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Abstract

In questa tesi abbiamo presentato il calcolo dell’Entropia di Entanglement di un
sistema quantistico unidimensionale integrabile la cui rappresentazione statistica
é data dal modello RSOS, il cui punto critico é una realizzazione su reticolo di
tutti i modelli conformi minimali. Sfruttando l’integrabilitá di questi modelli,
abbiamo svolto il calcolo utilizzando la tecnica delle Corner Transfer Matrices
(CTM). Il risultato ottenuto si discosta leggermente dalla previsione di J. Cardy e
P. Calabrese ricavata utilizzando la teoria dei campi conformi descriventi il punto
critico. Questa differenza é stata imputata alla non-unitarietá del modello stu-
diato, in quanto la tecnica CTM studia il ground state, mentre la previsione di
Cardy e Calabrese si focalizza sul vuoto conforme del modello: nel caso dei sis-
temi non-unitari questi due stati non coincidono, ma possono essere visti come
eccitazioni l’uno dell’altro. Dato che l’Entanglement é un fenomeno genuinamente
quantistico e il modello RSOS descrive un sistema statistico classico bidimension-
ale, abbiamo proposto una Hamiltoniana quantistica unidimensionale integrabile
la cui rappresentazione statistica é data dal modello RSOS.
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Introduction

Entanglement is a genuine quantum phenomenon which occurs between two inter-
acting systems when thermal fluctuations are small enough to make the quantum
behaviour arise. From a classical point of view, at finite temperature correlations
between two interacting systems always exist: thanks only to thermal excitations
the two systems are informationally connected in some way. When the tempera-
ture tends to zero, one expects that these connections vanish, but what happens
is that a different kind of correlations leads over classical ones: Entanglement.
Entanglement plays a central role in the study and in the understanding of a lot
of physical phenomena. From the arising of quantum mechanics entanglement
has always attracted the attention of physicists, since it shows in a plain way the
quantum behaviour of Nature.
In recent years this phenomenon has attracted also the attention of computer sci-
entists and engineers; thanks to the discovery that quantum phenomena can be
used for a sharp improvement of computation and telecommunication techniques,
entanglement has started to be analysed and used in a wide class of situations.

Quantifying entanglement is a vital step in a complete theoretical description of
the phenomenon. In literature it was proposed to adopt the Von Neumann and
Rényi Entropy of a subsystem as a measure of the entanglement, especially for
pure states. For mixed states, many indicators of Entanglement have been pro-
posed and they are used to study system which does not belong to the ground
state, e.g. systems at finite temperature.

Furthermore a measure of Entanglement is an important indicator of Quantum
Phase Transitions, since in the thermodynamic limit it diverges approaching a
critical point.

From a theoretical point of view, progresses in the evaluation of the Entanglement
Entropy were made using conformal field theory, connecting the leading term of
the entropy with the central charge of the conformal theory which described the
critical point of the system.
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In this thesis we will focus on one-dimensional Quantum Spin Chains, since they
are described by a 1 + 1-dimensional quantum field theory, or, alternatively, by a
2-dimensional classical statistical theory on a lattice. These two representations
allow us to use both statistical mechanics and quantum field theory in the study
of these systems. Using the QFT picture we can study the system at its critical
point, since the underlying theory becomes conformal; on the other hand, the sta-
tistical picture allows us to evaluate correlation functions using Corner Transfer
Matrix, which is a powerful method developed by R. Baxter for the evaluation of
thermodynamic quantities in statistical models.

In recent years Entanglement Entropy has been evaluated for a wide class of spin
chains, in particular for the infinite bipartite XYZ spin chain, which is one of the
most general systems. The XYZ model tends to the XXZ model at its critical
point, which is described by a c = 1 conformal field theory. In the 2-dimensional
statistical picture, the XYZ chain is described by the eight-vertex model, and En-
tanglement can be evaluated using the Corner Transfer Matrix and the results
obtained near its critical point satisfy the Conformal Field Theory prediction.

Thanks to a recently proposed protocol [1, 2] which would allow experimental
measures of Rényi Entropy for gapped systems, the evaluation of this quantity
attracts new interets.

We are interested in a particular class of spin chains whose critical point is de-
scribed by a minimal conformal model, which describes also a critical point of the
classical Restricted Solid on Solid (RSOS) model. This system describes a wide
variety of models, both unitary and non-unitary. In recent years, F. Franchini and
A. De Luca evaluated the Entanglement Entropy for unitary RSOS models near
their critical points, finding a result which agrees with the CFT prediction.
In this thesis, we extended the evaluation of Entropy to non-unitary gapped mod-
els. The results obtained can not be completely predicted by CFT, since CFT
and CTM evaluate the Entropy of two different states of the system: while CTM
technique probes the physical ground state of the system (i.e. the state with the
minimal energy), the CFT approach analyses the conformal vacuum, which coin-
cides with the physical ground state in unitary theories, but it is an excited state
in non-unitary models.
Moreover, since Entanglement is a genuine quantum phenomenon, and RSOS is
a classical statistical system, we searched for a suitable one-dimensional quantum
system related to RSOS models.
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The analysis of these non-unitary theories suggests new horizons of study, since
it emphasises unexpected non-trivial properties of these models. Moreover some
properties of Entanglement Entropy suggests interesting connections between par-
ticular quantum states of the spin chain and classical configurations of the statis-
tical models.

The thesis is structured as follows:

• In the first Chapter we will introduce Entanglement in quantum systems and
we will discuss Von-Neumann Entropy as a measure of it.

• In Chapter 2 and 3 we will introduce respectively Corner Transfer Matrix
and the Replica’s trick in Conformal Field Theory. These two techniques can
be used for the evaluation of Entanglement Entropy near the critical point
of a system: the first method refers to the statistical picture of the model,
while the second one focuses on the quantum fields theory underlying the
critical point.

• In Chapter 4 we will describe RSOS models and we will give an expression
for their Corner Transfer Matrices. We will conclude this Chapter with the
Hamiltonian limit of these models near its critical point. This is a procedure
used to find the one-dimensional quantum system related to a statistical
bi-dimensional one.

• In Chapter 5 we will analyse this one-dimensional quantum system and we
will discuss its symmetry group. Moreover we will discuss some integrable
Spin-Chains.

• In Chapter 6, we will conclude this thesis with the evaluation of the Entan-
glement Entropy and with the interpretation of results obtained. Moreover
we will propose a Spin-Chain related to the RSOS model.
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Chapter 1

Entanglement Entropy

In this chapter we will start with an introduction to Entanglement from a qualita-
tive point of view. Moreover we will present some physical quantities which have
been proposed in literature to quantify Entanglement, in particular we will refer
to Von Neumann and Rényi Entropy as a measure of Entanglement.

1.1 The Two Qubit Archetypal

Let us consider a single qubit system, which represents one spin-1
2
particle. The

state of the system is defined as

|ψ〉 = α| ↑〉+ β| ↓〉 (1.1)

with α, β ∈ C and |α|2 + |β|2 = 1. In the previous expression the state | ↑〉 (| ↓〉)
is the state with spin pointing up (down).
Of course, since this system is composed by only one particle, we can not define
any kind of correlation.
Now, consider two spin-1

2
particles in the singlet state; the quantum state is given

by

|s0〉 =
| ↑〉1 ⊗ | ↓〉2 − | ↓〉1 ⊗ | ↑〉2√

2
(1.2)

where pedices 1, 2 refer to the first or the second particle.
If an observer measures the spin of the first particle and obtains a particular value,
say 〈σz1〉 = +1

2
, the value of the spin of the second particle is automatically fixed

to 〈σz2〉 = −1
2
. This kind of phenomenon implies a sort of correlation between the

two particles.
This correlation is not always guaranteed in all two-spin systems, for example in

13
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the triplet with total spin equal to one:

|t1〉 = | ↑〉1 ⊗ | ↑〉2 (1.3)

the measure of the spin of the first particle does not give additional informations
about the state of the system.
States like the singlet for which non-local correlations arise are called entangled,
while states which do not have this behaviour are called separable.

At this point, our definition about entanglement is purely qualitative: it defines
when a quantum state is entangled or separable, and it does not give any infor-
mation about intermediate states.

1.1.1 Pure and Mixed States

It is know that if a quantum system can be represented with a state (like previous
examples) its density matrix ρ is simply given by

ρ = |ψ〉〈ψ| (1.4)

and the state is called pure. On the other hand if a system can not be simply
represented by a state, the density matrix is written as

ρ =
∑

k

pkρk (1.5)

where ρk are density matrices in the form (1.4) and pk are some real positive con-
stants summing up to one (indeed they are genuine classical probabilistic weights);
these states are called mixed and the archetypal example is a thermal superposi-
tions of states:

ρ =
∑

k

e−βEk |ψk〉〈ψk| (1.6)

where Ek is the energy of the state |ψk〉 and β is the inverse of the temperature.
It is important to stress on the difference between pure/mixed states and separa-
ble/mixed states, since these concepts will be connected when one analyses only a
part of the total system.

14



1.2. Subsystems, Reduced Density Matrix and Schmidt
Decomposition

1.2 Subsystems, Reduced Density Matrix and Schmidt
Decomposition

From the two-spins examples, we know that the entanglement is a phenomenon
which can occur between two subsystems of the same system; for instance, in this
example, the two subsystems are given by the two particles.
Notice that the quality of a state to be entangled or not can depend on the chosen
partition: for instance, the three-spin state

|ψ〉 = | ↑〉1 ⊗
| ↑〉2 ⊗ | ↓〉3 − | ↓〉2 ⊗ | ↑〉3√

2
(1.7)

is entangled if we choose 1 ∪ 2 and 3 as subsystems, while it is separable if we
choose 1 and 2 ∪ 3 as subsystems.
In following sections we will consider a system A ∪ B which is divided into two
subsystems A and B. The Hilbert spaceH of the system, supposed to be described
by a pure state, is given by

H = HA ⊗HB (1.8)

Thanks to this factorisation a state of the system is given by

|ψ〉 =
∑

i,j

Cij|φi〉A ⊗ |χj〉B (1.9)

where {|φi〉A}i and {|χj〉B}j are complete orthonormal basis respectively of HA

and HB and Ci,j are complex constants normalised such that
∑
i,j

|Ci,j|2 = 1

1.2.1 Expectation values

In order to analyse correlations between subsystems it is useful to introduce the
reduced density matrix, which is an operator similar to the density matrix but
which focuses only on a subsystem.
If we are interested in the expectation value of an operator O whose non-trivial
part acts only on the subsystem A, (i.e. it can be written as O = OA ⊗ 1B) we

15
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have1

〈ψ|OA ⊗ 1B|ψ〉 = TrH [ρO] =
∑

i1,i2,j1,j2

Ci1,j1C
∗
i2,j2
〈φi2|OA|φi1〉〈χj2|1B|χj1〉

=
∑

i1,i2

(∑

j

Ci1,jC
∗
i2,j

)
〈φi2|OA|φi1〉

=
∑

i

〈φi|ρAOA|φi〉 = TrHA [ρAOA] (1.10)

where we have defined the reduced density matrix as

〈φi1 |ρA|φi2〉 =
∑

j

Ci1,jC
∗
i2,j

(1.11)

The reduced density matrix allows us to focus on one subsystem taking automat-
ically into account the other subsystem with which the first one interacts. In this
picture one subsystem, say A, can be considered as a system embedded in a ther-
mal bath given by the subsystem B and vice-versa.
The reduced density matrix respects all properties of density matrices of mixed
states2:

• It is self-adjoint ρ†A = ρA

• Its trace is unitary TrHA ρA = 1

• It is non-negative A〈x|ρA|x〉A ≥ 0 ∀ |x〉A ∈ HA

Moreover the reduced density matrix of a subsystem can be obtained tracing the
density matrix of the total system over all degrees of freedom of the other subsys-
tem:

ρA = TrHB ρ (1.12)

since

TrHB ρ =
∑

j

〈χj|ρ|χj〉 =
∑

j,i1,i2,j1,j2

Ci1,j1C
∗
i2,j2
〈χj|χj1〉〈χj1|χj〉|φi1〉〈φi2|

=
∑

i1,i2

(∑

j

Ci1,jC
∗
i2,j

)
|φi1〉〈φi2 | (1.13)

1In following expressions TrV O means the trace of O over all states belonging to the vector
space V

2Recall that density matrices of pure states are also idempotent
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and

〈φi1|TrHB ρ|φi2〉 =
∑

j

Ci1,jC
∗
i2,j

= 〈φi1|ρA|φi2〉 (1.14)

1.2.2 Schmidt Decomposition

In order to deepen better the role of the reduced density matrix we can introduce
the Schmidt Decomposition. As before, a given pure state |ψ〉 can be written as

|ψ〉 =
∑

i,j

Ci,j|φi〉A ⊗ |χj〉B =
∑

i

|φi〉A ⊗ |χ̃i〉B (1.15)

where |χ̃i〉B =
∑

j Ci,j|χj〉B. Supposing that {|φi〉A}i is an eigenbasis of ρA3 with
eigenvalues {pi}i, then the reduced density matrix is given by

ρA =
∑

i

pi|φi〉A A〈φi| (1.16)

Comparing (1.14) and (1.16) we have

〈χ̃i|χ̃′i〉 = piδi,i′ (1.17)

and then the state |ψ〉 can be expressed as

|ψ〉 =
∑

i

√
pi|φi〉A ⊗ |χ′i〉B (1.18)

where |χ′i〉B = 1√
pi
|χ̃i〉B is the normalised version of |χ̃i〉B.

It is important to notice how weights pi of the reduced density matrix of the
subsystem are related to quantum coefficients of the state of the total system; in
particular is fundamental to emphasise that if the state of the whole system is
entangled, the reduced density matrix referred to a subsystem is mixed. This
remark must be taken into account in order to understand deeply these phenomena.
It can be shown that the reduced density matrix ρB related to the second subsystem
has the same form of ρA

ρB =
∑

j

pj|χj〉B B〈χj| (1.19)

where pj are the same of (1.16). It is vital to stress the fact that even if ρA and
ρB have different dimensions and a different number of eigenvalues, they have

3A complete eigenbasis of ρA can always be found, since ρA is a self-adjoint operator. More-
over, since it is definite positive, also its eigenvalues are non-negative.

17
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the same non-zero eigenvalues, whose number is called Schmidt number. If
the Schmidt number is equal to one the state is separable, if it becomes greater
than one Entanglement is turned on, growing up to its maximal value, which is
reached when the Schmidt number is equal to dN

2
, where in the spin-chain picture

d and N are respectively the dimension of the Hilbert space of each site and the
number of sites.

Example: Two-spin system

We present a two-spin example of the relation between mixed/pure states and
entangled/separable states. In this example, if we consider the singlet state, which
is entangled, the density matrix is given by

ρ = |s0〉〈s0| =
1

2
(| ↑↓〉〈↑↓ | − | ↑↓〉〈↓↑ | − | ↓↑〉〈↑↓ |+ | ↓↑〉〈↓↑ |) (1.20)

and the reduced density matrix of the subsystem 1 is given by

ρ1 = Tr2 ρ = 1〈↑ |ρ| ↑〉1 + 1〈↓ |ρ| ↓〉1
=

1

2
(| ↓〉2 2〈↓ |+ | ↑〉2 2〈↑ |) (1.21)

which represents a mixed state.
On the other hand the density matrix of the first triplet is given by

ρ = |t1〉〈t1| = | ↑↑〉〈↑↑ | (1.22)

and the reduced on the first subsystem is given by

ρ1 = Tr2 ρ = 1〈↑ |ρ| ↑〉1 + 1〈↓ |ρ| ↓〉1
= | ↑〉2 2〈↑ | (1.23)

which is a pure state.

1.3 Shannon, Von Neumann and Rényi Entropy

As we said before, an entangled state is related to mixed subsystems, whose density
matrices can be written as classical superpositions of density matrices of pure
states with real, non-negative probabilistic weights. As probabilistic weights, their
sum has to be normalised to one and they form a convex combination (they are

18
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non-negative, less than one and their sum is equal to one):

ρ =
∑

k

pkρk (1.24)

∑

k

pk = 1

0 ≤ pk ≤ 1

These classical weights define a classical probability distribution, which associate
to each state ρk its classical probability pk.
This ‘classical nature’ can be shown noticing that the expectation value of an
operator O is given by

〈O〉 =
∑

k

pk〈O〉k (1.25)

where 〈O〉k = Tr[ρkO] is the expectation value of O in the k-th state; in this way
the pks play the role of classical weights, since they quantify the weight of each
state k.
To each classical probability distribution we can always associate a function, called
Shannon Entropy which measures how much a distribution is not deterministic:
for example a constant distribution maximises Shannon Entropy since each value
is equally probable, while a delta distribution minimises Entropy, since there is
only one possible issue for a measure.
Shannon Entropy is defined as

S = −
∑

k

pk log pk (1.26)

which vanishes for pk = δk,k0 and it is maximised for pk = const.
The Shannon Entropy gives the lack of information contained in a probabilistic
distribution, i.e. how much a a priori prediction of a measure is reliable. For
this reason, a distribution with higher Shannon Entropy than another one is less
deterministic than the second one.

Example: the Shannon Entropy of a passage

One of the most common examples of the Shannon Entropy is the evaluation of
predictability of a passage, i.e. quantification of how much the distribution of
letters and words of a paragraph is deterministic.
Let us consider, for example, the poem Divina Commedia and this thesis. Both
of them are composed by a long sequence of words; from each passage one can
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extract the probabilistic distribution of words and evaluate the Shannon Entropy
for each distribution. As we said before, the passage with the highest entropy is
the most complex one, since it contains less repetition and uses a wide vocabulary.
Indeed the Shannon Entropy of the Divina Commedia is equal to 0.6 while this
thesis’s one is equal to 0.39.4

1.3.1 The Von-Neumann Entropy

At the quantum level, a function similar to the Shannon Entropy can be defined in
order to quantify the lack of information about a system. The quantum analogous
is the Von Neumann Entropy and it is defined as

S = −Tr [ρ log ρ] (1.27)

which coincides with the Shannon Entropy in the probabilistic picture.
According to the literature, the Von-Neumann Entropy of a subsystem can quan-
tify well the amount of Entanglement of the total system in some models. It is
vital to emphasise the object whose Entropy is evaluated: we are not interested
in the Entropy of the total system (which is always zero for pure states) but in
the Entropy of a subsystem in interaction with the other one, since the Entangle-
ment is strictly related to the correlation between these two subsystems. As we
showed in previous paragraphs, an entangled (pure) state is composed by two
mixed sub-states, which can be seen as a system and a fictitious thermal bath,
whose Entropy is non-zero, since the fictitious temperature makes the probabilistic
distribution less predictable.

Example: The Von-Neumann Entropy vs. Entanglement

Consider, for instance a two-spin system. As we said before, the singlet is an
entangled state, while the first triplet is a separable one. Using the expressions
(1.21,1.23) of the reduced density matrices of these two states the Von-Neuman
Entropy is given by

Ss0 = log 2 (1.28)
St1 = 0 (1.29)

The entangled state is more entropic than the separable one; this fact shows that
the Von-Neumann Entropy evaluates well the amount of Entanglement for this
system.

4In order to compare two passages in the same language, I used the Longfellow’s translation
of the Divina Commedia.
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The Von-Neumann Entropy for the two-spin system can be evaluated not only
for completely separable or entangled states, but allows us to investigate the
Entanglement of a variety of states.
Let us consider the state

|ψ〉 =
√
p| ↑〉 ⊗ | ↓〉+

√
1− p| ↓〉 ⊗ | ↑〉 (1.30)

which is completely separable for p = 0, 1 (first-triplet-like state) or maximally
entangled for p = 1

2
(singlet-like state). The reduced density matrix related to the

first subsystem can be easily obtained, since the Schmidt decomposition of this
state is trivial:

ρA = p| ↑〉〈↑ |+ (1− p)| ↓〉〈↓ | (1.31)

The Von-Neumann Entropy of this state is then given by

S = −p log p− (1− p) log(1− p) (1.32)

Figure 1.1: Dependance of Entropy S vs. p

whose maximum value is obtained for p = 1
2
and its minimum for p = 0, 1.

In this way the Von-Neumann Entropy measures the amount of Entanglement
owned by a state.
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1.3.2 The Rényi Entropy

As stated in previous paragraphs, the Von-Neumann Entropy quantifies well the
amount of Entanglement in some systems. On the other hand its evaluation can
be non trivial, thanks to the presence of the logarithm in the formula.
In 1960 Alfréd Rényi proposed [3] a generalisation of the Shannon Entropy for a
probabilistic distribution P = (p1, p2, . . . )

Sα =
1

1− α log
∑

k

pαk α ∈ R+ (1.33)

which is called Entropy of order α or Rényi Entropy.
On of the most important properties [3] of the Rényi entropy is that its limit gives
the Shannon Entropy when α tends to one.

lim
α→1

Sα = S (1.34)

In the density matrix picture the Rényi Entropy is given by

Sα =
1

1− α log Tr ρα (1.35)

which recovers the Von-Neumann Entropy in the limit α→ 1.
Since the evaluation of Rényi Entropy can be easier than the evaluation of Von-
Neumann one, sometimes it is preferred to calculate the first Entropy and then to
take its limit in order to reach the second one.

Notice that while the Von-Neumann Entropy is the quantum version of the Ther-
modynamic Entropy of a system, it is not true for the Rényi Entropy.

1.4 The Von-Neumann Entropy as a measure of
Entanglement

In previous paragraphs, we have shown that Von-Neumann Entropy is a good
measure of the Entanglement for a certain class of states, in particular for pure
states. This relation between Entropy and Entanglement is not guaranteed for
mixed states, and we will show that it is not still valid for such states.

In order to check the validity of the Von-Neumann Entropy and the Entangle-
ment, we will compare properties of both quantities.
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1.4.1 Von-Neumann Entropy - Properties

The Von-Neumann Entropy satisfies following properties [4]

1. A pure state has zero Entropy: S(|ψ〉〈ψ|) = 0

2. Entropy is invariant under unitary transformations: S(U−1ρU) = S(ρ)

3. Entropy is bounded by above: S ≤ log d (d dimension of the system)

4. Entropy is concave: S(λρ1 + (1− λ)ρ2) ≥ λS(ρ1) + (1− λ)S(ρ2)

5. The Entropy is sub-addictive: S(ρA∪B) ≤ S(ρA)+S(ρB) (ρA = TrHB ρA∪B)

We stress the fact that, in order to measure the Entanglement of a partition of a
system, we are interested in the Von-Neumann Entropy of a subsystem.

1.4.2 Entanglement - Properties

Now, we list a series of properties [4, 5] which are required in order to have a ‘good’
measure E(ρ) of Entanglement of a system

1. A separable state is not entangled: E
(
ρ =

∑
k

ckρ
(k)
A ⊗ ρ

(k)
B

)
= 0

2. A measure of Entanglement is not increasing under local operations and
classical communications (LOCC): E (UρU−1) ≤ E(ρ). Since a measure
of Entanglement gives a measure about the amount of quantum correla-
tions between two subsystems, it can not increase if we modify a subsystem
(local operations) or if the two subsystems exchange classical informations
(classical communications). Focusing on local operations, since they are
implemented by unitary operators, they can not change the amount of En-
tanglement E

(
UρU †

)
≤ E(ρ).

3. A measure of Entanglement is bounded by its value for completely entangled
states.
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4. A measure of Entanglement is convex: E(λρ1 + (1− λ)ρ2) ≤ λE(ρ1) + (1−
λ)E(ρ2)

5. A measure of Entanglement is sub-addictive: E(ρA ⊗ ρB) ≤ E(ρA) + E(ρB)

The fourth property derives from the genuine quantum nature of the Entangle-
ment: since a convex combination of density matrix is a purely classical statistical
superposition of states, it can not increase the Entanglement.

Comparing properties of Entropy and Entanglement it is clear that they are com-
patible except only for the fourth property of each quantity, for this reason the
Von-Neumann Entropy quantifies well Entanglement only for pure states, whose
Schmidt decomposition is unique.
For mixed states more complex quantities have been proposed in literature [4] to
measure the Entanglement, such as the Entanglement of Formation.

For our purposes, i.e. the evaluation of the ground state Entanglement, the Von-
Neumann Entropy is a good measure, since the ground state is intrinsically a pure
state.
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Chapter 2

Corner Transfer Matrix and
Reduced Density Matrix

In following sections we will introduce a powerful method for computation of sta-
tistical quantities: the Corner Transfer Matrix. Definitions and notations are the
same of the Chapt. 13 of [6]. At the end of this chapter we will introduce the
reduced density matrix of a quantum system and we will show a method, devel-
oped by Peschel, Kaulke, and Legeza (PKL) [7], for the evaluation of the reduced
density matrix using corner transfer matrices.

2.1 Corner Transfer Matrix
In a lattice system with nearest-neighbour interaction, the total energy can be
written as a summation over all links of the energy of two near sites

E =
∑

<i,j>

ε(σi, σj), (2.1)

or as a summation over all faces of the lattice

Figure 2.1: Face (i, j, k, l)

E =
∑

faces

ε(σi, σj, σk, σl), (2.2)

where ε(σi, σj, σk, σl) denotes the contribution
to the energy given by surroundig spins of the
face (i, j, k, l).
Models whose energy can be written as a sum-
mation over all faces are usually called Interaction Round a Face (IRF) systems.
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The partition function of the whole lattice is then given by:

Z =
∑

σ

∏

faces

w(σi, σj, σk, σl) (2.3)

with
w(a, b, c, d) = exp {−βε(a, b, c, d)} (2.4)

where the above summation is over all possible spin configurations and the product
over all faces.

Figure 2.2: Corner of a square
lattice

The system has one or more ground
states, which are defined as states
which minimise the total energy E or,
equivalently, which give the largest con-
tribution to the partition function. For
example the isotropic one-dimensional
ferromagnetic Ising model has two
ground states: the one with all spin
pointing ’up’ and the one with all
spin pointing ’down’. When we refer
to the ground state in following sec-
tions, we mean a particular one, since
some thermodynamic quantities, such
as spontaneous magnetisation, could
not be invariant under the change of
the ground state (in the previous exam-
ple the spontaneous magnetisation has

a different sign in the two ground states).
Let us now consider a particular kind of lattice (Fig. 2.2): a square lattice with a
global triangular shape. Spins on the top row are labelled by σ′1 · · · σ′m and ones
on the left column by σ1 · · ·σm. Since σ1 and σ′1 represent the same spin, they
have to be chosen equal.
Denoting with σ̄ the set of all values {σ1 · · ·σm} and with σ̄′ the one of {σ′1 · · ·σ′m},
we can define the quantity Aσ̄,σ̄′ as

Aσ̄,σ̄′ =
∑

•

∏

�

w(σi, σj, σk, σl) (2.5)

if σ1 = σ′1, or equal to zero if σ1 6= σ′1. In the above expression the summation is
over all ’internal’ sites (solid circles in Fig. 2.2) and the product over all 1

2
m(m+1)

faces, where m is the number of spins in the top row (empty circles). The value
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2.1. Corner Transfer Matrix

of spins on the most external diagonal edge can be chosen fixed or free.

Let us now define Bσ̄,σ̄′ in a very similar way to Aσ̄,σ̄′ only with an anti-clockwise
rotation of the lattice through π

2
(see Fig. 2.3). In this case σ̄ denotes the set of

all spins on the bottom row and σ̄′ denotes the set of all spins on the left column.
Matrices Cσ̄,σ̄′ and Dσ̄,σ̄′ are defined as Aσ̄,σ̄′ with a π and a 3π

2
lattice rotation.

