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Abstract

In questo lavoro viene seguito lo schema di sicurazze asintotica per la gravità quan-

tistica. In tale approccio, è stata avanzata la possibilità che l’esistenza di un punto

fisso non-Gaussiano nell’ultravioletto, con un numero finito di direzioni attrattive,

ci permetta di considerare la teoria dei campi della relatività generale come un

approccio consistente per la gravità quantistica. In questo lavoro, viene portato

avanti un ansatz per l’azione effettiva mediata come funzione del solo scalare di

curvatura Γk ∼
∫
dx
√
gfk(R). Attraverso tale scelta vengono utilizzate le tecniche

del gruppo di rinormalizzazione funzionale per studiare il flusso della funzione fk(R);

in particolare vengono utilizzati tre approcci differenti per il calcolo delle tracce fun-

zionali nell’equazione di Wetterich’s: la tecnica Heat Kernel e la somma spettrale

sia attraverso una approssimazione asintotica sia utilizzando la formula di Eulero-

Maclaurin per le somme finite. Nei primi due casi viene utilizzato uno schema

di cutoff non-diagonale e vengono confermati risultati ottenuti già in precedenza.

Invece, l’approssimazione di Eulero-Maclaurin permette di studiare il flusso della

fk(R) con un cutoff diagonale attraverso una equazione differenziale del secondo

ordine.
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Abstract

In this thesis we follow the asymptotic safety program for quantum gravity. In this

program, it has been proposed that the existence of a non-Gaussian UV fixed point

with finite number of attractive directions for quantum Einstein’s theory allows us

to study the quantum field theory of general relativity as a self-consistent condidate

for quantum gravity. In this work, we make an ansatz for average effective action as

a function of scalar curvature only Γk ∼
∫
dx
√
gfk(R). With this choice we use the

functional renormalization group formalism to study the flow of function fk(R) and

use three different techniques to evaluate the functional traces in Wetterich’s equa-

tion: the Heat Kernel technique, the spectral sums with the asymptotic behaviour

approximation and with Euler-Maclaurin formula for finite sums. The first two

techniques, which exploit a non-diagonal cutoff scheme, confirms the results given

in previous works. Instead, Euler-Maclaurin approximation allows us to study the

flow equation with a diagonal cutoff which gives a second order differential equa-

tion on fk(R) instead of a third order one, which can be used for a future numerical

study.
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Introduction

In the last century, two important theories changed our concepts on the Universe. First,

quantum mechanics changes our point of view about microscopic world; on the other hand, the

General theory of Relativity modifies our concept of spacetime.

Starting from the principles of quantum mechanics and the special theory of relativity,

in the last 80 years, the quantum theory of fields has been developed and describes three of

the fondamental interactions with great agreement with experiments. Although this success,

quantum field theory, in the perturbative domain, can not be used to treat the quantum theory

of gravity, since the counterterms in the action cannot be absorbed into a redefinition of fields

or coupling constants; such a theory is said perturbatively non-renormalizable.

However, general relativity can be treated as an effective field theory, in the sense that

one can compute the quantum effects due to graviton loops as long as the momenta of the

particles in the loops are cut off at some scale. In this way it has been possible to calculate the

quantum corrections to the non-relativistic Newton’s potential [1]; but this is unrelated to the

UV behaviour of the theory.

Hence, for quantum field theory of general relativity the concept of perturbative renormal-

ization is not a powerfull method to predict the UV regime; so a non-perturbative approach is

necessary to understand whether this theory is a consistent canditate for the quantum gravity

problem.

Over the years, a series of different approaches propose a fondamental theory of quantum

gravity. We can devide them into two categories: the bottom-up and top-down approaches.

With the top-down approach, physicists try to replace the old theories with a new fondamental

theory and verify that the low energy effective theory coincide with previous ones; as examples,

for quantum gravity, physicists propose string theory, extradimensions and so on.

Contrary, the bottom-up approach has a different starting point. We know that quantum

field theory and general relativity work so well in their domain; hence, the basic idea is to unify

them starting from the principles of both theories. The asymptotic safety approach belongs

to the latter category. This theory starts from the quantum field theory version of general

relativity, considering the metric tensor gµν as fondamental degrees of freedom.

The main question about QFT of GR is whether this theory gives predictible quantities at

all energies.
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In fact, motivated by the analogy to the asymptotic freedom properties of non-Abelian

gauge theories, the term ”asymptotic safety” was suggested in [2] indicating that physical

quantities are ”safe” from divergencies as the cutoff is removed.

To quote from [2]: ”A theory is said to be asymptotically safe if the essential coupling

parameters approach a fixed point as the momentum scale of their renormalization point goes

to infinity”. Here, the ”essential” couplings are those which are useful for the absorption of

cutoff dependencies. If this criterion is valid for QFT of GR than the theory becomes predictive

at all energies. Hence, to answer to the main question about QFT of GR, a non-perturbative

approach is needed.

In the last 40 years, it has been shown that quantum field theory possesses an incredible

power not only in high energy sector but also in statistical mechanics, for example, it has been

used to understand critical phenomena and non-equilibrium conditions. This is due to Wilson’s

idea on Renormalization Group (RG), whose aim is to understand how physics changes when

the typical lenght scale varies.

Within the asymptotic safety program, the basic idea is to derive the behaviour of quantum

Einstein’s theory with renormalization group approach, which can give us the possibility to

study the running of the action functional when the momentum scale goes to infinity.

In fact, with renormalization group techniques we observe how the laws of physics change at

different lenght scale. Hence, with this formalism we can relate micro- and macro-physics of the

gravitational field. In particular, with the functional renomalization group approach, we can

introduce an effective action Γk, which depends on typical momentum scale k and which give

us all information about the system at lenght scale l ∼ 1
k (in flat spacetime). This idea can be

implemented considering the high and low momentum field modes of quantum fluctuations in a

different way. In a path integral approach this corresponds to integrate only those fluctuation

modes with momentum p less than k. In particular, one can construct an effective action, and

study the flow towards of the so called average effective action.

As we shall see in the chapter 1, we can interpolate between the microscopic action SB
(at high energies) and the full quantum effective action Γ (at low energy) with all quantum

flactuations taking into account and construct a functional Γk, which contains all informations

about the physics at scale k. An important feature of this formalism is that we can determine

the flow from the bare action SB (for k → +∞) down to quantum action Γk→0 and observe,

directly, how physics can change when the scale k varies. This can be implemented with

Wetterich’s equation [3].

In chapter 2, we generalize the functional RG technique for the Einstein’s theory with the

background field method, first used in non-Abelian Yang-Mills theory [4]. We employ an ansatz

on average effective action Γk ∼
∫
dx
√
gfk(R) as a function only on scalar curvature R, neglect-

ing more involved couplings such as RαβρσRαβρσ or RµνRµν . Finally, following [5], we rederive

a third order differential equation on fk(R), which governs the flow of average effective action,

and we extend the flow equation including the anomalous dimension of the fields. Contrary to

[5], we use a different metric decomposition involving the Newton’s constant and introduce the
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anomalous dimensions contribution to the flow equation. We study the polynomial truncation

and verify that our results are compatible with that obtained in literature.

In chapter 3, we use a different mathematical technique, introduced in [6], and we obtain a

different differential equation for fk(R). Authors in [6] evaluate the functional traces, present

in Wetterich’s equation, with spectral sums technique. In this thesis, we extend Benedetti and

Caravelli’s equation in general spacetime dimensions, verifing that the approximation used is

still valid in d dimensions and including the anomalous dimensions contribution. We also study

the polynomial truncation up to order n = 5.

In chapter 4 we introduce an alternative method for the evaluation of functional traces,

given in a different, perhaps more physical, cutoff scheme. This cutoff choice is indipendent of

f ′′k (R), so that the resulting flow equation is of second order, instead of third order, as in the

previous works. The usual techniques for trace evaluation cannot be used in this context and

we propose to employ the Euler-Maclaurin approximation for the spectral sums.

We studied a polynomial truncation and found a non-Gaussian UV fixed point with the

same qualitative properties of that obtained with the previous flow equations, i.e. with a ”third

order” cutoff scheme and different trace approximation methods.
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Chapter 1

Functional Renormalization Group

1.1 Functionals Approach to Quantum Field Theory

In Quantum Field Theory all physical information, such as scattering amplitudes, is stored

in Green functions or correlation functions. In Euclidean quantum field theory for a scalar field

φ(x), described by the action S[φ], the n-point Green functions are defined by

〈φ(x1)φ(x2)...φ(xn)〉 := N
∫
Dφφ(x1)φ(x2)...φ(xn)e−S[φ] (1.1)

where N is such that 〈1〉 = 1. We suppose that there exists a regularized definition of the

measure, in this case an ultraviolet cutoff Λ is imposed as a consequence of a spacetime lattice

discretization; so
∫
Dφ is replaced by

∫
ΛDφ. One can define the functional

Z[J ] =

∫
Λ
Dφe−S[φ]+

∫
Jφ (1.2)

where J is an external source coupled with φ through
∫
Jφ, which summarizes

∫
ddxJ(x)φ(x).

In terms of (1.2) the Green functions are obtained as

〈φ(x1)φ(x2)...φ(xn)〉 =
1

Z[0]

(
δ(n)Z[J ]

δJ(x1)...δJ(xn)

)
J=0

(1.3)

for this reason Z[J ] is called full Green functions generating functional. Equation (1.3) tells us

that Z[J ] contains all physical information about our scalar field theory.

One can also introduce another functional

W [J ] := lnZ[J ] (1.4)

which generates the connected Green functions or connected correlators, in analogous with Z[J ]

〈φ(x1)φ(x2)...φ(xn)〉c =

(
δ(n)W [J ]

δJ(x1)...δJ(xn)

)
J=0

(1.5)

1
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In most cases it is more convenient to do calculations with connected Green functions than with

reducible Green functions (1.1). A simple, but important, example is the 2-point connected

Green’s function, called non-perturbative propagator

Gc(x1, x2) ≡ 〈φ(x1)φ(x2)〉c = 〈φ(x1)φ(x2)〉 − 〈φ(x1)〉〈φ(x2)〉 (1.6)

where the last relation can be obtained inserting (1.4) in (1.5) and consider n = 2.

Whitin the functional approach in quantum field theory, there is a more efficient way to

store the physical information, introducing the Legendre transform of W [J ], one starts defining

ϕ =
δW

δJ
=

1

Z[J ]

δZ[J ]

δJ
= 〈φ〉J (1.7)

which means that new variable ϕ corresponds to the expectation value of the scalar field φ in

the presence of the source. Through the definition (1.7) one can finds explicitly the relation

J [ϕ]. So the Legendre transform reads

Γ[ϕ] :=

(∫
Jϕ−W [J ]

)
J [ϕ]

(1.8)

This is the quantum effective action for the scalar theory. Our definition of Γ guarantees that

Γ itself is a convex functional (every Legendre transform does share this properties).

Taking the functional derivative of (1.8)

J =
δΓ[ϕ]

δϕ
(1.9)

and then setting to zero the source, one obtains

δΓ[ϕ]

δϕ
= 0 (1.10)

which is the quantum equation of motion. This equation governs the dynamics of the expecta-

tion value of the field taking into account its quantum fluctuations.

We can expand the effective action

Γ[ϕ] =

∞∑
n=0

1

n!

∫
dx1...dxnΓ(n)(x1, ..., xn)ϕ(x1)...ϕ(xn) (1.11)

where the coefficients Γ(n) are the n-point one particle irreducible (1PI) Green functions or

proper verteces.

A simple, but foundamental, example is the 2-point 1PI Green function Γ(2)(x1, x2) which

is also the inverse of nonperturbative propagator defined above in eq. (1.6), as the following

relations show
δϕ(x1)

J(x2)
=

δ(2)W [J ]

δJ(x1)δJ(x2)
= G(2)(x1, x2) (1.12)
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δJ(x2)

δϕ(x1)
= Γ(2)(x1, x2) (1.13)

so we conclude that ∫
dzG(2)(x, z)Γ(2)(z, y) = δ(x− y) (1.14)

which tells us that Γ(2) is the inverse of the nonperturbative propagator.

Another way to define effective action, without introducing the Green’s functions generator

W [J ] and the Legendre transform, is the following: we perform a substitution variable φ→ φ+ϕ

in the functional integral in (1.2) and then impose J = J [ϕ]

e−Γ[ϕ] =

∫
Λ
Dφ exp

(
−S[φ] +

∫
δΓ[ϕ]

δϕ
(φ− ϕ)

)
(1.15)

If one use the expansion (1.11) in the last equation, one could find a infinitly system of coupled

differential equations for the proper vertex known as Dyson-Schwinger equations.

The functional approach provides a perfectly defined non-perturbative method in quantum

field theory, although an exact determination of Γ[ϕ] is found only for special and rare case.

1.2 Renormalization Group Flow

Consider a large momentum scale Λ and our scalar field theory described by the bare action

SB[φ]. The Functional Renormalization Group (FRG) approach is based on Wilson’s idea to

start with such a classical action SB (at momentum scale Λ) and then to integrate out all

flactuations successively from high to low momuntum scales. Once all flactuations are included

one may cover the full quantum theory described above. For a review see [4].

Referring to the effective action Γ, we fix a momentum scale parameter k and construct an

interpolating action Γk, the average effective action depending on the scale k, by imposing that

ΓΛ ' S as initial condition and Γk→0 = Γ. To construct the flow of Γk, from S to Γ, we modify

the definition of generating funcionals (1.2) (1.4) by introducing an IR regulator as follows

eWk[J ] = Zk[J ] :=

∫
Λ
Dφe−S[φ]−∆Sk[φ]+

∫
Jφ (1.16)

It is convenient to choose

∆Sk[φ] =
1

2

∫
ddp

(2π)d
φ(−p)Rk(p2)φ(p) (1.17)

quadradic in the field φ so as to modify the mass term in the action. The regulator function

Rk(p
2) must satisfy

lim
p2→0

Rk(p
2) > 0 (1.18)
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which implies that for p2 � k2 the regulator behaves Rk(p
2) ∼ k2, so all modes with momentum

lower then k acquire an effective mass m ∼ k. This additional term acts as a screen for the IR

modes and, as we shall see, modifies the full propagator of the theory. In the other regime

lim
p2→∞

Rk(p
2) = 0 (1.19)

all the UV above the scale k are unaffected by the cutoff. Moreover we see that

lim
k→0

Rk(p
2) = 0 (1.20)

which tells us that definition (1.16) for k → 0 gives the standard generating functional (1.2)

Zk→0[J ] = Z[J ], which implies (see below) Γk→0[ϕ] = Γ[ϕ].

The last conditions we impose on the cutoff function Rk reads

lim
k2→Λ→∞

Rk(p
2) =∞ (1.21)

so that in the UV regime we have the condition ΓΛ[φ] ' S[φ] (see below). We now proceed to

the definition of average effective action introducing

ϕ(x) =
δWk[J ]

δJ(x)
= 〈φ(x)〉J (1.22)

which allows to extract the functional J = Jk[ϕ]. The effective average action is then defined

by

Γk[ϕ] =

(∫
Jϕ−Wk[J ]

)
Jk[ϕ]

−∆kS[ϕ] (1.23)

which is a modified Legendre transform (so Γk is not a convex functional).

Following the same argument of the previous section, we can find a relation between the

nonperturbative modified propagator G
(2)
k (x1, x2), defined as the second functional derivative

of the scale dependent functional Zk[φ], and the average effective action.

Adapting eqs (1.12-1.13), we find∫
ddz(Γ

(2)
k +Rk)(x, z)G

(2)
k (z − y) = δd(x− y)

or in matrix notation

(Γ
(2)
k +Rk)G(2) = 1 (1.24)

which tells us that, in the presence of the IR cutoff, the inverse propagator contains explicitly

the cutoff function Rk, as expected. Note that in the limit k → 0 we have Rk → 0 and the

inverse propagator turns out to be the full quantum one Γ(2).

From now on, the aim is to determine the interpolating itermadiate trajectory between the

two limits of the average effective action, constructing a differential equation which captures
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the flow from the classical to the quantum action. Introducing the renormalization group time

t

t = ln
k

Λ
∂t = k∂k (1.25)

taking the derivative of Wk[J ]

∂tWk[J ] = − 1

2Zk[J ]

∫
Dφ
∫

ddp

(2π)d
φ(−p)∂tRk(p)φ(p)e−S−∆S+

∫
Jφ

= −1

2

∫
ddp

(2π)d
∂tRk(p)Gk(p) + ∂t∆Sk[φ]

(1.26)

where Gk(p) = 〈φ(−p)φ(p)〉k − 〈φ(−p)〉〈φ(p)〉k is the modified connected propagator. Taking

the derivative with rispect to t in (1.23), using (1.26) and considering that the functional Jk[φ]

depends explicitly on k, we obtain

∂tΓk[ϕ] =

∫
ϕ∂tJk[ϕ]− (∂tWk)[Jk[ϕ]]−

∫
δWk

δJ
∂kJk[ϕ]− ∂t∆Sk[ϕ]

=
1

2

∫
ddp

(2π)d
∂tRk(p)Gk(p)

using (1.24) we find the Wetterich [3] equation

∂tΓk[ϕ] =
1

2
Tr

[
∂tRk

(
Γ(2)[φ] +Rk

)−1
]

=
1

2

(1.27)

This equation governs the flow starting from the bare action S[φ] down to Γ[ϕ].

The importance of this equation can be summarized into the following properties

• No approximation are made in the derivation of Wetterich’s equation, so one usually

refers to ( 1.27) as Exact Renormalization Group Equation (ERGE).

• Contrary to Polchinsky equation, the microscopic action SΛ[φ] appears only as initial

condition at momuntum scale Λ.

• In this chapter we derived the Wetterich equation starting from the standard quantum

field theory viewed through Wilson’s eyes. Conversely, we can construct all properties of

quantum field theory starting from that equation, remembering that all physical infor-

mation are stored inside the effective average action, which can be obtained through the

limit k → 0 of solution of (1.27), at least formally. In the next section we show that an

approximation scheme in this approach is required.
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• In equation (1.27) the cutoff function Rk appears explicitly. So the consequence flow

depends on the choice of the cutoff, which, fortunately (or not), in most cases can be

choosen arbitrary, up to eqs (1.17-1.18-1.19-1.21), so to simplify the resulting equation.

The function Rk introduces a scheme dependence, nevertheless the initial ΓΛ ∼ S and

final point Γk=0 = Γ of the flow are scheme independent thanks to relation (1.17-1.18-

1.19).

• The ERGE has been derived via the path integral technique, defining the relative measure

imposing the lattice regularization method, so the UV bare action has been considered.

Since physics is stored into the renormalized, rather than bare, action, if we correctly

know Γk̂, given at a fixed momentum scale k̂, typically found measuring the coupling

costant at that energy scale, we can construct the relative flow, from k̂ to a general scale

k, using ERGE and find new physics at different energy scale. From this flow we can

construct the limit k → ∞ and search if the correct limit is found. Note that typically

the bare action is not the fixed point action, it is just close to it. Starting from the fixed

point one cannot move from it.

Starting from (1.27) one can construct ”immediatly” the one-loop approximation for the

full quantum effective action. Let us expand the effective average action into ~ expansion,

yelding Γk = S + ~Γ1−loop
k +O(~2), so that to one-loop order Γ

(2)
k = S(2) and the rhs of (1.27)

becomes a total derivative

∂tΓ
1−loop
k =

1

2
∂t Tr ln (S(2) +Rk)

after integration between k = 0 and k = Λ we finds

Γ1−loop = S +
1

2
Tr lnS(2) + const.

which is the standard formula given in many QFT books.

It is interesting to observe that, taking derivative of Wetterich’s equation, one can obtain

the flow for any proper vertex Γ
(n)
k . For example one has for Γ(2):

∂t
δ(2)Γk

δϕ(x)ϕ(y)
= Tr

[
1

(Γ
(2)
k +Rk)

δΓ
(2)
k

δϕ(x)

1

(Γ
(2)
k +Rk)

δΓ
(2)
k

δϕ(y)

∂tRk

(Γ
(2)
k +Rk)

]

− 1

2
Tr

[
δ(2)Γ

(2)
k

δϕ(x)δϕ(y)

∂tRk

(Γ
(2)
k +Rk)

]

= − 1

2

where the three- and four-point verteces represent δΓ
(2)
k /δϕ and δ(2)Γk/δϕδϕ, respectively. One

can have an infinite system of coupled equations.
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1.3 Need for truncation and projected theory-space

Wetterich’s equation has been derived in an exact way, unfortunately there are no example

in quantum field theory for which it can be resolved exatly. As we know, the average effective

action, as the full quantum one, must contain local and nonlocal terms which depend on

the mean field ϕ and only those which are allowed by the considered symmetry, for example

gauge transformations for Yang-Mills theory and diffeomorphisms invariance for gravity. The

difficulties arise since equation (1.27) is a highly complicated functional equation, so that

the space to which the solution Γk belongs is an infinite dimensional space of all functionals

of spacetime functions which is called theory-space. The usefullness of Wetterich’s equation

arise from the practicality when approximations are made. The appoximation which has been

choosen in this work is the method of operator truncation; the starting point is to make an

ansatz for the average effective action, for example

Γk[ϕ] =
N∑
n=1

gn(k)On[ϕ] (1.28)

in which On[ϕ] are a finite set of local or non-local functional of its argument which may be

choosen to not depend on scale k, whose dependence is stored only in the coefficients gn,k. In

other words, we project the full theory-space in a N -dimensional space coordinatised by the

coefficients gn,k; so the resulting flow equation can be obtained inserting (1.28) into equation

(1.27). The resulting flow is governed by a system of coupled differential equation

∂tΓk[ϕ] =
N∑
n=1

βn(k)On[ϕ] (1.29)

where βn(k) = ∂tgn(k) are the beta function associated with the coupling gn. Expressing also

the l.h.s. as a function of coupling gn, and introducing the dimensionless couplings g̃n(k) =

kdngn(k) in the spirit of renormalization group approach, one construct a new set of equations

k∂kg̃i(k) = Fi(g̃n(k)) (1.30)

whose solutions describe the flow for the coupling g̃i, and so for the truncated average effective

action (1.28). Equations (1.30) define a vector field F , with component Fi, on the truncated

N -dimensional theory space. Solution of equations (1.30) appears in the theory space as the

integral curve of vector field F . As we shall see below, the aim, in this work, is not only to

resolve completly equations (1.30), but to find a fixed point (see below for the definition) for

the vector field F .

Other choices for the average effective action exist, for example we can truncate into a (still)

infinite theory space making the ansatz

Γk[ϕ] =
N∑
n=1

On,k[ϕ] (1.31)
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where On,k[ϕ] is a (choosen) set of functional of mean field ϕ. With this choice, contrary to

ansatz (1.28), the operator Ok depends explicitly on momuntum scale k. Inserting (1.31) into

Wetterich equation, one obtains other functional equations for the operators Oi,k which, we

hope, are more simple than the starting flow equation.

1.4 Asymptotic safety

In standard perturbative quantum field theory, the Green’s functions, defined in the first

section, give infinities, as it is well known. The theory is said to be perturbative renormalizable

if this kind of infinities can be eliminated in any physical obrservable with fields’ or coupling

constants’ redefinition order by order in perturbation theory. The renormalizable theories give

finite predictive physical quantities as expansion of coupling constants.

The problem of quantum field theory of gravity, as we shall see, is the non renormaliz-

ability in the perturbative domain. This conclusion may show us that standard methods in

QFT are not consistent in the quantization of general relativity, leading to the expectation

of new physics at small lenght scale near the Planck lenght. Before proposing this idea, the

extension for renormalizability in the non perturbative regime may be considered; as we shall

see, asymptotically safe theories replace the perturbatively renormalizable theories in QFT.

The concept of asymptotic safety was introduced for the first time by Nobel laureate Steven

Weinberg [7] (for a review see [8]). For a practical introduction consider the scalar field theory

analized in previous sections and collect the coupling running constant into the expression

Γk(ϕ, gi) =
∑
i

gi(k)Oi(ϕ) (1.32)

The dependence of Γk on k is given by

∂tΓk(ϕ, gi) =
∑
i

βi(k)Oi(ϕ)

The two last relations seem identical to relations (1.28-1.29), but in this section we do not

consider any truncation, in relation (1.32) the full average effective action is consider.

The beta functions βi(k) determine how the coupling running constants depend with the

momentum scale. From dimensional analysis (see [8]) one can find that the beta functions for

dimensionless couplings g̃i = gik
−di (di is the canonical dimension of gi) are

β̃i(g̃j) ≡ ∂tg̃i = ai(g̃j)− dig̃i

where

ai(g̃j) = k−diβ(kdi g̃j ; k)

Since ai(g̃j) is dimensionless, it does not depend on k (remember that β functions are indipen-

dent of Λ). So βi depend on k only via the g̃i(k).
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The difference between the two effective actions Γk and Γk−δk is given by a functional inte-

gral over the field modes between k and k− δk; this functional integral do not give divergences

and the beta functions are automatically finite at momentum scale k − δk. So if one knows

the coupling constants at a scale k, the flow equation can be integrated and gives the finite

running coupling at all energy scale. If the couplings gi can be measured at the scale k0, so one

can construct the total RG trajectory in theory space and take the limit in either direction.

The limit k → 0 gives the full quantum effective action from which one obtains all quantum

physical information, the other limit k →∞ give the UV properties of the theory.

If the trajectory can not be integrated beyond a momentum scale Λ and the limit k → ∞
makes no sense. The QFT is said non-perturbative non-rinormalizable and the theory, valid

only for scales k < Λ, is called effective field theory. Over the scale Λ some new physics is

expected to appear.

When the limit k →∞ makes sense, the dimensionless coupling g̃i(k) tend to finite values

g̃∗ and the physical dimensionless quantities remain finite for all momentum scale. In fact,

cross-section and decay rates can by expressed as functions of only dimensionless quantities,

for example the cross-section σ = k−2σ̃, where the dimensionless cross-section σ̃ depends only

on dimensionless kinematical variables and dimensionless couplings. So if the limit k → ∞
gives finite couplings, the cross-section remains finite to all momentum scale. The correct limit

can be reached if a fixed point (FP) for beta functions exists, i.e. by definition β̃i(g̃
∗) = 0.

Before giving a correct definition for ”asymptotic safety”, we must distinguish between

relevant and irrelevant couplings. Let us define the UV critical surface, associated to our fixed

point to be the set of points in theory space which is attracted towards the FP in the UV limit.

