 700Hz when the intra-cavity power is 240W [53].
When the frequency is measured by changing the shape of the trap, the idea is to
suddently increase the intra-cavity power (up to 240W in the context of BIARO)
and observe the oscillation of the size of the atomic cloud: the frequency of this
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oscillation is, if one takes the image from a direction wich is perpendicular to the
arms of the cavity, double of the frequency of the trap. This method confirmed the
results of parametric heating allowing an estimate of wx,y = 600Hz [53].

4.2 Bose Einstein condensates

We know from statistical mechanics [5][32] that a boson gas at finite tempera-
ture may display macroscopic population of the ground state. This striking feature
is signature of a state of matter called Bose Einstein condensate (BEC).
In quantum mechanics particles are described by wavefunctions with a spatial ex-
tent given by the de Broglie wavelenght l = h/p that, in the case of a gas of
identical particles at a temperature T becomes the so called thermal de Broglie

wavelenght:
lDB =

hp
2pmkBT

, (4.1)

where m is the mass of the particles composing the gas and kB is the Boltzmann
constant. When particles in a gas are so close to each other that their wavefunction
overlaps constructive interference may occur. Particles become no longer distin-
guishable from each other and the system crosses the critical point of Bose Ein-
stein condensation. It is possible to define the density in phase space

D = nl 3
DB, (4.2)

where n represents the density of the atoms in terms of particles per unit volume,
and distinguish two regimes for D ⌧ 1 and D ⇡ 1. The first regime represents a
gas where the interatomic spacing is much greater than the de Broglie wavelength
and where the wave character of the particles is of little interest; in such a regime
the particles follow the Maxwell-Boltzmann distribution: we call this the classical
regime or refer to this as a classical gas. When the phase-space density increases
and reaches D ⇡ 1 the wave nature of the particles becomes relevant and it is pos-
sible to reach the transition to BEC, where the system (or a macroscopic fraction
of the system) is described as a coherent wave of matter.
If the particles are trapped in a harmonic trap, such as an optical dipole trap, it is
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possible to describe the appearence of this latter state of matter in terms of satu-
ration of the excited states. Following [8], we consider a 3D harmonic trap in the
form:

V (�!r ) =
1
2

m(w2
x x2 +w2

y y2 +w2
z z), (4.3)

where wi represent the trapping frequencies, and the potential admits a discrete
set of energy levels:

en,m,p = h̄(nwx +mwy + pwz). (4.4)

If we have N bosons in the trap at a temperature T, the number of particles in each
level follows the Bose Einstein distribution:

N(en,m,p) =
1

e
en,m,p�µ

kBT �1
. (4.5)

The number of particles in the excited states, for a harmonic trap, is limited to
[22]:

Â
n,m,p6=0

N(en,m,p) = z (3)
✓

kBT
h̄wm

◆
, (4.6)

where z (n) is the Riemann function and wm = (wxwywz)1/3 is the average of
the trapping frequencies. The number of particles in the ground state may be ex-
pressed as:

N0 = N � Â
n,m,p6=0

N(en,m,p), (4.7)

from which it is evident that if the total number of particles is increased above the
saturation value of eq. 4.6, the atoms have to accumulate in the ground state of the
harmonic oscillator.

It is possible to express the critical temperature Tc for the apparition of such
behavior as a function of the number of atoms N:

Tc =
h̄wm

kB

✓
N

z (3)

◆1/3
= 0.94

h̄wm

kB
N1/3. (4.8)

It becomes clear that high trap frequencies are related to high critical temperature.
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Bimodal distribution of the density

The atoms in the ground state of a harmonic potential are described by a wave-
function

f0(
�!r ) =

⇣mwm

p h̄

⌘3/4
e
�m
2h̄ (wxx2+wyy2+wzz2), (4.9)

resulting in a density of the condensate that is n(�!r ) = N|f0(
�!r )|2 and an exten-

sion of the ground state

aho =

✓
h̄

mwm

◆1/2
.

On the other hand the atomic density of the thermal part (excited states) fol-
lows a Maxwell-Boltzmann distribution n(�!r ) = n0e�V (�!r )/kBT with a width

s =

✓
kBT
mwm

◆1/2
.

The appearence of a superposition of this two distributions, what is called a bi-

modal distribution, in the density distribution of the atoms in the trap at a tem-
perature below Tc is then a signature of the presence of a fraction of atoms in the
condensed state.

4.2.1 Effect of the interactions

In the previous section we neglected, on purpose, the effect of interactions
treating the gas as non-interacting. To determine the extension of the wavefunction
and the atomic density in a real gas the effect of interactions must be taken into
account. In the case of a dilute gas, where the scattering length a is small compared
to interatomic distance n�1/3 it is possible to treat the effect of the interactions in
a mean field theory [5][22] that gives rise to an effective repulsive field in the form
Vrep = grepn(�!r , t) = grep|y(�!r , t)|2 where grep = 4p h̄a/m. The evolution of the
wavefunction is then given by the Gross-Pitaevskii equation:

ih̄
∂
∂ t

y(�!r , t) =
✓
� h̄—2

2m
+Vext(

�!r )+grep|y(�!r , t)|2
◆

y(�!r , t). (4.10)

If we look for the ground state the problem is time indipendent and the wavefunc-
tion can be separated in y(�!r , t) = e�i µ

h̄ j(�!r ) where the amplitude of density
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j(�!r ) verifies

µj(�!r ) =

✓
� h̄—2

2m
+Vext(

�!r )+grep|j(�!r )|2
◆

j(�!r ), (4.11)

and the chemical potential µ represents the energy cost to take one atom out of
the condensate.

If the density n0(
�!r ) = |j(�!r )|2 presents a slow spatial variation the kinetic

energy term becomes small compared to the interaction energy and may be ne-
glected. This is the Thomas-Fermi regime[22], where eq. 4.10 has an analitical
solution and the density becomes:

n0(
�!r ) = max

⇢
µ �Vext(

�!r )

grep
,0
�
. (4.12)

The wavefunction takes then the shape of the trapping potential that is, in the case
of a harmonic potential, a reversed parabola. It is possible to define the Thomas-
Fermi radius of the parabola through the point where the density becomes zero:

RT F =

r
2µ

h̄wm
. (4.13)

The density at the center of the condensate is limited by the interactions and in the
Thomas-Fermi approximation is given by n0 = µ/grep.

The interactions not only affect the wavefunction of the condensate but also
the transition from the thermal gas. Repulsive interaction results in the appearence
of the BEC at a temperature T < Tc. The fraction of condensed atoms evolves with
temperature following:

N0

N
= 1�

✓
T
Tc

◆3
�h z (2)

z (3)

✓
T
Tc

◆2
"

1�
✓

T
Tc

◆3
#2/5

, (4.14)

where h is an adimensional parameter that characterizes the thermodynamics of
the boson gas in the trap [22].