Figure 2.3: Lattice
composed by four
corners

Denoting with σ̄, σ̄′, σ̄′′ and σ̄′′′ the set of spins on the
edge between A and D, B and A, C and B, D and C
(forcing σ1 to have the same value in all sets), we can
note that the following quantity

Aσ̄,σ̄′Bσ̄′,σ̄′′Cσ̄′′,σ̄′′′Dσ̄′′′,σ̄ (2.6)

is the product of all Boltzmann weights of all faces,
keeping the σ̄ · · · σ̄′′′ spins fixed. The partition function
Z of the lattice is therefore given by the summation of
the previous expression over all σ̄ · · · σ̄′′′ spins:

Z =
∑

σ̄···σ̄′′′
Aσ̄,σ̄′Bσ̄′,σ̄′′Cσ̄′′,σ̄′′′Dσ̄′′′,σ̄ (2.7)

The above summation runs over all sets which satisfy
the constraint σ1 = σ′1 = σ′′1 = σ′′′1 , but, since Aσ̄,σ̄′
vanishes if this constraint is not satisfied, we can neglect
this constraint and obtain:

Z = Tr [ABCD] (2.8)

The spontaneous magnetization〈σ1〉 is then given by

〈σ1〉 =
1

Z

∑

•,◦
σ1

∏

�

w(σi, σj, σk, σl) (2.9)

=
Tr [SABCD]

Tr [ABCD]
(2.10)

where the summation runs over all possible spin configurations and the product
runs over all faces of the lattice; the matrix S is given by:

S =

[
1 0
0 −1

]
(2.11)

if we order spins configuration so that σ1 = +1 for the first half of configurations
and σ1 = −1 for the second half. In analogy with the fact that multiplying by a
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row-to-row transfer matrix means add a row to the total system, we can note that
multiplying by A means add the lower-right corner to the lattice.

Denoting with s̄ · · · s̄′′′ the value of spin σ̄ · · · σ̄′′′ of A · · ·D when the system
lies in the ground state, we can set

α = As̄,s̄′ (2.12)
β = Bs̄,s̄′ (2.13)
γ = Cs̄,s̄′ (2.14)
δ = Ds̄,s̄′ (2.15)

and define

An =
1

α
A (2.16)

Bn =
1

β
B (2.17)

Cn =
1

γ
C (2.18)

Dn =
1

δ
D (2.19)

which are called normalized corner transfer matrices. Since all thermodynamic
quantities depend on the ratio of A · · ·D entries, they can be evaluated using
normalized matrices.
Sometimes it is useful to use a diagonalised version of corner transfer matrices
Ad, Bd, Cd and Dd:

An = α′PAdQ
−1 (2.20)

Bn = β′QBdR
−1 (2.21)

Cn = γ′RCdT
−1 (2.22)

Dn = δ′TDdP
−1 (2.23)

where α′ · · · δ′ are scalars, P is the matrix of eigenvectors of AnBnCnDn, Q is the
one of BnCnDnAn, etc. Using a particular choice of α′ · · · δ′ we can set Ad · · ·Dd so
that their maxima entries are unity. Exactly as we said above for normalised ma-
trices, thermodynamic quantities can be evaluated using diagonal corner transfer
matrices too.

2.1.1 Representation of expression as Product of Operators

In order to build up the corner transfer matrix of a system, it can be useful to
define some complex structure made by Boltzmann weights of faces.
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2.1. Corner Transfer Matrix

Let us define first the matrix Ui as

(Ui)σ̄,σ̄′ = δ(σ1, σ
′
1)δ(σ2, σ

′
2) · · · δ(σi−1, σ

′
i−1)×

× w(σi, σi+1, σ
′
i, σi−1)δ(σi+1, δ

′
i+1) · · · δ(σm, σ′m) (2.24)

which corresponds to add a face to the lattice (Fig. 2.4). Notice that Ui and
Uj commute if i and j differ by two or more. What we want to do is to find an
expression to write A as a product of some Ui matrices. In order to reach our goal
it is useful to introduce the two following matrices U t

m and U stz
m+1:

(
U t
m

)
σ̄,σ̄′ = δ(σ1, σ

′
1)δ(σ2, σ

′
2) · · · δ(σm−1, σ

′
m−1)×

× w(σm, s, σ
′
m, σm−1) (2.25)(

U stz
m+1

)
σ̄,σ̄′ = δ(σ1, σ

′
1)δ(σ2, σ

′
2) · · · δ(σm, σ′m)×

× w(s, t, z, σm) (2.26)

The first equation is the very same of (2.24) only with m + 1 sites, whose last
one is fixed to be equal to s; in the second one the number of sites is extended to
m + 2 and σm+1, σm+2 and σ′m+1 are replaced by s, t and z. In our diagrammatic
representation these matrices look like:

Figure 2.4: Graphical representation of Ui matrices

After setting

F ss′tj = U ss′t
m+1U

t
mUm−1 · · ·Uj (2.27)

we can simply see that

A = F ss′t2 F tt
′u

3 Fuu
′v

4 · · · Fxx′ym Fyy′zm+1 (2.28)

where ss′ · · · z label fixed spins on the diagonal edge of A.
Thanks to this construction we have reached our goal to build up the whole corner
transfer matrix A using singular face Boltzmann’s weights.
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2.1.2 Star-Triangle Relation (Yang-Baxter Equation)

In this section we will consider some important properties of face Boltzmann
weights, which can be encapsulated in the Yang-Baxter equation.
Let us consider a square lattice with N columns, with cylindrical boundary con-
ditions , i.e. the first column follows the N -th one.
The row-to-row transfer matrix is given by:

Vσ̄,σ̄′ =
N∏

j=1

w(σj, σj+1, σ
′
j+1, σ

′
j) (2.29)

with σN+1 = σ1 and σ′N+1 = σ′1.
Defining V ′ in a very similar way of V , only with w′ instead of w, we can evaluate
the product of these two matrices:

(V V ′)σ̄,σ̄′ =
∑

σ̄′′

Vσ̄,σ̄′′V
′
σ̄′′,σ̄′

=
∑

σ′′1

· · ·
∑

σ′′N

N∏

j=1

w(σj, σj+1, σ
′′
j+1, σ

′′
j )w(σ′′j , σ

′′
j+1, σ

′
j+1, σ

′
j)

=
∑

σ′′1

· · ·
∑

σ′′N

N∏

j=1

s(σj, σ
′′
j , σ

′
j|σj+1, σ

′′
j+1, σ

′
j+1) (2.30)

Notice that s(a, a′′, a′|b, b′′, b′) = w(a, b, b′′, a′′)w′(a′′, b′′, b′, a′) is the Boltzmann
weight of two adjacent faces which share the horizontal edge.

Figure 2.5: Graphical representation of the matrix (S(a, a′|b, b′))a′′,b′′

After defining the matrix S(a, a′|b, b′):

(S(a, a′|b, b′))a′′,b′′ = s(a, a′′, a′|b, b′′, b′) (2.31)
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we can see that (2.30) can be written as:

(V V ′)σ̄,σ̄′ = Tr [S(σ1, σ
′
1|σ2, σ

′
2) · · ·S(σN , σ

′
N |σ1, σ

′
1)]

(2.32)

In order to express V ′V in a similar way, we define S′ in the same way of S, only
exchanging the role of w and w′. Then V ′V is given by:

(V ′V )σ̄,σ̄′ = Tr [S′(σ1, σ
′
1|σ2, σ

′
2) · · ·S′(σN , σ′N |σ1, σ

′
1)] (2.33)

For reason which will be clarified in following chapters, we are interested in finding
condition under which V and V ′ commute; this request can be shifted to the
existence of a matrix M(a, a′) such that

S(a, a′|b, b′) = M(a, a′)S′(a, a′|b, b′)M−1(b, b′) (2.34)

Multiplying from the right the above expression by M(b, b′) end writing down ex-
plicitly all terms we obtain:

∑

c

w(a, b, c, a′′)w′(a′′, c, b′, a′)w′′(c, b, b′′, b′)

=
∑

c

w′′(a′′, a, c, a′)w′(a, b, c, a′)w(c, b′′, b′, a′) (2.35)

where
w′′(c, a, d, a′) = (M(a, a′))c,d (2.36)

which is called Star-Triangle relation or Yang-Baxter equation. It can be very
useful to see the above expression in a subjective graphical way:
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Figure 2.6: Graphical representation of the Yang-Baxter equation

31



Corner Transfer Matrix and Reduced Density Matrix

Remembering the definition of matrices Ui, the star-triangle relation can be written
as:

Ui+1U
′
iU
′′
i+1 = U ′′i U

′
i+1Ui (2.37)

where U ′i and U ′′i are defined exactly as Ui only with w replaced by w′ and w′′.
We are interested in non trivial solutions of the star-triangle relation, since we
can solve the system with them. As shown in Chapter 9 of [6], we know that
the solution of the model can be obtained by the commutability of its transfer
matrices, i.e. by the solution of the Yang-Baxter equation.
The equation (2.37) can be rewritten in a more suggestive way

Ui+1(u)Ui(u
′)Ui+1(u′′) = Ui(u

′′)Ui+1(u′)Ui(u) (2.38)

where we have supposed to define the Boltzmann weight w as a function of one
parameter u

w ≡ w(u)

w′ ≡ w(u′)

w′′ ≡ w(u′′)

(2.39)

As we will see in (2.44), the YB equation can be satisfied if u′′ = u′ − u, allowing
us to re-write (2.38) as

Ui+1(u)Ui(u
′)Ui+1(u′ − u) = Ui(u

′ − u)Ui+1(u′)Ui(u) (2.40)

which is the most known form of the Yang-Baxter Equation.
Since the operator

∏
i

Ui(u) represents an entire row (rotated by π
4
) its knowledge

is fundamental for performing the hamiltonian limit (Section 2.2.1) of the model

H =
∑

i

Hi = − d

du
log
∏

i

Ui(u)

∣∣∣∣∣
u=0

= −
∑

i

d

du
logUi(u)

∣∣∣∣
u=0

(2.41)

obtaining

Hi = − d

du
logUi(u)

∣∣∣∣
u=0

= − 1

Ui(u)

d

du
Ui(u)

∣∣∣∣
u=0

(2.42)
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2.1.3 Parametrization with elliptic functions

Now, let us focus our attention to non trivial solutions of the Yang-Baxter equation.
Let us parametrize Boltzmann’s weights using elliptic functions1

w(a, b, a, b) = ρ snhλ
w(a, b,−a,−b) = ρ k snhλ snhu snh (λ− u)

w(a, b, a,−b) = ρ snh (λ− u)

w(a, b,−a, b) = ρ snhu (2.43)

where snh z = i sn(iz; k) and sn (z; k) denotes the elliptic sin function with argu-
ment z and modulus k. Parametrizing w′ and w′′ as in (2.43) but with replaced
by u′ and u′′ respectively, the Yang-Baxter equation implies:

u′ = u′′ + u (2.44)

The rotation of the lattice through π
2
implies the substitution of a, b, c, d with

d, a, b, c in w; thanks to (2.43) we can note that this rotation implies only a re-
placement of u by λ− u.
Supposing

ρ > 0

0 < k < 1

λ < I(k′) (2.45)

where k′ =
√

1− k2 and I(m)
2

is the complete elliptic integral of the firs kind of
modulus m:

I(m) = 2

∫ π
2

0

dx
1√

1−m sin2 x
(2.46)

we can ensure that w is non-negative for each 0 ≤ u ≤ λ.
Using this parametrization we can say that V = V (u) and V ′ = V (u′) commute
∀u, u′ if k, λ and ρ parameters are the same for V and V ′.
Let us now consider for a while a column-inhomogeneous model, for which the
anisotropy parameter u is different for each column; the above result can be gen-
eralized obtaining

[V (u1, . . . , uN), V (u′1, . . . , u
′
N)] = 0 if u′j − uj do not depend on j

(2.47)
1For a brief review of elliptic functions, see, for example, the Chapter 15 of [6]
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In N = 2 case, after setting u1 = u and u2 = v, V and V ′ commute if u−u′ = v−v′
or u−v = u′−v′. Since the commutativity between two operators imply that they
share the same base of eigenvectors, V ’s eigenvectors depend only on the difference
u− v.

In order to understand better this method, we will list some examples of this
parametrisation in some well-known models.

Example: the 8-vertex model

Let us consider the archetypal 8-vertex model. It is defined on a square lattice L;
on each edge an arrow is drawn with the only constraint to have an even number
of entering arrows in each edge. Thus there are eight possible vertex configurations.

10.1 INTRODUCTION 203 

where the sum is over all allowed configurations C of arrows on the 
lattice, ni is the number of vertex arrangements of type j in configuration 
C, kB is Boltzmann's constant, T is the temperature. 

The first six vertex arrow arrangements in Fig. 10.1 are those permitted 
by the ice rule (Fig. 8.2). The last two (all arrows in, or all out) are new. 
Starting from the lattice state with all arrows pointing up or to the right, 
one can now make local deformations (e.g. reverse all arrows round a 
square) that cost only a finite energy, so one no longer expects the ferro 
electric state to be completely ordered, and may hope that the model will 
be in other respects also less pathological. 

Fig. 10.1. The eight arrow configurations allowed at a vertex. 

It is clear from (10.1.1) that Z is a function of the eight Boltzmann 
weights 

mj= e x p ( - ~ ~ / k ~ T ) ,  j =  1 , .  . . , 8 .  (10.1.2) 

From Fig. 10.1, vertex 7 is a sink of arrows, 8 is a source. If toroidal 
boundary conditions are imposed on the lattice, it follows that 

Similarly, reversing all vertical arrows gives vertex 5 to be a sink, 6 a 
source, so 

ng = 116. (10.1.4) 

Thus ES,. . . , eg in (10.1.1) occur only in the combinations .z5 + ~ g ,  

E~ + E ~ ,  SO without loss of generality we can choose 

A particularly interesting situation is when we also have 

The model is then unchanged by reversing all arrows. Regarding the arrows 
as electric dipoles, this means that no external electric fields are applied, 
so this specialized model is known as the 'zero-field' eight-vertex model. 

Figure 2.7: Allowed vertex configurations that define the 8-vertex
model

The Boltzman weight for each vertex configuration is given by:

wj = e−εj/T (2.48)

If one considers equally probable two vertex configurations which are related by a
global flipping of all their arrows (which is equivalent to consider the configuration
energy invariant under the inversion of all arrows), possible inequivalent vertex
configurations are reduced to four only, whose Boltzmann weights are called here
a = w1 = w2, b = w3 = w4, c = w5 = w6 and d = w7 = w8. Models which satisfy
this symmetry are called zero-field 8-vertex models.
For this kind of models the Yang-Baxter equations are given by:

ac′a′′ + da′d′′ = bc′b′′ + ca′c′′

ab′c′′ + dd′b′′ = ba′c′′ + cc′b′′

cb′a′′ + bd′d′′ = ca′b′′ + bc′c′′

ad′b′′ + db′c′′ = bd′a′′ + cb′d′′

aa′d′′ + dc′a′′ = bb′d′′ + cd′a′′

da′a′′ + ac′d′′ = db′b′′ + ad′c′′ (2.49)
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2.1. Corner Transfer Matrix

Writing the first, the third, the fourth and the sixth equations of the above system
as linear equations for double primed variables and taking the determinant of this
new system one obtains:

det(·) = (cda′b′ − abc′d′)
((
a2 − b2

) (
c′2 − d′2

)
+
(
c2 − d2

) (
a′2 − b′2

))

(2.50)

In order to have non trivial solutions of the YB equation, we require that the
determinant (2.50) vanishes. This request is satisfied if the first term of (2.50)
vanishes:

cd

ab
=

c′d′

a′b′
(2.51)

Writing down the non-trivial solution for double primed variables and substituting
these in the second (or fifth) equation of (2.49) we obtain:

a2 + b2 − c2 − d2

ab
=

a′2 + b′2 − c′2 − d′2
a′b′

(2.52)

The request to have a non trivial solution of the YB equation can be written as

Γ = Γ′

∆ = ∆′ (2.53)

where

Γ =
ab− cd
ab+ cd

and

∆ =
a2 + b2 − c2 − d2

2(ab+ cd)
(2.54)

What we want to do now is to parametrize a, b, c and d with other variables, say
ρ, λ, k and v (ρ normalization factor), so that former variables are entire functions
of v, but Γ and ∆ are independent from v and ρ. In this way we can obtain a class
of transfer matrices V ′ = V (v′) which all commute with V = V (v) if their λ and
k values are equal to V ’s ones.
After setting

γ =
1− Γ

1 + Γ
=
cd

ab
(2.55)

we can eliminate d from (2.54) and obtain

2∆(1 + γ)
a

c

b

c
=

a2

c2
+
b2

c2
− 1− a2

c2

b2

c2
γ2 (2.56)
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which can be seen as a quadratic form of a
c
for b

c
given. Its discriminant is given

by

Discr = ∆2(1 + γ)2

(
b

c

)2

−
[(

b

c

)2

− 1

][
1− γ2

(
b

c

)2
]

(2.57)

which is itself a quadratic form of b
c
and it can be written as:

Discr =

(
1− y2 b

2

c2

)(
1− k2y2 b

2

c2

)
(2.58)

where new variables k and y are solution of the following equations:

k2y4 = γ2

(
1 + k2

)
y2 = 1 + γ2 −∆2

(
1 + γ2

)2 (2.59)

Using (2.57) and (2.58) the quantity a
c
can be written as:

a

c
=

√
Discr± b

c
∆

1 +
(
b
c

)2 (2.60)

Since ∆ does not depend on v, if b
c
and the square root of (2.58) are meromorphic2

function of v, a
c
will be itself meromorphic. The (2.58) structure suggests the

elliptic parametrization b
c

= 1
y
sniu, since Jacobian elliptic functions satisfy the

following generalized trigonometric relation (for further details on Jacobian elliptic
function, we refer to chapt. 15 of [6]):

cn2u+ sn2u = 1

dn2u+ k2sn2u = 1 (2.61)

Using some algebraic properties of the Jacobian functions we can write:

a

c
= y

∆(1 + γ)sn iu+ ycn iudn iu
y2 − γ2 sn2iu

(2.62)

recalling the meromorphic property of Jacobi’s functions, we see that we have
obtained our aim and parametrized the former a . . . d variables in term of entire
functions.
In order to eliminate the ‘buffer’ y variable from our expression we can write

k sn iλ = −γ
y

(2.63)

2A meromorphic function is a complex function which is not holomorphic in, at most, a
numerable set of point of the complex plane.

36



2.1. Corner Transfer Matrix

Summarising results of this parametrisation:

y = sn iλ
γ = −k sn2iλ

Γ =
1 + ksn2iλ

1− k2sn2iλ

∆ = − cn iλdn iλ
1− k2sn2iλ

(2.64)

and

a : b : c : d = snh(λ− u) : snhu : snhλ : k snhλ : snhu snh(λ− u) (2.65)

or

a = ρ snh(λ− u)

b = ρ snhu
c = ρ ksnhλ
d = ρ snh(λ− u) (2.66)

where

snhu = −isn iu (2.67)

and ρ is some positive normalization factor.
Since the behavior of the eight-vertex model depends on four physical parameters
a, b, c and d, these quantities determine the thermodynamic phase in which the
system lies.
If one consider u = 1

2
(λ+ v) and parametrization parameter such that

0 < k < 1

0 < λ < I(k′)

|v| < λ

ρ > 0 (2.68)

we have

0 < u < λ (2.69)

With this choice all Boltzmann weights a, . . . , d are positive, then (2.68) is a phys-
ical allowable restriction. From the expression (2.64) we can see that ∆ < −1 in
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the above (2.68) range.
From the (2.54) definitions we can recover

(a+ b)2 < (c− d)2 (2.70)

From previous considerations we can parametrize d
c
as

d

c
= −k sn(iu)sn(iλ− iu) (2.71)

which has a maximum in u = 1
2
λ, when it is considered as a function on u. Since

this maximum must be less than one, we recover d < c. Taking the square root of
(2.70) we obtain

c > a+ b+ d (2.72)

Summarizing, the restriction (2.68) implies (2.72); conversely, there is a unique
real choice of ρ, λ, v, u and k for a given a, b, c, d set which satisfy (2.72). The
above (2.72) condition is therefore called principal regime.
Since the dominant Boltzamann weight is c, the ground state is given by the con-
figuration in which each couple of adjacent arrows point in opposite directions (for
two adjacent arrows we mean here two arrows which share a vertex).
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We now have a very general model that includes three important models 
as special cases. 

Ice 
As was remarked above, the ice model is obtained by taking all energies 
to be zero, i.e. 

E I = E ~ =  . . . =  e,j=O. (8.1.4) 

KDP 
Potassium dihydrogen phosphate, KH2P04 (referred to hereafter as KDP), 
forms a hydrogen-bonded crystal of coordination number four, and orders 
ferroelectrically at low temperatures (i.e. all dipoles tend to point in the 
same general direction). Slater (1941) argued that it could be represented 
by an ice-type model with an appropriate choice of el, . . . , .c6. For the 
square lattice such a choice is 

The ground state is then either the one with all arrows pointing up and to 
the right, or all pointing down and to the left. Either state is typical of 
an ordered ferroelectric. 

F Model 
Rys (1963) suggested that a model of anti-ferroelectrics could be obtained 
by choosing 

E, = ~2 = ~3 = ~4 > 0, ES = ~6 = 0 . (8.1.6) 

The ground state is then one in which only vertex arrangements 5 and 6 
occur. There are only two ways of doing this. One is shown in Fig. 8.3, 

Fig. 8.3. One of the two ground-state energy configurations of the anti-ferroelectric 
ice-type model. Only vertex configurations 5 and 6 occur. 

Figure 2.8: Ground State configuration in the Anti-ferroelectric
regime

For this reason this regime is also called anti-ferroelectric. In the following consid-
erations, we always refer to this regime, even if a, . . . , d parameters do not satisfy
(2.72): in fact it any set of a, . . . , d values can be mapped into the principal regime.
Considering all possible values for a, . . . , d it could be discovered that five different
regimes exist:

I. Ferroelectric: a > b+ c+ d, ∆ > 1
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2.1. Corner Transfer Matrix

II. Ferroelectric: b > a+ c+ d, ∆ > 1

III. Disorderd: a, b, c, d < 1
2
(a+ b+ c+ d), −1 < ∆ < 1

IV. Anti-ferroelectric: c < a+ b+ d, ∆ < −1

V. Anti-ferroelectric: d < a+ b+ c, ∆ < −1

Thus the system is ordered if |∆| > 1 and disordered if |∆| < 1.
The eight-vertex model plays a very important role in the study of one dimensional
systems, since it is the 2D classical equivalent of the quantum XYZ 1D chain.
In 1970 Sutherland demonstrated that the transfer matrix of the zero-field eight-
vertex model commutes with the quantum hamiltonian HXY Z

3:

HXY Z = −1

2

N∑

i=1

Jxσ
x
j σ

x
j+1 + Jyσ

y
jσ

y
j+1 + Jzσ

z
jσ

z
j+1 (2.73)

if its parameters Jx, Jy, Jz are related to eight-vertex’s ones:

Jx : Jy : Jz = 1 : Γ : ∆ (2.74)

Recalling that our expressions have been obtained for the principal regime ∆ <
−1, we cannot apply this correspondence for all values of Ja, but we have to re-
arrange these parameters. Thanks to symmetries of the partition function, this
re-arrangement can be easily shifted in the thermodynamic observables.

2.1.4 The thermodynamic limit

After having developed a solid mathematic analysis of IRF models using corner
transfer matrices and elliptic parametrisation, we can now study these system in
the thermodynamic limit.
Let us consider a system with N sites. Defining

κ = lim
N→∞

Z
1
N (2.75)

we have an expression for the free-energy per site

f = −T lnκ (2.76)
3see, for example [6]
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Recalling that the parameter α is the partition function of the system with bound-
ary spins in the ground state we have

κ = lim
m→∞

α
2

m(m+1) (2.77)

where m is the number of sites on the horizontal edge.
What we expect from our system is that the above limit still exists if a fixed
number of boundary spins are changed from their ground-state values; furthermore
we expect that this change could affect the above result only for a multiplicative
factor which tends to a finite-limit as m→∞. In other words we expect that the
following limit exists:

lim
m→∞

Aσ̄,σ̄′

As̄,s̄′
(2.78)

The above convergence is provided if an integer r > 0 exists (independent of m)
s.t.

σi = si ∀i ≥ r (2.79)

and the same for primed variables.
Since the above relation (2.78) is nothing else that the normalized CTM An it is
obvious that the limit

lim
m→∞

(An)σ̄,σ̄′ (2.80)

exists. In a similar way we can expect the existence of the thermodynamic limit
of Bn, Cn and Dn.
We will recall these formulæ in next sections.

2.1.5 Eigenvalues of CTM

In this section we will show an explicit calculation of thermodynamic observables
using CTM.
Let us consider a square lattice with r rows with the bottom one equal to µ̄. The
system is also divided in two parts by the central column; the bottom row is then
divided in two parts, whose spins are denoted by σ̄′ and σ̄.
Boltzmann weights of the system are parametrized by w and the anisotropy pa-
rameter is equal to v for the left-side subsystem and to u for the right-side one
(Fig. 2.9).
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We consider two possible boundary conditions. Firstly, apply the bound- 
ary conditions of Figs. 13.1 and 13.2. Then it is obvious from the definition 
(13.1.7) of A,  and the corresponding definitions of B and C, that 

where the dependence of B on the parameter u, and of C on u, is explicitly 
exhibited. 

Fig. 13.6. Lattice with weight function w[u]  for faces to the right of the heavy line, 
W [ U ]  for faces to the left. Its partition function is the q, in (13.3.17). 

Secondly, suppose instead that cylindrical boundary conditions are used, 
and fix the top row of spins to have values. . . , s; , si , sl , s2 , s3 , . . . . Let 
s =is1 , s2 , . . . ) and s'' ={$I , si , . . . ), with si =sl. Then 

where r is the number of rows, V is the row-to-row transfer matrix of this 
section, aand d together form the row-index of Vin (13.3.19) while s and 
s' form the column-index. 

In the limit of r large it follows that v is, apart from a normalization 
factor, the maximal eigenvector of V. From the remark following (13.3.16), 
this eigenvector depends on u and v only via their difference u - v. Thus 

where r'(u , u) is a normalization factor, independent of a and d, and 
[X'(u - u)l0d depends on u and u only via their difference u - v. For later 
comparison with (13.3.18), it is useful to regard [X'(u - v)]ad as the 
element ( a ,  d )  of a matrix X' (u - v). Since q = 4,  X'(u - u) can be 
taken to have the block-diagonal structure (13.1.13): it is not the transpose 
of X(u - u). 

Figure 2.9: A lattice with two different anisotropy parameters

Let us denote with ψσ̄,σ̄′ the partition function of the system (keeping fixed the
bottom line)

ψσ̄,σ̄′ =
∑

•

∏

�

w(σi, σj, σk, σl) (2.81)

Thanks to the definition of corner transfer matrices A, . . . , D we can write the
above expression as

ψσ̄,σ̄′ = [B(u)C(v)]σ̄,σ̄′ (2.82)

This partition function can also be evaluated applying r times the row-to-row
transfer matrix V to (σ̄, σ̄′)

ψσ̄,σ̄′ =
∑

s̄1,s̄′1,...,s̄r,s̄
′
r

〈σ̄, σ̄′|V |s̄1, s̄
′
1〉 . . .