We can compute the tangent space, at the FP, and obtain the flow in the vicinity of the fixed

point through the linearization of flow equation

∂tg̃i(k) = Mij(g̃j(k)− g̃∗j ) (1.33)

with

Mij ≡
∂β̃i

∂j̃

∣∣∣
g̃∗

Making a linear transformation zi = Uij(g̃j(k)− g̃∗j ) we can diagonalize the system (1.33)

dzi
dt

= λizi

where the (complex) λi are the eigenvalues of M. The last equation can be integrated immediatly

and the solutions are zi(t) = eλitzi(0). The solutions with <λi < 0 converge towards the fixed

point and the relative coupling zi is said relevant coupling. The couplings with <λi > 0 is

called irrelevant since the relative trajectory zi(t) does not converge into the fixed point. Last,

for <λi = 0 no informations can be obtained with linearized analysis.

Since the dimension of the UV critical surface and of its tangent space is the same, then

the dimensionality of UV critical surface is determined by the number of eigenvalues of M with
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negative real part. We expect that the measured dimensionless couplings lie in the UV critical

surface, the physical sarface of theory space.

In fact, if the critical surface is (finite) n-dimensional, so the quantum theory is completly

determined by the measurament of n couplings, which determine the other irrelevant couplings

(if they exist). In the case of infinite dimensional critical surface, the theory can not be

predictive.

From the last argument we can give the condition for a quantum field theory to be well

behaved in the UV regime: the Functional RG trajectory in theory space must possess an UV

fixed point and the relative UV critical surface must have a finite number of relevant directions.

Such a theory is called asymptotically safe, so it is non-perturvative rinormalizable (free of

divergences) and predictive. A simple example is represented by the non-Abelian gauge theory

with su(N) Lie algebra; this theories have an UV Gaussian FP (fixed point with g̃∗YM = 0)

and are asymptotically free, in the sense that the coupling gYM tends to zero when the energy

grow up, as it is known thanks to the standard perturbative methods of QFT.

In the next section we analize the ”more complicated” case of quantum field theory of

gravity.

1.5 Quantum field theory of General Relativity

With the success of perturbative renormalizability and relative application in the particle

physics for gauge theory, many theoretical physicists try to apply the standard methods of

quantum field theory using the dimensional regularization[9], successful for Yang-Mills theory.

In paper [10], the authors used the standard perturbative technique for pure gravity, in this

case the counterterms at one loop level reads

L1−loop
c.t. =

1

ε

√
g

(
1

120
R2 +

7

20
RµνR

µν

)
(1.34)

but if we consider the equations of motion, the On-shell condition in pure gravity imposes

Rµν = 0 R = 0 (1.35)

so that the counterterm (1.34) vanishes.

The two loop contribution to counterterms was calculated for the first time in [11], in which

it was observed that not all the counterterms vanish for the On-shell condition (1.35). The non

zero contribution gives

L2−loop
c.t. =

209

2880(4π)2

1

ε

√
gRαβµνR

µν
ρσR

ρσ
αβ (1.36)

No terms in Einstein-Hilbert Lagrangian can be redefined to inglobe this counterterm.
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The case of gravity coupled to matter was analized also in [10], in which they consider

only a scalar field. The one loop counterterms give (taking into account the relative On-shell

conditions)

L1−loop
c.t. =

203

80ε

√
gR2

We conclude that, in pure gravity non rinormalizable (in perturbative sense) counterterms

appear at two loop level, while in gravity coupled to matter at one loop.

This conclusion allows us to exclude the perturbative treatment of the quantum field theory

of General Relativity and lead us to take into account a full non-perturvative quantum theory

of gravitation.

Althogh this discouraging results in perturbative gravity, in the original paper [7] was

sugested that the quantum field theory of gravity can make sense in the non perturbative

domain. In fact, for the first time in this paper Nobel laureate Steven Weinberg introduced the

concept for an asymptotically safe field theory, which we discussed in the previous section.
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Chapter 2

Renormalization Group Flow for

Quatum Gravity

2.1 Construction of Functional RG for gravity

In order to extend the formalism of Functional Renormalization Group (FRG), applied in

previous chapter for a scalar theory, two aspects have necessary to be point out. First, the

full quantum metric γµν must be decomposed into a general background metric ḡµν plus the

quantum fluctuations (not necessarily small) hµν because we want to use the background field

method and keep the gauge invariance on it 1

γµν = ḡµν + hµν (2.1)

Second, in quantum field theory of gravity we must take into account a special local sym-

metry, the general coordinates transformations, or diffeomorfisms invariance. Consider an

infinitesimal coordinates transformation x′µ(x) = xµ − ε(x), we know that the definition of

local variation for the metric tensor is

δγµν = γ′µν(x)− γµν(x) (2.2)

and from the general coordinates transformation γ′µν(x′) = γµν(x) + ∂µεν + ∂νεµ, we find

δγµν = Lεγµν = ∇µεν +∇νεµ (2.3)

which links the local variation for the metric tensor and the Lie derivative associated to the

vector εµ∂µ. Following the trick by Faddeev and Popov, the (correct) definition of the functional

generator of correlation functions reads

Zk[sources] =

∫
DhDcDc̄ exp

{
− SEH [γ]− Sgf [h; ḡ]− Sgh[c̄, c; ḡ]

−∆kS[h, c̄, c; ḡ]− Ssources

} (2.4)

1For the construction of functional RG in gravity we follow Reuter [12]

13
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where SEH is the usual Einstein-Hilbert action we start with

SEH [γ] =
1

16πG

∫
ddx
√
γ (2Λ−R) (2.5)

Using the Faddeev and Popov method to quantize a dynamical system with a local symmetry,

the gauge fixing Sgf and ghost Sgh actions appears in definition of (2.4). The gauge fixing

action reads

Sg.f.[h; ḡ] =
1

2α

∫
ddx
√
ḡFα[h; ḡ]Fβ[h; ḡ]ḡαβ (2.6)

which implements the conditions Fα[h; ḡ] = 0. Together with the gauge fixing term, one adds

the ghost action, with Grassmann valued fields c̄µ and cµ

Sgh[c̄, c; ḡ] =

∫
ddx
√
ḡc̄µ

δFµ

δερ

∣∣∣∣
ε=0

cρ (2.7)

the sources term

Ssources[t, σ, σ̄; ḡ] =

∫
ddx
√
ḡ [tµνhµν + σ̄µcµ + c̄µσµ] (2.8)

and the cutoff dependent term

∆Sk[h, c̄, c; ḡ] =
1

2

∫
ddx
√
ḡhµνRgrk [ḡ]µναβhαβ −

∫
ddx
√
ḡc̄µRghk [ḡ]µνcν (2.9)

The most common choice for the gauge fixing condition is

Fµ =

(
∇̄ρhρµ −

1 + ρ

d
∇̄µ
)

(2.10)

where the parameter ρ is gauge parameter as α. For ρ = d/2−1 in flat spacetime the condition

Fα = 0 reduces to the standard harmonic gauge condition ∂µhµν = 1
2∂νh. The corresponding

ghost action will be calculated later.

The next step is to define the functional generator for connected Green function as in the

previous chapter

exp (−Wk[t, σ̄, σ]) =

∫
DhDcDc̄ exp

{
− SEH [γ]− Sgf [h; ḡ]− Sgh[c̄, c; ḡ]

−∆kS[h, c̄, c; ḡ] + Ssources[t, σ, σ̄; ḡ]
} (2.11)

Given the functional W we introduce the classical fields

h̄µν =
1√
ḡ

δWk

δtµν
C̄µ =

1√
ḡ

δWk

δσµ
Cµ =

1√
ḡ

δWk

δσµ

where with Grassmann variables the left derivative is understood.

So, the average effective action for quantum gravity is defined by

Γk[h̄, C̄, C; ḡ] = Wk[t, σ, σ̄; ḡ]−
∫
ddx
√
ḡ
[
tµν h̄µν + σ̄µCµ + C̄µσµ

]
−∆Sk[h̄, C̄, C; ḡ] (2.12)
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Using the same algebra of chapter 1, one can construct the equation which governs the flow for

the average effective action

∂tΓk[h̄, C̄, C] =
1

2
Tr

[(
Γ

(2)
k +Rk

)−1

h̄h̄
(∂tRk)h̄h̄

]
− Tr

[(
Γ

(2)
k +Rk

)−1

C̄C
(∂tRk)C̄C

]
(2.13)

or

∂tΓk[h̄, C̄, C] =
1

2
STr

[(
Γ

(2)
k + Rk

)−1
(∂tRk)

]
=

1

2
− (2.14)

where we have introduced the short-hand notation(
Γ

(2)

k,h̄h̄

)µνρσ
=

1√
ḡ

δ

δhµν

1√
ḡ

δΓk
δhρσ(

Γ
(2)

k,C̄C

)µν
=

1√
ḡ

δ

δCµ

1√
ḡ

δΓk
δC̄ν

and in diagrammatic rapresentation (2.14) the double wiggy line refers to graviton nonpertur-

bative propagator and the dashed line to ghosts propagator. In equation (2.13), the ghosts

trace part appears with a minus sign, which has a physical meaning. Ghost and anti-ghost

fields appear in the definition of Z[sources], together with gauge fixing term, with the aim of

cancelling the redundant functional integration over the non physical gauge orbits. As we shall

see below, thanks to the minus sign which appears in ghosts part of Wetterich’s equation, the

non physical ghosts degrees of freedom cancel almost exactly with the non physical degrees of

freedom in graviton decomposition.

If we consider the average effective action as a functional of g and ḡ instead of h, we can

define

Γ̂k[g, ḡ, C̄, C] = Γk[h = g − ḡ, C̄, C; ḡ] (2.15)

Since the cutoff Rk is constructed by giving us the full quantum effective action in the limit

k → 0

Γ[h̄, ḡ] = lim
k→0

Γk[h̄, C̄ = 0, C = 0; ḡ] (2.16)

This quantum action is the generator of 1PI Off-shell Green functions, which depends on the

background metric ḡµν . But the full quantum effective action which generates physical On-shell

Green functions is not (2.16), instead of it it is obtained from taking the limit k → 0 of (2.15)

and imposing h = 0, and the result is diffeomorfisms invariant

Γ̂[g] = lim
k→0

Γ̂k[g, ḡ = g, C̄ = 0, C = 0] = lim
k→0

Γk[h̄ = 0, C̄ = 0, C = 0, ḡ = g] (2.17)

This definition for full quantum action is background indipendent and diffeomorfism invariant.

The quantum equation for General Relativity reads [13]

δΓ̂[g]

δgµν
= 0 (2.18)
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The average effective action satisfies an integro differential equation, as in the scalar case

exp
{
−Γk[h̄, C̄, C; ḡ]

}
=

∫
DhDc̄Dc exp

{
− SEH − Sgf − Sgh −

∫
ddx
[
(hµν − h̄µν)

δΓk
δh̄µν

+ (c̄µ − C̄µ)
δΓk
δC̄µ

+
δΓk
δCµ

(cµ − Cµ)
]
−∆Sk[h− h̄, c̄− C̄, c− C; ḡ]

}
(2.19)

In the limit k → +∞ the leading term into the exponential is

exp {−∆Sk} ∼ δ[h− h̄]δ[c− C]δ[c̄− C̄] (2.20)

so the functional integral became trivial and one finds

Γk→+∞[h̄, C̄, C; ḡ] = SEH [ḡ + h̄] + Sgf [h̄; ḡ] + Sgh[h̄, C̄, C; ḡ] (2.21)

but the behaviour for On-shell 1PI Green functions generator (2.15) under the limit k → +∞
is

Γ̂k→∞ = SEH (2.22)

2.2 Tranverse-traceless decomposition

In the contruction of a FRG equation for gravity, the inverse nonperturbative propagator

Γ(2)+Rk may depends on complicated composition of covariant derivatives, both in gravity and

in ghost components. Transverse traceless decomposition, as we shall see, partially diagonalizes

the argument of functional trace in FRGE; with this choice Γ(2) depends only on Laplacian

operator ∆ = −gµν∇µ∇ν , hence the funcional trace can be approximated with Heat Kernel

techniques. The (type-1) Transverse-Traceless (TT) decomposition for gravity fluctuations

(used in [5, 14]) is defined by

hµν = hTµν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄νσ −
1

d
ḡµν∇̄2σ +

1

d
ḡµνh (2.23)

with the constraints

ḡµνhTµν = 0 ∇̄µhTµν = 0 ∇̄µξµ = 0 (2.24)

For ghost fields

Cµ = cTµ + ∇̄µc C̄µ = c̄Tµ + ∇̄µc̄ (2.25)

with conditions

∇̄µcTµ = 0 ∇̄µc̄Tµ = 0 (2.26)

The presence of covariant derivatives in this decomposition gives two consequences. First,

since (2.23) and (2.25) is a substitution in the functional integral (2.11), non trivial Jacobians

appears when we pass from Dh to DhTDξDσDh and the same for the ghost secto. Secondly,



2.2 Tranverse-traceless decomposition 17

not all modes of the component fields contribute to the metric fluctuations and ghost fields.

In (2.23), if ξµ is a Killing vector it does not contribute the modes of hµν ; the same for the

constant mode of σ and the vector Cµ = ∇µσ which satisfies the conformal Killing equation

∇̄µCν + ∇̄νCµ −
2

d
ḡµν∇̄αCα = 0 (2.27)

These non-physical modes must be excluded in the computation of the functional trace in

FRG equation. A deteiled analysis can be made if one chooses a d-dimensional sphere Sd as a

background, which admits d(d+1)/2 Killing vectors, none of which do contribute to tensor hµν
as explained. All and only Killing vectors are eigenvectors of ∆ = −ḡµν∇̄µ∇̄ν corresponding to

the degenerate eigenvalue R̄/4, as the C.1 shows. For the scalar field σ, there exist (d+2) modes

which do not contribute to metric fluctuations, the first corresponds to the constant mode, the

only eigenvector with null eigenvalue, as expected. The remaining (d+ 1) modes correspond to

the (d+1)-degenerate eigenvalue R̄/3; this scalars are proportional to the Cartesian coordinates

of Rd+1, the embedding for Sd.

The computation of the Jacobians for the decomposition (2.23) starts from the inner product

for the metric tensor

〈h, h〉 ≡
∫
ddx
√
ḡhµν ḡ

µαḡνβhαβ

=

∫
ddx
√
ḡ
[
hTµνh

Tµν − 2ξµ
(
∇̄2gµν + R̄µν

)
ξν

− 4ξµR̄
µν∇̄νσ + σ

[d− 1

d
(∇̄2)2 + ∇̄µR̄µν∇̄ν

]
+

1

d
h2
]

(2.28)

which is orthogonal up to the mixing ξ−σ terms. For the ghost fields the scalar product reads

〈C̄, C〉 ≡
∫
ddx
√
ḡC̄µC

µ =

∫
ddx
√
ḡ
[
C̄TµC

Tµ − c̄∇̄2c
]

(2.29)

Note that the mixing ξ − σ terms vanishes when we fix a maximally symmetric spacetime

(R̄µν = R̄
d ḡµν) as a background.

With relations (2.28) and (2.29) we can compute the Jacobians considering∫
Dhµν exp

[
−1

2
〈h, h〉

]
=

Jgr

∫
DhTDξDσDh exp

[
−1

2

∫
ddx
√
ḡ

(
hTµνh

Tµν +
1

d
h2 + [ξµ, σ]M (µ,ν)[ξν , σ]T

)] (2.30)

where M (µ,ν) is a (d+ 1)× (d+ 1)-matrix whose first d columns act on vector field ξ and the

last columns acts on the σ field. The matrix M (µ,ν) reads

M (µ,ν) =

(
−2
[
ḡµν∇̄2 + R̄µν

]
−2∇̄2∇̄µ

2∇̄ν∇̄2 ∇̄ν∇̄2∇̄ν − 1
d(∇̄2)2

)
(2.31)
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The hT -dependent and h-dependent parts in (2.30) can be absorbed into the normalization of

the measure, so that the Jacobians reads

Jgr =
(

Det’
[
M (µ,ν)

])1/2
≡
(

Det’ Ĵgr

)1/2
(2.32)

where the prime in functional determinant remembers us to exclude the non-physical modes in

the spectrum of eigenvalue. For the ghost fields we find∫
DCµDC̄ν exp

[
−〈C̄, C〉

]
=

Jgh

∫
DCTDC̄TDcDc̄ exp

[
−
∫
ddx
√
ḡ
(
C̄TµC

Tµ − c̄∇̄2c
)] (2.33)

so we can extract the Jacobians for the ghost sector

Jgh =
(
Det’

[
−∇̄2

])−1 ≡
(

Det’ Ĵgh

)−1
(2.34)

There exist other choices for the decomposition for the gravity fluctuations. We recall what

is used in [6], which modifies the previous decomposition (2.23) into

hµν = hTµν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄νσ +
1

d
ḡµν h̄ (2.35)

with the constraints

ḡµνhTµν = 0 ∇̄µhTµν = 0 ∇̄µξµ = 0 (2.36)

The new variable h̄ is related to the previous h by relation h̄ = h − ∇̄2σ. Following the same

argument for previous variables one can construct the Jacobians of transformation (2.35). First

the scalar product

〈h, h〉 = hTµνh
Tµν − 2ξµ

(
∇̄2ḡµν + ∇̄µ∇̄ν

)
ξν + σ∇̄µ∇̄2∇̄νσ

+
1

d
h̄2 − 4ξµ∇̄2∇̄µσ +

2

d
σ∇̄2h̄

with a maximally symmetric background spacetime we have

〈h, h〉 = hTµνh
Tµν − 2ξµ

(
∇̄2 +

R

d

)
ξµ + (σ, h̄)

[
T (∇2)

]
(σ, h̄)T

with the scalar-scalar matrix

T (∇2) =

( (
∇̄2 + R

d

)
∇̄2 1

d∇̄
2

1
d∇̄

2 1
d

)
So we can calculate the Jacobians for gravity decomposition (2.35)

Jgr,B1 =

(
Det’

[
−2

(
∇̄2 +

R

d

)])−1

≡
(

Det’ Ĵgh,B1

)−1
(2.37)
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for spin-one field ξ and

Jgr,B0 =

(
Det’

[
d− 1

d2

(
∇̄2 +

R

d− 1

)
∇̄2

])−1

≡
(

Det’ Ĵgh,B0

)−1
(2.38)

for scalar part. Let us discuss how to treat this Jacobians for the FRG equation; there exist

two methods. By the first method we can add addictional trace to FRG equation, as it is done

in equation (2.65), with the same excluded modes of the original field. To explain the second

method consider for example the Jacobians

J =
(
Det

[
−∇̄2

])1/2
we can use the trick of Faddeev and Popov and exponentiate into the definition of Zk[sources]

introducing a scalar η and a complex Grassmann-valued ζ ζ̄ field and using the formula(
Det

[
−∇̄2

])1/2
=
(
Det

[
−∇̄2

])−1/2 (
Det

[
−∇̄2

])
=∫

DηDζDζ̄ exp

{
−
∫
ddx
√
ḡ

(
1

2
η(−∇̄2)η + ζ̄(−∇̄2)ζ

)}
So we will introduce the field η, ζ, ζ̄ into the FRG equation as the standard fields.

2.3 fk(R) trunctation ansatz

The aim of the equation (2.13) is to describe the flow from the action SEH at a large

momuntum scale down to the full quantum effective action Γk=0. First, from now on, we use

an alternative metric decomposition, different from previous sections

gµν = ḡµν + κkhµν (2.39)

with we add κk which governs the vertex expansion. In fact, with this choice, the n-th proper

vertex is proportional to (κk)
n−2. One impose κk = 1, which imply that (2.39) becomes

the standard metric decomposition followed in most papers on asymptotically safety quantum

gravity. Another choice may be the following, κk =
√

16πGk, first used in [15]. From now, we

consider the latter choice. For reasons explained above, we are forced to make an ansatz for

the average effective action; in this thesis we choose the following projection for Γk

Γk[h, C̄, C, b; ḡ] =
1

κ2
k

∫
ddx
√
gfk(R) + Γk,g.f. + Γk,gh−c + Γk,gh−b (2.40)

As explained below, we have four fields in the argument of our effective action; first the quantum

flactuation hµν for metric degrees of freedom, the standard ghost and antighost Grassmann-

valued fields and an addictional (commuting) ”third ghost” field bµ. Since we want to study

the anomalous dimensions that these fields can acquire in the vicinity of fixed point, in the

spirit of renormalization group we redefine fields flactuations according to

hµν → Z
1/2
k,h hµν Cµ → Z

1/2
k,c Cµ C̄µ → Z

1/2
k,c C̄µ bµ → Z

1/2
k,b bµ (2.41)
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and define anomalous dimensions through the usual formulae

ηa = −
∂tZk,a
Zk,a

a = h, c, b (2.42)

Now, we explicite each contribution in ansatz (3.1). First, the gauge fixing condition reads

(after fields redefinition)

Γk,g.f.[h; ḡ] =
Zk,h

2

∫
ddx
√
ḡFµ[h; ḡ]GµνFν [h; ḡ] (2.43)

with

Fµ[h; ḡ] = ∇̄ρhρµ −
1 + ρ

d
∇̄µh (2.44)

Gµν = (α+ β∇̄2)ḡµν

An addition term, proportional to β∇̄2, is added if one would consider higher derivative

gravity[16]. If one consider a classical action proportional to high power of scalar curvature, the

resulting equations of motion usually contains high derivative term. To be more specific, if we

choose the bare action SBare =
∫
dd
√
gf(R), the corresponding equations of motion depends

on four derivative of metric tensor. So it is natural to assume that also the gauge fixing term

contains four covariant derivatives. We continue with a general exposition taking α, β 6= 0

before to make a gauge choice in the trace evaluation.

If the bare action contains R2 (through derivative) terms and not only Γk, one may be wor-

ried of ghost instabilities in the graviton propagator. It has been shown that this bad behaviour

can be eliminated in maximally symmetric backgrounds by a suitable field redefinition.

The ghosts action follows from the gauge condition through the exponentiation of Faddeev-

Popov functional determinant. With the choice (2.44), an addition ghost action is required

[16], generally called third ghost term; so the total ghosts action becomes

Γk,gh = Γk,gh−c + Γk,gh−b

where Γk,gh−c is the standard ghosts action obtained from the exponentiation of Faddeev-Popov

determinant

Γk,gh−c[h, C̄, C; ḡ] = Zk,c

∫
ddx
√
ḡC̄µG

µν δFν
δερ

∣∣∣∣
ε=0

Cρ (2.45)

where εµ corresponds to infinitesimal general coordinates transformation x′µ = xµ − εµ. While

the additional third ghost reads

Γk,gh−b[b; ḡ] =
Zk,b

2

∫
ddx
√
ḡbµ(α+ β∇̄2)bµ (2.46)

where the field bµ, contrary to standard ghosts, is a commuting Lorentz vector field. Note that

if we consider the gauge choice β = 0 the third ghost contribution (2.46) can be absorbed by
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the functional measure, as expected. Let us calculate explicitly the contribution (2.45) for the

standard ghosts starting from the infinitesimal gauge transformation

δFµ = ∇̄ρδhρµ −
1 + ρ

d
∇̄νδh

recalling that κkδhµν = Lεgµν = ∇µεν +∇νεµ and κkδh = 2ḡµν∇µεν we get

δFµ[h; ḡ]

δεν
= ḡµρḡσλ∇̄λ(gρν∇σ + gσν∇ρ)−

2(1 + ρ)

d
ḡρσ ḡµλ∇̄λgσν∇ρ

which gives the ghosts action

Γk,gh−c[C̄, C; ḡ] = Zk,c

∫
ddx
√
ḡC̄µ(α+ β∇̄2)

[
ḡµρḡσλ∇̄λ(gρν∇σ + gσν∇ρ)

− 2(1 + ρ)

d
ḡρσ ḡµλ∇̄λgσν∇ρ

]
Cν

(2.47)

According to FRG equation, only after the second variation we can put g = ḡ inside the bracket

and consequently calculations simplify. Since the second variation for (2.47) is trivial we can

put from now g = ḡ and obtain

Γk,gh−c[C̄, C; ḡ] = Zk,c

∫
dd
√
ḡC̄µ(α+ β∇̄2)

[
ḡµν∇̄2 +Rµν +

d− 2− 2ρ

d
∇̄µ∇̄ν

]
Cν (2.48)

Only in higher order variations the dependence on the metric fluctuations would play a role.

Remember that action (2.47) contains at least three and four point interactions between ghost

and graviton field.

After imposing the ansatz (2.40), we proceed in construction of Wetterich’s equation for

gravity (2.13). The steps for calculation can be summarized in 3 points: 1. calculation of

second variation for ansatz (3.1) and corresponding Γ
(2)
k 2. cutoff scheme and gauge choice in

order to make important simplification for next step 3. calculation of trace with Heat Kernel

technique, used in [5, 14] or with ”sum of eigenvalue” approximation method [6]. Clearly, in

both cases, the FRG equation reduces to a nonlinear partial differential equation for function

fk(R).

Let us start with the first step, providing the calculation of second variation for our ansatz.

Taking the second variation of
∫
ddx
√
gfk(R)

δ(2) 1

κ2
k

∫
ddx
√
gfk(R) =

∫
ddx

[
δ(2) (

√
g) fk(R) + f ′k(R)2δ (

√
g) δR

+f ′k(R)
√
gδ(2)R+

√
gf ′′k (R) (δR)2 ]

(2.49)

with the tensor variations, given in Appendix A, and taking into account (2.39) and redefinition



22 2. Renormalization Group Flow for Quatum Gravity

(4.2) we obtain

δ(2)

∫
ddx
√
gfk(R) = Zk,h

∫
ddx
√
g

[
f ′′k (R)

(
RαβhαβR

µνhµν − 2Rµνhµν∇α∇βhαβ

+ 2Rµνhµν∇2h+ hµν∇µ∇ν∇α∇βhαβ − 2h∇2∇β∇αhαβ + h(∇2)2h
)

+ f ′k(R)
(
−Rµνhµνh−

1

2
h∇2h+

1

2
hµν∇2hµν + hµαhαβR

β
µ

+ hµνR
µρνσhρσ − hνµ∇µ∇ρhρν + h∇µ∇νhµν

)
+ fk(R)

(1

4
h2 − 1

2
hµνh

µν
)]

(2.50)

Only after the second variation (2.50) we impose g = ḡ with a maximally symmetric back-

ground metric. From now on we eliminate the ”bar” in metric and curvature tensors which

refers to background; all geometric quantity refers to the d-dimensional sphere.