4.2.2 BEC in the frame of BIARO experiment

With the experimental setup described in section 4.1 BEC has been attained
in 2011 through evaporative cooling in the optical dipole trap. Here we report the
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main steps to reach the degenerate regime in the BIARO experiment.
The density in phase-space in the dipole trap evolves following

D = N
✓

h̄wm

kBT

◆3
(4.15)

and to reach BEC it has to become of the order of unity. To reach such a high den-
sity in phase-space it is necessary to lower the temperature while keeping a high
mean trapping frequency and a high number of atoms in the trap. A high mean
trapping frequency it is required to have a high scattering rate for the atoms in the
trap, hence fast thermalization.
Starting parameters after trapping the atoms in the dipole trap are T ⇡ 250µK,
wm = 2p ⇥790Hz and N ⇡ 108 resulting in D ⇡ 3.5⇥10�4.
Evaporative cooling allows to lower T but reduces wm and N as well as the col-
lision rate that is necessary to allow rethermalization of the sample after each
stop of the cooling ramp. To perform it in a dipole trap it is sufficient to reduce
the intra-cavity power. Adjusting the cooling ramp [53] allows to reach a density
D⇡ 10�2 with a final number of atoms N ⇡ 107. With a number of atoms less than
107 the phase-space density does not increase since the effect of gravity becomes
relevant and modifies the trapping potential: further evaporation causes a decrease
of the trapping frequency which is too fast.
To overcome this limit a vertical beam, orthogonal to the trapping beams, with the
focus on the trap has been added (see Fig: 4.5). This beam forms a dimple that
allows to evaporate atoms without decreasing the horizontal trapping frequencies.
The dimple provides strong transverse confinement, with horizontal trapping fre-
quencies measured to be wx = wy = 2p ⇥ 550Hz, and an escape on the vertical
direction. The optical power of the dimple is about 200mW .
It is now possible to lower the depth of the trap to further cool the sample. The
mean frequency being now wm ⇡ 2p250Hz, the remaining number of atoms N ⇡
54and the temperature T ⇡ 200nK realizing D ⇡ 4.3, a value for which Bose
Einstein condesation is expected. Signature of the transition have been found ob-
serving a bimodal distribution of the density measured through the time of flight

method [53]. Results are reported in Fig: 4.6
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Figure 4.5: Dimple. a) Position and alignment of the dimple. b) Isopotentials of
the dipolar potential obtained superposing the fundamental mode of the cavity and
the dimple. Image taken from [53]

Figure 4.6: Bimodal distribution of the density, signature of the presence of a
fraction of the sample in the condensed state. First row: optical density after a time
of flight of 8ms. Second row: optical density integrated on the vertical direction;
the condensate part has been fitted with an inversed parabola, the thermal part
with a Gaussian. a)T = 0.8Tc (145nK) b)T = 0.7Tc (131nK) c)T = 0.4Tc (74nK).
Image taken from [53].
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4.3 Quantum state engeneering techniques

In this section we report the analisys, made in [8][54], of the theoretical model
that should allow the realization of spin squeezed states (SSS) and Dicke states
through QND measurements. Quantum state engineering techniques are devel-
oped to maximize the sensitivity of measurement devices [9], a feature of main
importance in quantum metrology. Entangled states like SSS may be used to over-
come the standard quantum limit (see section 1.3.3) given by the atomic shot noise
[9]. Generation of such states through heterodyne non-destructive measurement of
the atomic population is expect and needs to be further investigated[54]. Using a
scheme based on the frequency modulation spectroscopy allows to be limited to
the shot noise of a weak optical probe; frequency modulation and heterodyne de-
tection allows the rejection of even small path length fluctuations which are critical
for the detection of small phase shifts [9].
It has been also possible to perform feedback to fight the loss of coherence in-
duced by ambient noise [55]: an ensemble of Rubidium atoms is prepared first
in a coherent superposition of the two ground hyperfine levels |F = 1,mF = 0i
and |F = 2,mF = 0i of the electronic ground state 52S1/2, then is subjected to a
collective noise obtained manipulating the ensemble with a microwave pulse that
evolves the collective spin state. The direction of the collective noise is established
whereas the sign is generated by a quantum random number generator. Finally the
population difference is weakly measured using an optical probe; the information
from the measurement is used to evalute the effect of the noise and a microwave
pulse in the opposite direction is used to complete the feedback loop.

4.3.1 Realization of SSS and Dicke states

A theoretical analysis of the measurement process predicts that it is be possible
to realize spin squeezed states and Dicke states. At the time of the writing of this
thesis the experimental realization has failed to produce such states.
The frequency modulation (FM) spectroscopy technique is used: a laser beam is
phase modulated to produce frequency sidebands, one of wich is placed close
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Figure 4.7: Two possible measurement schemes. The thick line is the carrier while
the thin lines are the sidebands. a) One sideband is in the middle of two probed
states whereas the carrier and the other sideband are far from the relevant transi-
tion. The population of the upper level is probed. b) Each sideband is close to an
atomic transition; the carrier is in the middle of the two probed states; this con-
figuration allows the direct measurement of the population difference Jz. Image
taken from [54]

to an atomic transition and experiences a strong phase shift passing through the
atomic sample while the carrier is far detuned from every transition, therefore
passes through the sample without experiencing phase shift. The detection of the
beat note at the modulation frequency allows to estimate the atomic population of
the probed state.
The relevant atomic levels and the position of the carrier and sidebands in two
possible configurations is depicted in Fig: 4.7.

The starting atomic state is a CSS polarized along Jx, wich means an average
population difference hJzi= 0. The input optical state is composed of two spectral
modes: the probe at a frequency w0/2p is close to an atomic transition whereas the
reference is far off resonance at a frequency (w0+W)/2p; ”a single-sideband op-
tical phase modulator B (driven by a local oscillator at a frequency W/2p) is used
as a spectral beamsplitter to generate spectrally mode-entangled single photons”
[54].

A theoretical analysis of the measurement process is realized in [54] and shows
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that the back-action of the QND measurement in the weak coupling regime allows
for the preparation of SSS in the short time limit whereas in the long time limit

preparation of Dicke states is achieved.
The short time limit is defined by NP ⌧ M�2 where NP represents the number of
photons detected and M is a measure strenght defined as

M2 =
f 2

4
(1�

p
1�C2); (4.16)

here f is the optical phase shift induced by a number difference of two (n = 1),
and depends on the coupling strength of the transition at w0 and on the optical
density of the atomic cloud and C is the contrast of the measured beat-note signal
[54].
The long time regime is reached when NP � M�2: in this regime the atomic dis-
tribution becomes very narrow (DJ2

Z ⌧ 1), which is a signature of a collective spin
squeezed state.

The advantage of heterodyne detection is that allows to be limited by the shot
noise from the weak probe (i.e. one of the sidebands) that contains less photons
than the strong carrier used to beat the probe. If NC is the number of photons in
the carrier, NS the number of photons in the probe and Ne is the photon equivalent
noise due to the detection electronics the signal-to-noise ratio R is then:

R µ
r

NCNS

NC +NS +Ne
. (4.17)

If the carrier is strong enough (NC � NS,Ne) the signal-to-noise ratio becomes
is limited by the number of photons in the sideband NS i.e. by the shot noise of
the weak probe. Further analysis about the noise induced in the measurement are
reported in [9].

4.3.2 Feedback using weak measurements

A noise, homogeneous over the size of a trapped ensemble, affects all the
atoms in the same way; if there is a sufficient number of atoms in the ensemble it
is possible to measure the effect of the collective noise with a weak measurement
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that provides neglegible perturbation on the state of the individual systems [39].
This section reports the results of the latest published article [55] by the BIARO
group, at the time of the writing of this thesis.