〈
s̄′r−1, s̄

′
r−1

∣∣V |s̄r, s̄′r〉

=
∑

s̄r,s̄′r

〈σ̄, σ̄′|V r |s̄r, s̄′r〉 (2.83)

expressing |s̄r, s̄′r〉 in the basis of eigenvectors of V , say |n〉, with eigenvalues λn,
we have

ψσ̄,σ̄′ =
∑

n

〈σ̄, σ̄′|V r |n〉

=
∑

n

λrn 〈σ̄, σ̄′| n〉 (2.84)

Thanks to the Perron-Frobenius theorem, since all entries of V are positive, its
maximal (positive) eigenvalue λ0 exists and is unique.
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Thus, for large r, since λ0 > λn6=0, we have λr0 � λrn and

ψσ̄,σ̄′ � λr0 〈σ̄, σ̄′| 0〉 = 〈σ̄, σ̄′ | V r | 0〉 (2.85)

Moreover ψ, seen as a vector with components ψσ̄,σ̄′ , is the maximal eigenvector
of V:

(V ψ)σ,σ′ =
∑

ν̄,ν̄′

Vσ̄,σ̄′|ν̄ν̄′〈ν̄, ν̄ ′ | V r | 0〉 =
∑

ν̄,ν̄′

〈σ̄, σ̄′ | V | ν̄, ν̄ ′〉〈ν̄, ν̄ ′ | V r | 0〉

= 〈σ̄, σ̄′ | V r+1 | 0〉 = λr+1
0 〈σ̄, σ̄′ | 0〉 = λ0ψσ̄,σ̄′ (2.86)

From previous considerations (2.47) about the dependance of V ’s eigenvectors on
anisotropy parameters, we have

ψσ̄,σ̄′ = τ ′(u, v) X ′(u− v)|σ̄,σ̄′ (2.87)

from the fact that σ1 = σ′1, we can easily deduce the block-diagonal structure of
X ′, when it is considered as a matrix whose elements are X ′|σ̄,σ̄′ .

Comparing the equation (2.87) with a normalised version of (2.82)4 we have

Bn(u)Cn(v) = τ ′(u, v)X ′(u− v) (2.88)

if we suppose to absorb α and β factors into τ ′.
Rotating cloackwise the lattice in Fig. 2.9 through π

2
we can make similar compu-

tation and write

An(u)Bn(v) = τ(u, v)X(u− v) (2.89)

Due to the infinite dimensions of A and B matrices in the thermodynamic limit,
each element (AB)ij involves a sum of an infinite set of numbers

∑
k AikBkj and

these sums probably do not converge. However, this divergent factor is common
to all elements and then it can be absorbed into τ and plays no role in next
computations.
Let us now focus on the model whose Boltzmann weights are symmetric under the
exchange of opposite vertices.

w(a, b, c, d) = w(c, b, a, d) = w(a, d, c, b) (2.90)

This model is not so restrictive since it describes, for instance, the ferromagnetic
eight-vertex model.

4This normalisation can be easily obtained setting λ0 = 1
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In this case we have D = B and C = A, moreover B can be obtained from A by
an anti-clockwise rotation though π

2
. Thanks to these arguments we have:

Cn(v) = An(v)

Dn(v) = Bn(v) = An(λ− v) (2.91)

Replacing λ− v by v in (2.89) we have

An(u)An(v) = τ(u, λ− v)X(u+ v − λ) (2.92)

and

An(v)An(u) = τ(v, λ− u)X(u+ v − λ) (2.93)

where the above expression is obtained interchanging u and v in the previous one.
Comparing (2.91) and (2.92),and eliminating X, we have

τ(v, λ− u)An(u)An(v) = τ(u, λ− v)An(v)An(u) (2.94)

In the representation in which An(u) and An(v) are diagonal matrices, they com-
mute and the above expression gives

τ(v, λ− u) = τ(u, λ− v) (2.95)

In conclusion, we have found that the matrices An(u), An(v) and X(u + v − λ)
commute with each other and therefore they have the same basis of eigenvectors,
which do not depend on u or v.
Let a1(u) be the largest eigenvalue of An(u) and x1(u) the corresponding eigenvalue
of X(u) (the one related to the same eigenvector). We can now define

Ad(u) =
1

a1(u)
P−1An(u)P

Xd(u) =
1

x1(u)
P−1X(u)P (2.96)

then Ad(u) and Xd(u) are diagonal matrices with the top-left element equal to
one.
From the equation (2.94) we can obtain the following matrix multiplication equal-
ity:

(
P−1An(u)P

) (
P−1An(v)P

)
= τ(u, λ− v)

(
P−1X(u+ v − λ)P

)

(2.97)
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whose top left element reads

τ(u, λ− v)x1(u+ v − λ) = a1(u)a1(v) (2.98)

and (2.94) becomes an equality between diagonal matrices:

Ad(u)Ad(v) = Xd(u+ v − λ) (2.99)

Thanks to the validity of the above expression for all u, v ∈]0, λ[ it is easy to show
that

Ad(u)|r,r = mre
−αru (2.100)

where mr and αr are parameters which do not depend on u.
Recalling relations between CTMs:

Cd(u) = Ad(u)

Dd(u) = Bd(u)

Bd(u) = Ad(λ− u) (2.101)

we can evaluate the spontaneous magnetisation using the diagonalised version of
(2.9)

〈σ1〉 =

∑∞
r=1 Srm

4
r exp(2αrλ)∑∞

r=1 m
4
r exp(2αrλ)

(2.102)

where Sr is the eigenvalue of the spin operator S relative to the r-th eigenvector
of An.

2.1.6 Magnetization for the eight-vertex model

What we want to do now is to use the above explained methods in a very impor-
tant specific case: the eight-vertex model.
At first, let us consider the case u = 0: from the Jacobi’s elliptic functions
parametrisation we have:

w(a, b, c, d) = ρ snhλ δ(a, c) (2.103)

If we suppose to have fixed boundary conditions such that s = t = · · · = z and
s′ = t′ = · · · = z′, the (2.24) reads

Ui = ρ sinh λ 1 (2.104)
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using the (2.28) expression we can build up the whole corner transfer matrix A

A(0) = (ρ snhλ)
m(m+1)

2 1 (2.105)

whose normalised version is given by

An(0) = 1 (2.106)

The maximal eigenvalue a1(0) of An(0) is equal to one and then

Ad(0) = PAn(0)P−1 = 1 (2.107)

Comparing the above expression with (2.100) one finds m1 = 1 and α1 = 0. From
this comparison it follows that mr = 1 for each r and then

Ad(u)|r,r = exp(−αru) (2.108)

Since all Boltzmann weights are periodic in the variable u with period 4iI(k), the
matrix An(u) is itself periodic with the same period. Thanks to these considera-
tions we have

exp(−αru) = exp(−αr(u+ 4iI(k))) (2.109)

which gives

αr =
π

2I
nr (2.110)

with nr integer.
Now we want to evaluate the spontaneous magnetisation at zero temperature,
which corresponds to k → 0 while λ

I(
√

1−k2)
and u remain fixed. Recalling that

lim
m→1

I(m) = +∞ (2.111)

and that

lim
k→0

snhu = sinhu (2.112)

we have

w(a, b, a, b) ∼ 1

2
ρ x−1

w(a, b,−a,−b) ∼ 0

w(a, b, a,−b) ∼ 1

2
ρ x−1 exp

(
− πu

2I(k)

)

w(a, b,−a, b) ∼ 0 (2.113)
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with

x = exp

(
− πλ

2I(k)

)
(2.114)

The above asymptotic behaviour for small k is given by the fact that I(k) =
π
2

+O(k2).
Recalling the (2.24) expression for Ui, we have

(Ui)σ̄,σ̄′ =
1

2
ρx−1 exp

[
−πu(1− σi−1σi+1)

4I(k)

]
δσ̄,σ̄′ (2.115)

using (2.28)5 one can see that also A is diagonal and its Ad form is obtained by a
normalising to one its maximal eigenvalue

Ad(u)|σ̄,σ̄ = exp

[
− πu

4I(k)

m+1∑

i=2

(i− 1)(1− σi−1σi+1)

]
(2.116)

Substituting the single index r with a multi-valued one σ and comparing (2.109)
with (2.116) we obtain

nσ̄ =
1

2

m+1∑

i=2

(i− 1)(1− σi−1σi+1) (2.117)

Thanks to this equality, we have an expression for Ad(u) in the ferromagnetic
ordered phase.
For a better developing of following formaulæ, it is useful to introduce a new set
of spin variables µ1, . . . , µm:

µi = σiσi+2 (2.118)

as before we consider σm+1 = σm+2 = +1. Thus Ad(u) is a diagonal matrix with
a new set of multivalued indices µ̄ = {µ1, . . . , µm}:

Ad(u)|µ̄,µ̄ = exp

[
− πu

4I(k)

m∑

i=1

i(1− µi)
]

(2.119)

Using the definition (2.118) of µi we can see that

σ1 = µ1µ3µ5 . . . (2.120)
5This formula requires the knowledge of the values of most external spins; they can be chosen

in the ferromagnetic ordered state +1 (or −1)
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2.1. Corner Transfer Matrix

and the spin operator S has the following entries (in the µ̄ basis):

Sµ̄,µ̄′ = δ(µ̄, µ̄′)µ1µ3 . . . (2.121)

At last we can write (2.119) using the tensor product notation for matrices (the
Kronecker product):

Ad(u) =


 exp

(
− πu

4I(k)
· 1 · 0

)
0

0 exp
(
− πu

4I(k)
· 1 · 2

)



⊗


 exp

(
− πu

4I(k)
· 1 · 0

)
0

0 exp
(
− πu

4I(k)
· 2 · 2

)



⊗


 exp

(
− πu

4I(k)
· 1 · 0

)
0

0 exp
(
− πu

4I(k)
· 3 · 2

)

⊗ . . . (2.122)

Let us explain this notation: each 2× 2 diagonal matrix explores the two possibil-
ities of one single index µi = ±1. The i-th matrix is given by


 exp

[
πu

4I(k)
i(1− (µi = +1))

]
0

0 exp
[

πu
4I(k)

i(1− (µi = −1))
]

 (2.123)

Denoting

s = exp

(
− πu

4I(k)

)
(2.124)

we can rewrite (2.122) in a more compact way:

Ad(u) =

[
1 0
0 s

]
⊗
[

1 0
0 s2

]
⊗
[

1 0
0 s3

]
⊗
[

1 0
0 s4

]
⊗ . . . (2.125)

Thanks to our previous considerations it is easy to find an expression for Bd(u)

Bd(u) =

[
1 0
0 t

]
⊗
[

1 0
0 t2

]
⊗
[

1 0
0 t3

]
⊗
[

1 0
0 t4

]
⊗ . . . (2.126)

with t defined as s only with u replaced by λ− u.
At last, it easily to build up the matrix expression for S

S =

[
1 0
0 −1

]
⊗
[

1 0
0 −1

]
⊗
[

1 0
0 −1

]
⊗
[

1 0
0 −1

]
. . . (2.127)
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Corner Transfer Matrix and Reduced Density Matrix

Substituting above expressions in (2.9) and using some trace’s properties6 of the
Kronecker product, we have

〈σ1〉 =
∞∏

n=1

1− x4n−2

1 + x4n−2
(2.128)

Evaluating the spontaneous magnetisation for the Ising case of the eight-vertex,
we obtain:

Figure 2.10: Magnetisation 〈σ1〉 vs. temperature parammeter k in the
Ising case

6TrA⊗B = TrATrB
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2.2. The reduced density matrix

2.2 The reduced density matrix

The main purpose of this section is the definition of the reduced density matrix
ρA and its representation via CTM [8, 9, 7].

2.2.1 Equivalence between 2 dimensional classical and 1+1
dimensional quantum systems

In the following paragraphs we will invoke the equivalence between 2D classical
systems and 1D quantum ones.
Let Ĥ be the hamiltonian of a 1D quantum system in continue time (the spa-
tial dimension can be considered both continue or discrete). The time evolution
operator is given by

Ô(τ) = e−τĤ (2.129)

This operator transforms a quantum state |ψ(t)〉 into in its time evolved |ψ(t+ τ)〉.
In the same way a row-to-row transfer matrix T̂ transform a row in the following
one, carrying forward by the lattice spacing a.
For this reason the analogy between the time evolution and the transfer matrix
arises, allowing us to consider the so called Hamiltonian limit, in which

T̂ = e−aĤ for a ∼ 0 (2.130)

In this equivalence the largest eigenvalues of the transfer matrix (the most signi-
ficative) is related to the lowest Hamiltonian’s one (also the most significative),
i.e. the eigenvector of T̂ related to the largest eigenvalue λM is also the ground
state of Ĥ with eigenvalue E0. In order to understand better this procedure, in
Appendix C we will show the hamiltonian limit of the eight-vertex model, which
leads to the XYZ spin chain.

2.2.2 Reduced density matrix

Let |φ0〉 be the ground state of the hamiltonian Ĥ of a quantum spin chain. The
density matrix ρ of the whole system is then given by:

ρ = |φ0〉 〈φ0| (2.131)

Since we are interested in the bipartite entanglement of an infinite spin chain, the
subsystem A will be the half part of our infinite chain.
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Corner Transfer Matrix and Reduced Density Matrix

� �

Figure 2.11: A bipartite system divided into two subsystems A and B

The Hilbert space HAB of the system can be factorized in the product of the
Hilbert space of the two subsystems:

HAB = HA ⊗HB (2.132)

The reduced density matrix ρA is given by

ρA = TrB ρ

=
∑

n

B〈n|ρ |n〉B (2.133)

where
{
|n〉B

}

n

(2.134)

labels a normal basis for HB.
Let |σ〉 = |σA〉A ⊗ |σB〉B be a spin configuration of the whole system. Define

φ0 (σ) = 〈σ| φ0〉 (2.135)

the reduced density matrix is then given by

ρA =
∑

σB

B〈σB|ρ |σB〉B

=
∑

σB

B〈σB| φ0〉 〈φ0 |σB〉B (2.136)

Thus

ρA(σA, σ
′
A) = A〈σ′A|ρA |σA〉B

=
∑

σB

φ∗0(σ′A, σB)φ0(σA, σB) (2.137)
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2.2. The reduced density matrix

Since |φ0〉 is the ground state of Ĥ then

Ĥ |φ0〉 = E0 |φ0〉 (2.138)

Let T̂ = e−aĤ be a row-to-row transfer matrix of a 2D. We have[
Ĥ, T̂

]
= 0 (2.139)

Thanks to commutativity the two above operators share the same eigenbasis.
Let V1 be the Hilbert space of a single site, thus H = V ⊗2m

1 , where 2m is the
total length of the system (at the present time we consider a finite system; in
further developments we will take the thermodynamic limit m → ∞). Suppose
that |ψ〉 ∈ H is a vector of our Hilbert space, then it can be expressed as

|ψ〉 = |φ0〉+
∑

k 6=0

Ck |φk〉 (2.140)

where

{|φk〉}(dimC V1)2m

k=0 (2.141)

is an orthonormal eigenbasis of Ĥ and T̂ .
The action of the transfer matrix T̂ on |ψ〉 is given by

T̂ |ψ〉 = λM |φ0〉+
∑

k 6=0

ckλk|φk〉 (2.142)

and the action of T̂ N times is given by

T̂N |ψ〉 = λNM

(
|φ0〉+

∑

k 6=0

ck

(
λk
λM

)N
|φk〉

)
(2.143)

which for large N tends to

T̂N |ψ〉 ' λNM |φ0〉 (2.144)

Normalising λM = 1 we have

φ0(σ) = 〈σ|φ0〉 ' 〈σ|T̂N |ψ〉 (2.145)

Notice that the RHS of the above equation is equivalent to the partition function
of a system of N rows, with the top one equal to |ψ〉 and the bottom one to |σ〉.
In the N →∞ regime the choice of |ψ〉 is completely irrelevant and then

φ0(σ) (2.146)

is the partition function of an infinite half plane (y > 0) with the lower boundary
|σ〉. In the same way φ?0(σ′) is the partition function of the lower side of the plane
with the top row equal to |σ′〉.
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Figure 2.12: The partition
function Z and its
decompositions via CTM

The partition function Z1 of the whole plane
can be obtained taking φ0(σ) and φ?0(σ) to-
gether and summing over all σ.
Since we are looking for the reduced density
matrix of the bipartite system, let us explicit
σ as (σA, σB), where subscripts denote the sub-
system (A for the negative semi-axis x and B
for the positive one). Using the corner transfer
matrix notation, the reduced density matrix is
given by

ρA(σA, σ
′
A) ∝ ABCD|σA,σ′A (2.147)

since φ?0(σ′A, σ
′
B) = AB and φ0(σA, σB) = CD.

In order to have a normalised density matrix (TrA ρA = 1) we can set

ρA =
ABCD

Z1

(2.148)

Z1 = TrAABCD

The evaluation of the Rényi entropy S(α)
A requires the knowledge of TrA ρ

α
A, which

is given by

Zα
Zα1

≡ TrA ρ
α
A =

1

Zα1
Tr




α times︷ ︸︸ ︷
ABCD · · ·ABCD


 (2.149)

The last formula will be very useful in the evaluation of the bipartite entanglement
entropy in models whose expression of CTM of an equivalent 2D classical model
is known, as the Ising, the 8-vertex or the RSOS models.
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Chapter 3

Entanglement Entropy in Conformal
Field Theory

In this chapter we will introduce branch point twist field [10], and their application
in the evaluation of Entanglement Entropy [11, 10] in Conformal Field Theory. In
particular we will present a technique for the evaluation of Entanglement of a finite
or infinite system at its critical point and of an infinite system near its critical point.

3.1 Branch-Point Twist Fields
In this section we will introduce Branch-Point Twist Fields, which are a powerful
method implemented in [10] to perform the ‘replica trick’, which is a vital step
[11] in the evaluation of Entanglement Entropy in Quantum Field Theory.

3.1.1 Twist fields in Quantum Field Theory

Let Z[L,R] be the partition function of a two-dimensional Quantum Field Theory
(QFT) with local lagrangian density L defined on a Riemann surface R. Using
the path integral formalism the partition function can be written as

Z[L,R] =

∫
DRφ exp

[
−
∫

R
dxdyL[φ](x, y)

]
(3.1)

Consider now a Riemann surface R with zero curvature everywhere except for a
discrete set A. Since the lagrangian density L does not depend on the surface
R, the path integral can be expressed as an object evaluated on C, where the
structure of the Riemann surface is implemented through appropriate conditions
around boundary points of A [10].
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These boundary conditions can be implemented creating ‘artificial’ fields around
A, whose role is to ‘apply’ boundary conditions to physical fields.
Artificial fields arising from boundaries are called twist fields. Twist fields exist in a
QFT equipped with a global internal symmetry σ, i.e. a symmetry transformation
which does not depend on the position and does not affect the action:

∫

C
dxdyL[φ](x, y) =

∫

C
dxdyL[σφ](x, y) (3.2)

During the evaluation of correlation functions in such theories using path integral,
it is important to take into account the effect of the symmetry, since it modifies
the Riemann surface were physical fields live1.
These theories can be defined in C with appropriate boundary conditions around
a point, say the origin (0, 0); thanks to boundary conditions we can evaluate
correlation functions taking them into account. The presence of the boundary
conditions in (0, 0) is equivalent to have a branch cut in the positive real axis.

〈A1(x1) · · ·An(xn)〉R,L ∝
∫

Cσ(0,0)

DφA1(x1) · · ·An(xn) exp

[
−
∫

R2

dxdyL[φ](x, y)

]

(3.3)

where Cσ(a, b) defines boundary conditions

φ(x, b+) = σφ(x, b−) x ∈ [a,+∞[ (3.4)

Now, we can define [10] twist field Tσ as an operator which implements directly
boundary conditions:

Tσφ(x, 0+) = σφ(x, 0−)Tσ x ∈ [0,+∞[ (3.5)

In other words, the effect of the twist field is to take into account the effect of
the symmetry turning around the origin. Notice that by definition it works only
around the point which breaks the plane geometry of C.

Thanks to twist fields, correlation functions can be evaluated in the whole C plane
without taking into account boundary conditions, since they are automatically
satisfied by the action of twist fields:

〈A1(x1) · · ·An(xn)〉R,L = 〈TσA1(x1) · · ·An(xn)〉C,L

∝
∫
Dφ TσA1(x1) · · ·An(xn) exp

[
−
∫

C
dxdyL[φ](x, y)

]
(3.6)

1For example, in the evaluation of the partition function of N indistinguishable particles, they
do not live on R6N , but in a more complex space obtained identifying two points in the phase
space which differ only for a permutation of two or more particles.
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3.1. Branch-Point Twist Fields

Summarising, in order to construct twist field, we look for some fields which im-
plement the curvature of the Riemann surface. If two or more fields with this
property exist, we define twist field the one with the lower scaling dimension. This
selection procedures reminds the identification of primary fields in Conformal Field
Theories.

Figure 1: [Color online] A representation of the Riemann surface M3,a1,a2 .

2 Partition functions on multi-sheeted spaces and entanglement

entropy

2.1 Partition functions in QFT on multi-sheeted spaces

The partition function of a model of two-dimensional QFT with local lagrangian density
L[ϕ](x, y) on a (euclidean-signature) Riemann surface R is formally obtained by the path integral

Z[L,R] =

∫
[dϕ]R exp

[
−

∫

R
dxdy L[ϕ](x, y)

]
(2.1)

where [dϕ]R is an infinite measure on the set of configurations of some field ϕ living on the
Riemann surface R and on which the lagrangian density depends in a local way. Consider
Riemann surfaces with curvature zero everywhere except at a finite number of points. Since the
lagrangian density does not depend explicitly on the Riemann surface as a consequence of its
locality, it is expected that this partition function can be expressed as an object calculated from
a model on R2, where the structure of the Riemann surface is implemented through appropriate
boundary conditions around the points with non-zero curvature. Consider for instance the
simple Riemann surface Mn,a1,a2 composed of n sheets sequencially joined to each other on the
segment x ∈ [a1, a2], y = 0 (see Fig. 1 representing the case n = 3). We would expect that the
associated partition function involves certain “fields”∗ at (x, y) = (a1, 0) and (x, y) = (a2, 0).

The expression (2.1) for the partition function essentially defines these fields (that is, it gives
their correlation functions, up to a normalisation independent of their positions). But in the
model on R2, this definition makes them non-local. Locality of a field (used here in its most
fundamental sense) means that as an observable in the quantum theory, it is quantum mechani-
cally independent of the energy density at space-like distances. In the associated euclidean field
theory, this means that correlation functions involving this field and the energy density are, as
functions of the position of the energy density, defined on R2 (and smooth except at the positions
of the fields). The energy density is simply obtained from the lagrangian density, hence it is
clear that fields defined by (2.1) in the model on R2 are not local. Locality is at the basis of
most of the results in integrable QFT, so it is important to recover it.

∗Here, the term “field” is taken in its most general QFT sense: it is an object of which correlation functions –
multi-linear maps – can be evaluated, and which depends on a position in space – parameters x,y that transform
like coordinates under translation symmetries.

3

Figure 3.1: The Riemann
surface M3,1,b. Picture
taken from [10]

DefineMn,a,b as the Riemann surface composed
by n sheets sequentially sewn to each other on
the segment (x ∈ [a, b], y = 0) with the n−th
sheet sewn with the first one (see Fig. 3.1 for
n = 3).
As we said before, the partition function on
the multi-sheeted surface can be expressed as
a path integral of fields belonging to the whole
Riemann surface, or it can be obtained taking
n-copies of a field φ belonging to C and imple-
menting special boundary conditions on these
copies:

Z[L,Mn,a,b] =

∫

C(a,b)
Dφ1 · · · Dφn exp

[
−
∫

C
dxdyL[φ1](x, y) + · · ·+ L[φn](x, y)

]

(3.7)

where C(a, b) denotes boundary conditions imposed by the geometry of the mani-
fold:

φi(x, 0
+) = φi+1(x, 0−) x ∈ [a, b] (3.8)

As in the previous example, boundary conditions which implement the geometry
ofMn,a,b can be obtained by creating ‘artificial’ fields around (x, y) = (a, 0) and
(x, y) = (b, 0).

Twist fields defined by (3.7) (called branch point twist fields) are associated to
the two opposite cyclic permutation symmetries φi 7→ φi+1 and φi+1 7→ φi:

T ≡ Tσ, i
σ7→ i+ 1 mod n (3.9)

T̃ ≡ Tσ−1 i+ 1
σ−1

7→ i mod n (3.10)

and their action is defined as [? ]

φi(y)T (x1, x2) = θ(x1 − y1)T (x1, x2)φi+1(y) + θ(y1 − x1)T (x1, x2)φi(y)

φi(y)T̃ (x1, x2) = θ(x1 − y1)T̃ (x1, x2)φi−1(y) + θ(y1 − x1)T̃ (x1, x2)φi(y)

(3.11)
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Thanks to this definition, (3.7) can be written as:

Z[L,Mn,a,b] ∝
〈
T (a, 0)T̃ (b, 0)

〉
L(n),C

(3.12)

where L(n) is the lagrangian of the multi-copied model:

L(n)[φ1, . . . , φn] ≡ L[φ1] + · · ·+ L[φn] (3.13)

The presence of a couple of twist fields in (3.12) can be justified since T (a, 0)
connects two consecutive copies at x > a, but this effect vanishes for x > b thanks
to the simultaneous effect of both twist fields T (a, 0) and T̃ (b, 0).

Thanks to twist fields, we can write the expectation value of an operator O as

〈O(x, y) · · · 〉L,Mn,a,b
=

〈
T (a, 0)T̃ (b, 0)Oi(x, y) · · ·

〉
L(n),C〈

T (a, 0)T̃ (b, 0)
〉
L(n),C

(3.14)

where Oi denotes the representation of O in the L(n) model related to the i-th
copy of (L,C) where (x, y) belongs.

3.1.2 Twist Fields in Conformal Field Theory

Let us consider a Conformal Field Theory (CFT) defined on Mn,a,b with local
lagrangian density L, stress tensor T (z) and central charge c.
Taking n copies of this theory on C, we define another CFT with local lagrangian
density L(n) and central charge nc.
Thanks to conformal invariance we can easily shift the evaluation of correlation
functions from a manifold to another one.

The stress tensor of the multi-copied theory is given by

T (n)(z) =
n∑

j=1

Tj(z) (3.15)

where each Tj(z) is a copy of the stress tensor of the original theory. Consider the
stress tensor T (w) of L and the conformal transformation fromMn,a,b to C

w ∈Mn,a,b 7→ z ∈ C

z =

(
w − a
w − b

) 1
n

(3.16)
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The transformation rule for the stress tensor is predicted by CFT [12]:

T (w) =

(
dz

dw

)2

T (z) +
c

12
{z, w} (3.17)

where {z, w} denotes the Schwarzian derivative:

{z, w} =
d3z
dw3

dz
dw

− 3

2

(
d2z
dw2

dz
dw

)2

(3.18)

Thanks to translational and rotational invariance, the expectation value of T in
R2 vanishes. Taking the expectation value of (3.17), we have

〈T (w)〉L,Mn,a,b
=

c(n2 − 1)

24n2

(a− b)2

(w − a)2(w − b)2
(3.19)

Since 〈T (w)〉L,Mn,a,b
can also be evaluated using (3.14)

〈T (w)〉L,Mn,a,b
=

〈
T (a, 0)T̃ (b, 0)Tj(w)

〉
L(n),R2〈

T (a, 0)T̃ (b, 0)
〉
L(n),R2

(3.20)

we have
〈
T (a, 0)T̃ (b, 0)T (n)(w)

〉
L(n),R2〈

T (a, 0)T̃ (b, 0)
〉
L(n),R2

=
c(n2 − 1)

24n2

(a− b)2

(w − a)2(w − b)2
(3.21)

Thanks to the selection rule used to build up twist fields, they are also primary
fields. The artificial nature of these primary fields is revealed in minimal conformal
models [12], since these fields do not belong to the Kac table of the theory.
Using Ward’s identities of the stress tensor [12], we obtain

〈
T (a, 0)T̃ (b, 0)T (n)(w)

〉
L(n),R2

=

(
1

w − a
∂

∂a
+

1

w − b
∂

∂b
+

dn
(w − a)2

+
d̃n

(w − b)2

)〈
T (a, 0)T̃ (b, 0)

〉
L(n),R2

(3.22)

where dn and d̃n are the scaling dimensions respectively of T and T̃ .
Comparing last two equations, we obtain

dn = d̃n =
c

12

(
n− 1

n

)
(3.23)
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The knowledge of scaling dimensions of the two twist fields gives the form of their
correlation function.

〈
T (a, 0)T̃ (b, 0)

〉
L(n),R2

=
1

|a− b|2dn (3.24)

In case of some different dn appear, we chose the lowest one, since by definition
we are looking for the lowest scaling dimensional T .