We use the transverse traceless decomposition (2.23) to diagonalize the second variation

of Γk. Also, this decomposition allows us to distinguish between the physical and non phys-

ical components in the quantum fluctuations hµν . The explicitly calculation can be found in

Appendix B

ΓhTµνhTαβ
=
Zk,h

2

[
f ′k(R)

(
∇2 +

2(d− 2)

d(d− 1)
R

)
− fk(R)

]
δµν,αβ (2.51)

where δµν,αβ = 1
2(gµαgνβ + gµβgνα).

Γ
(2)
ξµξν

= Zk,h

(
∇2 +

R

d

)[
(α+ β∇2)

(
∇2 +

R

d

)
− 2R

d
f ′k(R) + fk(R)

]
gµν (2.52)

The scalar part gives

Γ
(2)
hh =Zk,h

d− 2

4d

[
4(d− 1)2

d(d− 2)
f ′′k (R)

(
∇2 +

R

d− 1

)2

+
2(d− 1)

d
f ′k(R)

(
−∇2 − R

d− 1

)
− 2R

d
f ′k(R) + fk(R)

]
− ρ2

d2

[
α− β

(
−∇2 − R

d

)]
∇2

(2.53)

Γ
(2)
hσ =Zk,h

d− 1

d2

[
(d− 1)f ′′k (R)

(
−∇2 − R

d− 1

)
+
d− 2

2
f ′k(R)

+ ρ

(
α− β

(
−∇2 − R

d

))]
∇2

(
∇2 +

R

d− 1

) (2.54)

Γ(2)
σσ = Zk,h

d− 1

2d

[
2(d− 1)

d
f ′′k (R)∇2

(
∇2 +

R

d− 1

)
− d− 2

d
f ′k(R)∇2 +

2R

d
f ′k(R)− fk(R)

+
2(d− 1)

d

(
−∇2 − R

d− 1

)(
α− β

(
−∇2 − R

d

))]
∇2

(
∇2 +

R

d− 1

)
(2.55)
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At the begining of section we computed the total ghosts action, which contains two terms, first

the standard (anti-commuting) vector-ghost term

Γk,gh−c = Zk,c

∫
ddx
√
ḡC̄µG

µν δFν
δερ

Cν

=

∫
ddx
√
ḡC̄µ(α+ β∇2)

(
gµν∇2 +Rµν +

d− 2− 2ρ

d
∇µ∇ν

)
Cν

(2.56)

and the (commuting) vector third ghost

Γk,gh−b = Zk,b
1

2

∫
ddx
√
ḡbµ(α+ β∇2)bµ

As for metric fluctuations, we introduce a decomposition into transverse (cT , bT ) and lon-

gitudinal (c, b) ghosts fields

C̄µ = c̄Tµ +∇µc̄ Cµ = cTµ +∇µc bµ = bTµ +∇µb

with the constraints

∇µcTµ = 0 ∇µcTµ = 0 ∇µbTµ = 0

According to this choice, the resulting variations give

Γ
(2)

c̄Tµ c
T
ν

= Zk,c(α+ β∇2)

(
∇2 +

R

d

)
gµν

Γ
(2)
c̄c = −Zk,c

2(d− 1− ρ)

d

(
α+ β

(
∇2 +

R

d

))(
∇2 +

1

d− 1− ρ
R

)
∇2

Γ
(2)

bTµ b
T
ν

= Zk,b(α+ β∇2)gµν

Γ
(2)
bb = −Zk,b

(
α+ β

(
∇2 +

R

d

))
∇2

2.4 Cutoff scheme and gauge choice

The functional RG equation (2.13) requires the choice of a Cutoff function Rk which,

according to Wilson’s idea analized in the first chapter, must be fixed in such a manner that

relations (1.17-1.18-1.19) are safisfied. In the case of gravity, the cutoff Rk, is a matrix-valued

function as Γ(2). We choose the cutoff function in such a way that the calculation of the

nonperturbative propagator
(
Γ

(2)
k + Rk

)−1
becomes simple. We make the following choice

Γ
(2)
k (−∇2) + Rk(−∇2) = Γ

(2)
k

(
Pk(−∇2)

)
(2.57)

where Pk(−∇2) = −∇2 + rk(−∇2) and rk(z) is the single-valued function which must obeys to

relations (1.17), (1.18) and (1.19).
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Following [5] we choose the gauge ρ = 0 and proceed in parallel with two different choices

for parameters α and β. In one case we have α→ +∞ and β = 0, called α−gauge, in the other

case we impose β →∞ and α = 0, called β−gauge.

Given the matrix elements of Γ
(2)
k , obtained in the previous section, and using (2.57), we

find for the tensorial part of cutoff function (from now on d = 4 and ∆ = −∇2)

Rk(∆)hTµν ,hTαβ
= −Zk,h

1

2
f ′k(R) (Pk(∆)−∆) δµν,αβ = −Zk,h

1

2
f ′k(R)rk(∆)δµν,αβ (2.58)

for the vector part in the α−gauge and β−gauge rispectively

Rk(∆)ξµ,ξν
α→∞

= Zk,hα

[(
Pk(∆)− R

4

)2

−
(

∆− R

4

)2
]
gµν (2.59)

Rk(∆)ξµ,ξν
β→∞

= −Zk,hβ

[(
Pk(∆)− R

4

)2

Pk(∆)−
(

∆− R

4

)2

(∆)

]
gµν (2.60)

for the scalar part

Rk(∆)σ,σ
α→∞

=
9Zk,h

16
α

[(
Pk(∆)− R

3

)2

Pk(∆)−
(

∆− R

3

)2

(∆)

]
(2.61)

Rk(∆)σ,σ
β→∞

= −
9Zk,h

16
β

(
Pk(∆)− R

4

)(
Pk(∆)− R

3

)2

Pk(∆)

+
9Zk,h

16
β

(
∆− R

4

)(
∆− R

3

)2

∆

(2.62)

Rk(∆)h,h =
9Zk,h

16
f ′′k (R)

[(
Pk(∆)− R

3

)2

−
(

∆− R

3

)2
]

+
3Zk,h

16
f ′k(R) (Pk(∆)−∆)

(2.63)

Rk(∆)h,σ =
9Zk,h

16
f ′′k (R)

[(
Pk(∆)− R

3

)2

Pk(∆)−
(

∆− R

3

)2

∆

]

+
3Zk,h

16
f ′k(R)

[(
Pk(∆)− R

3

)
Pk(∆)−

(
∆− R

3

)
∆

] (2.64)

and similarly for ghosts contributions.

Taking into account the transverse traceless decomposition and relative Jacobians, the
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resulting Wetterich’s equation (2.13) becomes

∂tΓk =
1

2
Tr(2)

∂tRhT ,hT

Γ
(2)

hT ,hT
+ RhT ,hT

+
1

2
Tr’

(1)

∂tRξ,ξ
Γ

(2)
ξ,ξ +Rξ,ξ

+
1

2
Tr”(0)

(
Γ

(2)
hh (Pk) Γ

(2)
hσ (Pk)

Γ
(2)
σh (Pk) Γ

(2)
σσ (Pk)

)−1(
∂tRhh ∂tRhσ
∂tRσh ∂tRσσ

)

− Tr(1)

∂tRc̄T ,cT
Γ

(2)

c̄T ,cT
+Rc̄T ,cT

− Tr’(0)
∂tRc̄,c

Γ
(2)
c̄,c +Rc̄,c

+
1

2
Tr(1)

∂tRbT ,bT
Γ

(2)

bT ,bT
+RbT ,bT

+
1

2
Tr’(0)

∂tRb,b
Γ

(2)
b,b +Rb,b

− 1

2
Tr’

(1)

∂tRĴV
ĴV +RĴV

− 1

2
Tr”(0)

∂tRĴs
Ĵs +RĴs

+ Tr’(0)

∂tRĴc
Ĵc +RĴc

− 1

2
Tr’(0)

∂tRĴb
Ĵb +RĴb

+
1

2

∑
l=0,1

∂tRhh(λl)

Γ
(2)
hh (λl) +Rhh(λl)

(2.65)

We use the same notation appearing in [5], in which the n-prime in the trace operator means

that in the calculation we must exclude first n mode, for example with n = 2

Tr”W (∆) = TrW (∆)−W (λi=0)−W (λi=1) (2.66)

As explained in previous section, in the trace for vector field ξ we explude the first mode

and for the same reason the first two modes for σ field. Since σ scalar field appears in a non

trivial mixing with trace field h, we exclude the first two modes in total mixing and then add

the relative l = 0, 1 modes for h in the last line of (2.65). For ghosts fields we eclude the first

mode in longitudinal component, as expected. The fifth and sixth lines give the contribution

of Jacobians of transformations (2.23-2.25). The relative traces carry the same excluded modes

as the fields in (2.23-2.25).

For the last step, the calculation of traces in FRG equation (2.65), two different methods

can be followed. First, traces can be approximated with the Heat Kernel technique [5, 14]

given in Appendix C and used in the next section. Second, an approximation on ”sum over

eingenvalues” [6] will be followed in the next chapter.

2.5 Trace evaluation using the Heat Kernel technique

We have derived the Wetterich’s equation for the average effective action taking into ac-

count TT decomposition (2.65). The last step is the explicit evaluation of the functional trace

using the methods of heat kernel introduced in Appendix C. From this section, we introduce

dimensionless variables, defined as

R = k2R̃ fk(R) = k2f̃k(R/k
2) (2.67)
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which imply

f ′k(R) = f̃ ′k(R/k
2) f ′′k (R) = k−2f̃ ′′k (R/k2) (2.68)

∂tfk(R) = k2
[
∂tf̃k(R/k

2)− 2R̃f̃ ′k(R/k
2) + 2f̃k(R/k

2)
]

∂tf
′
k(R) =

[
∂tf̃
′
k(R/k

2)− 2R̃f̃ ′′k (R/k2)
]

∂tf
′′
k (R) = k−2

[
∂tf̃
′′
k (R/k2)− 2R̃f̃ ′′′k (R/k2)− 2f̃ ′′k (R/k2)

] (2.69)

Let us start with the trace evaluation for the tensor component hT

1

2
Tr(2)

∂tRhT ,hT

Γ
(2)

hT ,hT
+ RhT ,hT

=
1

2
Tr(2)

∂t

(
Γ

(2)

hT ,hT
(Pk)− Γ

(2)

hT ,hT
(∆)

)
Γ

(2)

hT ,hT
(Pk)

=

1

2
Tr(2)

[
f ′k∂tPk + (Pk −∆)(∂tf

′
k − ηk,hf ′k)(

Pk − R
3

)
f ′k + fk

] (2.70)

Imposing the β-gauge, the traces’ vector part receives contribution from ξ, c̄T , cT , bT , ĴV . From

now, we use the convetion

P
(n)
k = Pk −

R

n
∆(n) = ∆− R

n
(2.71)

• ξ trace part

1

2
Tr’

(1)

∂t

(
Γ

(2)
ξ,ξ(Pk)− Γ

(2)
ξ,ξ

)
Γ

(2)
ξ,ξ(Pk)

=
1

2
Tr’

(1)

∂t

[
Zk,h

(
P

(4)
k

)2
Pk

]
Zk,h

(
P

(4)
k

)2
Pk

=
1

2
Tr’

(1)

∂trk(∆)

Pk(∆)
+ Tr’

(1)

∂trk(∆)

P
(4)
k (∆)

− 1

2
Tr’

(1) ηk,hθ(k
2 −∆)

(2.72)

• c̄T cT trace part

Tr(1)

∂t

(
Γ

(2)

c̄T ,cT
(Pk)− Γ

(2)

c̄T ,cT

)
Γ

(2)

c̄T ,cT
(Pk)

= −Tr(1)

∂t

[
Zk,cP

(4)
k Pk

]
Zk,cP

(4)
k Pk

= −Tr(1)
∂trk(∆)

Pk(∆)
− Tr(1)

∂trk(∆)

P
(4)
k (∆)

+ Tr(1) ηk,cθ(k
2 −∆)

(2.73)

• bT trace part

1

2
Tr(1)

∂t

(
Γ

(2)

bT ,bT
(Pk)− Γ

(2)

bT ,bT

)
Γ

(2)

bT ,bT
(Pk)

=
1

2
Tr(1)

∂trk(∆)

Pk(∆)
− 1

2
Tr(1) ηk,bθ(k

2 −∆) (2.74)
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• ĴV trace part

− 1

2
Tr’

(1)

∂trk(∆)

P
(4)
k (∆)

(2.75)

So the total vector trace part gives

− 1

2
Tr’

(1)

∂trk(∆)

P
(4)
k (∆)

− 1

2

∂trk(λl=1)

Pk(λl=1)
Dl=1,s=1

− ∂trk(λl=1)

P
(4)
k (λl=1)

Dl=1,s=1 +
ηk,h

2
Dl=1,s=1 +

1

2
Tr(1)

[
θ(k2 −∆)(2ηk,c − ηk,h − ηk,b)

]
= −1

2
Tr’

(1)

∂trk(∆)

P
(4)
k (∆)

− 5
∂trk(

R
4 )

Pk(
R
4 )

− 10
∂trk(

R
4 )

P
(4)
k (R4 )

+ 5ηk,h +
1

2
Tr(1)

[
θ(k2 −∆)(2ηk,c − ηk,h − ηk,b)

]
(2.76)

where we used the eigenvalues and relative multiplicity of the Laplacian in Sd, as given in C.1.

For the trace of h − σ scalar part, note that in the gauge ρ = 0 only Γ
(2)
σσ , and so Rσσ,

dipends on β

1

2
Tr”(0)

Γ
(2)
σσ∂tRhh − 2Γ

(2)
hσ∂tRhσ + Γ

(2)
hh∂tRσσ

Γ
(2)
σσΓ

(2)
hh −

(
Γ

(2)
hσ

)2 +
1

2

∑
l=0,1

∂tRhh(λl)

Γ
(2)
hh (λl) +Rhh(λl)

=
1

2
Tr(0)

∂tRhh(∆)

Γ
(2)
hh (Pk(∆))

+
1

2
Tr”(0)

∂tRσσ
Γ

(2)
σσ (Pk(∆))

=
1

2
Tr(0)

∂tRhh(∆)

Γ
(2)
hh (Pk(∆))

+
1

2
Tr”(0)

(
∂trk(∆)

Pk(∆)
+ 2

∂trk(∆)

P
(3)
k (∆)

+
∂trk(∆)

P
(4)
k (∆)

− ηk,hθ(k2 −∆)

) (2.77)

The remaining scalar contribution c̄, c, b, Ĵs, Ĵc, Ĵb gives

• c̄c

− Tr’(0)
∂tRc̄c(∆)

Γ
(2)
c̄c (Pk(∆))

= −Tr’(0)

(
∂trk(∆)

P
(4)
k (∆)

+
∂trk(∆)

P
(3)
k (∆)

+
∂trk(∆)

Pk(∆)
− ηk,cθ(k2 −∆)

)
(2.78)

• b
1

2
Tr’(0)

∂tRbb(∆)

Γ
(2)
bb (Pk(∆))

=
1

2
Tr’(0)

(
∂trk(∆)

P
(4)
k (∆)

+
∂trk(∆)

Pk(∆)
− ηk,bθ(k2 −∆)

)
(2.79)

• Ĵc, Ĵb and Ĵs gives

1

2
Tr’(0)

∂trk(∆)

Pk(∆)
− 1

2
Tr”(0)

(
∂trk(∆)

P
(3)
k (∆)

+
∂trk(∆)

Pk(∆)

)
(2.80)
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The total scalar trace part gives

1

2
Tr(0)

∂tRhh(∆)

Γ
(2)
hh (Pk(∆))

− 1

2
Tr”(0)

∂trk(∆)

P
(3)
k

− 5
∂trk(

R
3 )

P
(2)
k (R3 )

− 5

2

∂trk(
R
3 )

P
(4)
k (R3 )

+
1

2
Tr’(0)

[
θ(k2 −∆)(2ηk,c − ηk,h − ηk,b)

]
+

5

2
ηh,k

(2.81)

Last, we explicite the h trace part

1

2
Tr(0)

∂tRhh
Γ

(2)
hh (Pk)

=

1

2
Tr(0)

[
∂tPk

(
f ′k + 6

(
Pk − R

3

)
f ′′k
)

+ (Pk −∆)(∂tf
′
k − ηk,hf ′k + 3(Pk + ∆− 2

3R)(∂tf
′′
k − ηk,hf ′′k ))

2
3 +

(
Pk − 2

3R
)
f ′k − 3f ′′k

(
Pk − R

3

)2
]

(2.82)

Adding all together, the ERGE becamos

∂tΓk =
1

2
Tr(2)

[
f ′k∂tPk + (Pk −∆)(∂tf

′
k − ηk,hf ′k)(

Pk − R
3

)
f ′k + fk

]
− 1

2
Tr’(1)

∂trk(∆)

Pk(∆)− R
4

− 1

2
Tr”(0)

∂trk(∆)

Pk(∆)− R
3

+
1

2
Tr(0)

[
∂tPk

(
f ′k + 6

(
Pk − R

3

)
f ′′k
)

+ (Pk −∆)
(
∂tf

′
k − ηk,hf ′k + 3(Pk + ∆− 2

3R)(∂tf
′′
k − ηk,hf ′′k )

)
2
3 +

(
Pk − 2

3R
)
f ′k − 3f ′′k

(
Pk − R

3

)2
]

+
1

2
Tr(1)

[
θ(k2 −∆)(2ηk,c − ηk,h − ηk,b)

]
+

1

2
Tr’(0)

[
θ(k2 −∆)(2ηk,c − ηk,h − ηk,b)

]
+ Σ

(2.83)

where

Σ = −5
∂trk(

R
4 )

Pk(
R
4 )
− 10

∂trk(
R
4 )

P
(4)
k (R4 )

− 5
∂trk(

R
3 )

P
(3)
k (R3 )

− 5

2

∂trk(
R
3 )

P
(4)
k (R3 )

+
15

2
ηk,h (2.84)

collects the residue modes which do not cancel when we sum non physical flactuation trace

part (ξ, σ) and ghosts trace part (c̄, c, b). Term by term, we must explicit the functional trace

according to the technique described in the Appendix C. For the cutoff profile function rk(z)

we choose the Litim’s optimized cutoff [17] defined by

rk(z) = (k2 − z)θ(k2 − z) (2.85)

With this choice the trace calculation drastically simplifies, but it introduces some non-smooth

term in the final results.

Let us start with the spin one trace part

− 1

2
Tr’

(1)

∂trk(∆)

Pk(∆)− R
4

= −1

2
Tr(1)

∂trk(∆)

Pk(∆)− R
4

+
1

2

∂trk(∆)

Pk − R
4

∣∣∣∣
λl=1

(2.86)
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Recalling the asymptotic Heat Kernel expansion for this case

−1

2
Tr(1)

∂trk(∆)

Pk(∆)− R
4

= −1

2

V4S

(4π)2

[
Q2

(
∂trk

Pk − R
4

)
tr b0 +Q1

(
∂trk

Pk − R
4

)
tr b2

+Q0

(
∂trk

Pk − R
4

)
tr b4

]

= −1

2

V4S

(4π)2

[
k4

1− R̃
4

tr b0 +
2k2

1− R̃
4

tr b2 +
2

1− R̃
4

tr b4

] (2.87)

where Qk(W ) is introduced in Appendix C. We used formulae (C.15), dimensionless scalar

curvature R = k2R̃ and four sphere volume V4S = 384π2/R2. So the vector trace part becomes

− 1

2
Tr’

(1)

∂trk(∆)

Pk(∆)− R
4

=
48

(R̃− 4)R̃2

[
3 +

R̃

2
− 7

720
R̃2

]
− 40

R̃− 4
θ

(
1− R̃

4

)
(2.88)

where we used the table C.2 in appendice for heat kernel coefficients traces.

The scalar trace

− 1

2
Tr”(0)

∂trk(∆)

Pk(∆)− R
3

(2.89)

is analized as the vector trace. The heat kernel expansion reads

− 1

2
Tr”(0)

∂trk(∆)

Pk(∆)− R
3

= −1

2

V4S

(4π)2

[
Q2

(
∂trk

Pk − R
3

)
tr b0 +Q1

(
∂trk

Pk − R
3

)
tr b2

+Q0

(
∂trk

Pk − R
3

)
tr b4

]
+

1

2

∂trk

Pk − R
3

∣∣∣∣
R
4

+
5

2

∂trk

Pk − R
3

∣∣∣∣
R
3

=
36

(R̃− 3)R̃2

(
1 +

R̃

3
+

29R̃2

1080

)
− 18

R̃− 3
θ

(
1− R̃

3

) (2.90)

Next, we calculate the tensor trace part

1

2
Tr(2)

[
f ′k∂tPk + (Pk −∆)(∂tf

′
k − ηk,hf ′k)(

Pk − R
3

)
f ′k + fk

]
≡ 1

2
Tr(2)W(2)(∆) (2.91)

where we introduce the function W(2) defined by the last relation.

In this case the heat kernel expansion reads

1

2
Tr(2)W(2)(∆) =

1

2

V4S

(4π)2

[
Q2(W(2)) tr b0 +Q1(W(2)) tr b2

+Q0(W(2)) tr b4 +Q−1(W(2)) tr b6
] (2.92)

Using (C.15)

Q2(W(2)) = k6 f
′
k + 1

6(∂tf
′
k − ηk,hf ′k)(

k2 − R
3

)
f ′k + fk

(2.93)
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Q1(W(2)) = k4 2f ′k + 1
2(∂tf

′
k − ηk,hf ′k)(

k2 − R
3

)
f ′k + fk

(2.94)

Q0(W(2)) = k2 2f ′k + (∂tf
′
k − ηk,hf ′k)(

k2 − R
3

)
f ′k + fk

(2.95)

Q−1(W(2)) =
(∂tf

′
k − ηk,hf ′k)(

k2 − R
3

)
f ′k + fk

(2.96)

So that the total tensor trace part is

1

2
Tr(2)

[
f ′k∂tPk + (Pk −∆)(∂tf

′
k − ηk,hf ′k)(

Pk − R
3

)
f ′k + fk

]
=

36

R̃2

1

3fk − (R̃− 3)f ′k

[
f ′k

(
5− 5

3
R̃− 1

216
R̃2

)
+ (∂tf

′
k − ηk,hf ′k)

(
5

6
− 5

12
R̃− 1

432
R̃2 +

311

54432
R̃3

)]
(2.97)

The remaining trace is the h-scalar part

1

2
Tr(0)

[
∂tPk

(
f ′k + 6

(
Pk − R

3

)
f ′′k
)

+ (Pk −∆)(∂tf
′
k − ηk,hf ′k + 3(Pk + ∆− 2

3R)(∂tf
′′
k − ηk,hf ′′k ))

2
3 +

(
Pk − 2

3R
)
f ′k − 3f ′′k

(
Pk − R

3

)2
]

≡ 1

2
Tr(0)Ws(∆)

(2.98)

This relation leads us to define the function Ws(∆). The heat kernel expansion leads to

1

2
Tr(0)Ws =

1

2

V4S

(4π)2
[Q2(Ws) tr b0 +Q1(Ws) tr b2 +Q0 tr b4

+Q−1(Ws) tr b6 +Q−2(Ws) tr b8

] (2.99)

since third derivative of Ws(z) in z = 0 vanishes.

Using (C.15) we find

Q2(Ws) = k4 fk + 6
(
1− R

3k2

)
f ′′k + 1

6 (∂tf
′
k − ηk,hf ′k) +

(
3
4 −

R
3k2

)
(∂tf

′′
k − ηk,hf ′′k )

2
3fk +

(
1− 2

3k2
R
)
f ′k − 3f ′′k

(
1− R

3

)2
Q1(Ws) = k4 2f ′k + 12

(
1− R

3

)
f ′′k + 1

2 (∂tf
′
k − ηk,hf ′k) + (2− R

k2
)(∂tf

′′
k − ηk,hf ′′k )

2
3fk +

(
1− 2

3k2
R
)
f ′k − 3f ′′k

(
1− R

3k2

)2
Q0(Ws) = k2 2f ′k + 12

(
1− R

3k2

)
f ′′k + ∂tf

′
k − ηk,hf ′k + 3

(
1− 2

3k2
R
)

(∂tf
′′
k − ηk,hf ′′k

2
3fk +

(
1− 2

3k2
R
)
f ′k − 3f ′′k

(
1− R

3k2

)2
Q−1(Ws) =

∂tf
′
k − ηk,hf ′k − 2 R

k2
(∂tf

′′
k − ηk,hf ′′k )

2
3fk +

(
1− 2

3k2
R
)
f ′k − 3f ′′k

(
1− R

3k2

)2
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Q−2(Ws) = k−2 −6(∂tf
′
k − ηk,hf ′k)

2
3fk +

(
1− 2

3k2
R
)
f ′k − 3f ′′k

(
1− R

3k2

)2
So that the h scalar trace part becomes

1

2
Tr(0)Ws =

1

R̃2
[
f̃ ′′k (R̃− 3)2 + 2f̃ + (3− 2R̃)f̃ ′k

]
[
f̃ ′k

(
36 + 12R̃+

29

30
R̃2

)
− f̃ ′′k

(
29

15
R̃3 +

91

5
R̃2 − 216

)
− (∂tf̃

′′
k − 2R̃f̃ ′′′k − (ηk,h + 2)f̃ ′′k )

(
3801

7056
R̃4 +

29

30
R̃3 +

273

60
R̃2 − 27

)
+ (∂tf̃

′
k − 2R̃f̃ ′′k − ηk,hf̃ ′k)

(
6 + 3R̃+

29

60
R̃2 +

37

1512
R̃3

)]
(2.100)

The last trace contribution regards the anomalous dimensions for fields fluctuations

+
1

2
Tr(1)

[
θ(k2 −∆)(2ηk,c − ηk,h − ηk,b)

]
+

1

2
Tr’(0)

[
θ(k2 −∆)(2ηk,c − ηk,h − ηk,b)

]
(2.101)

Both traces reduce to the simple functional trace Tr θ(k2 −∆), which has the Heat Kernel

expansion

Tr θ(k2 −∆) =
V4s

(4π2)

[
1

2
k4 tr b0 + k2 tr b2 + tr b4

]
(2.102)

where, clearly, the coefficients tr bn depend on the spin of the fields, as reported in Appendix

C. The contribution (2.101) gives

1

R̃2

[
24 + 5R̃+

37

360
R̃2

]
(2.103)

Last, single modes Σ give

Σ =
80

R̃− 4
+

30

R̃− 3
− 10θ

(
1− R̃

4

)
+

20

R̃− 4
θ

(
1− R̃

3

)
(2.104)

Collecting all contributions we find that the FRG equation in the fk(R) approximation for
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gravity becomes

∂tΓk =
36

R̃2

1[
3f̃k − (R̃− 3)f̃ ′k

] [f̃ ′k (5− 5

3
R̃− 1

216
R̃2

)

+ (∂tf̃
′
k − 2R̃f̃ ′′k − ηk,hf̃ ′k)

(
5

6
− 5

12
R̃− 1

432
R̃2 +

311

54432
R̃2

)]
− 18

R̃− 3
θ
(

1− R̃

3

)
+

36

(R̃− 3)R̃2

[
1 +

R̃

3
+

29R̃2

1080

]
+

48

(R̃− 4)R̃2

[
3 +

R̃

2
− 7

720
R̃2
]
− 40

R̃− 4
θ
(

1− R̃

4

)
+

1

R̃2
[
f̃ ′′k (R̃− 3)2 + 2f̃ + (3− 2R̃)f̃ ′k

] [f̃ ′k (36 + 12R̃+
29

30
R̃2

)

− f̃ ′′k
(

29

15
R̃3 +

91

5
R̃2 − 216

)
− (∂tf̃

′′
k − 2R̃f̃ ′′′k − (ηk,h + 2)f̃ ′′k )

(
3801

7056
R̃4 +

29

30
R̃3 +

273

60
R̃2 − 27

)
+ (∂tf̃

′
k − 2R̃f̃ ′′k − ηk,hf̃ ′k)

(
6 + 3R̃+

29

60
R̃2 +

37

1512
R̃3

)]
+ Σ

+
(2ηk,c − ηk,h − ηk,b)

R̃2

[
24 + 5R̃+

37

360
R̃2

]
(2.105)

This equation is obtained with the gauge choice α = 0 and β →∞. But the same calculation

can be done for the opposite gauge β = 0 α → ∞; in this gauge we obtain the same equation

up to the contribution Σ, which changes in

Σβ−gauge = −10
∂tRk(

R
4 )

P
(4)
k (R4 )

− 10
∂tRk(

R
3 )P

(6)
k (R3 )

Pk(
R
3 )P

(3)
k (R3 )

+ 5
∂tRk(

R
3 )

Pk(
R
3 )

= 80
θ(4− R̃)

(R̃− 4)
− 10θ(3− R̃)

R̃− 6

R̃− 3
+ 10θ(3− R̃)

2.6 Possible closures for fk(R) RG equation

In last sections we expand Wetterich’s equation in the case of fk(R) approximation, and

obtain the flow evolution equation (2.105); its solution, in principle, tells us the dependence of

fk(R) both on k and on the scalar curvature R. After having a solution to equation (2.105),

one can use relation (2.67) and get function fk(R) explicitly.