The rubidium 87 atoms that form the ensemble are prepared in a coherent su-
perposition of the two ground hyperfine levels |0i = |F = 1,mF = 0i and |1i =
|F = 2,mF = 0i of the electronic ground state 52S1/2 and can be manipulated with
a microwave field resonant with the 6.835 GHz transition between the two levels.
The starting coherent spin state is polarized on the x axis of the Bloch sphere
|q = p/2i4 (see appendix C).
The population difference is weakly measured with a frequency modulated probe
in the configuration of Fig: 4.7b: the sidebands are phase-shifted with opposite
sign by the two atomic populations due to their opposite detuning with respect to
the transitions to |F 0i from |F = 1i and |F = 2i.
The noise is modeled through random collective rotations implemented using mi-
crowave pulses that rotate the Bloch vector around the Y axis [55]. The noise
leaves the collective state in a statistical mixture of all the states that can be gener-
ated by the noise, decreasing the coherence of the initial state (and decreasing the
lenght of the Bloch vector from the starting value of J = Nat/2). Two models for
the noise are described in the paper [55]: a binary random collective noise where
the collective Bloch vector is subjected to rotations of fixed angle and random
direction (+a , �a), and an analog collective noise where both the direction and
the angle are randomly generated. For the purpose of this work it is sufficient to
describe the binary collective noise.
The binary random collective rotation transforms the initial CSS into a balanced
statistical mixture of the states |p/2+ai and |p/2�ai, decreasing the coherence
of the state from unity to ha = cosa .
After each noise pulse Jz is optically measured and a counter rotation of mag-
nitude a is applied to the ensemble. Since the measurement has to have a small
back-action on the ensemble the its uncertainty s has to be larger than the projec-

4This is the state after the first beam splitting in a Ramsey interferometer and corresponds; the
average difference of the population between the two considered levels is hJzi= 0.
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tion noise:
s �

p
Nat . (4.18)

Nevertheless for large CSSs the uncertainty is small compared to the collective
spin

s < J, (4.19)

therefore a weak measurement may provide precise information about the rota-
tion. Knowing the value of a , as in the binary noise model, it is sufficient to detect
the correct emisphere in wich the Bloch vector lies; the probability to perform the
correct detection is:

ps =
Z •

0
P(m0|�a)dm0 =

1
2

"
1+ er f

 p
2J sina

s

!#
, (4.20)

where P(m0|�a) is the probability to obtain m0 when measuring Jz given a noise
rotation of �a .

After the correction the system is in a statistical mixture of three states: |p/2i
wich is the initial state and is recovered with probability ps and |p/2± 2ai that
are states that arise after a wrong correction that doubles the rotation angle.
The coherence of this statistical mixture is

hout
a = [ps +(1� ps)cos(2a)]e�gNph . (4.21)

The exponential factor takes into account the spontaneous emission induced by
the Nph photons in the probe and is adjusted with an experimentally determined
coefficent g that depends on the resonant optical density. The spontaneous emis-
sion due to the carrier is small compared to that of the sidebands so Nph refers to
the number of photons in the latter.
The ensemble contains about 5⇥105 atoms optically trapped at 10µK by a laser
beam at 1550nm. The D2 transition, used to determine the population difference
with a probe at 780nm, is broadened in a spatially inhomogeneous way due to the
Gaussian shape of the trapping beam (see Fig: 4.4b for a qualitative representation
of the light shift of the relevant levels that induces the broadening). Compensa-
tion of the differential lightshift that produces this effect is discussed in section
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4.4 from a theoretical point of view whereas chapter 5 is devoted to the realiza-
tion of the servo controller used to stabilize the power of the laser source for the
compensation.

The measurement of the population difference is realized with the configura-
tion depicted in Fig: 4.7b, where each sideband probes the population of one of
the two relevant levels with the same magnitude and opposite sign for the cou-
plings. The probe induced light shift is canceled compensating the effect of the
carrier with the one of the sidebands.
The measurement of Jz uses a 1.25µs long pulse; the detected signal is demod-
ulated to get the population difference an analogicaly integrated to get the mean
value over the pulse lenght. The integrated signal is digitalized and sent to a micro-
controller unit (MCU) that treats it in real time to get the sign of Jz. The MCU con-
trols the rotation direction for the a correction pulse that closes the feedback loop.

To determine the coherence of the atomic state, after the correction pulse a
p/2 rotation is induced on the ensemble to complete a Ramsey type measure-
ment. Results after one feedback loop are presented in Fig: 4.8. To study how the
feedback scheme can protect a CSS over time in the presence of noise, an itera-
tion of the random collective noise, population measurement, correction sequence
is realized 200 time on the same atomic sample. Here the number of photons in
each sideband has been adjusted to 1.4⇥107.
The results are representend in comparison to the open loop situation (no cor-
rection applied) under two different forms: the first is a measure of the state oc-
cupancy, which is the probability to be in a given state, versus time averaging
the results of 200 experimental runs. In the closed loop case, the system spreads
from |p/2i to the two poles (|0i, |pi), and at a slower rate to |3p/2i. In open
loop after a few iterations the state vector reaches a balanced statistical mix-
ture of four states: {|0i, |p/2i, |pi, |3p/2i} for an even number of iterations, and
{|p/4i, |3p/4i, |5p/4i, |7p/4i} for an odd number. Results are presented in Fig:
4.9(a)-(b).
The second representation of the results of this experiment is the coherence of the
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Figure 4.8: Coherence of the collective spin state after one noise-correction cy-
cle as a function of the number of photons per sideband (solid squares). Success
probability of the probe pulse (open circles). Solid line is a fit of the remaining
coherence data with Eq. 4.21; dashed line is a fit of the probability of success
data with Eq. 4.20; dotted line indicates the coherence after the random collective
noise. Image taken from [55]
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Figure 4.9: Image taken from [55]

state protected through feedback versus the coherence of the open loop situation
presented in Fig: 4.9(c). In open loop after N = 10 cycles the remaining coherence
is 0.03 whereas with feedback it reaches 0.77.

We end this section with the words of the authors of the paper [55]:

To summarize, we have demonstrated the partial protection of an
atomic CSS from the decoherence induced by RCRs around a fixed
axis, using feedback control based on weak nondestructive measure-
ments. The method can be generalized to rotations around an arbi-
trary axis of the Bloch sphere: one could consecutively read out Jx,
Jy and Jz and correct with suitable rotations. Compared to spin-echo
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techniques, relying on temporal invariance of the noise, our feedback
method allows the compensation of time dependent noise, provided
that the time evolution is slower than the correction time. By increas-
ing the effective on-resonance optical depth, the feedback scheme
could be implemented in the projective limit to deterministically pre-
pare nonclassical states, using measurement based spin squeezing.

4.4 Compensation of the differential lightshift

The trapping radiation (at 1560nm in the BEC realization and at 1550nm in
the feedback experiment) induces a differential light shift on the D2 transition
used for the non destructive probing of the population difference. This differential
light shift is of central importance for the in-situ characterization of the dipolar
potential (see section 4.1.1, refer to [10], [53]) but is a limiting factor if we want
to manipulate or probe the trapped atoms with a beam (quasi)resonant with the
atomic transition 5S1/2 ! 5P3/2 as in the case of the QND measurement for the
feedback scheme discussed in Section 4.3.2.