3.2 Entanglement Entropy
In this section we will present a technique due to J. Cardy and P. Calabrese [11]
for the evaluation of Rényi and Von-Neumann Entropy in systems described by
conformal fields theories.
This method can be used for the evaluation of Entanglement in critical finite and
infinite systems or in infinite off-critical systems near their critical point. For
critical system, we study the dependance of Entanglement on the size ` of the
subsystem; on the other hand, for off-critical system, we are interested in the
amount of Entanglement at different ‘distances’ from a critical point. Since the
correlation length ξ diverges when a system is critical and decreases leaving the
critical point, this physical quantity measures well how far the system is from a
critical point.

3.2.1 Von-Neumann and Rényi Entropy

Following definitions of Chapt. 1, let us recall some definitions about Entanglement
Entropy.
Let H be the Hilbert space of a one-dimensional quantum system and HA be the
space referred to a subsystem A

H = HA ⊗HB (3.25)

where B denotes the subsystem complementary to A.
Now, denote the ground state with |ψ〉; hence, the reduced density matrix of the
subsystem A is given by

ρA = TrHB |ψ〉〈ψ| (3.26)

Rényi entropy of the subsystem A is given by

S
(n)
A =

1

1− n log TrA ρ
n
A (3.27)

=
1

1− n logZn(A) (3.28)
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and Von Neumann one can be obtained as

SA = lim
n→1+

S
(n)
A = −TrA ρA log ρA (3.29)

or equivalently

SA = − lim
n→1+

d

dn
TrA ρ

n
A = − lim

n→1+

d

dn
Zn(A) (3.30)

3.2.2 Evaluation via path integrals

Let us consider 1 + 1-dimensional QFT, which describes the time evolution of a
one-dimensional discrete quantum system. Define ∆ as the lattice parameter and
denote with x the position of each site.
Let us denote with {φ̂(x)} a complete set of compatible observables and with
{φ(x)} and ⊗x |{φ(x)}〉 their eigenvalues and eigenvectors. In the spin-chain ex-
ample, these states are spin configurations |σ1, σ2 · · · 〉 and compatible observables
are the total and the z spin operators S · S and Sz.

Now, consider a system with continuous time evolution ruled by a Hamiltonian Ĥ.
In the Wick-rotated picture, the density matrix ρ̂ of the system is given by

ρ({φ′′(x′′)}, {φ′(x′)}) = 〈{φ′′(x′′)}|ρ̂|{φ′(x′)}〉 (3.31)

=
1

Z(β)
〈{φ′′(x′′)}|e−βĤ |{φ′(x′)}〉 (3.32)

In the above expression the partition function Z(β) normalises to one the trace of
the density matrix.
In the path integral formalism a matrix element of the density matrix is given by

ρ({φ′′(x′′)}, {φ′(x′)}) =
1

Z(β)

∫
Dφ(x, τ)

∏

x

δ(φ(x, 0)− φ′(x′))
∏

x

δ(φ(x, β)− φ′′(x′′))e−SE

(3.33)

where SE is the euclidean action which rules the evolution of the system

SE =

∫ β

0

dτLE (3.34)
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Figure 3.2: Path integral
representation of the
density matrix ρ

In the path integral picture, the matrix element
of the density matrix ρ({φ′′(x′′)}, {φ′(x′)})
can be viewed as a mean over all possi-
ble evolution paths of the field φ(x) with
fixed condition on the staring and the ending
point.
Referring to Fig. 3.2, this path integral
means an integration over all the light-blue
strip.

Figure 3.3: Path integral
representation of the
partition function Z(β)

Since the partition function can be obtained
tracing the density matrix over all degrees of
freedom of the system, it can be got connect-
ing the top edge of the strip with the bottom
one (imposing φ′′ = φ′) and tracing over φ′.
This operation is equal to deform our strip to a
cylinder and to sew the two edges (Fig. 3.3).

Recalling that the reduced density matrix of a
subsystem A is obtained tracing ρ over all de-
grees of freedom external to A, it can also be

got as the partition function avoiding to trace over states of A.
The reduced density matrix related to xthe subsystem A can be obtained as the
partition function, but sewing only points outside A.

Figure 3.4: Path integral representation of the reduced density
matrix ρA: points belonging to the dotted lines (subsystem A) are
not identified and integrated, while points in the continue line
(subsystem B) are identified and integrated as in the evaluation of
the partition function Z(β)
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3.2.3 Entropy of a critical system

Now, consider an infinite system at its critical point and its subsystem A = [a, b].
The evaluation of n-partition function Zn(A) = TrHA ρ

n
A can be obtained taking

n-copies of the strip in Fig. 3.2 and sewing sequentially each copy except for points
in A. Since the system is infinite, the light-blue strip in Fig. 3.2 becomes the whole
C plane.
In the path integral formalism the reduced density matrix reads

〈{φ′′A(x′′A)}|ρA|{φ′A(x′A)}〉 =

∫
Dφ′Ā(x′Ā)〈{φ′′A(x′′A), φ′Ā(x′Ā)}|ρA|{φ′A(x′A), φ′Ā(x′Ā)}〉

=
1

Z(β)

∫
Dφ′Ā(x′Ā)

∫
Dφ(x, τ)e−SE [φ]

∏

x∈A
δ(φ(x, 0)− φ′A(x′A))δ(φ(x, β)− φ′′A(x′′A))×

×
∏

x/∈A
δ(φ(x, 0)− φ′Ā(x′Ā))δ(φ(x, β)− φ′Ā(x′Ā))

=
1

Z(β)

∫
Dφ(x, τ)e−SE [φ]

∏

x∈A
δ(φ(x, 0)− φ′A(x′A))δ(φ(x, β)− φ′′A(x′′A))×

×
∏

x/∈A
δ(φ(x, 0)− φ(x, β)) (3.35)

whose last product implements the sewing on points outside of A. In previous
expressions, path integrals are evaluated on the R2 plane (Fig. 3.2).
If we are interested in the evaluation of 〈{φ′′A}|ρnA|{φ′A}〉, we can modify the previ-
ous expression performing path integral on the Riemann surfaceMn,a,b.
Alternatively we can insert into (3.35) n resolution of the identity

1

Z(β)

∫
Dφi(xi)|{φi(xi)}〉〈{φi(xi)}| (3.36)

and obtain the n-sheet version of the integral overMn,a,b.
Thus the trace of Tr ρnA can be obtained from the partition function evaluated on
the Riemann surfaceMn,a,b:

Zn(A) = Z[L,Mn,a,b] (3.37)

which can be evaluated using twist fields (3.12)

Z[L,Mn,a,b] ∝
〈
T (a, 0)T̃ (b, 0)

〉
L(n),R2

=
1

|a− b|2dn (3.38)

Since we focus on a critical point of a system described by a conformal theory
with central charge c, the conformal dimension of the n-partition function can be
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obtained as in (3.23). Hence, the n-partition function reads

Zn(A) = An

(
b− a

∆

)− c
6(n− 1

n)
(3.39)

where An is a normalisation parameter and the presence of ∆ is due to dimensional
requirements.
Rényi entropy of the subsystem A is then given by

S
(n)
A =

1

1− n logZn(A) ∝ c

6

1 + n

n
log

b− a
∆

=
c

6

1 + n

n
log ` (3.40)

Performing derivatives and limits, we obtain

SA ∝
c

3
log

b− a
∆

=
c

3
log ` (3.41)

where ` = b−a
∆

denotes the size of the subsystem A.

Since Entanglement Entropy can be obtained from a conformal two-point correla-
tion function, it can be simply evaluated in different geometries using conformal
transformation of correlation functions.

〈φ′1(z′1)φ′2(z′2)〉M =

(
dz′1
dz1

)2h1 (dz′2
dz2

)2h2

〈φ1(z1)φ2(z2)〉N (3.42)

with z ∈ N 7→ z′ = z′(z) ∈M.

Example: Entanglement of a subsystem of a finite system

If we are interested in the Entanglement Entropy of a finite system of length L
divided into two subsystems of length ` and L− `, we can map the whole complex
plane C into a cylinder with circumference 2πL.

z ∈ C 7→ z′ =
iL

2π
log z (3.43)

The twist-field correlation function in the new geometry is given by

〈T ′(a′, 0′)T̃ ′(b′, 0′)〉L(n),strip =

(
da′

da

db′

db

)2dn

〈T (a, 0)T̃ (b, 0)〉L(n),C (3.44)

and the Von-Neumann Entropy reads

SA ∝ c

3
log

[
L

π
sin

(
π`

L

)]
(3.45)

62



3.3. Off-critical models

which recovers the previous result for L� `. It is important to notice that Entropy
is symmetric under the exchange ` ↔ L − `; this symmetry reflects the fact that
the two subsystems of a bi-partite system have the same Von-Neumann Entropy
(see Section 1.2.2).
Moreover (3.45) has a maximum for ` = L

2
.

3.3 Off-critical models
As we said before, the Cardy-Calabrese approach [11] allows us to probe infinite
off-critical systems; in particular, we are interested in a infinite one-dimensional
quantum system divided into two semi-infinite subsystems.

Let us consider a massive relativistic QFT representing a 1 + 1-dimensional off-
critical model in the scaling limit ∆� ξ. We denote with ξ the correlation length,
which corresponds to the inverse of the mass in theories near the conformal critical
point.
Consider as a subsystem the negative real axis, whereas the complete system is
represented by the whole real axis. For this reason the Riemann surface Mn,0,∞
has two branching point of order one: one at 0 an the other one at ∞.
In QFT the stress tensor Tµν is a Noether current, whose equations read [12]

∂z̄T +
1

4
∂zΘ = 0 (3.46)

∂zT̄ +
1

4
∂z̄Θ = 0 (3.47)

where T, T̄ and Θ are given by

T = Tzz (3.48)
T̄ = Tz̄z̄ (3.49)
Θ = 4Tzz̄ (3.50)

Denote

〈T (z, z̄)〉n =
Fn(zz̄)

z2
(3.51)

〈T̄ (z, z̄)〉n =
Fn(zz̄)

z̄2
(3.52)

〈Θ(z, z̄)〉n − 〈Θ〉1 =
Gn(zz̄)

z2
(3.53)

where

〈. . . 〉n = 〈. . . 〉Mn,0,∞ (3.54)
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Notice that 〈T 〉1 and 〈T̄ 〉1 vanish, sinceM1,∞ is the usual complex plane and we
expect to have a translational invariant theory. On the other hand 〈Θ〉1 is non-
zero and constant since the theory is non critical (and then non conformal) and
the curvature of the manifold is constant.
Combining (3.46) and (3.51) we obtain

zz̄(F ′n +
1

4
G′n) =

1

4
Gn (3.55)

We expect that Fn, Gn → 0 for |z| � ξ at least exponentially, in order to have a
well defined QFT. However, according to (3.19) we expect that

Fn →
c

24

(
1− 1

n2

)
(3.56)

Gn → 0 (3.57)

for |z| � ξ. In this limit we reach CFT expressions, since at distances |z| smaller
than correlation length ξ, the system ‘seems’ critical, and, in this case, conformal.
After setting

Cn(r2) = Fn(r2) +
1

4
Gn(r2) (3.58)

we have

r2 d

d(r2)
Cn(r2) =

1

4
Gn(r2) (3.59)

and
∫ ∞

0

d(r2)
Gn(r2)

r2
= 4Cn(∞)− 4Cn(0) (3.60)

= − c
6

(
1− 1

n2

)
(3.61)

In the n-sheet picture we have
∫

Mn,0,∞

d2x
(
〈Θ(x)〉n − 〈Θ〉1

)
= −nπc

6

(
1− 1

n2

)
(3.62)

Let us consider

1

2

∫
d2x xµ∂

µf(x0, x1) =
1

2

∫
dx1

∫
dx0x0∂

0f(x) +
1

2

∫
dx0

∫
dx1x1∂

1f(x)

= −
∫
d2xf(x) (3.63)
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Using the Callan-Symanzik equation (D.28) we obtain
∫
d2x〈Θ(x)〉n = 2

∫
d2x〈Θ(x)〉n −

∫
d2x〈Θ(x)〉n

=

∫
d2x

(
γ̂(m) +

1

2
xµ∂

µ

)
〈Θ(x)〉n

=

∫
d2xβ(m)

∂

∂m
〈Θ(x)〉n

= −β(m)
∂

∂m
logZn (3.64)

Comparing (3.62) and (3.64) we get

m
∂

∂m
log
Zn
Zn1

=
nc

12

(
1− 1

n2

)
(3.65)

which leads to

logZn ∝
c

12

(
n− 1

n

)
logma (3.66)

Recalling (3.27) and (3.29) we obtain

S
(n)
A ∝ −1 + n

n

c

12
logma =

1 + n

n

c

12
log

ξ

a
(3.67)

and

SA ∝ − c
6

logma =
c

6
log

ξ

a
(3.68)

These results are very useful, since they can be compared with ones obtained ex-
actly using CTM approach for integrable model whose Corner Transfer Matrix can
be evaluated.

We stress the fact that these results are valid in the scaling limit ξ � ∆, which
allows us to describe a lattice system with a Field Theory; this scaling limit can
be reached studying the system near the critical point in order to have a large
correlation length ξ.
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Chapter 4

The RSOS model

In this chapter we will introduce the RSOS model and its connection with confor-
mal field theories.
Restricted Solid On Solid (RSOS) models play a central role in the study of a
multitude of physical phenomena, like percolation, but they are interesting also
for their integrability and their connection to conformal theories. In his seminal
works [13],[14],[15] R. J. Baxter introduced the model from a purely statistical
point of view, but its conformal structure has been deepened later by M. Bauer
and H. Saleur [16].
We are interested in the study of particular classes of RSOS models whose critical
point is described by a Minimal Conformal Model [12]; in following chapters we
will study Entanglement Entropy of one dimensional quantum spin chains, whose
2d classical representation is given by these classes of RSOS. In order to perform
the Peschel-Kaulke-Legeza’s technique (Chapt. 2 and [7]) for the evaluation of the
Entanglement, we require the knowledge of the expression of the Corner Transfer
Matrix (CTM) of these models. For this reason we will include a sketch of the
evaluation of corner transfer matrices for this model.
We will conclude this chapter with the Hamiltonian limit of this model at a criti-
cal conformal point, in order to show the one-dimensional quantum systems whose
2-dimensional statistical representation is given by the RSOS model.

4.1 The model
Let us define a square lattice L with free boundary conditions. On each vertex i
it is defined a local eight li = 1, 2, . . . , with the constraint that neighbour local
heights must differ by one.

li − lj = ±1 (4.1)
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Thanks to this condition on local heights, there are six possible allowed configu-
rations, modulo a global shift in all local heights.

196 Andrews et al, 

1 

?+1 
v 

a 1 

Fig. 2. 

a~ ~l ~1 Vt 67 
The six possible arrangements of heights round a face of the lattice. The location of 

the sublattices is irrelevant here: crosses and circles may be interchanged. 

Ref. 11, i.e., by 
a = p|174 - ~ ) H ( v  + ~1) 

b = O0(2~l)H(v - V)O(v + ~1) 
(1.2,3) 

c = oH(2~l)|  - ~1)6)(v + ~) 

d = p H ( 2 • ) H ( v  - , ) H ( v  + , )  

where H(u) ,  | are the elliptic theta functions of argument u and modu- 
lus k. Let h(u) be the function 

h(u)  = H ( u ) |  (1.2.4) 

and let 
O' = p O ( 0 ) ,  w t = w 0 + 2 l ~  ( 1 . 2 . 5 )  

where w o is a constant, as yet arbitrary. Then it is shown in Refs. 11 and 12 
that this eight-vertex model on • is equivalent to an SOS model on S 
with weights 

W ( l , l  + 1 

W ( l , l -  1 

w ( l  + z,l 
W ( l -  1,1 

W ( /  + 1,/ 

w(1-  1,z 

Z-1,1) 
/ +  1,l) 
t , l -  1) 
l , l  + 1) 

l,Z + 1) 

l ,z - l )  

= p 'h(v  + ~7) 

= o 'h(v  + ~ ) h ( w z + , ) / h ( % )  

= o ' h ( v  - ~ ) h ( w , _ , ) / h ( w , )  

= o ' h ( v  - ~) 

= o 'h (2~ lh (w ,  + ~1 - v ) / [ h ( % ) h ( % + l ) ]  

= p ' h ( 2 n ) h ( w l -  ~ + v) 

(1.2.6) 

(taking J to be the dual of the lattice used in Ref. 12, where the heights 
are associated with faces rather than sites). 

From the usual definitions (17'18) of the elliptic theta functions, 

h(u)  = 2_pl/4sin 7ru f i  ( 1 -  2 p n c o s  qrU + p 2 n ) (  1 __ p2n)  2 (1.2.7) 
n = I  

where K and K'  are the complete elliptic integrals of the first kind, and p is 

Figure 4.1: Allowed Configurations of the RSOS Model

Define w(l,m, n, o) as the Boltzmann weight of a tile with local heights l,m, n, o
in clockwise order (starting from the lower left corner).
In [13, 14] and [17] it is shown that Boltzmann weights can be written using
Jacobi’s elliptic functions:

w(l, l − 1, l, l + 1) = ρ′h(v + η)

w(l, l + 1, l, l − 1) = ρ′h(v + η)
h(wl+1)

h(wl)

w(l + 1, l, l − 1, l) = ρ′h(v − η)
h(wl−1)

h(wl)

w(l − 1, l, l + 1, l) = ρ′h(v − η)

w(l + 1, l, l + 1, l) = ρ′h(2η)
h(wl + η − v
h(wl)h(wl + 1)

w(l − 1, l, l − 1, l) = ρ′h(2η)h(wl − η + v) (4.2)
wl = w0 + 2lη

where ρ′ is a normalisation constant, v is the anisotropy parameter and η is the
so-called crossing parameter, which depends on the nome p. The function h is
defined as

h(u) = θ1(u)θ4(u)

=
(
p2
)
∞ 2p

1
4 sin

πu

2K

∞∏

n=1

[
1− 2pn cos

πu

K
+ p2n

]
(4.3)

where (q)∞ is the q-Pochhammer symbol:

(q)∞ =
∞∏

n=1

(1− qn) (4.4)
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and K
2
is the complete elliptic integral of the first kind with modulus k:

K

2
=

∫ π
2

0

dφ√
1− k sin2 φ

(4.5)

From (4.3) it can be shown that the semi-period of all the Boltzmann weights is
equal to 2K.
The nome p plays a temperature-like role, since its value depends on the phase of
the system:

−1 < p < 1 (4.6)

and it tends to zero when the system reaches the critical point.
The parameter K and p are related by the following relation

p = exp

[
−πK

′

K

]
(4.7)

where K ′ is equal to K, only with k changed to
√

1− k2.

Figure 4.2: Dependance of the parameter p on the parameter k

The above model is the so-called Solid On Solid SOS model. If we restrict the
maximal local height to r − 1, the this model is called Restricted Solid On Solid
RSOS.

The archetypal statistical system described by these models is the adsorption,
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i.e. the accumulation of atoms of a gas on atoms of a metallic surface. Since the
number of gas atoms on each site of the metallic surface must be almost equal for
neighbour sites, the condition (4.1) is requested in modelling these systems.

It is important to emphasise that the explicit expression of Boltzamnn weights
(4.2) derives also by the solution of the Yang-Baxter equation (2.40); for this
reason the model is integrable and its physical quantities can be evaluated exactly.

4.2 The Andrews-Baxter-Forrester Model (ABF)
Even if the RSOS models are integrable, they have been solved in literature only
with some conditions on the crossing parameter η.

It has been shown (see, for example [18]) that the Hard-Hexagon model and the
zero field Ising model are equivalent to the RSOS model with crossing parameter
η

η =
K

r
(η → π

r
for k, p→ 0) (4.8)

and r respectively equal to 5 and 4.
As suggested by this equivalence, G. E. Andrews, R. J. Baxter and J. P. Forrester
studied RSOS models with crossing parameter defined as above and with a generic
integer value of r greater than two [17].
This model, called Andrews-Baxter-Forrester or ABF model, can be completely
solved [17] using CTM technique.

It can be demonstrated [17] that varying parameters v and p, this model runs
into four different regimes, or phases, (I,. . . ,IV)

I −1 < p < 0 η < v < 3η
II 0 < p < 1 η < v < 3η
III 0 < p < 1 −η < v < η
IV −1 < p < 0 −η < v < η

This model attracts our attention for its conformal behaviour, since it has been
demonstrated[16, 19] that the critical point between the regimes III and IV is
described by the unitary conformal theory with central charge

c = 1− 6

r(r − 1)
(4.9)
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which corresponds to the r − 1-th unitary minimal conformal model [12].

4.3 The Baxter-Forrester Model (BF)

The ABF model can be further generalised (R.J. Baxter and J.P. Forrester, [20])
allowing the crossing parameter η to be equal to

η =
sK

r
(4.10)

where s and r are two relatively prime positive integers (r > s ≥ 3).
Thanks to the presence of a second parameter s, the system can belong to a great
number of regimes, but, as before, we are interested only in transition between
regimes III and IV1

III 0 < p < 1 s = 1, 2, . . . r − 2 −η < v < η

IV −1 < p < 0 s = 1, 2, . . .
⌊
r−2

2

⌋
−η < v < η

This critical point is described by a minimal conformal theory with central
charge [19]

c = 1− 6
s2

r(r − s) (4.11)

which represents theM(r − s, r) minimal conformal model.
As noticed in [20], this model is unphysical, since some Boltzamnn weights are
negative; this negativity gives some problems in the interpretation in terms of
classical probabilistic weights.
The presence of such states can be expected since the conformal field theory under-
lying the system at its critical point is non-unitary and for this reason it contains
some states with negative norm, also called ghosts [12].
In Chapt. 5 we will study one-dimensional models related to RSOS and we will
show that in the s 6= 1 case some states with negative norm arise.

In following sections, we will focus on statistical properties of regime III, since
we are interested in approaching the critical point from this regime.

1bkc denotes the integer part of x
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4.3.1 Symmetry of the Model

In this section we will introduce a more compact parametrisation [17, 20] of Boltz-
mann weights in order to make easier further computations and parametrisations.
Let us consider a simple variation of the model: if we multiply each Boltzmann
weight w(l,m, n, 0) by F (l,m)G(l,o)

F (o,n)G(m,n)
(F,G arbitral functions) these contributions do

not affect the partition function and then they do not modify physical properties
of the model. Defining F and G as

F (l, l ± 1) = G(l + 1, l) =
1

G(l − 1, l)
=

√
h(wl) (4.12)

we have

w(l, l + 1, l, l − 1) = w(l, l − 1, l, l + 1) = αl = ρ′h(v + η)

w(l + 1, l, l − 1, l) = w(l − 1, l, l + 1, l) = βl = ρ′h(η − v)

√
h(wl−1)h(wl+1)

h(wl)

w(l + 1, l, l + 1, l) = γl = ρ′h(2λ)
h(wl + η − v)

h(wl)

w(l − 1, l, l − 1, l) = δl = ρ′h(2η)
h(wl − η + v)

h(wl)
(4.13)

and thus possible configurations with different energy are reduced to four for each
value of l.
Defining

E(z, x) =
∑

n∈Z

(−1)nx
n(n−1)

2 zn

=
∞∏

n=1

(1− xn−1z)(1− xnz−1)(1− xn) (4.14)

we can parametrize Boltzmann weights as

αl = ρ
√
wE(xw−1, y)

βl = ρ

√
x

w

√
E(xl−1, y)E(xl+1, y)

E2(xl, y)
E(w, y)

γl = ρE(x, y)
E(xlw, y)

E(xl, y)

δl = ρE(x, y)
E(xlw−1, y)

E(xl, y)
(4.15)
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where

x = exp
[
−4π

η

K ′

]

y = exp
[
−4π

rη

sK ′

]

w = exp

[
−2π

η − v
K ′

]
(4.16)

This choice of x, y and w is valid in the regime III and it has to be modified a bit in
other regimes; we refer always to this regime, since we are interested in approach-
ing the critical point through this regime. Parametrisation for other regimes can
be found in [20].
In following sections we will use this parametrisation for the evaluation of the
partition function and other thermodynamic quantities using Corner Transfer Ma-
trices.

4.4 ABF and BF Models in a Finite Lattice

In this section we will sketch the procedure to obtain the expression of Corner
Transfer Matrices for these model in a finite lattice [17, 20], i.e. before performing
the thermodynamic limit. Moreover using the CTM formulation, we will anal-
yse the ground state structure of these models and we will find an expression for
the n−partition function, which is vital in the evaluation of Entanglement Entropy.

4.4.1 Corner Transfer Matrix structure

In the following passages we will briefly review the process of building up the
CTM, generalising what we have done in Chapt. 2 for IRF Ising-like models [6].
Also RSOS systems are IRF models, but while in Ising-like systems each vertex
(or edge) can assume only two distinct values, each local height runs from 1 to
r − 1, making these models more complicated than Ising-like ones.
Starting from (2.24) and following equations we know that [6, 17, 20] the Corner
Transfer Matrix A of the first quadrant of the lattice (Fig. 2.2) is given by

A = F ss′t2 F tt
′u

3 · · · Fyy′zm+1 (4.17)

where

F ss′tj = U ss′t
m+1U

t
mUm−1 · · ·Uj (4.18)
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where Uabc
m+1 is defined as in (2.24) but with lm+1, lm+2 and l′m+1 fixed to a, b and c.

Notice that, while Ui matrices in (2.24) are defined in the Ising basis (σi = ±1),
in this chapter they are defined on the RSOS basis: each matrix element Ui|~l,~l′
depends on a couple of multi-indices ~l = (l1, l2, . . . , lm+2) and ~l′ = (l′1, l

′
2, . . . , l

′
m+2).

In Chapt. 2, we have shown that expectation values of physical quantities can be
evaluated using a diagonalised or normalised version of CTM. Using a procedure
similar to (2.1.5) we can derive the following expression for the matrix product
ABCD

ABCD = R2
1 exp

[
−2πη

H
M ′

]
(4.19)

where

R2
1

∣∣
~l,~l′ = E(xl1 , y)δ

(
~l,~l′
)

(4.20)

exp

[
−2πη

H
M ′

]∣∣∣∣
~l,~l′

= xΦ(~l)δ
(
~l,~l′
)

(4.21)

Then

Z1 =
∑∗

l1,...,lm

E(xl1 , y)xΦ(l) (4.22)

with

x = exp
[
−4π

η

M ′

]
(4.23)

and

y M ′

0 < p < 1 x
r
s K ′

−1 < p < 0 −x r
2s 2<K ′

The function Φ is given by

Φ(l) = c(l1, l2, l3) + 2c(l2, l3, l4) + · · ·+mc(lm, lm+1, lm+2) =
m∑

k=1

kc(lk, lk+1, lk+2)

(4.24)
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with

c(l, l − 1, l) =

⌊
lµ

r

⌋

c(l, l + 1, l) = −
⌊
lµ

r

⌋

c(l − 1, l, l + 1) = c(l + 1, l, l − 1) =
1

2
(4.25)

where b·c denotes the integer part and µ is equal to s in the regime III and to 2s
in the regime IV. Notice that since

⌊
l
r

⌋
= 0 for all l, taking s = 1 (4.24) coincides

with the one founded by F. Franchini and A. De Luca for the ABF model [17, 9]:

Φ
(s=1)
III (l) =

m∑

k=1

k
|lk − lk+2|

4
(4.26)

In the BF model, i.e. in the s 6= 1 case, this expression is not valid anymore, due
to the arising of different terms

Φ
(s 6=1)
III (l) =

m∑

k=1

{
k
|lk − lk+2|

4
+ (lk − lk+1)

⌊
ls

r

⌋}
(4.27)

Since x = exp
[

4π2s
r log p

]
and log p ≤ 0, the one-dimensional height configurations

which minimise Φ(l) can be identified as the ground states of the system, since
they give the maximum contribution to the partition function (4.22). Since Φ(l)
defines ground states of the system, it can be identified as Hamiltonian related to
the CTM [9]:

Z1 = TrABCD = Tr
[
R2

1e
−c0Φ

]
(4.28)

where c0 is a positive parameter which depends on p.

