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Die Liebe steht dem Tod entgegen, nur sie, nicht die Vernunft, ist stärker als er.
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It is love, not reason, that is stronger than death.
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Riassunto La costante cosmologica Λ sembra non essere una spiegazione soddisfacente dell’espansione

accelerata dell’universo della quale si hanno ormai chiare evidenze sperimentali; si è reso pertanto neces-

sario negli ultimi anni considerare modelli alternativi di energia oscura, intesa come causa dell’espansione

accelerata. Nello studio dei modelli di energia oscura è importante capire quali quantità possono essere de-

terminate a partire dalle osservazioni sperimentali senza assumere ipotesi di fondo sul modello cosmologico;

tali quantità sono determinate in Amendola, Kunz et al., 2012. Nello stesso articolo si è inoltre dimostrato che

è possibile stabilire una relazione tra i parametri indipendenti dal modello cosmologico e lo stress anisotrop-

ico η , il quale può inoltre essere espresso come combinazione delle funzioni che appaiono nella lagrangiana

più generale per le teorie scalare-tensore nell’ambito dei modelli di energia oscura, la lagrangiana di Horn-

deski. Nel presente elaborato si utilizza il formalismo della matrice di Fisher per formulare una previsione

sui vincoli che sarà possibile porre relativamente allo stress anisotropico η nel futuro, a partire dagli errori

stimati per le misurazioni in ambito di clustering galattico e lensing gravitazionale debole che verranno ef-

fettuate dalla missione Euclid dell’Agenzia Spaziale Europea, che verrà lanciata nel 2020. Vengono inoltre

considerati i vincoli provenienti da osservazioni di supernovae-Ia. Tale previsione viene effettuata in due

casi in cui (a) η viene considerato dipendente unicamente dal redshift e (b) η è costante e uguale a 1, come

per esempio nel modello ΛCDM.

Abstract The cosmological constant Λ seems to be a not satisfactory explanation of the late-time acceler-

ated expansion of the Universe, for which a number of experimental evidences exist; therefore, it has become

necessary in the last years to consider alternative models of dark energy, meant as cause of the accelerated

expansion. In the study of dark energy models, it is important to understand which quantities can be deter-

mined starting from observational data, without assuming any hypothesis on the cosmological model; such

quantities have been determined in Amendola, Kunz et al., 2012. In the same paper it has been further shown

that it is possible to estabilish a relation between the model-independent parameters and the anisotropic stress

η , which can be also expressed as a combination of the functions appearing in the most general Lagrangian

for the scalar-tensor theories, the Horndeski Lagrangian. In the present thesis, the Fisher matrix formalism is

used to perform a forecast on the constraints that will be possible to make on the anisotropic stress η in the

future, starting from the estimated uncertainties for the galaxy clustering and weak lensing measurements

which will be performed by the European Space Agency Euclid mission, to be launched in 2020. Further,

constraints coming from supernovae-Ia observations are considered. The forecast is performed for two cases

in which (a) η is considered as depending from redshift only and (b) η is constant and equal to one, as in

the ΛCDM model.
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Introduction

The late-time accelerated expansion of the Universe has been proved with several independent tests (e.g.

[1, 2]), and nowadays it is considered as a fact that our Universe is expanding with increasing velocity.

But from Friedmann equations (that is, from standard General Relativity with the assumptions that (1) the

Universe is homogeneous and isotropic and (2) the Universe content behaves as a perfect fluid), we have

that such a result is not understandable, if we deal with ordinary matter with positive pressure. The first

attempt to explain this observational evidence was to introduce a cosmological constant Λ in the Einstein

equations, which can be interpreted as the vacuum energy density; however, some problems still remain

(the so-called coincidence and fine-tuning problems), and the cosmological constant cannot be held as the

definitive explanation of late-time cosmic acceleration.

A number of alternative models have been proposed and investigated in the last years as an alternative to

cosmological constant, modifying Einstein equations by introducing a new form of matter (modified matter

models) or modifying Einstein’s gravity (modified gravity models); all of them are referred to as dark energy

models, and we simply indicate as dark energy the source of the late-time accelerated expansion. The class

of the models called scalar-tensor theories, which includes a large part of all the dark energy models, has

been shown to be described by a general Lagrangian depending on some functions, namely the Horndeski

Lagrangian (HL) [3].

Since many dark energy models have been proposed, it is very important to constrain them by means

of observations. To this purpose, the European Space Agency (recenlty joined by the NASA) has therefore

planned a mission, called Euclid, in order to produce data which will be used to constrain cosmological

parameters and maybe cross out some of the models.

Another interesting question to answer is, whether there are some quantities which can be determined

from observations without making assumptions on the cosmology, that is, if some model-independent param-

eters exist. This question has been faced in [4]. In this paper, such parameters have been found, and a relation

has been found to hold between the model-independent parameters and the anisotropic stress η = −Ψ/Φ.

On the other hand, the anisotropic stress can be written as a combination of the functions appearing in the

Horndeski Lagrangian, in the so-called quasi-static limit. That is, a relation between the model-independent
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Introduction 2

parameters and the Horndeski Lagrangian functions (via η) is found to hold. This relation can be used to

constrain the HL functions, therefore constraining the dark energy models, starting from observations, from

which we can determine the model-independent parameters.

In this Thesis, we deal with the first step of this chain, namely the determination of the constraints on the

anisotropic stress η . We use Euclid specifications to forecast the uncertainties that this survey will give on

the model-independent parameters, starting from uncertainties on rough data, and then project them onto the

anisotropic stress η . A supernovae-Ia survey will also be considered in order to put stronger constraints on

the dimensionless Hubble parameter E(z)=H(z)/H0. The forecast will be performed in two cases, assuming

(a) that η depends on redshift only, and (b) that η is constant and equal to one, respectively.

The determination of the errors on the model-independent parameters and the projection on η are per-

formed by means of a powerful tool: the Fisher matrix formalism, based on Bayesian statistics.

The Thesis is structured as follows.

In Chapter 1, we derive briefly the Friedmann equations from standard General Relativity and introduce

the cosmological constant Λ as a possible explanation for the late-time cosmic acceleration; evidences for

dark energy from supernovae-Ia are also exposed. In Chapter 2, basics of cosmological perturbation theory

are discussed; in particular, the perturbed Friedmann-Lemaître-Robertson-Walker is introduced. The key

concept of power spectrum is presented in Chapter 3.

In Chapter 4 we discuss the problems related to the cosmological constant and the reasons why it cannot

be considered as a completely satisfactory explanation for cosmic acceleration. We further give an overview

on the classes of dark energy models that have been proposed and introduce the Horndeski Lagrangian as

the most general Lagrangian for scalar-tensor theories with second-order equations of motion.

In Chapter 5 the two main probes of Euclid, galaxy clustering and weak gravitational lensing are pre-

sented; the Fisher matrix formalism is also introduced here, describing also how it can be applied to super-

novae, galaxy clustering and weak lensing surveys.

Finally, in Chapter 6, the model-independent parameters from [4] and the relation between them, the

anisotropic stress η and the HL functions in the quasi-static limit are introduced. The calculations of the

Fisher matrices in order to estimate the errors on η are performed, and the results are shown.





Chapter 1

The Concept of Dark Energy in Modern
Cosmology

1.1 Friedmann equations

The concept of dark energy has become of great importance in modern Cosmology, after astronomical

observations have found the expansion of the Universe to be accelerated. To explain this accelerated ex-

pansion, we have to take into account a new form of energy in the Universe, which cannot be matter nor

radiation. Let us see briefly how this concept arises.

According to General Relativity, the equations of motion in the Universe can be obtained from the

Einstein field equations [5]:

Gν
µ = 8πGT ν

µ , (1.1)

where we have set the constant c equal to unity (natural units) and the tensor Gµν is expressed in terms

of the Ricci scalar and tensor by:

Gµν ≡ Rµν −
1
2

Rgµν . (1.2)

To obtain the form of the Einstein tensor Gµν for a homogeneous and isotropic Universe, we have to

extract the form of the Ricci terms from the Friedmann-Lamaître-Robertson-Walker (FLRW) metric, which

is the line element obtained by applying the cosmological principle hypotheses (homogeneity and isotropy)

to the generic Einstein line element:

ds2 =−dt2 +a2(t)dσ
2, (1.3)

4



1.1 Friedmann equations 5

where

dσ
2 =

dr2

1−Kr2 + r2(dθ
2 + sin2

θdφ
2), (1.4)

a(t) is the scale factor at time t and K is the curvature parameter, which can be equal to -1, 0 or 1

depending on the geometry of the Universe (open, flat or closed respectively).

The equation (1.3) corresponds to a metric tensor:

gµν =


−1 0 0 0

0 a2(t)
1−Kr2 0 0

0 0 a2(t)r2 0

0 0 0 a2(t)r2 sin2
θ

 . (1.5)

From the metric tensor, we can evaluate the Christoffel symbol

Γ
µ

νλ
=

1
2

gµα(gαν ,λ +gαλ ,ν −gνλ ,α) (1.6)

and then the Ricci tensor and the Ricci scalar

Rµν = Γ
α
µν ,α −Γ

α
µα,ν +Γ

α
µν Γ

β

αβ
−Γ

α

µβ
Γ

β

αν ; (1.7)

R = gµν Rµν . (1.8)

The expression of the Einstein tensor is then obtained; for the FLRW metric, it is given by:

G0
0 =−3(H2 +K/a2); (1.9)

Gi
0 = G0

i = 0; (1.10)

Gi
j =−(3H2 +2Ḣ +K/a2)δ i

j, (1.11)

where we have defined the Hubble parameter H

H ≡ ȧ/a (1.12)

and the dot indicates the derivative with respect to t.

We now make the assumption of perfect fluid form for the energy-momentum tensor; this means that we

are considering the content of the Universe to be a perfect fluid:
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T µ

ν = (ρ +P)uµ uν +Pδ
µ

ν , (1.13)

where ρ,P are the density and the pressure of the fluid, respectively, and uµ = (−1,0,0,0) is the four-

velocity of the fluid in comoving coordinates.

At this point, we are able to write the explicit form of the Einstein equations; the only non trivial equa-

tions are the (00) and the (ii) components:

H2 =
8πG

3
ρ− K

a2 , (1.14)

3H2 +2Ḣ =−8πGP− K
a2 . (1.15)

Eliminating the K/a2 term, we can easily get:

ä
a
=−4πG

3
(ρ +3P). (1.16)

Equations (1.16) and (1.14) are usually referred to as Friedmann equations; they describe the dynamics

of a homogeneous and isotropic Universe, assuming a perfect fluid form for the energy-momentum tensor

(representing a single fluid component). The Friedmann equations are linked to each other by the adiabaticity

condition dU =−PdV , that is in our case:

d(ρa3) =−Pda3. (1.17)

Multiplying equation (1.14) by a2, differentiating and using (1.16), we can also write the continuity

equation

ρ̇ +3H(ρ +P) = 0. (1.18)

Equation (1.14) can also be written in the form

Ω+ΩK = 1 (1.19)

defining the density parameters

Ω≡ 8πGρ

3H2 (1.20)

ΩK ≡−
K

(aH)2 . (1.21)

If we deal with more than one fluid component with density parameters Ωi, we can write
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∑
i

Ωi +ΩK = 1. (1.22)

For example, in an Universe containing radiation, matter and dark energy with curvature K we have, at

the present time (apex (0)):

Ω
(0)
r =

8πGρ
(0)
r

3H2
0

(1.23)

Ω
(0)
m =

8πGρ
(0)
m

3H2
0

(1.24)

Ω
(0)
DE =

8πGρ
(0)
DE

3H2
0

(1.25)

Ω
(0)
K =− K

(a0H0)2 (1.26)

and the combination

ρcr(t) =
3H2(t)
8πG

(1.27)

is called the critical density at time t. The adjective “critical” is due to the fact that, from equation (1.14),

one has:

K
a2H2 =

8πGρ

3H2 −1 =
ρ

ρcr
−1, (1.28)

and for ρ > ρcr one has K > 0, that is, a closed Universe, while for ρ < ρcr one has K < 0 (open

Universe). If ρ = ρcr, we have a flat Universe (K = 0).

One can describe the whole thing in terms of the density parameter Ω = ρ/ρcr: when Ω > 1, we have

K > 0, etc.

1.2 Cosmic acceleration and cosmological constant

We assume ρ and P to be related by an equation of state of the form

P = wρ (1.29)

for example, we have w' 0 for non-relativistic matter and w' 1/3 for radiation.

Let us now take into account equation (1.16). We can immediately notice that, to have a cosmic acceler-

ation ä > 0, we need to have P+ρ/3 < 0, that means
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w <−1/3. (1.30)

This value of w, representing a fluid with negative pressure, cannot be reached by ordinary matter or

radiation. Therefore, we call a form of energy satisfying this property “dark energy”.

As already said, in the last decades evidence has arised that our Universe is in accelerated expansion

[1, 2]. This means that the Einstein field equations (1.1), taken as they are, are not suitable to explain the

observations, and need therefore to be modified. The simplest way to modify them is by adding a constant

term, obtaining:

Rµν −
1
2

Rgµν +Λgµν = 8πGTµν (1.31)

For historical reasons, Λ is called cosmological constant, and was first introduced by Einstein himself to

allow static solutions ȧ = ä = 0 ([7]).

To deal with equations (1.31), it is useful to bring the Λ term on the right hand side and to define the

modified energy-momentum tensor

T̃µν = Tµν +
Λ

8πG
gµν . (1.32)

Now, repeating the steps of the previous section, we can obtain the modified Friedmann equations:

ä
a
=−4πG

3
(ρ̃ +3P̃), (1.33)

H2 =
8πG

3
ρ̃− K

a2 , (1.34)

which are formally identical to equations (1.16), (1.14), but where ρ and P are replaced by the effective

density and pressure

P̃ = P+PΛ = P− Λ

8πG
, (1.35)

ρ̃ = ρ +ρΛ = ρ +
Λ

8πG
. (1.36)

It is easy to see from equation (1.35) that Λ gives a negative contribution to the effective pressure, now

therefore allowing solutions with ä > 0.

In particular, we can see that the Λ contributions to pressure and density satisfy the equation of state

PΛ =−ρΛ (1.37)

which is equation (1.29) with w =−1.
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The quantity Λ can thus explain the cosmic acceleration that comes out from the observations; however,

there are some crucial problems, which do not allow us to take Λ as the definitive explanation. This problems

will be discussed in Section 4.1.

1.3 The Friedmann models

Here we shall mention some useful relations valid in the context of Friedmann models.

From the adiabaticity relation (1.17) and the equation of state (1.29), we can obtain the relation between

the density and the scale factor:

ρ ∝ a−3(1+w) = ρ0(
a
a0

)−3(1+w). (1.38)

For example, we have ρr ∝ a−4 for radiation, ρm ∝ a−3 for pressureless matter, ρΛ = const for the

cosmological constant.

In observations, the redshift z of an electromagnetic source is defined by

z≡ λo−λe

λe
, (1.39)

where λe is the wavelength of the emitted wave and λo is the observed wavelength. It turns out that the

following relation exists between the redshift and the scale factor:

1+ z =
a0

a
, (1.40)

where a is the scale factor at the epoch of emission and a0 is the one at present epoch. We can then write

equation (1.38) in the form:

ρ(z) = ρ0(1+ z)3(1+w). (1.41)

Let us now take into account a Friedmann Universe filled with radiation, pressureless matter and dark

energy with an equation of state wDE , assumed here for simplicity not to depend on z.

From the Friedmann equation (1.14) we have:

H2 =
8πG

3
(ρr +ρm +ρDE)−

K
a2 . (1.42)

Substituting equation (1.41) with different values of w for the components, we can get the expression for

the Hubble parameter as a function of the redshift:

H2(z) = H2
0

[
Ω

(0)
r (1+ z)4 +Ω

(0)
m (1+ z)3 +Ω

(0)
DE(1+ z)3(1+wDE )+Ω

(0)
K (1+ z)2

]
. (1.43)
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In the case of the cosmological constant (wDE =−1) we have

H2(z) = H2
0

[
Ω

(0)
r (1+ z)4 +Ω

(0)
m (1+ z)3 +Ω

(0)
Λ

+Ω
(0)
K (1+ z)2

]
. (1.44)

1.3.1 Cosmic distances

In Cosmology, it is not possible to define the distance of an object in an unique way. The method we use

to estimate distances is different, depending on the quantities we can measure about that object. We define

the distances in order to reproduce known relations of the ordinary Physics.

Let us first write the spatial element of the FLRW metric in the form

dσ
2 = dχ

2 +( fK(χ))
2(dθ

2 + sin2
θdφ

2) (1.45)

where we have set

r = fK(χ) =


sin χ (K =+1)

χ (K = 0)

sinh χ (K =−1)

. (1.46)

The function fK(χ) can also be written in a unified form

fK(χ) =
1√
−K

sinh(
√
−Kχ). (1.47)

The comoving distance dc is defined, in physical units, as

dc(z) = χ =
c

a0H0

ˆ z

0

dz̃
E(z̃)

(1.48)

where

E(z)≡ H(z)/H0. (1.49)

Suppose now we have an object of which we can determine the absolute luminosity L (such objects in

Cosmology are named as standard candles). We know that in ordinary Physics the luminosity flux is given

by F = L/(4πd2), where d is the distance of the object. Then, to estimate the distance of such an object we

can define the luminosity distance dL as follows:

d2
L ≡

Ls

4πF
, (1.50)

where Ls is the absolute luminosity of the source, F is the observed flux, defined by F = L0
4π(a0 fK(χ))2 ,

and L0 is the observed luminosity.
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It can be shown that the ratio Ls/L0 is given by

Ls

L0
= (1+ z)2. (1.51)

We then have an expression for the luminosity distance:

dL(z) = a0 fK(χ)(1+ z), (1.52)

or, more explicitly,

dL(z) =
c(1+ z)

H0

√
Ω

(0)
K

sinh
(√

Ω
(0)
K

ˆ z

0

dz̃
E(z̃)

)
, (1.53)

where, this time, the parameter Ω
(0)
K is given in physical units as

Ω
(0)
K =− Kc2

(a0H0)2 , (1.54)

which is equation (1.26) multiplied by a factor c2.

For a flat universe (K = 0) we have the simple relation:

dL(z) = a0dc(z)(1+ z) =
c(1+ z)

H0

ˆ z

0

dz̃
E(z̃)

. (1.55)

In order to estimate the distance of not point-like sources, such as galaxy clusters, we can define the

angular diameter distance dA as:

dA ≡
∆x
∆θ

, (1.56)

where ∆x is the linear dimension of the object orthogonal to the line of sight and ∆θ is the angle sub-

tended by the object as seen by the observer. This definition reproduces the well-known relation x= d sinθ ∼
θd for small θ .

The source lies on the surface of a sphere of radius χ with the observer at the center; the size ∆x at the

time t1 corresponding to the object’s redshift z is then given by

∆x = a(t1) fK(χ)∆θ =
a0

1+ z
fK(χ)∆θ . (1.57)

The angular diameter distance is then given by:

dA(z) =
a0

1+ z
fK(χ) =

c

(1+ z)H0

√
Ω

(0)
K

sinh
(√

Ω
(0)
K

ˆ z

0

dz̃
E(z̃)

)
, (1.58)

that is
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dA(z) =
dL(z)

(1+ z)2 . (1.59)

In the case of a flat Universe (K = 0) we have

dA(z) =
c

H0(1+ z)

ˆ z

0

dz̃
E(z̃)

. (1.60)

1.4 Observational evidences of dark energy

As stated before, there are several observational evidences for late-time cosmic acceleration and thus for

the existence of dark energy. The most important ones come from:

1. the comparison of the age of the Universe with oldest stars;

2. supernovae observations;

3. Cosmic Microwave Background (CMB);

4. baryon acoustic oscillations (BAO);

5. large-scale-structure (LSS).

Below we shall talk briefly about the supernovae observations, as they are of interest for the purposes of this

thesis and for historical reasons, being the first observational evidence of late-time cosmic acceleration.

1.4.1 Supernovae Ia observations

The first evidence of late-time cosmic acceleration came in 1998 with two independent works by Riess

et al. [1] and Perlmutter et al. [2] based on observation of supernovae of type Ia.

As a matter of fact, supernovae can be classified according to the absorption lines of chemical elements

appearing in their spectra. Supernovae whose spectrum contains a spectral line of hydrogen are called Type

II; otherwise Type I. Type I supernovae are further subdivided in three different categories: Type Ia contains

an absorption line of ionised silicon, Type Ib contains a line of helium, Type Ic neither of these elements.

The crucial property of the Type Ia supernovae (SN Ia) is that their absolute luminosity is almost constant

at the peak of brightness: this means that they can be used as standard candles to calculate their luminosity

distance by measuring their apparent luminosity (in fact, it would be more correct to talk of standardizable

candles, since the magnitude has to be corrected with the light curve width).

A common way to measure the brightness of a star observed on Earth is by measuring its apparent

magnitude m.
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Given two stars whose apparent fluxes are F1 and F2, we define the difference between their apparent

magnitudes as

m1−m2 =−
5
2

log10

(
F1

F2

)
. (1.61)

Of course, the apparent magnitude depends on the (luminosity) distance of the object. To compare the

absolute brightness of two objects at a different distance, it is then useful to define the absolute magnitude

M. An object with apparent magnitude m and luminosity distance dL has an absolute magnitude defined by

the following relation:

m−M = 5log10

(
dL

10pc

)
. (1.62)

That is, the absolute magnitude is the apparent magnitude that the object would have if it were at a

luminosity distance of 10 parsec from the observer. If the distance is expressed in Megaparsec, the distance

modulus m−M can be written as

m−M = 5log10 dL +25. (1.63)

Let us consider a Universe dominated by dark energy and a non-relativistic matter fluid. We can obtain

a formula for the luminosity distance at low redshift by expanding equation (1.53) around z = 0, setting

Ω
(0)
r ' 0. We have:

dL(z) =
c

H0

[
z+

1
4
(1−3wDEΩ

(0)
DE +Ω

(0)
K )z2 +O(z3)

]
. (1.64)

If we observe some SN Ia at very low redshift (say z. 0.1), where the distance dL is well approximated

by dL ' cz
H0

, then independent from the cosmological model, we can use the data to calculate the absolute

magnitude M from equation (1.63). By doing this, it has been found that the absolute magnitude is nearly

constant for SN Ia and equal to M ' −19 at the peak of brightness [6]. We can then use high-redshift

supernovae (z ∼ 1) to evaluate the luminosity distance from equation (1.63) (we now know that the value

of M is fixed). Assuming a flat Universe where dark energy is identified with the cosmological constant

(wDE = −1), we can use equation (1.55) to estimate the parameter Ω
(0)
DE , and this can be done for each

supernova. Perlmutter et al. found that dark energy is present (Ω(0)
DE > 0) at 99% of confidence level.



1.4 Observational evidences of dark energy 14

Figure 1.1: Typical light curves for supernovae of Type I and II [8].



Chapter 2

Cosmological Perturbation Theory

In the first chapter we have presented the Friedmann models, based on the FLRW homogeneous and

isotropic metric. However, a description like this one can often be not enough satisfying, because the real

Universe is more complicated and isotropy and homogeneity hold (in certain limits) only on large scales.

The simplest way to describe a Universe that deviates from the FLRW spacetime is to write a metric as a

sum of an unperturbed (or background) FLRW term and a “perturbed” deviation term, assumed to be small

with respect to the unperturbed one.

We then assume that the metric tensor gµν is given by

gµν = g(0)µν +δgµν , (2.1)

where |δgµν | � |g(0)µν | for every couple of indexes {µ,ν}.
It is convenient to use the conformal time

η =

ˆ
a−1dt (2.2)

and the conformal Hubble quantity

H =
1
a

da
dη

= Ha. (2.3)

The FLRW metric can be written, as a function of η , as

ds2 = g(0)µν dxµ dxν = a2(−dη
2 +δi jdxidx j). (2.4)

In General Relativity, the field equations are invariant under a general coordinate change. This means that

the unperturbed tensor g(0)µν and the perturbed one δgµν in equation (2.1) are not unique. However, in order

to avoid confusion, we would like to keep the background FLRW metric fixed, and let only the perturbation

15
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term vary. Therefore, we select a class of infinitesimal transformations that leaves g(0)µν as it is, and makes

only δgµν change. These coordinate changes are called gauge transformations.