In the following section we discuss (using [53] as a reference) the compen-
sation of this trapping beam-induced light shift using a 1529nm laser spatially
overlapped to the trapping radiation.
Radiation at 1529nm and 1550nm is mainly coupled to three transitions:

5P3/2 ! 4D3/2; l = 1529.261nm; d = 3.633ea0; (4.22a)

5P3/2 ! 4D5/2; l = 1529.366nm; d = 10.899ea0; (4.22b)

5P3/2 ! 6S1/2; l = 1366.875nm; d = 6.047ea0; (4.22c)

where l is the wavelength associated with the transition and d is the dipole matrix
element expressed in units of the fundamental charge e and the Bohr radius a0.
It is therefore possible to calculate the scalar polarizability (see Chapter 3) induced
by the radiation of frequency w as:

av =
2

3h̄
1

2Jv +1 Â
k

wkv

w2
kv �w2 dkv, (4.23)
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Figure 4.10: a) Light shift of the 5P3/2 level induced by the trapping radiation at
1550nm (solid line) and by the 1528.7nm beam (dotted line). b) Residual light
shift after compensation. Image taken from [53]

where Jv is the total angular momentum of the state |vi, wkv is the transition fre-
quency between the levels |ki and |vi and dkv represents the dipole matrix element
between the two levels. The resulting scalar polarizabilities are:

a1550
5P3/2

= 4.736⇥10�37Jm2/W ; (4.24a)

a1528.7
5P3/2

=�1.422⇥10�35Jm2/W. (4.24b)

As expected the signs of the polarizabilities are opposite, it is then possible to
compensate the differential light shift from the trapping laser overlapping it with
the 1528.7nm with the correct optical power ratio between the two. Equations
4.24 suggest that the optical power of the compensating beam should be approxi-
matively 500 times less than the optical power of the trapping laser.

The light shift induced by the 1550nm laser on the 5P3/2 level for an intra-
cavity optical power of 10W reaches 170MHz at the crossing of the beams (⇡
85MHz for each arm of the trap. See Fig: 4.10a). This value is close to the detun-
ing used to probe the Jz operator with QND measurements: it is not possible to
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probe the population without a proper compensation.
Fig: 4.10b shows the calculated residual light shift after compensation with the
1528.7nm beam; residual light shift is due to the unperfect overlapping of the
beams in the fundamental mode of the cavity.
A first coarse adjustment of the optical power of the laser beam for the compen-
sation is reported in [53] and was used to set the wavelength to l = 1528.7nm.
To adjust the optical power in a fine way QND measurements are exploited: intra-
cavity power of the 1550nm laser have been set to 10W and measurement of Jz

have been performed on an ensemble of atoms prepared in the coherent state
|p/2i. When no trapping radiation is present the measurement yields Jz = 0, as
expected. If the atoms are probed when they are trapped, due to the differential
light shift, the result of the QND measurement is different from zero. To obtain
the compensation the optical power of the 1528.7nm radiation has been adjusted
to the value that allows a QND measurement of Jz equal to zero.

In [53] the results of this adjustment are reported (see Fig: 4.11): the light shift
is adjusted for an optical power of 39.6± 2.5 mW. The relative uncertainty is of
13%, a value that yields an uncertainty of about 10MHz on the residual light shift,
a value much higher than the expected residual light shift 1.3MHz.

For a correct compensation of the differential light shift a power servo con-

troller for the compensation beam have been realized as described in Chapter 5.
The residual light shift after compensation is about5 0.7MHz which is small com-
pared to the transition linewidth G = 2p ⇥6MHz.

5See Supplemental Material of [55] at http://link.aps.org/supplemental/10.1103/PhysRevLett.110.210503
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Figure 4.11: QND measurement (a.u.) of Jz for trapped atoms as a function of the
optical power of the 1529nm compensation laser beam. Image taken from [53]





Chapter 5

SERVO CONTROLLER OF THE
POWER OF A FIBER LASER

THe compensation of the differential light shift induced by the trapping laser
requires the injection of a laser beam at 1529nm in the fundamental mode

of the cavity. The optical power of the 1529nm has to be stable beam because
amplitude noise induces heating in far-off resonant optical dipole traps through
the parametric heating mechanism [50]. On the other hand the optical power has
to be adjustable to find the right value for an optimal compensation as described
in Section 4.4.

This chapter is devoted to the conception and realization of a power servo con-

troller for the compensation beam through the use of a negative feedback system.
In section 5.1 is treated the realization of an appropriate front end for the photo-
diode used in the servo controller. Section 5.2 reports the description and charac-
terization of the actuator used in the feedback loop which is a Variable Optical

Attenuator (VOA). In the last part of the chapter, section 5.3, the electronic board
that implements the feedback loop for the power servo controller is treated.

63
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5.1 Transimpedence for the photodiode

The first block of the power servo controller is the photodiode1 with its front
end. A photodiode produces a photocurrent Id when hit by light; the current is
proportional to the number of photons in the beam (i.e. to the power of the beam).
The photocurrent is transformed in to a voltage V (t) by the front end, in our case
a transipendence. There are two factors to consider when designing a front end:
the cutoff frequency fc and the Signal to Noise Ratio (SNR).
The cutoff frequency corresponds to the �3dB corner in the characteristic of the
transimpedence. The higher it is, the faster the transimpedence.
The SNR is defined as:

SNR =
i2d

ÂN i2N
, (5.1)

where the sum is over all the noise currents iN . We want to be limited by the shot
noise of the photocurrent isn =

p
2eid .

The simplest front end is a simple resistor RL. The photocurrents across the
resistor is transformed into a voltage. The photodiode has a terminal capacitance
Cd = 12pF . The cutoff frequency is therefore [30]:

fc =
1

2pRLCd
. (5.2)

A low value for RL is necessary to have high bandwidth, but an high value is
required to have an high SNR since the Johnson noise of the load resistor is:
iNR =

q
4kT
RL

.
To be limited by the shot noise of the photocurrent we can safely lower the value
of RL to the point where iNR = iSN :

idRL = 2kT/e, (5.3)

where the right side of the equation is equal to 51mV at 300K.
The loss in the SNR is about 1dB for idRL � 200mV ; this limits the value of the
load resistance to RL � 200mV/id .

1We used a photodiode from Hamamatsu, model G8376
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5.1.1 Transimpedence design

A transimpedence amplifier is a more sofisticated front end that makes use
of an operator amplifier (OpAmp) and of a feedback realized with a capacitance
Cf and a resistor R f (see Fig: 5.1). The photodiode is connected to the inverting

Figure 5.1: Scheme of a typical transimpendence amplifier: Cf and R f are the
feedback capacitance and resistance.

input of the OpAmp while the non-inverting input in connected to ground: if the
operator amplifier is ideal and operates in the linear regime the photodiode is
connected to a virtual ground. The inverting input of the OpAmp draws no current
but the feedback forces the voltage there to be close to zero at all the times [30].
The cutoff frequency of the transimpedence is

fc ⇡
p

fRC fA

2
, (5.4)

where fRC
1

2pR f ÂC is the frequency cut of a low pass filter2 and fA is the bandwidth
of the OpAmp.
The SNR equals that of the same amplifier used as a unity-gain buffer on a photo-
diode plus load resistor [30] and, provided that the voltage noise of the amplifier
eNamp is very low, the noise rising from the amplifier is negligible. The transim-
pedence therefore provides a higher cutoff frequency at a little price in terms of
SNR.