4.4.2 Ground state structure

Since ground states play the most important role in the statistical description of
a model, it is important to briefly sketch their structure.

Denoting with a, b and c respectively l1, lm+1 and lm+2, the ground state energy of
this regime depends on these three parameters [19]

E
(r,s)
0 =

1

4
(a− b)(a− c) +

1

2
[(a− c) + (c− b)m]

[cs
r

]
I

(4.29)
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which, in the s = 1 case, gives

E
(r,s=1)
0 =

1

4
(a− b)(a− c) (4.30)

Thus boundary conditions set the ground state and its energy.

ABF model

If boundary conditions are free, the above energy has a minimum if odd and
even sites have respectively the same value of the local height. The configuration
associated with the ground state in regime III is given by [9]

l2k = X

l2k+1 = Y

(4.31)

with X−Y = ±1. This configuration is ordered and it is 2r−4 degenerate [9, 17];
the state depends only on l1 and l2 values: for each value of l1 = 1, . . . , r − 1, l2
can assume two different values l2 = l1±1, except for l1 = 1, r−1 when the choice
of l2 is forced. Thanks to this simple argument, we can demonstrate the amount
of degeneration of the ground state.

BF model

In the case s 6= 1 the energy is minimised by a alternate-heights state if cs
r
< 1;

for this reason the number of degenerate ground states is different than the s = 1
case. It is given by [20]

{
2(r − s− 1) s 6= r − 1

2r − 4 s = r − 1
(4.32)

Also in the BF model the ground state in the regime III is ordered.

4.4.3 The partition function

Recalling (4.22) the partition function is given by

Z1 = Tr[ABCD] =

r−1∑∗

a=1

E(xa, y)Dm(a, b, c;x2) (4.33)
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where

Dm(a, b, c;x2) =
∑

l2,l3,...,lm

xΦ(l) (4.34)

with l1, lm+1 and lm+2 fixed to a, b and c. Notice that in (4.33) the sum is performed
only on odd or even values of a, since boundary conditions fix allowed central local
heights.
In order to evaluate Rényi Entropy, we require the knowledge of the α-partition
function Zα = Tr ραA, which is given by

Zα = Tr




α−times︷ ︸︸ ︷
ABCD · · ·ABCD




∝ Tr

[
R2α

1 exp

[
−2πηα

H
M ′

]]

=
r−1∑

a=1

[E(xa, y)]αDm(a, b, c;x2α) (4.35)

Since these formulæ have been obtained for finite systems, we need to perform
the thermodynamic limit in order to study infinite systems. Such a limit has been
performed in [20] and it will be used in Chapt. 6 and Appendix A for the evalua-
tion of Entanglement Entropy in bi-partite infinite systems.

4.5 Hamiltonian Limit for Critical RSOS Models

As previously said, Entanglement is a genuine quantum phenomenon; for this
reason it is vital to know which is the one-dimensional quantum system whose
two-dimensional statistical representation is given by the RSOS model.
In order to find this model, in this section we will perform the Hamiltonian limit
of the RSOS model at its critical conformal point p→ 0. In this limit Boltzmann
weights are given by [16, 19]

w(u|a, b, c, d) =
sin(η − u)

sin η
δ(a, c) +

sinu

sin η

√
sin(ηa) sin(ηc)

sin(ηb) sin(ηd)
δ(b, d)

(4.36)

77



The RSOS model

which allows us to write the matrix Ui (2.24) as

Ui(u) =
sin(η − u)

sin η
1 +

sinu

sin η
ei (4.37)

where the crossing parameter η tends2 to πs
r

in the limit p → 0. The matrix ei is
given by [21]

ei|l,l′ =

(∏

j 6=i
δ(lj, l

′
j)

)
δ(li−1, li+1)

√
sin
(
πs
r
li
)

sin
(
πs
r
l′i
)

sin
(
πs
r
li−1

)
sin
(
πs
r
li+1

) (4.38)

It can be shown that these ei matrices satisfy the Temperley-Lieb Algebra [19, 22]

e2
i = Q

1
2 ei (4.39)

eiei±1ei = ei (4.40)
eiej = ejei if |i− j| > 1 (4.41)

where
√
Q = 2 cos η = 2 cos

(
πs
r

)
. In following chapters we will define a second

parameter q as
√
Q = −(q + q−1) (4.42)

It is very important to notice that the solution can be also obtained [23] as a
solution of the Yang-Baxter equation (2.40).

In order to perform the Hamiltonian limit, we need to construct a double row-
to-row transfer matrix. Referring to Fig. 4.3 we consider two rows of tiles (the red
and the blue one). The row-to-row transfer matrix of the red row is given by [21]

TR(u) =
∏

i even
Ui(u) (4.43)

while the transfer matrix of the blue row reads

TB(u) =
∏

i odd
Ui(u) (4.44)

where Ui are given by (4.5).
The double row transfer matrix T is then given by the product of the two single
row matrices

T(u) = TB(u)TR(u) (4.45)

2This can be obtained from lim
k→0

∫ π
2

0
dx√

1−k sin2 x
= π

2
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Figure 4.3: Double row-to-row transfer matrix

and the hamiltonian limit gives [21, 23]

H = −
∑

i

ei (4.46)

It is very difficult to study this Hamiltonian, since it contains three-sites interaction
and it is expressed as matrices in the RSOS basis. In [21] and in previous works
this Hamiltonian has been related to some anyonic models.
It was noted in [24] that theQ-state Potts Hamiltonian provides another realisation
of the Temperley-Lieb Algebra; moreover it has been shown that am sites Q-states
Potts model is equivalent to the q−invariant XXZ spin chain with fixed boundaries
[24, 25, 22], which will be introduced and studied in the next chapter.
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Chapter 5

The q-deformed Quantum XXZ
Spin-Chain

In this chapter we will introduce the Temperely-Lieb Algebra and the Quantum
Group [26, 22, 27] and we will show how they are connected [25] with the Virasoro
Algebra [12].
Furthermore we will study the integrable XXZ quantum spin chain with open
periodic boundary conditions; in particular we will focus on its connection with
Minimal Conformal Models.
We will conclude this chapter discussing the the non-Hermiticity of this Hamilto-
nian.

5.1 The Y-B Equation - 1: Periodic Boundary Con-
ditions

In this section we will briefly review the Yang-Baxter Equation (2.40) focusing
on quantum one-dimensional models with periodic boundary conditions ([26] and
references therein).

Consider a spin-chain and denote with V the Hilbert space of each site. For
each couple of neighbour sites, we can define the permutation operator P as

P : V ⊗ V → V ⊗ V
a⊗ b 7→ b⊗ a (5.1)

In a spin-1
2
representation (V = C2) P reads

P =
1

2
(σx ⊗ σx + σy ⊗ σy + σz ⊗ σz + 1⊗ 1) (5.2)
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The q-deformed Quantum XXZ Spin-Chain

In the quantum spin-chain picture, the Yang-Baxter Equation is given by [26]

R12(λ1 − λ2)R13(λ1 − λ3)R23(λ2 − λ3) = R23(λ2 − λ3)R13(λ1 − λ3)R12(λ1 − λ2)

(5.3)

where

R12 = R⊗ 1

R13 = (P ⊗ 1)(1⊗R)(P ⊗ 1)

R23 = 1⊗R (5.4)

In the quantum chain picture, the solution of the Yang-Baxter equation is related
to the form of the quantum Hamiltonian Ĥ of a periodic system with N sites
(ĤN,N+1 = ĤN,1)

Ĥ =
N∑

j=1

Ĥj,j+1 (5.5)

In [26] it has been shown that

Ĥj,j+1 ∝ Ř−1
j,j+1(λ)

dŘj,j+1

dλ
(λ)

∣∣∣∣
λ=0

(5.6)

where

Ř = PR (5.7)

Different solutions of the Yang-Baxter equation lead to different Hamiltonians and
then to different quantum models.

5.2 The Temperley-Lieb Algebra
Studying the Yang-Baxter equation [6, 26] for the XXX and the XXZ models, two
different algebras of solutions arise. It can be shown that R matrices in the XXX
model belong to the braid group. In the XXZ case R matrices are more complicated
and related to the Temperley-Lieb algebra.

5.2.1 The Braid Group Algebra BN

The braid group BN is defined by N − 1 generators g1, . . . , gN−1 and by their
exchange relations:

gigi+1gi = gi+1gigi+1 (5.8)
[gi, gj] = if |i− j| > 1 (5.9)
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5.2. The Temperley-Lieb Algebra

As previously said, the braid group represents the solution of the Yang-Baxter
equation for the simple XXX model.

The R matrix of this model is given by

R(λ) =




sinλ 0 0 0
0 sinλ 0 0
0 0 sinλ 0
0 0 0 sinλ


 (5.10)

and the two-site Hamiltonian Ĥ2 obtained from (5.6) is given by

Ĥ2 ∝ [PR(λ)]−1 d

dλ
PR(λ)

∣∣∣∣
λ=0

= P (5.11)

which is the two-site XXX Hamiltonian with an energy shift.
The matrix Ř for this model is given by

Ř(λ) =




sinλ 0 0 0
0 0 sinλ 0
0 sinλ 0 0
0 0 0 sinλ


 (5.12)

and it can be written as

Ř(λ) = sinλ




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1




≡ sinλ g (5.13)

Setting

gi = 1⊗ · · · ⊗ 1⊗ g ⊗ 1⊗ · · · ⊗ 1 (5.14)

it can easily be shown that gi’ s satisfy the Braid group Algebra.
The Braid Group Algebra describes only particular systems, such as the XXX
spin-chain, whose ‘symmetry level’ is very high. In order to describe systems with
less symmetries, such as the XXZ model, we will restrict our analysis to quotients
of the Braid Group Algebra.
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The q-deformed Quantum XXZ Spin-Chain

5.2.2 The Hecke Algebra HN(q)

The Hecke algebra HN(q) is obtained from BN requiring the extra condition

(gi − q)(gi + q−1) = 0 (5.15)

It is useful to express elements of HN(q) with new generators Ui = gi − q. With
these new generators the algebra is defined by the following relations:

UiUi+1Ui − Ui = Ui+1UiUi+1 − Ui+1 (5.16)
U2
i = −(q + q−1)Ui (5.17)

[Ui, Uj] = 0 if |i− j| > 1 (5.18)

5.2.3 The Temperley-Lieb Algebra TN(q)

The Temperley-Lieb algebra TN(q) is obtained from HN(q) by requiring the extra
condition [26, 27]

UiUi±1Ui = Ui (5.19)

This algebra plays a vital role in the solution of the XXZ model, since it can be
shown that solutions of the Yang-Baxter equation of this model can be written
using elements belonging to the Temperley-Lieb algebra.

The R matrix of the XXZ model is given by

R(λ) =




sin(λ+ µ) 0 0 0
0 sinλ ieiλ sinµ 0
0 ie−iλ sinµ sinλ 0
0 0 0 sin(λ+ µ)


 (5.20)

The Ř matrix reads

Ř(λ) =




sin(λ+ µ) 0 0 0
0 ie−iλ sinµ sinλ 0
0 sinλ ieiλ sinµ 0
0 0 0 sin(λ+ µ)


 (5.21)

and it can be expressed as

Ř(λ) = eiλ




1
2
eiµ 0 0 0
0 0 1

2
0

0 1
2

i sinµ 0
0 0 0 1

2
eiµ


− e

−iλ




1
2
e−iµ 0 0 0
0 −i sinµ 1

2
0

0 1
2

0 0
0 0 0 1

2
e−iµ




=
1

2
eiλg − 1

2
e−iλg−1 (5.22)
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where

g =




eiµ 0 0 0
0 0 1 0
0 1 2i sinµ 0
0 0 0 eiµ


 (5.23)

which satisfies

(g − q)(g + q−1) = 0 (5.24)

for q = eiµ.

As before we can set

gi = 1⊗ · · · ⊗ 1⊗ g ⊗ 1⊗ · · · ⊗ 1 (5.25)

and

Ui = gi − q (5.26)

to obtain the Temperley-Lieb Algebra TN(eiµ).

Using (5.6) we obtain the two-site XXZ hamiltonian

Ĥ2 = σx ⊗ σx + σy ⊗ σy + cosµσz ⊗ σz (5.27)

5.3 The Y-B Equation - 2: Open Boundary Con-
ditions

Up to now, we have studied solutions of the Yang-Baxter Equation for closed spin-
chains with periodic boundary conditions.
It is important to notice that the Temperley-Lieb Algebra TN(q) provides solutions
not only for the closed XXZ, but also for the open chain [25, 22].

H =
N−1∑

n=1

σxnσ
x
n+1 + σynσ

y
n+1 +

q + q−1

2
σznσ

z
n+1 +

q − q−1

2
(σz1 − σzN) (5.28)

The Y-B equation for systems with open boundary conditions requires a little
modification of boundary terms.
The Y-B equation does not change for bulk sites and it is given by (5.3), like in
closed chains. In order to implement the effect of boundaries, E. K. Sklyanin [28]
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The q-deformed Quantum XXZ Spin-Chain

introduced a couple of matrices K+ and K− whose role is to provide boundary
conditions. The Y-B equation for boundary sites is given by [26, 29]

R12(λ1 − λ2)K−1 (λ1)R21(λ1 + λ2)K−2 (λ2) = K−2 (λ2)R12(λ1 + λ2)K−1 (λ1)R21(λ1 − λ2)

(5.29)

and is called reflection or boundary Yang-Baxter equation. This equation imple-
ments the left-side boundary; it has to be coupled with a similar one for the
right-side boundary using the matrix K+.
Thanks to the presence of boundary matrices K±, the related quantum Hamilto-
nian will have boundary terms. For instance, the most general integrable XYZ
spin-1

2
chain with boundaries is given by [29]

Ĥ =
N−1∑

n=1

[
(1 + Γ)σxnσ

x
n+1 + (1− Γ)σynσ

y
n+1 + ∆σznσ

z
n+1

]

+ sn η
[
A−σ

z
1 +B−σ

+
1 + C−σ

−
1 + A+σ

z
N +B+σ

+
N + C+σ

−
N

]
(5.30)

with

Γ = k sn2η

∆ = cn η dn η

A± =
cn ξ±dn ξ±

sn ξ±

B± =
2µ±(λ± + 1)

sn ξ±

C± =
2µ±(λ± − 1)

sn ξ±
(5.31)

where η denotes the usual crossing parameter, k denotes the distance from the
critical point, while ξ±, µ± and λ± are constants parameters which fix boundary
conditions.
Notice that in (5.30) the first line is the usual XY Z hamiltonian while the second
line is due to boundary matrices. The (5.28) can be obtained from (5.30) taking
the limit k → 0 and fixing parameters q = eiη, µ± = 0 and ξ± → ±i∞.

In order to study solutions of the boundary Y-B equation at their critical point,
previous algebras have been modified in order to take into account the effect of
the boundaries. For instance, solutions of the boundary Y-B equation for the
XXZ model belong to the Blob Temperley-Lieb Algebra BN(q,Q) with generators
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5.3. The Y-B Equation - 2: Open Boundary Conditions

U0, . . . , UN−1 which obey to

Ui±1UiUi±1 = Ui±1

U2
i = −(q + q−1)Ui

U1U0U1 = (qQ−1 + q−1Q)U1

U2
0 = −(Q+Q−1)U0 (5.32)

In the special (5.28) case, even if the system has boundaries, the algebra of solution
of the Y-B equation is simply given by the bulk Temperley-Lieb Algebra, since its
Ř matrix is given by

Ři(λ) = 1 + λUi (5.33)

where

Ui =

i−1 times︷ ︸︸ ︷
1⊗ · · · 1⊗U ⊗

N−2−i times︷ ︸︸ ︷
1⊗ . . . 1 (5.34)

and

U =




0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0


 (5.35)

With this parametrisation the Hamiltonian (5.28) can be written as [25]

Ĥ =
N−1∑

i=1

(
q + q−1

2
− 2Ui

)
(5.36)

As we said before, this bounded Hamiltonian can be described using a bulk
Temperley-Lieb Algebra; this fact is due to the telescopic form of the two-site
Hamiltonian Ĥ12

Ĥ12 = σxi σ
x
i+1 + σyi σ

y
i+1 + ∆+σ

z
i σ

z
i+1 + ∆−(σzi − σzi+1) (5.37)

where

∆± =
q ± 1

q

2
(5.38)

In other words, it can be expressed as a sum of bulk terms which automatically
provide boundary term, indeed ∆− terms vanish in the bulk, thanks to a recursive
annihilation.
From an algebraic point of view, the presence of the bulk Temperley-Lieb algebra
is due to the triviality of the boundary matrices K± [26].
This special Hamiltonian does not enjoy only this peculiar property, but it is very
interesting for its symmetric properties. Furthermore for particular choices of the
parameter q this model is described [25] by a Minimal Conformal Model [12].
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5.4 The Quantum Group
As we said before, the Hamiltonian (5.28) has special symmetry properties; in
particular it is invariant under the action of the Quantum Group, which will be
briefly introduced in this section.

Despite its name, the quantum group Uq(su2) is an algebra.
It is generated [25, 26, 22] by J+, J−, q2Jz , q−2Jz whose commutation relations are
given by

[J+, J−] =
q2Jz − q−2Jz

q − q−1
= [2Jz]q

qJ
z

J±q−J
z

= q±1J± (5.39)

where the q-integer [k]q is defined as

[k]q =
qk − q−k
q − q−1

(5.40)

The quantum group enjoys the Hopf algebra structure1 on C, with co-product
∆ : Uq(su2) → Uq(su2) ⊗ Uq(su2), co-unit ε : Uq(su2) → C and antipode γ :
Uq(su2)→ Uq(su2) defined by

∆(J±) = qJ
z ⊗ J± + J± ⊗ q−Jz , ∆

(
q±J

z)
= q±J

z ⊗ q±Jz (5.41)
ε
(
q±J

z)
= 1, ε(J±) = 0 (5.42)

γ
(
q±J

z)
= q∓J

z

, γ(J±) = −q±1J± (5.43)

The Hopf structure allows us to define the action of the quantum group on an
N -site system using recursive application of the co-product ∆n = (∆ ⊗ 1)∆n−1,
(∆2 ≡ ∆).
This N -site structure can be easily clarified applying it on a representation of the
quantum group. Let π be a representation of Uq(su2) with representation space
V :

π : Uq(su2) → EndV
Uq(su2) 3 J± 7→ s± ∈ EndV
Uq(su2) 3 Jz 7→ sz ∈ EndV (5.44)

The action of this representation on an N -site model is given by [22]

Uq(su2) 3 x 7→ π⊗N (∆N(x)) ∈ EndV ⊗N (5.45)
1For further details about Hopf Algebras see Appendix B and references therein
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and, at explicit level

q±J
z 7→ q±S

z

J± 7→ S± (5.46)

where

q±S
z

= q±s
z ⊗ · · · ⊗ q±sz

S± =
N∑

i=1

qs
z ⊗ · · · ⊗ qsz︸ ︷︷ ︸
i−1 times

⊗s± ⊗
N−i−1 times︷ ︸︸ ︷

q−s
z ⊗ · · · ⊗ q−sz (5.47)

As we said before the Hamiltonian (5.28) is invariant under the action of the
Quantum Group. Thanks to a theorem [22, 30] due to M. Jimbo, this invariance
does not depend on the representation chosen, since all generators of the Quantum
Group Uq(su2) in a given representation commute with all generators of the Hecke
Algebra HN(q) in the same representation (and of the Temperley-Lieb Algebra
TN(q)).

5.4.1 Spin-1
2 Representation

Since we are interested in quantum spin-chain models, we will focus on spin-1
2

representations of the quantum group (V = C2).

π : Uq(su2 )→ End C2 (5.48)

π(J±) =
σ±

2

π
(
q±J

z)
= q±

σz

2 (5.49)

If we consider a chain of N sites, the Hilbert space would be C2N and the repre-
sentation would be given by

πU : Uq(su2)→ End C2N (5.50)

As before, the Hopf co-product is implemented in the spin-1
2
representation defining

∆n ≡ (∆⊗ 1)∆n−1

∆2 ≡ ∆ (5.51)

and

x ∈ Uq(su2)
πU7−→ π⊗N (∆N(x)) ∈ End V ⊗N (5.52)
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The images of the generators (i.e. their End C2N representations) are denoted by
S± and q±Sz

J± 7→ πU(J±) ≡ S± =
N∑

i=1

i−1 times︷ ︸︸ ︷
q
σz

2 ⊗ · · · ⊗ q σ
z

2 ⊗σ
±

2
⊗

N−1−itimes︷ ︸︸ ︷
q−

σz

2 ⊗ · · · ⊗ q−σ
z

2

q±J
z 7→ πU

(
q±J

z) ≡ q±S
z

= q
σz

2 ⊗ · · · ⊗ q σ
z

2 (5.53)

It is very important to notice that for q ∈ S1 these generators are not Hermitian,
indeed

(
S±
)†

= S±op = π⊗N
(
∆op
N

(
J∓
))
6= S∓ (5.54)

where ∆op defines the opposite co-product

∆op
(
J±
)

= q−J
z ⊗ J± + J± ⊗ qJz (5.55)

The associated Hopf algebra equipped with the opposite co-product ∆op is denoted
with U op

q (su2)

Higher-spin Representations

The construction of a spin-s representation of the Uq(su2) is very similar to the
one used to build up a su2 one. It can simply be obtained by considering the
spin-1

2
representation for 2s sites and then projecting on the requested sector. For

example, if we are interested in the spin-1 representation, we can combine two
spin-1

2
representations and then project on the spin-1 sector. Explicitly

S+ =
σ+

2
⊗ q−σ

z

2 + q
σz

2 ⊗ σ+

2

=




0
√
q 1√

q
0

0 0 0
√
q

0 0 0 1√
q

0 0 0 0


 (5.56)

where we have used

q±
σz

2 = eσ
z log q±

1
2 =

∞∑

n=0

(log q±
1
2 )n

n!
(σz)n

= 1
∞∑

n=0

(log q±
1
2 )2n

2n!
+ σz

∞∑

n=0

(log q±
1
2 )2n+1

(2n+ 1)!

= 1 cosh(log
√
q) + σz sinh(± log

√
q)

=

√
q + 1√

q

2
1±
√
q − 1√

q

2
σz (5.57)
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If we are interested in the spin-1 case, we have to evaluate the three eigenvectors
of the total spin operator with the same eigenvalue (i.e. the three eigenvector of
the triplet) and use them to project S+:

P =




1 0 0 0
0 1 1 0
0 0 0 1




S+
∣∣
s=1

= PS+P T =




0
√
q + 1√

q
0

0 0
√
q + 1√

q

0 0 0


 (5.58)

5.4.2 Casimir Operator and Classification of Representation

The Casimir operator C of Uq(su2) is given by [25]

C = q2Jz+1 + q−2Jz−1 + (q − q−1)2J−J+ (5.59)

Since
(
qJ

z+ 1
2 − q−Jz− 1

2

)2

= q2Jz+1 + q−2Jz−1 − 2 (5.60)

the Casimir operator C is equivalent to

C ∼ S2 ≡ J−J+ +

(
qJ

z+ 1
2 − q−Jz− 1

2

q − q−1

)2

−
(
q

1
2 − q− 1

2

q − q−1

)2

= J−J+ +

[
Jz +

1

2

]2

q

−
[

1

2

]2

q

(5.61)

whose eigenvalues are labelled by

S2 =

[
j +

1

2

]2

q

−
[

1

2

]2

q

(5.62)

where

[k]q =
qk − q−k
q − q−1

(5.63)

Eigenvalues of the Casimir operator are vital for the study of representations of
Uq(su2), since the associate eigenspaces label representations.
Notice that in the q = 1 case the above expressions is equal to j(j+ 1), recovering
the su2 case.

In following sections, we will study how representations of Uq(su2) differ from
su2 ones for particular choices of the parameter q.
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5.4.3 Case When q is Not a Root of Unity

When q is not a root of unity, representations ρj of Uq(su2) are in one-to-one
correspondence with usual su2 ones. For example in the case s = 1

2
and N = 2 we

have

ρ0 ∩ ρ1 = ∅ (5.64)
C4 = ρ0 ⊕ ρ1 (5.65)

where ρj contains the highest weight state |j, j〉 and its descendants.
An highest weight state |j, j〉 is defined by

S+|j, j〉 = 0 (5.66)

Descendants of a given state are obtained applying recursively S− on it.
In this example the highest weight state |a〉 of ρ1 is given by

|a〉 = | ↑↑〉 (5.67)

and its descendants are given by

S−|a〉 =
√
q| ↑↓〉+

1√
q
| ↓↑〉 (5.68)

and

(S−)2|a〉 = | ↓↓〉 (5.69)

On the other hand the representation ρ0 contains only the state |b〉

|b〉 =
√
q| ↑↓〉 − 1√

q
| ↓↑〉 (5.70)

which has not any descendant.

Notice that in this case eigenvalues of the Casimir operator are given by an in-
jective function, i.e. two different representations ρj with the same value of the
Casimir operator do not exist.

The case when q is a root of unity is more complicated, since a simple decom-
position of the Hilbert space does not exist anymore and its study requires a deep
analysis.
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5.5 Case When q is a Root of Unity
When q is a root of unity, say qp = ±1, representations of Uq(su2) do not have the
usual su2 form, since a simple decomposition is not possible anymore [25].
As consequence of the cyclicality of q, eigenvalues of the Casimir operator are not
still injective, since

[
j′ +

1

2

]2

q

=

[
j′′ +

1

2

]2

q

=

[
j +

1

2

]2

q

(5.71)

for

j′ = j + np (5.72)
j′′ = p− 1− j + np (5.73)
n ∈ Z

As before, each representation ρj is defined from one of the highest weigh states,
but thanks to the cyclicality of the Casimir operator, there is an ambiguity in the
choice of the highest weight state.Moreover two representations ρj and ρj′ with j
and j′ related by (5.72) are mixed by the action of S± operators.
Being a root of unity implies that S± vanishes when it is applied p times

(S±)p = 0 (5.74)

For example in the p = 3 case the highest weight state of the ρ 3
2
representation is

given by
∣∣3

2
, 3

2

〉
, which satisfies

J+

∣∣∣∣
3

2
,
3

2

〉
= 0 (5.75)

but also the state J−
∣∣3

2
, 3

2

〉
is a highest weight state, since

J+J−
∣∣∣∣
3

2
,
3

2

〉
=

(
J−J+ + [J+, J−]

) ∣∣∣∣
3

2
,
3

2

〉

= [2Jz]q

∣∣∣∣
3

2
,
3

2

〉
= [3]q

∣∣∣∣
3

2
,
3

2

〉
= 0 (5.76)

This mixing effect can be clarified considering the simple three-site case.

5.5.1 Example: Representations of su2 and Uq(su2) in the
(p = 3, N = 3) case

Representations of su2

The Hilbert space of this system is given by C6 and it splits into

C6 = ρ 1
2
⊕ ρ 1

2
⊕ ρ 3

2
(5.77)
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We can make the following choice for highest weight states:

|a〉 = | ↑↑↑〉 (5.78)

|b〉 =
| ↑↑↓〉 − | ↓↑↑〉√

2
(5.79)

|c〉 =
| ↑↑↓〉 − 2| ↑↓↑〉+ | ↓↑↑〉√

6
(5.80)

These states are not only orthogonal, but also generate orthogonal descendant
states, i.e. descendant states generated from different highest weight states are
orthogonal.
The orthogonality of ρj representations allows us to write (5.77) using direct sum,
since all terms are orthogonal.