In the unperturbed Universe, we have defined comoving coordinates in a way that the matter particles

expanding with the Universe remain at fixed comoving coordinates. If perturbations are added, we have

three possibilites: either to use the same coordinates, or to introduce a new system of coordinates that free-

fall with the particles in the perturbed gravitational field, or to use a completely different frame not related

to the matter particles. Let us focus on the first two cases.

In the first case, we actually choose to attach the observers to the points in the unperturbed frame; this

choice is called Newtonian or longitudinal gauge. The observers will then detect a velocity field of particles

falling into the clumps of matter and will measure a gravitational potential. In the second case, instead,

the observers are attached to the free-falling particles and therefore they do not see any velocity field nor

measure a gravitational potential. This choice is called comoving proper-time gauge. In the following we

will discuss some concepts of cosmological perturbation theory in the Newtonian gauge.

2.1 Newtonian gauge

The most general perturbed metric can be written as equation. The perturbed term δgµν can be decom-

posed in the following way, which holds for every rank-two tensor:

δgµν = a2

(
−2Ψ wi

wi 2Φδi j +hi j

)
, (2.5)

where Ψ and Φ are spatial scalars, called the gravitational potentials, wi is a 3-vector and hi j is a traceless

3-tensor; all of these quantities depend on space and time.

The vector wi can be itself decomposed into a longitudinal and a transverse component

wi = w||i +w⊥i , (2.6)

which by construction satisfy

∇ ·w⊥i = ∇×w||i = 0. (2.7)

The transverse component is curl-free and is therefore the gradient of a scalar. When we derive the

Einstein equations for the (0i) components, we will have longitudinal and transverse terms. Taking the curl

of the equations, we are left with the transverse equations only, whereas taking the divergence, we are left

with the longitudinal ones. This means that the two components completely decouple from each other and

evolve independently, and can be treated separately. The density perturbation δ is a scalar quantity: this

means that only the longitudinal terms couple to the density perturbations.
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A similar argument holds for the 3-tensor hi j. We can write it as a sum of three traceless terms:

hi j = h||i j +h⊥i j +hT
i j (2.8)

where the divergences ∂ ih||i j is longitudinal (or curl-free), the divergence ∂ ih⊥i j is transverse (which means

it has null divergence) and hT
i j is also transverse:

εi jk∂i∂kh||i j = ∂i∂ jh⊥i j = ∂ihT
i j = 0. (2.9)

Since ∂ih
||
i j is curl-free, it can be written in terms of a scalar function B; it can be easily checked that

εi jk∂i∂kh||i j = 0 is verified if

h||i j =

(
∂i∂ j−

1
3

δi j∇
2
)

B≡ Di jB. (2.10)

The other two terms
(

h⊥i j ,h
T
i j

)
, which cannot be derived from a scalar function, give rise to rotational

velocity perturbations and to gravitational waves, respectively. Anyway, they decouple completely from the

scalar term, and it can be shown that, if they are present, they decrease as a−1. For the reasons previously

exposed, we can then consider only the longitudinal term.

That is, to study the field equations in perturbation theory we need to take into account only the part of wi

and hi j derived from scalars. If we introduce two new scalar functions E,B (in analogy to the electromagnetic

formalism), we can write the perturbed term (2.5) as

δgµν = a2

(
−2Ψ E,i

E,i 2Φδi j +Di jB

)
, (2.11)

where E,i = ∇E and Di jB is given by equation (2.10).

The situation can be simplified if we work in a specific gauge; this can be done if we impose up to four

conditions on the metric. We choose them to be wi = 0 (from which E = 0) and B = 0. We then obtain the

perturbed metric in the Newtonian or longitudinal gauge:

ds2 = a2(η)
[
−(1+2Ψ)dη

2 +(1+2Φ)δi jdxidx j] . (2.12)

Our next step is then to derive the first-order Einstein equations. To achieve this, we decompose the

Einstein and the energy-momentum tensor in a background and a perturbed part

Gµ

ν = Gµ(0)
ν +δGµ

ν , (2.13)

T µ

ν = T µ(0)
ν +δT µ

ν . (2.14)
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The background cosmological evolution is obtained by solving the zero-th order Einstein equations

Gµ(0)
ν = 8πGT µ(0)

ν ; the first-order Einstein equations are instead given by

δGµ

ν = 8πGδT µ

ν . (2.15)

In order to compute the l.h.s. of equation (2.15), we have to calculate the perturbed Christoffel symbols

δΓ
µ

νλ
by using the formula

δΓ
µ

νλ
=

1
2

δgµα
(
gαν ,λ +gαλ ,ν −gνλ ,α

)
+

1
2

gµα
(
δgαν ,λ +δgαλ ,ν −δgνλ ,α

)
(2.16)

and then the perturbation in the Ricci tensor and scalar

δRµν = δΓ
α
µν ,α −δΓ

α
µα,ν +δΓ

α
µν Γ

β

αβ
+Γ

α
µν δΓ

β

αβ
−δΓ

α

µβ
Γ

β

αν −Γ
α

µβ
δΓ

β

αν (2.17)

δR = δgµα Rαµ +gµα
δRαµ . (2.18)

The perturbations δGµ

ν for the Einstein are then given by

δGµν = δRµν −
1
2

δgµν R− 1
2

gµν δR (2.19)

δGµ

ν = δgµα Gαν +gµα
δGαν . (2.20)

In particular, for the FLRW metric (2.12), we get:

δG0
0 = 2a−2 [3H

(
H Ψ−Φ

′)+∇
2
Φ
]
, (2.21)

δG0
i = 2a−2 (

Φ
′−H Ψ

)
|i , (2.22)

δGi
j = 2a−2 [(H 2 +2H ′)

Ψ+H Ψ
′−Φ

′′−2H Φ
′]

δ
i
j +a−2

[
∇

2 (Ψ+Φ)δ
i
j− (Ψ+Φ)i

| j

]
, (2.23)

where the prime represents the derivative with respect to the conformal time η , the subscript | represents

a covariant derivative with the spatial 3-metric, δ i
j is the Kronecker delta and ∇2 f = f ;µ

;µ .

The calculation of the r.h.s. of equation (2.15) requires the assumption of a form for the energy-momentum

tensor Tµν ; given the form, the perturbation δTµν can be derived. From it we could also get the first-order

part of the continuity equation

δT µ

ν ;µ = 0. (2.24)

In the following paragraph we will perform the calculation for the case of a single perfect fluid.
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2.2 Single-fluid model

For a general fluid the energy-momentum tensor is given by

Tµν = (ρ +P)uµ uν +Pgµν +
[
qµ uν +qν uµ +πµν

]
, (2.25)

where uµ is the four-velocity vector of the fluid, qµ is the heat flux vector and πµν is the viscous shear

tensor.

We will make the following assumptions for the fluid:

1. the fluid is a perfect fluid: that is, qµ = 0 and πµν = 0;

2. the perturbed fluid remains a perfect fluid: δT i
j = 0 (i 6= j).

It is useful to define two perturbed quantities: the density contrast δ and the velocity divergence θ :

δ ≡ ρ(x)− ρ̄

ρ̄
=

δρ

ρ
, (2.26)

θ ≡ ∇ivi. (2.27)

In models with more than one fluid, there are several pairs δi,θi, one for each fluid.

The perturbed energy-momentum tensor for a perfect fluid can be written as

δTµν = ρ
[
δ
(
1+ c2

s
)

uν uµ +(1+w)(δuν uµ +uν δuµ)+ c2
s δδ

µ

ν

]
, (2.28)

where the sound speed

c2
s ≡

δP
δρ

(2.29)

has been introduced. Pay attention to the difference between δ and δ
µ

ν .

If P depends on ρ alone, and we are in the FLRW metric, then we can write

c2
s =

dP
dρ

=
Ṗ
ρ̇
. (2.30)

The perturbations of the four velocity uµ = dxµ

ds can be calculated from the first-order expressions

uµ =

[
1
a
(1−Ψ),

vi

a

]
, (2.31)

uµ =
[
−a(1+Ψ),avi] , (2.32)
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where vi = dxi

dη
= a dxi

dt is the matter peculiar velocity with respect to the general expansion.

The components of the perturbed energy-momentum tensor are

δT 0
0 =−δρ, (2.33)

δT 0
i =−δT i

0 = (1+w)ρvi, (2.34)

δT i
i = c2

s δρ. (2.35)

We finally obtain for the perturbed Einstein equations (2.15):

3H
(
H Ψ−Φ

′)+∇
2
Φ =−4πGa2

ρδ (2.36)

∇
2 (

Φ
′−H Ψ

)
=4πGa2 (1+w)ρθ (2.37)

Ψ =−Φ (2.38)

Φ
′′+2H Φ

′−
(
H 2 +2H ′)

Ψ−H Ψ
′ =−4πGa2c2

s ρδ (2.39)

for the (00), (0i), (i j) and (ii) components respectively, where the assumption δT i
j = 0 has been used.

From the continuity equation (2.24), we can obtain the so-called perturbation equations: the perturbed

continuity equation (0-component)

δ
′+3H

(
c2

s −w
)

δ =−(1+w)
(
θ +3Φ

′) (2.40)

and the Euler equation (divergence of the i-component)

θ
′+

[
H (1−3w)+

w′

1+w

]
θ =−∇

2
(

c2
s

1+w
δ +Ψ

)
. (2.41)

In the case of non-relativistic matter (w = 0, cs = 0) we get:

δ
′ =−θ −3Φ

′ (2.42)

θ
′+H θ =−∇

2
Ψ−∇

2(c2
s δ ). (2.43)

We can also write the Einstein and the perturbation equations in the Fourier space.

Every perturbation quantity φ can be expanded as:

φ =

ˆ
eik·r

φkd3k (2.44)

where φk are the Fourier modes of φ . In practice, this means we can transform the quantities from the

real to the Fourier space by performing the following replacements:
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φ(x,η)→φk(η)

∇φ(x,η)→ikφk(η)

∇
2
φ(x,η)→− k2

φk(η)

We apply this expansion to the quantities Φ,Ψ,δ ,θ and obtain, for the equations (2.36)-(2.41):

k2
Φ+3H

(
Φ
′−H Ψ

)
=4πGa2

ρδ (2.45)

k2 (
Φ
′−H Ψ

)
=−4πGa2(1+w)ρθ (2.46)

Ψ =−Φ (2.47)

Φ
′′+2H Φ

′−
(
H 2 +2H ′)

Ψ−H Ψ
′ =−4πGa2c2

s ρδ (2.48)

δ
′+3H

(
c2

s −w
)

δ =− (1+w)
(
θ +3Φ

′) (2.49)

θ
′+

[
H (1−3w)+

w′

1+w

]
θ =k2

(
c2

s

1+w
δ +Ψ

)
(2.50)

where we dropped the k subscripts and now θ = ik · v.

From equations (2.45), (2.46) we can obtain the relativistic Poisson equation:

k2
Φ = 4πGa2

ρ
[
δ +3H (w+1)θ/k2]= 4πGa2

ρδ∗ (2.51)

where δ∗ ≡ δ +3H (w+1)θ/k2 is the total matter variable.

By combining equations (2.45), (2.47), (2.48), we can also obtain a useful relation for Φ alone:

Φ
′′+3H (1+ c2

s )Φ
′+(c2

s k2 +3H 2c2
s +2H ′+H 2)Φ = 0. (2.52)

In order to solve the perturbed equations, we will consider two different regimes: the large-scale limit

k�H = aH and the small-scale limit k�H = aH.

2.2.1 Scales larger than the Hubble radius

Let us begin with the large-scale limit k�H = aH. In this regime the scale on which the physical

wavelength λp =
2π

k a is larger than the Hubble radius H−1.

If the pressure P depends only on ρ and the equation of state of the fluid w is a constant (i.e. matter,

radiation), we have c2
s = w and equation (2.52) takes the form

Φ
′′+3H (1+ c2

s )Φ
′ = 0. (2.53)
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It is clear that Φ′ = 0 (Φ = constant) is a solution, and it is the dominating one (growing mode) at least

for c2
s >−1. Then we can say that the gravitational potential is constant for scales outside the Hubble radius

in the hypotheses specified above. Let us now see what happens to the density contrast δ .

Equation (2.45) becomes

3H 2
Φ = 4πGa2

ρδ (2.54)

and using the Friedmann equation 3H 2 = 8πGa2ρ , we get

δ = 2Φ. (2.55)

So we have that, at large scales, Φ constant implies δ constant.

It is important to remark that the condition c2
s = w, which we assumed before, is violated during the

transition from radiation to matter era, and therefore the gravitational potential changes.

2.2.2 Scales smaller than the Hubble radius

Now we will discuss the small-scale limit, k�H = aH, deriving the equations for a pressureless fluid

(w = 0) in the absence of perturbations, with a small sound speed c2
s � 1. Equation (2.45) becomes then

k2
Φ = 4πGa2

ρδ =
3
2
H 2

δ . (2.56)

Deriving and substituting into equation (2.49) yields:

δ
′ =−θ − 9

2
H 2

k2 δ

(
2
H ′

H
+

δ ′

δ

)
'−θ (2.57)

and the perturbation equations in this limit are

δ
′ =−θ (2.58)

θ
′ =−H θ + c2

s k2
δ − k2

Φ (2.59)

plus equation (2.56).

From the two previous equation we get, after differentiating the first one with respect to η ,

δ
′′+H δ

′+

(
c2

s k2− 3
2
H 2

)
δ = 0. (2.60)

This shows that the perturbation does not grow if c2
s k2− 3

2H > 0, that is, if the physical wavelength of

the perturbation λp =
2π

k a is smaller than the Jeans length
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λJ = cs

√
π

Gρ
. (2.61)

For scales smaller than λJ the perturbations vanish through damping oscillations. In the cases of CDM

and radiation, however, the scale λJ is not larger than the Hubble radius (cS ' 0 for CDM, cs =
c√
3

for

photons), so that perturbations never grow under the Hubble radius.

For baryons, the sound speed is comparable to the photons’ one before the decoupling epoch, so that

baryon perturbation are damped out and the baryons are free to fall into the dark matter potential wells

(baryonic catch-up).

On the other hand, when csk�H , the perturbations grow because gravity is stronger than pressure

(gravitational instability).

We have:

δ
′′+H δ

′− 3
2
H 2

δ = 0 (2.62)

and the growing and decaying modes during the matter era evolve as

δ+ ∝ a, (2.63)

δ− ∝ a−3/2. (2.64)



Chapter 3

Statistical Properties of the Universe

3.1 Correlation function

We want to describe a random distribution of points (i.e. astrophysical sources) in a compact way, using

statistical quantities. Given N points in a volume V , the first quantity of statistical interest is the average

density ρ0 = N/V ; however, the average density does not tell us how the points are distributed in the

volume V : they could be homogeneously distributed or concentrated in some regions. We need then more

useful descriptors, which carry more information.

Let us consider an infinitesimal volume dV chosen randomly inside the volume V . The average number

of points inside the volume dV is ρ0dV . If we take into account two volumes dVa and dVb separated by a

distance rab, the average number of pairs with the first element in the volume dVa and the second in the

volume dVb is dNab = 〈nanb〉. We can define the next important descriptor, the 2-point correlation function

ξ (rab) as:

dNab = 〈nanb〉= ρ
2
0 dVadVb [1+ξ (rab)] . (3.1)

Before getting inside the physical meaning of the 2-point correlation function, it is worth to spend some

words on the concept of “average”. The word “average” can be used in two possible meanings. The first

meaning is the so-called ensemble average: one can take many realizations of the distribution, all produced

in the same way, and then take the volumes dVa and dVb at the same locations and then averaging the pair

number nanb.

The second is the sample average: one can take the pairs at different spots, always separated by the same

distance rab, within the same realization. To make the two definitions coincide, the spots must be sufficiently

distant to each other, so that they are uncorrelated and can be considered to be coming from different real-

izations. The problem is, however, that we do not know a priori what this “sufficiently distant” means, we
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need to compare the spots with an ensemble of realizations to know if they are effectively uncorrelated, and

this cannot be done in astrophysics since we only have a single Universe to deal with. In the following, we

will always assume the sample average to be a good approximation of the ensemble one: this assumption is

called ergodic hypothesis.

Now, let us explain the physical meaning of ξ (rab): if the distribution has been obtained by throwing the

N particles at random, the average number of pairs dNab will not depend on the location, and it will be equal

to the product of the average number of particles in the two volumes: dNab = 〈nanb〉= 〈na〉〈nb〉= ρ2
0 dVadVb.

That is, ξ (rab) = 0, and the particles are uncorrelated. Instead, if ξ (rab) 6= 0, we say that the particles

are correlated. This means, the correlation function gives a measure of the difference between the given

distribution of particles and a random distribution.

The correlation function can be written as a function of the density contrast δ (ra) =
na

ρ0dVa
− 1 at two

different points:

ξ (rab) =
dNab

ρ2
0 dVadVb

−1 = 〈δ (ra)δ (rb)〉 . (3.2)

Of course, 〈δ (ra)〉 = 〈δ (rb)〉 = 0. If the average is the sample average, we have to average over all

possible positions. We will consider a statistically homogeneous system, this means a system for which the

correlation function depends only on the separation r between the infinitesimal volumes and not on ra and

rb . If y is the position of the first infinitesimal volume, and r is the separation between the two volumes,

then we can write

ξ (r) =
1
V

ˆ
δ (y)δ (y+ r)dVy. (3.3)

The correlation function can be derived in practice as the average density of particles at a given distance

r from another particle, that is, dVa is chosen to be such that ρ0dVa = 1. The number of pairs is then given

by the number of particles in dVb:

dNb = ρ0dVb [1+ξ (rb)] (3.4)

and the correlation function can be evaluated as

ξ (r) =
dN(r)
ρ0dV

−1, (3.5)

where dN(r)/dV is the average density of particles at distance r from any given particle (i.e., we choose

a particle and count the number of particles in the volume dV at a distance r, then we do the same for each of

the particles, and finally we take the average of the counts), and ρ0 is the average density, which represents

the expected number of particles at the same distance in a uniform distribution. Since we are interested only

in the dependence on the modulus r, the volume at distance r is chosen to be a shell of thickness dr. But
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since is difficult to estimate the density dN(r)/dV in every shell for each of the particles, the estimation of

the correlation function via equation (3.5) is rather difficult. There is an easier way to achieve this: ξ can be

estimated by comparing the real number of galaxies at distance r from the observer (i.e. our galaxy) with the

number of galaxies at the same distance in a random catalog with exactly the same boundaries and selection

function:

ξ (r) =
Ndata(r)

Nrandom(r)
−1. (3.6)

The idea of the 2-point correlation function can be generalized to higher order functions; for example we

can define the 3-point correlation function as

ζabc(ra,rb,rc) = 〈δ (ra)δ (rb)δ (rc)〉 . (3.7)

A random field (as δ (r) can be assumed to be) is said to be Gaussian when ζabc and all odd higher-order

correlation functions are equal to zero, and therefore the 2-point correlation function describes completely

the statistical properties of the field.

3.2 Power spectrum

An alternative way to describe a density field is by using its power spectrum. The power spectrum of the

density contrast is of great importance in the study of dark energy and cosmolog in general.

Given a function in real space f (x), we can define its 3-dimensional Fourier decomposition as

f (x) =
V

(2π)3

ˆ
fkeik·xd3k (3.8)

and

fk =
1
V

ˆ
f (x)e−ik·xd3x (3.9)

is called the Fourier transform of the field f (x). The values of fk for different values of k can be also

called Fourier coefficients to underline the decomposition aspect of the transformation.

The power spectrum of f (x) is then defined as

Pf (k) = A| fk|2 (3.10)

where A is some normalization constant.

We can see the Fourier transform as a decomposition of the field f (x) into orthonormal modes k. The

power spectrum quantifies then how “strong” is the contribution of the Fourier mode k to the construction

of the field.
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In our case, we will be particularly interested in the power spectrum for the density contrast field δ (x).
The Fourier transform is

δk =
1
V

ˆ
δ (x)e−ik·xdV (3.11)

and the power spectrum is defined as

P(k) =V |δk|2 =V δkδ
∗
k . (3.12)

We have straightforward

P(k) =
1
V

ˆ
δ (x)δ (y)e−ik·(x−y)dVxdVy (3.13)

and, setting r = x−y, we get

P(k) =
ˆ

ξ (r)e−ik·rdV (3.14)

that is, the power spectrum is the Fourier transform of the correlation function. This result is known as

Wiener-Khinchin theorem. Of course, also the converse property holds:

ξ (r) =
1

(2π)3

ˆ
P(k)eik·rd3k. (3.15)

This means that the statistical descriptions of a random field through the correlation function and through

the power spectrum are essentially equivalent.

The power spectrum of the density contrast is a fundamental quantity in Cosmology. The matter density

contrast field is assumed to be traced by the galaxies, which therefore form a discrete sampling of the field.

However, the only way to get information about the field is to study this discrete sample; furthermore, the

observations can be made only in a limited volume.

We then have to select the sampling galaxies in some way, and this can be made by means of a window

function W (x).
Given a collection of N dimensionless particles of unitary masses at positions xi, the simplest way to

select a sample for the underlying field is to take all particles inside a given region of volume V , and no

particles outside that region. This selection can be made through a so-called top-hat window function, which

is a constant inside the survey volume, and zero outside. If we choose the normalization to be

ˆ
W (x)dV = 1 (3.16)

then we have that the top-hat window function in real space is given by W (x) = 1/V inside the survey

volume and zero elsewhere.
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The density contrast field for a specific sample is then given by

δsample(x) = δ (x)VW (x). (3.17)

Now, if we want to calculate the power spectrum for the sample density contrast field, we have to take

into account its Fourier transform. It is useful to write the density ρ(x) as a sum of Dirac deltas ρ(x) =

∑i δD(x−xi), so that we can write:

δsample(x) =
(

ρ(x)
ρ0
−1
)

VW (x) =
V
N ∑

i
wiδD(x−xi)−VW (x) (3.18)

where wi =VW (xi) and ρ0 = N/V . The Fourier transform is

δk =
1
V

ˆ (
V
N ∑

i
wiδD(x−xi)−VW (x)

)
e−ik·xdV =

1
N ∑

i
wie−ik·xi −Wk (3.19)

where we have introduced the Fourier space window function

Wk =

ˆ
W (x)e−ik·xdV (3.20)

with the normalization condition W0 = 1.

It is very common to choose a spherical volume for the survey. The spherical top-hat function for a

volume V of radius R is W (x) = 1/V, x ∈V

W (x) = 0, x /∈V
(3.21)

The corresponding spherical top-hat function in the momentum space is then

Wk =
3

R3

ˆ R

0

r sin(kr)
k

dr =
3(sin(kR)− kRcos(kR))

(kR)3 (3.22)

Now, averaging and squaring δk given by equation (3.19), we should get the power spectrum for the

density contrast field δsample(x) in the particular chosen sample. However, this can be split in two compo-

nents: the “true” power spectrum P(k) and the noise contribution Pn, given by the i = j terms in equation

(3.19), which corresponds to the power spectrum for a distribution with no intrinsic correlation, that is, for a

Poissonian distribution. As a matter of fact, we have:

V 〈δkδ
∗
k 〉 ≡

〈
∆

2(k)
〉
= P(k)+Pn (3.23)

with
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P(k) =
V
N2 ∑

i 6= j

〈
wiw j

〉
e−ik·(xi−xj)−VW 2

k (3.24)

Pn =
V
N2 ∑

i
w2

i =
V
N
. (3.25)

The noise becomes negligible for large densities; however, this is not always true, and it may be necessary

to subtract the noise from
〈
∆2(k)

〉
to obtain the “true” power spectrum.

The power spectrum is usually normalized by quoting the quantity σ8, defined as

σ
2
8 =

1
2π

ˆ
P(k)W 2

8 (k)k
2dk (3.26)

where W8(k) is the spherical window function (3.22) for a radius of 8 h−1Mpc.