2The sum is over all the capacitances in the transimpedence: Cd , Cf and the capacitance of the
OpAmp.
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We opted for an OpAmp3 with bandwidth fA = 325MHz and adjusted the
values of the feedback resistance and capacitance to R f = 39KW and Cf = 1pF .
The attained cutoff frequency is fc ⇡ 7Mhz.
This value is more than enough to detect the amplitude noise that we want to
remove in the dipole trap: parametric heating is induced by amplitude variations
with frequency comparable with the second harmonic of the trap frequency [50].
A discussion of the trap frequencies is reported in Section 4.1.3: the order of
magnitude is 1kHz.

5.2 Actuator

The second component for the power servo controller is an actuator. We chose
as actuator a variable optical attenuator (VOA), a device used to reduce in a con-
trolled manner the optical power of a signal in a fiber cable.
A typical VOA uses a variable neutral density filter to provide attenuation. Through
an input modulation (either mechanical or electonic) the density filter is moved
and the user can vary the optical output power.
VOAs are usually wavelength insensitive, mode insensitive and stable. The main
disadvantage is that they usually are higly nonlinear4 and require calibration.

5.2.1 A mechanism to build a Variable Optical Attenuator.

There exist different patents for different mechanisms for a VOA. In this sec-
tion we will explain the content of patent [49] made by Robinson in 2000, just to
make a simple example of the principle used to provide optical attenuation. The
device works as follows: a waveguide (for instance a fiber cable) drives the light to
a lens with focus on a moving mirror. If the mirror is in his standard position (see
fig:5.2) the light back reflected to the lens and enters in an output optical waveg-
uide undisturbed. Moving the mirror provides a way to decrease the amount of
light in the output.

3Texas Instruments THS4631
4As we will see for the one we used, as reported in section 5.2.2
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Figure 5.2: Scheme of the optical attenuator described in [49]; the solid line shows
a position with no attenuation, dashed line is a possible attenuation position. Im-
age taken from the patent.

The mirror is moved using a semiconductor micro-electronical optical device that
allows different levels of optical attenuation.

5.2.2 Characterization of the VOA

In this section we report the charcterization of the variable optical attenuator5

used to build the amplitude lock.
The VOA provides electrical control of the optical power. It is driven by 0�4.2V

input bias and with nominal attenuation of 1dB at 0V and 34dB at 4.2V . The
working wavelenghts range is 400� 1800nm. The nominal bandwidth is 5KHz:
the device is protected by an integrated microcontroller from higer frequencies.

The test has been made using a 1550nm distributed feedback (DFB) fiber laser
diode6 mounted on a butterfly laser diode mount7 with Thorlabs drivers for current
and temperature control. The output power of the laser is controlled by a bias
current. Working temperature for the laser diode is 26�C. The output fiber cable

5AGILTRON 1550NnaoSpeed PM HP VOA
6Fitel FRL15DCWD-A81-1550-C DFB laser module
7Thorlab LM14S2 Butterfly Laser Diode Mount
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Figure 5.3: Test of the attenuator. Control voltage range is 0-4V.

from the DFB is connected directly to the VOA. The input bias for the attenuator
is provided by a custom circuit board that allows the control of the bias from 0V

to 4V . The circuit must avoid the output voltage to overcome the 4V limit, so to
protect the VOA: we decided to mount a 4V Zener diode between the output and
the ground
We measured the output power with an optical power meter. We normalized the
output power to the maximum value and proceeded in converting the attenuation
in dB:

dB(W ) = 10log10(
P

Pmax
) (5.5)

The results of this test are shown in Fig: 5.3. Since the obtained attenuation is
lower than the nominal maximal value we proceeded with a new test.

For the new test we used a wave generator8 and measured the bias voltage
(Vbias) with an oscilloscope9. The input range varied from 0V to 4.16V , whereas
the bias current of the DFB was set to 180mA.

8AGILENT 33250A
9TEKTRONIX TDS 1002
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The results are shown in Fig: 5.4 and Fig: 5.5. As declared by the producer we
have a maximum attenuation of 34dB (at 4.16V ). The behaviour of the VOA is
highly nonlinear.
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Figure 5.4: Test of the attenuator, where the optical power (mW) after the VOA is
measured as a function of the input voltage

We tested the minimun attenuation provided by the VOA (i.e. the attenuation
when we provide vanishing bias voltage, compared to the optical power of the
laser measured directly after the DFB). The test was made with a current bias of
64.5mA and gives as a result an attenuation of 1.04dB, compatible with the 1dB

declared by the producer.
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Figure 5.5: Test of the attenuator: the attenuation (dB) of the VOA is plotted as a
function of the input voltage
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5.3 Electronic board

The purpose of this section is to explain how we built the electronic board
to produce the error signal to implement the feedback mechanism. We drive the
laser diode with some current and at a given temperature and get an optical power
as output that is transformed in a voltage through the photodiode-transimpedence
described in Section 5.1. The signal from the transimpedence is compared to a
reference value, suitably filtered, amplified and used to drive an actuator on the
controlled quantity. The feedback scheme is shown in figure D.1.
The electronic board we implemented allows the selection of the reference value,
performs the comparison with the signal from the photodiode and produces as
output the control voltage for the VOA.

5.3.1 Proportional-Integral-Derivative controller

A Proportional Integral Derivative (PID) controller is a widely used servo
mechanism adopted in feedback (control) loops. It calculates the error between
the set value and the input and attempts to minimize it.
In this section we describe the three components of a PID controller: a propor-
tional amplifier that produces a signal proportional to the present error, an in-
tegrator amplifier that takes into account the accumulation of past errors and a
differential amplifier that tries to anticipate the future errors.

Proportional amplifiers

This is the most simple instrument and has the function to amplify the differ-
ence between the set value and the input from the photodiode. The two signals are
subtracted using an Operational Amplifier in the configuration of Fig: 5.6. The
ratio of the feedback resistor R f and the input resistors Rin sets the proportional
gain:

Vout =�Vin
R f

Rin
, (5.6)

where Vin is the difference between the set value and the signal from the tran-
sipendence and Vout is the error signal produced by the proportional amplifier.
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Figure 5.6: Proportional amplifier.

The proportional gain has to be tuned: if the value is too high the system may
become unstable whereas if it is too low the controller becomes less sensitive to
disturbances.

Integrator amplifiers An integrator amplifier is realized with a capacitance C

in the feedback path of an operational amplifier as in Fig: 5.7. If the OpAmp works

R

C

GND

Figure 5.7: Scheme of an integrator amplifier. The gain is decreasing linearly at
-3dB/decade.

in the linear regime the inverting input is a virtual ground. For an input voltage
Vin(t) the current across R is then i(t) =Vin(t)/R. The behaviour at the capacitance
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is i(t) =C dV (t)
dt . Therefore we have:

Vin(t)
R

=C
dV (t)

dt
, (5.7)

that has as a solution for:

V =� 1
RC

Z T

0
Vin(t)dt. (5.8)

The output signal is the integral over time of the input voltage. The amplifier gain
decreases linearly as a function of the frequence at a constant ratio of 3dB/decade.
The frequency for unity gain10 depends on the feedback capacitance and on the
input resistance: f0dB = 1

2pRC . At low frequency the gain increases due to the
capacitor behaviour: in the limiting case of DC the capacitor acts as an open circuit
and the gain becomes infinite for an ideal OpAmp.
It is possible to add a feedback resistor R f in parallel with the feedback capacitance
to limit the gain at low frequency. The feedback becomes therefore a high pass
filter with cutoff frequency fc = R f /R.
In such a situation the transfer function is

Vin

Vout
=�

R f

R
1

1+ iwCR f
, (5.9)

where w is the frequency of Vin.
An integrator amplifier produces a steadily changing output for a constant input
voltage: if the input comes from a proportional amplifier, the signal produced by
the integrator amplifier is proportional to the error over time.