Equation (2.105), which is the starting point of any detailed analysis, contains anomalous

dimensions of gravitational quantum flactuations and ghosts fields. Hence, one can choose

different methods to close relation (2.105).

The same situations appears in scalar field theory where Wetterich’s equation contains

both the evolution of scalar potential Vk(ϕ) and anomalous dimension ηϕ. In this case, the

equation can be closed considering the flow equation of Γ
(2)
k , which gives ηϕ as a function of

Vk(ϕ = const) and its derivatives.
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The authors in [15] extend the previous method for scalar theory in gravity. They determine

the flow of Γ
(2)
k in the case of Einstein-Hilbert truncation and extract ηk,h and ηk,c (in this case

we have only ghost and anti-ghost fields) as a function of G̃ and Λ̃, the dimensionless Newton’s

and cosmological constant.

A proposal for a future work is to extend the method in [15] for fk(R) approximation. Note

that, on the contrary, the flow equation for Γ
(2)
k depends on gravity-ghost-antighost proper

vertex Γ
(1,1,1)
k

2 and on gravity-gravity-ghost-antighost proper vertex Γ
(2,1,1)
k , which contain

third and fourth derivative of fk(R).

To follow a consistent closure of (2.105), in this work we make two different ansatz for

the values of Zk,h, Zk,c and Zk,b. The most simple ansatz, which we call type I ansatz, is the

following

Zk,h = κ−2
k Zk,c = Zk,b = 1

which imply

ηk,h = −
βG̃
G̃
− 2 ηk,c = 0 ηk,b = 0 (2.106)

whereκk =
√

16πGk and G̃ = k2Gk is the dimensionless Newton’s constant. Note that type I

ansatz (2.106) imply the following metric decomposition

gµν = ḡµν + hµν

which is the most used definition for quantum flactuations.

Another ansatz for the anomalous dimensions values, which we call type II ansatz, is the

following

Zk,h = Zk,b = Zk,c = 1

which implies

ηk,h = 0 ηk,c = 0 ηk,b = 0

Hence, with type I ansatz, the anomalous dimensions contribution in (2.105) is completly

neglected. Note that, within this choice, we do not recover flow equation in [5], since metric

decomposition gµν = ḡµν + κkhµν and truncation ansatz for Γk are different from this work.

2.7 Polynomial truncation

The most simple truncation for the average effective action is the standard Einstein-Hilbert

action

Γk[h, C̄, C, b; ḡ] =
1

16πGk

∫
ddx
√
g(2Λk −R) + Γk,gh + Γk,g.f. (2.107)

2Notation Γ
(1,0,0)
k labels functional variation with respect to hµν while Γ

(0,0,1)
k and Γ

(0,0,1)
k with respect to

ghost and antighost field, respectively.
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where Λk is the running cosmological constant. This kind of truncation has been studied with

different point of view [12, 18, 19, 20], in diverse cutoff choices [5] and in d spacetime dimension

[21]. The choice (2.107) is consistent with previous truncation (3.1) if

fk(R) = 2Λk −R → fk(0) = 2Λk f ′k(0) = −1

so one can construct the flow for gravitational and cosmological constants using (2.105).

For a first study on the dimensionality of the critical surface, the average effective action

have to be modified introducing more interactions such as R2, R3..., or direct composition of

Riemann tensor RαβρσR
αβρσ.

Here, we consider the polynomial truncation, so that the effective action reads

Γk =
1

16πGk

∫
ddx
√
g

n∑
i=0

giR
i + Γk,gh + Γk,g.f. (2.108)

Clearly, for n = 1 we go back to Einstein-Hilbert form. This truncation ansatz is consistent

with our initial assumption for the effective action as a function only on curvature scalar. To

study the flow equation for the dimensionless couplings g̃i = k2−2igi, we use equation (2.105),

which, as pointed out in the last section, necessitate of a closure to be solved for the presence

of anomalous dimensions’ contribution.

Type I closure: Zk,h = κ−2
k , Zk,c = Zk,b = 1

In table 2.1 the value of dimensionless couplings at the fixed point are reported for n = 1

to n = 5. First, we see that the value of G̃∗ and Λ̃∗ in the Einstein-Hilbert truncation (n = 1)

agrees with the projection in the Λ̃− G̃ plane of other truncation (n > 1). For n = 2 we see a

deviation of mean value of the fixed point position; the same deviation is observed also in [5]. As

the reader has noticed yet, the only different between flow equation in [5] and equation (2.105)

is a factor Zk,h = κ−1
k in the regulator. Hence, this little expedient make the distribution of

fixed point in different truncation more stable.

In table 2.2, the critical exponents are reported as a functions of the truncation. We first

note that for n > 1 there are only three critical exponents with positive real part. Hence, we

found an UV critical surface of dimension three for all n > 1; this is an important aspect which

tells us that, within polynomial truncation up to n = 5, QFT of General Relativity is found to

be asymptotically safe.

We report here some details of the Einstein-Hilbert approximation, which starts from ansatz

(2.107). Inserting into equation (2.105), the r.h.s. becomes

∂tΓk =
k4

16πG̃k

∫
ddx
√
g

[
2

(
βΛ −

Λ̃k

G̃k
βG + 4Λ̃k

)
+

(
βG

G̃k
− 2

)
R

k2

]

where we introduced the beta function for the dimensionless Newton’s constant βG = ∂tG̃k
and for dimensionless cosmological constant βΛ = ∂tΛ̃k. The calculation of r.h.s. of (2.105) is
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Closure type I:Zk,h = κ−2
k , Zk,c = Zk,b = 1 η∗h = −2, ηk,c = ηk,b = 0

n Λ̃∗ G̃∗ g̃0 κ̃∗ g̃2 g̃3 g̃4 g̃5

1 0.194 0.7683 0.3879 6.2143

2 0.2225 0.8894 0.445 6.6863 0.1087

3 0.2057 0.8072 0.4113 6.3697 0.0829 -0.2929

4 0.1986 0.7938 0.3972 6.3169 0.0753 -0.3028 -0.2084

5 0.199 0.7946 0.3981 6.32 0.0758 -0.2824 -0.1943 -0.0597

Table 2.1: Couplings value at non-Gaussian fixed point as a functions of the order n of the

truncation.

Closure type I:Zk,h = κ−2
k , Zk,c = Zk,b = 1, η∗h = −2, ηk,c = ηk,b = 0

n θ0 θ1 θ2 θ3 θ4 θ5

1 3.2353+i0.4723 3.2353-i0.4723

2 3.3791+i1.1891 3.3791-i1.1891 11.778

3 4.8126 2.5069 1.9175 -6.5191

4 3.6681+i0.8798 3.6681-i0.8798 89.1475 -6.3821 -3.4987

5 4.6001 2.806 1.6701 -4.6191+i10.4134 -4.6191-i10.4134 -4.4418

Table 2.2: Critical exponents as a function of the order n of the truncation.

more involved; first, note that for a polynomial truncation all theta functions can be set to one,

since the next step is to expand in Taylor series around R = 0 and collect only linear term.

Now we have only contributions which are constant or linear in dimensionless scalar curvature

R̃ in both side, so comparing the constant and scalar curvature coefficients we find the beta

functions

βG = −2G̃k +
12G̃2

k

(
64Λ̃3

k − 210Λ̃2
k + 317Λ̃k − 144

)
G̃k

(
240Λ̃3

k − 336Λ̃2
k + 46Λ̃k + 51

)
− 144π

(
1− 2Λ̃k

)2 (
4Λ̃k − 3

) (2.109)

βΛ =2Λ̃k −
1

4π(4Λ̃k − 3)
[
144π(1− 2Λ̃k)2

(
4Λ̃k − 3

)
− G̃k(240Λ̃3

k − 336Λ̃2
k + 46Λ̃k + 51)

]
× G̃k

[
G̃k(4992Λ̃4

k − 22024Λ̃3
k + 35502Λ̃2

k − 24465Λ̃k + 6093)

+ 48π(256Λ̃5
k − 1416Λ̃4

k + 3794Λ̃3
k − 4233Λ̃2

k + 1953Λ̃k − 297)
]

(2.110)

This coupled equations give immediatly a Gaussian fixed point

Λ̃∗ = 0 G̃∗ = 0
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Figure 2.1: In this picture the flow given by beta functions (2.109-2.110) is represented in the

(Λ̃k, G̃k) plane.

Instead, a numerical study gives the following value for non Gaussian fixed point (NGFP)

Λ̃∗ = 0.194 G̃∗ = 0.7683 (2.111)

with a stability coefficients, defined as the opposite of the eigenvalues of the stability matrix

θ1,2 = 2.8764± i1.8668 (2.112)

which ensure us that NGFP is UV attractive in both direction in (Λ̃k, G̃k) plane. This result is

in agreement with [5] and is similar to that obtained with different cutoff scheme [12, 18, 5] and

represents the first evidence for the asymptotic safety of quantum field theory of gravity. The

main question is whether or not this UV fixed point persists in different (and more accurate)

truncations. In papers [22, 23] an R2 truncation is analized and non Gaussian fixed point is

found with similar characteristics.

Our discussion within the fk(R) allows to consider a large polynomial truncation or lnR

and R−n contribution added in Einstein-Hilbert truncation[14]. In [5] a polynomial truncation

up to order n = 9 is considered, a NGFP is found for n = 9 and the UV critical surface has

dimension three, so the six irrelevant couplings can be expressed in terms of the remaining

three relevant couplings. In paper [24] a polynomial truncation of orden n = 35 is considered

and a NGFP is still found, with similar properties.

Type II closure: Zk,h = Zk,c = Zk,b = 1, ηk,h = ηk,c = ηk,b = 0

In this section we present the result of polynomial truncation with a different choice for

anomalous dimensions contribution. The type II closure for equation (2.105) reads

Zk,h = Zk,c = Zk,b = 1 → ηk,h = ηk,c = ηk,b = 0 (2.113)
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Closure type II:Zk,h = Zk,c = Zk,b = 1 ηk,h = ηk,c = ηk,b = 0

n Λ̃∗ G̃∗ g̃0 κ̃∗ g̃2 g̃3 g̃4 g̃5

1 0.0958 1.4451 0.1915 8.5229

2 0.0645 1.8156 0.1289 9.5532 0.1099

3 0.0954 1.5351 0.1908 8.7842 0.0527 -0.1211

4 0.0962 1.5445 0.1923 8.8110 0.0539 -0.1408 0.0222

5 0.0924 1.47136 0.1849 8.5999 0.0357 -0.1966 -0.0346 0.0493

Table 2.3: Couplings value at non-Gaussian fixed point as a functions of the order n of the

truncation for closure (2.113).

Closure type II:Zk,h = Zk,c = Zk,b = 1, ηk,h = ηk,c = ηk,b = 0

n Reθ0 = Reθ1 Imθ0 = −Imθ1 θ2 Reθ3 = Reθ4 Imθ3 = −Imθ4 θ5

1 2.3471 1.0908

2 2.5343 0.3783 14.9101

3 3.2492 0.3096 2.2444 -1.0945

4 2.7630 1.1131 2.9292 -2.5628 -6.9273

5 2.8721 1.3385 1.851 -3.0748 -5.9726 2.9515

Table 2.4: Critical exponents as a function of the order n of the truncation for closure (2.113).

The truncated effective average action is still (2.108) and the couplings values at fixed point is

given in table 2.3.

First, we note that fixed point values for the couplings are different from type I closure.

In fact, the two closures differ not only for regulator choice but also for metric decomposition;

hence they give different values for the fixed point as expected, but the qualitative picture is

the same.

Also in this case for n = 2 we have a deviation from the mean fixed point values; but the

deviation is greater than in the previous case. Maybe, the previous choice on regulator term

gives a more stable distribution of fixed point as a function of n.

In table 2.4 critical exponents are presented. For n = 1, the Einstein-Hilbert truncation,

we have a pair of complex conjugate critical exponents; hence both directions in the Λ̃k − G̃k
plane are UV attractive. For n > 1 only three critical exponents have positive real part, so

the UV critical surface has finite dimension, a result which is in common to the closure type I

studied above.
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Chapter 3

Trace evaluation with spectral sums

in d dimension

The Heat Kernel approximation method is the most used in literature for trace evaluation

of ERGE in gravity. We introduce now an approximation method, used in [6], which gives a

different scaling equation for the f(R).

The average effective action, as the starting point, is given by the ansatz1

Γk[h, C̄, C; ḡ] =
1

κ2
k

∫
ddx
√
gfk(R) + Γk,gh + Γk,g.f. (3.1)

where, κk is a free parameter, which appears in the metric decomposition is gµν = ḡµν +κkhµν ,

as in the previous chapter. At the end of calculation, two possible physical choice exist to fix

its value, κk = 1 and κk =
√

16πGk.

As in the previous chapter, we redefine field flactuations according to

hµν → Z
1/2
k,h hµν Cµ → Z

1/2
k,c Cµ C̄µ → Z

1/2
k,c C̄µ bµ → Z

1/2
k,b bµ (3.2)

and define anomalous dimensions through the usual formulae

ηk,a = −
∂tZk,a
Zk,a

a = h, c, b (3.3)

Instead, contrary to the previous chapter, the gauge fixing condition reads (after redefini-

tion) 2

Γk,g.f.[h; ḡ] =
Zk,h
2α

∫
ddx
√
ḡFµ[h; ḡ]Fν [h; ḡ]ḡµν

where

Fµ[h; ḡ] = ∇̄ρhρµ −
1

d
∇̄µh (3.4)

1 Note that in [6] the ansatz is the same up to a running factor Zk in the gravity and ghosts terms
2In the notation of the previous chapter we choose ρ = 0 and β = 0

39
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Note that F [h; ḡ] do not depend on field h, when the transverse-traceless decomposition is used;

this observation is crucial in diagonalization of Γ
(2)
k within the gauge α→ 0.

The corresponding standard ghost action reads

Γk,gh−c[h, C̄, C; ḡ] = Zk,c

∫
ddx
√
ḡC̄µ

[
ḡµρḡσλ∇̄λ(gρν∇σ + gσν∇ρ)−

2

d
ḡρσ ḡµλ∇̄λgσν∇ρ

]
Cν

(3.5)

As it is pointed out in [25] the ghost action used is not (3.5). The aim is to provide a perfect

cancellation between pure gauge degrees of freedom and ghosts sector in trace calculations. In

order to achive this aim, it is crucial to note that the Faddeev-Popov determinant DetM, which

is implemented to a path integral over Grassmann-valued fields, is equivalent to
√
DetM2,

which can be reprensented by a path integral over a vector Grassmann field and commuting

real vector field and gives (after transversal and longitudinal decomposition)

Γk,gh[h = 0, C, C̄, B; ḡ] =
Zk,c
α

∫
ddx
√
ḡ

[
C̄Tµ

(
∆− R

d

)2

CTµ + 4

(
d− 1

d

)2

c̄

(
∆− R

d− 1

)2

∆c

]
+
Zk,b
α

∫
ddx
√
ḡ

[
BT
µ

(
∆− R

d

)2

BTµ + 4

(
d− 1

d

)2

b

(
∆− R

d− 1

)2

∆b

]
(3.6)

As we shall see, for this choice in ghost sector an exact cancellation of pure gauge and ghost

degrees of freedom occurs. Here we do not consider higher derivative in the gauge fixind, so

we do not need the third ghost term, contrary to the previous case.

We now follow the same steps of the previous chapter but adopting a different metric

decomposition

hµν = hTµν + ∇̄µξν + ∇̄νξµ + ∇̄µ∇̄νσ +
1

d
ḡµν h̄ (3.7)

with the constraints (2.36). The new variables h̄ is related with the trace h by h̄ = h−∇̄2σ. The

last difference with the previous treatment is the introduction of auxiliary fields. In previous

sections, the role of Jacobians is taken into account directly in the calculation of functional

trace. In paper [6], Jacobians are exponentiated with the trick introduced in 2.2. Hence

Jacobian (2.37) for decomposition (3.7) gives the contribution to the total action (∆ = −∇̄2)

Saux-gr =

∫
ddx
√
ḡ

[
2χ̄Tµ

(
∆− R

d

)
χTµ +

d− 1

d2
χ̄

(
∆− R

d− 1

)
∆χ

+ 2ζTµ

(
∆− R

d

)
ζTµ +

d− 1

d2
ζ

(
∆− R

d− 1

)
∆ζ

(3.8)

where χT and χ are Grassmann valued fields while ζT and ζ are real commuting fields. The

Jacobian (2.38), belonging to the ghosts decomposition, gives

Saux-gh =
1

2

∫
ddx
√
ḡφ∆φ (3.9)
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We proceed in the construction of FRG equation with this decomposition. First, the calcu-

lation of a new second variation for the average effective action. Clearly, the transverse tensor

and transverse vector components is the same of (2.51) and ( 2.52) for β = 0 (from now on all

metric and Riemann tensor refer to the background)

Γ̃
(2)

hTµνh
T
αβ

= −
Zk,h

2

[
−f ′k

(
∇2 − 2

d(d− 1)
R

)
+

(
fk −

2

d
Rf ′k

)]
δµν,αβ (3.10)

Γ̃
(2)
ξµξν

= Zk,h

(
∇2 +

R

d

)[
1

α

(
∇2 +

R

d

)
−
(

2R

d
f ′k − fk

)]
gµν (3.11)

To distinguish from the previous Γ(2) we add a tilde on new variations.

Since the decomposition (3.7) is different from (2.23) for the scalar part we rewrite the

quadratic form hµνΓ
(2)
µναβh

αβ, obtained in section 2.3, for the scalar contribution (2.53-2.54-

2.55) and then substitute h = h̄+∇2σ

hΓ(2)h+ 2hΓ
(2)
hσσ + σΓ(2)

σσσ = σ
[
Γ(2)
σσ + 2Γ

(2)
hσ∇

2 + Γ
(2)
hh (∇2)2

]
σ

+ 2h̄
[
Γ

(2)
hσ + Γ

(2)
hh∇

2
]
σ + h̄Γ

(2)
hh h̄

≡ σΓ̃(2)
σσσ + 2h̄Γ̃

(2)

h̄σ
σ + h̄Γ̃

(2)

h̄h̄
h̄

Hence the resulting second variation for decomposition (3.7) in the scalar sector gives

Γ̃
(2)

h̄h̄
=Zk,h

(d− 2)

4d

[
4(d− 1)2

d(d− 2)
f ′′k (R)

(
∇2 − R

d− 1

)2

+
2(d− 1)

d
f ′k(R)

(
−∇2 − R

d− 1

)
− 2R

d
f ′k(R) + fk(R)

] (3.12)

Γ̃
(2)

h̄σ
= −Zk,h

(d− 2)

2d2

(
Rf ′k −

d

2
fk

)
∇2 (3.13)

Γ̃(2)
σσ = −Zk,h

(d− 1)2

d2α

(
∇2 +

R

d− 1

)2

∇2 +
1

2d

(
Rf ′k −

d

2
fk

)(
∇2 +

2R

d

)
∇2 (3.14)

As in the previous case, only Γ̃
(2)
σσ and Γ̃

(2)
ξξ depends on gauge parameter α. So in the limit

α→ 0 the 2× 2 scalar part of Γ̃
(2)

diagonalizes into σ − σ and h̄− h̄ contributions as we have

seen in 2.5.

In previous sections, the cutoff scheme was based on replecement rule

∆→ Pk(∆) = ∆ + rk(∆) (3.15)

which is encoded into the general cutoff scheme

Γ
(2)
k (∆) + Rk(∆) = Γ

(2)
k (Pk(∆)) (3.16)
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With this choice, in the previous chapter, we realized that unphysical singularities appear

in the final equation (2.105). To understand why this unphysical infinities appear, consider

for example the vector trace part in (2.5). Inside the Γ
(2)
ξξ in (2.52), only the operator ∆ − R

d

appears after the gauge choice. With cutoff scheme (3.16) and with Litim’s optimized cutoff

the replecement rule (3.15) becomes (Pk ∼ k2)

∆− R

d
→ k2 − R

d

which is zero, and so not invertible, for R̃ = d. The same conclusion is valid for the scalar

part where operator ∆− R
d−1 appears. To avoid this unphysical singularities, following [6], we

introduce three new operators

∆0 ≡ ∆− R

d− 1
P

(0)
k (∆0) ≡ ∆0 + rk(∆0) (3.17)

∆1 ≡ ∆− R

d
P

(1)
k (∆1) ≡ ∆1 + rk(∆1) (3.18)

∆2 ≡ ∆ +
2R

d(d− 1)
P

(2)
k (∆2) ≡ ∆2 + rk(∆2) (3.19)

To obtain a new cutoff scheme, we consider Γ
(2)
k as a functions only of operators (3.17-3.18-3.19)

and then apply (3.16). This corresponds to a slightly different pattern of coarse-graining.

Hence the corresponding regulator functions in the limit α→ 0 becomes

RhTµνhTαβ (∆2) = −
Zk,h

2
f ′krk(∆2)δµν,αβ

Rξµξν =
Zk,h
α

[(
P

(1)
k (∆1)

)2
−∆2

1

]
ḡµν

Rh̄h̄(∆0) = Zk,h
(d− 1)

d2
f ′′k

[(
P

(0)
k (∆0)

)2
−∆2

0

]
+ Zk,h

(d− 2)(d− 1)

2d2
f ′krk(∆0)

Rσσ = Zk,h
(d− 1)2

αd2

[(
P

(0)
k (∆0)

)2
(
P

(0)
k (∆0) +

R

d− 1

)
−∆2

0

(
∆0 +

R

d− 1

)]
and for the ghosts and auxiliary fields part becomes

RC̄Tµ CTν =
Zk,c
α

[(
P

(1)
k (∆1)

)2
−∆2

1

]
ḡµν

RBTµBTν =
Zk,b
α

[(
P

(1)
k (∆1)

)2
−∆2

1

]
ḡµν

Rχ̄TµχTν = RζTµ ζTν = 2

[(
P

(1)
k (∆1)

)2
−∆2

1

]
ḡµν

Rc̄c =
4Zk,c
α

(d− 1)2

d2

[(
P (0)(∆0)

)2
(
P

(0)
k (∆0) +

R

d− 1

)
−∆2

0

(
∆0 +

R

d− 1

)]
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Rbb =
4Zk,b
α

(d− 1)2

d2

[(
P (0)(∆0)

)2
(
P

(0)
k (∆0) +

R

d− 1

)
−∆2

0

(
∆0 +

R

d− 1

)]
Rχ̄χ = Rζζ =

d− 1

d2

[
P (0)(∆0)

(
P

(0)
k (∆0) +

R

d− 1

)
−∆0

(
∆0 +

R

d− 1

)]
and finally for the scalar auxiliary field φ, simply

Rφφ = rk(∆0)

We now proceed in the calculation of trace contributions starting from the tensor trace part

which gives

1

2
Tr(2)

[
∂tRhT hT

Γ̃
(2)

hT hT
+RhT hT

]
introducing dimensionless variables

R = k2R̃ fk(R) = k2f̃k(R/k
2)

which imply

f ′k(R) = f̃ ′k(R/k
2) f ′′k (R) = k−2f̃ ′′k (R/k2) (3.20)

∂tfk(R) = k2
[
∂tf̃k(R/k

2)− 2R̃f̃ ′k(R/k
2) + 2f̃k(R/k

2)
]

∂tf
′
k(R) =

[
∂tf̃
′
k(R/k

2)− 2R̃f̃ ′′k (R/k2)
]

∂tf
′′
k (R) = k−2

[
∂tf̃
′′
k (R/k2)− 2R̃f̃ ′′′k (R/k2)− 2f̃ ′′k (R/k2)

] (3.21)

we obtain the total tensor trace contribution

1

2
Tr(2)

(1− ∆2
k2

) (
∂tf̃
′
k − 2R̃f̃ ′′k − ηk,hf̃ ′k

)
+ 2f̃ ′k

f̃ ′k + f̃k − 2
dR̃f̃

′
k


where the optimized cutoff rk(∆i) = (k2 −∆i)θ(k

2 −∆i) is used.