3.3 Velocity field

The mass power spectrum can be studied by analyzing the peculiar motion of the galaxies. In fact, a

more clustered distribution of matter will induce stronger peculiar velocities. The velocity field will depend

on the total mass distribution, therefore also from the invisible massive components.

Taking the Fourier transform of the perturbed continuity equation for non-relativistic matter (2.58), con-

sidering that θ = ∇ivi, we obtain

δ
′
k =−ikivi. (3.27)

We assume that the velocity field v can be represented by the galaxy velocity field vg, thus there is no

bias. This statement is based on the fact that the gravitational field under which matter moves is the same for

galaxies and for dark matter, on the universality of gravitational interaction and on the assumption of similar

initial conditions and same equation of state and sound speed for all matter components.

From equation (2.50) with w = cs = 0 we have

(vi)′ =−H vi + iki
Φk. (3.28)

Since we are dealing with scalar perturbations, we can write the velocity as the gradient of a velocity

potential v, that is, in Fourier space, vi = ikiv. Therefore, vi is parallel to ki and we can look for solutions

of equation (3.27) in the form vi = F(k,a)ki. By solving (3.27), we obtain the relation between the peculiar

velocity field and the density fluctuation in linear perturbation regime:

vi = iH f δk
ki

k2 (3.29)
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where f = f (a) is the growth rate of matter perturbations:

f =
d lnδm

d lna
'Ωm(a)γ (3.30)

with γ = 0.545 for the ΛCDM model.

At present epoch, equation (3.29) yields:

v = iH0 f δk
k
k2 (3.31)

and the peculiar velocity v(r) at position r can be obtained via Fourier antitransformation:

v(x) = iH0 f
V

(2π)3

ˆ
δk

k
k2 eik·rd3k (3.32)

3.4 Redshift distortions

The distances of the observed galaxies are usually measured through their redshift; but the measured

redshift contains a contribution due to the peculiar velocity of the galaxies, so that the distances of the

galaxies are affected by an error. On small scales (i.e. in the cluster cores), the peculiar velocity of a galaxy

has a random orientation and the error in the distance is statistical: we have the so-called fingers-of-god

effect, that is, galaxies in a cluster get an additional random velocity that distorts the cluster distribution in

the redshift map, so that it appears elongated along the line of sight. Instead, on large scales the galaxies

tend to fall towards more dense regions because of gravitational attraction, and the velocity field is then

coupled to the density field. We can account for this effect and correct it. Let us see in particular what are

the consequences of this correction on the density contrast and on the power spectrum.

Given a peculiar velocity v of a source at a position r, the line-of-sight component of the velocity can be

defined as:

u(r) = v · r
r

(3.33)

with r = |r|. The coordinate transformation that connects the real space (r) with the redshift space (s) is

given by

s = r
[

1+
u(r)−u(0)

r

]
. (3.34)

The following relation holds between the volume elements and the number densities in the two spaces:

n(r)dVr = n(s)dVs (3.35)

and we can express the volume element dVs in terms of the r coordinates:
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dVs =

(
1+

∆u(r)
r

)2

|J|(r2 sinθ)drdθdφ =

(
1+

∆u(r)
r

)2

|J|dVr (3.36)

where ∆u(r) = u(r)−u(0) and |J| is the Jacobian of the transformation:

|J|=
∣∣∣∣∂ s
∂ r

∣∣∣∣= 1+
du
dr

. (3.37)

We can then get an expression for the density contrast in the redshift space as a function of the quantities

in real space

δs =
n(s)dVs

n0dVs
−1 =

n(r)dVr

n0dVs
−1 =

n(r)
n0(1+∆u(r)/r)2|J|

−1 (3.38)

which, to the first order, yields:

δs ' δr−2
∆u(r)

r
− du

dr
. (3.39)

From the last expression, we see clearly that the density contrast is different in the two spaces; that is,

also the correlation function and the power spectrum, measured in the redshift space, need to be corrected in

order to be expressed in real space.

First of all, we have to take into account the fact that what we observe is the galaxy density contrast δg,

which is not the total matter density contrast δm. We can assume them to be related by a linear bias factor b:

b =
δg

δm
(3.40)

and we can replace δk f with δ(g)k f/b = δ(g)kβ in equation (3.31). Equation (3.32) becomes then:

v = iH0β

ˆ
δ(g)keik·r k

k2 d3k∗ (3.41)

with d3k∗ = V
(2π)3 d3k.

For instance, the matter and galaxy power spectra are related by the bias factor in the following way:

Pg(k) = b2Pm(k). (3.42)

Now we want to obtain a relation between the power spectrum in redshift space and the one in the real

space, that is, we want to quantify the redshift distortion effect.

Using equation (3.41), we can get an expression for the line-of-sight component u(r) that appears in

equation (3.39):

u(r) = iβ
ˆ

δrkeik·r k · r
k2r

d3k∗ (3.43)
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and for its derivative:

du
dr

=−β

ˆ
δrkeik·r

(
k · r
kr

)2

d3k∗ (3.44)

Equation (3.39) becomes then:

δs = δr−
du
dr

= δr +β

ˆ
δrkeik·r

(
k · r
kr

)2

d3k∗ (3.45)

Multiplying by V−1e−ik′·rd3r and integrating, we obtain the Fourier transform

δsk = δrk +β

ˆ
δrk′ I(k,k

′)d3k′, (3.46)

where

I(k,k′) = (2π)−3
ˆ

ei(k′−k)·r
(

k′ · r
k′r

)2

d3r. (3.47)

The formula (3.46) simplifies in the limit of surveys with very small angular scales, that is, when the

cosine

µ =
k · r
kr

(3.48)

is almost constant. In this case, I(k,k′) = µ2δD(k′− k) and

δsk = δrk(1+β µ
2). (3.49)

We then obtain the relation between the power spectra in redshift and real space:

Ps(k) =V δ
2
rk
(
1+β µ

2)2
= Pr(k)(1+β µ

2)2. (3.50)



Chapter 4

Dark Energy Models and the Horndeski
Lagrangian

4.1 Problems of the cosmological constant

In Section 1.2 we talked about the fact that the cosmological constant does not explain the cosmic

acceleration in a completely satisfactory way. Now we will describe briefly what are the issues with this

approach.

4.1.1 Fine tuning problem

We can explicit the Λ term in Friedmann equations with cosmological constant (1.33), (1.34)

H2 =
8πG

3
ρ− K

a2 +
Λ

3
(4.1)

ä
a
=−4πG

3
(ρ +3P)+

Λ

3
(4.2)

and see that, in order to have a cosmic acceleration at present time, the cosmological constant has to be

of the order of the square of the present Hubble parameter H0:

Λ≈ H2
0 = (2.1332h×10−42GeV )2. (4.3)

We can interpret Λ as an energy density. This energy density is equivalent to:

ρΛ ≈
Λm2

pl

8π
≈ 10−47GeV 4 ≈ 10−123m4

pl , (4.4)

33
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where h≈ 0.7 and mpl ≈ 1019GeV .

The most reasonable thing to do would be to associate Λ to the energy density of the vacuum. From Field

Theory, the zero-point energy of a field of mass m, momentum k and frequency ω , in the units h̄ = c = 1

is E = ω/2 =
√

k2 +m2/2. The vacuum energy density can be obtained by summing over the zero-point

energies up to a cut-off scale kmax:

ρvac =

ˆ kmax

0

d3k
(2π)3

1
2

√
k2 +m2, (4.5)

whose dominating contribution is given by the large k modes; that is,

ρvac ≈
k4

max

16π2 . (4.6)

We can set kmax ≈ mpl , since General Relativity is believed to be valid up to the Planck scale. We then

have

ρvac ≈ 1074GeV 4. (4.7)

Comparing the results (4.4) and (4.7), we can see that they differ by a factor of 10121, which is enormously

large: the Λ value must be incredibly smaller than the value predicted from the theory. On the other hand, it

cannot be exactly zero, because in this case we would not have the cosmic acceleration. This is the so-called

fine tuning problem.

In principle, there are two possible ways to solve this problem. The first one is to find a way to get a very

tiny value of Λ: in this case the explanation of dark energy as cosmological constant would be still valid.

The other way would be to find a mechanism that makes Λ completely vanish: in this case, the fine tuning

problem is solved, but an alternative explanation for dark energy must be provided.

4.1.2 Coincidence problem

The second problem concerning the cosmological constant is the fact that Λ starts to have an effect on

the expansion of the Universe at a time which is very close to the present (i.e. the cosmic acceleration starts

very late), and the value of the density parameter Ω
(0)
Λ

is of the same order of magnitude as the matter density

parameter Ω
(0)
m .

The matter density ρm = ρ
(0)
m (1+ z)3 coincides with the cosmological density ρ

(0)
Λ

at

zcoinc =

(
Ω

(0)
Λ

1−Ω
(0)
Λ

)1/3

−1, (4.8)

that is, zcoinc ≈ 0.3 for Ω
(0)
Λ
≈ 0.7. In fact, the question arises, why Λ becomes important right now, when

we can see its effects. This is the so called coincidence problem.
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However, this problem is not specific to the cosmological constant: almost all dark energy models have

a zcoinc very close to zero. Many explanations have been proposed, but it is still far from solved.

4.2 Overview on alternative dark energy models

We can imagine to find a way to make Λ completely vanish, but then we have to find an alternative model

to explain the cosmic acceleration. All alternative dark energy models that have been proposed are in this

framework.

There are essentially two approaches to construct a dark energy model. The first approach is to modify

the right-hand side of the Einstein equations (1.1), so that the energy-momentum tensor Tµν contains an

exotic term with negative pressure. Models based on this approach are called modified matter models.

The second approach is the one of the modified gravity models, in which the Einstein tensor Gµν on the

left-hand side is modified.

This is, however, only a practical division to classify models; there is no real fundamental difference

between the two categories of models, since every modified matter model can be transformed in an equivalent

modified gravity model and viceversa (i.e. the modifications in Tµν can be absorbed in Gµν or the other way

round).

In this section we will give a general overview of the most popular dark energy models, without entering

the details.

4.2.1 Modified matter models

We know from General Relativity that the Einstein field equations (1.1) can be obtained by applying the

principle of least action to the following Einstein-Hilbert action:

S =

ˆ
d4x
√
−g

1
2κ2 R+Sm, (4.9)

where κ2 = 8πG, g is the determinant of the metric tensor and R is the Ricci scalar. A certain matter

action Sm =
´

d4xLm has been included.

We can then obtain a modified model by modifying the Einstein-Hilbert action. For example, the cosmo-

logical constant can be obtained from the modified action

S =

ˆ
d4x
√
−g

1
2κ2 (R−2Λ)+Sm. (4.10)

Depending on how we modify the action (4.9), we can have a different dark energy model.
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Quintessence We introduce a scalar field φ which interacts with all other components only through stan-

dard gravity. This model is described by the action

S =

ˆ
d4x
√
−g
[

1
2κ2 R+Lφ

]
+Sm, (4.11)

where Lφ =− 1
2 gµν ∂µ φ∂ν φ −V (φ) is the Lagrangian density of the scalar field φ .

k-essence In this class of models a scalar field φ with non-canonical kinetic terms is introduced; the general

form of the action is then

S =

ˆ
d4x
√
−g
[

1
2κ2 R+P(φ ,X)

]
+Sm, (4.12)

where P(φ ,X) is a function of the scalar field and its kinetic energy X = −(1/2)∂µ φ∂ν φ . The cosmic

acceleration can be realized by the kinetic energy of the field.

If P(φ ,X) =−X −V (φ), the field having a negative kinetic energy, then it can be shown that this gives

rise to a value w <−1 for the equation of state. In this case we talk about phantom models.

Quintessence and k-essence models can have scaling solutions when the ratio of the field density ρφ

to the matter density ρm and the field equation of state wφ are non-zero constants: ρφ/ρm = constant and

wφ = constant.

Coupled dark energy These models suppose that a coupling exists between non-relativistic matter and

dark energy; this is based on the fact that the energy density for dark energy today is the same order of

magnitude as that of dark matter.

For example, one could consider a quintessence field φ coupled to dark matter. An interaction term Lint

must then be added to the Lagrangian density of the field φ appearing in the action (4.11).

Lφ =−1
2

gµν
∂µ φ∂ν φ −V (φ)−Lint . (4.13)

Chamaeleon scalar fields This model is based on a coupled quintessence field whose effective mass

depends on the environment it is in. The action is similar to (4.11):

S =

ˆ
d4x
√
−g
[

1
2κ2 R+−1

2
gµν

∂µ φ∂ν φ −V (φ)

]
−
ˆ

d4xLm(g
(i)
µν ,Ψ

(i)
m ), (4.14)

where Lm is the matter Lagrangian and the Ψ
(i)
m are the matter fields coupled to a metric g(i)µν = e2Qiφ gµν ,

Qi being the strengths of the couplings for each matter component with the field φ .



4.2 Overview on alternative dark energy models 37

Unified models of dark energy and dark matter These models use a single fluid or a single scalar field

in order to unify dark matter and dark energy in a single entity. For example, the Chaplygin gas is a unified

fluid model, while unified models using a single scalar field can be build from k-essence.

4.2.2 Modified gravity models

Here we propose a quick overview on modified gravity models. Scalar-tensor theories will play a role in

the continuation.

f (R) gravity One of the simplest modified gravity models is the so-called f (R) gravity, in which some

general function f (R) of the Ricci scalar appears in the 4-dimensional action:

S =

ˆ
d4x
√
−g

1
2κ2 f (R)+Sm(gµν ,Ψm). (4.15)

Notice that the constant G which appears in κ is a bare gravitational constant; the observed value will be

different in general.

Scalar-tensor theories This general category of models is one of the most studied alternatives to General

Relativity, and has been investigated a lot in order to generalize the cosmological constant and to explain the

fine-tuning and coincidence problems. They link the gravitational constant to a cosmic field ϕ , that is, they

add a degree of freedom to the gravitational tensor field.

The action for scalar-tensor theories is given by

S =

ˆ
d4x
√
−g
[

1
2

f (ϕ,R)− 1
2

ζ (ϕ)(∇ϕ)2
]
+Sm(gµν ,Ψm), (4.16)

where f is a general function of the scalar field ϕ and the Ricci scalar R, and ζ is a function of ϕ . We

have set κ2 = 1 for simplicity.

Scalar-tensor theories include f (R) gravity as a particular case, and also Brans-Dicke theory and dilaton

gravity.

Gauss-Bonnet theories In this models, gravity is modified with a combination of Ricci and Riemann

tensors that keeps the equations at second order in the metric, avoiding instabilities. The action is given by

(with κ2 = 1)

S =

ˆ
d4x
√
−g
[

1
2

R− 1
2
(∇φ)2−V (φ)− f (φ)R2

GB

]
+Sm(gµν ,Ψm), (4.17)

where RGB is the Gauss-Bonnet term
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R2
GB ≡ R2−4Rµν Rµν +Rµναβ Rµναβ . (4.18)

Braneworld models of dark energy These models are based on superstring and M-theory; extra dimen-

sions are compactified on some manifolds in order to obtain 4-dimensional effective gravity theories. Exam-

ples are Kaluza-Klein theories, Ramdall-Sundrum model and Dvali-Gabadadze-Porrati (DGP) model.

4.3 Horndeski Lagrangian and observational constraints

The most general scalar-tensor theories keeping the field equations of motion at second order, and there-

fore avoiding instabilities, are described by the Horndeski Lagrangian [3].

It has been shown to be equivalent to the following one [9]:

L =
5

∑
i=2

Li, (4.19)

where

L2 = K(φ ,X), (4.20)

L3 =−G3(φ ,X)�φ , (4.21)

L4 = G4(φ ,X)R+G4,X
[
(�φ)2− (∇µ ∇ν φ)(∇µ

∇
ν
φ)
]

(4.22)

L5 =G5(φ ,X)Gµν(∇
µ

∇
ν
φ)− 1

6
G5,X

[
(�φ)3−3(�φ)(∇µ ∇ν φ)(∇µ

∇
ν
φ)+2(∇µ

∇α φ)(∇α
∇β φ)(∇β

∇µ φ)
]
.

(4.23)

K and Gi (i = 3,4,5) are functions of the scalar field φ and its kinetic energy X =−∂ µ φ∂µ φ/2, with the

partial derivatives Gi,X ≡ ∂Gi/∂X .

Up to now, we have described the different theoretical dark energy models that have been proposed. In

dark energy research it is very important to collect data from observations, in order to constrain the models

and rule out those which do not match with the observations. In the next chapters we will talk about the

statistic methods (Fisher matrix formalism) that allow us to turn the errors on observed quantities in errors

and constraints on theoretical parameters, i.e. the Horndeski Lagrangian functions or combinations of them.

This methods will be applied in the case of the ESA Euclid survey, and we will perform a forecast for a

specific parameter.



Chapter 5

ESA Euclid Mission and Fisher Matrix
Formalism

5.1 ESA Euclid mission: a dark energy survey

As we stated at the end of the last chapter, it is important to obtain more and more precise data from

observations in order to put stronger constraints on cosmological models. To this purpose, the European

Space Agency (ESA) has planned a mission with the goal to investigate the nature of the dark Universe

(which includes dark matter and dark energy), and possibly understand the cause of the late-time cosmic

acceleration. This mission is called Euclid from the name of the Greek mathematician who is regarded as

the father of geometry.

The mission, with launch scheduled for 2020, will spend six years mapping the large-scale structure of

the Universe for a region of 15000 deg2 [10], equivalent to more than one-third of the sky (the star-dominated

regions in the Milky Way must be excluded). This wide survey will be complemented by two 20 deg2 deep

surveys.

About two billion galaxies will be observed, up to redshift z∼ 2, so that the late-time cosmic acceleration

period is completely covered. The number of observed galaxies per square arcminute is supposed to be

ng,arcmin = 30 ([11], p. 84).

The Euclid survey is based on essentially two probes:

1. weak gravitational lensing;

2. galaxy clustering,

Weak lensing is a technique which allows us to get information on dark energy and to map dark matter by

39
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measuring the apparent distortion of galaxy images due to mass inhomogeneities along the line-of-sight.

The galaxy clustering probe is based on accurate measurements of redshifts and distances of galaxies, in

order to measure the baryon acoustic oscillations (BAO), a wiggle pattern in the clustering of galaxies which

can be used as a standard ruler to measure the expansion of the Universe, and to obtain information on

the statistical properties of the galaxy field, such as the galaxy correlation function and the galaxy power

spectrum described in Chapter 3. Both of the probes will be described with more details in the next sections.

Weak lensing requires high-quality images to perform accurate measurements of the weak lensing galaxy

shear, and photometry at visible and infrared wavelengths in order to measure the distances of each lensed

galaxy out to redshift z ≥ 2. The galaxy clustering probe requires accurate measurements of spectroscopic

redshifts for galaxies out to z ≥ 0.7. Therefore, the Euclid payload consists of a 1.2 m Korsch telescope,

designed to provide a large field of view, with two main instruments: a visual imager (VIS) and a near-

infrared spectrometer and interferometer (NISP). The VIS provides high-quality images for the weak lensing

probe; the NISP is designed to measure both spectroscopic and photometric redshifts. The photometric

redshift for each of the galaxies used for the weak lensing probe will reach a precision of σz/(1+ z). 0.05;

the redshift accuracy for each galaxy in the galaxy clustering probe will be given by σz/(1+z). 0.001 [10].

Euclid will use weak lensing and galaxy clustering to put constraints on the dark energy equation of state,

but it will not only explore dark energy: in fact, it will test all sectors of the cosmological model. For example,

it will map the dark matter distribution with a very high accuracy, and also deviations from Gaussianity of

initial perturbations will be measured with great precision, allowing to test a number of inflation models.

5.2 Galaxy clustering

Galaxies are not randomly distributed in the Universe: by observing the large-scale structure we can see

that some regions are more dense than others. From the large scale structure of the Universe we can obtain

some information about dark energy. The key observable is the galaxy power spectrum; therefore we will

employ the concepts exposed in Chapter 3.

5.2.1 Matter power spectrum

We know that galaxies have started to form from the perturbations of pressureless matter after the

radiation-matter equality, when the gravitational attraction became stronger than the pressure repulsion. In

order to quantify the matter distribution, we can measure the correlation function or the power spectrum of

the galaxies. But in order to derive the power spectrum of matter perturbations today, we need to know the

evolution of the gravitational potential Φ(k, t) from the early Universe (after inflation) to present time.

During inflation the quantum fluctuations of a scalar field with a potential generate nearly scale-invariant

density perturbations (which means that P(i)
Φ

∝ k0 = const). That is, inflation sets up initial conditions for the
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Figure 5.1: A reconstruction of how the Euclid satellite will appear in space after its launch.
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gravitational potential; in particular, the initial power spectrum for Φ generated during inflation is

P(i)
Φ

=
〈
|Φ(k,ai)|2

〉
=

50π2

9k3

(
k

H0

)ns−1

δ
2
H (5.1)

where ns is the spectral index and δ 2
H is the amplitude of the gravitational potential. The value ns = 1

corresponds to the scale-invariant spectrum with k3
〈
|Φ(k,ai)|2

〉
= constant .

In order to obtain the gravitational potential today, we have to solve the equation for Φ(k, t) from the

radiation era to the present. The evolution of Φ depends on the scale k; we will analyse in the following

what happens at small scales and large scales. The wavenumber keq that characterizes the border between

small and large scales represents the scale that entered the Hubble radius at the radiation-matter equality:

keq = aeqH(aeq).

From H(aeq)/H0 =
(

2Ω
(0)
m /a3

eq

)1/2
we have:

keq = H0

√
2Ω

(0)
m

aeq
= 0.073Ω

(0)
m h2Mpc−1. (5.2)

First, we will deal with large scales: k� keq. From equation (2.55), we had that in a single-fluid model

Φ is constant; that is, in both the radiation and the matter era Φ remains nearly constant. We can verify this

for the radiation era by solving equation (2.52) for c2
s ' 1/3, H ′ '−H 2and H ' 1/η :

Φ
′′+

4
η

Φ
′+

k2

3
Φ = 0. (5.3)

The solution for initial conditions Φ = ΦI and dΦ/dη = 0 at η = 0 is

Φ(k,η) = 3ΦI
sin(kη/

√
3)− (kη/

√
3)cos(kη/

√
3)

(kη/
√

3)3
(5.4)

and we have, for large scales (kη� 1), Φ(k,η)'ΦI

[
1− (kη)2 /10

]
, that is,Φ is nearly constant. Notice

that equation (5.4) is also valid for small scales, since it comes from (2.52).

We still have to find out how Φ evolves in the transition between the two eras.

In order to take into account the effects of the collisions between baryons and photons, one can treat them

as imperfect fluids (see for details [5], section 4.9); the collisions are described by the Boltzmann equation:

d f
dt

=C[ f ] (5.5)

where f is the distribution function and C[ f ] describes a collision term.

By solving the Einstein equation for the (00) component (2.45) together with the perturbation equa-

tion (2.49) and the Boltzmann equation (5.5) in the super-horizon approximation k�H , with the initial

conditions Φi = Φ(0) and (dΦ/dy)i = 0 we obtain
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Φ(y) = Φ(0)
9y3 +2y2−8y−16+16

√
y+1

10y3 (5.6)

with y = a/aeq. We notice that, for y→ ∞, the gravitational potential approaches Φ→ (9/10)Φ(0):

for super-horizon perturbations, the gravitational potential decreases by 10% during the radiation-matter

transition.

Now let us discuss the behavior for small scales k� keq. These modes crossed inside the Hubble radius

before the radiation-matter equality, and started to decay after the Hubble radius crossing. Since we are

considering the radiation era, we can use equation (5.4) and we see that for kη� 1 the gravitational potential

Φ decreases as 1/(kη)2 with oscillations. The larger the wavenumber k is, the earlier this decay started. So

we can say that the amplitude of the gravitational potential is suppressed for perturbations on smaller scales.

After the Universe enters the matter era, the amplitude of Φ approaches a constant value.

We have shown that the evolution of the gravitational potential depends on the scales of perturbations.