Representations of Uq(su2)

As before the Hilbert space is given by C6, but it can not be represented by a
direct sum

C6 = ρ 1
2

+ ρ 1
2

+ ρ 3
2

(5.81)

since ρj are not orthogonal between them.
Let |a〉 = | ↑↑↑〉 be the highest weight state of ρ 3

2
. Thanks to (5.76) also J−|a〉 is

a highest weight state, i.e. S−|a〉 = 0 and Sz|a〉 = 3
2
|a〉

S+S−|a〉 = [3]q|a〉 = 0 (5.82)

and it has zero norm:

‖ S−|a〉 ‖2 = 〈aS−|S+a〉 = 0 (5.83)

For each representation ρj one state in the Sz = 1
2
sector exists; thus orthogonal

space of S−|a〉 is two-dimensional and it contains S−|a〉 itself. For this reason a
state |b〉 ∈ ρ 1

2
non-orthogonal to S−|a〉 exists, i.e.

〈S−a|b〉 = 〈a|S+b〉 6= 0 (5.84)

Thanks to this fact the splitting of the Hilbert space is not given by a direct sum
of representations, since we have shown the arising of a mixture between ρ 3

2
and

one of the two ρ 1
2
representations.

The Hilbert space C6 is then decomposed irreducibly into one big representation,
given by a mixture of ρ 3

2
and ρ 1

2
, and into a smaller simple ρ 1

2
. The big repre-

sentation ρ 3
2

+ ρ 1
2
is indecomposable but not irreducible (it contains ρ 3

2
) and it
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is called a type-I representation. On the other hand we can define the small ρ 1
2

representation as a type-II representation.
Type-I representation presents another peculiar property, due to (5.74): starting
from the highest weight state |a〉 = | ↑↑↑〉 and applying S− once, we can not come
back to |a〉 and we can not reach | ↓↓↓〉, since S+S−|a〉 = 0 = (S−)3|a〉.

5.5.2 Generalisation to a larger number of sites

The decomposition of the Hilbert spaceH can also be done for an arbitrary number
of sitesN (H = C2N)and it provides a splitting into some type-I big representations
and some other type-II. In order to classify these representations it can be useful
to introduce the q-dimension of a representation ρj

dimq ρj = [2j + 1]q (5.85)

which is invariant under (5.72) up to a global sign.
Thanks to its properties, the q-dimension gives information about the type of
the considered representation: type-I representations have zero q-dimension, while
type-II ones have the q-dimension different from zero. A zero q-dimension represen-
tation can be obtained taking a couple of representations ρj and ρj′ , with different
sign; this couple can be easily identified, since their indices are connected by (5.72).

States belonging to type-I representations are not considered in the analysis of
physical properties of these systems. For this reason, the Hilbert space describing
these models is restricted. The presence of zero-norm states and their dismissing
reminds the procedure to obtain Minimal Conformal Models [12], in which these
null states are not considered in the building up of the Hilbert space of the system.
Indeed the Hilbert space M(p′, p) of a minimal model is smaller that the entire
Verma module.

type-II representations

As we said before, physical states belong to type-II representations.
Let |aj〉 be the highest weight state of a type-II representation ρj, then

|aj〉 ∈ kerS+ (5.86)

This definition is not sufficient to identify the correct state |aj〉, since we require
that it does not belong to any other representation. For this reason we ‘remove’
from kerS+ all states which can be obtained from recursive applications of S+:

|aj〉 ∈
kerS+

Im(S+)p−1
(5.87)
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or, alteratively

|aj〉 ∈
ker(S−)2j+1

Im(S−)p−1−2j
(5.88)

The number of highest weight states in a given Sz = j sector of a N -site system
is denoted by Ω

(N)
j , and it takes the form

Ω
(N)
j = Γ

(N)
j − Γ

(N)
p−1−j + Γ

(N)
j+p − Γ

(N)
p−1−j+p + · · · (5.89)

where Γ
(N)
j denotes the number of the su2 representations in the sector Sz = j.

For the spin-1
2
representation of su2 we have

Γ
(N)
j =

(
N

N
2
− j

)
−
(

N
N
2

+ j + 1

)
(5.90)

5.5.3 Type-II representations and Bratteli diagrams

Bratteli diagrams ([25] and references therein) are a useful graphical method to
analyse possible spin sectors of a model.

0 

0 

532 V. Pasquier, H. Saleur / Finite systems and conformal field theories 

2 3 

0 

3/2 

0 

Fig. 5. Bratteli diagram for U(SU(2)), Uq[SU(2)] 
( q = e i~/4 ) for (C 2 ) u. 

0 

1 

0 2 

0 1 2 3 /. 

Fig. 6. Bratteli diagram for (C3) u. 

This has a simple geometrical interpretation in terms of paths on a Bratteli 

diagram [16]. We first discuss the s--  ! case. The U[SU(2)] diagram is shown in 

fig. 5. The vertical scale is the number N of s = ~ spins that are tensorized to build 

the configuration space, while points correspond to representations onto which this 

space decomposes. Their spin is indicated, and multiplicities are given by the 

number of paths ~!N) going tO the origin. For qP= +1 the similar diagram for 

type-II representations is obtained by cutting the preceding one at j - -  1 5p - 1, 

keeping only the left part. Indeed representations that remain have spins 0 ~<j < 

!p - 1, and the number of paths to the origin is easily seen to be given by eq. (1.21). 

The higher-s case works out similarly (fig. 6). 

1.5. QUESTIONS OF UNITARITY 

It is natural to define scalar products in (C2S+l)  u as in the SU(2) case. For q real, 

the space splits into irreducible highest weight representations pj, and one finds, 

Figure 5.1: Bratteli Diagram for su2

and Uq(su2). Picture taken from
[25]

For instance, the first picture repre-
sents the Bratteli diagram for su2 and
the vertical scale denotes the number
N of spin-1

2
sites, starting from N = 0

at the top dot. In a one-site model, the
only possible spin sector is the Sz = 1

2

one, while a two-site system can be-
long to a Sz = 0 or to a Sz = 1 sec-
tor. Since the ‘height’ of a spin sector
is bounded only by the number of sites
(Szmax = N

2
), the width of this diagram

grows as its height.
As we said before, in a Uq(su2) model
with qp = ±1 possible values of the
spin are bounded, since (J+)p = 0 and
then Sz ≤ p

2
. This restriction is imple-

mented in the Bratteli diagram remov-
ing all sectors with a forbidden value
of the spin. The second diagram repre-
sents possible spin sectors for a Uq(su2)

system with q = e
iπ
4 . Referring to the
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first diagram, the number of paths in a
N -site su2 system starting in the top left corner and ending in the sector j in the
bottom line is given by Γ

(N)
j [25, 22]: since a state in the j sector in a N -site model

is built up adding sequentially spin-1
2
sites, the number of such states Sz = j sector

is given by the number of possible combinations of these spin-1
2
states. A similar

argument can be developed for the Uq(su2) diagram with N sites: in this case the
number of paths to reach a given j sector is given by Ω

(N)
j . As in the su2 case,

a state in a given sector is made adding sequentially N spin-1
2
sites. The main

difference from the su2 case is that some sectors are forbidden and for this reason
the number of allowed paths is reduced.

5.6 Unitarity When q is a Root of Unity

Let us focus on unitarity of type-II states. Parametrize q as

q = exp

[
iπp′

p

]
(5.91)

with p and p′ relatively prime integers (1 ≤ p′ < p).
Let us consider a highest weight state |aj〉 of an irreducible type-II representation
and its descendants. Setting 〈aj|aj〉 = 1, the norm of its descendant states is given
by [25]

〈aj|(S+)n(S−)m|aj〉 = δm,n[n]q!
n∏

k=1

[2j − n+ k]q (5.92)

which is always non-negative for j < p
2p′ .

The presence of such negative normed states is not a surprise, since it is fore-
seen in Minimal Conformal ModelsM(p′, p) with p′ 6= 1 [12]. Moreover in Chapt.
4 we noticed that in Forrester-Baxter RSOS models [20], some Boltzmann weights
are negative; this negativity is reflected in negative-norm states in the spin-chain
via the Hamiltonian limit which links these two models.
Furthermore the negativity of states will be required in Chapt. 6: the negativity of
the Entanglement Entropy (obtained from the statistical model) has to be reflected
at the quantum level (spin-chain); otherwise there would be a discrepancy in the
connection between the FB-RSOS model and the Uq(su2)-invariant Hamiltonian
(5.28).
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5.7 The Uq(su2)-invariant Hamiltonian and its Con-
formal Structure

Let us recall the expression of the Uq(su2)-invariant Hamiltonian (5.28)

H =
N−1∑

i=1

[
σxi σ

x
i+1 + σyi σ

y
i+1 +

q + q−1

2
σzi σ

z
i+1

]
+
q − q−1

2
(σz1 − σzN) (5.93)

As we said before, its symmetry group is implemented by the Quantum Group,
since

[
H,S±

]
= 0 = [H,Sz] (5.94)

Thanks to its symmetry, the spectrum of this Hamiltonian can be classified using
representations of Uq(su2).
The presence of the boundary terms in the Hamiltonian makes it invariant under
the action of the quantum group, but makes the Hamiltonian non-hermitian if
q /∈ R. This non-hermiticity may look unphysical, since a complete eigenbasis of
the Hilbert space is not guaranteed anymore.
If we take q ∈ S1, i.e. a complex number with modulus one, the Hamiltonian
is still non-hermitian but its eigenvalues are real, since the Hamiltonian obtained
re-labelling all sites from N to 1 is similar to H(q−1) = H†(q); this transformation
does not affect eigenvalues, and so that they are real.

The existence of a complete eigenbasis of the Hilbert space will be discussed at
the end of this Chapter.

5.7.1 Spectrum of H

The spectrum of the Hamiltonian can be obtained via Bethe Ansatz [25, 24].
Since Sz is conserved, it is a good quantum number for the parametrisation Bethe
states. Let |n〉 be defined as the state with n states pointing down

|n〉 =
∑

1≤x1<x2<···<xn≤N
f(x1, . . . , xn)|x1, . . . , xn〉 (5.95)

where xis denote the positions of pointing down spins.
Bethe equation for energy is given by

E = (N − 1)

(
q + q−1

2

)
+ 4

n∑

j=1

[
cos kj −

(
q + q−1

2

)]
(5.96)

98



5.7. The Uq(su2)-invariant Hamiltonian and its Conformal Structure

while Bethe momenta are defined by

Nkj = πIj +
1

2

n∑

l=1,l 6=j
[Ψ(kj, kl) + Ψ(kj,−kl)] (5.97)

where Ij ∈ [1, N ] are distinct integers and the function Ψ reads

Ψ(k1, k2) = −i log

[
1− (q + q−1)eik1 + ei(k1+k2)

1− (q + q−1)eik2 + ei(k1+k2)

]
(5.98)

The ground state energy in a given sector Sz = j can be simply obtained taking
I0
j = j = 1, . . . , n.

5.7.2 Thermodynamic Limit and Conformal Behaviour

It is very interesting to study the thermodynamic limit of this spin-chain, since it
gives information about its scaling behaviour and the field theory describing it [25].

From Bethe ansatz equations, the scaling limit of the ground state energy in the
j = 0 sector is given by (q = exp

[
iπp′

p

]
)

lim
N→∞

NĚ0 = − 1

24

(
1− 6

(p− p′)2

pp′

)
(5.99)

where Ě is a normalised version of the energy

Ě =
E

π
(
p′
p

+ 1
)

sin π
p′
p

+1

(5.100)

The scaling behaviour of the ground state energy of a unitary open conformal
system is ruled by [31]

Ě0 = Nε0 + f0 −
πc

24N
+O

(
1

N

)
(5.101)

where ε0 and f0 are respectively the bulk energy per site and the surface energy.
Comparing (5.99) and (5.101) we can obtain the central charge of the system

c = 1− 6(p− p′)2

pp′
(5.102)
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which is the central charge of theM(p′, p) Minimal Conformal Model [12].
Moreover from the scaling limit of Bethe ansatz equations, also the scaling dimen-
sions of excited states can be obtained

lim
N→∞

N(Ěj − Ě0) =
(p− 2p′j)2 − (p− p′)2

4pp′
(5.103)

which corresponds to the conformal dimension h1,1+2j of the Kac table of the as-
sociated Minimal Model.

Since in non unitary minimal models (p′ 6= 1) one or more negative conformal
dimensions h1,m exists in the Kac table, we notice that E0 is not the physical
ground state, because the eigen-energy Ej (with j s.t. h1,1+2j < 0) is less than E0.
Furthermore, the equation (5.101) for the physical ground state reads [32]

Ěphysical
0 = Nε0 + f0 −

πceff
24N

+O

(
1

N

)
(5.104)

in perfect agreement with (5.99) and (5.103).
These differences are due to the splitting of the physical ground state and of the
conformal vacuum in non-unitary conformal field theory [12, 32].
Summarising, we found that the physical ground state of a non-unitary system
does not belong to the j = 0 sector.

Brief Recall About Non-Unitary Conformal Field Theory

It is very important to focus on the difference between the physical ground state
and the conformal vacuum ([32] and Appendices D and E).
The conformal vacuum |0〉 is defined as

Ln|0〉 = 0 for all n ≥ −1 (5.105)

The physical ground state is defined as the state which minimises the energy

H|g.s.〉 = E0|g.s.〉 (5.106)

where E0 is the smallest eigenvalue of the Hamiltonian operator H.
In conformal field theories, the operator L0 gives the conformal dimension of a
state h

L0|φ〉 = h|φ〉 (5.107)

and it realises the Hamiltonian operator in a quantum system described by a
conformal theory [12].
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In unitary conformal models the conformal vacuum (and then the unity operator)
has the smallest conformal dimension (h = 0); i.e. a primary field φ with negative
conformal dimension does not exist, or, in the quantum state picture, there is not
any state less energetic than the conformal vacuum. For this reason the conformal
vacuum and the physical ground state coincide in unitary theories.
The equivalence between these two states is not valid anymore in non-unitary
theories, thanks to the presence of states with negative conformal dimension. For
this reason the physical ground state can be seen as an excitation of the conformal
vacuum due to the primary field with the smallest conformal dimension h < 0.
While the central charge c in a non-unitary theory is still related to conformal
properties of a system, such as the O.P.E. of the stress tensor, it does not influence
directly physical properties, such as the Casimir energy, where its role it is played
by the effective central charge.

5.8 Non-Hermitian Hamiltonians
As we said before if q /∈ R, the Uq(su2)-invariant Hamiltonian (5.28) is not Her-
mitian anymore, but it has real eigenvalues if q ∈ S1 [22, 25]. The realness of the
spectrum is not enough to build up a complete Hilbert space using eigenvectors.

5.8.1 PT -symmetric Hamiltonians

Consider a non-Hermitian Hamiltonian H with real discrete spectrum//Denote
with εn the eigenvalues of H and with |Φn〉 and |Ψn〉 respectively its right and left
eigenvectors

H|Φn〉 = εn|Φn〉
〈Ψn|H = εn〈Ψn| (5.108)

In general they are not orthonormal

〈Φn|Φm〉 6= δn,m (5.109)

but, according to [33], they form a bi-orthonormal basis

〈Ψn|Φm〉 = δn,m∑

n

|Φn〉〈Ψn| = 1 (5.110)

Suppose the existence of a self-adjoint parity operator2 P which maps H into its
Hermitian conjugate H†

PHP = H† with P2 = 1 (5.111)
2In the Uq(su2) Hamiltonian this map is provided by the re-labelling of all sites
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Thus this operator maps left eigenvectors in right ones and vice-versa:

P|Φn〉 = sn|Ψn〉
P|Ψn〉 = sn|Φn〉 (5.112)

where sn = ±1.
The set of all signatures s = (s1, . . . , sn) defines the operator

C =
∑

n

sn|Φn〉〈Ψn| (5.113)

satisfying [33]

[C, H] = 0

[C,PT ] = 0 (5.114)

where the operator T implements the complex conjugation.
We can now construct the quasi-hermiticity operator η as

η = PC (5.115)

with the property

H†η = ηH (5.116)

If the operator η is positive but not necessarily invertible, the Hamiltonian H is
called quasi-Hermitian, while if η is invertible and not necessarily positive, H is
called pseudo-Hermitian. If an Hamiltonian has both these properties we can define
the operator √η and its inverse which allows us to find a Hermitian counterpart
of H

h =
√
ηH
√
η−1 = h† (5.117)

This Hermitian counterpart h of the non-Hermitian Hamiltonian H allows us to
consider H as a ‘normal’ quantum Hamiltonian.

5.8.2 Case When q is a Root of Unity

As for the analysis of representations of Quantum Group when q is a root of unity,
some complications arise [22] in the building up of a quasi-hermiticity operator.
If we restrict our analysis only to states belonging to type-II representations, the
procedure is the same as the previous case; while if we include type-I states, we
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can not construct a bi-orthonormal basis, since some eigenvectors related to the
same eigenvalue are orthogonal

〈Ψn|Φn〉 = 0 (5.118)

The presence of such states makes the quasi-hermiticty operator η non-negative,
while positivity is required in order to provide a hermitian counterpart h of the
Hamiltonian H. As before, in order to define a hermitian version of the Uq(su2)-
invariant Hamiltonian (5.28) at root of unity, we remove aforementioned states
from the Hilbert space, reducing it. This procedure is called Quantum Group Re-
duction at Root of Unity ([22] and references therein).

In conclusion, in this chapter we have analysed the Uq(su2)-invariant Hamiltonian
and we have shown that peculiarities of this system are evident in all its proper-
ties; All characteristics of Unitary and non-Unitary Minimal Conformal Models
are reflected in various properties of this spin chain. In particular the necessity to
remove some states from the Hilbert space of the system due to null states in the
Conformal Theory is reflected in the requirement of removing some states from the
eigenbasis of the Hamiltonian and from the representations of its symmetry group.
Furthermore, difference between conformal vacuum and physical ground state in
non-unitary Conformal Theories agree perfectly with results founded using Bethe
Ansatz.
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Chapter 6

Entanglement Entropy in RSOS
Models

In this section we will use the Peschel-Kaulke-Legeza method ([7] and Chapter 2)
for the evaluation of Entanglement Entropy in the RSOS model near its critical
point. Since some unexpected result arise from these non-unitary models, we will
make some considerations in order to interpret unusual behaviour of such systems.
Of course the RSOS model describes a classical system and the entanglement is
a genuine quantum phenomenon; for this reason it is vital to find a quantum
one-dimensional system described by the RSOS model.

Note about the Evaluation of Rényi Entropy

As we said before, in following sections we will evaluate and analyse Rényi Entropy
in RSOS models using the Corner Transfer Matrix technique (CTM). Notice that
this method provides Rényi Entropy for an infinite bipartite 1 + 1-dimensional
quantum system whose 2-dimensional statistical representation is given by the
RSOS model. In [17] and [20] thermodynamic quantities are evaluated using
temperature-like parameters k and p. In order to compare our results with Field
Theory prediction, we will study the dependance of entropy on the correlation
length ξ

ξ ∼ p−2ν (6.1)

Its scaling dimension ν can be obtained using CTM [17, 20, 34]

ν =
r

4s
(6.2)

Since the scaling behaviour of the correlation length ξ near a critical point is ruled
by Conformal Field Theory (CFT), ν can also be obtained [32] from the scaling
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dimension h of the most relevant field Φ of the theory

ν =
1

2− 2h
(6.3)

which corresponds to (6.2) since in the Minimal Model M(r − s, s) the most
relevant field is given by the primary field φ1,3 of the Kac table [12, 32] with
conformal dimension

h1,3 =
r − 2s

r
(6.4)

6.1 Evaluation of the Rényi Entropy in ABF mod-
els

In [9] Franchini and De Luca evaluated the α-Rényi Entropy for the r-th ABF
RSOS [17] model in regime III, whose critical point is described by the unitary
r-th minimal modelM(r − 1, r) ([12] and Appendix E).
Rényi Entropy for this models is given by ([9] and Appendix A)

S
(α)
A =

α + 1

α

c

12
log ξ + uα + aαξ

−h3,3
2α +O

(
ξ−

h3,3
α

)
(6.5)

where uα and aα are constants which do not depend on ξ (uα is sometimes called
universal constant).
The leading logarithmic term agrees exactly with the Cardy-Calabrese prediction
([11] and Chapt. 3). As noticed in [9] the scaling dimension appearing in power
corrections is given by h3,3 which is not the dimension of the the primary field φ1,3

opening the mass gap [35].

Notice that since this model is unitary, the physical ground state and the con-
formal vacuum can be identified (this identification is very important since the
Peschel-Kaulke-Legeza’s method evaluates Rényi entropy for the physical ground
state, while the Cardy-Calabrese prediction refers to the conformal vacuum).

6.2 Evaluation of the Rényi Entropy in BF models

The main effort in this thesis was given in the evaluation of Rényi and Von-
Neumann Entropy in BF RSOS models ([20] and Chapter 4), which are described
by non-unitary minimal models; this non-unitarity provides some unexpected re-
sults which will be analysed and interpreted in following sections.
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Following Appendix A, Rényi Entropy is given by

S
(α)
A =

α + 1

α

ceff
12

log ξ + Uα + Aα(ξ) (6.6)

where ceff is the effective central charge 1

ceff = c− 24∆ (6.7)

and

Uα = −1

2
log [8r(r − s)] +

1

1− α log

[
f1(α; r, s)

fα1 (1; r, s)

]

Aα(ξ) =
1

1− α

[
f2(α; r, s)

f1(α; r, s)
ξ−

3
2αr(r−s) − α f2(1; r, s)

f1(1; r, s)
ξ−

3
2r(r−s) +

− 1

2

[
f2(α; r, s)

f1(α; r, s)

]2

ξ−
3

αr(r−s) + α
1

2

[
f2(1; r, s)

f1(1; r, s)

]2

ξ−
3

r(r−s) +O
(
ξ−

4
αr(r−s)

)]

fk(n; r, s) =

r−1∑∗

a=1

sin

(
k
πd

r − s

)
sin
(
k
πa

r

)
sinn

(πas
r

)
(6.8)

From this expression two problem arise: the presence of the effective central charge
ceff instead of the central charge c and the anomalous behaviour of the universal
term and of the corrections.
The presence of the effective central charge seems to contradict the Cardy-Calabrese
([11] and Chapt. 3) prediction.
The second problem is given by the vanishing of the f1 function in s 6= 1 cases,
which makes diverge both Uα and Aα(ξ) terms. Moreover if f1(α;r,s)

fα1 (1;r,s)
does not tend

to one when α→ 1+, Von-Neumann Entropy will diverge.

6.2.1 Interpretation of Results - Central Charge

These results can be justified focusing on the quantum state used by Cardy and
Calabrese in the evaluation of Entanglement Entropy [11].
In their seminal work [11] they evaluate Entanglement Entropy for the conformal
vacuum |0〉 which coincides with the ground state of the theory if and only if it is
unitary. The physical ground state |g.s.〉, i.e. the one which minimises the energy,

1∆ denotes the lowest conformal dimension of the theory underlying the critical point (∆ = 0
in unitary theories). For a briefly review about the role of the effective central charge see
Appendix D
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differs from the conformal vacuum |0〉 (Ln|0〉 = 0 ∀ n ≥ −1) if the theory is non-
unitary. They are connected by an operator φ with conformal dimension ∆ < 0
which decreases the energy of the conformal vacuum

|gs〉 = φ(0)|0〉 (6.9)
〈gs|L0|gs〉 = 〈0|φ†(t→ +∞)L0φ(t→ −∞)|0〉 = ∆〈0|0〉 < 〈0|L0|0〉 = 0

(6.10)

In this way, the physical ground state can be seen as an excitation of the confor-
mal vacuum and vice-versa. Notice that such an operator with negative conformal
dimension exists only in non-unitary theories.
Thanks to this energy shift, the shift in the coefficient of the logarithm term in the
Entanglement Entropy is supposed to be due to the different state whose Rényi
Entropy is evaluated.
Moreover one expects that Rényi and Von-Neumann Entropy diverges at the crit-
ical point (ξ → ∞) and decreases leaving it. Since the central charge can be
negative for non-unitary theories, if the coefficient of the logarithm term of the
entropy was the ‘usual’ central charge, Entropy would increase leaving the critical
point, leading to a result whose physical interpretation would be difficult. Thanks
to the positivity of the effective central charge, the entropy increases always when
it reaches a critical point.
As we said in Chapter 5 studying the Uq(su2)-invariant Spin-Chain, the effective
central charge rules physical properties of a non-unitary system belonging to its
ground state; in the same way, we can suppose that Entanglement is ruled by the
effective central charge.
From a Conformal Field Theory point of view, Rényi Entropy can also be eval-
uated for excited states. The Rényi Entropy related to a subsystem A with size
` of a critical periodic system with size L belonging to the excited state φ with
conformal dimension h is given by

S
(α)
φ = S(α)

gs +
1

1− α logF (α)

(
`

L

)
(6.11)

where the function F is given by [36] for an integer value of α

F (n)(x) =
〈φ1(0,−∞)φ†1(0,∞) · · ·φn(0,−∞)φ†n(0,∞)〉Mn

〈φ(0,−∞)φ†(0,∞)〉M1

(6.12)

where Mn is the n-Riemann surface with branch points at boundaries of the
subsystem A and φk is the copy of the field φ belonging to the k-th sheet.
The evaluation of (6.11) and (6.12) require the evaluation of a 2n-point correlation
function; this computation can be easily done for non-interacting theories, such
as the free boson or the free fermion, but implies non trivial difficulties in the
interacting case.
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6.2.2 Interpretation of results - negativity of the entropy

As we said before, Rényi Entropy may be negative in some s 6= 1 cases. We can
observe that this issue happens if we take the sum in (6.11) over all possible val-
ues of a, i.e. on all odd or even numbers from 1 to r − 1; indeed if we restrict
our evaluation only to some values of a the problem of negativity disappear. We
suppose that this negativity is due to the presence of negative normed states.
As we said before, if we restrict allowed values of a, the universal term Uα would
become positive, avoiding interpretation problems about negativity of Entropy.

For example, keeping a fixed, Rényi Entropy is well defined and Von-Neumann
Entropy reads

SA =
ceff

6
log ξ − 1

2
log [8r(r − s)] + log

[
sin

π a

r
sin

π a s

r
sin

π d

r − s

]

+
sin2π a

r
sin2π d

r−s
sinπ a

r
sin π d

r−s
ξ−

3
2 r (r−s) +

sin2 2π a
r

sin2 2π d
r−s

2 sin2 π a
r

sin2 π d
r−s

ξ−
3

r (r−s)

− 3

2r(r − s)
sin2π a

r
sin2π d

r−s
sinπ a

r
sin π d

r−s
ξ−

3
2 r (r−s) logξ

+
3

2r(r − s)
sin2 2π a

r
sin2 2π d

r−s
sin2 π a

r
sin2 π d

r−s
ξ−

3
r (r−s) logξ +O

(
ξ−

4
r(r−s)

)

(6.13)

The first two lines of the above expression agree with the Cardy-Calabrese predic-
tion (up to the presence of the effective central charge). In Von-Neumann Entropy
of non-unitary models some unexpected corrections arise, given by extra power-
logarithmic terms, which are sub-dominant for small values of ξ, i.e. near the
critical point.
Notice that the removing some central heights a in the evaluation of Entangle-
ment Entropy does not affect the leading logarithmic term, whose behaviour is
ruled only by the effective central charge. The necessity to remove some central
heights a from the statistical model can be viewed as a reminiscent of the quantum
group reduction at root of unity ([22] and Chapter 5) extended to negative normed
states. As we said in the previous chapter, in order to construct a ‘good’ Hilbert
space for the Uq(su2)-invariant Spin-Chain, we remove some null states and we
restrict the Hilbert space.
In the same way, we can restrict further the physical Hilbert space removing null
states. From a quantum field theory point of view, this is reminiscent of what
happens in U(1) gauge theories: the auxiliary field B added to the lagrangian
L = −1

4
FµνF

µν in order to fix the gauge parameter is negative normed and the
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physical Hilbert space is obtained by removing all negative normed fields [37].