The vector trace contributions come from ξ, C̄T , CT , BT , χ̄T , χT and ζT fields. First we

note that pure gauge ξ cancel almost exactly with C̄TCT and BT contributions

2 Tr’
(1)

[
∂trk(∆1)

P
(1)
k (∆1)

]( 1

2︸︷︷︸
ξ

−1︸︷︷︸
C̄TCT

+
1

2︸︷︷︸
BT

)
= 0

Only the anomalous dimensions contributions remain

1

2
(2ηk,c − ηk,h − ηk,b) Tr’

(1) θ(k
2 −∆1) (3.22)

This conclusion arises from the particular choice for ghosts sector, as analized at the beginning

of this chapter.
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The remaining spin 1 contribution, related to the auxiliary fields, gives

−1

2
Tr’

(1)

[
∂trk(∆1)

P
(1)
k (∆1)

]
= −Tr’

(1)

[
k2θ(k2 −∆1)

∆1 + (k2 −∆1)θ(k2 −∆1)

]
= −Tr’

(1) θ(k
2 −∆1)

From now on, following notations in [6], we devide the total scalar contribution into np

(non-physical) and h̄ contributions; σ, c̄, c, b, χ̄, χ, ζ and φ fields give the np trace part, the

remaining h̄ forms the ”physical” contribution.

Let us start with non physical scalar contribution. First note that, once again, the compo-

nent σ cancels almost exactly with the ghosts scalar degrees of freedom c̄, c and b

Tr’(0)

∂t
[(
P

(0)
k (∆0)

)2 (
P

(0)
k (∆0) + R

d−1

)]
(
P

(0)
k (∆0)

)2 (
P

(0)
k (∆0) + R

d−1

)
( 1

2︸︷︷︸
σ

− 1︸︷︷︸
c̄c

+
1

2︸︷︷︸
b

)
= 0

Only the anomalous dimensions contributions still remain

1

2
(2ηk,c − ηk,h − ηk,b) Tr’(0) θ(k

2 −∆0) (3.23)

The scalar χ̄, χ and ζ fields give

−1

2
Tr’(0)

∂t
[
P

(0)
k (∆0)

(
P

(0)
k (∆0) + R

d−1

)]
P

(0)
k (∆0)

(
P

(0)
k (∆0) + R

d−1

)


and the remaining trace contribution for scalar φ field reads

1

2
Tr’(0)

[
∂trk(∆0)

P
(0)
k (∆0) + R

d−1

]

Adding all together, we obtain the total scalar non physical trace part

− 1

2
Tr’(0)

[
∂trk(∆0)

P
(0)
k (∆0)

]
+

1

2
(2ηk,c − ηk,h − ηk,b) Tr”(0) θ(k

2 −∆0)

= −Tr’(0)

[
θ(k2 −∆0)

]
+

1

2
(2ηk,c − ηk,h − ηk,b) Tr”(0) θ(k

2 −∆0)

The scalar h̄ contribution are more involved, using (3.20) and (3.21) we find

Tr(0)

[
θ(k2 −∆0)W h̄

0 (∆0/k
2)
]
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where

W h̄
0 (z) =

1[
2(d− 1)2f̃ ′′k + (d− 2)f̃ ′k

(
(d− 1)− R̃

)
+ d(d−2)

2 f̃k

]
×
{

(d− 1)2(1− z2)
[
∂tf̃
′′
k − 2R̃f̃ ′′′k − 2f̃ ′′k − ηk,hf̃ ′′k

]
+ (1− z)(d− 1)(d− 2)

2

[
∂tf̃
′
k − 2R̃f̃ ′′k − ηk,hf̃ ′k

]
+ (d− 1)

[
(d− 2)f̃ ′k + 4(d− 1)f̃ ′′k

]}
(3.24)

At this level, the functional RG equation becomes

∂tΓk = Tr(2)

[
θ(k2 −∆2)W2(∆2/k

2)
]

+ Tr’
(1)

[
θ(k2 −∆1)W1(∆1/k

2)
]

+ Tr”(0)

[
θ(k2 −∆0)Wnp

0 (∆0/k
2)
]

+ Tr(0)

[
θ(k2 −∆0)W h̄

0 (∆0/k
2)
]

+
1

2
(2ηk,c − ηk,h − ηk,b)

(
Tr’

(1) θ(k
2 −∆1) + Tr”(0) θ(k

2 −∆2)
) (3.25)

where

W2(z) =
(z − 1)

(
∂tf̃
′
k − 2R̃f̃ ′′k − ηk,hf̃ ′k

)
− 2f̃ ′k(

4
dR̃− 2

)
f̃ ′k − 2f̃k

Wnp
0 (z) = W1(z) = −1

and W h̄
0 (z) is given in (3.24).

3.1 Traces as spectral sums

In the last chapter we used the Heat Kernel technique for the evaluation of traces in func-

tional RG equation, given in Appendix C. In this chapter we use an alternative calculation

of traces which enables us to extend, in a natural manner, the exact RG equation in ansatz

(3.1) to general d spacetime dimension. This new method, used in [6], is based on ”sums over

eigenvalues” in trace calculation and relies on the fact that we have choosen for the background

manifold a sphere.

Consider a function W (∆s) with i = 0, 1, 2, the definition of functional trace reads

TrW (∆s) =
+∞∑
n=ns

W (λn,s)Dn,s

where λn,s and Dn,s with s = 0, 1, 2 are the eigenvalues and relative multiplicities for operators

(3.17-3.18-3.19), given in Table 3.1.
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Operator Eigenvalue λn,s Multiplicity Dn,s

∆0 = ∆− R
d

n(n+d−1)−d
d(d−1) R; n = 0, 1... (2n+d−1)(n+d−2)!

n!(d−1)!

∆1 = ∆− R
d−1

n(n+d−1)−d
d(d−1) R; n = 1, 2... n(n+d−1)(2n+d−1)(n+d−3)!

(d−2)!(n+1)!

∆2 = ∆ + 2R
d(d−1)

n(n+d−1)
d(d−1) R; n = 2, 3... (d+1)(d−2)(n+d)(n−1)(2n+d−1)(n+d−3)!

2(d−1)!(n+1)!

Table 3.1: Eigenvalue and their multiplicities of operators (3.17-3.18-3.19) on a d-sphere

However in equation (3.25) we have a theta function in the trace argument

Tr
[
θ(k2 −∆s)W (∆s)

]
(3.26)

The theta function enables us to truncate the sum to Ñs(R̃), with

Ñs(R̃) ≡ max {n ∈ N ;λn,s ≤ k2} = bNs(R̃)c (3.27)

where, clearly, Ns(R̃) is such that λNs,s = k2 and x → bxc is the Floor function. So trace

(3.26) becomes

Tr
[
θ(k2 −∆s)W (∆s)

]
=

Ñs(R̃)∑
n=ns

W (λn,s)Dn,s

By definition (3.27) can be obtained from conditions λNs,s = k2, which give

N2(R̃) =
(1− d)R̃+

√
(d− 1)2R̃2 + 4R̃d(d− 1)

2R̃
(3.28)

N0(R̃) = N1(R̃) =
(1− d)R̃+

√
(d+ 1)2R̃2 + 4R̃d(d− 1)

2R̃
(3.29)

(3.30)

Hence, the functional RG equation (3.25) becomes

∂tΓk =

Ñ2(R̃)∑
n=2

W2(λn,2/k
2)Dn,2 +

Ñ1(R̃)∑
n=2

W1(λn,1/k
2)Dn,1

+

Ñ0(R̃)∑
n=1

Wnp
0 (λn,0/k

2)Dn,0 +

Ñ0(R̃)∑
n=0

W h̄
0 (λn,0/k

2)Dn,0

+
1

2
(2ηk,c − ηk,h − ηk,b)

Ñ1(R̃)∑
n=2

Dn,1 +

Ñ0(R̃)∑
n=1

Dn,0
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Note that tensor and ”physical” scalar sums start from n = 2 and n = 0 as expected. Vector

trace part starts from n = 2 instead of n = 1 since we must exclude modes relative to Killing

vectors, which satisfy ∇µξν +∇νξµ = 0. All d(d−1)/2 (in Sd) Killing vectors are collected into

n = 1 eigenvectors of ∆1. The scalar non-physical contribution starts from n = 1, the n = 0

eigenmode must be excluded since σ = const and ∇µσ do not contribute to metric fluctuations.

We analize trace calculation in details in the following sections.

Tensor trace contribution

For tensor trace contribution we have to evaluate the following sums

St1(N) =

N∑
n=2

Dn,2 (3.31)

St2(N) =

N∑
n=2

(
λn,2
k2
− 1

)
Dn,2 (3.32)

Let us start with the first sum

St1(N) =

N∑
n=2

(d+ 1)(d− 2)(n+ d)(n− 1)(2n+ d− 1)(n+ d− 3)!

2(d− 1)!(n+ 1)!
(3.33)

The exact value for this is

S
(exact)
t1 (R̃) = St1(bN2(R̃)c) (3.34)

which is really difficult to be evaluated, so an approximation method is needed. It has been

proposed in [6] to make the following approximation

S
(asymp)
t1 (R̃) = S

(0)
t1 (R̃) + S

(∞)
t1 (R̃) (3.35)

where the two contributions S
(0)
t1 (R̃) and S

(∞)
t1 (R̃) represents the asymptotic behaviour of

St1(N2(R̃)) for R̃→ 0 and R̃→∞ respectively.

In order to evaluate this two contributions we need the asymptotic behaviour of N2(R̃),

which can be obtained from (3.28)

N2(R̃)
R̃→0
=

(
d(d− 1)

R̃

) 1
2

(3.36)

N2(R̃)
R̃→+∞

= 0 (3.37)

Now, using the limit N2(R̃→ 0)→ +∞, we can approximate sum (3.33) to evaluate S
(0)
t1 (R̃)

S
(0)
t1 (R̃)

R̃→0
=

(d+ 1)(d− 2)

2(d− 1)!

N2(R̃)∑
n=2

nd−1 R̃→0
=

(d+ 1)(d− 2)

2(d− 1)!
(N2(R̃))d

=
(d+ 1)(d− 2)

2(d− 1)!

(
d(d− 1)

R̃

) d
2
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Figure 3.1: S
(exact)
t2 in blue, S

(asymp)
t2 in green for d = 3, d = 4, d = 5 and d = 6

Instead, S
(∞)
t1 (R̃) vanishes as a consequence of (3.37). Remember that for large N

N∑
n=1

nk
N→+∞

=
Nk+1

k + 1

So, in the asymptotic approximation sum over multiplicities reads

N2(R̃)∑
n=2

Dn,2 =
(d+ 1)(d− 2)

2(d− 1)!

(
d(d− 1)

R̃

) d
2

Let us proceed to the St2(N), which is quite different and can be devided in

St2(N) =

N∑
n=2

λn,2
k2

Dn,2 − St1(N)

So we analize the first contribution on the right hand side, which reads

N2(R̃)∑
n=2

(d+ 1)(d− 2)n(n+ d− 1)(n+ d)(n− 1)(2n+ d− 1)(n+ d− 3)!

2d!(d− 1)(n+ 1)!
R̃
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Following the same procedure of previous case, this sum can be approximated by

(d+ 1)(d− 2)

2(d− 1)!

(
d(d− 1)

R̃

) d
2

Hence, the asymptotic approximation for sum (3.32) is given by

S
(asymp)
t2 (R̃) = −2

(d+ 1)(d− 2)

d(d+ 2)(d− 1)!

(
d(d− 1)

R

) d
2

(3.38)

At this level, an analisys of the quality of the approximation made is needed. We have

implemented a Mathematica program, in which the numerical calculation for the exact sum-

mation

S
(exact)
t2 (R̃) = St2(bN2(R̃)c) (3.39)

is done. Picture 3.1 plots S
(exact)
t2 (R̃) in blue and S

(asymp)
t2 (R̃) in green in different dimension,

d = 3, d = 4, d = 5, d = 6. In all cases, the assumption approximates the exact result in a good

way, giving an almost perfect smooth approximation.

Hence the total tensor trace gives the contribution

N2(R̃)∑
n=2

W2(λn,2/k
2, R̃)

(asymp)
= −2

(d+ 1)(d− 2)

d(d+ 2)(d− 1)!

×

∂tf̃ ′k − 2R̃f̃ ′′k − ηk,hf̃ ′k + (d+ 2)f̃ ′k(
4
dR̃− 2

)
f̃ ′k − 2f̃k

(d(d− 1)

R̃

) d
2

Vector trace contribution

The vector, as scalar part, trace contribution is quite simply since the only sum needed is

the following

Sv(N) =
N∑
n=2

Dn,1 =
N∑
n=2

n(n+ d− 1)(2n+ d− 1)(n+ d− 3)!

(d− 2)!(n+ 1)!
(3.40)

which give the exact value

S(exact)
v (R̃) = Sv(bN1(R̃)c) (3.41)

and using the asymptotic approximation we have

S(asymp)
v (R̃) =

2

d(d− 2)!

(
d(d− 1)

R̃

) d
2

(3.42)

Note that the behaviour for R̃ → +∞ implies N1(R̃) → 1 ( see (3.29)), but sum (3.40) starts

from n = 2, so this limit does not give contribution.



50 3. Trace evaluation with spectral sums in d dimension

0.2 0.4 0.6 0.8 1.0
R
�

50

100

150

200

250

300

dim � 3

0.2 0.4 0.6 0.8 1.0
R
�

500

1000

1500

2000

2500

dim � 4

0.2 0.4 0.6 0.8 1.0
R
�

5000

10 000

15 000

20 000

dim � 5

0.2 0.4 0.6 0.8 1.0
R
�

50 000

100 000

150 000

dim � 6

Figure 3.2: S
(exact)
v in blue, S

(asymp)
v in green for d = 3, d = 4, d = 5 and d = 6

A comparison between the exact value S
(exact)
v (R̃) and approximated one S

(asymp)
v (R̃) is

given in figure 3.2. As in the previous case, the agreement between the exact and asymptotic

approximation is excellent.

So the total vector trace is given by

N1(R̃)∑
n=2

W1(λn,1/k
2, R̃) = − 2

d(d− 2)!

(
d(d− 1)

R̃

) d
2

”Non-physical” scalar contribution

As in the vector case, the ”non-physical” scalar contribution is given by the simple sum

over the multiplicities

Snp(N) =
N∑
n=1

Dn,0 =
N∑
n=1

(n+ d− 2)!(2n+ d− 1)

n!(d− 1)!

which can be written without approximation as

S(exact)
np (R̃) = Snp(bN0(R̃)c)
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Figure 3.3: S
(exact)
np in blue, S

(asymp)
np in green for d = 3, d = 4, d = 5 and d = 6

The N0 function has the following asymptotic behaviours

N0(R̃)
R̃→0
=

(
d(d− 1)

R̃

) 1
2

N0(R̃)
R̃→+∞

= 1

which give the following asymptotic approximation

S(asymp)
np (R̃) =

2

d!

(
d(d− 1)

R̃

) d
2

+D1,0

=
2

d!

(
d(d− 1)

R̃

) d
2

+ d+ 1

(3.43)

A comparison between the exact value S
(exact)
np (R̃) and approximated one S

(asymp)
np (R̃) is

given in figure 3.3. As in the previous case, the agreement between the exact and asymptotic

approximation is very good.

In asymptotic approximation the corresponding scalar trace becomes

N0∑
n=1

Wnp
0 (λn,0/k

2, R̃)Dn,0 = − 2

d!

(
d(d− 1)

R̃

) d
2

− d− 1
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h̄-scalar trace contribution

The last contribution involves the scalar field h̄. The relative functional trace is composed

by the three following contribution

Sh̄1(N) =
N∑
n=0

(
1− λn,0

k2

)
Dn,0 (3.44)

Sh̄2(N) =
N∑
n=0

(
1−

λ2
n,0

k4

)
Dn,0 (3.45)

Sh̄3(N) =
N∑
n=0

Dn,0 (3.46)

First, note that the last term is analized in previous section where the sum starts from n = 1

Sh̄3(N) = Snp(N) +D0,0

Hence, the S
(asymp)

h̄3
can be calculated directly from (3.43)

S
(asymp)

h̄3
(R̃) = S(asymp)

np +D0,0 =
2

d!

(
d(d− 1)

R̃

) d
2

+ d+ 2 (3.47)

Let us consider the sum Sh̄1, defined in (3.44). The exact value S
(exact)

h̄1
reads

S
(exact)

h̄1
(R̃) = Sh̄1(bN0(R̃)c)

For the asymptotic approximation we start deviding (3.44) into

Sh̄1(N) = Sh̄3(N)−
N∑
n=0

λn,0
k2

Dn,0

Since we know from (3.47) the asymptotic approximation for the first term on the right hand

side, we move to the second contribution and take first the limit for large N0(R̃)

N0∑
n=0

λn,0
k2

Dn,0 =

N0∑
n=0

[n(n+ d− 1)− d]

d(d− 1)

(2n+ d− 1)(n+ d− 2)!

n!(d− 1)!
R̃

N0→+∞
=

2

d!(d− 1)
R̃

N0∑
n=0

nd+1 N0→+∞
=

2

d!(d+ 2)(d− 1)
Nd+2

0

=
2

(d− 1)!(d+ 2)

(
d(d− 1)

R̃

) d
2

(3.48)

and then the limit R̃→ +∞ (which implies N0(R̃) ' 1)

N0'1∑
n=0

λn,0
k2

Dn,0 =
λ0,0

k2
D0,0 +

λ1,0

k2
D1,0 = − R̃

d− 1
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Figure 3.4: S
(exact)

h̄1
in blue, S

(asymp)

h̄1
in green for d = 3 and d = 4

So we find for the approximated sum S
(asymp)

h̄1
(R̃)

S
(asymp)

h̄1
(R̃) =

4

d(d+ 2)(d− 1)!

(
d(d− 1)

R̃

) d
2

+
R̃

d− 1
+ d+ 2

A comparison between the exact value S
(exact)

h̄1
(R̃) and approximated one S

(asymp)

h̄1
(R̃) is

given in figure 3.4. The pictures show both the behaviour for small range value of R̃ on the

left and for a wide range of R̃ on the right. As in the previous case, the agreement between

the exact and asymptotic approximation is optimal in both situations.

Now we consider the contribution

Sh̄2(N) = Sh̄3 −
N∑
n=0

λ2
n,0

k4
Dn,0
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The second term on the right hand side have the following behaviour for R̃→ 0

N0∑
n=0

λ2
n,0

k4
Dn,0 =

N0∑
n=0

[n(n+ d− 1)− d]2

d2(d− 1)2

(2n+ d− 1)(n+ d− 2)!

n!(d− 1)!
R̃2

N0→+∞
=

2

d!d(d− 1)2
R̃

N0∑
n=0

nd+3 N0→+∞
=

2

d!d(d+ 4)(d− 1)2
Nd+4

0

=
2

(d− 1)!(d+ 4)

(
d(d− 1)

R̃

) d
2

for the opposite limit R̃→ +∞, so N0(R̃) ' 1, we have

N0'1∑
n=0

λ2
n,0

k4
Dn,0 =

λ2
0,0

k4
D0,0 +

λ2
1,0

k4
D1,0 =

R̃2

(d− 1)2

Hence, the asymptotic approximation for (3.45) S
(asymp)

h̄2
becomes

S
(asym)

h̄2
=

8

d(d+ 4)(d− 1)!

(
d(d− 1)

R̃

) d
2

− R̃2

(d− 1)2
+ d+ 2

A comparison between the exact value S
(exact)

h̄2
(R̃) and approximated one S

(asymp)

h̄2
(R̃) is

given in figure 3.5. The pictures show both the behaviour for small range value of R̃ on the

left and for a wide range of R̃ on the right. As in the previous case, the agreement between

the exact and asymptotic approximation is vary good in both situations.

Collecting all contribution we find for the scalar h̄ trace part

T h̄0 ≡
Ñ0(R̃)∑
n=0

W h̄
0 (λn,0/k

2)Dn,0 =
1[

2(d− 1)2f̃ ′′k + (d− 2)f̃ ′k(d− 1− R̃) + d(d−2)
2 f̃k

]
×

{[
8

d(d+ 4)(d− 1)!

(
d(d− 1)

R̃

) d
2

− R̃2

(d− 1)2
+ d+ 2

]
(d− 1)2

×
[
∂tf̃
′′
k − 2R̃f̃ ′′′k − 2f̃ ′′k − ηk,hf̃ ′′k

]
+

(d− 2)(d− 1)

2

[
4

d(d+ 2)(d− 1)!

(
d(d− 1)

R̃

) d
2

+
R̃

d− 1
+ d+ 2

]
×
(
∂tf̃
′
k − 2R̃f̃ ′′k − ηk,hf̃ ′k

)
+ (d− 1)

[
2

d(d− 1)!

(
d(d− 1)

R̃

) d
2

+ d+ 2

] [
(d− 2)f̃ ′k + 4(d− 1)f̃ ′′k

]}

(3.49)
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Figure 3.5: S
(exact)

h̄2
in blue, S

(asymp)

h̄2
in green for d = 3 andd d = 4

Anomalous dimensions trace contributions

Last, we have the anomalous dimensions contributions to the total trace calculation

T η ≡ +
1

2
(2ηk,c − ηk,h − ηk,b)

Ñ1(R̃)∑
n=1

Dn,1 +

Ñ0(R̃)∑
n=1

Dn,0

 (3.50)

The sums have been evaluated within the asymptotic approximation in previous sections. Equa-

tions (3.43,3.42) give

T η =
1

2
(2ηk,c − ηk,h − ηk,b)

[
2

(d− 1)!

(
d(d− 1)

R̃

) d
2

+ d+ 1

]
(3.51)

3.2 Beta function for fk(R)

Finally, collecting all trace contributions, we find the functional RG equation for fk(R)

approximation with the spectral sums technique

∂tΓk =
kd

κ̃2
k

VdS

[
∂tf̃k(R̃)− 2R̃f̃ ′k(R̃) +

(
d− 2

∂tκ̃k
κ̃k

)
f̃k(R̃)

]
= T2 + T1 + Tnp0 + T h̄0 + T η (3.52)
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where we defined

T2 = −2
(d+ 1)(d− 2)

d(d+ 2)(d− 1)!

∂tf̃ ′k − 2R̃f̃ ′′k + (d+ 2− ηk,h)f̃ ′k(
4
dR̃− 2

)
f̃ ′k − 2f̃k

(d(d− 1)

R̃

) d
2

T1 = − 2

d(d− 2)!

(
d(d− 1)

R̃

) d
2

Tnp0 = − 2

d(d− 1)!

(
d(d− 1)

R̃

) d
2

− d− 1

while T h̄0 and T η is defined respectively in (3.49) and (3.51), and last

VdS = (4π)
d
2

(
d(d− 1)

R

) d
2 Γ(d2)

Γ(d)

is the volume of a d dimensional sphere.

For completeness we report here the same equation for d = 4, recovering the well known

spacetime dimensions

∂tΓk =
k4

κ̃2
k

V4S

[
∂tf̃k(R̃)− 2R̃f̃ ′k(R̃) +

(
4− 2

∂tκ̃k
κ̃k

)
f̃k(R̃)

]
=T2,d=4 + T1,d=4 + Tnp0,d=4 + T h̄0,d=4

(3.53)

where we defined

T2,d=4 = −
20
(
∂tf̃
′
k − 2R̃f̃ ′′k + (6− ηk,h)f̃ ′k

)
R̃2
((
R̃− 2

)
f̃ ′k − 2f̃k

)
T1,d=4 = − 36

R̃2

Tnp0,d=4 = −12 + 5R̃2

R̃2

T h̄0,d=4 =
1

2R̃2
[
9f̃ ′′k + f̃ ′k(3− R̃) + 2f̃k

]{(−R̃4 + 54R̃2 + 54
) [
∂tf̃
′′
k − 2R̃f̃ ′′′k − (ηk,h + 2)f̃ ′′k

]

+
(
R̃3 + 18R̃2 + 12

)(
∂tf̃
′
k − 2R̃f̃ ′′k − ηk,hf̃ ′k

)
+ 36

(
R̃2 + 2

)(
f̃ ′k + 6f̃ ′′k

)}

T ηd=4 =
1

2
(2ηk,c − ηk,h − ηk,b)

(
48

R̃2 + 5

)
(3.54)

and last V4S = 384π2/R2 is the volume of a four sphere. Equation (3.53) recovers the previous

results appeared in [6].
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3.3 Possible closures for fk(R) RG equation

Equation (3.52) allows us to describe the flow of function fk(R) and also its dependence

on the curvature scalar R. This equation contains fields anomalous dimensions which have to

be determined in a different way. As explained in the previous chapter, a possible closure is

the following: find anomalous dimensions contribution with flow of Γ
(2)
k . This possibility is a

proposal for a future work.

To follow a consistent closure of (3.52), in this work we make two different natural ansatz

for the values of Zk,h, Zk,c and Zk,b. The most simple ansatz, which we call type I ansatz, is

the following

Zk,h = κ−2
k Zk,c = Zk,b = 1

which imply

ηk,h = −
βG̃
G̃
− 2 ηk,c = 0 ηk,b = 0 (3.55)

where κk =
√

16πGk and G̃ = k2Gk is the dimensionless Newton’s constant. Note that type I

ansatz (3.55) imply the following metric decomposition

gµν = ḡµν + hµν

which is the most used definition for quantum flactuations.

Another ansatz for the anomalous dimensions values, which we call type II ansatz, is the

following

Zk,h = Zk,b = Zk,c = 1

which implies

ηk,h = 0 ηk,c = 0 ηk,b = 0

Hence, with type I ansatz, the anomalous dimensions contribution in (3.52) is completly ne-

glected. Note that, within this choice, we do not recover flow equation in [6], since metric

decomposition gµν = ḡµν + κkhµν and truncation ansatz for Γk are different from this work.