Differential amplifiers A differential amplifier is realized with a resistance R

at the feedback side of an OpAmp and a capacitance C at the input side (see Fig:
5.8). The inverting input is a virtual ground so Vout , the voltage across the resistor,
is related to Vin, the input voltage, by:

Vout =�RC
dVin(t)

dt
. (5.10)

10Or crossover frequency, where the gain is 0dB.
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GND

R

C

Figure 5.8: Scheme of an differential amplifier.

The output signal is proportional to the rate of change at the input with opposite
sign: a steadily increasing input voltage will produce a constant negative output
voltage, vice versa a steadily decreasing input will produce a constant positive
output.
At low frequencies the capacitor acts as an open circuit and a vanishing current
flows through it and through the resistor: the output voltage is small whereas at
high frequencies the system becomes unstable. Since the correction is based on
the present rate of change, a differential controller is used to foreview the chang-
ing in the error signal to anticipate corrections. The use of a differential controller
is to foreview the changing in the error signal and to provide correcction.

In our design we decided not to use a differential controller because we need to
switch between two different reference values and a differential controller could
be too sensitive to such a sudden change.

5.3.2 The electronic circuit for the servo controller

The electronic board for the servo controller of the power of the 1529nm fiber
laser is made of the following parts (see FigureD.2):

1. transimpedence for the photodiode;

2. proportional amplifier;

3. integrator amplifier;
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4. analog switch between two adjustable set values;

5. adjustable overall gain;

6. a switch to turn on/off the feedback.

The power of the 1529nm fiber laser is measured with a photodiode from Thor-
labs11. The board is connected to a ±15V supply.

Transimpedance The photocurrent is sent to the transimpedence that has been
realized with a feedback resistance R f = 100kW. The value of the feedback resis-
tance has been increased, compared to the one used to test the VOA (see Section
5.1.1), to improve the SNR.

Proportional amplifier The proportional amplifier has been realized with a
gain G = 6 using an input resistors value Rin = 20kW and as feedback resistor
R = 120kW.

Integrator amplifier The output voltage from the proportional amplifier serves
as input value for an integrator amplifier with the low frequency cut set to fc =

4.7Hz.

Set values The set values range from 0 to 10V . A stable 10V reference has been
used to provide the voltage across two potentiometers that allow to adjust the set
values. The analog switch is driven by a TTL signal. The VOA used as actuator
has a bandwidth of 5kHz: to prevent the integrated microcontroller to stop the
VOA we added a low pass filter with cut at 720Hz between the analog switch
and the proportional amplifier. Two different set values for the optical power are
required to compensate the differential light shift while performing:

• weak measurements on the ensemble;

• the loading of the dipole trap from the MOT.
11Thorlabs PDA10CF.



76 SERVO CONTROLLER OF THE POWER OF A FIBER LASER

Overall gain and inverter The overall gain may be adjusted using a 20kW po-
tentiometer at the inverting input of an OpAmp with feedback resistance R =

100kW. This last OpAmp serves as an inverter to have a positive voltage at the
output to drive the actuator.

On/Off switch A manual switch has been added before the output SMA connec-
tor that goes to the VOA. This switch allow to turn on the feedback loop, setting
as output the voltage value from the inverter, and to turn to an open loop configu-
ration, connecting the output to ground. A 5.1V zener diode has been added at the
output so as to protect the VOA.

The custom electronic board has been designed using EAGLE cad12 and then
realized on a printed circuit board (PCB). The electronic components has been
soldered in the electronic laboratory at the Laboratoire Charles Fabry - Institut
d’Optique Graduate School.

5.3.3 Test of the electronic board

The test of the electronic board has been done using the 1550nm laser used to
test the VOA (see Section 5.2.2).
The TTL signal for the switch between the two set values was provided by plug-
ging/unplugging a lemo connected to a 4.5V battery.
The transimpedence during the test was set to have a maximum of 15.4V when
the optical power was 25.60mW 13 . The low set value, used to lock the amplitude
of the beam to perform weak measurements, was adjusted to 50mV . The high set
value, needed to stabilize the optical power for the loading of the dipole trap from
the beam14, was set to 9.6V . The output of the transimpedence was monitored on

12www.cadsoftusa.com
13The laser was driven with 180mA.
14To efficiently load the dipole trap from the MOT the trap depth should be as high as possible.

A high power from the trapping laser beam is required, therefore high optical power from the
compensation beam is required as well.
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an oscilloscope.

When the feedback loop was connected the system started to oscillate around
the desired set value. After checking all the electrical connections we isolated and
checked each component of the electronic board. Since we didn’t find the source
of oscillations in the electronics we concluded that it could have been in the VOA.
We added a low pass (cut frequency fc ⇡ 15Hz) filter right before the output of the
electronic board; this allowed the the feedback system to work. Further analisys
on the source of oscillations have not been possible due to time constraints.

We measured the time response of the system when switching between the
two set values. The response is limited by the low pass filter used to prevent the
microprocessor from stopping the VOA. Therefore the change between the value
of optical power of the laser, used for the compensation of the differential light
shift for the loading of the dipole trap on one side and for the weak measurement
on the other, is rather slow (700Hz the response frequency).

Setting the laser level to 10V we could easily achieve a switch between the
first set value at 9.6V and the second at 50mV with a maximum noise of 5mV on
the low level. This means two and a half order of magnitude between a possible
high and a possible low level with a maximum error of 10% on the low level and
a negligible error on the high level.

The stability of the system has been verified adding a modulation of 50mV

with a sinosiduidal signal when the driving current is around 160mV and verifying
that there is no variation on the output level when the feedback system is on.





CONCLUSIONS

IN this thesis we reported the realization of a servo controller of the power of
a fiber laser. This device is used to adjust and stabilize the optical power of a

fiber laser in a high finesse resonator. The stabilized beam is used to compensate
the differential light shift induced on Rubidium atoms by a trapping radiation. The
compensation of the differential light shift plays a critical role in the loading of
atoms in the dipole trap and in the realization of precise QND measurements of
the populations on different hyperfine levels of the atomic groud state.
QND measurements are now used as a part of a feedback scheme that protects
a coherent spin state from the naturally occurring decoherence: if such a scheme
succeds to be generalized it will be useful in the domain of interferometry and
quantum information.
One goal of the BIARO experiment is the realization of collective spin squeezed
states: a theoretical model for the realization has been produced by the memebers
of the group but, at the moment of the writing of this thesis, the experimental re-
alization has failed to produce such states. The realization of SSS should allow to
overcome the standard quantum limit and may bring improvements in the domain
of metrology. Interferometers and phase dependent detectors may improve in sen-
sibility.
Weak measurements, only introduced in this work, may be used to answer open
questions about the nature quantum processes and may be exploited to obtain
information that were thought meaningless only twenty years ago. The field of
quantum measurements takes benefit from the continuos improvement of exper-
imental techniques. We are now at a point where theorists and experimentalists
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may work side by side and not one ahead of the other. We expect important results
in the forecoming years from the experimental front that may stimulate a better or
more complete theory of quantum measurement. At the same time we expect the-
orists to give rise to new questions or paradoxes arising from the quantum world
that would set new goals for experimentalists.