In order to describe the evolution of Φ for each wavenumber k during the transition from the radiation era to

the epoch at a = aT , we introduce the transfer function:

T (k) =
Φ(k,aT )

ΦLS(k,aT )
, (5.7)

where ΦLS(k,aT ) is the large-scale solution, decreased by an amount 9/10 compared to the primordial

value Φ(k,ai) generated from inflation:

ΦLS(k,aT ) =
9

10
Φ(k,ai). (5.8)

The typical value for aT is 0.03; for a > aT (during the matter era) the evolution becomes independent

of k, as already said.

In general, the transfer function has to be derived numerically. Bardeen, Bond, Kaiser and Szalay (BBKS)

provided a very popular fit of it [13]:

T (x) =
ln(1+0.171x)

0.171x

[
1+0.284x+(1.18x)2 +(0.399x)3 +(0.490x)4]−1/4

(5.9)

where x = k/keq.

The BBKS transfer function (5.9) reproduces the behavior for large and small scales that we have ex-

posed before: for large scales (x� 1) we have T (x)' 1, that is, Φ(k,aT ) =
9
10 Φ(k,ai) as expected. For small

scales (x� 1) the transfer function behaves like T (x) ∝ (lnk)/k2, and the gravitational potential Φ(k,aT ) is

suppressed for increasing k.

During the matter-dominated era, Φ ' constant. But when the late-time cosmic acceleration starts, the

potential Φ is expected to vary again. We introduce the growth function D(a) in order to quantify this

variation:
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Φ(a)
Φ(aT )

≡ D(a)
a

(5.10)

where a > aT .

Combining equations (5.7), (5.8) and (5.10) yields the following expression for the gravitational potential

at present time (with a0 = 1):

Φ(k,a0) =
9

10
Φ(k,ai)T (k)D(a0). (5.11)

Now we can proceed to calculate the matter power spectrum today. If we ignore the dark energy per-

turbations with respect to the matter perturbations, we have that the (00) component of Einstein equations

(2.45) in the sub-horizon approximation k�H reduces to

k2
Φ = 4πGa2

ρmδm (5.12)

and using the relations ρm = ρ
(0)
m /a3 and Ω

(0)
m = 8πGρ

(0)
m /(3H2

0 ), we get the following expression for

the matter perturbation δm:

δm(k,a) =
2k2a

3Ω
(0)
m H2

0

Φ(k,a). (5.13)

From equations (5.1), (5.11), (5.13) we finally have the expression for the matter power spectrum at

present time:

Pδm ≡
〈
|δm(k,a0)|2

〉
=

2π2δ 2
H(

Ω
(0)
m

)2

(
k

H0

)ns

T 2(k)D2(a0)H−3
0 . (5.14)

On large scales, the matter power spectrum behaves as Pδm ∝ kns , while on small scales Pδm ∝ kns−4(lnk)2.

This means the power spectrum has a peak for k = keq.

5.2.2 Relation between observed and theoretical power spectra

What we want to achieve is to extract information about the cosmology from the power spectrum. The

first step to do is to estabilish which relation exists between the real data and the (theoretical) present matter

power spectrum (5.14). Then we will see how to translate the information on Pδm into constraints for the

cosmological parameters, by means of the Fisher matrix formalism.

Let us start with the first step. First of all, we have to remark that the cosmological model influences the

spectrum in many ways: for example, it affects the wavenumbers k and the volume V in which the spectrum

is calculated. What we actually observe is angles and redshifts concerning the various galaxies. In order to
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obtain a power spectrum from real data, we need to assume a reference cosmology so that we can convert

the angles and redshifts into distances or wave vectors.

It can be found that the wavenumber modulus k and the direction cosine µ = k · r̂/k in the reference and

in a generic cosmology are related by [5]

k = Qkr, (5.15)

µ =
Hµr

HrQ
, (5.16)

where the r at the pedex indicates the quantities for the reference cosmology, and

Q =

√
H2d2µ2

r −H2
r d2

r (µ
2
r −1)

Hrd
. (5.17)

d being the angular diameter distance (1.60).

Since the power spectrum P(k) =V δ 2
k depends on the volume V in which we measure the perturbations,

we also have to calculate how the volume depends on the cosmology. The following relation is found to hold

[5]:

V =Vr
Hrd2

Hd2
r
. (5.18)

The power spectrum for the true cosmology can be now converted into the power spectrum for the

reference cosmology by multiplying by Vr/V and by converting k,µ into kr,µr. Hence

Pr(kr,z) =
H(z)d2

r (z)
Hr(z)d2(z)

P(Rkr,z). (5.19)

At this point, we can find a relation between the observed galaxy power spectrum Pr,obs(kr,µr;z) (calcu-

lated using the reference cosmology) and the theoretical matter power spectrum at present time P(k,z = 0)

(5.14) .We can write the spectrum at any z by multiplying the present spectrum by the growth factor squared:

P(k,z) = D2(z)P(k,0), where

D(z)≡ δm(z)
δm(0)

. (5.20)

Then, we can use the bias factor b2(z) from equation (3.42) to relate the galaxy power spectrum to the

matter power spectrum, and finally we must introduce a factor (1+β µ2)2 in order to take into account the

redshift distortion (see equation (3.50)). Collecting everything yields:

Pr,obs(kr,µr;z) =
H(z)d2

r (z)
Hr(z)d2(z)

D2(z)b2(z)
[
1+β (z)µ2]2 P(k,z = 0). (5.21)
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A note on the explicit form of the growth factor. The parameter β is defined by β ≡ f/b, and f =

δ̇m/(Hδm) is the growth rate, which can be approximated by f 'Ω
γ
m(z), recalling equation (3.30). If we use

this approximation, then the growth factor has the form

D(z) = exp
[ˆ 0

z
Ω

γ
m(z̃)

dz̃
1+ z̃

]
. (5.22)

We can complete equation (5.21) by including the redshift error in the observed galaxy power spectrum.

Since dr = dz/H(z), where r is the comoving distance (1.48) with c = a0 = 1, an error σz in redshift trans-

forms into an error σr = σz/H(z) in distance. If we suppose that the observed radial distances r are Gaussian

distributed around the true distances r0

f (r,r0) =
1√

2πσr
e−(r−r0)

2/(2σ2
r ), (5.23)

then the observed correlation function is given by the convolution

ξ (σ ,r0) =

ˆ
∞

0
ξ (σ ,r) f (r,r0)dr. (5.24)

Performing a Fourier transformation, the convolution becomes a product:

P = Pr,obse−k2µ2σ2
r (5.25)

so that the galaxy power spectrum with redshift correction becomes:

Pg(k,µ;z) =
H(z)d2

r (z)
Hr(z)d2(z)

D2(z)b2(z)
[
1+β (z)µ2]2 P(k,z = 0)e−k2µ2σ2

r . (5.26)

Notice that expression (5.26) relates the observed galaxy power spectrum to the cosmological parameters

(i.e. Ω
(0)
m , ns, H0, etc. ), which are included in P(k,z = 0). We will see in section 5.4 how to use the galaxy

power spectrum to constrain these parameters.

5.3 Weak lensing

5.3.1 Weak gravitational lensing from perturbed photon propagation

We now want to deal with the propagation of photons in a perturbed Universe. Light propagation in

General Relativity is ruled by the following equations: the null condition

kµ kµ = 0 (5.27)

and the geodesic equation
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Figure 5.2: Measured power spectrum of L∗ galaxies from SDSS data [12].

Figure 5.3: Power spectrum constraints from different surveys [12].
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dkµ

dλs
+Γ

µ

αβ
kα kβ = 0, (5.28)

where λs is a parameter which can be always converted to the conformal time η using the µ = 0 geodesic

equation. Solving the two equations (5.27), (5.28) in the perturbed metric (2.12) gives the general equations

of photon propagation; the solution will give the variation in the photon’s frequency and path due to the

inhomogeneities in the metric.

We can split the momentum vector kµ = dxµ/dλs into a background and a perturbed value

kµ = k̂µ +δkµ . (5.29)

The geodesic equation for index µ = 0 at background level gives simply

dk̂0

dλs
=−2H (k̂0)

2, (5.30)

if we consider a photon propagating along direction r so that the perturbation equation in flat space is

dη = dr and use Γ0
00 = H for the FLRW metric with the conformal time η ; this can be integrated to give

k̂0 =
dη

dλs
∝ a−2. (5.31)

This equation allows us to convert λs into η .

Then we can use equation (5.29) to derive the perturbed null condition and the geodesic equations at first

order. It can be shown [5] that for the µ = 0 geodesic equation, one has

d(δk0/k0)

dη
=−

(
∂Φ

∂η
+

∂Ψ

∂η
+2Ψ,r

)
, (5.32)

while for the spatial equations for the directions µ = i = 1,2 orthogonal to the propagation direction r:

d2xi

dλ 2
s
+2H

dη

dλs

dxi

dλs
=

(
dη

dλs

)2

(Φ,i−Ψ,i ) . (5.33)

Equation (5.32) leads to the Sachs-Wolfe effect, that is, the change of a photon’s redshift due to its

passing through a gravitational potential; equation (5.33) leads to weak lensing, the deviation of a light ray

passing through the same potential.

Let us discuss the second one. From equations (5.31) and (5.33), we can obtain the propagation equations

for i = 1,2:

d2xi

dr2 = ψ,i (5.34)

where
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ψ = Φ−Ψ (5.35)

is the lensing potential, which in standard General Relativity is equal to ψ = 2Φ =−2Ψ. The displace-

ment vector x = (x1,x2) is small; then we can put xi = rθ i, where r is the distance of the source, and write

(5.34) as

d2

dr2 (rθ
i) = ψ,i . (5.36)

The light ray reaches the observer at r = 0 along the direction (θ 1
0 ,θ

2
0 ). Integrating the last equation

yields therefore:

θ
i = θ

i
0 +

1
r

ˆ r

0
dr′′
ˆ r′

0
dr′ψ,i (r′θ 1

0 ,r
′
θ

2
0 ,r
′) (5.37)

where the integration constant has been chosen equal to θ i
0 so that the angle does not change for ψ = 0.

The integral variables respect the following ordering: r′ < r′′ < r, 0 < r′ < r. Performing the integration in

r′′ yields

θ
i = θ

i
0 +

ˆ r

0
dr′
(

1− r′

r

)
ψ,i (r′θ 1

0 ,r
′
θ

2
0 ,r
′). (5.38)

Two light rays separated by a small interval ∆x will then obey the equation

∆θ
i = ∆θ

i
0 +∆θ

j
0

ˆ r

0
dr′
(

1− r′

r

)
r′ψ,i j (r′θ 1

0 ,r
′
θ

2
0 ,r
′), (5.39)

where a term r′ψ,i j appears due to the variation of ψ,i with respect to θ
j

0 ( j = 1,2). If we consider a light

source at r = rs, we have an equation which connects the separation ∆θ i on the source plane (at a distance

r) to the separation ∆θ i
0 observed at r = 0.

We can describe this distortion effect using a symmetric matrix Ai j:

Ai j ≡
∂θ i

s

∂θ
j

0

= δi j +Di j (5.40)

where Di j is called distortion tensor and it is equal to

Di j =

ˆ rs

0
dr′
(

1− r′

rs

)
r′ψ,i j =

(
−κwl− γ1 −γ2

−γ2 −κwl + γ1

)
. (5.41)

The parameter

κwl ≡−
1
2

ˆ rs

0
dr′
(

1− r′

rs

)
r′ (ψ,11+ψ,22 ) (5.42)
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is called convergence and describes the magnification of the source image, while the two parameters

γ1 =−
1
2

ˆ rs

0
dr′
(

1− r′

rs

)
r′ (ψ,11−ψ,22 ) (5.43)

γ2 =−
ˆ rs

0
dr′
(

1− r′

rs

)
r′ψ,12 (5.44)

are the two components of the shear field and describe the distortion of the source image.

5.3.2 Convergence power spectrum

Let us now see how to extract information on the cosmology from the weak lensing effect.

First of all, we observe that an intrinsically circular object is distorted from the weak lensing effect into

an elliptical one. It can be shown [5] that the ellipticity of the object is related to the shear components

γ1,γ2. It can be also shown that the measured ellipticity is the sum of two components: one of them is due to

weak lensing, while the other one is a noise component. The power specrum of the noise component can be

derived from equation (3.25) by substituting the weights wi with the average intrinsic ellipticity γ2
int ; for N

sources in a volume V the noise (intrinsic) power spectrum is given by

Pint = γ
2
int

V
N

(5.45)

with γint ' 0.22.

Up to now we have considered only the sources at a given comoving distance r, but we can add up all the

transformation matrices for many sources at different distances. We consider a number n(r)dr of sources in

a shell dr with the normalization
´

∞

0 n(r)dr = 1. We can then write the full transformation matrix Di j as

Di j =

ˆ
∞

0
n(r′)dr′

ˆ r′

0
dr
(

1− r
r′

)
rψ,i j =

ˆ
∞

0
drw(r)ψ,i j (5.46)

with

w(r)≡
ˆ

∞

r
dr′
(

1− r
r′

)
rn(r). (5.47)

By means of the relation dr = dz/H(z) we can write equation (5.46) as a function of the redshift z:

Di j =

ˆ
∞

0

dz
H(z)

w(z)ψ,i j [θxr(z),θyr(z),r(z)] (5.48)

where θ i = (θx,θy) are the angles in the source plane.

Now let us consider the convergence κwl :
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κwl =−
1
2
(D11 +D22) =−

1
2

ˆ
∞

0
drw(r)ψ,ii (5.49)

where the sum over i is implicit. We want to project the 3-dimensional power spectrum of this field into

a 2-dimensional power spectrum, by applying Limber’s theorem. This theorem states that if we have a field

f (x,y,r) projected along the r-direction with some weight w(r) normalized to unity:

F(θx,θy) =

ˆ
∞

0
drw(r) f (θxr,θyr,r) (5.50)

then the two-dimensional power spectrum of F is given by

P(q) =
ˆ

∞

0
dr

w(r)2

r2 p
(q

r

)
(5.51)

if p(k) is the 3-dimensional power spectrum of f and q is the modulus of q = (q1,q2).

In the case of κwl the theorem leads to the following convergence power spectrum:

Pκwl (q) =
1
4

ˆ
∞

0
dr

w2(r)
r2 Pψ,ii

(q
r

)
=

1
4

ˆ
∞

0
dz

W 2(z)
H(z)

Pψ,ii

(q
r

)
(5.52)

with

W (z)≡ w[r(z)]
r(z)

. (5.53)

An expression for the spectrum of ψ,ii must be found. Further calculations show that, in the absence of

anisotropic stress (when ψ = Φ−Ψ = 2Φ), we can express P,ii as a function of the matter power spectrum:

Pψ,ii = 9H4
Ω

2
m(1+ z)−4Pδm . (5.54)

Equation (5.52) becomes then

Pκwl (q) =
9H3

0
4

ˆ
∞

0
dz

W 2(z)E3(z)Ω2
m(z)

(1+ z)4 Pδm

(
q

r(z)

)
(5.55)

with E(z) = H(z)/H0 and

W (z) =
ˆ

∞

z

dz̃
H(z̃)

[
1− r(z)

r(z̃)

]
n[r(z̃)]. (5.56)

For large q we can write

q =
l
π

(5.57)

and estimate the power spectrum as a function of the approximate multipole l.



5.4 Fisher matrix 52

The function n[r(z)] is often given as a direct function of redshift z; in this case, we have to take into

account that n(z)dz = n(r)dr, and therefore

n[r(z)] = n(z)H(z). (5.58)

A typical parameterization for n(z) is given by

n(z;z0,α) = z2 exp [−(z/z0)
α ] (5.59)

where α is fixed by observations (usually of order unity).

We have considered the convergence κwl , we may wonder what happens to the power spectrum of the

components ψ,i j for i 6= j. Actually, it happens that a transformation on the shear fields γ1,γ2 can be done

in order to make the power spectrum for i 6= j vanish [5]. The convergence power spectrum is therefore the

only quantity we need to extract cosmological information from weak lensing.

We can generalize expression (5.55) to the case in which we correlate sources in two redshift bins around

zi and z j respectively. In this case (using also (5.57)) we have:

Pi j(l) =
9H3

0
4

ˆ
∞

0
dz

Wi(z)Wj(z)E3(z)Ω2
m(z)

(1+ z)4 Pδm

(
l

πr(z)

)
(5.60)

with

Wi(z) =
ˆ

∞

z

dz̃
H(z̃)

[
1− r(z)

r(z̃)

]
ni[r(z̃)] (5.61)

and ni[r(z)] is the galaxy density for the i-th bin, which is usually the convolution of n(z) with a Gaussian

centered in zi (for more details and for an explicit calculation, see section 6.4).

We derived expression (5.60) in the absence of anisotropic stress; one can show that, in the general case

with anisotropic stress, (5.60) becomes

Pi j(l) =
9H3

0
4

ˆ
∞

0
dz

Wi(z)Wj(z)E3(z)Ω2
m(z)

(1+ z)4 Σ
2(z, l)Pδm

(
l

πr(z)

)
(5.62)

where Σ2(z, l) is the modified gravity function (a definition of Σ is postponed to section 6.1).

5.4 Fisher matrix

As announced before, the statistical tool of Fisher matrix formalism based on Bayesian statistics will

be described in this section, an extremely powerful tool to extract cosmological information from observed

data. In particular, we will show how it can be applied to supernovae, galaxy clustering and weak lensing

surveys.
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5.4.1 Likelihood function

Let x be a random variable with a certain probability distribution function (PDF) f (x;θ) that depends on

an unknown parameter θ . Just to make an useful example to our case, x could be the apparent magnitude m of

a supernova and θ could be its absolute magnitude M or a cosmological parameter appearing in (1.63), e.g.

Ω
(0)
m . Then the f (x;θ) is called a conditional probability of having the data x given the theoretical parameter

θ .

Back to our example, we can suppose that the apparent magnitude m has a Gaussian PDF centered at its

theoretical value (from (1.63))

mth = 5+ log10 dL(z;Ω
(0)
m ,Ω

(0)
Λ
)+ constant (5.63)

but we do not know one of the parameters (e.g. Ω
(0)
m ). f (m̄;Ω̄

(0)
m ) tells us the probability of having a value

m = m̄ for the apparent magnitude if we fix the matter density parameter to Ω
(0)
m = Ω̄

(0)
m .

If we have more than one variable x1,x2,x3, then the probability to obtain xi in the interval dxi around

the value xi (for every i and for independent measures) is

f (xi;θ)dnxi ≡∏
i

fi(xi;θ)dxi. (5.64)

The value of f (xi;θ) is different for every value of θ ; we define as the best value of θ the one which

maximizes f (xi,θ) (all of the xi are meant in the argument). The best θ is thus the parameter which “fits

better” with the data xi.

We can also have more than one parameter; in this case we define the best θi as those values which

maximize the joint PDF f (x1, ...,xm;θ1, ...,θn)≡ f (xi,θ j).

The maximum likelihood method of parameter estimation consists in finding the parameters that maxi-

mize the likelihood function f (xi;θ j), i.e. solving the system

∂ f (xi;θ j)

∂θ j
= 0, (5.65)

for j = 1, ...,n.

We denote the solutions of these equations as θ̂ j. They are functions of the data xi, and are therefore

random variables as the xi are. The classical frequentist approach would be to try to determine the distribution

of the θ̂ js knowing the distribution of the xi; but using this approach is computationally very demanding and,

above all, we cannot include in the calculations what we already know about the theoretical parameters, i. e.

the results of previous experiments.

We have to use then the so-called Bayesian approach: instead of considering the probability f (xi;θ j) of

having the data given the theoretical model, we estimate the probability L(θ j;xi) of having the model given

the data. This approach is based on the Bayes’ theorem, which can be stated in the following way:
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P(T ;D) =
P(D;T )P(T )

P(D)
, (5.66)

where we have used D to denote the data xi and T to denote the theory (the parameters θ j). P(T ;D)

is the conditional probability of having the theory given the data, P(D;T ) is the conditional probability of

having the data given the theory, while P(T ) and P(D) are the probabilities of having the theory and the

data, respectively, independently from each other. It follows that, in our case:

L(θ j;xi) =
f (xi;θ j)p(θ j)

g(xi)
, (5.67)

where p(θ j) is called the prior probability for the θ j and g(xi) is the PDF of the data xi. The p(θ j) can

account for the information we already have on the θ js, for example, the results of previous experiments.

Notice that the likelihood must be normalized to one, since it is a PDF too:

ˆ
L(θ j;xi)dn

θ j = 1 =

´
f (xi;θ j)p(θ j)dnθ j

g(xi)
(5.68)

which means that g(xi) is constrained from the normalization condition to be:

g(xi) =

ˆ
f (xi;θ j)p(θ j)dn

θ j (5.69)

and, since it does not depend on θ j, it has no role in the estimation of the parameters.

From f (xi;θ j) and the priors p(θ j) we can obtain L(θ j;xi) (which can be indicated with L(θ j) for

simplicity). Once we have L(θ j), we have to search the maximum likelihood estimators, the values θ̂i that

maximize it; that is we have to solve

∂L(θi)

∂ (θi)
= 0 (5.70)

for i = 1, ...,n.

If we discard g(xi) in equation (5.67), we have that the normalization has to be recalculated: we redefine
L(θi)

N ≡ L(θi), where N is the new normalization constant

N =

ˆ
L(θi)dn

θi (5.71)

with the integral extending to the whole parameter space.

From the new normalized L(θi) we can derive the confidence regions for the parameter. For example, the

confidence region R(α) for the confidence level α (with 0 < α < 1) is the domain in the parameter space

delimited by constant L(θi) such that

ˆ
R(α)

L(θi)dn
θi = α. (5.72)
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A problem with which we have often to deal is to consider only a subset of the parameters θi, because

often we have little information on some of them, or simply because we are not interested in them.

Consider the simple case of the likelihood depending on three parameters θ1,θ2,θ3. Suppose that we are

not interested in θ3. In order to eliminate the dependence of the likelihood from θ3, we integrate out it:

L(θ1,θ2) =

ˆ
L(θ1,θ2,θ3)dθ3 (5.73)

This procedure is called marginalization.

Sometimes one prefers to fix a parameter, rather than marginalize over it. This is useful when one wants

to see what happens for values of the parameter which are particularly interesting. Then the result will

depend on the fixed value of that parameter. When the value is used for which the likelihood is maximum,

the likelihood is said to be maximized with respect to that parameter.

5.4.2 Fisher matrix

The likelihood method is conceptually not complicated, and in principle it can be applied in a variety of

cases, but it has one problem: it is extremely computationally demanding when there are more than a few

parameters, because L(θi) must be evaluated for many θi. Therefore, we need to find a method which can be

implemented more easily. This is the method known as Fisher matrix method.

The idea is to approximate the full likelihood with a multivariate Gaussian distribution:

L≈ N exp
[
−1

2
(
θi− θ̂i

)
Fi j
(
θ j− θ̂ j

)]
, (5.74)

where θ̂is are the maximum likelihood estimators and Fi j is the Fisher matrix and is equal to the inverse

of the correlation matrix. The Gaussian approximation could be in general not very accurate, but we can

expect it to hold near the peak of the distribution, that is, for θi near to θ̂i.

If we expand the exponent of a generic likelihood near the peak, we have

lnL(θi)≈ lnL(θ̂i)+
1
2

∂ 2 lnL(θi)

∂θi∂θ j

∣∣∣∣
ML

(
θi− θ̂i

)(
θ j− θ̂ j

)
(5.75)

where ML indicates that the derivative is evaluated at the peak (for the maximun likelihood estimators).