3.4 Polynomial truncation

The most simple truncation for the average effective action is the standard Einstein-Hilbert

action

Γk[h, C̄, C, b; ḡ] =
1

16πGk

∫
ddx
√
g(2Λk −R) + Γk,gh + Γk,g.f. (3.56)

where Λk is the running cosmological constant. This kind of truncation has been studied with

different point of view [12, 18, 19, 20], in diverse cutoff choices [5] and in d spacetime dimension

[21]. The choice (3.56) is consistent with previous truncation (3.1) if

fk(R) = 2Λk −R → fk(0) = 2Λk f ′k(0) = −1
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Closure type I:Zk,h = κ−2
k , Zk,c = Zk,b = 1 η∗h = −2, ηk,c = ηk,b = 0

n Λ̃∗ G̃∗ g̃0 κ̃∗ g̃2 g̃3 g̃4 g̃5

1 0.2839 0.6616 0.5678 5.7667

2 0.3038 0.7988 0.6077 6.3365 0.1053

3 0.3388 0.6593 0.6777 5.7569 0.1377 -0.0705

4 0.3428 0.6523 0.6857 5.7261 0.1426 -0.0796 -0.0549

5 0.3414 0.6548 0.6828 5.7368 0.1411 -0.0791 -0.0642 -0.0365

Table 3.2: Couplings value at non-Gaussian fixed point as a functions of the order n of the

truncation in d = 4.

so one can construct the flow for gravitational and cosmological constants using (3.52).

For a first study on the dimensionality of the critical surface, the average effective action

have to be modified introducing more interactions such as R2, R3 and so on.

Here, we consider the polynomial truncation, so that the effective action reads

Γk =
1

16πGk

∫
ddx
√
g

n∑
i=0

giR
i + Γk,gh + Γk,g.f. (3.57)

Clearly, for n = 1 we go back to Einstein-Hilbert form. This truncation ansatz is consistent

with our initial assumption for the effective action as a function only on curvature scalar. To

study the flow equation for the dimensionless couplings g̃i = k2−2igi, we use equation (3.52),

which, as pointed out in the last section, necessitate of a closure to be solved for the presence

of anomalous dimensions’ contribution.

Type I closure: Zk,h = κ−2
k , Zk,c = Zk,b = 1

In table 3.2 the value of dimensionless couplings at the fixed point are reported for n = 1

to n = 5. First, we see that the value of G̃∗ and Λ̃∗ in the Einstein-Hilbert truncation (n = 1)

agrees with the projection in the Λ̃− G̃ plane of other truncation (n > 1). For n = 2 we see a

deviation of mean value of the fixed point position, already present in other approaches and in

previous chapter.

In table 3.3, the critical exponents is reporter as a functions of the truncation. We first

note that for n > 1 there are only three critical exponents with positive real part. Hence, we

found an UV critical surface of dimension three for all n > 1; this is an important aspect which

tells us that, within polynomial truncation up to n = 5, QFT of General Relativity is found to

be asymptotically safe. The check that such a property is mantained for higher n is not done

here for simplicity.
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Closure type I:Zk,h = κ−2
k , Zk,c = Zk,b = 1, η∗h = −2, ηk,c = ηk,b = 0

n θ0 θ1 θ2 θ3 θ4 θ5

1 3.1443 5.749

2 2.7194 9.0078 24.9525

3 3.2284+i0.5134 3.2284-i0.5134 6.6439 -51.7959

4 3.3275 2.0639 6.4078 -17.3671+i12.6919 -17.3671-i12.6919

5 3.2416 2.2692 6.4239 -9.985+i17.7432 -9.985-i17.7432 12.5219

Table 3.3: Critical exponents as a function of the order n of the truncation.
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Figure 3.6: In this picture the flow given by equation (3.52), using the Einstein-Hilbert trun-

cation, which projects in the (Λ̃k, G̃k) plane.

Type II closure: Zk,h = Zk,c = Zk,b = 1, ηk,h = ηk,c = ηk,b = 0

In this section we present the result for the polynomial truncation with a different choice

of anomalous dimensions contribution. The type II closure for equation (3.52) reads

Zk,h = Zk,c = Zk,b = 1 → ηk,h = ηk,c = ηk,b = 0 (3.58)

The truncated effective average action is still (3.57) and the couplings values at fixed point is

given in table 3.4.

First, we note that fixed point values for the couplings are highly different from type I

closure. In fact, the two closures differ not only for regulator choice but also for metric decom-

position; hence they give different values for the fixed point as expected.

Also in this case for n = 2 we have a deviation from the mean fixed point values; but the

deviation is greater than in the previous case. Maybe, the previous choice on regulator term

gives a more stable distribution of fixed point as a function of n.
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Closure type II:Zk,h = Zk,c = Zk,b = 1 ηk,h = ηk,c = ηk,b = 0

n Λ̃∗ G̃∗ g̃0 κ̃∗ g̃2 g̃3 g̃4 g̃5

1 0.1902 1.7674 0.3804 9.4253

2 0.3199 1.4513 0.6397 8.5411 0.1732

3 0.2441 1.8644 0.4883 9.6805 0.1096 -0.0705

4 0.2358 1.8858 0.4717 9.7361 0.1073 -0.0726 -0.0299

5 0.2363 1.8882 0.4725 9.7423 0.1075 -0.068 -0.0284 -0.005

Table 3.4: Couplings value at non-Gaussian fixed point as a functions of the order n of the

truncation for closure (3.58).

Closure type II:Zk,h = Zk,c = Zk,b = 1, ηk,h = ηk,c = ηk,b = 0

n Reθ0 = Reθ1 Imθ0 = −Imθ1 θ2 Reθ3 = Reθ4 Imθ3 = −Imθ4 θ5

1 2.1817 2.1665

2 1.8697 3.2475 2.2156

3 2.2667 2.1951 2.4279 -5.4926

4 2.4394 2.2145 2.3254 -3.9547 -1.9701

5 2.8721 1.3385 1.851 -3.0748 -5.9726 -2.9515

Table 3.5: Critical exponents as a function of the order n of the truncation for closure (3.58).

In table 3.5 critical exponents is presented. For n = 1, the Einstein-Hilbert truncation, we

have a pair of complex conjugate critical exponents; hence both directions in the Λ̃k− G̃k plane

are UV attractive. For n > 1 only three critical exponents have positive real part, so the UV

critical surface has finite dimension, a result which is in common to the closure type I studied

above.



Chapter 4

Alternative flow equation for fk(R)

with Euler-Maclaurin approximation

In previous chapters we derived two differential equation for the flow of fk(R) using two

different methods in evaluating the functional trace present in the Wetterich’s equation.

The first method is based on the Heat Kernel technique while the second one regards a

particular approximation for the spectral sums. In this chapter we use a different approximation

scheme to evaluate the trace based on Euler-Maclaurin formula for finite series. The aim of

this work is to find a differential equation of second order for fk(R), instead of third order; this

can be acheved with a ”second order” cutoff scheme, as we have seen in previous chapters.

An equation with a second order derivatives in R would allow for a possibly simpler analysis

of the fixed point and stability involving an infinite numer of coupling.

The starting point is the same as in the previous chapters. The metric decomposition

g = ḡ + κkh contains an extra factor κk =
√

16πGk, so that the n− th proper vertex depends

on κn−2
k .

The truncation ansatz still reads

Γk[h,C, C̄, b; ḡ] =
1

κ2
k

∫
ddx
√
gfk(R) + Γk,g.f.[h; ḡ] + Γk,gh[h,C, C̄, b; ḡ] (4.1)

In order to study the anomalous dimensions that fields can aquire, in the spirit of renor-

malization group, we make the following redefinition

hµν → Z
1/2
k,h hµν Cµ → Z

1/2
k,c Cµ C̄µ → Z

1/2
k,c C̄µ bµ → Z

1/2
k,b bµ (4.2)

and define anomalous dimensions through the usual formulae

ηk,a = −
∂tZk,a
Zk,a

a = h, c, b (4.3)

The gauge fixing condition is the same as before

61
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Γk,g.f.[h; ḡ] =
Zk,h
2α

∫
ddx
√
ḡFµ[h; ḡ]Fν [h; ḡ]ḡµν

where

Fµ[h; ḡ] = ∇̄ρhρµ −
1

d
∇̄µh (4.4)

Note that F [h; ḡ] does not depend on the scalar mode h when the transverse traceless decom-

position is taking into account; this observation is crucial in diagonalization of Γ
(2)
k within the

gauge α→ 0.

As in chapter 3, we do not use the standard Faddeev-Popov ghosts contribution; instead,

we used the following choice

Γk,gh[h = 0, C, C̄, B; ḡ] =
Zk,c
α

∫
ddx
√
ḡ

[
C̄Tµ

(
∆− R

d

)2

CTµ + 4

(
d− 1

d

)2

c̄

(
∆− R

d− 1

)2

∆c

]
+
Zk,b
α

∫
ddx
√
ḡ

[
BT
µ

(
∆− R

d

)2

BTµ + 4

(
d− 1

d

)2

b

(
∆− R

d− 1

)2

∆b

]
(4.5)

As it was pointed out in the previous chapter, using this ghosts contribution, there exists

an almost perfect cancellation between pure gauge degrees of freedom and ghosts sector in the

trace calculation; only the anomalous dimensions’ contribution still remains.

We rewrite for convenience the auxiliary field action resulting from the exponentiation of

the Jacobians for the transverse-traceless decomposition, as discussed in chapter 2.

Saux-gr =

∫
ddx
√
ḡ

[
2χ̄Tµ

(
∆− R

d

)
χTµ +

d− 1

d2
χ̄

(
∆− R

d− 1

)
∆χ

+ 2ζTµ

(
∆− R

d

)
ζTµ +

d− 1

d2
ζ

(
∆− R

d− 1

)
∆ζ

(4.6)

where χT and χ are Grassmann valued fields while ζT and ζ are real commuting fields.

The calculation of Γ(2)k is given in the previous chapter, in particular for the gravity sector

it is given by equations (3.10-3.11-3.12-3.13-3.14).

4.1 Cutoff scheme

In previous chapters we employed a particular cutoff scheme in order to simplify the cor-

responding functional traces, which had the effect of making the right hand side of Wetterich

equation dependent on f̃ ′′′k . Instead, in this chapter we use a simplified version for cutoff

scheme, called ”second order”, which reduce the dependence only on derivative up to second

one. The ”second order” cutoff is used, for the first time related to fk(R) approximation, in
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[26]. In this paper a cutoff R(∆s + αsR) with argument ∆s + αsR, where ∆s (s = 0, 1, 2) is

given by (3.17-3.18-3.19) and αs is fixed by the requirement that the argument ∆s + αsR is

positive or semi-positive definite. For s = 1, 2 we can impose αs = 0, while for s = 0 we choose

α0 = 1
d−1 , so that ∆0 + α0R = ∆0 + R

d−1 = ∆ is semi-positive definite.

To be more precise, we choose the following regulator

RhTT (∆2) = −1

2
f ′kZk,hrk(∆2)

Rξ(∆1) = RC̄TCT (∆1) = RBT =
Zk,h
α

(k4 −∆2
1)θ(k4 − θ2

1)

Rh̄(∆) = −d− 1

d2
Zk,hrk(∆)

Rσ(∆̃) = Rc̄c(∆̃) = Rb(∆̃) =
(d− 1)2

d2

Zk,h
α

(k6 − ∆̃)θ(k6 − ∆̃)

Rχ̄TχT (∆̃np) = RζT ζT (∆̃np) =
d− 1

d2
(k4 − ∆̃np)θ(k

4 − ∆̃np)

Rχ̄χ(∆) = Rζζ = k2rk(∆)

Rφ(∆) = rk(∆)

where

∆1 = ∆− R

d

∆2 = ∆ +
2R

d(d− 1)

∆̃ =

(
∆− R

d− 1

)2

∆

∆̃np =

(
∆− R

d− 1

)
∆

and last

rk(z) = (k2 − z)θ(k2 − z)

is the standard Litim’s optimized cutoff.

Inserting previous regulators into Wetterich’s equation, the r.h.s. gives the following con-

tribution (divided by spin components)

∂tΓk = T2 + T1 + Tnp + T h̄ + T η (4.7)

where the spin 2 component reads

T2 =
1

2
Tr(2)

(1− ∆2
k2

) (
∂tf̃
′
k − 2R̃f̃ ′′k − ηk,hf̃ ′k

)
+ 2f̃ ′k

f̃ ′k + f̃k − 2
dR̃f̃

′
k
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Operator Eigenvalue λn,s Multiplicity Dn,s

∆ n(n+d−1)
d(d−1) R; n = 0, 1... (2n+d−1)(n+d−2)!

n!(d−1)!

∆1 = ∆− R
d−1

n(n+d−1)−d
d(d−1) R; n = 1, 2... n(n+d−1)(2n+d−1)(n+d−3)!

(d−2)!(n+1)!

∆2 = ∆ + 2R
d(d−1)

n(n+d−1)
d(d−1) R; n = 2, 3... (d+1)(d−2)(n+d)(n−1)(2n+d−1)(n+d−3)!

2(d−1)!(n+1)!

Table 4.1: Eigenvalue and their multiplicities of operators (3.17-3.18-3.19) on a d-sphere

the spin 1 is given by

T1 = −Tr’
(1) θ(k

2 −∆1) (4.8)

the non-physical scalar contribution is

Tnp = −Tr’(0) θ(k
4 − ∆̃np) + Tr’(0) θ(k

2 −∆) (4.9)

and the h̄ contribution reads

T h̄ = −1

2
Tr(0)

 [
2− ηk,h + ηk,h

∆
k2

]
θ(k2 −∆)

(d− 1)2f̃ ′′k

(
∆
k2
− R̃

d−1

)2
+ (d− 1)f̃ ′k

(
∆
k2
− R̃

d−1

)
+
(

2f̃k − R̃f̃ ′k
)

+ ∆
k2
− 1


(4.10)

Last, we give the anomalous dimensions’ functional trace

T η = (2ηc − ηh − ηb)
{

Tr’
(1) θ(k

4 −∆2
1) + Tr’(0) θ(k

6 − ∆̃)
}

(4.11)

4.2 Spectral sums and Euler-Maclaurin approximation

As discussed in previous chapters, the r.h.s. of Wetterich’s equation involves functional

traces over functions of Laplacian ∆ = −gµν∇µ∇ν on a d-dimensional sphere.

In Chapter 2 we used the Heat Kernel technique implemented by a local expansion of the

Heat Kernel operator. In Chapter 3 we adopted the asymptotic approximation used in [6]

generalizing the method in d-spacetime dimensions.

Here, we introduce an alternative new approximation method based on the Euler-Maclaurin

formula. The starting point is the standard definition of functional trace

Tr W̃ (∆s) =
∑
n=ns

W̃ (λn,s)Dn,s (4.12)

where, as pointed out above, function W̃ depends on ∆, ∆1 or ∆2.
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First, note that in all cases we have W̃ (∆s) = W (∆s)θ(k
2 − ∆s); hence we can truncate

the sums to the values Ñs = bNsc, where

N0(R̃) = N2(R̃) =
(1− d)R̃+

√
(d− 1)2R̃2 + 4R̃d(d− 1)

2R̃
(4.13)

N1(R̃) =
(1− d)R̃+

√
(d+ 1)2R̃2 + 4R̃d(d− 1)

2R̃
(4.14)

(4.15)

as it was discussed in the previous chapter. Formally the Wetterich’s equation with ”second

order” cutoff and spectral sums technique becomes

∂kΓk =

Ñ2∑
n=2

W2(λn,2)Dn,2 +

Ñ1∑
n=2

W1(λn,1)Dn,1 +

Ñ0∑
n=1

Wnp(λn,0)Dn,0

+

Ñ0∑
n=0

W h̄(λn,0)Dn,0 +

Ñ1∑
n=1

W η1(λn,1)Dn,1 +

Ñ0∑
n=1

W η0(λn,0)Dn,0

(4.16)

where λn,1 and λn,2 are the eigenvalues of operators ∆1 and ∆2, given in 3.1, while λn,0 are

the eigenvalues of ∆ with spin 0 and are reported in table C.1. Note that the spin 1 sum

starts from n = 2 since all d(d− 1)/2 Killing vectors do not contribute to the functional trace.

Similarly, the np scalar contribution starts from n = 1 (contrary to [5]), since σ = const does

not contribution to quantum flactuations while ∇µσ, corresponding to n = 1 modes, does.

The functions W (z) in the argument of the sums are given by the following expressions:

W2(z) =
1

2

(1− z)
(
∂tf̃
′
k − 2R̃f̃ ′′k − ηk,hf̃ ′k

)
+ 2f̃ ′k

f̃ ′k + f̃k − 2
dR̃f̃

′
k

Note that when one consider R̃ = 0 and impose f̃ ′k(0) = −1 the denominator does not depend

on z.

W1(z) = −1

Wnp(z) = −1

W h̄ = −1

2

2− ηk,h + ηk,hz

(d− 1)2f̃ ′′k

(
z − R̃

d−1

)2
+ (d− 1)f̃ ′k

(
z − R̃

d−1

)
+ 2f̃k − R̃f̃ ′k + z − 1

W η1(z) = (2ηk,c − ηk,h − ηk,b)

W η2(z) = (2ηk,c − ηk,h − ηk,b)

To understand the Euler-Maclaurin approximation method, consider first the generic sum

S =
b∑

n=a

g(n)
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The Euler-Maclaurin formula gives

b∑
n=a

g(n) '
∫ b

a
g(x)dx+

g(a) + g(b)

2
+ Remainder (4.17)

where the remainder term is given by

Remainder =
+∞∑
i=1

B2i

(2i)!

(
g(2i−1)(b)− g(2i−1)(a)

)
and B2k are Bernoulli coefficients: B0 = 1, B1 = −1

2 , B2 = 1
6 , B3 = 0, B4 = − 1

30 , B5 = 0 and

so on. Using Euler-Maclaurin formula (4.17), one can approximate functional trace in (4.16)

but the remainder term R gives a non-trivial contribution. Adding to (4.17) another suitable

integral form would establish an equality.

The idea is to provide a truncation for the remainder term

Remainder
∣∣∣
trunc.

= R
(t)
l =

l∑
i=1

B2i

(2i)!

(
g(2i−1)(b)− g(2i−1)(a)

)
(4.18)

hence the truncated Euler-Maclaurin approximation becomes

S '
∫ b

a
g(x)dx+

g(a) + g(b)

2
+R

(t)
l (4.19)

where l can be chosen such that the truncated Euler-Maclaurin method gives a good approxi-

mation for functional trace.

We had verified that, for any value of l, the remainder contribution gives no important

correction. As we shall show, the Euler-Maclaurin scheme gives a high quality approximation

for functional traces considered in this work. Hence, from now on, we do not consider the

remainder correction in the subsequent calculations.

Tensor trace contribution

First, we apply the truncated Euler-Maclaurin (tEM) approximation formula (4.19) to spin

2 trace contribution, which reads

S2 =
N∑
n=2

W2(λn,2)Dn,2 =
1

2

N∑
n=2

(
1− λn,2

k2

)(
∂tf̃
′
k − 2R̃f̃ ′′k − ηk,hf̃ ′k

)
+ 2f̃ ′k

f̃ ′k + f̃k − 2
dR̃f̃

′
k

Dn,2 (4.20)

where λn,2
In order to apply (4.19) first we devide the approximation formula as follows

S2 ' I2(N) +M2(N)
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Figure 4.1: In this figure we plot the exact calculation of spin 2 trace contribution and the

approximation (4.23) with a sample function function f̃(R̃) = R̃2 − R̃+ 1 and with ηk,h = −2.

where I2(N) represents the integral contribution and M2(N) is the second term of r.h.s. of

(4.17). Regarding the spin 2 trace evaluation, the integral part gives, considering the replace-

ment N → N2(R̃)

I2(R̃) ≡ I2(N2(R̃)) =
5(5R̃− 6)2(2R̃+ 3)

27R̃2

18f̃ ′k
(R̃+6)

(5R̃−6)(2R̃+3)
+ 2f̃ ′′k R̃− ∂tf̃ ′k + ηk,hf̃

′
k

f̃ ′kR̃− 2(f̃k + f̃ ′)
(4.21)

while for M2 contribution we obtain

M2(R̃) ≡M2(N2(R̃)) =
5

12R̃2(f̃ ′kR̃− 2(f̃k + f̃ ′k))

[
14f̃ ′′k (6− 5R̃)R̃3

+ 4f̃ ′k

(
2(R̃− 3)

√
3

√
R̃(3R̃+ 16)− 21R̃2

)
+ 7R̃2(5R̃− 6)∂tf̃

′
k − ηk,hf̃ ′k

]
(4.22)

Hence, the total spin 2 trace contribution that we consider reads

T 2 = I2(N2(R̃)) +M2(N2(R̃)) (4.23)

We show the quality of the approximation in figure ??fig:t2EM) by examing eq. (4.23) for

a particular value of fk(R).
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Figure 4.2: In this figure we plot the exact calculation of spin 1 trace contribution and the

approximation (4.27).

Vector trace contribution

We now calculate the spin 1 trace part within the Euler-Maclaurin approximation scheme.

The spin 1 spectral sum reads

S1 =

N∑
n=2

W1(λn,1)Dn,1 = −
N∑
n=2

Dn,1 (4.24)

The approximation formula gives

S1 ' I1(N) +M1 +R
(t)
l

where, as before, I1 represents the integral contribution while M1 the second term in (4.17) of

Euler-Maclaurin formula.

The vector sum is trivial; in fact, the integral part gives

I1(N) = −
∫ N

2
Dx,1 = −N

4

4
− 3

2
N3 − 9

4
N2 + 25 (4.25)

while the M1 contribution becomes

M1(N) = −1

2

(
35 +

1

2
N(N + 3)(2N + 3)

)
(4.26)

so that the total vector trace contribution gives

T 1 = I1(N1(R̃)) +M1(N1(R̃)) (4.27)
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Note that if one choose l = 1 then obtain the exact calculation of sum (4.24). In fact, for l = 1

we have the following contribution with Euler-Maclaurin approximation

S1 =
1

4

(
−N4 − 8N3 − 19N2 − 12N + 40

)
which is the correct evaluation of sum (4.24).

In figure 4.2 we plot the exact evaluation of vector trace (in blue) and the resulting ap-

proximation with Euler-Maclaurin formula (in green). This picture shows the great quality of

approximation (4.27) already with l = 0.

Non-physical scalar contribution

The next term regards the non-physical contribution, which can be represented by the

following sum

Snp =
N∑
n=1

Wnp(λn,0/k
2)Dn,0 = −

N∑
n=1

Dn,0 (4.28)

also this time, the functional trace reduces to simple sum over multiplicity of operator ∆.

The same consideration and procedure of previous section can be applied. The integral

contribution to Euler-Maclaurin formula gives

Inp = −
∫ N

1
Dx,0dx =

1

12
(32− 12N − 13N2 − 6N3 −N4) (4.29)

so that sum (4.28) can be approximated by

Snp ' −
1

12
(N4 + 8N3 + 22N2 + 25N + 4) +R

(t)
l (4.30)

The total non-physical scalar contribution gives

Tnp = − 1

12
(N0(R̃)4 + 8N0(R̃)3 + 22N0(R̃)2 + 25N0(R̃) + 4) (4.31)

In figure 4.3 the exact value of sum (4.28) (in Blue) and the approximation (4.31) are

represented for l = 0.

h̄ scalar contribution

The h̄ trace part is the most complicated. It can be represented by the following sum

Sh̄ =

N∑
n=0

Wh̄(λn,0/k
2)Dn,0 = −1

2

N∑
n=0

(
2− ηk,h + ηk,h

λn,0
k2

)
Dn,0

9f̃ ′′k

(
λn,0
k2
− R̃

3

)2
+ 3f̃ ′k

(
λn,0
k2
− R̃

3

)
+ 2f̃k − R̃f̃ ′k +

λn,0
k2
− 1

(4.32)
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Figure 4.3: In this figure we plot the exact calculation of scalar non-physical trace contribution

and the approximation (4.31).

We split the sum into two contribution

N∑
n=0

Wh̄(λn,0/k
2)Dn,0 = Wh̄(λ0,0/k

2)D0,0 +
N∑
n=1

Wh̄(λn,0/k
2)Dn,0 (4.33)

and treat only the second part of r.h.s. with the standard approximation scheme. Next, we

apply the Euler-Maclaurin formula for the r.h.s. of (4.33) and calculate the integral contribution

Ih̄(N) =

∫ N

1
Wh̄(λx,0/k

2)Dx,0 = Ah̄ +Bh̄(N) (4.34)



4.2 Spectral sums and Euler-Maclaurin approximation 71

where

Ah̄ =
2

3f̃
′′2
k R̃2

{
Arctanh

 f̃ ′k + 1√
f̃ ′k(f̃

′
k + 4f̃ ′′k + R̃+ 2)− 4f̃ ′′k (2f̃ + R̃− 3) + 1


×
[
12f̃ ′′k (1 + f̃ ′k − 3R̃f̃ ′′k )

− ηk,h
(

2
(
f̃ ′′k (3f̃ ′k − 4f̃ + 9) + (f̃ ′k + 1)2

)
− f̃ ′′k R̃(f̃ ′k + 18f̃ ′′k + 9) + 6f̃

′′2
k R̃2

)]}/
[√

f̃ ′k(f̃
′
k + 4f̃ ′′k + R̃+ 2)− 4f̃ ′′k (2f̃ + R̃− 3) + 1

]
+

1

3f̃
′′2
k R̃2

ln
[
256(f̃ ′kR̃− R̃− 2f̃k + 3)

] (
12f̃ ′′k + ηk,h(f̃ ′′k (6− 5R̃) + 2f̃ ′k + 2)

)
(4.35)

Bh̄(N) =
ηk,h

3f̃
′′
k R̃

2
(N + 4)(N − 1)

− 2

3f̃
′′2
k R̃2

{
Arctanh

 2f̃ ′k + 2 + f̃ ′′k R̃(N + 4)(N + 1)√
2f̃ ′k(f̃

′
k + 4f̃ ′′k + R̃+ 2)− 4f̃ ′′k (2f̃ + R̃− 3) + 1


×
[
12f̃ ′′k (1 + f̃ ′k − 3R̃f̃ ′′k )

− ηk,h
(

2
(
f̃ ′′k (3f̃ ′k − 4f̃ + 9) + (f̃ ′k + 1)2

)
− f̃ ′′k R̃(f̃ ′k + 18f̃ ′′k + 9) + 6f̃

′′2
k R̃2

)]}/
[√

f̃ ′k(f̃
′
k + 4f̃ ′′k + R̃+ 2)− 4f̃ ′′k (2f̃ + R̃− 3) + 1

]

− 1

3f̃
′′2
k R̃2

ln

[
16
(

48− 32f̃k − f̃ ′′k R̃2(N + 4)2(N − 1)2

− 4R̃
(
f̃ ′k(N(N + 3)− 8) +N(N + 3)

))]
×
(

12f̃ ′′k + ηk,h(f̃ ′′k (6− 5R̃) + 2f̃ ′k + 2)
)

(4.36)

Hence, the total h̄ scalar trace is approximated by

T h̄ = Mh̄(N0(R̃)) +Ah̄ +Bh̄(N0(R̃)) (4.37)
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Figure 4.4: In this figure we plot the exact calculation of h̄ trace contribution and the approx-

imation (4.37) with a sample function function f̃(R̃) = R̃2 − R̃+ 1 and with ηk,h = −2.

where

Mh̄(N) =
3

2

ηk,h − 2

−3 + 2f̃k − 2f̃ ′kR̃+ f̃ ′′k R̃
2
− 5

4

6 + (R̃− 3)ηk,h

−3 + 2f̃k − R̃f̃ ′k + R̃
+

+ 2
(N + 1)(N + 2)(2N + 3)(2− ηk,h + 1

12N(3 +N)R̃ηk,h)

(−48 + 32f̃k − 16f̃ ′kR̃− 4N(N + 3)R̃+ 4f̃ ′k(N
2 + 3N − 4)R̃+ f̃ ′′k (N2 + 3N − 4)2R̃2)

(4.38)

In figure 4.4 the value of sum (4.37) (with N replaced by N0(R̃)) and its approximation

(4.37), where we choose (for sample) f̃(R̃) = R̃2 + R̃+ 2 and l = 0.