Appendix A

RUBIDIUM 87 D2 STRUCTURE

Figure A.1: Rubidium 85 and 87 D2 atomic line. Image taken from [11]

81



82 APPENDIX A

Figure A.2: Scheme for an ns ! np transition of an alkali. a) Full scheme in-
cluding fine (DFS) and hyperfine (DHFS) splitting. b) Negligible fine and hyperfine
splitting. c) DHFS ⌧ DFS, only the fine structure is displayed. Image taken from
[27]
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Figure A.3: Relevant properties of the alkali atoms for optical dipole trapping.
Table taken from [27]





Appendix B

CLASSICAL MODEL FOR LASER
RADIATION PRESSURE

THis Appendix is meant to introduce optical trapping in a semiclassical fash-
ion. An hystorical track of the use of laser to trap neutral particles can be

found in the 2006 book from A. Ashkin [7].

Order of magnitudes involved

Consider a monochromatic laser beam of wavelenght n and power P. We know
that the energy of each photon is Eph = hn and, even though photons are massless
at rest, we can associate an effective mass due to the Einstein relation to find that
each photon carries a momentum me f f c = hn/c.
The rate of photons per second in the beam is simply P/Eph = P/hn thus a fully
reflecting object hit by the beam experiences a momentum kick (per second) of
the order of 2hn/c times P/hn . Since the momentum variation over time is the
force we can simply write:

Frad = 2P/c. (B.1)

If the laser beam is focused on a particle with linear dimension of the order
of l and reflectivity r we get the force Frad = r2P/c acting on a particle with
volume V ⇡ l 3.
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This means that if l ⇡ 10�6m, P ⇡ 1W and r ⇡ 0.1 then a particle with density
d ⇡ 103Kg/cm3 should accelerate at about 105g where g is the acceleration due
to gravity.

Transparent spheres in a fluid medium

Suppose we have sferical particles, with diameter d (large compared to the
wavelenght l ), in a fluid medium1; we can then estimate the effect of a laser
beam passing trough the solution. Consider the particle to be in a spatially ho-
mogenous field (see figure B.1); to understand the effect of a couple of symmetric
rays, belonging to the same wavefront, hitting the particle let’s see which path any
of the two would follow. The ray a (b) will be refracted following Snell’s law both
entering and leaving the particle. The ray will leave the particle locally with the
same angle it had when it entered but with a global shift in direction due to the
curvature of the particle. The change in direction of each ray results in a change
of momentum of the ray and therefore the particle is exerting a force on it. The
particle experiences an opposite force Fa (Fb) following the third principle of dy-
namics. The overall effect of the two symmetric rays is therefore a net force on
the particle that we call radiation pressure.

b

a

a

b

F
a

F
b

F
SCATT

HIGH INDEX PARTICLE - PLANE WAVE

Figure B.1: Simplified ray optics diagram for a high index particle in an homoge-
neous laser field.

1we can imagine a diuted solution of latex spheres in water as in [7]
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Consider now a particle in a beam with gaussian profile (see figure B.2): if
the particle is not in the exact center of the beam, the net forces of the two rays
we are considering will not be equal in magnitude and will therefore give rise
to a transverse force Fgrad , dependent on the rate of the refractivity index of the
particle to the one of the medium, that will push (or pull) the particle out of (inside
of) the beam.

F
a

F
b

F
SCATT

HIGH INDEX PARTICLE - GAUSSIAN PROFILE WAVE

in
te

n
sity

 p
ro

file

F
GRAD

Figure B.2: High index particle in an gaussian laser field. Due to the unbalanced
intensity profile there are more rays on one side of the particle. The net effect is
that Fa is greater than Fb giving rise to a transverse component of the force Fgrad .

This is the effect of laser radiation pressure on macroscopic particles. It is
very insightful to see an effect that can be used to confine particles in a completly
classical treatment as the one illustrated throught this section. It is worth noting
that two transverse beams would serve as a 3D trap for transparent particles (as
observed in [7]).





Appendix C

COLLECTIVE SPIN STATES AND
BLOCH SPHERE

WE have seen in chapter 2 that when we treat the laser-atom coupling, if we
consider the atom as a two-level system, different phenomena occurs, in-

cluding Rabi oscillations (section 2.1) and light shift of the atomic levels (section
2.2). In this section we want to generalize those results to a system made of many
identical particles each of which we will treat as a two-level system; we will refer
to them as collective spin states.
Before introducing collective spin states it may be useful to briefly resume the
Bloch sphere representation of a two-level system.

C.1 Bloch sphere

The state of a psudo-spin system is described by a vector in a Hilbert space
H2 ⌘ C2 where a basis is formed by {|ai, |bi}. A vector |yi 2 H2 is defined by
two complex numbers a,b that satisfy |a|2 + |b |2 = 1:

|yi= a|ai+b |bi. (C.1)

It is straightforward to write eq. (C.1) as

|yi= cos(q/2)|ai+ eif sin(q/2)|bi, (C.2)

89



90 APPENDIX C
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Figure C.1: Bloch sphere.

with 0 < q < p and 0 < f < 2p real numbers. The interpretation of q and f
as spherical coordinates leads to the interpretation of |yi as a point on the Bloch
sphere. The states that define the basis of the Hilbert space correspond to the north
and south pole on the sphere.
The probability to obtain the result |ai when performing a projective measurement
is easily computed as Pa = cos2(q/2) as one would expect.
The evolution of |yi on the sphere, due to Schroedinger equation, is a rotation

on the surface. We do not enter into mathematical details1 but simply remind that
rotations on a 3D sphere are elements of SU(2). We may define the following

1That can be found in any quantum mechanics textbook; see for instance [20]
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operators:
jx =

1
2
(|aihb|+ |biha|) (C.3)

jy =
1
2
(|aihb|� |biha|) (C.4)

jz =
1
2
(|bihb|� |aiha|) (C.5)

that are the generators of the group. The more familiar Pauli matrices sk = 2 jk
(k = x,y,z) are the expression of the operators in the |ai, |bi basis. For sake of
simplicity we remind just the commutation relation between the Pauli matrices

[si,s j] = 2iei jksk, (C.6)

and define the operators that flip the spin:

s± =
1
2
(sx ± isy). (C.7)

We remind that the whenever a triplet of operators satisfy the commutation rela-
tion of eq. (C.6), they have the same properties of the Pauli matrices and therefore
an equivalent description may be done.

C.1.1 Collective spin states

We now proceed, following [53], in the generalization to a system composed
by N particles that can be treated as a pseudo-spin. The Hilbert space HN ⌘
H2

⌦N of dimension 2N is spanned by the product states defined by:

NO
i=1

|Sii, Si =",# . (C.8)

We can define the collective spin operators as the sum of the individual operators:

Jk =
N

Â
i=1

j(i)k , k = x,y,z. (C.9)

These collective operators satisfy the same set of commutation relations

[Ji,Jj] = 2iei jkJk,
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and are therefore spin operators typical of SU(2) and may be used to describe
rotations on a Bloch sphere.
We further define the Casimir operator for a collective spin system:

J2 = J2
x + J2

y + J2
z , (C.10)

which commutes with all the collective spin operators Jk.
The eigenstates of the Casimir operator are called Dicke states2 |J,Mi (0 < J < N

2 ,
�J < M < J) and satisfy:

J2|J,Mi= J|J,Mi, (C.11)

Jz|J,Mi= M|J,Mi. (C.12)

The dimension of the space HD spanned by the Dicke states for N spin is:

dimHN =

(
1
4(N +1)(N +3) N odd,

1
4(N +2)2 N even.