The first derivatives are of course equal to zero since we are near the peak. Comparing this expression with

equation (5.74), we see that N depends only on the data, and the Fisher matrix is defined as

Fi j ≡−
∂ 2 lnL(θi)

∂θi∂θ j

∣∣∣∣
ML

(5.76)

or as the average of (5.76) over the data distribution (the two definitions are equivalent in the approxi-

mation (5.74)):
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Fi j ≡−
〈

∂ 2 lnL(θi)

∂θi∂θ j

〉
=−
ˆ

∂ 2 lnL(θi)

∂θi∂θ j
L(x;θ)dx. (5.77)

Now the search for the likelihood peak can be much faster. However, one of the most useful features of

the Fisher matrix method in Cosmology is that it allows us to simulate an experiment: instead of searching

for the maximum likelihood estimators, we may take for the estimators the values obtained by fixing the

parameters of the cosmological model to some fiducial values (e. g. the values for ΛCDM model); then,

by generating a simulated data set (with values xi and errors σi based on the expected performance of the

experiment), we can calculate the approximated likelihood (5.74) and find the confidence errors for the

parameters θi. This last step can be achieved quite easily by means of the Fisher matrix (5.76). In fact, it

can be shown that the diagonal of the inverse Fisher matrix contains the fully marginalized 1σ -errors of the

corresponding parameters (that is, the errors on each parameter after marginalizing over all others), and this

is the minimal error one can hope to achieve (according to Cramer-Rao theorem):

σ
2(θi) =

(
F−1)

ii . (5.78)

The Fisher matrix has a number of properties which make calculations very simple: here we summarize

the most important (without proof).

Change of parameters If we want to obtain the Fisher matrix for a new set of parameters yi from the one

calculated for a set xi, we have just to multiply the Fisher matrix on the left and on the right by the Jacobian

matrix of the transformation:

F(y)
lm = JilF

(x)
i j J jm (5.79)

where sum over indices is implicit and

J ji =

(
∂x j

∂yi

)∣∣∣∣
ML

(5.80)

is the Jacobian matrix evaluated on the maximum likelihood estimators.

Maximization If we want to maximize the likelihood with respect to some parameters, we simply remove

the corresponding rows and columns from the Fisher matrix.

Marginalization If we want to marginalize over some parameters, we have to remove the corresponding

rows and columns from the inverse of the Fisher matrix.
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Combining results If we want to add priors to a Fisher matrix, or to combine different matrices from

different experiments or forecasts, we have to add up all the Fisher matrices:

F(tot)
i j = F(1)

i j +F(2)
i j . (5.81)

Hereafter we propose some calculations in explicit cases which will be useful in the following.

5.4.3 Likelihood for supernovae

If we simulate an experiment with N supernovae at redshifts zi with errors σi on redshifts and apparent

magnitudes mi, we can calculate the theoretical value mth,i from equation (1.63) by choosing a fiducial

cosmological model and fixing the cosmological parameters that appear in dL. We can write

mth,i = α +µi (5.82)

where

µi = 5log10 d̂L(zi,θ j), (5.83)

α = M+25−5log10 H0 (5.84)

and d̂L = dLH0.

The likelihood can be supposed to be Gaussian. Since we know little about α , we can marginalize over

it. We therefore integrate the likelihood in dα:

L(θ j) = N
ˆ

dα exp

[
−1

2 ∑
i

(mi−µi−α)2

σ2
i

]
. (5.85)

Performing the integration and absorbing the integration constant in N yields

L(θ j) = N exp
[
−1

2

(
S2−

S2
1

S0

)]
(5.86)

where

S0 = ∑
i

1
σ2

i
, (5.87)

S1 = ∑
i

yi

σ2
i
, (5.88)

S2 = ∑
i

y2
i

σ2
i

(5.89)

and yi = mi−µi.
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5.4.4 Fisher matrix for power spectrum

Let us now derive the Fisher matrix for a power spectrum. We will start from the case of the galaxy

power spectrum and then proceed with the convergence power spectrum for weak lensing.

We suppose that a future experiment will measure the Fourier coefficients δk of a galaxy distribution

and their power spectrum calculated for m wavenumbers ki in some redshift bin [z,z+∆z]. The total power

spectrum (including the Poissonian noise) is given by ∆2
k defined in equation (3.23):

∆
2
k = 〈δkδ

∗
k 〉= 〈δkδ−k〉= P(k,z)+

1
n
. (5.90)

If we assume the galaxy distribution to be well approximated by a Gaussian random field (i.e. the real

and complex parts of the coefficients δkiobey the Gaussian statistics), and that the measures at every ki are

statistically independent, we can write the likelihood:

L =
1

(2π)m/2 ∏i ∆i
exp

[
−1

2

m

∑
i

δ 2
i

∆2
i

]
(5.91)

where δi = Reδki and ∆i = ∆ki .

When we simulate a future experiment, P(k,z) is taken to be the theoretical spectrum of our fiducial

model described by the fiducial parameters p(F)
j . Then:

L =− lnL =
m
2

ln(2π)+∑
i

ln∆i +∑
i

δ 2
i

2∆2
i
. (5.92)

From the definition (5.77), the Fisher matrix for a single redshift bin is

Flm =−
〈

∂ 2L

∂ pl∂ pm

〉
= ∑

[
∆,lm

∆
− ∆,l ∆,m

∆2 −
〈
δ

2〉(∆,lm
∆3 −3

∆,l ∆,m
∆4

)]
, (5.93)

where we suppressed the index i for brevity and ∆,l denotes differentiation with respect to the l-th

parameter. This is equal to:

Flm =
1
2 ∑

i

∂ lnPi

∂ pl

∂ lnPi

∂ pm

(
nPi

1+nPi

)2

. (5.94)

We can now obtain a more compact expression by approximating the sum over ki with an integral over

k; to do this, we have to count the number accessible modes. The Fourier volume in the interval [k,k+dk]

and in the cosine interval dµ is 2πk2dkdµ , but the effective number of modes is limited by the size of the

survey volume and by the shot noise. Modes larger than the survey volume cannot be measured; too short

modes are unreliable. To accont for these limitation we discretize the Fourier space by dividing the Fourier

volume by
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Vcell =
(2π)3

Vsurvey
(5.95)

so that the number of modes in the survey volume is

Nmodes =
2πk2dkdµ

Vcell
=

Vsurveyk2dkdµ

(2π)2 . (5.96)

The integral form of the Fisher matrix is therefore given by

Flm =
1

8π2

ˆ +1

−1
dµ

ˆ kmax

kmin

k2dk
∂ lnP(k,µ)

∂ pl

∂ lnP(k,µ)
∂ pm

[
nP(k,µ)

nP(k,µ)+1

]2

Vsurvey. (5.97)

The factor

Ve f f =

[
nP(k,µ)

nP(k,µ)+1

]2

Vsurvey (5.98)

can be seen as an effective volume.

Notice that the Fisher matrix (5.97) is relative to a single redshift bin; if we have more than one bin, we

can build the total Fisher matrix by summing all the Fisher matrices for each bin.

In the case of weak lensing, we can similarly derive the Fisher matrix for the convergence power spectrum

(5.62), since Pi j(l) is a linear function of Pδm . However, instead of calculating Pi j at all l’s, we can calculate

it at some interval ∆l and then interpolate, considering that there are (2l + 1) modes for each multipole l.

The final result is:

Fαβ = fsky ∑
l

(2l +1)∆l
2

∂Pi j(l)
∂ pα

C−1
jk

∂Pkm(l)
∂ pβ

C−1
mi (5.99)

(sum over indices implicit), where the covariance matrix C is given by

C jk = Pjk +δ jkγ
2
intn
−1
j (5.100)

and n j is the number of galaxies per steradians in the j-th bin.



Chapter 6

Fisher Matrix for the Anisotropic Stress
η

6.1 Anisotropic stress η from model-independent observables

A couple of questions which is very interesting to answer are: which quantities can we observe without

assuming a parameterization for dark energy? Can we use these quantities to constrain the models? These

questions have been dealt with in the paper by Amendola et al., 2012 [4].

The authors start from the following quite general hypotheses:

a) the geometry of the Universe is well described by small perturbations living in a FLRW back-

ground metric (1.3);

b) the matter component is pressureless or evolves in a known way;

c) the relation between galaxy and matter distributions can be modeled by a bias factor: δgal =

b(k,a)δm (this is the assumption (3.40), here the possible scale and time dependence has been

explicited);

d) the late-time Universe is described by the action (with κ2 = 1) S =
´

d4x
√
−g
( 1

2 R+Lx +Lm
)
,

where Lx is the dark energy Lagrangian;

e) the dark energy is ruled by the most general Lagrangian which depends on a single scalar field

governed by second-order equations of motion; that is, 1
2 R+Lx will form the Horndeski La-

grangian (4.19).

60
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From the analysis of the background Universe, under the hypotheses (a)-(c), a Friedmann equation can be

obtained in the form

H2−H2
0 Ω

(0)
k a−2 =

1
3
(ρx +ρm) . (6.1)

From assumption (b), ρm evolves as a−3. From the observations, one can measure distances D(z) or

directly the Hubble parameter H(z); by combining the two, the present curvature parameter Ω
(0)
k can be

estimated, and therefore the combined matter and dark energy content 1−Ωk at all times, from equation

(6.1). If the cosmic fluid has only the two mentioned components, one can conclude that Ωx and Ωm can be

both reconstructed from background observables, up to only one free parameter, namely Ω
(0)
m . In fact, the

following relation holds:

Ωx = 1−Ωk−Ωm = 1−
H2

0
H2

(
Ω

(0)
k a−2 +Ω

(0)
m a−3

)
. (6.2)

From galaxy clustering and weak lensing, they conclude that the following quantities are measurable

using the two key observables of the two probes (the galaxy power spectrum and the convergence power

spectrum, respectively):

A(z,k) = G(z)b(z)σ8δt,0(k), (6.3)

R(z,k) = G(z) f (z)σ8δt,0(k), (6.4)

L(z,k) = Ωm0Σ(z,k)G(z)σ8δt,0(k) (6.5)

where G(z) = exp
[
−
´ z

0
f (z̃)

(1+z̃)dz̃
]

is the matter growth function, f (z) = G′/G is the growth rate (the ′ de-

notes derivatives with respect to time), σ8 is the power spectrum normalization, δt,0(k) = Ω
(0)
m δm,0+Ω

(0)
x δx,0

is the total density perturbation at present time and Σ(k,z) is the modified gravity function introduced in sec-

tion. It is defined as

Σ(k,z) = Y (1+η) (6.6)

where

Y (k,z) =− 2k2Ψ

3Ωmδm
, (6.7)

η(k,z) =−Ψ

Φ
; (6.8)

here η represents the gravitational slip or dark energy anisotropic stress.
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Since δt,0(k) is the square root of the present power spectrum, it depends on a transfer function, which

cannot be assumed without assuming a model for dark energy. This means that actually the only model-

independent directly measurable quantities are ratios of A,R,L and their derivatives:

P1(z) ≡ RA−1 = f/b, (6.9)

P2(k,z) ≡ LR−1 = Ωm0Σ/ f , (6.10)

P3(z) ≡ R′/R = f + f ′/ f . (6.11)

(dependencies are omitted for brevity).

Now, it happens that the anisotropic stress η and the function Y can be written, using assumption (e), in

terms of the Horndeski Lagrangian functions K,G3−5 appearing in (4.19). In fact:

η = h2

(
1+ k2h4

1+ k2h5

)
, (6.12)

Y = h1

(
1+ k2h5

1+ k2h3

)
, (6.13)

where the functions h1−5 are quite complicated combinations of the Horndeski Lagrangian functions

(for the relation between the two sets see [4],[9]). For ΛCDM model one has h1,2 = 1, h3,4,5 = 0, so that

η = Y = 1 in this case. These relations are obtained in the quasi-static limit, that is, for scales inside the

cosmological horizon (k� 1) and inside the Jeans length (csk� 1, where cs is the sound speed).

Using the matter conservation equation, the definitions (6.7), (6.8) and relations (6.12), (6.13) one has:

δ
′′
m +

(
2+

H ′

H

)
δ
′
m =−k2

Ψ =
3
2

Ωmδmh1

(
1+ k2h5

1+ k2h3

)
(6.14)

or

f ′+ f 2 +

(
2+

H ′

H

)
f =

3
2

Ωmh1

(
1+ k2h5

1+ k2h3

)
. (6.15)

From (6.10), (6.11), one has further

f =
Ω

(0)
m Σ

P2
, (6.16)

f ′ =
P3Ω

(0)
m Σ

P2
−

(
Ω

(0)
m Σ

P2

)2

. (6.17)

The quantity Σ can be written as a function of the Horndeski Lagrangian functions as
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Σ = Y (1+η) =
h6(1+ k2h7)

(1+ k2h3)
, (6.18)

with h6 = h1(1+h2), h7 = (h5 +h4h2)/(1+h2).

At the end, the following relation is found to hold between model-independent observables (6.9)-(6.11)

and the HL functions h2,h4,h5:

3P2H2
0 (1+ z)3

2H2
(

P3 +2+ H ′
H

) −1 = η = h2

(
1+ k2h4

1+ k2h5

)
. (6.19)

The remaining part of this Thesis uses the first part of this relation to make some forecasts on the

constraints on the anisotropic stress η for the ESA Euclid survey using the Fisher matrix formalism de-

scribed in section 5.4. A forecast on the model-independent parameters A,R,L and on the Hubble parameter

E(z) = H(z)/H0 will be performed using the Euclid expected performance values; data from a supernova

survey will be added too in order to improve the constraints on E. Then we will project the results onto

P1,P2,P3 and finally on η by means of the Fisher matrix formalism. We will consider two cases:

1. η depending on redshift z only;

2. η constant at all scales and redshifts (as for example in the ΛCDM case, where we have η = 1).

Notice that the second part of (6.19) can be used to make a forecast on the HL functions h2,h4,h5. This part

of the work will be performed in a paper in preparation by Amendola, Fogli, Guarnizo, Kunz, Vollmer.

6.2 Forecasts for the anisotropic stress η

Our objective is to forecast the error on the observable quantity η defined as (6.19)

3P2H2
0 (1+ z)3

2H2
(

P3 +2+ H ′
H

) −1 = h2

(
1+ k2h4

1+ k2h5

)
= η (6.20)

or

3P2(1+ z)3

2E2
(

P3 +2+ E ′
E

) −1 = h2

(
1+ k2h4

1+ k2h5

)
= η (6.21)

using E(z) = H(z)/H0.

The functions P1,P2,P3 defined by equations (6.9)-(6.11) can be defined by means of the power-spectrum-

independent parameters:
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Ā(z) = G(z)b(z)σ8, (6.22)

R̄(z) = G(z) f (z)σ8, (6.23)

L̄(z,k) = Ωm0Σ(z,k)G(z)σ8. (6.24)

We consider three kind of observations for a future survey (i.e. the ESA Euclid survey): galaxy clustering,

weak lensing and supernovae. We estimate the errors on parameters {Ā,R̄, L̄,E} for different bins in redshift

using the Fisher matrix formalism and then combine the results to obtain the errors on η in each bin. We

will assume ΛCDM as a fiducial model and the Bardeen formula as model for the power spectrum for the

linear regime. The fiducial parameters have been taken from the WMAP-9-year data [14] and are reported

in Table 6.1. Calculations in the following sections have been performed using units Mpc/h for distances,

with c = 1.

Parameter Value

h 0.6955

Ω
(0)
m 0.2835

Ω
(0)
Λ

0.7165

w -1

σ8 0.818

ns 0.9616

keq 0.01000/h (h/Mpc)

Table 6.1: Fiducial parameters for ΛCDM from WMAP-9-year data (wmap9+spt+act+snls3+bao+h0).

6.3 Galaxy clustering

The galaxy power spectrum can be written from equation (5.26) as

P(k) = (A+Rµ
2)2e−k2µ2σ2

r = (Ā+ R̄µ
2)2

δ
2
t,0(k)e

−k2µ2σ2
r , (6.25)

where the factor Hd2
r /Hrd2 can be absorbed in the normalization σ8 and

µ =
~k ·~l
kl

, (6.26)

σr = δ z/H(z), (6.27)

in our case σr = 0.001(1+ z), from the Euclid specifications ([11], p.83).
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The Fisher matrix for a given redshift bin (centered at ẑ) is given in general by equation (5.97), which

can be written as

Fab =
1

8π

ˆ +1

−1
dµ

ˆ kmax

kmin

k2dkVe f f DaDb, (6.28)

where

Da ≡
d logP

d pa
(6.29)

(the lower-case latin indexes are used here to avoid confusion with the greek ones, which will represent

the different redshift bins in the following sections).

We want to calculate the Fisher matrix expliciting the Hubble parameter, therefore our parameters are

pa = {Ā(ẑ), R̄(ẑ),E(ẑ)}, with E = H(ẑ)/H0. The derivatives Da will be calculated at a fiducial model (i.e.

ΛCDM). We assume that the present power spectrum in the real space is given by the approximation formula

obtained by Bardeen et al., 1986 [13]:

δ
2
t,0 u PBardeen(k) = cnormT 2(k)kns . (6.30)

Notice that since we are considering the quasi-static limit, the dark energy clusters weakly and its con-

tribution to the perturbation is negligible; therefore we can take δt,0 ' δm,0 and apply the Bardeen formula,

which is valid for the matter power spectrum.

The parameter cnorm can be obtained from equation (5.14), or can be equivalently fixed by the normal-

ization condition

σ
2
8 =

1
2π2

ˆ
PBardeen(k)W 2

8 (k)k
2dk; (6.31)

the index ns is the spectral index (=0.9616 from the WMAP-9 -year data) and the transfer function is

given by equation (5.9):

T (x) =
ln(1+0.171x)

0.171x

[
1+0.284x+(1.18x)2 +(0.399x)3 +(0.490x)4]−1/4

(6.32)

with x = k/keq .

The Bardeen power spectrum is then given by:

PBardeen(k)= cnorm ·
ln2
(

1+0.171 k
keq

)
0.1712

(
k

keq

)2

[
1+0.284

k
keq

+

(
1.18

k
keq

)
2 +

(
0.399

k
keq

)
3 +

(
0.490

k
keq

)
4
]−1/2

·kns

(6.33)

(see Figure 6.1), and using equations (6.25), (6.33) we can write the power spectrum in redshift space as
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P(k) = (Ā+ R̄µ
2)2 ·PBardeen(k)e−k2µ2σ2

r . (6.34)
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Figure 6.1: Bardeen power spectrum PB(k) as a function of k.

Calculation of the derivatives Dα

We need to express k,µ as functions of E, therefore we can use the coordinate exchange (5.15)-(5.16):k = Qkr

µ = Hµr
HrQ = Eµr

ErQ

, (6.35)

where kr,µr are the wavevector and the direction cosine in a reference cosmology (i.e. ΛCDM) and Q is

given by (5.17)

Q =

√
H2d2µ2

r −H2
r d2

r (µ
2
r −1)

Hrd
=

√
E2d2µ2

r −E2
r d2

r (µ
2
r −1)

Erd
, (6.36)

being d the angular diameter distance (1.60)

For the parameters Ā, R̄ we have:
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∂ logP
∂ Ā

=
2

(Ā+ R̄µ2)
; (6.37)

∂ logP
∂ R̄

=
2µ2

(Ā+ R̄µ2)
. (6.38)

We now proceed calculating the derivative:

d logP
dE

=
∂ logP

∂k
· ∂k

∂E
+

∂ logP
∂ µ

· ∂ µ

∂E
+

∂ logP
∂d

· ∂d
∂E

. (6.39)

We have:

∂ logP
∂k

=
1
PB
· dPB

dk
−2kµ

2
σ

2
r , (6.40)

∂ logP
∂ µ

=
4R̄µ

(Ā+ R̄µ2)
−2k2

µσ
2
r , (6.41)

with PB = PBardeen(k) for brevity.

In order to calculate ∂ logP
∂d , we notice that the dependence of P on d is fully contained in the parameter

Q. Therefore we can write:

∂ logP
∂d

=
1
P
· ∂P

∂d
=

=
1
P
·
[

2(Ā+ R̄µ
2) ·2R̄µ

∂ µ

∂d
PBe−k2µ2σ2

r +(Ā+ R̄µ
2)2 ∂PB

∂k
· ∂k

∂d
e−k2µ2σ2

r +

−(Ā+ R̄µ
2)2PBe−k2µ2σ2

r

(
2kµ

2
σ

2
r ·

∂k
∂d

+2k2
µσ

2
r ·

∂ µ

∂d

)]
,

where

∂k
∂d

= kr
∂Q
∂d

∂ µ

∂d
=− Eµr

ErQ2
∂Q
∂d

and

∂Q
∂d

=
2E2d2µ2

r Er−2Er
(
E2d2µ2

r −E2
r d2

r (µ
2
r −1)

)
2E2

r d2
√

E2d2µ2
r −E2

r d2
r (µ

2
r −1)

. (6.42)

Now we calculate:
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∂k
∂E

=
∂

∂E
(Qkr) = (6.43)

=kr ·
2Ed2µ2

r

2
√

E2d2µ2
r −E2

r d2
r (µ

2
r −1)

= (6.44)

=kr
E
E2

r
µ

2
r ·

1
Q

= (6.45)

=
krµr

Er
µ. (6.46)

Calculation of ∂ µ

∂E will give:

∂ µ

∂E
=

µr

Er

∂

∂E

(
E
Q

)
= (6.47)

=
µr

Er
·Erd ·

√
E2d2µ2

r −E2
r d2

r (µ
2
r −1)−E ·2Ed2µ2

r
1

2
√

E2d2µ2
r −E2

r d2
r (µ

2
r −1)

E2d2µ2
r −E2

r d2
r (µ

2
r −1)

= (6.48)

=
µr

Er
· 1

Erd
· 1

Q2

[√
E2d2µ2

r −E2
r d2

r (µ
2
r −1)− E2d2µ2

r√
E2d2µ2

r −E2
r d2

r (µ
2
r −1)

]
= (6.49)

=
µr

Er
· 1

Q2

[
Q− E2d2µ2

r

E2
r d2 ·

1
Q

]
= (6.50)

=
µ

E

[
1−µ

2] , (6.51)

while for ∂d
∂E , taking the functional derivative, we have:

∂d
∂E

=− 1
(1+ z)H0

ˆ z

0

dz̃
E2(z̃)

. (6.52)

However, the derivatives must be evaluated for the fiducial model in order to calculate the Fisher matrix.

We then finally get:

∂ logP
∂ Ā

∣∣∣∣
r
=

2
(Ā+ R̄µ2)

; (6.53)

∂ logP
∂ R̄

∣∣∣∣
r
=

2µ2

(Ā+ R̄µ2)
; (6.54)

∂ logP
∂E

∣∣∣∣
r
= k · 1

PB

dPB

dk

[
µ2

Er
+(µ2−1)

1
d

∂d
∂E

]
+

4R̄µ2(1−µ2)

(Ā+ R̄µ2)
·
[

1
Er

+
1
d

∂d
∂E

]
− 2k2µ2σ2

r

Er
, (6.55)

where we have set µr ≡ µ , kr ≡ k, E ≡ Er since they coincide for the fiducial model. It has been verified

that the last term can be neglected since its contribution is small.
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Calculation of the effective volume

Now we have to calculate the effective volume

Ve f f (k,µ) =
[

nP(k,µ)
nP(k,µ)+1

]2

Vsurvey, (6.56)

where P(k,µ) is the galaxy power spectrum (6.25) with the assumption (6.30).

The volume Vsurvey is the comoving volume of the redshift shell in which the survey is performed. The

physical volume element of the redshift shell [z,z+dz] per unit solid angle is given, setting c = 1, by [15]:

dVphys

dΩdz
= d2(z) · 1

H0
· 1

E(z)(1+ z)
, (6.57)

where d(z) is the angular diameter distance (1.60) and E(z)≡ H(z)/H0 is given by

E(z) =
[
Ω

(0)
r (1+ z)4 +Ω

(0)
m (1+ z)3 +Ω

(0)
DE(1+ z)3(1+w)+Ω

(0)
K (1+ z)2

]1/2
. (6.58)

Notice that we are using H0 expressed in units c · h/Mpc: H0(nat) = H0(phys)/c(phys) = 100/c(phys) '
1/3000, where c(phys) is the speed of light in km/s.