Note that the formula obtained for the h̄ trace part with the Euler-Maclaurin approximation

is valid with the condition f̃ ′′k 6= 0, since in the evaluation of integral (4.34) the previous the

previous relation must hold.

For the case f̃ ′′k = 0, which we call ”Einstein-Hilbert” case, a modified evaluation of the
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integral (4.34) is necessary. With f̃ ′′k = 0, we define

IEHh̄ (N) =
2

3(3f̃ ′k − 16)3

{
2(16− 3f̃ ′k)

2

((
N +

3

2

)4

− 625

16

)
ηk,h

+
96

R̃2
(12f̃k + (16− 15f̃ ′k)R̃+ 96)

(
ηk,h(2f̃ + f̃ ′k(3− 2R̃))− 6f̃ ′k + 32

)
× ln

96f̃ + 4R̃
(

3f̃ ′k
(
N2 + 3N − 8

)
− 16N(N + 3)

)
+ 768

16(6f̃ − (3f̃ ′k + 16)R̃+ 48)


+

1

R̃2
(3f̃ ′k − 16)

((
N +

3

2

)2

− 25

4

)(
ηk,h(93f̃ ′kR̃− 96f̃k − 144f̃ ′k + 16R̃) + 96(3f̃ ′k − 16)

)}
(4.39)

Hence, for f̃ ′′k = 0, the scalar h̄ trace can be approximated by

T h̄EH = Mh̄(N0(R̃)) + IEHh̄ (N0(R̃)) (4.40)

Anomalous dimensions’ contribution

Finally, we consider the contribution to the traces given by the anomalous dimensions’ part

of Wetterich’s equation, which can be represented by the following sums

Sη0 =

N∑
n=1

W (λn,0/k
2)Dn,0 = (2ηk,c − ηk,h − ηk,b)

N∑
n=1

Dn,0 (4.41)

Sη1 =
N∑
n=1

W (λn,1/k
2)Dn,1 = (2ηk,c − ηk,h − ηk,b)

N∑
n=1

Dn,1 (4.42)

The previous sums have been evaluated in the vector and non-physical scalar sector. Here,

we report directly the results of Euler-Maclaurin approximation scheme for the total anomalous

dimensions trace part

T η =
1

2
(2ηk,c − ηk,h − ηk,b)(N0(R̃)4 + 8N0(R̃)3 + 20N0(R̃)2 + 17N0(R̃) + 4) (4.43)

4.3 Flow equation for fk

Collecting all the expressions for the terms in the Euler-Maclaurin approximation scheme,

the Wetterich’s equation becomes

∂tΓk =
k4

κ̃2
k

V4S

[
∂tf̃k(R̃)− 2R̃f̃ ′k(R̃) +

(
4− 2

∂tκ̃k
κ̃k

)
f̃k(R̃)

]
= T 2 +T 1 +Tnp +T h̄ +T η (4.44)
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with

T 2 = I2(R̃) +M2(R̃) (4.45)

with

I2(R̃) =
5(5R̃− 6)2(2R̃+ 3)

27R̃2

18f̃ ′k
(R̃+6)

(5R̃−6)(2R̃+3)
+ 2f̃ ′′k R̃− ∂tf̃ ′k + ηk,hf̃

′
k

f̃ ′kR̃− 2(f̃k + f̃ ′)
(4.46)

and

M2(R̃)) =
5

12R̃2(f̃ ′kR̃− 2(f̃k + f̃ ′k))

[
14f̃ ′′k (6− 5R̃)R̃3

+ 4f̃ ′k

(
2(R̃− 3)

√
3

√
R̃(3R̃+ 16)− 21R̃2

)
+ 7R̃2(5R̃− 6)∂tf̃

′
k − ηk,hf̃ ′k

] (4.47)

T 1 = −1

4

(
N1(R̃4) + 8N1(R̃)3 + 18N1(R̃)2 + 9N1(R̃)− 30

)
(4.48)

Tnp = − 1

12

(
N0(R̃)4 + 8N0(R̃)3 + 22N0(R̃)2 + 25N0(R̃) + 4

)
(4.49)

T η =
1

2
(2ηk,c − ηk,h − ηk,b)(N0(R̃)4 + 8N0(R̃)3 + 20N0(R̃)2 + 17N0(R̃) + 4) (4.50)

and last

T h̄ = Mh̄(R̃) +Ah̄(R̃) +Bh̄(R̃) (4.51)

where

Mh̄(N) =
3

2

ηk,h − 2

−3 + 2f̃k − 2f̃ ′kR̃+ f̃ ′′k R̃
2
− 5

4

6 + (R̃− 3)ηk,h

−3 + 2f̃k − R̃f̃ ′k + R̃
+

−
√

3

R̃2

(R̃+ 6)
√
R̃(3R̃+ 16))

(2f̃k − f̃ ′k(2R̃− 3) + f̃ ′′k (R̃− 3)2)

(4.52)

Ah̄(R̃) =
2

3f̃
′′2
k R̃2

{
Arctanh

 f̃ ′k + 1√
f̃ ′k(f̃

′
k + 4f̃ ′′k + R̃+ 2)− 4f̃ ′′k (2f̃ + R̃− 3) + 1


×
[
12f̃ ′′k (1 + f̃ ′k − 3R̃f̃ ′′k )

− ηk,h
(

2
(
f̃ ′′k (3f̃ ′k − 4f̃ + 9) + (f̃ ′k + 1)2

)
− f̃ ′′k R̃(f̃ ′k + 18f̃ ′′k + 9) + 6f̃

′′2
k R̃2

)]}/
[√

f̃ ′k(f̃
′
k + 4f̃ ′′k + R̃+ 2)− 4f̃ ′′k (2f̃ + R̃− 3) + 1

]
+

1

3f̃
′′2
k R̃2

ln
[
256(f̃ ′kR̃− R̃− 2f̃k + 3)

] (
12f̃ ′′k + ηk,h(f̃ ′′k (6− 5R̃) + 2f̃ ′k + 2)

)
(4.53)
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Bh̄(R̃) =
ηk,h

3f̃
′′
k R̃

2

(
12

R̃
− 4

)

− 2

3f̃
′′2
k R̃2

{
Arctanh

 2f̃ ′k + 2 + f̃ ′′k (12R̃− 4)√
2f̃ ′k(f̃

′
k + 4f̃ ′′k + R̃+ 2)− 4f̃ ′′k (2f̃ + R̃− 3) + 1


×
[
12f̃ ′′k (1 + f̃ ′k − 3R̃f̃ ′′k )

− ηk,h
(

2
(
f̃ ′′k (3f̃ ′k − 4f̃ + 9) + (f̃ ′k + 1)2

)
− f̃ ′′k R̃(f̃ ′k + 18f̃ ′′k + 9) + 6f̃

′′2
k R̃2

)]}/
[√

f̃ ′k(f̃
′
k + 4f̃ ′′k + R̃+ 2)− 4f̃ ′′k (2f̃ + R̃− 3) + 1

]

− 1

3f̃
′′2
k R̃2

ln

[
16
(
− 32f̃k − f̃ ′′k (12R̃− 4)2

+ 16f̃ ′k(2R̃− 3)
)]

×
(

12f̃ ′′k + ηk,h(f̃ ′′k (6− 5R̃) + 2f̃ ′k + 2)
)

(4.54)

4.4 Possible closures for fk(R) RG equation

Equation (4.65) allow us to describe the flow of function fk(R) and also its dependence

of curvature scalar R. This equation contains fields anomalous dimensions which have to be

determined in a different way. As explained in the previous chapter, a possible closure is the

following: find anomalous dimensions contribution from the flow of Γ
(2)
k . This possibility is a

proposal for a future work.

To follow a simple and consistent closure of (4.65), in this work we make two different ansatz

for the values of Zk,h, Zk,c and Zk,b. The most simple ansatz, which we call type I ansatz, is

the following

Zk,h = κ−2
k Zk,c = Zk,b = 1

which implies

ηk,h = −
βG̃
G̃
− 2 ηk,c = 0 ηk,b = 0 (4.55)

where κk =
√

16πGk and G̃ = k2Gk is the dimensionless Newton’s constant. Note that type I

ansatz (4.55) is associated to the following metric decomposition

gµν = ḡµν + hµν

which is the most used definition for quantum flactuations.
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Another ansatz for the anomalous dimensions values, which we call type II ansatz, is the

following

Zk,h = Zk,b = Zk,c = 1

which implies

ηk,h = 0 ηk,c = 0 ηk,b = 0

Hence, with type I ansatz, the anomalous dimensions contribution in (4.65) is completly ne-

glected.

4.5 Polynomial truncation

The most simple truncation for the average effective action is the standard Einstein-Hilbert

action

Γk[h, C̄, C, b; ḡ] =
1

16πGk

∫
ddx
√
g(2Λk −R) + Γk,gh + Γk,g.f. (4.56)

where Λk is the running cosmological constant. The choice (4.56) is consistent with previous

truncation (3.1) if

fk(R) = 2Λk −R → fk(0) = 2Λk f ′k(0) = −1

so one can construct the flow for gravitational and cosmological constants using (4.65).

For a first study on the dimensionality of the critical surface, the average effective action

have to be modified introducing more interactions such as R2, R3 and so on.

Here, we consider the polynomial truncation, so that the effective action reads

Γk =
1

16πGk

∫
ddx
√
g

n∑
i=0

giR
i + Γk,gh + Γk,g.f. (4.57)

Clearly, for n = 1 we go back to Einstein-Hilbert form. This truncation ansatz is consistent

with our initial assumption for the effective action as a function only on curvature scalar. To

study the flow equation for the dimensionless couplings g̃i = k2−2igi, we use equation (4.65),

which, as pointed out in the last section, necessitate of a closure to be solved for the presence

of anomalous dimensions’ contribution.

Closure type: Zk,h = κ−2
k , Zk,b = Zk,c = 1

With equation (4.65) and in the polynomial truncation the numerical studies are really

involved. From n > 1 the corresponding beta functions contain complicated expression with

Arctanh and Log functions. Here, we present first the results for n = 1, where we find a

non-Gaussian fixed point with values

Zk,h = κ−2
k → G̃∗ = 0.61902 Λ̃∗ = 0.217946



4.5 Polynomial truncation 77

Closure type I:Zk,h = κ−2
k , Zk,c = Zk,b = 1, η∗h = −2, ηk,c = ηk,b = 0

n Λ̃∗ G̃∗ g̃0 κ̃∗ g̃2 g̃3 g̃4 g̃5 g̃6

1 0.2179 0.619 0.4358 5.578

2 ? ? ? ? ?

3 0.2727 0.5144 0.5454 5.0852 0.1048 0.0114

4 0.1563 0.5396 0.3126 5.2082 -0.3669 -1.0033 -3.2592

5 0.1387 0.5021 0.2773 5.0236 -0.6453 -2.0609 -5.3371 4.5353

6 0.1339 0.4907 0.2677 4.9663 -0.7478 -2.4707 -5.9841 6.1949 -12.8759

Table 4.2: Couplings value at non-Gaussian fixed point as a functions of the order n of the

truncation.

Closure type I:Zk,h = κ−2
k , Zk,c = Zk,b = 1, η∗h = −2, ηk,c = ηk,b = 0

n Reθ0 = Reθ1 Imθ0 = −Imθ1 θ2 Reθ3 = Reθ4 Imθ3 = −Imθ4 θ5 θ6

1 1.7562 3.7246

2 ? ? ?

3 1.0357 5.1787 1865 -21552

4 2.7262 3.4013 8.9136 -119.933 -1.1675

5 2.6887 3.0439 5.021 -91.9527 -2.5599 1.5174

6 2.6975 3.0381 10.4644 -104.339 -5.0858 2.6116 -2.1647

Table 4.3: Critical exponents as a function of the order n of the truncation.

with critical exponents

Zk,h = κ−2
k → θ± = 1.3725± i3.4262

These values are compatible with previous results given in second and third chapters. Note

that the two closures have very different values for the fixed point solution, feature in common

with the two previous fk(R) equations.

In table 4.2 the values of coupling constants at the fixed point are given; instead, in table

4.3 the critical exponents are reported up to n = 6. It is evident that the UV critical surface

has dimension three, which confirms the results of previous equations.

For n = 2, we find no NGFP with positive Newton’s constant. This does not require that

a fixed point for R2 truncation does not exist since, simply, the numerical algorithm does not

converge near the starting values we propose.
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Closure type II:Zk,h = Zk,c = Zk,b = 1 ηk,h = ηk,c = ηk,b = 0

n Λ̃∗ G̃∗ g̃0 κ̃∗ g̃2 g̃3 g̃4 g̃5 g̃6

1 0.0813 1.3219 0.1626 8.1514

2 ? ? ? ? ?

3 0.0291 0.8838 0.0582 6.6651 -0.9152 -3.144

4 0.0473 1.1084 0.0945 7.4643 -0.2684 -0.5262 -1.2757

5 0.0372 1.0069 0.0744 7.1141 -0.5444 -1.2611 -2.3027 2.6717

6 0.0351 0.9801 0.0702 7.019 -0.636 -1.5307 -2.4963 3.751 -5.0053

Table 4.4: Couplings value at non-Gaussian fixed point as a functions of the order n of the

truncation.

Closure type: Zk,h = Zk,b = Zk,c = 1

Here, we present first the results for n = 1, where we set ηk,i = 0. We find a non-Gaussian

fixed point with values

Zk,h = 1 → G̃∗ = 1.3219 Λ̃∗ = 0.0813

and critical exponents

Zk,h = 1 → θ± = 2.3839± i0.8614

In table 4.4 we report the result of numerical studies also for n > 1. First note that we did

not find any suitable fixed for n = 2; we stress that this does not require that a fixed point in

R2 truncation does not exists. The numerical algorithm does not converge nor give any values

as the solution of the system. Maybe, the fixed point has values such that indesiderable poles

appears in the integral of the Euler-Maclaurin approximation formula.

In table 4.5 we report the values of critical exponents. Here, we note that the UV critical

surface has dimension three, which confirms the previous results obtained with different flow

equation.

A general remark is in order: even we have choosen a pretty different cutoff scheme we

notice that the qualitative picture for the UV critical behaviour does not change.

4.6 Spectral sums with Digamma function

There exists an alternative method to evaluate the spectral sums reported in previous

sections. This method makes use of the special function called Digamma function. This special

function is defined through the well known Gamma function

ψ(z) =
d

dz
ln Γ(z) =

Γ′(z)

Γ(z)
(4.58)
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Closure type II:Zk,h = Zk,c = Zk,b = 1, ηk,h = ηk,c = ηk,b = 0

n θ0 θ1 θ2 θ3 θ4 θ5 ± iθ6

1 2.3839+i 0.8614 2.3839-i 0.8614

2 ? ? ?

3 2.9873 2.4264 1.1955 -43.9298

4 2.8011+i 0.4986 2.8011-i 0.4986 9.898 -70.9492 -1.194

5 2.6638+i 0.2646 2.6638-i 0.2646 5.1064 -58.499 -2.0632 -5.1065

6 2.7041+i 0.2533 2.7041-i 0.2533 9.3296 -65.6745 1.7447 -5.8279 ±0.9337

Table 4.5: Critical exponents as a function of the order n of the truncation.

where

Γ(z) =

∫ +∞

0
tz−1e−tdt

Note that this definition is valid only for <z > 0, but can be extended also in the domain

<z < 0 by analytic continuation, see [27].

One useful property of the Digamma function is the following

ψ(n+ z)− ψ(z + 1) =

n−1∑
k=1

1

z + 1
(4.59)

for n integer value.

With formula (4.59) we can express the functional trace contribution into explicitly expres-

sion involving only the Digamma function.

We start from the spin 2 trace contribution. Consider the sums (4.20) which we report here

S2 =
N∑
n=2

W2(λn,2)Dn,2 =
1

2

N∑
n=2

(
1− λn,2

k2

)(
∂tf̃
′
k − 2R̃f̃ ′′k − ηk,hf̃ ′k

)
+ 2f̃ ′k

f̃ ′k + f̃k − 2
dR̃f̃

′
k

Dn,2 (4.60)

where the eigenvalues and relative multiplicities are given by

λn,2 =
n(n+ 3)

12
R Dn,2 =

5

6
(n− 1)(n+ 4)(2n+ 3)

The sum given in (4.60) can be evaluated exactly and the result is

S2(N) =
5N(N − 1)(N + 4)(N + 5)

(
R̃(N + 1)(N + 3)− 18

)
216

(
2(f̃k + f̃ ′k)− R̃f̃ ′k

)
×

 36f̃ ′′k(
R̃(N + 1)(N + 3)− 18

) − ∂tf̃ ′k + ηk,hf̃
′
k

 (4.61)
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Figure 4.5: In this figure we plot Digamma function ψ(z), defined in (4.58) , in the case of a

real variable z.

One must stress that this result is exact and not obtained with an approximation scheme. But,

there is a comment that allow us to prefer the Euler-Maclaurin approximation than the exact

expression.

To recover the functional trace contribution in the spin 2 sector, we have to replace N with

N2(R̃)

T 2 = S2(N2(R̃)) (4.62)

where

N2(R̃) =
−3R̃+

√
9R̃2 + 48R̃

2R̃

First, when we consider the sum S2 as function of R̃ (with the replecement ruleN → N2(R̃)),

we do not use the Floor function in the argument of exact sum S2, because this would imply

a non analiticity in the equation and subsequent complication in numerical studies. This fact

introduces an approximation into our scheme which gives us the same quality than the Euler-

Maclaurin approximation.

In figure 4.6 we plot the exact value of spin 2 functional trace and the relative approximation

with Digamma technique. The quality of the approximation scheme is the same as in Euler-

Maclaurin technique.
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Figure 4.6: In this figure we plot the exact calculation of spin 2 trace contribution and the

approximation (4.62) with a sample function function f̃(R̃) = R̃2 − R̃+ 1 and with ηk,h = −2.

Vector, scalar np and anomalous dimensions’ contribuions

As it have been pointed out in previous sections, the vector, non-physical scalar and anoma-

lous dimensions’ contributions involves only a sum over multiplicities. This sums can be evalu-

ated exactly again in simple term, since Dn,s is a polynomial in n. Here we report the resulting

trace contributions

T 1 = −
N1(R̃)∑
n=1

Dn,1 =
1

4
(−N1(R̃)4 − 8N1(R̃)3 − 19N1(R̃)2 − 12N1(R̃) + 40)

Tnp = −
N0(R̃)∑
n=1

Dn,0 = − 1

12
(N0(R̃)4 + 8N0(R̃)3 + 23N0(R̃)2 − 28N0(R̃))

T η =(2ηk,c − ηk,h − ηk,b)

3

N0(R̃)∑
n=1

Dn,0 +

N1∑
n=1

Dn,1


=

1

2
(2ηk,c − ηk,h − ηk,b)N0(R̃)

(
N0(R̃) + 4

)(
5 +N0(R̃)(N0(R̃) + 4)

)
where

N1(R̃) =
−3R̃+

√
16R̃2 + 48R̃

2R̃
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N0(R̃) =
−3R̃+

√
9R̃2 + 48R̃

2R̃

Scalar h̄ contribution

Last, the h̄ scalar contribution can be written in terms of the following sum

Sh̄ =

N∑
n=0

Wh̄(λn,0/k
2)Dn,0 = −1

2

N∑
n=0

(
2− ηk,h + ηk,h

λn,0
k2

)
Dn,0

9f̃ ′′k

(
λn,0
k2
− R̃

3

)2
+ 3f̃ ′k

(
λn,0
k2
− R̃

3

)
+ 2f̃k − R̃f̃ ′k +

λn,0
k2
− 1

(4.63)

Decomposing the denominator in terms of its roots, we find the exact evaluation of sum

Sh̄(N) =−
(N + 1)ηk,h

3f̃ ′′k R̃
(N + 15 + 2x1 + 2x2 + 2x3 + 2x4)

+
4∑
i=1

(
24 + ηk,hR̃xi(xi + 3)

)
3f̃ ′′k R̃

2

(xi + 1)(xi + 2)(2xi + 3)∏
i 6=j(xi − xj)

(ψ(1 +N − xi)− ψ(−xi))

(4.64)

in terms of Digamma function, where xi (i = 1, 2, 3, 4) are the roots of denominator of function

Wh̄(z), which can be obtained from the four combinations of plus and minus sign of the following

expression

xi = −3

2
±

√√√√25f̃ ′′k R̃− 8f̃ ′k +±8
√
f̃ ′k(4f̃

′′
k R̃+ f̃ ′k + 2)− 4f̃ ′′k (2f̃ + R̃− 3) + 1

12f̃ ′′k R̃

4.7 Flow equation for fk with Digamma function

The Wetterich’s equation for f̃k with Digamma special function becomes

∂tΓk =
k4

κ̃2
k

V4S

[
∂tf̃k(R̃)− 2R̃f̃ ′k(R̃) +

(
4− 2

∂tκ̃k
κ̃k

)
f̃k(R̃)

]
= T 2 +T 1 +Tnp +T h̄ +T η (4.65)

where

T 2 =
5N(N − 1)(N + 4)(N + 5)

(
R̃(N + 1)(N + 3)− 18

)
216

(
2(f̃k + f̃ ′k)− R̃f̃ ′k

)
×

 36f̃ ′′k(
R̃(N + 1)(N + 3)− 18

) − ∂tf̃ ′k + ηk,hf̃
′
k

 (4.66)

T 1 = −1

4
(N1(R̃)4 + 8N1(R̃)3 + 19N1(R̃)2 + 12N1(R̃)− 40)
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Tnp = − 1

12
(N0(R̃)4 + 8N0(R̃)3 + 23N0(R̃)2 − 28N0(R̃))

T η =
1

2
(2ηk,c − ηk,h − ηk,b)N0(R̃)

(
N0(R̃) + 4

)(
5 +N0(R̃)(N0(R̃) + 4)

)
T h̄(R̃) =−

(N0R̃+ 1)ηk,h

3f̃ ′′k R̃

(
N0R̃+ 15 + 2x1 + 2x2 + 2x3 + 2x4

)

+

4∑
i=1

(
24 + ηk,hR̃xi(xi + 3)

)
3f̃ ′′k R̃

2

(xi + 1)(xi + 2)(2xi + 3)∏
i 6=j(xi − xj)

(
ψ(1 +N0(R̃)− xi)− ψ(−xi)

)
(4.67)

where xi (i = 1, 2, 3, 4) are the roots of denominator of function Wh̄(z), which can be obtained

from the four combinations of plus and minus sign of the following expression

xi = −3

2
±

√√√√25f̃ ′′k R̃− 8f̃ ′k +±8
√
f̃ ′k(4f̃

′′
k R̃+ f̃ ′k + 2)− 4f̃ ′′k (2f̃ + R̃− 3) + 1

12f̃ ′′k R̃

and last the upper bound of the sums

N1(R̃) =
−3R̃+

√
16R̃2 + 48R̃

2R̃

N2(R̃) = N0(R̃) =
−3R̃+

√
9R̃2 + 48R̃

2R̃

One may use this equation as a starting point for an alternative numerical analysis. Again

with the choice done for the cutoff scheme the flow equation depends on derivative of fk(R) of

order non higher than 2.
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Conclusions

This thesis is devoted to the functional RG approach to the quantum field theory of general

relativity. To be a consistent candidate to the quantum theory of gravitation the QFT of GR

have to be an asymptotically safe theory, a paradigm which extend the well known notion of

asymptotic freedom in the non-perturbative domain. According to Weinberg, a quantum field

theory can be called asymptotically safe if the dimensionless coupling constants tend to fixed

values as the momentum scale goes to infinity; then all measurable quantities remain finite at

all energies.

The functional RG approach is a powerfull method to study the non-perturbative regime

of any quantum field theory. To extend this formalism to curved space time in a diffeomor-

fisms invariant way we use the background field method, first introduced in non-Abelian gauge

theories.

As it is pointed out in chapter 1, we choose a FRG technique for the average effective

action and consider the flow equation for it. The exact equation is impossible to be solved so

that one is forced to make an ansatz on the average effective action; in this work we choose

a function of the scalar curvature R only, as in Γk ∼
∫
dx
√
gfk(R). The first work in this

direction was carried on in [5, 14], wherein the authors use a ”third order” cutoff and derive

a flow equation for the function fk(R) which is a third order differential equation, where the

Heat Kernel technique is used in the trace evaluations.

In chapter 2 and 3 we extend the equation given in [5, 6] considering a different metric

decomposition and introducing the anomalous dimensions contributions to the flow equationi.

We derive the corresponding differential equation, which is of third order due to the cutoff

scheme choice, with the Heat Kernel technique in chapter 2 and with ”asymptotic behaviour”

approximation in chapter 3, as used for the first time in [5, 14] and [6], respectively.