B−(x)|phys.〉 = 0 (6.14)

Notice the resemblance between the expression (5.92) and terms in the f1 sum-
mations: we suppose that elements which make negative the norm are the same
which give problem in the well definition of Entropies in non-unitary models.

Moreover, the scaling dimensions δ of Rényi Entropy in the non-unitary case (6.6)
is not given by the conformal dimension h1,3 of the primary field φ1,3 opening the
mass gap, neither by the conformal dimension h3,3 as in the ABF case [9]: it is
given by

δ = h2,2 + 3∆ =
3

4r(r − s) > 0 (6.15)

where ∆ is the conformal dimension of the primary field with the lowest conformal
dimension (see previous section).
As for the shift in the leading logarithmic term, we suppose that this difference is
due to the difference between the conformal vacuum and the physical ground state
for non-unitary theories.

6.3 Which Hamiltonian?

It is important to emphasise that we are not evaluating the Entanglement Entropy
for the Uq(su2)-invariant XXZ Spin-Chain, but we are focusing on its off-critical
thermal perturbation.
Notice that in Chapt. 4 we performed the Hamiltonian limit for the RSOS model
at its critical point, and we found a connection between this model and the Uq(su2)-
invariant XXZ model thanks to algebraic properties. The aforementioned Hamil-
tonian limit gives the Hamiltonian operator in the RSOS basis, i.e. in a basis built
up by local heights which can run from 1 to r−1 with the constraint on neighbour
sites. As noticed in Chapt. 4, we know that this Hamiltonian can be written in
the spin-1

2
, since a different representation of the Temperley-Lieb Algebra can be

obtained using Pauli Matrices. Thanks to this equivalence, our analysis can be
shifted to a better known model and the constraint on local heights is reflected in
the boundary conditions of this Hamiltonian.
In the off-critical regime this equivalence can not be performed, since an Algebra
underlying the off-critical RSOS transfer matrix is unknown. For this reason we
search an off-critical Hamiltonian imposing some reasonable conditions. The first
conditions requires that this Hamiltonian has to reach the the Uq(su2)-invariant
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one at its critical point.
Furthermore we impose that this Hamiltonian has to be integrable, since the
RSOS model can be completely solved even at its off-critical regime [17, 20].
The integrability conditions restricts sharply the number of allowed spin−1

2
Hamil-

tonians, since T. Inami and H. Konno proposed [29] an explicit form for the most
general spin-1

2
integrable Spin-Chain, which depends only on few parameters. As

we said in the Chapter 5 the most general XYZ hamiltonian with integrable
boundary conditions is given by [29]

H =
N−1∑

n=1

[
(1 + k sn2η)σxnσ

x
n+1 + (1− k sn2η)σynσ

y
n+1 + cn η dn η σznσ

z
n+1

]

+ snη
[
cnξ−dnξ−

snξ−
σz1 +

cnξ+dnξ+

snξ+

σzN

+
2µ−(λ− + 1)

snξ−
σ+

1 +
2µ−(λ− − 1)

snξ−
σ−1 +

2µ+(λ+ + 1)

snξ+

σ+
N +

2µ+(λ+ − 1)

snξ+

σ−N

]

(6.16)

At the critical point (k → 0) this Hamiltonian reads

H =
N−1∑

n=1

[
σxnσ

x
n+1 + σynσ

y
n+1 + cos ησznσ

z
n+1

]

+ sin η
[
cot ξ−σ

z
1 + cot ξ+σ

z
N

+
2µ−(λ− + 1)

sin− ξ
σ+

1 +
2µ−(λ− − 1)

sin ξ−
σ−1 +

2µ+(λ+ + 1)

sin ξ+

σ+
N +

2µ+(λ+ − 1)

sin ξ+

σ−N

]

(6.17)

Since cot ξ± → ∓i when ξ± → ±i∞, this choice of the parameter ξ makes H to
reach the Uq(su2)-invariant XXZ spin-chain at the critical point k → 0.
Since for some values of the parameter k the limit ξ → ±i∞ is not defined (e.g.
for k = 1 sn(iξ) becomes −i tan(ξ) whose limit ξ → ±∞ is not defined) we set
also µ± = 0 in order to define well all boundary terms.
Notice that fixing the parameter ξ± to ∓i∞ does not guarantee that this choice
can be extended to the off-critical Hamiltonian. For this reason we can identify as
the RSOS off-critical Hamiltonian as the Inami-Konno one with an arbitrary choice
of the function ξ±(k), requiring that it tends to ±i∞ when the system reaches, for
k → 0, the critical point.
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If we focus on Entanglement Entropy of this Spin-Chain, we suppose that the ar-
bitrariness of the choice of ξ± away from the critical point is not reflected on the
logarithmic term, since it depends only on the critical point and on the universality
class of the system, which depends on its critical properties.

In conclusion, using integrability arguments we identify this Hamiltonian with
the one-dimensional quantum system whose two-dimensional statistical represen-
tation is given by the RSOS model, both critical and off-critical.
This identification is very important, since the Entanglement is a genuine quantum
phenomenon and the knowledge of the RSOS model is only a statistical represen-
tation of a quantum one-dimensional model.
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Conclusions and Outlook

After reviwing some important results about Entanglement and its evaluation in
Integrable systems, we focused on a particular class of restricted integrable Spin-
Chains whose statistical representation is given by BF-RSOS models.

One of the most important properties of these statistical models is that at their
critical point they provide a lattice realisation of Minimal Conformal Models.

The first result of this thesis is the evaluation of Rényi and Von-Neumann En-
tropy for non-unitary gapped FB-RSOS models using the Corner Transfer Matrix
(CTM) technique, noticing the arising of the effective central charge as a coeffi-
cient of the logarithmic term. The presence of the effective central charge instead
of the ‘usual’ one is supposed to be due to the difference between conformal vac-
uum and physical ground state: while the Conformal Field Theory prediction
is valid for the conformal vacuum, the CTM technique evaluates Rényi Entropy for
the physical ground state. This difference arises only in non-unitary models, since
in unitary ones conformal vacuum and physical ground state can be identified.
From the analysis of Rényi and Von Neumann Entropy, we found that we have to
restrict the physical Hilbert space by removing negative normed states in order
to have a well defined Entropy.

The second result of this thesis is the proposal of a quantum one-dimensional
Spin-Chain whose two-dimensional statistical representation is given by the RSOS
model. The Hamiltonian limit of the RSOS provides a Hamiltonian operator in
the RSOS basis whose physical interpretation is not clear; at the critical conformal
point this Hamiltonian can be rewritten using Pauli Matrices thanks to algebraic
properties of its elements. The critical Spin-Chain Hamiltonian is given by a XXZ
one with boundary terms depending of the spatial anisotropy Jz of the bulk Hamil-
tonian and it has been studied deeply in literature. Unfortunately this ‘translation’
from the RSOS basis to a Spin-Chain one can not be performed away from the
critical point, since the algebra underlying the Hamiltonian is unknown; for this
reason we propose an off-critical integrable XYZ Hamiltonian with integrable
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boundaries whose critical limit gives the critical Spin-Chain Hamiltonian. The in-
tegrability condition in the Spin-Chain is required since the RSOS model remains
integrable even in its off-critical regime.
The proposed Hamiltonian depends on an extra parameter which can be fixed ar-
bitrarily away the critical point, but we suppose that this arbitrariness does not
affect the logarithmic behaviour of Entanglement Entropy, since it depends only
on the universality class of the system, i.e. on its critical properties.
The removing of this arbitrariness would be a challenging problem related to a
deeper comprehension of Quantum Algebras.
The Minimal Conformal structure of the critical point in RSOS models is reflected
in the critical Spin-Chain, since it provides a Spin-Chain realisation of Minimal
Conformal Models. The Hilbert space of this Spin-Chain has to be reduced in
order to remove null states, i.e. states with zero norm; this procedure, called quan-
tum group reduction at root of unity is a reminiscent of the removing of null states
from a Verma modulus in order to build up the Hilbert space of Minimal Models.

The knowledge of an explicit form of the Spin-Chain related to RSOS models
allow simulations of Entanglement Entropy for these models using the DMRG al-
gorithm. The main problem about numerical studies is given by non-hermiticity
of these Hamiltonians: even if they are acceptable from a physical point of view
(Chapter 5), their non-hermiticity provides non trivial numerical problems, which
we would like to solve in future.

Furthermore it is known that Logarithmic Conformal Models can be obtained as a
limit of BF-RSOS models; for this reason we would like to extend our calculations
of Entanglement to this class of models, studying possible unexpected terms due
to the intrinsic logarithmic form of correlation functions in these models.
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Appendix A

Entanglement Entropy in the
BF-RSOS Model: regime III

In this appendix we will evaluate Rényi Entropy for ABF and BF RSOS models in
the regime III. Since we are interested in the behaviour of Entropy, we will perform
series expansion near the critical point p, k → 0 or ξ →∞.
For any definition of variables used in this chapter, we will refer to Chapters 2 and
4. Definitions of elliptic functions can be found in [6]

Using Peschel-Kaulke-Legeza’s method one can see that (Chapter 2 and [7, 9])

ρA =
1

Z1

ABCD (A.1)

:=
ρc
Z1

(A.2)

with

Z1 = Tr [ABCD] (A.3)

Thanks to these formulæ we can write the Rényi entropy as

Sα =
1

1− α log Tr ραA (A.4)

=
1

1− α log Tr

(
ρc
Z1

)α
(A.5)

=
1

1− α log Tr ραc +
α

α− 1
log Tr ρc (A.6)

:=
1

1− α logZα +
α

α− 1
logZ1 (A.7)
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where

Zα := Tr ραc (A.8)

In this regime

η =
s

r
K (A.9)

µ = s (A.10)

The partition function for a system with m sites in the central row is given by

Z1 =
∑∗

l1,...,lm

E
(
xl1 , y

)
xtΦ(l) (A.11)

where

x = exp
[
−4π

η

K ′

]
(A.12)

= exp

[
−4π

sK

rK ′

]
(A.13)

y = x
r
s (A.14)

E(z, x) = (z;x)∞(xz−1;x)∞(x;x)∞ (A.15)

=
∑

n∈Z

(−1)nx
n(n−1)

2 zn (A.16)

p = exp

[
−πK

′

K

]
(A.17)

and (a; b)∞ is the q-Pochhammer symbol:

(a; b)∞ =
∞∏

n=0

(1− abn) (A.18)

(q)∞ = (q; q)∞ =
∞∏

n=1

(1− qn) (A.19)

and K
2
denotes the elliptic integral of the first kind with modulus k. K ′ is defined

as K only with modulus equal to k′ =
√

1− k2.
The symbol ∗ over sums indicates that the summation has to be performed only
on even or odd values of l1. This choice depends on boundary conditions [20].
(A.11) can be written as

Z1 =

r−1∑∗

a=1

E
(
xl1 , y

)
Dm(a, b, c;x2) (A.20)
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where

Dm(a, b, c;x2) :=
∑

l2,...,lm

xtΦ(l)

∣∣∣∣∣
l1=a, lm+1=b, lm+2=c

(A.21)

The dependance of Dm on b and c is due to the fact that boundary conditions can
influence the behaviour of the system, either in thermodynamic limit.

Zα = Tr ραc (A.22)
= Tr ρcρc · · · ρc︸ ︷︷ ︸

α times

(A.23)

=

r−1∑∗

a=1

[E(xa, y)]αDm(a, b, c;x2α) (A.24)

In [20] one can find two explicit expressions for the thermodynamic limit m→∞
of Dm:

lim
m→∞

q−
km
2 Dm(a, b, b+ 1; q) = (q)−1

∞ q
b b−1

4
−b k−1

2 F (a, b− k; q
1
2 ) (A.25)

lim
m→∞

q
km
2 Dm(a, b+ 1, b; q) = (q)−1

∞ q
b b+1

4
−k b+1

4 F (a, b− k; q
1
2 ) (A.26)

with

k =

⌊
µ(b+ 1)

r

⌋
(A.27)

in the first case and

k =

⌊
µb

r

⌋
(A.28)

in the second one

where bac is the integer part of a and

F (a, b− k; q
1
2 ) = qa

a−1
4

{
q−a

b−k
2 E

(
−qr(b−k)+(r−a)(r−µ), q2r(r−µ)

)

− qa
b−k
2 E

(
−qr(b−k)+(r+a)(r−µ), q2r(r−µ)

)}
(A.29)

Since we are interested in the thermodynamic limit of Zα
Zα1

, to perform the limit of
this ratio is easier than performing the ratio of two limits.

Zα
Zα

1

=

∑∗r−1

a=1
[E(xa, y)]αDm(a, b, c;x2α)

[∑∗r−1

a=1
E (xl1 , y)Dm(a, b, c;x2)

]α (A.30)
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Multiplying above and below the ratio by x∓kmα, one obtains

∑∗r−1

a=1
[E(xa, y)]α x∓kmαDm(a, b, c;x2α)

[∑∗r−1

a=1
E (xl1 , y)x∓kmDm(a, b, c;x2)

]α (A.31)

the limit m→∞ can be easily performed:

Zα
Zα

1

=

∑∗r−1

a=1
[E(xa, y)]α (x2α)−1

∞ x
α(b b−1

2
−b k−1

2 )F (a, b− k;x2α)
[∑∗r−1

a=1
E(xa, y)(x2)−1

∞ x
b b−1

2
−b k−1

2 F (a, b− k;x2)

]α (A.32)

in this case we choose c = b+ 1 and then k =
⌊
µ(b+1)
r

⌋

A.1 Computation of Zα/Zα
1 in terms of Jacobi’s θ

functions

In this section we will compute the above ratio in terms of Jacobi’s θ functions,
trying to find an expression which can be compared with the one on [9] (in which
η = K

r
):

Zα =

r−1∑∗

a=1

θα1

(aπ
r
,
√
p
)
Z(a)
α (A.33)

where

Z(a)
α :=

θ3

(
πd

2(r−1)
− πa

2r
, p

1
8α(r−1)

)
− θ3

(
πd

2(r−1)
+ πa

2r
, p

1
8α(r−1)

)

p
r

48α

√
2r(r − 1)θ4

(
−i r log p

8α
, p

3r
4α

) (A.34)

with

d :=
b+ c− 1

2
(A.35)

this model corresponds to a minimal conformal one with central charge

cr = 1− 6

r(r − 1)
(A.36)
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1 in terms of Jacobi’s θ functions

The value of the central charge can be also extracted by the leading term of the
Rényi entropy

Sα ≈ − cr
24

1 + α

α
log q̃ (A.37)

≈ cr
12

1 + α

α
log ξ (A.38)

in agreement with Cardy-Calabrese prediction ([11] and Chapter 3).

A.1.1 Computation of E(xa, y)

Using the identity [9]

E(e2iz, q2) = iq−
1
4 eizθ1(z, q) (A.39)

we can write

E(xa, y) = i exp

[
− π2

2 log p
+

2π2as

r log p

]
θ1

(
s

r

2π2a

i log p
, exp

[
2π2a

log p

])
(A.40)

then we can use duality relations of Jacobi’s functions:

q = eiπτ q̃ = e−i
π
τ (A.41)

θ1(z, q̃) = −i
√
iτ exp

[
iτz2

π

]
θ1(τz, q) (A.42)

θ2(z, q̃) =
√
−iτ exp

[
iτz2

π

]
θ4(τz, q) (A.43)

θ3(z, q̃) =
√
−iτ exp

[
iτz2

π

]
θ3(τz, q) (A.44)

θ4(z, q̃) =
√
−iτ exp

[
iτz2

π

]
θ2(τz, q) (A.45)

E(xa, y) = −
√

log p

2π
θ1

(πs
r
a,
√
p
)

exp

[
− π2

2 log p

]
exp

[
2π2as

r log p

(
1− sa

r

)]

(A.46)

A.1.2 Computation of F (· · · )

E
(
−qr(b−k)+(r−a)(r−µ), q2r(r−µ)

)
= E

(
−qf(r), q2g(r)

)
(A.47)
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with

q = x2α (A.48)
f(r) = r(b− k) + (r − a)(r − µ) (A.49)
g(r) = r(r − µ) (A.50)

E
(
−qr(b−k)+(r−a)(r−µ), q2r(r−µ)

)
= exp

[
−2π2αs

r log p
(g − 2f)

]
θ2

(
4π2αi

log p

s

r
f, exp

[
8π2α

log p

s

r
g

])

using again duality relations we obtain

E
(
−qr(b−k)+(r−a)(r−µ), q2r(r−µ)

)
= exp

[
−2π2α

log p

s

r

(
g − 2f +

f 2

g

)]
×

×
√
− log p

8παg

r

s
θ4

(
f

g

π

2
, p

r
8sαg

)
(A.51)

E
(
−qr(b−k)+(r+a)(r−µ), q2r(r−µ)

)
= E

(
−qf1(r), q2g(r)

)
(A.52)

with

f1(r) = r(b− k) + (r + a)(r − µ) (A.53)

E
(
−qr(b−k)+(r+a)(r−µ), q2r(r−µ)

)
= exp

[
−2π2α

log p

s

r

(
g − 2f1 +

f 2
1

g

)]
×

×
√
− log p

8παg

r

s
θ4

(
f1

g

π

2
, p

r
8sαg

)
(A.54)

q−a
b−k
2 = x−aα(b−k)

= exp

[
−4π2α

log p

s

r
a(b− k)

]
(A.55)

qa
a−1
4 = xaα

a−1
2

= exp

[
2π2α

log p

s

r
a(a− 1)

]
(A.56)
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Using (A.51),(A.54),(A.55),(A.56) we obtain

F

qa
a−1
4

=

√
− log p

8παg

r

s

{
exp

[
−2π2α

log p

s

r

(
g − 2f +

f 2

g
+ 2as(b− k)

)]
θ4

(
f

g

π

2
, p

r
8sαg

)

− exp

[
−2π2α

log p

s

r

(
g − 2f1 +

f 2
1

g
− 2as(b− k)

)]
θ4

(
f

g

π

2
, p

r
8sαg

)}
(A.57)

As

g − 2f +
f 2

g
+ 2as(b− k) = g − 2f1 +

f 2
1

g
− 2as(b− k) (A.58)

= h (A.59)

we can write

F

qa
a−1
4

=

√
− log p

8παg

r

s
exp

[
−2π2α

log p

s

r
h

]{
θ4

(
π

2

(
r − a
r

+
b− k
r − µ

)
, p

1
8sα(r−µ)

)

− θ4

(
π

2

(
r + a

r
+
b− k
r − µ

)
, p

1
8sα(r−µ)

)}
(A.60)

and

F =

√
− log p

8παg

r

s
exp

[
−2π2α

log p

s

r
(h− a(a− 1))

]
× (A.61)

×
{
θ4

(
π

2

(
r − a
r

+
b− k
r − µ

)
, p

1
8sα(r−µ)

)
− θ4

(
π

2

(
r + a

r
+
b− k
r − µ

)
, p

1
8sα(r−µ)

)}

Using the relation

θ4

(
z +

π

2
, q
)

= θ3 (z, q) (A.62)

we obtain

F =

√
− log p

8παg

r

s
exp

[
−2π2α

log p

s

r
(h− a(a− 1))

]
× (A.63)

×
{
θ3

(
π(b− k)

2(r − µ)
− πa

2r
, p

1
8sα(r−µ)

)
− θ3

(
π(b− k)

2(r − µ)
+
πa

2r
, p

1
8sα(r−µ)

)}
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A.1.3 Computation of EαF (x2α)

[E(xa, y)]α F (x2α) = −
(

log p

2π

)α
2

exp

[
− π2α

2 log p

]
exp

[
2π2α

log p

s

r

(
a− s

r
a2 − h

)]

×
√
− log p

8παs(r − µ)
θα1

(πs
r
a,
√
p
)

(A.64)

×
[
θ3

(
π(b− k)

2(r − µ)
− πa

2r
, p

1
8sα(r−µ)

)
− θ3

(
π(b− k)

2(r − µ)
+
πa

2r
, p

1
8sα(r−µ)

)]

we can express

a− s

r
a2 + a(a− 1)− h =

{
r(k−b)2
s−r µ = s III

a2s(2s−r)+r2(k−b)2
rs

µ = r − s II
(A.65)

A.1.4 Computation of (x2α)∞

The q-Pochhammer symbol can be parametrized as

(q)∞ =
1√
3
q−

1
24 θ2

(π
6
, q

1
6

)
(A.66)

thus

(x2α)∞ =
1√
3
x−

α
12 θ2

(π
6
, x

α
3

)
(A.67)

=
1√
3

exp

[
− π2α

3 log p

s

r

]
θ2

(
π

6
, exp

[
4π2α

3 log p

s

r

])
(A.68)

after applying again duality relations, one obtains

=

√
−3 log p

4πα

s

r
p

r
48sα θ4

(
−ir
s

log p

8α
, p

3r
4sα

)
(A.69)

A.1.5 Computation of Zα
Following [9] we write

Zα =

r−1∑∗

a=1

θα1

(πas
r
,
√
p
)
Z(a)
α (A.70)
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1 in terms of Jacobi’s θ functions

where

Z(a)
α =

θ3

(
π(b−k)
2(r−µ)

− πa
2r
, p

1
8sα(r−µ)

)
− θ3

(
π(b−k)
2(r−µ)

+ πa
2r
, p

1
8sα(r−µ)

)

p
r

48sα θ4

(
− ir

s
log p
8α
, p

3r
4sα

) (A.71)

×
(

log p
2π

)α
2

√
− log p

8παs(r−µ)√
−3 log p

4πα
s
r

√
3

exp
[
− π2α

3 log p
s
r

] exp

[
2π2α

log p

s

r

(
a− s

r
a2 + a(a− 1)− h

)]

=
θ3

(
π(b−k)
2(r−µ)

− πa
2r
, p

1
8sα(r−µ)

)
− θ3

(
π(b−k)
2(r−µ)

+ πa
2r
, p

1
8sα(r−µ)

)

p
r

48sα θ4

(
− ir

s
log p
8α
, p

3r
4sα

)√
2r(r − µ)

(
log p

2π

)α
2

(A.72)

× exp

[
2π2α

log p

s

r

(
a− s

r
a2 − h+

1

6

)]
(A.73)

The factor
(

log p

2π

)α
2

exp

[
2π2α

log p

s

r
u

]
=

(
log p

2π
exp

[
2π2

log p

s

r
u

])α
2

(A.74)

can be neglected since it does not affect the ratio Zα/Zα
1 .

The factor u is the part of a − s
r
a2 − h + 1

6
which does not depend on a. At last

we obtain

Z(a)
α =

θ3

(
π(b−k)
2(r−µ)

− πa
2r
, p

1
8sα(r−µ)

)
− θ3

(
π(b−k)
2(r−µ)

+ πa
2r
, p

1
8sα(r−µ)

)

p
r

48sα θ4

(
− ir

s
log p
8α
, p

3r
4sα

)√
2r(r − µ)

× exp

[
2π2α

log p

s

r
v

]
(A.75)

where

v =

{
0 µ = r III
a2 2s−r

r
µ = r − s II

(A.76)

which is the part of a− s
r
a2 − h+ 1

6
which depends on a.

Thus, in regime III we have

Z(a)
α =

θ3

(
π(b−k)
2(r−µ)

− πa
2r
, p

1
8sα(r−µ)

)
− θ3

(
π(b−k)
2(r−µ)

+ πa
2r
, p

1
8sα(r−µ)

)

p
r

48sα θ4

(
− ir

s
log p
8α
, p

3r
4sα

)√
2r(r − µ)

(A.77)

If following sections and in Chapter 4 and 6 we will denote d = b− k.
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A.2 Entanglement Entropy
Setting

q̃ = p
r
2s (A.78)

in [34] it has been shown that

ξ = − 1

logK ′(|q̃| 12 )
(A.79)

where K ′(q) is the complete elliptic integral of first kind of nome
√

1− q2. It can
be expressed also as:

K ′(q) =
∞∏

n=0

(
1− q2n−1

1 + q2n−1

)4

(A.80)

=

(
θ4(0, q)

θ3(0, q)

)2

(A.81)

from these formulæ one can find

q̃ =
1

64
ξ−2 − 1

1536
ξ−4 +O(ξ−6) (A.82)

The α−partition function then is given by

Zα =
1

p
r

48sα θ4

(
− ir

s
log p
8α
, p

3r
4sα

)√
2r(r − µ)

(A.83)

×
r−1∑∗

a=1

θα1

(πas
r
,
√
p
)[

θ3

(
π(b− k)

2(r − µ)
− πa

2r
, p

1
8sα(r−µ)

)
− θ3

(
π(b− k)

2(r − µ)
+
πa

2r
, p

1
8sα(r−µ)

)]

taking the logarithm we obtain

logZα = − r

48sα
log p− log

√
2r(r − µ)− log θ4(α) + log

(
r−a∑∗

a=1

· · · (α)

)
(A.84)

A.2.1 Computation of log
(∑∗r−a

a=1
· · · (α)

)

What we want to do in this section is to expand the summand using the product
and sum expression for θ fucntions, thanks to the fact that |p| < 1.