The comoving volume element is given by the physical one multiplied by a factor (1+ z)3. To obtain the

survey volume of the shell [zmin,zmax] we have to integrate over the redshift interval and over the solid angle

Ω. The survey volume is then:

Vsurvey =
Ω ·d2(zmin)

H0

ˆ zmax

zmin

(1+ z)2

E(z)
dz (6.59)

Calculation of the Fisher matrix

We can now calculate the Fisher matrix

Fab =
1

8π

ˆ +1

−1
dµ

ˆ kmax

kmin

k2dkVe f f (k,µ)
d logP

d pa

∣∣∣∣
r

d logP
d pb

∣∣∣∣
r
. (6.60)

We can write it as:

Fab =
1

8π

ˆ +1

−1
dµ

ˆ kmax

kmin

k2dk
n2P2

[nP+1]2
VsurveyMab(k,µ), (6.61)

where Mαβ is the matrix obtained from the products of the derivatives:

Mab(k,µ) =
d logP

d pa

∣∣∣∣
r

d logP
d pb

∣∣∣∣
r
. (6.62)
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Therefore, we can write the elements of the matrix Mab(k,µ) =


MĀĀ MĀR̄ MĀE

MR̄Ā MR̄R̄ MR̄E

MEĀ MER̄ MEE

 as:

MĀĀ ≡
(

d logP
dĀ

∣∣∣∣
r

)2

(6.63)

et cetera.

Of course, dr = dr(ẑ) and Er = Er(ẑ) are calculated by putting the ΛCDM parameters and z = ẑ in the

formulas (1.60) and (6.58) respectively.

We have then calculated the Fisher matrix for each bin; if we want to take into account more than one

redshift bin, we can calculate the Fisher matrix for each redshift bin and then build the total Fisher matrix

block-wise. In our case we choose to consider bins of size ∆z = 0.1 in the interval 0.65 < z < 2.05; the

values of n to be used in each bin are reported in [11], p.84 and in Table 6.2. We also consider bins of size

∆z = 0.2; in this case the value of n for each bin is given by the average of the two corresponding values in

the previous binning, given in Table .

An efficiency parameter εe f f can be introduced in order to take into account the success rate of the survey

in measuring redshifts. We then have n = εe f f ·nre f , being nre f the reference value. We used εe f f = 1 for the

reference case, εe f f = 0.5 for a pessimistic case and εe f f = 1.4 for an optimistic case.

The integration limit kmin in the Fisher matrix can be taken to be equal to zero, because the integrand

vanishes rapidly for small k; the small scale cut-off limit kmax is instead chosen to discard the nonlinear part

of the spectrum. It is a good choice for kmax to impose σ2
R = 0.25 in equation (3.26), with R = π/(2kmax),

where instead of P(k) we consider the spectrum for the redshift z given by P(k,z) = G2(z)PBardeen(k), being

G(z) the growth function [16]. We will then have a different value of kmax for each redshift bin; the values

of kmax use for each bin are also reported in Tables 6.2, 6.3, for the two cases ∆z = 0.1 and ∆z = 0.2,

respectively.
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z ẑ nre f (z)×10−3 kmax

0.65-0.75 0.7 1.25 0.162

0.75-0.85 0.8 1.92 0.172

0.85-0.95 0.9 1.83 0.183

0.95-1.05 1.0 1.68 0.194

1.05-1.15 1.1 1.51 0.206

1.15-1.25 1.2 1.35 0.218

1.25-1.35 1.3 1.20 0.232

1.35-1.45 1.4 1.00 0.245

1.45-1.55 1.5 0.80 0.260

1.55-1.65 1.6 0.58 0.274

1.65-1.75 1.7 0.38 0.290

1.75-1.85 1.8 0.35 0.306

1.85-1.95 1.9 0.21 0.323

1.95-2.05 2.0 0.11 0.341

Table 6.2: Values of the expected galaxy number densities nre f for the Euclid survey in units of (h/Mpc)3.

Redshift interval: 0.65 < z < 2.05, bin size ∆z = 0.1.

z ẑ nre f (z)×10−3 kmax

0.65-0.85 0.75 1.59 0.167

0.85-1.05 0.95 1.76 0.188

1.05-1.25 1.15 1.43 0.212

1.25-1.45 1.35 1.10 0.238

1.45-1.65 1.55 0.69 0.267

1.65-1.85 1.75 0.37 0.298

1.85-2.05 1.95 0.16 0.332

Table 6.3: Values of the expected galaxy number densities nre f for the Euclid survey in units of (h/Mpc)3.

Redshift interval: 0.65 < z < 2.05, bin size ∆z = 0.2.

In Figure 6.2 we show the structure of the Fisher matrix for galaxy clustering for ∆z = 0.1 and ∆z = 0.2;

as an example, only the ones for εe f f = 1 are shown.
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Figure 6.2: Structure of the Fisher matrix for galaxy clustering for bin size ∆z = 0.1 (left) and ∆z = 0.2

(right), with εe f f = 1. Orange is for positive entries, blue for negative ones; color intensity represents the

absolute value of the entry (the bigger the number, the darker the color).

Errors on P1

It could be interesting to find the errors on P1 given by the galaxy clustering only. If we want to find the

error on the parameter P1 = R̄/Ā, we have to transform the Fisher matrix for the parameters {Ā, R̄,E} in the

one for {Ā,P1,E}. The new Fisher matrix, according to equation (5.79), is given by:

Fnew = JT FJ, (6.64)

where J is the Jacobian of the transformation:

J =


∂ Ā
∂ Ā

∂ Ā
∂P1

∂ Ā
∂E

∂ R̄
∂ Ā

∂ R̄
∂P1

∂ R̄
∂E

∂E
∂ Ā

∂E
∂P1

∂E
∂E

 . (6.65)

Evaluating the single derivatives gives:

∂ Ā
∂ Ā

= 1, (6.66)
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∂ Ā
∂P1

=− R̄
P2

1
=− Ā2

R̄
, (6.67)

∂ R̄
∂P1

= Ā, (6.68)

∂E
∂E

= 1, (6.69)

all other derivatives are equal to zero.

With J we can now evaluate the new Fisher matrix for each bin; the squared errors for the parameters

{Ā,P2,E} are on the diagonal of its inverse.
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6.3.1 Errors from galaxy clustering only

Here we summarize the errors on the parameters obtained from the galaxy clustering only, with the

two different choices for the bin size ∆z = 0.1 and ∆z = 0.2. For each choice of ∆z, we did three different

calculation using the three different values of the efficiency parameter εe f f specified above.

6.3.1.1 Bin size ∆z = 0.1

εe f f = 1 : reference case

zα Ā(zα ) ∆Ā(zα ) ∆Ā(zα )(%) R̄(zα ) ∆R̄(zα ) ∆R̄(zα )(%) E(zα ) ∆E(zα ) ∆E(zα )(%)

0.7 0.577 0.0038 0.67 0.460 0.0038 0.83 1.45 0.0101 0.74

0.8 0.551 0.0031 0.56 0.453 0.0029 0.65 1.54 0.0089 0.58

0.9 0.527 0.0027 0.52 0.444 0.0025 0.56 1.63 0.0081 0.50

1.0 0.504 0.0024 0.49 0.434 0.0022 0.51 1.73 0.0076 0.44

1.1 0.483 0.0023 0.47 0.424 0.0020 0.47 1.83 0.0073 0.40

1.2 0.464 0.0021 0.46 0.413 0.0018 0.44 1.93 0.0071 0.37

1.3 0.446 0.0020 0.45 0.402 0.0017 0.43 2.04 0.0071 0.35

1.4 0.429 0.0020 0.47 0.391 0.0017 0.43 2.15 0.0073 0.34

1.5 0.413 0.0021 0.51 0.381 0.0017 0.46 2.27 0.0079 0.35

1.6 0.398 0.0023 0.59 0.370 0.0020 0.53 2.39 0.0092 0.38

1.7 0.385 0.0029 0.75 0.360 0.0025 0.69 2.51 0.012 0.47

1.8 0.372 0.0030 0.81 0.350 0.0026 0.73 2.63 0.013 0.48

1.9 0.360 0.0043 1.2 0.341 0.0037 1.1 2.76 0.019 0.68

2.0 0.348 0.0072 2.1 0.332 0.0063 1.9 2.89 0.033 1.1

Table 6.4: Values, errors and percent errors on the parameters Ā, R̄,E for every redshift bin from galaxy

clustering only, ∆z = 0.1, εe f f = 1.
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Figure 6.3: Errors on Ā (left) and R̄ (right) from galaxy clustering, ∆z = 0.1, εe f f = 1.
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Figure 6.4: Errors on E from galaxy clustering, ∆z = 0.1, εe f f = 1.



6.3 Galaxy clustering 76

zα P1(zα ) ∆P1(zα ) ∆P1(zα )(%)

0.7 0.798 0.0066 0.83

0.8 0.822 0.0053 0.65

0.9 0.843 0.0048 0.56

1.0 0.861 0.0044 0.51

1.1 0.877 0.0041 0.47

1.2 0.890 0.0039 0.44

1.3 0.902 0.0038 0.43

1.4 0.913 0.0039 0.43

1.5 0.922 0.0042 0.46

1.6 0.929 0.0049 0.53

1.7 0.936 0.0064 0.69

1.8 0.942 0.0069 0.73

1.9 0.948 0.010 1.1

2.0 0.952 0.018 1.9

Table 6.5: Values, errors and percent errors on the parameter P1 for every redshift bin from galaxy clustering

only, ∆z = 0.1, εe f f = 1.
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Figure 6.5: Errors on P1 from galaxy clustering, ∆z = 0.1, εe f f = 1.
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Taking into account, for example, Table 6.4 and Table 6.2, we can see that the errors’ magnitude follows

roughly the magnitude of nre f in each bin; this is reasonable, since in the bins where we have a larger the

number of galaxies we can get more statistical information and put better constraints on the parameters. In

fact, the errors are smaller in the middle bins, where nre f takes the higher values.

We can see, however, that the difference in percent errors for the same parameter in different bins is not

larger than one order of magnitude.

A note on P1: we can see that the percent error is the same as R̄ in every bin; as we will see, this holds

true independently of εe f f . This happens because we replaced the set of parameters {Ā, R̄,E} with the set

{Ā,P1,E}, where P1 is just a combination of R̄ and Ā; therefore, the jacobian just rescales the absolute error,

so that the percent error on P1 is the same as on R̄.

εe f f = 0.5: pessimistic case

zα Ā(zα ) ∆Ā(zα ) ∆Ā(zα )(%) R̄(zα ) ∆R̄(zα ) ∆R̄(zα )(%) E(zα ) ∆E(zα ) ∆E(zα )(%)

0.7 0.577 0.00445 0.77 0.460 0.0046 0.99 1.45 0.013 0.86

0.8 0.551 0.0035 0.63 0.453 0.0034 0.75 1.54 0.010 0.66

0.9 0.527 0.0031 0.59 0.444 0.0030 0.67 1.63 0.0094 0.58

1.0 0.504 0.0029 0.57 0.434 0.0027 0.62 1.73 0.0090 0.52

1.1 0.483 0.0027 0.56 0.424 0.0025 0.59 1.83 0.0089 0.49

1.2 0.464 0.0026 0.57 0.413 0.0024 0.58 1.93 0.0090 0.46

1.3 0.446 0.0026 0.58 0.402 0.0023 0.58 2.04 0.0092 0.45

1.4 0.429 0.0027 0.63 0.391 0.0024 0.61 2.15 0.0099 0.46

1.5 0.413 0.0029 0.71 0.381 0.0026 0.68 2.27 0.011 0.49

1.6 0.398 0.0035 0.87 0.370 0.0031 0.83 2.39 0.014 0.58

1.7 0.385 0.0046 1.2 0.360 0.0041 1.1 2.51 0.019 0.75

1.8 0.372 0.0049 1.3 0.350 0.0043 1.2 2.63 0.021 0.79

1.9 0.360 0.0074 2.1 0.341 0.0066 1.9 2.76 0.032 1.2

2.0 0.348 0.013 3.8 0.332 0.012 3.6 2.89 0.060 2.1

Table 6.6: Values, errors and percent errors on the parameters Ā, R̄,E for every redshift bin from galaxy

clustering only, ∆z = 0.1, εe f f = 0.5.
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Figure 6.6: Errors on Ā (left) and R̄ (right) from galaxy clustering, ∆z = 0.1, εe f f = 0.5.
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Figure 6.7: Errors on E from galaxy clustering, ∆z = 0.1, εe f f = 0.5.
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zα P1(zα ) ∆P1(zα ) ∆P1(zα )(%)

0.7 0.798 0.0079 0.99

0.8 0.822 0.0062 0.75

0.9 0.843 0.0057 0.67

1.0 0.861 0.0053 0.62

1.1 0.877 0.0052 0.59

1.2 0.890 0.0051 0.58

1.3 0.902 0.0052 0.58

1.4 0.913 0.0056 0.61

1.5 0.922 0.0062 0.68

1.6 0.929 0.0077 0.83

1.7 0.936 0.011 1.1

1.8 0.942 0.012 1.2

1.9 0.948 0.018 1.9

2.0 0.952 0.034 3.6

Table 6.7: Values, errors and percent errors on the parameter P1 for every redshift bin from galaxy clustering

only, ∆z = 0.1, εe f f = 0.5.
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Figure 6.8: Errors on P1 from galaxy clustering, ∆z = 0.1, εe f f = 0.5.
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As we can see, the percent errors on the three parameters depend slightly on the value of εe f f in the first

bins, but εe f f has stronger effects in the last bins, where the number of galaxy is smaller and therefore there

is less statistics.

εe f f = 1.4: optimistic case

zα Ā(zα ) ∆Ā(zα ) ∆Ā(zα )(%) R̄(zα ) ∆R̄(zα ) ∆R̄(zα )(%) E(zα ) ∆E(zα ) ∆E(zα )(%)

0.7 0.577 0.0037 0.63 0.460 0.00358 0.78 1.45 0.010 0.70

0.8 0.551 0.0030 0.54 0.453 0.00279 0.62 1.54 0.0085 0.55

0.9 0.527 0.0026 0.49 0.444 0.00236 0.53 1.63 0.0077 0.47

1.0 0.504 0.0023 0.46 0.434 0.00205 0.47 1.73 0.0072 0.41

1.1 0.483 0.0021 0.44 0.424 0.00182 0.43 1.83 0.0068 0.37

1.2 0.464 0.0020 0.42 0.413 0.00165 0.40 1.93 0.0065 0.34

1.3 0.446 0.0018 0.41 0.402 0.00153 0.38 2.04 0.0064 0.31

1.4 0.429 0.0018 0.42 0.391 0.00147 0.38 2.15 0.0065 0.30

1.5 0.413 0.0018 0.44 0.381 0.00149 0.39 2.27 0.0069 0.30

1.6 0.398 0.0020 0.50 0.370 0.00163 0.44 2.39 0.0078 0.33

1.7 0.385 0.0024 0.62 0.360 0.00198 0.55 2.51 0.0097 0.39

1.8 0.372 0.0024 0.66 0.350 0.00202 0.58 2.63 0.010 0.39

1.9 0.360 0.0034 0.93 0.341 0.00284 0.83 2.76 0.015 0.53

2.0 0.348 0.0054 1.6 0.332 0.00473 1.4 2.89 0.025 0.85

Table 6.8: Values, errors and percent errors on the parameters Ā, R̄,E for every redshift bin from galaxy

clustering only, ∆z = 0.1, εe f f = 1.4.
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Figure 6.9: Errors on Ā (left) and R̄ (right) from galaxy clustering, ∆z = 0.1, εe f f = 1.4.
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Figure 6.10: Errors on E from galaxy clustering, ∆z = 0.1, εe f f = 1.4.
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zα P1(zα ) ∆P1(zα ) ∆P1(zα )(%)

0.7 0.798 0.0062 0.78

0.8 0.822 0.0051 0.62

0.9 0.843 0.0045 0.53

1.0 0.861 0.0041 0.47

1.1 0.877 0.0038 0.43

1.2 0.890 0.0036 0.40

1.3 0.902 0.0034 0.38

1.4 0.913 0.0034 0.38

1.5 0.922 0.0036 0.39

1.6 0.929 0.0041 0.44

1.7 0.936 0.0052 0.55

1.8 0.942 0.0054 0.58

1.9 0.948 0.0079 0.83

2.0 0.952 0.014 1.4

Table 6.9: Values, errors and percent errors on the parameter P1 for every redshift bin from galaxy clustering

only, ∆z = 0.1, εe f f = 1.4.
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Figure 6.11: Errors on P1 from galaxy clustering, ∆z = 0.1, εe f f = 1.4.
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Again, the errors in the last bins are more influenced by the variation of εe f f . In general, however, we

can see from the comparison of Tables 6.6 and 6.8 that the difference in εe f f can cause at most a difference

of a factor of 2 to 2.5 in the percent error of the three parameters.

6.3.1.2 Bin size ∆z = 0.2

εe f f = 1 : reference case

zα Ā(zα ) ∆Ā(zα ) ∆Ā(zα )(%) R̄(zα ) ∆R̄(zα ) ∆R̄(zα )(%) E(zα ) ∆E(zα ) ∆E(zα )(%)

0.75 0.564 0.0025 0.44 0.457 0.0024 0.53 1.50 0.0071 0.47

0.95 0.515 0.0019 0.36 0.439 0.0017 0.38 1.68 0.0056 0.34

1.15 0.473 0.0016 0.33 0.418 0.0014 0.32 1.88 0.0051 0.27

1.35 0.437 0.0014 0.33 0.397 0.0012 0.30 2.10 0.0051 0.24

1.55 0.406 0.0016 0.38 0.375 0.0013 0.34 2.33 0.0060 0.26

1.75 0.378 0.0021 0.55 0.355 0.0018 0.50 2.57 0.0087 0.34

1.95 0.354 0.0037 1.1 0.336 0.0032 0.96 2.83 0.017 0.59

Table 6.10: Values, errors and percent errors on the parameters Ā, R̄,E for every redshift bin from galaxy

clustering only, ∆z = 0.2, εe f f = 1.
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Figure 6.12: Errors on Ā (left) and R̄ (right) from galaxy clustering, ∆z = 0.2, εe f f = 1.
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Figure 6.13: Errors on E from galaxy clustering, ∆z = 0.2, εe f f = 1.

zα P1(zα ) ∆P1(zα ) ∆P1(zα )(%)

0.75 0.810 0.0043 0.53

0.95 0.852 0.0033 0.38

1.15 0.884 0.0029 0.32

1.35 0.908 0.0028 0.30

1.55 0.926 0.0032 0.34

1.75 0.939 0.0047 0.50

1.95 0.950 0.0092 0.96

Table 6.11: Values, errors and percent errors on the parameter P1 for every redshift bin from galaxy clustering

only, ∆z = 0.2, εe f f = 1.
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Figure 6.14: Errors on P1 from galaxy clustering, ∆z = 0.2, εe f f = 1.

Comparing Tables 6.4 and 6.10, we can see that considering larger bins can reduce the uncertainties on

the parameters (as expected, since the statistics is larger): we gain roughly a factor between 1.5 and 2 on the

percent errors.

εe f f = 0.5: pessimistic case

zα Ā(zα ) ∆Ā(zα ) ∆Ā(zα )(%) R̄(zα ) ∆R̄(zα ) ∆R̄(zα )(%) E(zα ) ∆E(zα ) ∆E(zα )(%)

0.75 0.564 0.0029 0.51 0.457 0.0029 0.62 1.50 0.0081 0.55

0.95 0.515 0.0022 0.42 0.439 0.0020 0.46 1.68 0.0066 0.39

1.15 0.473 0.0019 0.40 0.418 0.0017 0.41 1.88 0.0064 0.34

1.35 0.437 0.0019 0.43 0.397 0.0017 0.42 2.10 0.0068 0.32

1.55 0.406 0.0022 0.55 0.375 0.0020 0.52 2.33 0.0087 0.37

1.75 0.378 0.0033 0.88 0.355 0.0030 0.84 2.57 0.014 0.54

1.95 0.354 0.0066 1.9 0.336 0.0059 1.8 2.83 0.029 1.0

Table 6.12: Values, errors and percent errors on the parameters Ā, R̄,E for every redshift bin from galaxy

clustering only, ∆z = 0.2, εe f f = 0.5.
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Figure 6.15: Errors on Ā (left) and R̄ (right) from galaxy clustering, ∆z = 0.2, εe f f = 0.5.
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Figure 6.16: Errors on E from galaxy clustering, ∆z = 0.2, εe f f = 0.5.
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zα P1(zα ) ∆P1(zα ) ∆P1(zα )(%)

0.75 0.810 0.0051 0.62

0.95 0.852 0.0039 0.46

1.15 0.884 0.0037 0.41

1.35 0.908 0.0038 0.42

1.55 0.926 0.0049 0.52

1.75 0.939 0.0078 0.84

1.95 0.950 0.017 1.8

Table 6.13: Values, errors and percent errors on the parameter P1 for every redshift bin from galaxy clustering

only, ∆z = 0.2, εe f f = 0.5.
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Figure 6.17: Errors on P1 from galaxy clustering, ∆z = 0.2, εe f f = 0.5.
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εe f f = 1.4: optimistic case

zα Ā(zα ) ∆Ā(zα ) ∆Ā(zα )(%) R̄(zα ) ∆R̄(zα ) ∆R̄(zα )(%) E(zα ) ∆E(zα ) ∆E(zα )(%)

0.75 0.564 0.0024 0.424 0.457 0.0023 0.50 1.50 0.0067 0.45

0.95 0.515 0.0018 0.341 0.439 0.0016 0.36 1.68 0.0053 0.32

1.15 0.473 0.0015 0.305 0.418 0.0012 0.30 1.88 0.0047 0.25

1.35 0.437 0.0013 0.295 0.397 0.0011 0.27 2.10 0.0046 0.22

1.55 0.406 0.0013 0.33 0.375 0.0011 0.29 2.33 0.0051 0.22

1.75 0.378 0.0017 0.45 0.355 0.0014 0.40 2.57 0.0071 0.27

1.95 0.354 0.0029 0.81 0.336 0.0025 0.73 2.83 0.013 0.45

Table 6.14: Values, errors and percent errors on the parameters Ā, R̄,E for every redshift bin from galaxy

clustering only, ∆z = 0.2, εe f f = 1.4.
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Figure 6.18: Errors on Ā (left) and R̄ (right) from galaxy clustering, ∆z = 0.2, εe f f = 1.4.
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Figure 6.19: Errors on E from galaxy clustering, ∆z = 0.2, εe f f = 1.4.

zα P1(zα ) ∆P1(zα ) ∆P1(zα )(%)

0.75 0.810 0.0041 0.50

0.95 0.852 0.0031 0.36

1.15 0.884 0.0026 0.30

1.35 0.908 0.0024 0.27

1.55 0.926 0.0027 0.29

1.75 0.939 0.0037 0.40

1.95 0.950 0.0070 0.73

Figure 6.20: Values, errors and percent errors on the parameter P1 for every redshift bin from galaxy cluster-

ing only, ∆z = 0.2, εe f f = 1.4.
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Figure 6.21: Errors on P1 from galaxy clustering, ∆z = 0.2, εe f f = 1.4.

The effect of εe f f is almost the same as in the case with smaller bins: there is about a factor-2.5-difference

between the pessimistic and the optimistic case, and it is almost the same for all of the parameters.

6.4 Weak lensing

The lensing convergence power spectrum Pi j(l) as a function of the multipole l = kπ for a survey divided

into several redshift bins can be written as (5.62):

Pi j(l) =
9H0

4

ˆ
∞

0
dz

Wi(z)Wj(z)E3(z)Ω2
m(z)

(1+ z)4 Σ
2Pδm

(
l

πr(z)
,z
)
, (6.70)

where H0 is expressed in units c×h/Mpc, the lensing window function is (5.61)

Wi(z) =
ˆ

∞

z

dz̃
E(z̃)

[
1− r(z)

r(z̃)

]
ni(r(z̃)), (6.71)

r(z) is the comoving distance (1.48), E(z) = H(z)/H0, Ωm(z) = ρ0m(1+ z)3/ρcr(z) as usual and ni(r(z))

is the bin galaxy density function (which will be better defined later).