In chapter 3, we also extend the flow equation to general d spacetime dimensions and verify,

term by term, that the approximation used is still valid in general dimensions.

The fk(R) truncation ansatz allows also to study the polynomial truncation where the

function fk is expanded in power series of scalar curvature; in [5], for the first time, they

considered a polynomial troncation up to order n = 9 and found a non-Gaussian UV fixed

point solution with three attractive directions.

In chapter 4 we move to study a new cutoff scheme which is able to lead to a differential
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flow equation of second order in fk(R). Hence, in this thesis, we consider the case of ”second

order” cutoff in the sense that does not depend on f ′′k (R) and propose an alternative evaluation

for the functional traces present in the flow equation. With Litim’s optimized cutoff function

the functional traces can be considered as finite sums where the upper bound depends on the

dimensionless scalar curvature.

We consider two approximation schemes for the finite sums. First, we used the Euler-

Maclaurin formula and observed that the quality of the approximation is very good. With this

cutoff scheme, we derive a second order differential equation for fk(R) instead of third order

one, which can be used as a proposal for a future work based on numerical investigation for

searching a global solution for the scaling equation. We also propose a numerical study for the

polynomial truncation and compare our results with those obtained in the previous chapters

and in literature. We found, as expected, the presents of a non-Gaussian UV fixed point up to

order n = 6 with three attractive directions, which confirms the previous results.

Secondly, we propose an alternative traces evaluations of spectral sums with expression

containing the Digamma function. Althought the sums are computed analytically, this method

introduces an approximation when we consider that the upper bound depends on dimension-

less scalar curvature. Contrary to the Euler-Maclaurin approximation, this second technique

involves a special function which complicate the flow equation. Hence, we consider the Euler-

Maclaurin approximation method a very good tool for the trace evaluations.
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Appendix A

Riemann tensor variation

Riemann tensor and coefficients of Levi-Civita connection

Γραβ =
1

2
gρσ(∂αgσβ + ∂βgασ − ∂σgαβ)

Rρσαβ = ∂αΓρβσ − ∂βΓρασ + ΓρλαΓλβσ − ΓρλβΓλασ

Rµν = Rρµρν R = gµνRµν

Let us calculate metric tensor, coefficients of connection and Riemann tensor variation, starting

from

δgµν = hµν δgµν = −hµν

δΓραβ =
1

2
gρσ(∂αhσβ + ∂βhσα − ∂σhαβ)− 1

2
hρσ(∂αgσβ + ∂βgσα − ∂σgαβ)

=
1

2
[gρσ∂αhσβ + gρσ∂βhσα − gρσ∂σhαβ]− gρσΓλαβhσλ

=
1

2
gρσ (∇αhσβ +∇βhασ −∇σhαβ)

which, as expected, reveals that the variation of a connection is manifestly a tensor. In deriva-

tion we considered [δ, ∂α] = 0, but [δ,∇α] 6= 0, since

[δ,∇α]vβ = −δΓλαβvλ
[δ,∇α]tρσ = −δΓλαρtλσ − δΓλασtρλ

Riemann tensor variation

δRρσαβ =∂αδΓ
ρ
βσ − ∂βδΓ

ρ
ασ + (δΓρλα)Γλβσ + ΓρλαδΓ

λ
βσ − (δΓρλβ)Γλασ − ΓρλβδΓ

λ
ασ

=∇α(δΓρβσ)−∇β(δΓρασ)

=
1

2

[
∇α∇σhρβ +∇β∇ρhασ −∇α∇ρhβσ −∇β∇σhρα +Rρλαβh

λ
σ −Rλσαβh

ρ
λ

]
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Ricci and scalar curvature variation follow

δRµν = δRρµρν =∇ρ(δΓρµν)−∇ν(δΓρµρ)

=
1

2

[
∇ρ∇µhρν +∇ν∇ρhρµ −∇2hµν −∇ν∇µh+Rρνh

ρ
µ −Rλµρνh

ρ
λ

]
δR = δ(gµνRµν) = −hµνRµν + gµνδRµν = −hµνRµν +∇ρ∇σhρσ −∇2h

Let us start with second variation, taking into account

δ(2)gµν = δhµν = 0

which implies

δ(2)gµν = −δhµν = −δ(gµρgνσhρσ) = 2hµαhνα

and

δh = δ(gµνh
µν) = −hµνhµν

From the commutator (A) we can construct the second variation for coefficients of connec-

tion

δ(2)Γραβ = −1

2
hρσ(∇αhβσ +∇βhασ −∇σhαβ) +

1

2
gρσδ(∇αhβσ +∇βhασ −∇σhαβ)

= −1

2
hρσ(∇αhβσ +∇βhασ −∇σhαβ)− gρσδΓλαβhσλ

= −hρσ(∇αhβσ +∇βhασ −∇σhαβ)

and for Ricci curvature scalar

δ(2)R = −Rµνδhµν − hµνδRµν + δ∇ρ∇σhρσ − δ∇2h

= 2hµνhανR
α
µ − hµνδRµν +∇ρδ∇σhρσ − δΓλρσ∇λ + δΓρρλ∇σh

λσ + δΓσρλ∇σhρλ

−∇ρδ∇ρh− δΓρρλ∇
λh

= 2hµνhανR
α
µ − hµνδRµν +∇ρ∇σδhρσ +∇ρ

[
δΓρλσh

λσ
]

+∇ρ
[
δΓσλσh

ρλ
]

+ δΓρλρ∇σh
λσ −∇2δh− δΓρλρ∇

λh

= 2hµνhανR
α
µ −

1

2
hµν

[
∇λ∇µhλν +∇ν∇λhµλ −∇2hµν −∇µ∇νh

+Rλνh
λ
µ −Rλµσνhσλ

]
− 1

2
hµν∇2hµν +

1

2
hρσ∇ρ∇σh+ hασ∇ρ∇σhρα

+ (∇ρhρλ)(∇λh)− 1

2
(∇σh)(∇σh) + (∇σhρλ)(∇ρhλσ)− 1

2
(∇ρhσλ)(∇ρhσλ)

− 2∇ρ∇σ[hραh
σα] +∇2[hµνh

µν ]

= hµν∇µ∇νh+
3

2
hµhανR

α
µ +

1

2
hµνR

µρνσhρσ −
3

2
hµν∇λ∇µhλν

− 5

2
hµν∇ν∇λh µ

λ + (∇ρhρλ)(∇λh)− 1

2
(∇σh)(∇σh) +

3

2
(∇ρhλσ)(∇ρhλσ)

+ 2hµν∇2hµν − 2(∇ρhρλ)(∇σh σ
λ )− (∇ρhλσ)(∇σhρλ)
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For relation (2.50) we need the quantities

δ(
√
g) =

1

2
√
g
δg =

1

2

√
ggµνhµν

δ(2)(
√
g) =

1

4

√
g (gµνhµνg

ρσhρσ − 2hµνhµν)

which allows us to construct

2
δ(
√
g)

√
g

+ δ(2)R = hδR+ δ(2)R

= −Rµνhµνh+ h∇µ∇νhµν − h∇2h+
3

2
hµνhανR

α
µ

+
1

2
hµνR

µρνσhρσ −
3

2
hµν∇λ∇µhλν −

5

2
hµν∇ν∇λh µ

λ

+ (∇ρhρλ)(∇λh)− 1

2
(∇σh)(∇σh) +

3

2
(∇ρhλσ)(∇ρhλσ)

+ 2hµν∇2hµν − 2(∇ρhρλ)(∇σh σ
λ )− (∇ρhλσ)(∇σhρλ)

= −Rµνhµνh+ h∇µ∇νhµν − h∇2h+
3

2
hµνhανR

α
µ

+
1

2
hµνR

µρνσhρσ −
1

2
hµν∇λ∇µhλν −

1

2
hµν∇µ∇λhλν

= −Rµνhµνh−
1

2
h∇2h+

1

2
hµν∇2hµν + hµαhαβR

β
µ

+ hµνR
µρνσhρσ − hνµ∇µ∇ρhρν + h∇µ∇νhµν

and

(δR)2 =
[
−Rµνhµν +∇µ∇νhµν −∇2h

] [
−Rαβhαβ +∇α∇βhαβ −∇2h

]
.
=−RµνRαβhµνhαβ − 2Rµνhµν∇α∇βhαβ + 2Rµνhµν∇2h

+ (∇µ∇νhµν)(∇α∇βhαβ) + h(∇2)2h− 2h∇2∇µ∇νhµν

where ”
.
=” means ”=” up to four divergences.
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Appendix B

Calculation of Γ
(2)
k in f (R)

approximation

In this appendix we explicite the calculation for second variation of average effective action

within the ansatz (3.1). Starting from (2.50) we will derive the expressions (2.51- 2.55) using

the transverse-traceless decomposition (2.23).

We start from the transverse-traceless component of Γ
(2)
k , we get term by term

fk(R)

(
1

2
h2 − 1

4
hµνh

µν

)
→ −1

2
hTµνh

Tµνfk(R)

1

2
f ′k(R)hµνh

µν −→ 1

2
f ′k(R)hTµνh

Tµν

f ′k(R)hµαhαβR
β
µ −→ f ′k(R)hµαhαβR

β
µ =

R

d
hTµνh

Tµν

hµνR
µρνσhρσ −→ hTµνR

µρνσhTρσ = − R

d(d− 1)
hTµνh

Tµν

the other terms are identically zero for the transverse or traceless properties (2.24) of hTµν .

summing all together, the transverse traceless component gives

hTµνf
′
k(R)

(
1

2
∇2 +

d− 2

d(d− 1)
R

)
− 1

2
fk(R)hTµνh

Tµν (B.1)

which gives (2.51).
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For the vector part we have

fk(R)

(
−1

2
hµνh

µν

)
→ fkξµ∇2ξµ + fkξν∇µ∇νξµ = fkξµ

(
∇2 +

R

d

)
ξµ

1

2
f ′k(R)hµν∇2hµν → −f ′kξµ∇ν∇2∇νξµ − f ′kξµ∇ν∇2∇µξν =

= −f ′kξµ
[
(∇2)2 +

R

d
∇2 +

2R2

d2(d− 1)

]
ξµ = −f ′kξµ

[
R

d
∇2 +

R2

d2
+

2R

d(d− 1)
∇2

]
ξµ

f ′kh
µαhαβR

β
µ → −f ′k

2R

d
ξµ

(
∇2 +

R

d

)
ξµ

f ′khµνR
µρνσhρσ → f ′k

2R

d(d− 1)
ξµ

(
∇2 +

R

d

)
ξµ

− f ′khνµ∇µ∇ρhρν → f ′kξµ

[
(∇2)2 +

2R

d
∇2 +

R2

d2

]
ξµ

gauge fixing term

Fµ = ∇ρhρµ −
1 + ρ

d
∇µh→ ∇ρ(∇ρξµ +∇µξρ) =

(
∇2 +

R

d

)
ξµ

Fµ(α+ β∇2)Fµ → ξµ

(
∇2 +

R

d

)
(α+ β∇2)

(
∇2 +

R

d

)
ξµ

all togheder gives

− 2R

d
ξµ

(
∇2 +

R

d

)
ξµ + ξµ

(
∇2 +

R

d

)
(α+ β∇2)

(
∇2 +

R

d

)
ξµ (B.2)

which is equivalent to (2.52).
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The scalar h− h part gives

fk

(
1

4
h2 − 1

2
hµνh

µν

)
→ d− 2

4d
fkh

2

− f ′kRµνhµνh→ −
R

d
h2

−
f ′k
2
h∇2h

f ′k
1

2
hµν∇2hµν → f ′k

1

2d
h∇2h

f ′kh
µαhαβR

β
µ → f ′k

R

d2
h2

f ′khµνR
µρνσhρσ → f ′k

R

d2
h2

− f ′khνµ∇µ∇ρhρν → −
f ′k
d
h∇2h

f ′kh∇µ∇νhµν →
f ′k
d
h∇2h

f ′′kR
αβhαβR

µνhµν → f ′′k
R2

d2
h2

− 2f ′′kR
µνhµν∇α∇βhαβ → −2f ′′k

R

d2
h∇2h

2f ′′kR
µνhµν∇2h→ 2f ′′k

R

d
h∇2h

f ′′khµν∇µ∇ν∇α∇βhαβ →
f ′′k
d2
h(∇2)2h

− 2f ′′kh∇2∇α∇βhαβ → −
2f ′′k
d
h(∇2)2h

f ′′kh(∇2)2h

summing all we find

f ′′k
d2
h
[
(d− 1)2(∇2)2 + 2(d− 1)R∇2 +R2

]
h+

d− 2

4d
fkh

2

− f ′k
(d− 1)(d− 2)

2d2
h

(
∇2 +

2R

d− 1

)
h

equivalent to (2.53).

For the scalar σ part we use relations

∇2∇µ [σfµ] = fµ∇2∇µσ + σ∇µ∇2fµ + four divergences

∇ρhρν → ∇2∇νσ −
1

d
∇ν∇2σ =

d− 1

d
∇ν
(
∇2 +

R

d− 1

)
σ
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where fµ is a four vector and s is a scalar. So that

− fk
2
hµνh

µν → −fk
d− 1

2d
σ

(
∇2 +

R

d− 1

)
∇2σ

f ′k
2
hµν∇2hµν →

f ′k
2
σ∇µ∇ν∇2∇µ∇ν −

f ′k
2d
σ(∇2)3σ

=
f ′k
2
σ∇µ(∇2)2∇µσ + f ′k

R

2d
σ∇µ∇2∇µσ + f ′k

R2

d2(d− 1)
σ∇2σ −

f ′k
2d
σ(∇2)3σ

= f ′k
(d− 1)

2d
σ(∇2)3σ +

3f ′k
2

R

d
σ(∇2)2σ + f ′k

R2

d(d− 1)
σ∇2σ

f ′kh
µαhαβR

β
µ = f ′k

R

d
hµνh

µν → f ′k
R

d
σ

[
d− 1

d
∇2 +

R

d

]
∇2σ

f ′khµνR
µρνσhρσ = −f ′k

R

d(d− 1)
hµνh

µν → −f ′k
R

d2
σ(∇2)2σ − f ′k

R2

d2(d− 1)
σ∇2σ

− f ′khνµ∇µ∇ρhρν → −f ′k
(d− 1)2

d2

(
∇2 +

R

d− 1

)2

∇2σ

f ′′khµν∇µ∇ν∇α∇βhαβ
.
= f ′′k (∇µ∇νhµν)2 → f ′′k

(d− 1)2

d2
σ

(
∇2 +

R

d− 1

)2

(∇2)2σ

for gauge fixing term

(∇ρhρσ)(α+ β∇2)(∇µhµσ)→ (d− 1)2

d2
σ

(
∇2 +

R

d− 1

)
∇σ(α+ β∇2)∇σ

(
∇2 +

R

d− 1

)
σ

=
(d− 1)2

d2
σ

(
∇2 +

R

d− 1

)2(
α+ β

(
∇2 +

R

d

))
∇2σ

where ”
.
=” means ”=” up to four divergences. The total σ contribution gives

− f ′kσ
[

(d− 1)(d− 2)

2d2
(∇2)3 − R

2d
(∇2)2 − R2

d2
∇2

]
− fk

d− 1

2d
σ

(
∇2 +

R

d− 1

)
∇2σ + f ′′k

(d− 1)2

d2
σ

(
∇2 +

R

d− 1

)2

(∇2)2

+
(d− 1)2

d2
σ

(
∇2 +

R

d− 1

)2(
α+ β

(
∇2 +

R

d

))
∇2σ
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Last, the scalar mixing h− σ contribution

− f ′khνµ∇µ∇ρhρν → −2f ′kh

[
d− 1

d2
∇2 +

R

d2

]
∇2σ

f ′kh∇µ∇νhµν → f ′kh∇µ∇ν l
(
∇µ∇ν −

1

d
gµν∇2

)
σ = f ′k

d− 1

d
h∇2

(
∇2 +

R

d− 1

)
σ

− 2f ′′kR
µνhµν∇α∇βhαβ → −2f ′′k

R

d
h∇µ∇2∇µσ + 2f ′′k

R

d2
h(∇2)2σ

− 2f ′′k
R

d
h(∇2)2σ + 2f ′′k

R

d2
h(∇2)2σ − 2f ′′k

R2

d2
h∇2σ

− 2f ′′kh∇2∇β∇αhαβ → −2f ′′k
d− 1

d
h(∇2)3σ − 2f ′′k

R

d
h(∇2)2σ

f ′′k (∇µ∇νhµν)2 → 2f ′′k
d− 1

d2
h(∇2)3σ + 2f ′′k

R

d2
h(∇2)2σ

for gauge fixing term

Fµ →
d− 1

d
∇µ
[(
∇2 +

R

d− 1

)
σ − ρ

d− 1
h

]
Fµ(α+ β∇2)Fµ → −(d− 1)2

d2

[
σ

(
∇2 +

R

d− 1

)
− ρ

d− 1
h

]
∇µ(α+ β∇2)∇µ

×
[(
∇2 +

R

d− 1

)
σ − ρ

d− 1
h

]
→ 2ρ

d− 1

d2
σ

(
α+ β

(
∇2 +

R

d

))
∇2

(
∇2 +

R

d− 1

)
h

The total h− σ contribution reads

− 2f ′′k
d− 1

d2
h

(
∇2 +

R

d− 1

)2

∇2σ + f ′kh

[
(d− 1)(d− 2)

d2
∇2 +R

d− 2

d2

]
∇2σ

2ρ
d− 1

d2
σ

(
α+ β

(
∇2 +

R

d

))
∇2

(
∇2 +

R

d− 1

)
h

which gives (2.54).

Next, the trasverse C̄TCT ghost part

Sgh,c → C̄Tµ(α+ β∇2)

(
∇2 +

R

d

)
CTν

the longitudinal c part

Sgh,c →− c̄∇µ(α+ β∇2)

[(
∇2 +

R

d

)
∇µc+

(d− 2− 2ρ)

d
∇µ∇2c

]
− c̄

(
α+ β

(
∇2 +

R

d

))
∇µ
[(
∇2 +

R

d

)
∇µc+

(d− 2− 2ρ)

d
∇µ∇2c

]
− c̄

(
α+ β

(
∇2 +

R

d

))[(
∇2 +

2R

d

)
+

(d− 2− 2ρ)

d
∇2

]
∇2c



98 APPENDIX

the transverse bT third ghost

Sgh,b → bTµ (α+ β∇2)bTµ

and the longitudinal b third ghost

Sgh,b → −b∇µ(α+ β∇2)∇µb = −b
(
α+ β

(
∇2 +

R

d

))
∇2b

which concludes the matrix elements of Γ
(2)
k .



Appendix C

Heat Kernel Technique

In the construction of Wetterich equation, the calculation of functional trace is needed; in

particular we find the following expression

Tr [W (∆)] (C.1)

in which W (∆) is a generic function of the Laplacian ∆ = −gµν∇µ∇ν in a four dimensional

sphere S4. From new on, we consider a d-dimensional sphere Sd e the Laplacian ∆ on it. By

definition the functional trace reads

Tr [W (∆)] =
∑
i

W (λi) (C.2)

where λi are the eigenvalue of the Laplacian in Sd.

The first step for the evaluation of trace is to write W in terms of its Laplace anti-transform

Tr [W (∆)] = Tr

∫ +∞

0
dse−s∆W̃ (s) =

∫ +∞

0
dsW̃ (s) Tr

(
e−s∆

)
(C.3)

so in order to calculate the functional trace of a generic function of ∆ we must know only the

trace Tr
(
e−s∆

)
. The exponential H(s) = e−s∆ satisfies the heat equation

(∂s + ∆)H(s) = 0 (C.4)

Defining the function H(x, y; s) = 〈x|H(s)|y〉, it satisfies

(∂s + ∆x)H(x, y; s) = 0 (C.5)

which posses a simple solution in the flat case

H(x, y; s)
∣∣∣
∼flat

=
1

(4πs)
d
2

e−
(x−y)2

4s (C.6)
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Following De Witt, we make an ansatz for the general solution of (C.5)

H(x, y; s) =
1

(4πs)
d
2

e−
σ(x,y)

2s Ω(x, y; s) (C.7)

where σ(x, y) is a generalization of the Minkowski square distance (x− y)2 and satisfies

1

2
∇µσ∇µσ = σ

for x 6= y and σ(x, y) = 0 for x = y. The next step is to substitute the ansatz (C.7) into the

equation (C.5) and suppose that the function Ω(x, y; s) can be expanded in Taylor series with

respect to s (local expansion)

Ω(x, y; s) =
∑
n≥0

A2n(x, y)sn

After some algebra, one obtains a system of coupled equations for the coefficients A2n(x, y),

which can be solved recursively in the limit x→ y. Fortunately only the coefficients b2n(x) =

A2n(x, x) is needed for the evaluation of the trace for e−s∆

TrH(s) =

∫
ddx
√
g〈x|H(s)|x〉 =

1

(4πs)
d
2

∑
n

B2ns
n (C.8)

where

Bn =

∫
ddx
√
g tr bn

We report here the first three coefficients negletting the coupling with matter

b0 = 1

b2 =
R

6
1

b4 =
1

180

(
RµναβRµναβ −RµνRµν +

5

2
R2 + 6∇2R

)
1

(C.9)

where the 1 is the identity which acts on the space of fields. The relative coefficients with

matter and the b6 can be found in [5] while b8 in [29].

Inserting (C.8) into (C.3) The functional trace for the generic function W (∆) reads

TrW (∆) =
1

(4π)
d
2

+∞∑
n=0

B2nQ d
2
−n (W ) (C.10)

with

Qk(W ) =

∫ +∞

0
dzz−kW̃ (z) (C.11)
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Spin s Eigenvalue λl,s Multiplicity Dl,s

0 l(l+d−1)
d(d−1) R; l = 0, 1... (2l+d−1)(l+d−2)!

l!(d−1)!

1 l(l+d−1)−1
d(d−1) R; l = 1, 2... l(l+d−1)(2l+d−1)(l+d−3)!

(d−2)!(l+1)!

2 l(l+d−1)−2
d(d−1) R; l = 2, 3... (d+1)(d−2)(l+d)(l−1)(2l+d−1)(l+d−3)

2(d−1)!(l+1)!

Table C.1: Eigenvalue and their multiplicities of the Laplacia ∆ = −gµν∇µ∇ν on a d-sphere

One can connect the quantity Qk(W ) to the function W (z) directly and not through its Laplace

anti-transform. For integer k > 0 we introduce the gamma function in its Euler rapresentation

Γ(k) =

∫ +∞

0
dssk−1e−s (C.12)

inserting in (C.11)

Qk(W ) =
1

Γ(k)

∫ +∞

0
dzzk−1W (z) (C.13)

For integer k ≤ 0 it’s sufficient to construct the derivative of W (z) in z = 0

W (i)(0) = (−1)i
∫ +∞

0
dssiW̃ (z) (C.14)

So for integer k and m we have

Qk(W ) =
1

Γ(k)

∫ +∞

0
dzzk−1W (z) k > 0

Q−m(W ) = (−1)mW (k)(0) m ≥ 0

(C.15)

Finally the trace (for an even d dimensional-sphere) can be calculated with equation (C.10).

For odd dimensional space see the review [5].

When we consider a transverse-traceless decomposition of type (2.23) or (2.25), a reconsid-

eration of Heat Kernel coefficients bn is needed. For example, consider the decomposition in

transverse and longitudinal component as in ghosts sector

Cµ = cTµ +∇µc (C.16)

One can relates the spectrum of −∇2 on longitudinal part to the spectrum of −∇2 − R
d con-

sidering the formula (we are on d-dimensional sphere)

−∇2∇µc = −∇µ
(
∇2 +

R

d

)
c
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S V VT T TT TTT

tr b0 1 4 3 10 9 5

tr b2
R
6

2
3R

R
4

5
3R

3
2R −5

6R

tr b4
29R2

2160
43R2

1080 − 7R2

1440
11R2

216
81R2

2160 − R2

432

tr b6
37R3

54432 − R3

17010 − 541R3

362880 −1343R3

136080 −319R3

30240
311R3

54432

tr b8
149R4

6531840 − 2039R4

13063680 − 157R4

2488320 − 2999R4

3265920
683R4

725760
109R4

1306368

Table C.2: Heat kernel coefficients for S4. The scalar (S), vector (V) and tensor (T) trace can

be obtained from relations (C.9), while transverse vector (VT) and transverse-traceless tensor

(TTT) expanding relations (C.17) and (C.19). (TT) means traceless tensor. Note that tr b0 is

simply the dimension of field space where bn acts.

So one can obtain the corresponding Heat Kernel coefficients by the relation

Tr e−s∆
∣∣∣∣
Cµ

= Tr e−s∆
∣∣∣∣
cTµ

+ Tr e−s(∆−R
d )
∣∣∣∣
c

− es
R
d (C.17)

from which and from the spectrum of ∆ on scalar and vector we find the relative Heat Kernel

coefficients for decomposition (C.16) and are reported in Tabella bla bla.

The same argument ca be applied with decomposition on gravity fluctuations

hµν = hTµν +∇µξν +∇νξµ +∇µ∇νσ −
1

d
gµν∇2σ +

1

d
gµνh (C.18)

We use the relations

−∇2(∇µξν +∇νξµ) = ∇µ
(
−∇2 − d+ 1

d(d− 1)
R

)
ξν +∇ν(−∇2 − d+ 1

d(d− 1)
R)ξµ

and

−∇2

(
∇µ∇ν −

1

d
gµν∇2

)
σ =

(
∇µ∇ν −

1

d
gµν∇2

)(
−∇2 − 2

d− 1
R

)
σ

Noting that the d(d+1)
2 Killing vectors do not contribute to spectrum for −∇2, although they

are eigenvectors of −∇2 − d+1
d(d−1)R and the same for the constant and first modes of scalar σ

we have

Tr e−s∆
∣∣∣∣
hµν

= Tr e−s∆
∣∣∣∣
hT

+ Tr e
−s
(

∆− d+1
d(d−1)

R
)∣∣∣∣
ξ

+ Tr e−s∆
∣∣∣∣
h

+ Tr e−s(∆− 2R
d−1)

∣∣∣∣
σ

− e
2R
d−1

s − d(d+ 1)

2
e

2R
d(d−1)s − (d+ 1)e

R
d−1

s

(C.19)
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With this relation we can construct the coefficients tr bn for different component of metric

fluctuations which are reported in C.2.
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