(C.13)

It is clear that for N>2 this space is smaller than HN , therefore the Dicke states
do not form a complete base for HN . To complete the description we would need
another quantum number related to the possible permutations of the particules.
We do not discuss further this point3 but we stress out that if the particle are indis-
tinguishable it is sufficient, to characterize the ensemble, to know the coherence
(related to J2) and the difference in population (related to Jz) of the collective
state. Therefore the Dicke states form a basis of the Hilbert space associated with
an ensemble of N indistinguishable spins. If we require that the total angular mo-
mentum is conserved and is J = N/2, than we can restrict the Hilbert space to
the subspace HS generated by the symmetrical basis BS = {|J,Mi, � J < M < J}
that has dimension N +1.
There are some similarities of the Dicke states with the Fock states of the harmonic
oscillator; the ladder operators J± = Jx± iJy allow4 to generate all the Dicke states
starting from any of them:

J±|J,Mi=
p

J(J+1)�M(M±1)|J,M±1i. (C.14)
2These states are also called angular momentum eigenstates for obvious reasons.
3A detailed discussion may be found in [6] while a more linear one is in [53].
4In a way that reminds us the creation and annihilation operators of any armonic field.
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Figure C.2: Dicke states on the Bloch sphere. Image taken from [53]

The Dicke states may be represented on the Bloch sphere [6][53]5 as circles that
lay parallel to the equatorial plane with latitude defined by the magnetic quantum
number M. The north (south) pole here corresponds to the maximal (minimal)
angular momentum eigenstate i.e. |J,M = (�)Ji. It is easy to see that Dicke states
are invariant under rotations on the vertical axis of the Bloch sphere.

C.2 Coherent spin states

A comprehensive derivation of the coherent spin states (CSS) requires some
attention regarding the mathematical aspects that the interested reader may find in
[6]6; nevetheless the results that are important for this work may be enounced and
a representation on the Bloch sphere will be sufficient to grasp the physics.
Coherent spin states can be obtained by rotating a Dicke state through an angle

5And references cited therein.
6In this paper it may be found an interesting and detailed comparison with the states and oper-

ators of a field.
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Figure C.3: Husimi representation of Dicke states on the Bloch sphere. a)|J,�Ji,
b) |J,�J+1i, c)|J,0i. Image taken from [53]

(q ,f) in angular momentum space; the decomposition of the CSS |q ,fi on the
Dicke states is then[6][53]:

|q ,fi= Â
M0
(�1)J+M0

✓
2J

J+M0

◆1/2
e�ifM0

cosJ�M0
✓

q
2

◆
sinJ+M0

✓
q
2

◆
|J,M0i.

(C.15)
Two limiting cases, that are important in the study of our interest, are the q = p/2
and q = p for f = 0, that in the limit J = N/2 � 1 become:

|p/2,0i ⇡ Â
M0
(�1)J+M0

e�2M02/J|J,M0i, (C.16)

which is a Gaussian state, and:

|p,0i= |J,�Ji, (C.17)

which means that the Dicke state |J,Ji is displaced on the opposite pole.
CSS form7 an overcomplete base that may be used to represent any collective spin
state on the Bloch sphere8. This representation goes under the name of Husimi Q

distribution[29]. The Husimi distribution of a Dicke state is found to be:

7Like the coherent field states.
8In an way that is similar to the representation of field states through the Wigner distribution

or the Q distribution.
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Figure C.4: Husimi representation of Coherent spin state polarized on the x axis.
Image taken from [53]

Q|J,Mi(q ,f) = |hq ,f |J,Mi|2 =
✓

2J
J+M

◆
cos2(J�M

✓
q
2

◆
sin2(J+M

✓
q
2

◆
,

(C.18)
which is, as one would expect, indipendent from f as we have seen that Dicke
states are invariant under rotations on the vertical axis (see Figure C.3).

The Husimi Q representation of a CSS, in the limit N � 1 is well approximated
by a Gaussian distribution9:

Q|q 0f 0i(q ,f)⇡ exp
⇢
�J

2


(q �q 0)2 +

1
2
(1� cos2q 0)(f �f 0)2

��
. (C.19)

The CSS for a pulse of p/2 is given by:

Q|p/2,0i(q ,f) =
���Dq ,f |p

2
,0
E���2 = ✓+cosf sinq

2

◆2J
, (C.20)

and in the limit N � 1 becomes a Gaussian symmetical on q and f (that is sq =

sf = 1/
p

J; see Figure C.4):

Q|p/2,0i(q ,f)⇡ exp
⇢
�J

2
⇥
(q �p/2)2 +f 2⇤� . (C.21)

9Exactly in the same way a coherent field state representation in the Husimi [29] and in the
Wigner representation.





Appendix D

SCHEMATICS OF THE
ELECTRONIC CIRCUITS

IN this appendix we report some of the schemes of the electonics boards we
used and we studied in chapter 5.

VOA

ELECTRONIC

BOARD

Figure D.1: Scheme of the feedback loop.
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Figure D.2: Scheme of the electronic board for feedback loop.



Appendix E

LASER CHARACTERIZATION
DATA

IN this appendix we report the characterization of three of the lasers used in the
BIARO experiment.

We characterized the RIO PLANEX 1560nm dfb, the Koheras AdjustiK E15
1529nm and the LASER 3 (1560) through the use of a optical spectrum analizer1.
The characterization has been done of the wavelength (l peak) as a function of
the working temperature (T ) and for the RIO PLANEX also of the wavelength as
a function of the driving current (Ibias).

A characterization of this kind is required if high resolution of the wavelength
is needed as in the case of BIARO experiment. The most important characteriza-
tion is the one of the 1529nm laser since the resonance between the iperfine levels
BLABLABLA.

Results of the characterization are shown in the following figures.

The laser diode has a linear response to temperature changing all along the
range of temperature that can be used and also on the range we were intrested in.
The linear fit2 of the wavelength versus temperature date across all the range we

1inserire modello
2For the linear fits we used the native function in Excel for Mac 2007
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Figure E.1: Characterization of the 1529 laser. Wavelength versus temperature:
full range

tested is (l is in nm and T in us degrees):

l = 0.037874T +1527.7. (E.1)

The resonance wavelength are 1529.24nm and 1529.36nm so it was important
to know exactly how the laser diode worked in this region (see Fig:E.2). We then
took more data ponits in the region of interest and did a linear fit wich gave as a
result (l is in nm and T in Celsius degrees)

l = 0.038025T +1527.7 (E.2)

We notice that the RIO Planex diode shows an hysteresis loop (see Fig:E.3)in
the wavelength VS temperature diagram wich is an interesting feature that allows
to have a broader excursion in the wavelength range.
During the experiment the laser is usually used at 26.00 degrees so the wavelength
VS driving current diagram is taken at that temperature (see FIG:E.4).
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Figure E.2: Characterization of the 1529 laser. Wavelength versus temperature:
resonance range
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Figure E.3: Characterization of the RIO Planex 1560nm laser. Wavelength versus
temperature. Measurement taken at Ibias = 100mA. In RED the ramp up; in BLUE
the rap down.
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Figure E.4: Characterization of the RIO Planex 1560nm laser. Wavelength versus
driving current. Measurement taken at T = 26.000C
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temperature
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