It can be shown that the lensing convergence power spectrum can be written as

Pi j(l) = H0

ˆ
∞

0

dz̃
E(z̃)

Ki(z̃)K j(z̃)L(z̃, l)2, (6.72)

where
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Ki(z) =
3
2
(1+ z)Wi(z) (6.73)

and

L(z, l) = Ω0mΣG(z)σ8δt,0

(
k→ l

πr(z)

)
, (6.74)

being Ω0m ≡ Ω
(0)
m , Σ = 2 for the fiducial model ΛCDM and δ 2

t,0(k) = Pδm(k,z = 0) the matter power

spectrum at present time.

In fact, inserting the definitions (6.73) and (6.74) into equation (6.72), we get:

Pi j(k) = H0

ˆ zmax

0

dz̃
E(z̃)

9
4
(1+ z̃)2Wi(z̃)Wj(z̃)Ω2

0mΣ
2G2(z)σ2

8 δ
2
t,0

(
k

r(z)

)
. (6.75)

where the scale k in δ 2
t,0 is now divided by r(z), according to the fact that Pδm(k,z) = G2(z)δ 2

t,0(k) and to

Limber’s theorem, which says that Pδm(k,z) must be evaluated for k→ k
r(z) .

In the condition of pressureless and uncoupled matter, the following identity holds:

Ω
2
0m(1+ z)2 =

E4(z)Ω2
m(z)

(1+ z)4 . (6.76)

Therefore, we can write:

Pi j(l) =
9H0

4

ˆ
∞

0
dz

Wi(z)Wj(z)Σ2G2(z)σ2
8 E3(z)Ω2

m(z)
(1+ z)4 Pδm

(
l

πr(z)
,z = 0

)
(6.77)

which matches with equation (6.70) (the factor σ2
8 accounts for the normalization of the power spectrum).

Assumption of Bardeen power spectrum

We assume again that the present matter power spectrum δ 2
t,0(k) = Pδm(k,z = 0) is given by the Bardeen

approximation formula (6.30):

δ
2
t,0(k)u PBardeen(k) = cnormT 2(k)kns , (6.78)

where the normalization constant cnorm is fixed by the condition (6.31) and the transfer function is given

by equation (5.9).

The power spectrum at any time will be given by Pδm(k,z) = G2(z)PBardeen(k). Again, according to the

Limber’s theorem (5.51), to get an expression for Pi j(l) we need to take into account Pδm

(
l

πr(z) ,z
)

, that is,

we have to substitute k→ l
πr(z) in the expression of the Bardeen spectrum (which contains the k-dependence

of Pδm(k,z)). That leads explicitly to
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Pδm

(
l

πr(z)
,z
)
=G2(z) · cnorm

ln2(1+0.171 l
πr(z)keq

)

0.1712
(

l
πr(z)keq

)2 ·

·
[

1+0.284
l

πr(z)keq
+(1.18

l
πr(z)keq

)2 +(0.399
l

πr(z)keq
)3 +(0.490

l
πr(z)keq

)4
]−1/2

· l
πr(z)

.

(6.79)

Total galaxy density function and galaxy density functions for each redshift bin

We are also assuming for the galaxy density n(z) the common parameterization (see [17] and [18]):

n(z) = n0zα exp
[
−(z/z0)

β

]
(6.80)

with α = 2, β = 3/2 ([11], p.83), and the constant n0 is fixed by the normalization condition

ˆ
∞

0
n(z)dz = ng,sterad , (6.81)

where ng,sterad = 3600 ·
( 180

π

)2
ng,arcmin is the total number of galaxies per steradian of the survey, and

ng,arcmin is the same number per square arcminute (in the case of Euclid ng,arcmin = 30, see [11], p. 84). In

Figure 6.22 a plot of n(z) as a function of z is given.
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Figure 6.22: The galaxy density n(z) for weak lensing.

To define the galaxy densities for each bin, we have to consider the fact that the observed (photometric)

redshift of a galaxy is different from the true one, due to uncertainties (see [17]).
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The (true) galaxy density ni(z) for the i-th (photometric) bin z(i)ph < zph < z(i+1)
ph , is defined as the convo-

lution of n(z) with the probability distribution p(zph|z) of the observed photometric redshifts zph given the

true redshifts z:

ni(z) = cni

ˆ z(i+1)
ph

z(i)ph

dzphn(z)p(zph|z). (6.82)

The probability distribution p(zph|z) can be assumed to be a Gaussian centered at zph and with a RMS

σz = ∆(1+ z) at each redshift:

p(zph|z) =
1√

2πσz
exp
[
−
(z− zph)

2

2σz

]
(6.83)

(∆ = 0.05 in our case, from Euclid specifications [11], p.84). We can also take σ = ∆(1+ zi), zi being

the central redshift of the i-th bin (see [11], p. 93).

That is, ni(z) takes the form

ni(z) = cni

1
2

n(z) [er f (xi+1)− er f (xi)] (6.84)

where er f (x) is the error function and xi ≡ (z(i)ph− z)/(
√

2σz).

As a normalization constant cni for the ni(z), we choose the inverse of the number of galaxies per stera-

dian ni belonging to the i-th bin:

ni =

ˆ z(i+1)
ph

z(i)ph

n(z)dz≡ 1
cni

. (6.85)

However, what appears in the definition (6.71) of Wi(z) is ni(r(z)). We have to remember that the densi-

ties are connected by n(z)dz = n(r)dr, and therefore n(r(z)) = n(z)H(z). The definition (6.71) can be then

rewritten as

Wi(z) = H0

ˆ
∞

z
dz̃
[

1− r(z)
r(z̃)

]
ni(z̃). (6.86)

With these clarifications the lensing convergence power spectrum can be now calculated.

Figure 6.23 represents the ni(z) functions for the two choices of the bin size ∆z = 0.1, ∆z = 0.2. Figure

6.24 represents the window functions Ki(z) in the same cases.
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Figure 6.23: The galaxy densities ni(z) for a bin size ∆z = 0.1 (left) and ∆z = 0.2 (right).
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Figure 6.24: The window functions Ki(z) for a bin size ∆z = 0.1 (left) and ∆z = 0.2 (right).

Fisher matrix calculation

We want to calculate the Fisher matrix, given by (5.99)

Fαβ = fsky ∑
l

(2l +1)∆l
2

∂Pi j(l)
∂ pα

C−1
jk (l)

∂Pkm(l)
∂ pβ

C−1
mi (l), (6.87)

summed over repeated indices, for the set of cosmological parameters pα = {L̄(zα),E(zα)}nbins
α=1, where

L̄(zα) =
L(zα , l)

δt,0

(
l

πr(z)

) = Ω0mΣG(zα)σ8, (6.88)

with α running on the bins, and not over the parameters in each bin. It is also worth to stress that L̄(zα)

do not depend on l because Σ(k,z) = Σ has a fixed value for ΛCDM fiducial model.
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The sum in l runs between lmin = 100 and lmax is calculated for each bin from the values of kmax in order

to remain in the linear regime, for which the Bardeen approximation holds. To calculate lmax,i for the i-th

bin, we find the point zmed,i(l) for which the integral defining Pi j for i = j (6.72) can be splitted into two

equal contributions
´ zmed

0 and
´

∞

zmed
, and then calculate lmax,i as the solution of

l
πr
(
zmed,i(l)

) = kmax,i. (6.89)

The values for lmax for the two cases of ∆z = 0.1 and ∆z = 0.2 are reported in Tables 6.15 and 6.16,

respectively.

zα kmax lmax

0.7 0.162 430

0.8 0.172 520

0.9 0.183 600

1.0 0.194 700

1.1 0.206 800

1.2 0.218 910

1.3 0.232 1000

1.4 0.245 1100

1.5 0.260 1300

1.6 0.274 1400

1.7 0.290 1500

1.8 0.306 1700

1.9 0.323 1800

2.0 0.341 2000

Table 6.15: Values for lmax for each bin, ∆z = 0.1.
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zα kmax lmax

0.75 0.167 480

0.95 0.188 650

1.15 0.212 850

1.35 0.238 1100

1.55 0.267 1300

1.75 0.298 1600

1.95 0.332 1900

Table 6.16: Values for lmax for each bin, ∆z = 0.2.

The covariance matrix Ci j is given by (5.100)

Ci j = Pi j +δi jγ
2
intn
−1
i (6.90)

with γint = 0.22 and ni are the numbers of galaxies per steradian in each bin defined in equation (6.85).

We have to evaluate the derivatives ∂Pi j(l)
∂ pα

and the covariance matrix for a fiducial model, which we

choose to be ΛCDM with the numerical values of the cosmological parameters taken from the WMAP-9-

year data.

In order to calculate the derivative ∂Pi j(l)
∂E(zα )

, we have to take into account the fact that E appears also in

the definition of the comoving distance. We then replace the regular definition of E(z) with an interpolating

function that goes smoothly through all points (zα ,E(zα)) and (0,1). Instead of depending on Ωm, it now

depends on all the parameters E(zα), and so do all the quantities which depend on E(z), like the comov-

ing distance r(z) and the window functions Ki(z). For example, the convergence power spectrum is now

dependent on the E(zα)values:

Pi j = Pi j(l,{E(z1), ...,E(znbins)}). (6.91)

The derivatives are then obtained by varying the fiducial values of E(zα) by a small quantity ε (i.e.

ε ' 10−6):

∂Pi j(l,{E(z1), ...,E(znbins)})
∂E(zα)

=

=
Pi j(l,{E(z1), ...,E(zα)+ ε, ...E(znbins)})−Pi j(l,{E(z1), ...,E(zα)− ε, ...E(znbins)})

2ε

(6.92)

≡Ji j(2α)(l). (6.93)
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The derivative ∂Pi j(l)
∂ L̄(zα )

can be instead calculated from

Pi j(l) = H0

ˆ
∞

0

dz̃
E(z̃)

Ki(z̃)K j(z̃)L(z̃, l)2 =
∞

∑
ξ=0

∆zξ

E(zξ )
Ki(zξ )K j(zξ )L(zξ , l)

2. (6.94)

for some bins indexed by ξ which coincide with the bins of the survey tomography in the survey range.

We have

∂Pi j(l)
∂ L̄(zα)

= 2H0
∆zα

E(zα)
Ki(zα)K j(zα)

L2(zα , l)
L̄(zα)

≡ Ji j(2α−1)(l) (6.95)

The matrix Ji jα is then a 2nbins×2nbins matrix where the odd indexes are for the derivatives with respect

to L̄(zα) for each bin and the even indexes are for the ones with respect to E(zα).

The Fisher matrix can also be written as

Fαβ = fsky ∑
l

(2l +1)∆l
2

Tr
[
Jα(l)C−1(l)Jβ (l)C

−1(l)
]
. (6.96)

On the diagonal of the inverse of F we will find the errors for L̄(z1),E(z1), L̄(z2),E(z2), ... respectively.

A plot of the structure for the weak lensing Fisher matrix in cases with ∆z = 0.1 and ∆z = 0.2 can be found

in Figure 6.25.
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Figure 6.25: Structure of the weak lensing Fisher matrix in the cases ∆z = 0.1 (left) and ∆z = 0.2 (right).

Orange is for positive entries, blue for negative ones; color intensity represents the absolute value of the

entry (the bigger the number, the darker the color).
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6.4.1 Errors from weak lensing only

Here we summarize the errors on the parameters obtained from the weak lensing only, with the two

different choices for the bin size ∆z = 0.1 and ∆z = 0.2.

6.4.1.1 Bin size ∆z = 0.1

zα L̄(zα ) ∆L̄(zα ) ∆L̄(zα )(%) E(zα ) ∆E(zα ) ∆E(zα )(%)

0.7 0.327 0.0079 2.4 1.45 0.0012 0.083

0.8 0.312 0.0096 3.1 1.54 0.0010 0.066

0.9 0.299 0.0094 3.2 1.63 0.0019 0.12

1.0 0.286 0.0098 3.4 1.73 0.038 2.2

1.1 0.274 0.012 4.3 1.83 0.058 3.2

1.2 0.263 0.016 6.2 1.93 0.074 3.8

1.3 0.253 0.023 9.3 2.04 0.089 4.4

1.4 0.243 0.036 15 2.15 0.11 5.1

1.5 0.234 0.067 29 2.27 0.14 6.3

1.6 0.226 0.14 60 2.39 0.19 8.1

1.7 0.218 0.31 140 2.51 0.26 10

1.8 0.211 0.98 460 2.63 0.21 8.1

1.9 0.204 3.7 1800 2.76 0.32 12

2.0 0.197 15 7700 2.89 0.30 10

Table 6.17: Values, errors and percent errors on the parameters L̄,E for every redshift bin from weak lensing

only, ∆z = 0.1.
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Figure 6.26: Errors on L̄,E from weak lensing, ∆z = 0.1.

From Table 6.17, we can notice that there is a very strong difference in the errors for the same parameter

depending on the bin: the percent errors in the first and in the last bin are about two orders of magnitude

different in the case of E and more than three orders of magnitude in the case of L. We can conclude that

the weak lensing method is very accurate for low redshift, but it does not put significant constraints on

parameters at high redshift.

Comparing the errors on E from Tables 6.4 and 6.17, we can appreciate how weak lensing data can

constrain the values on E about five-ten times better than galaxy clustering in the first three bins.

6.4.1.2 Bin size ∆z = 0.2

zα L̄(zα ) ∆L̄(zα ) ∆L̄(zα )(%) E(zα ) ∆E(zα ) ∆E(zα )(%)

0.75 0.320 0.0026 0.82 1.50 0.0019 0.13

0.95 0.292 0.0029 0.99 1.68 0.0018 0.10

1.15 0.268 0.0038 1.4 1.88 0.0034 0.18

1.35 0.248 0.0077 3.1 2.10 0.024 1.2

1.55 0.230 0.028 12 2.33 0.047 2.0

1.75 0.214 0.18 85 2.57 0.089 3.5

1.95 0.201 2.0 1000 2.83 0.12 4.3

Table 6.18: Values, errors and percent errors on the parameters L̄,E for every redshift bin from weak lensing

only, ∆z = 0.2.
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Figure 6.27: Errors on L̄ (left) and E (right) from weak lensing, ∆z = 0.2.

From Tables 6.17 and 6.18, we can see that considering larger bins significantly reduces the errors. On

E we have a reduction in the errors of about two times (often significantly more), as we found in the galaxy

clustering calculations. But the most significant improvement can be seen in the errors on L: here we gain

about one order of magnitude with respect to the ∆z = 0.1 case. We will see that this difference allows us to

obtain much more tight constraints on the anisotropic stress η if we use larger bins.

6.5 Supernovae

Up to now, we have estimated the constraints we can get on the model-independent parameters Ā, R̄,L

and on Hubble dimensionless parameter E from the future Euclid probes. In order to put better constraints

on E, we now want to add the information we can obtain from a supernova survey. We take into account a

survey which will observe ∼ 103 supernovae (say nSN = 2000) of type Ia with redshift z < 1.5.

We now proceed with the calculation of the Fisher matrix for this experiment.

The likelihood function for the supernovae after marginalization of the offset is given by (5.86) (with

N = 1):

L =− logL =
1
2

(
S2−

S2
1

S0

)
, (6.97)

where

Sn = ∑
i

(mi−µi)
n

σ2
i

(6.98)

and µi = 5log d̂L(zi). The dimensionless luminosity distance is

d̂L(z) = (1+ z)
ˆ z

0

dz̃
E(z̃)

. (6.99)
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This can be written as

L =
1
2

XiMi jX j, (6.100)

where Xi ≡ mi−µi and

Mi j = sis jδi j−
s2

i s2
j

S0
(6.101)

(no sum) where si = 1/σi.The correlation matrix M−1 is independent of H. The Fisher matrix can be written

as

Fαβ = 〈 ∂L

∂ pα

∂L

∂ pβ

〉, (6.102)

where now the parameter is pα = E. So finally we have

Fαα = FE = 〈( ∂ µi

∂ pα

Mi jX j)
2〉= 25Yiα Mi jYmα Mmk〈X jXk〉 (6.103)

= 25Yiα Mi jYmα MmkM−1
jk (6.104)

= 25Yiα Mi jYjα , (6.105)

where

Yiα ≡
∂ log d̂i

∂ pα

=
1
d̂i

∂ d̂i

∂Eα

=− 1
d̂L(zi)

∆zα

E2(zα)
(1+ zi)Θ(zi− zα). (6.106)

We can in fact write

d̂i = (1+ zi)
i

∑
j=0

∆z j

E j
(6.107)

so that
∂ d̂i

∂Eα

=
∆zα

E2
α

(1+ zi)Θ(zi− zα). (6.108)

The Fisher matrix for the parameter vector pα = {E(zα)} with α running over the z-bins is

Fαβ = 〈( ∂ µi

∂ pα

Mi jX j)(
∂ µi

∂ pβ

Mi jX j)〉= 25Yiα Mi jYjβ (6.109)

We have to make a choice to define the redshifts zi and the uncertainties σi for the supernovae of the

simulated experiment that appear in the Fisher matrix. We take as a reference the Union 2.1 catalogue [19]

(580 SNIa in the range 0 < z. 1.5, based on paper [20]). We assume that the survey will observe supernovae

in the redshift range 0.65 < z < 1.45, and divide that interval in bins of fixed size. The choices for the bin

size are ∆z = 0.1 and ∆z = 0.2, in order to combine the SN Fisher matrix with the galaxy clustering and the

weak lensing ones. We assume the total number of observed SN to be about nSN = 2000 in that range. We

further assume that the supernovae of the future survey will be distributed uniformly in each bin, respecting

the proportions of the actual data (catalogue Union 2.1).

From the catalogue data, we count the number ndata,α of the supernovae in each bin; we also calculate

the average error σdata,α for each bin, which will be assumed to be the error for each of the supernovae of
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the bin in our simulation: σi = σdata,α (if the i-th SN is in the bin α). The number of observed SN in each

bin in the simulation will be:

nα = nSN ·
ndata,α

∑α ndata,α
. (6.110)

Since we assume the SN to be uniformly distributed in each bin, the redshift zi for a SN in the bin α will

be given by

zi = zmin,α +nq ·
∆z
nα

(6.111)

where zmin,α is the lower border of the bin and the index q, running from 1 to nα , represents the position

that the i-th supernova occupies in the bin.

Now that we have the zis and the σis, the Fisher matrix can be calculated. A plot of the results can be

seen in Figure 6.28, for the two cases of ∆z = 0.1 and ∆z = 0.2 respectively. In the Figure, rows and columns

of zeros have been added for the bins which are not covered by the supernova survey.
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Figure 6.28: Structure of the supernovae Fisher matrix in the cases ∆z = 0.1 (left) and ∆z = 0.2 (right).

Orange is for positive entries, blue for negative ones; color intensity represents the absolute value of the

entry (the bigger the number, the darker the color).
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6.5.1 Errors from the supernovae only

Here we summarize the errors on the parameters obtained from the supernovae only, with the two differ-

ent choices for the bin size ∆z = 0.1 and ∆z = 0.2.

6.5.1.1 Bin size ∆z = 0.1

zα E(zα ) ∆E(zα ) ∆E(zα )(%)

0.7 1.45 0.064 4.4

0.8 1.54 0.065 4.2

0.9 1.63 0.091 5.6

1.0 1.73 0.13 7.3

1.1 1.83 0.19 11

1.2 1.93 0.26 13

1.3 2.04 0.29 14

1.4 2.15 0.45 21

Table 6.19: Values, errors and percent errors on the parameter E for every redshift bin from supernovae only,

∆z = 0.1.
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Figure 6.29: Errors on E from supernovae, ∆z = 0.1.
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6.5.1.2 Bin size ∆z = 0.2

zα E(zα ) ∆E(zα ) ∆E(zα )(%)

0.75 1.50 0.027 1.8

0.95 1.68 0.040 2.4

1.15 1.88 0.076 4.0

1.35 2.10 0.14 6.5

Table 6.20: Values, errors and percent errors on the parameter E for every redshift bin from supernovae only,

∆z = 0.2.
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Figure 6.30: Errors on E from supernovae, ∆z = 0.2.

In Tables 6.21, 6.22 we compare the errors obtained on the dimensionless Hubble parameter E from the

galaxy clustering and weak lensing probes and from the supernova survey, in the cases ∆z= 0.1 and ∆z= 0.2

respectively. As we can see, the supernovae data do not give a significant contribution in constraining E. It

must be said that the number nSN = 2000 that we have chosen is quite conservative; but even considering a

more optimistic survey with nSN = 10000, the constraints coming from supernovae are quite weak. Errors

for nSN = 10000, ∆z = 0.2 are reported in Table .
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zα E(zα ) ∆EGC(zα )(%) ∆EWL(zα )(%) ∆ESN(zα )(%)

0.7 1.45 0.74 0.083 4.4

0.8 1.54 0.58 0.066 4.2

0.9 1.63 0.50 0.12 5.6

1.0 1.73 0.44 2.2 7.3

1.1 1.83 0.40 3.2 11

1.2 1.93 0.37 3.8 13

1.3 2.04 0.35 4.4 14

1.4 2.15 0.34 5.1 21

1.5 2.27 0.35 6.3 -

1.6 2.39 0.38 8.1 -

1.7 2.51 0.47 10 -

1.8 2.63 0.48 8.1 -

1.9 2.76 0.68 12 -

2.0 2.89 1.1 10 -

Table 6.21: Percent errors on E from the three probes, ∆z = 0.1 (εe f f = 1 for galaxy clustering).

zα E(zα ) ∆EGC(zα )(%) ∆EWL(zα )(%) ∆ESN(zα )(%)

0.75 1.50 0.47 0.13 1.8

0.95 1.68 0.34 0.10 2.4

1.15 1.88 0.27 0.18 4.0

1.35 2.10 0.24 1.2 6.5

1.55 2.33 0.26 2.0 -

1.75 2.57 0.34 3.5 -

1.95 2.83 0.59 4.3 -

Table 6.22: Percent errors on E from the three probes, ∆z = 0.2 (εe f f = 1 for galaxy clustering).
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zα E(zα ) ∆E(zα ) ∆E(zα )(%)

0.75 1.50 0.012 0.80

0.95 1.68 0.018 1.1

1.15 1.88 0.034 1.8

1.35 2.10 0.061 2.9

Table 6.23: Errors from supernovae for a survey with nSN = 10000, ∆z = 0.2.

6.6 Combining the matrices

All the matrices will be evaluated at the fiducial model, eg ΛCDM. Once we have the three Fisher

matrices we insert them into a matrix for the full parameter vector

pα = {Ā, R̄, L̄,E}×nz (6.112)

Notice that we need also

R̄′ =−(1+ z)
[R̄(z+∆z)− R̄(z)]

∆z
(6.113)

and

E ′ =−(1+ z)
[E(z+∆z)−E(z)]

∆z
(6.114)

Since these are defined only in the first nbins− 1 bins, we will have to cross out the rows and columns

referring to the last bin to project onto η .

The structure for every bin will be:
Ā ĀR̄ 0 ĀE

ĀR̄ R̄ 0 R̄E

0 0 L̄ L̄E

ĀE R̄E L̄E (EWL +ESN +EGC)

 (6.115)

but the combined Fisher matrix will not be necessarily a block matrix, since the matrix for weak lensing

is not. A plot of its structure for the two different choices of the bin size ∆z = 0.1 and ∆z = 0.2 is shown in

Figure 6.31; the plots refer to the case in which εe f f = 1 has been used for galaxy clustering.
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Figure 6.31: Structure of the combined Fisher matrix in the cases ∆z = 0.1 (left) and ∆z = 0.2 (right), with

εe f f = 1. Orange is for positive entries, blue for negative ones; color intensity represents the absolute value

of the entry (the bigger the number, the darker the color).

This matrix must then be projected onto η . Is however interesting to produce an intermediate step,

namely the matrix for qα ≡ P1,P2,P3,E. According to equation (5.79), this is

F(q)
αβ

= F(p)
γδ

∂ pγ

∂qα

∂ pδ

∂qβ

(6.116)

or, in terms of matrices,

F(q) = JT
1 F(p)J1, (6.117)

where F(p) is the combined Fisher matrix without the columns referring to the last bin and J1is the

jacobian matrix of the transformation:

J1 =
∂ (p1, ...)

∂ (q1, ...)
. (6.118)

Since we have the new parameters as functions of the old ones, what we actually calculate is the inverse

jacobian:
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J−1
1 =

∂ (q1, ...)