· · · (α) = θα1

(aπs
r
,
√
p
) [
θ3

(
x− πa

2r
, q
)
− θ3

(
x+

πa

2r
, q
)]

(A.85)
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with

q = p
1

8sα(r−µ) (A.86)

x =
π(b− k)

2(r − µ)
(A.87)

Computation of θα1

θ1

(aπs
r
,
√
p
)

= 2
∞∑

n=0

(−1)n (
√
p)(n+ 1

2)
2

sin
(

(2n+ 1)
aπs

r

)
(A.88)

= 2

{
p

1
8 sin

(πas
r

)
− p 9

8 sin

(
3πas

r

)
+ p

25
8 sin

(
5πas

r

)
+O

(
p

49
8

)}

= 2p
1
8 sin

(πas
r

){
1− psin

(
3πas
r

)

sin
(
πas
r

) + p3 sin
(

5πas
r

)

sin
(
πas
r

) +O
(
p6
)
}

(A.89)

for evaluate the α−power of the above expression we will use

(1 + x)n = 1 + nx+
n(n− 1)

2
x2 +

n(n2 − 3n+ 2)

6
x3 +O(x4) (A.90)

obtaining

θα1

(aπs
r
,
√
p
)

= 2αp
α
8 sinα

(πas
r

){
1− αpsin

(
3πas
r

)

sin
(
πas
r

) + αp3 sin
(

5πas
r

)

sin
(
πas
r

) (A.91)

+
α(α− 1)

2
p2

(
sin
(

3πas
r

)

sin
(
πas
r

)
)2

+
α(α2 − 3α + 2)

6
p3

(
sin
(

3πas
r

)

sin
(
πas
r

)
)3

+O
(
p4
)




= 2αp
α
8 sinα

(πas
r

)


1− pαsin

(
3πas
r

)

sin
(
πas
r

) + p2α(α− 1)

2

(
sin
(

3πas
r

)

sin
(
πas
r

)
)2

(A.92)

+ p3α


sin

(
5πas
r

)

sin
(
πas
r

) +
α2 − 3α + 2

6

(
sin
(

3πas
r

)

sin
(
πas
r

)
)3

+O

(
p4
)


 (A.93)

Computation of θ3(α)− θ3(α)

Using

θ3(z, q) = 1 + 2
∞∑

n=1

qn
2

cos(2nz) (A.94)
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we obtain

θ3

(
x− πa

2r
, q
)
− θ3

(
x+

πa

2r
, q
)

= 2
∞∑

n=1

qn
2
[
cos
(

2n(x− πa

2r
)
)
− cos

(
2n(x+

πa

2r
)
)]

= 4
∞∑

n=1

qn
2

sin(2nx) sin
(nπa

r

)
(A.95)

= 4

{
q sin(2x) sin

(πa
r

)
+ q4 sin(4x) sin

(
2πa

r

)
+ q9 sin(6x) sin

(
3πa

r

)
+O

(
q16
)}

= 4q sin(2x) sin
(πa
r

){
1 + q3 sin(4x) sin

(
2πa
r

)

sin(2x) sin
(
πa
r

) + q8 sin(6x) sin
(

3πa
r

)

sin(2x) sin
(
πa
r

) +O
(
q15
)
}

Merging

Merging (A.91) and (A.95) we find an expression for · · · (α):

· · · (α) = p
α
8

+ 1
8sα(r−µ) 2α+2 sin(2x) sin

(πa
r

)
sinα

(πas
r

)
(A.96)

×
{

1 + p
3

8sα(r−µ)
sin(4x) sin

(
2πa
r

)

sin(2x) sin
(
πa
r

) + p
1

sα(r−µ)
sin(6x) sin

(
3πa
r

)

sin(2x) sin
(
πa
r

) +O
(
p

15
8sα(r−µ)

)}

×



1− pαsin

(
3πas
r

)

sin
(
πas
r

) + p2α(α− 1)

2

(
sin
(

3πas
r

)

sin
(
πas
r

)
)2

(A.97)

+ p3α


sin

(
5πas
r

)

sin
(
πas
r

) +
α2 − 3α + 2

6

(
sin
(

3πas
r

)

sin
(
πas
r

)
)3

+O

(
p4
)


 (A.98)

obtaining at last

log

(
r−a∑∗

a=1

· · · (α)

)
=

(
α

8
+

1

8sα(r − µ)

)
log p+ log

[
2α+2 sin(2x)

]
(A.99)

+ log

[
r−1∑∗

a=1

sin
(πa
r

)
sinα

(πas
r

){
1 + p

3
8sα(r−µ)

sin(4x) sin
(

2πa
r

)

sin(2x) sin
(
πa
r

)

+ p
1

sα(r−µ)
sin(6x) sin

(
3πa
r

)

sin(2x) sin
(
πa
r

) +O
(
p

15
8sα(r−µ)

)}]
(A.100)

Notice that we neglect p, p2, . . . terms in the last expression, since they are domi-
nated by p

15
8sα(r−µ) for a wide set of value of r and s.
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For the evaluation of the last term we can use

log [A+Bx] = log (A) +
B x

A
− B2 x2

2A2
+
B3 x3

3A3
+O(x4) (A.101)

obtaining

log

(
r−a∑∗
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)
=
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8
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1

8sα(r − µ)

)
log p+ log

[
2α+2 sin(2x)

]

+ log

[
r−1∑∗
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
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
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+ O
(
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)
(A.102)

=

(
α

8
+

1

8sα(r − µ)

)
log p+ log

[
2α+2 sin(2x)

]

+ log [sα(1; r, s)] + p
3

8sα(r−µ)
sin(4x)

sin(2x)

sα(2; r, s)

sα(1; r, s)

− 1

2
p

3
4sα(r−µ)

(
sin(4x)

sin(2x)

)2(
sα(2; r, s)

sα(1; r, s)

)2

+ p
1
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sin(6x)

sin(2x)

sα(3; r, s)
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(
p

3
2sα(r−µ)

)
(A.103)

where

sα(n; r, s) =

r−1∑∗

a=1

sin
(
n
πa

r

)
sinα

(πas
r

)
(A.104)
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A.2.2 Computation of log θ4(α)

In this case it is easier to use the product representation of θ4

θ4(z, q) = (q2)∞

∞∏

n=1

[
1− 2q2n−1cos(2z) + q4n−2

]
(A.105)

where

z = −ir
s

log p

8α
(A.106)

q = p
3r
4sα (A.107)

Performing some expansions we obtain

log θ4(α) = − 1

256
ξ−

3
α +

cos(2z)

4168
ξ−

5
α − cos2(2z)

131072
ξ−

6
α − 35915713 cos(2z)

2134698885120
ξ−

7
α +O

(
ξ−

8
α

)

A.2.3 Full Entropy

Finally we get

logZα = − r

48sα
log p− log

√
2r(r − µ)

+

(
α

8
+

1

8sα(r − µ)

)
log p+ log
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2α+2 sin(2x)

]

+ log [sα(1; r, s)] + p
3
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sin(4x)
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+
1

256
ξ−
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α − cos(2z)

4168
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α +

cos2(2z)

131072
ξ−

6
α +

35915713 cos(2z)

2134698885120
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)

since

p = q̃
2s
r (A.108)

=

[
ξ−2

64
− ξ−4

1536
+

113

2949120
ξ−6 +O(ξ−8)

] 2s
r

(A.109)

=
ξ−

4s
r

64
2s
r

[
1− s

12r
ξ−2 +

80s2 + 73rs

23040r2
ξ−4 +O(ξ−6)

]
(A.110)

128



A.2. Entanglement Entropy

then

log p = −4s

r
log ξ − 12s

r
log 2− s

12r
ξ−2 +

73s

23040r
ξ−4 +O(ξ−6) (A.111)

and

p
3n

8sα(r−s) =
1

64
3n

4αr(r−s)
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3n
2αr(r−s)

×
[
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32αr(r − s)ξ
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n[30n+ 73αr(r − s)]
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(A.112)

Thus

logZα = −
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if we want neglect O
(
ξ−

3
α

)
terms in presence of O

(
ξ−

6
αr(r−s)

)
terms, we require

ξ−
3
α � ξ−

6
αr(r−s) (A.113)

since ξ � 1, the above inequality is satisfied if

3 ≥ 6

r(r − s)
r − 2

r
≥ s (A.114)

129



Entanglement Entropy in the BF-RSOS Model: regime III

As s ≤ r − 1, the above inequality is satisfied for each s, because for s = r − 1 it
is satisfied for each r ≥ 1:

2

r
≤ 1 (A.115)

This argument allows us to neglect most of ξ−x terms; recollecting all dominant
terms we obtain

logZα = log ξ
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(A.116)

Now, we are able to write down an expression for Rényi Entropy near the critical
point

Sα =
ceff
12

α + 1

α
log ξ + Uα + Aα(ξ) (A.117)

with

ceff = 1− 6

r(r − s) (A.118)

= cr,s −∆ (A.119)
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(A.120)

where we have rescaled ξ → 8ξ.
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Appendix B

Co-algebras and Hopf algebras

In this appendix we will introduce the Co-algebras and Hopf Algebra, following
notations and definitions of [27]. The definition of Hopf Co-Algebra is required
for the definition of the action of generators of the Quantum Group Uq(su2) on an
N−site system.

B.1 Co-algebras

Let (A ,m, i) be an algebra whose multiplication m : A ⊗A → A is asso-
ciative:

m ◦ (m⊗ 1) = m ◦ (1⊗m) (B.1)

In order to define the multiplication between a scalar λ ∈ K and an element a ∈A
of the Algebra, we define the application i as i : λ 7→ λ1. Moreover we require the
compatibility between i and m,i.e.

m(a⊗ i(λ)) = aλ = λa = m(i(λ)⊗ a) (B.2)

We can define now a co-associative co-product ∆ : A →A ⊗A :

(∆⊗ 1) ◦∆ = (1⊗∆) ◦∆ (B.3)

using a diagrammatic representation we have:

A
∆−−−→ A ⊗A

∆

y
y∆⊗1

A ⊗A −−−→
1⊗∆

A ⊗A ⊗A
(B.4)
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we can also define a co-unit map ε : A → K

(1⊗ ε) ◦∆ = (ε⊗ 1) ◦∆ = 1 (B.5)

whose diagrams read:

A
1−−−→ Ay∆

∥∥∥

A ⊗A 1⊗ε−−−→ A ⊗ K

(B.6)

A
1−−−→ Ay∆

∥∥∥

A ⊗A ε⊗1−−−→ K⊗A

(B.7)

which defines the structure (A ,∆, ε), which is called co-algebra.

B.2 Hopf co-algebras
Using definitions of algebra and co-algebra, we can build up a larger object which
contains both structures.
A structure (A ,m, i,∆, ε) which is simultaneously an algebra and a co-algebra is
called bi-algebra if the co-multiplication ∆ and the co-unit ε of the co-algebra are
consistent with the multiplicationm of the algebra, i.e. if they are homomorphisms:

ε(ab) = ε(a)ε(b) (B.8)
∆(ab) = ∆(a)∆(b) ∀ a, b ∈A (B.9)

Actually the unit i and the co-unit ε must also be compatible

i(ε(a)) = ε(a)1 ∀ a ∈A (B.10)

An Hopf algebra is a bi-algebra on which is defined the map γ : A → A ,
called antipode, which is an anti-homomorphism

γ(ab) = γ(b)γ(a) (B.11)

and satisfies

m ◦ (γ ⊗ 1) ◦∆ = m ◦ (1⊗ γ) ◦∆ = ε1 (B.12)
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B.2. Hopf co-algebras

all elements of the bi-algebra are involved in these properties, which can be repre-
sented in the following diagram

A
∆−−−→ A ⊗A 1⊗γ−−−→ A ⊗A∥∥∥

ym

A
ε−−−→ K

i−−−→ A

(B.13)

Commutativity and co-commutativity

If the Hopf algebra A is commutative for the multiplication m, we have

m ◦ σ = m (B.14)

where σ : A ⊗A →A ⊗A is the permutation map σ(a⊗ b) = b⊗ a.
The algebra is called co-commutative if

σ ◦∆ = ∆ (B.15)

B.2.1 Quasi-triangular Hopf algebras and quantum groups

Define ∆′ = σ ◦∆. It can be shown that it is also a co-product and defines a Hopf
algebra with antipode γ′ = γ−1.
A Hopf algebra is called quasi-triangular if exists an universal matrix R ∈
A ⊗A such that

∆′(a) = R ∆(a)R
−1 ∀ a ∈A (B.16)

(1⊗∆)R = R 13R 12 =
∑

i,j

AiAj ⊗Bj ⊗Bi (B.17)

(∆⊗ 1)R = R 13R 23 =
∑

i,j

Ai ⊗ Aj ⊗BiBj (B.18)

(γ ⊗ 1)R = (1⊗ γ−1)R = R
−1

(B.19)

Parametrizing R as
∑

iAi ⊗Bi we obtain

R 12 =
∑

i

Ai ⊗Bi ⊗ 1 = R ⊗ 1 (B.20)

R 13 =
∑

i

Ai ⊗ 1⊗Bi (B.21)

R 23 =
∑

i

1⊗ Ai ⊗Bi = 1⊗R (B.22)
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The quasi-triangularity means that ∆ and ∆′ are linearly related.
If A is co-commutative it is also trivially quasi-triangular with R = 1⊗ 1. A
Hopf algebra such that

R σR = 1⊗ 1 (B.23)

is called triangular algebra.
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Appendix C

From 8-vertex Boltzmann weights to
the quantum XYZ Hamiltonian

In this appendix we will perform the Hamiltonian limit of the 8-vertex model.

Let us consider a 2D classical IRF (Interaction Round Faces) model.
Let w(a, b, c, d) be the Boltzmann weight associated to the tile:

Figure C.1: Boltzmann weight w(a, b, c, d) of the tile (a, b, c, d)

The Yang-Baxter Equation is given by [6]:

∑

c

w(u|a, b, c, a′′)w(u′|a′′, c, b′, a′)w(u′′|c, b, b′′, b′)

=
∑

c

w(u′′|a′′, a, c, a′)w(u′|a, b, b′′, c)w(u|c, b′′, b′, a′) (C.1)
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Hamiltonian

and its solution is given by [6]

w(a, b, a, b) = ρ snhλ = A

w(a, b,−a,−b) = ρ k snhλ snhusnh (λ− u) = B

w(a, b, a,−b) = ρ snh (λ− u) = C

w(a, b,−a, b) = ρ snhu = D (C.2)

The 8-vertex associated Boltzmann weight is given by

Figure C.2: Boltzmann weight w(α, β, γ, δ) of the 8-vertex configuration
(α, β, γ, δ)

w(α, β, γ, δ) =
1

2
δ(α, δ)δ(β, γ) [(A+B) + (A−B)αβ]

+
1

2
δ(α,−δ)δ(β,−γ) [(C +D) + (C −D)αβ] (C.3)

in matrix form

W =
A+B

2
1⊗ 1 +

C +D

2
σx ⊗ σx +

D − C
2

σy ⊗ σy +
A−B

2
σz ⊗ σz(C.4)

Performing the Hamiltonian limit we obtain

H
(2)
XY Z =

d

du
log W(u)

∣∣∣∣
u=0

=

[
W−1(u)

d

du
W(u)

]

u=0

= −icn(iλ, k)dn(iλ, k)

2sn(iλ, k)
1⊗ 1

+ (−1)
i(−1 + ksn2(iλ, k))

2sn(iλ, k)
σx ⊗ σx

+

[
i

2sn(iλ, k)
+
ik

2
sn(iλ, k)

]
σy ⊗ σy

+ i
cn(iλ, k)dn(iλ, k)

2sn(iλ, k)
σz ⊗ σz (C.5)
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which is the 1D XYZ model.
Notice that in the limit k → 0 it becomes the XXZ model:

H
(2)
XXZ = −1

2
cothλ 1⊗ 1 +

1

2
cschλσx ⊗ σx +

1

2
cschλσy ⊗ σy +

1

2
cothλσz ⊗ σz

(C.6)
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Appendix D

QFT Appendix

In this appendix we will recall some Quantum and Conformal Field Theory re-
sults. In particular we will briefly review the role of the effective central charge in
non-unitary conformal theories and the Callan-Symanzik equation which is funda-
mental for the analysis of system near the critical point.

D.1 The Effective Central Charge

Consider a conformal theory defined on a cylinder of width L and infinite height
and denote with w = τ + iσ its coordinates (σ ∈ [0, L] and τ ∈ R).
Consider now the conformal transformation from the cylinder to the complex plane
C (with coordinate z)

z 7→ w =
L

2π
log z (D.1)

Using the transformation law for the stress tensor under conformal transformation
[12] we have

Tc(w) =

(
L

2π

)2 [
TR2(z)z2 − c

24

]
(D.2)

and the same for the anti-holomorphic part.
The hamiltonian of the system is given by [32]

H =
1

2π

∫ L

0

dσTτ,τ (σ) =
1

2π

∫ L

0

dσ(T (σ) + T̄ (σ)) (D.3)
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setting w̄ = τ − iσ we have

σ =
1

2i
(w − w̄) =

L

4πi
log

z

z̄
(D.4)

dσ =
L

4πi

(
dz

z
− dz̄

z̄

)
(D.5)

obtaining

H =
1

2π

(
2π

L

)2 [
L

4πi

∮
T (z)zdz − L

4πi

∮
T̄ (z̄)dz̄ − L c

12

]

=
2π

L
(L0 + L̄0)− πc

6L
(D.6)

The expectation value of the energy for a field with conformal dimension (∆, ∆̄)
is then given by

〈
∆, ∆̄

∣∣ 2π

L
(L0 + L̄0)− πc

6L

∣∣∆, ∆̄
〉

=
2π

L
(∆ + ∆̄)− πc

6L
(D.7)

and its minimum is given by

E0 =
4π∆min

L
− πc

6L
= −πceff

6L
(D.8)

where

ceff = c− 24∆min (D.9)

is the effective central charge.
If we consider an open system with size L, the above expression change a bit,
becoming

E0 = −πceff
24L

(D.10)

Notice that for unitary models ∆min = 0 and then ceff = c. From a physical
point of view, it implies that in unitary theories the conformal vacuum (∆ = 0)
corresponds to the ground state, but it is not true for non-unitary models, for
which

|g.s.〉 = Φ(0)|0〉 (D.11)

where |0〉 denotes the conformal vacuum (∼ 1 ↔ ∆ = 0), and |g.s.〉 denotes the
ground state, i.e. the state with the lowest energy and Φ is the primary field with
conformal weight ∆min.
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D.2 Renormalisation group - Callan Symanzik equa-
tion

Consider the action functional S(g, a) which depends on some dimensionless cou-
pling parameters g = (g1, g2, . . . ) and on a ultraviolet cut-off a that regularises
divergencies in short distance correlators. Denote with G the space where cou-
pling parameters belong. The main hypothesis of the renormalisation group is
that exists a one-parameter semi-group of evolution on G:

Rt : G→ G (D.12)

such that the theory S(Rtg, e
ta) is equivalent to S(g, a). Equivalence of these two

theories means that they give the same results in term of correlation function over
a range scale r � eta.
Let us consider the correlation function of some local fields Ai(xi)

〈A1(x1) . . . An(xn)〉 =

∫
DϕA1(x1) . . . An(xn)e−S[ϕ] (D.13)

where the normalisation factor Z is absorbed into the definition of S.
Consider the following transformation

xµ → x′µ = xµ + εµ(x) (D.14)

Ward’s identities give the variation of the action

δS =

∫
d2xTµν(x)∂µεν(x) (D.15)

whereas variations of fields are given by

Ai(x)→ Ai(x) + δAi(x) (D.16)

We can now perform a variation of (D.13), obtaining

n∑

i=1

〈A1(x1) . . . δAi(xi) . . . An(xn)〉 =

∫
d2x〈Tµν(x)A1(x1) . . . An(xn)〉∂µεν(x)

(D.17)

Focusing on global dilatation, fields are variated as follow

δA(x) = ε

(
1

2
xµ∂µ + D̂

)
A(x) (D.18)
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where D̂ denotes the operator which implements internal transformation of fields
under dilatation1. The infinitesimal transformation of coordinates is given by2

εµ(x) = εxµ (D.19)

obtaining

n∑

i=1

〈(
1

2
xµ∂

µ + D̂

)
A1(x1) . . . An(xn)

〉
=

∫
d2x〈Θ(x)A1(x1) . . . An(xn)〉

(D.20)

where Θ = T µµ .
Assuming that S(g, a) can be expressed as

S(g, a) =

∫
d2xLg (D.21)

Since Lg is a Lagrangian

ϕi =
∂Lg
∂gi

(D.22)

are local fields of the theory.
Define operators B̂k as generators of transformations of fields Ai under variation
of gi:

B̂kAi =
∂Ai
∂gk

(D.23)

Deriving the correlation function we obtain

∂

∂gk
〈A1(x1) . . . An(xn)〉 =

n∑

i=1

〈A1(x1) . . . B̂kAi(xi) . . . An(xn)−
∫
d2x〈ϕk(x)A1(x1) . . . An(xn)〉

(D.24)

the second term is due to the variation of the action.
Using (D.15) and (D.19) we have

δS = ε

∫
d2xΘ(x) (D.25)

1For instance, in a Lorentz transformation the internal transformation is performed by the
spin operator Sµν

2 It comes from x′µ = (1 + ε)xµ = xµ + εµ(x).
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denoting dt = ε we have

Θ =
dL
dt

(D.26)

Expanding the above derivative in terms of coupling parameters we obtain

Θ(x) =
∂L
∂gk

dgk
dt

= βk(g)ϕk(x) (D.27)

We can thus parametrize the operator Θ in terms of the β-functions of the theory.
Combining (D.24) and (D.27) we obtain the well-known Callan-Symanzik equation

n∑

i=1

〈
A1(x1) . . .

(
1

2
xiµ∂

µ
i + γ̂(g)

)
Ai(xi) . . . An(xn)

〉
−
∑

k

βk(g)
∂

∂gk
〈A1(x1) . . . An(xn)〉 = 0

(D.28)

where

γ̂(g) = D̂ + βk(g)B̂k (D.29)

In the evaluation of Rényi Entropy for off-critical models, it is important to notice
that the tensor Θ is trivially covariant under the action of the operator γ̂(m)

γ̂(m)Θ(x) = 2Θ(x) (D.30)

In off-critical models, the mass plays the role of the parameter g and it tends to
zero when the model reaches the critical point.
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Appendix E

Minimal Conformal Models

In this chapter we will introduce Minimal Conformal Models, which are the sim-
plest conformal theories since they contain only a limited number of conformal
families.

E.1 The Verma modulus
We will briefly review the algebra of the quantised angular momentum in order to
make better understandable the idea of the Verma modulus.

E.1.1 The su2 algebra

The su2 algebra is given by three generators, J± and Jz, which satisfy the com-
mutatoion algebra

[
J+, J−

]
= 2Jz[

J±, Jz
]

= ±J± (E.1)

Let us denote with |j, j〉 the highest weight state in the j-sector, i.e.

Jz|j, j〉 = j|j, j〉
J+|j, j〉 = 0 (E.2)

The expectation value of the Casimir operator J2 = 1
2
(J+J− + J−J+) + Jz2 for

this state is given by j(j+1). All other states in the sector defined by the Casimir
operator can be obtained by successive applications of the operator J− on the
highest weight state.
The Hilbert space of this model is given by collecting together all possible highest
weight states and their descendant states.
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E.1.2 The Virasoro Algebra

For a given conformal theory with central charge c, the Virasoro Algebra Virc is
given by

[Ln, Lm] = (n−m)Ln+m +
c

12
δn,−m(n3 − n) (E.3)

Recalling the su2 structure, let us define a highest weight state |h〉 for the Virasoro
algebra as the analog of the su2’s one:

L0|h〉 = h|h〉
Ln|h〉 = 0 for n > 0 (E.4)

The Hilbert space Vc(h) generated by successive applications of L−n (n > 0) on
|h〉 is called Verma modulus or conformal tower. The operator L0 measures the
dimension of a state, while Ln plays the role of raising and lowering operators
(respectively for n < 0 and n > 0). We can now define the conformal vacuum |0〉
as the highest weight state with zero conformal dimension:

Ln|0〉 = 0 for n ≥ 0 (E.5)

If a state |h〉 does not belong to any other conformal tower except the itself one,
this state is called primary. These primary states are strictly connected with
primary fields of the conformal theory, since they are created applying a primary
field φ with conformal dimension h to the conformal vacuum:

|h〉 = φ(0)|0〉 (E.6)

The Hilbert space H of the system is given by the direct sum of all Verma moduli
with central charge c;

H =
⊕

h

Vc(h) (E.7)

where the direct sum runs over all highest weight states of the theory.

E.1.3 The dimension of Verma moduli

Let us focus on the dimension of a given Verma modulus Vc(h), since it gives
the number of independent state belonging to it; in the field-theory picture, this
dimension represents the number of independent conformal fields which can be
builded up applying the functional version of Ln operators on a primary field φ
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with conformal dimension h. Since the number of Ln operators applicable on a
state |h〉 is not limited by above the dimension of a Verma modulus is infinite for
an arbitrary values of c and h.
The application of L−n operators on a state |h〉 increases by n the conformal
dimensions of the state, since

L0L−n|h〉 = (L−nL0 + [L0, L−n]) |h〉
= hL−n|h〉+ nL−n|h〉 = (h+ n)L−n|h〉 (E.8)

The conformal dimension of a state |h〉 can be raised by n not only applying the
operator L−n but also applying a combination of m operators L−k1 · · ·L−km such
that k1 + · · ·+km = n. In this way, for a given Verma modulus Vc(h) the conformal
dimension provides a natural level classifications: we can define the n-th level as
the set of all states in the Verma modulus with conformal dimension h+ n.
For instance, the first level contains only one state, given by

L−1|h〉 (E.9)

while second level states can be given by

L−2|h〉 or L2
−1|h〉 (E.10)

For this reason the number of independent states belonging to a level of the Verma
modulus increases with the level and it is strictly connected with the partition Pn of
a number: the dimension on the n-th level is given by the number of combinations
of natural number whose sum gives n.

E.2 Minimal models

For arbitrary values of c and h, conformal transformations spans the entire Verma
module Vc(h), since the action of conformal generators Ln create all states belong-
ing to Vc(h). If there is a state |χ〉 belonging to the Verma module such that it
is itself an highest weight state (Ln|χ〉 = 0 ∀ n > 0) it is called singular or null
vector and its norm is zero. The vanishing of the norm can be proofed as follows:
if |χ〉 belongs to Vc(h) it can be written as sum of terms like

|χ〉 = L−k1 · · ·L−kn|h〉 (E.11)

and its norm is given by

〈χ|χ〉 = 〈χ|L−k1 · · ·L−kn |h〉 = 〈h|Lkn · · ·Lk1|χ〉? = 0 (E.12)
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In the operator-field picture, the field χ(z) is both primary and secondary, since
it vanishes under the action of Ln, n > 0

Lnχ(z) = 0 (E.13)

but it is also secondary since it belongs to the descendant of the primary field φ(z)
with conformal dimension h.
Thanks to the vanishing of (E.12) the state χ and all its descendants are orthogonal
to the whole Verma module. Verma modules Vc(h) are the basis for an irreducible
representation of the Virasoro algebraVirc, but we have to pay attention in theories
when null vector arises; Verma modules Vc(h) have to been quotiented , identifying
states which differ only by a null vector. Defining Mc(h) as

Mc(h) = Vc(h)/∼ (E.14)

they contain less states than ‘complete’ Verma moduli. Models which contains
null vectors are called minimal, since their Hilbert space is restricted.

E.2.1 Existence of Minimal Models

The existence of null vectors and of Minimal models for a given value of the central
charge c is not always guaranteed, but only for a restricted set of values. Thanks
to a formula due to Kac1, it has been demonstrated that only theories with central
charge written as

c = 1− 6
(p− p′)2

pp′
, with p, p′ ∈ N, p, p′ ≥ 3 (E.15)

are minimal. In particular, we denote asM(p, p′) the model with central charge
given by (E.15). The Kac’s results also given the list of all highest weight states
of the theory:

hr,s =
(pr − p′s)2 − (p− p′)2

4pp′
r = 1, . . . , p− 1 s = 1, . . . , p′ − 1

(E.16)

Thanks to the above formula, the number of primary fields in a Minimal model is
bounded, and for this reason the Operator Product Expansion (O.P.E.) in such a
theory is limited to a finite number of conformal families.

1See, for example [12]
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E.3 Unitary and non-unitary minimal models
The Kac formulas gives a criterion to identify conformal theories with null vectors,
but they can be unitary or not. A theory is called unitary if and only if non-
negative-norm vectors belong to it. For example the norm of the state |ψ〉 = L−2|0〉
is non-negative if and only if c > 0 since

〈ψ|ψ〉 = 〈0|L2L−2|0〉 =
c

2
(E.17)

The above example is not exhaustive, since there exist non-unitary theories also
with positive central charge. For minimal models, the related theories are unitary
if and only if p and p′ differ by one. For this reason we will denote withM(p) or
Mp the unitary minimal modelM(p− 1, p).

E.3.1 Non-unitary minimal models

In non-unitary minimal models the central charge can be negative, as in the
archetypal Yang-Lee modelM(2, 5) whose central charge is given by −22

5
. More-

over, while in unitary theories the lowest conformal dimension is zero and it cor-
responds to the unity operator, in non-unitary models some negative conformal
dimensions exist.
In non-unitary conformal models the central charge still rules conformal proper-
ties of a system, such as the O.P.E. of two stress tensors

T (z)T (w) ∼
c
2

(z − w)4
+

2T (w)

(z − w)2
+
∂wT (w)

z − w (E.18)

but physical properties of the system are ruled by the effective central charge ceff

ceff = c− 24∆ (E.19)

where ∆ is the most negative conformal dimension of a primary field of the theory.
Notice that in unitary models the lowest conformal dimension is zero and it is as-
sociated to the conformal vacuum |0〉 (or to the identity operator 1 in an operator
picture), while in non-unitary theories there are primary fields with negative con-
formal dimensions which are associated to excited states of the conformal vacuum.
The lowest conformal dimension ∆ and the related primary field Φ defines the
physical ground state |gs〉 as the state with the lowest energy

|gs〉 = Φ(0)|0〉 (E.20)

Since the operator L0+L̄0 defines the Hamiltonian operator for a conformal model,
the ground state energy is given by ∆ < 0 which is lower than the energy of the
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conformal vacuum (E = 0).
As the central charge in a minimal model can take only discrete values set by
a couple of relatively prime positive integers p and p′, also the effective central
charge of a non-unitary minimal model has a definite expression [32]

ceff = c− 24∆ = 1− 6

pp′
(E.21)

This expression is very important since it can be easily identified in expression
involving physical properties of non-unitary minimal conformal models.
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