∂ (p1, ...)
=



∂P1(z1)
∂ Ā(z1)

∂P1(z1)
∂ R̄(z1)

∂P1(z1)
∂ L̄(z1)

∂P1(z1)
∂E(z1)

∂P1(z1)
∂ Ā(z2)

· · ·
∂P2(z1)
∂ Ā(z1)

∂P2(z1)
∂ R̄(z1)

∂P2(z1)
∂ L̄(z1)

∂P2(z1)
∂E(z1)

∂P3(z1)
∂ Ā(z1)

∂P3α

∂ R̄(z1)
∂P3(z1)
∂ L̄(z1)

∂P3(z1)
∂E(z1)

∂E(z1)
∂ Ā(z1)

∂E(z1)
∂ R̄(z1)

∂E(z1)
∂ L̄(z1)

∂E(z1)
∂E(z1)

∂P1(z2)
∂ Ā(z1)

. . .
...

. . .


(6.119)

so that

F(q) =
((

J−1
1
)−1
)T

F(p) (J−1
1
)−1

(6.120)

The non-zero terms in the jacobian J1 are:

∂P1(zα)

∂ Ā(zα)
=− R̄(zα)

Ā2(zα)
; (6.121)

∂P1(zα)

∂ R̄(zα)
=

1
Ā(zα)

; (6.122)

∂P2(zα)

∂ R̄(zα)
=− L̄(zα)

R̄2(zα)
; (6.123)

∂P2(zα)

∂ L̄(zα)
=

1
R̄(zα)

; (6.124)

∂P3(zα)

∂ R̄(zα)
=

(1+ zα)R̄(zα+1)

∆z · R̄2(zα)
; (6.125)

∂P3(zα)

∂ R̄(zα+1)
=− (1+ zα)

∆z · R̄(zα)
; (6.126)

∂E(zα)

∂E(zα)
= 1. (6.127)

In order to project on η , we can marginalize F(q) over P1by eliminating the corresponding rows and

columns from the inverse Fisher matrix (as stated in subsection 5.4.2), since η does not depend on it. A plot

of the structure of this intermediate Fisher matrix for the two choices of the bin size can be found in Figure

6.32; the plots refer to the assumption εe f f = 1 in the galaxy clustering calculations.
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Figure 6.32: Structure of the intermediate Fisher matrix relative to the parameters qα = {P2,P3,E} in the

cases ∆z = 0.1 (left) and ∆z = 0.2 (right), with εe f f = 1. Orange is for positive entries, blue for negative

ones; color intensity represents the absolute value of the entry (the bigger the number, the darker the color).

It is then convenient to project the Fisher matrix for the set qα = {P2,P3,E}, that now we have, onto the

one for the set mα = {P2,P3,η}, so that we have a square (and invertible) inverse jacobian.

F(m)
λν

= F(q)
αβ

∂qα

∂mλ

∂qβ

∂ην

(6.128)

that is

F(m) = JT
2 F(q)J2 (6.129)

with

J2 =
∂ (q1, ...)

∂ (m1, ...)
. (6.130)

In this case we compute directly the jacobian
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J2 =
∂ (q1, ...)

∂ (m1, ...)
=



∂P2(z1)
∂P2(z1)

∂P2(z1)
∂P3(z1)

∂P2(z1)
∂η(z1)

∂P2(z1)
∂P2(z2)

· · ·
∂P3(z1)
∂P2(z1)

∂P3(z1)
∂P3(z1)

∂P3(z1)
∂η(z1)

∂E(z1)
∂P2(z1)

∂E(z1)
∂P3(z1)

∂E(z1)
∂η(z1)

∂P2(z2)
∂P2(z1)

. . .
...

. . .


(6.131)

and the non-zero terms are

∂P2(zα)

∂P2(zα)
= 1 (6.132)

∂P3(zα)

∂P3(zα)
= 1 (6.133)

∂E(zα)

∂P2(zα)
=

3(1+ zα)
3

(η(zα)+1)
√

4(1+zα )2

∆z2 E2 (zα+1)+4
(

2P3(zα)+4+2 (1+zα )
∆z

)
3P2(zα )(1+zα )

3

η(zα )+1

(6.134)

∂E(zα)

∂P3(zα)
=

6P2(zα)(1+ zα)
3

(η(zα)+1)
(

2P3(zα)+4+2 (1+zα )
∆z

)√
4(1+zα )

2

∆z2 E2(zα+1)+4
(

2P3(zα)+4+2 (1+zα )
∆z

)
3P2(zα )(1+zα )

3

η(zα )+1

+

− 2(1+ zα)E(zα+1)

∆z
(

2P3(zα)+4+2 (1+zα )
∆z

)2 −

√
4(1+zα )

2

∆z2 E2(zα+1)+4
(

2P3(zα)+4+2 (1+zα )
∆z

)
3P2(zα )(1+zα )

3

η(zα )+1(
2P3(zα)+4+2 (1+zα )

∆z

)2

(6.135)

∂E(zα)

∂η(zα)
=

1

2
√

4(1+zα )
2

∆z2 E2(zα+1)+4
(

2P3(zα)+4+2 1+zα

∆z

)
· 3P2(zα )(1+zα )

3

η(zα )+1

·
(
−6P2(zα)(1+ zα)

3

(η(zα)+1)2

)
(6.136)

∂E(zα+1)

∂η(zα)
=

3P2(zα)∆z(1+ zα)
2

2E(zα)(η(zα)+1)2 (6.137)

The last four equations are obtained by using the fact that

E ′(zα) =−(1+ zα)
E(zα+1)−E(zα)

∆z
, (6.138)

inverting the definition of η (6.21) with respect to E(zα) and E(zα+1)
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E(zα) =

2(1+zα )
∆z E(zα+1)+

√
4(1+zα )2

∆z2 E2(zα+1)+4
(

2P3(zα)+4+2 (1+zα )
∆z

)
3P2(zα )(1+zα )3

η(zα )+1

2
(

2P3(zα)+4+2 1+zα

∆z

) (6.139)

E(zα+1) =−
E(zα)∆z
1+ zα

[
3P2(zα)(1+ zα)

3

2E2(zα)(η(zα)+1)
−P3(zα)−2− 1+ zα

∆z

]
(6.140)

and then deriving with respect to P2(zα),P3(zα),η(zα).

We can then marginalize on P2,P3 to obtain the Fisher matrix for the η(zα). Plots are shown in Figure

6.33.
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Figure 6.33: Structure of the intermediate Fisher matrix relative to the parameters η(zα) in the cases ∆z= 0.1

(left) and ∆z= 0.2 (right), with εe f f = 1. Orange is for positive entries, blue for negative ones; color intensity

represents the absolute value of the entry (the bigger the number, the darker the color).

As a last step, we can assume that η is constant and η = 1 at every redshift (case 2 from section 6.1).

This means that η(zα) = η = 1 for every α , so that

∂ηα

∂η
= 1 (6.141)

and we can project the Fisher matrix for ηα on η .
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6.6.1 Results

Here we summarize the final results, with the two different choices for the bin size ∆z= 0.1 and ∆z= 0.2.

6.6.1.1 Bin size ∆z = 0.1

εe f f = 1 : reference case

zα P1(zα ) ∆P1(zα ) ∆P1(zα )(%) P2(zα ) ∆P2(zα ) ∆P2(zα )(%) P3(zα ) ∆P3(zα ) ∆P3(zα )(%)

0.7 0.798 0.0068 0.85 0.711 0.018 2.5 0.275 0.15 53

0.8 0.822 0.0054 0.66 0.690 0.021 3.1 0.352 0.13 36

0.9 0.843 0.0049 0.59 0.673 0.021 3.2 0.420 0.13 30

1.0 0.861 0.0048 0.56 0.659 0.022 3.3 0.480 0.13 28

1.1 0.877 0.0047 0.53 0.647 0.025 3.8 0.532 0.13 25

1.2 0.890 0.0047 0.52 0.637 0.032 5.0 0.578 0.13 22

1.3 0.902 0.0047 0.52 0.628 0.045 7.2 0.619 0.14 22

1.4 0.913 0.0051 0.55 0.621 0.072 12 0.654 0.15 22

1.5 0.922 0.0057 0.62 0.615 0.13 21 0.686 0.17 25

1.6 0.929 0.0069 0.75 0.610 0.28 45 0.713 0.22 31

1.7 0.936 0.0094 1.0 0.606 0.70 120 0.738 0.26 36

1.8 0.942 0.010 1.1 0.602 2.3 380 0.760 0.36 47

1.9 0.948 0.016 1.7 0.598 5.9 980 0.779 0.31 39

Table 6.24: Fiducial values, errors and percent errors for the parameters P1,P2,P3 for every bin, ∆z = 0.1,

εe f f = 1.

Looking at Table 6.24, we have that errors on P1 are almost the same as the ones from galaxy clustering

(Table 6.5); this is expected, since all of the information we have on P1 = R̄/Ā comes from galaxy clustering.
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zα η(zα ) ∆η(zα ) ∆η(zα )(%)

0.7 1.00 0.25 25

0.8 1.00 0.28 28

0.9 1.00 0.33 33

1.0 1.00 0.40 40

1.1 1.00 0.47 47

1.2 1.00 0.55 55

1.3 1.00 0.64 64

1.4 1.00 0.75 75

1.5 1.00 0.91 91

1.6 1.00 1.2 120

1.7 1.00 2.2 220

1.8 1.00 6.4 640

1.9 1.00 14 1400

Table 6.25: Fiducial values, errors and percent errors for the parameter η for every bin, ∆z = 0.1, εe f f = 1.
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Figure 6.34: Errors on η , ∆z = 0.1, εe f f = 1.
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In the last projection, where we assume η = 1, we get an uncertainty equal to

∆η = 0.19. (6.142)

Notice that even if we consider η as dependent on z, the values with respect to which the error is cal-

culated are the values obtained by using the fiducial parameters, so we should have η = 1 everywhere.

However, the fiducial values for η we obtain from the calculations are not exactly equal to 1 (as ΛCDM

would require) because we are using equations (6.19) for η with the approximate derivatives R′ and E ′ de-

fined in equations (6.113), (6.114) and also because we are using the interpolated version of E described in

section 6.4 in order to make E dependent from the zα ; the values of η in Table 6.25, in Figure 6.34 and in

all the next Tables and Figures concerning η have been therefore put equal to unity “by hand”.

From Table 6.25, we see that with the choice ∆z = 0.1 we can put acceptable constraints on η in the first

bins, but in the last ones the errors are too large.

εe f f = 0.5: pessimistic case

zα P1(zα ) ∆P1(zα ) ∆P1(zα )(%) P2(zα ) ∆P2(zα ) ∆P2(zα )(%) P3(zα ) ∆P3(zα ) ∆P3(zα )(%)

0.7 0.798 0.0084 1.05 0.711 0.018 2.5 0.275 0.17 63

0.8 0.822 0.0065 0.79 0.690 0.021 3.1 0.352 0.15 42

0.9 0.843 0.0060 0.72 0.673 0.021 3.2 0.420 0.15 37

1.0 0.861 0.0060 0.70 0.659 0.022 3.3 0.480 0.17 35

1.1 0.877 0.0061 0.69 0.647 0.025 3.8 0.532 0.17 32

1.2 0.890 0.0063 0.70 0.637 0.032 5.0 0.578 0.17 30

1.3 0.902 0.0066 0.73 0.628 0.045 7.2 0.619 0.19 30

1.4 0.913 0.0074 0.81 0.621 0.072 12 0.654 0.21 32

1.5 0.922 0.0086 0.94 0.615 0.13 21 0.686 0.26 38

1.6 0.929 0.011 1.2 0.610 0.28 46 0.713 0.36 50

1.7 0.936 0.016 1.7 0.606 0.70 120 0.738 0.44 60

1.8 0.942 0.018 1.9 0.602 2.3 380 0.760 0.62 82

1.9 0.948 0.029 3.1 0.598 5.9 980 0.779 0.54 70

Table 6.26: Fiducial values, errors and percent errors for the parameters P1,P2,P3 for every bin, ∆z = 0.1,

εe f f = 0.5.

As we can see, the error on P2 = L̄/R̄ is almost independent of εe f f : this can be explained by the fact

that the percent errors on R̄ (e.g. Table 6.4) are quite smaller than those on L̄ from Table 6.17, which do not
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depend on εe f f , so that the contribution to the errors on P2 given by the errors on R̄ is negligible.

zα η(zα ) ∆η(zα ) ∆η(zα )(%)

0.7 1.00 0.29 29

0.8 1.00 0.33 33

0.9 1.00 0.39 39

1.0 1.00 0.47 47

1.1 1.00 0.56 56

1.2 1.00 0.66 66

1.3 1.00 0.77 77

1.4 1.00 0.90 90

1.5 1.00 1.1 110

1.6 1.00 1.4 140

1.7 1.00 2.3 230

1.8 1.00 6.5 650

1.9 1.00 14 1400

Table 6.27: Fiducial values, errors and percent errors for the parameter η for every bin, ∆z = 0.1, εe f f = 0.5.
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Figure 6.35: Errors on η , ∆z = 0.1, εe f f = 0.5.



6.6 Combining the matrices 116

In the last projection, where we assume η = 1, we get an uncertainty equal to

∆η = 0.23. (6.143)

εe f f = 1.4: optimistic case

zα P1(zα ) ∆P1(zα ) ∆P1(zα )(%) P2(zα ) ∆P2(zα ) ∆P2(zα )(%) P3(zα ) ∆P3(zα ) ∆P3(zα )(%)

0.7 0.798 0.0063 0.79 0.711 0.017 2.4 0.275 0.14 50

0.8 0.822 0.0051 0.62 0.690 0.021 3.1 0.352 0.12 34

0.9 0.843 0.0046 0.55 0.673 0.021 3.1 0.420 0.12 29

1.0 0.861 0.0044 0.52 0.659 0.022 3.3 0.480 0.12 26

1.1 0.877 0.0043 0.49 0.647 0.025 3.8 0.532 0.12 23

1.2 0.890 0.0042 0.47 0.637 0.032 5.0 0.578 0.12 20

1.3 0.902 0.0042 0.46 0.628 0.045 7.2 0.619 0.12 19

1.4 0.913 0.0044 0.48 0.621 0.072 12 0.654 0.13 19

1.5 0.922 0.0048 0.52 0.615 0.13 21 0.686 0.14 21

1.6 0.929 0.0057 0.61 0.610 0.28 45 0.713 0.18 25

1.7 0.936 0.0075 0.80 0.606 0.70 115 0.738 0.21 28

1.8 0.942 0.0081 0.86 0.602 2.3 380 0.760 0.28 36

1.9 0.948 0.012 1.3 0.598 5.9 980 0.779 0.24 30

Table 6.28: Fiducial values, errors and percent errors for the parameters P1,P2,P3 for every bin, ∆z = 0.1,

εe f f = 1.4.
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zα η(zα ) ∆η(zα ) ∆η(zα )(%)

0.7 1.00 0.23 23

0.8 1.00 0.26 26

0.9 1.00 0.31 31

1.0 1.00 0.37 37

1.1 1.00 0.44 44

1.2 1.00 0.52 52

1.3 1.00 0.60 60

1.4 1.00 0.71 71

1.5 1.00 0.86 86

1.6 1.00 1.2 120

1.7 1.00 2.1 210

1.8 1.00 6.4 640

1.9 1.00 14 1400

Table 6.29: Fiducial values, errors and percent errors for the parameter η for every bin, ∆z = 0.1, εe f f = 1.4.
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Figure 6.36: Errors on η , ∆z = 0.1, εe f f = 1.4.
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In the last projection, where we assume η = 1, we get an uncertainty equal to

∆η = 0.18. (6.144)

We can appreciate that the final errors on η do not depend strongly on εe f f , and the conclusions for

εe f f = 1 are still valid for the pessimistic and optimistic case: we can have good constraints on η only in the

first bins.

6.6.1.2 Bin size ∆z = 0.2

εe f f = 1 : reference case

zα P1(zα ) ∆P1(zα ) ∆P1(zα )(%) P2(zα ) ∆P2(zα ) ∆P2(zα )(%) P3(zα ) ∆P3(zα ) ∆P3(zα )(%)

0.75 0.81 0.0044 0.54 0.700 0.0065 0.92 0.337 0.046 14

0.95 0.85 0.0034 0.40 0.665 0.0067 1.0 0.461 0.040 8.6

1.15 0.88 0.0032 0.36 0.642 0.0086 1.3 0.557 0.043 7.6

1.35 0.91 0.0035 0.38 0.625 0.018 2.9 0.631 0.051 8.1

1.55 0.93 0.0044 0.47 0.613 0.057 9.3 0.690 0.073 11

1.75 0.94 0.0070 0.74 0.604 0.22 37 0.736 0.065 8.8

Table 6.30: Fiducial values, errors and percent errors for the parameters P1,P2,P3 for every bin, ∆z = 0.2,

εe f f = 1.

zα η(zα ) ∆η(zα ) ∆η(zα )(%)

0.75 1.00 0.086 8.6

0.95 1.00 0.12 12

1.15 1.00 0.16 16

1.35 1.00 0.22 22

1.55 1.00 0.32 32

1.75 1.00 0.70 70

Table 6.31: Fiducial values, errors and percent errors for the parameter η for every bin, ∆z = 0.2, εe f f = 1.
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Figure 6.37: Errors on η , ∆z = 0.2, εe f f = 1.

In the last projection, where we assume η = 1, we get an uncertainty equal to

∆η = 0.070. (6.145)

We can appreciate from the comparison of Tables 6.24 and 6.30 how considering larger bins has signif-

icantly reduced the errors on P2 and P3 by one-two orders of magnitude, and therefore also the constraints

on η have improved very much, with the percent error not going beyond 70% (about 30% excluding the last

bin).

Further, we gain roughly a factor 2.5 in the last projection, when we consider η = 1.
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εe f f = 0.5: pessimistic case

zα P1(zα ) ∆P1(zα ) ∆P1(zα )(%) P2(zα ) ∆P2(zα ) ∆P2(zα )(%) P3(zα ) ∆P3(zα ) ∆P3(zα )(%)

0.75 0.810 0.0053 0.66 0.700 0.0068 0.96 0.337 0.055 16

0.95 0.852 0.0043 0.50 0.665 0.0068 1.0 0.461 0.050 11

1.15 0.884 0.0042 0.48 0.642 0.0087 1.4 0.557 0.057 10

1.35 0.908 0.0049 0.54 0.625 0.018 2.9 0.631 0.074 12

1.55 0.926 0.0068 0.74 0.613 0.057 9.3 0.690 0.12 17

1.75 0.939 0.012 1.3 0.604 0.22 37 0.736 0.11 15

Table 6.32: Fiducial values, errors and percent errors for the parameters P1,P2,P3 for every bin, ∆z = 0.2,

εe f f = 0.5.

zα η(zα ) ∆η(zα ) ∆η(zα )(%)

0.75 1.00 0.10 10

0.95 1.00 0.14 14

1.15 1.00 0.19 19

1.35 1.00 0.25 25

1.55 1.00 0.37 37

1.75 1.00 0.73 73

Table 6.33: Fiducial values, errors and percent errors for the parameter η for every bin, ∆z = 0.2, εe f f = 0.5.
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Figure 6.38: Errors on η , ∆z = 0.2, εe f f = 0.5.

In the last projection, where we assume η = 1, we get an uncertainty equal to

∆η = 0.083. (6.146)

εe f f = 1.4: optimistic case

zα P1(zα ) ∆P1(zα ) ∆P1(zα )(%) P2(zα ) ∆P2(zα ) ∆P2(zα )(%) P3(zα ) ∆P3(zα ) ∆P3(zα )(%)

0.75 0.810 0.0041 0.51 0.700 0.0064 0.91 0.337 0.043 13

0.95 0.852 0.0032 0.37 0.665 0.0066 0.99 0.461 0.037 7.9

1.15 0.884 0.0029 0.32 0.642 0.0085 1.3 0.557 0.038 6.9

1.35 0.908 0.0030 0.33 0.625 0.018 2.9 0.631 0.044 6.9

1.55 0.926 0.0036 0.39 0.613 0.057 9.2 0.690 0.059 8.6

1.75 0.939 0.0055 0.59 0.604 0.22 37 0.736 0.052 7.0

Table 6.34: Fiducial values, errors and percent errors for the parameters P1,P2,P3 for every bin, ∆z = 0.2,

εe f f = 1.4.
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zα η(zα ) ∆η(zα ) ∆η(zα )(%)

0.75 1.00 0.082 8.2

0.95 1.00 0.11 11

1.15 1.00 0.15 15

1.35 1.00 0.21 21

1.55 1.00 0.30 30

1.75 1.00 0.69 69

Table 6.35: Fiducial values, errors and percent errors for the parameter η for every bin, ∆z = 0.2, εe f f = 1.4.
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Figure 6.39: Errors on η , ∆z = 0.2, εe f f = 1.4.

In the last projection, where we assume η = 1, we get an uncertainty equal to

∆η = 0.066. (6.147)

Also when we choose larger bins, then, we can conclude that the dependence on εe f f is not very strong,

since the final errors in Tables 6.33 and 6.35, that is, in the pessimistic and optimistic case, do not differ in a

significant way.





Conclusions

In this Thesis we exposed the evidences for the accelerated expansion of the Universe, and explained why

the cosmological constant Λ cannot be held as the definitive explanation for the late-time cosmic accelera-

tion. We presented the main alternative dark energy models and talked about the importance of constraining

them by means of accurate observations. In this framework, we introduced the European Space Agency

Euclid mission and described its two main probes: galaxy clustering and weak lensing.

We then performed forecasts for the constraints on the dark energy anisotropic stress η by means of the

Fisher matrix formalism, expressing η as a function of the model-independent parameters A,R,L defined in

[4] and of the Hubble dimensionless parameter E. We used the specifications from the ESA Euclid survey

[10, 11] for galaxy clustering and weak lensing surveys, to which we added information from a supernova

survey in order to improve constraints on the Hubble dimensionless parameter E. We employed as fiducial

parameters the ones for ΛCDM from WMAP-9-year data [14]. We considered the two cases in which (a) η

depends on redshift only and (b) η is constant and equal to unity.

We computed the forecasts for surveys in the redshift interval 0.65 < z < 2.05 and divided the interval

in bins, using different values for the redshift size, ∆z = 0.1 and ∆z = 0.2.

We further considered three different values for the parameter εe f f , which measures the efficiency of the

galaxy clustering survey in measuring redshifts of the galaxies. The values of εe f f that have been used are

εe f f = 1, εe f f = 0.5 and εe f f = 1.4, in order to take into account a reference, a pessimistic and an optimistic

case, respectively.

The final results obtained for the constraints on η allow us to conclude as follows.

1. We can put much better constraints on η by choosing larger bins: the constraints using ∆z = 0.1 are

very weak for high redshifts, as often we get an uncertainty which is higher than 100%, while for

∆z = 0.2 we manage to obtain errors below 40% in most bins (excluding the last); when we consider

η as constant, we gain roughly a factor 2.5 in the accuracy.

2. The dependence of the final errors on the efficiency parameter εe f f is not strong; the difference in the

errors on η is of the order of few percentage points between the pessimistic and the optimistic case.
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3. Adding data from supernovae does not bring us a great advantage, since the errors on E from galaxy

clustering and weak lensing are significanlty lower than the constraints we can obtain from a su-

pernova survey, if we consider a survey with nSN = 2000 supernovae; further, we find that to have

good constraints form supernovae we have surely to take into account a survey measuring more than

nSN = 10000 supernovae. In putting constraints on the Hubble dimensionless parameter E, we have

that weak lensing is a very accurate method at low redshifts (below z' 1), while the constraints from

galaxy clustering are stronger at high redshifts.

Therefore, the present study shows how Euclid data will be able to put significant constraints on the dark

energy anisotropic stress η , consistently with the great expectations on the Euclid mission.

It is also possible to project the constraints on η onto the Horndeski Lagrangian functions, therefore

constraining the dark energy models belonging to the class of scalar-tensor theories. This part of the work

will be performed in a paper in preparation by Amendola, Fogli, Guarnizo, Kunz and Vollmer.
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