
Alma Mater Studiorum · Università di Bologna

CAMPUS DI CESENA
SCUOLA DI SCIENZE

Corso di Laurea Magistrale in Scienze e Tecnologie Informatiche

DATA DISSEMINATION
ON OVERLAY NETWORKS

THROUGH GOSSIP

Tesi di Laurea in Reti di Calcolatori

Relatore:
GABRIELE D’ANGELO

Presentata da:
GIULIO CIRNIGLIARO

Sessione I
Anno Accademico 2012-2013

Dimidium facti, qui coepit, habet: sapere aude;

incipe. Vivendi qui recte prorogat horam,

rusticus expectat, dum defluat amnis; at ille

labitur et labetur in omne volubilis aevum.

Orazio (Epistulae I, 2)

Sommario

Nell’ultimo decennio si è assistito ad un aumento esponenziale dei disposi-

tivi connessi alla Rete, che siano essi personal computer, tablet o smartphone.

Parallelemente vi è stato anche un notevole sviluppo delle connessioni ad alta

velocità, ma la sempre crescente necessità di connessioni veloci per muovere

quantità di dati sempre maggiori ha portato alla luce la necessità di trovare

nuove forme di trasmissione dati alternative al ben noto paradigma client-

server. Sullo scenario globale è emerso come miglior soluzione alternativa il

paradigma peer-to-peer, in cui non vi è un singolo punto di centralizzazio-

ne e di smistamento dati, ma ogni nodo della rete (peer) contribuisce alla

diffusione delle informazioni.

La distribuzione del carico di lavoro sui nodi mostra, tuttavia, alcune

problematiche relative all’eterogeneità delle infrastrutture di rete dei singoli

peer, che possono generare colli di bottiglia nella trasmissione, rallentando

la diffusione di alcuni segmenti di dati. Pertanto, non è pensabile applicare

gli stessi criteri di carico sulla banda di tutti i nodi, rendendo necessario un

meccanismo che risulti adattivo e, possibilmente, dinamico, nel senso che si

possa non solo valutare staticamente le performance di un nodo al momento

del suo arrivo nella rete, ma anche modulare il contributo che esso deve dare

sulla base di parametri dinamici, come ad esempio la congestione della rete

in un dato istante temporale o la distanza dei peer in termini di routing.

Una delle soluzioni alle problematiche sopra elencate e su cui la ricerca

sta lavorando negli ultimi anni è l’avvento dei cosiddetti ‘protocolli di gos-

sip’, la cui caratteristica peculiare è quella di cercare di ridurre l’overhead

i

ii Sommario

sui nodi ritrasmettendo i pacchetti ricevuti secondo una logica parzialmente

o totalmente probabilistica. In questa tesi sono stati presi in esame alcuni

dei principali algoritmi di gossip presenti in letteratura, evidenziandone pro

e contro. Sulla scorta delle idee da essi veicolate è stato progettato, imple-

mentato e simulato un nuovo algoritmo, di cui sono qui riportati i risultati

sperimentali.

Introduction

The last few years have seen an exponential increase [1] in the number of

devices connected to the Internet using wired or wireless reliable high-speed

connections. This led to the evolution of different types of large networks:

peer-to-peer (P2P) networks, social networks etc. The main goal of these

networks is spreading information, usually under several constraints (e.g.,

real-time applications) within huge groups of nodes. Focusing on applica-

tions like video streaming or Massively Multiplayer Online Games (MMOGs),

there are mainly two architectures used to disseminate the data within the

network: client-server and the aforementioned peer-to-peer.

In a client-server architecture, the content is stored in a single machine

or in a cluster: a client requests some content to the server, which then

answers with the data stream. This solution shows several weaknesses: for

example, if an Internet content provider streams a TV show to a large number

of clients, it’s required a server farm with high bandwidth, which means

considerable maintenance costs. This architecture is also prone to failures

and malicious attacks like Distributed Denial of Service (DDoS), even with

machine redundancy. On the other side, a peer-to-peer architecture can

overcome these limits with its naturally decentralized attitude: every client

is a ‘peer’ and has to make a contribution to the spread of information. In

the previous example, the broadcaster should only stream the content to a

small part of the clients, which would spread it all over the network. Such

an architecture can drastically reduce the cost of content dissemination for

a content provider and it turns to be more resilient to node failures and

iii

iv Introduction

malicious attacks.

Peer-to-peer networks are highly dynamic, in the sense that nodes can join

or leave the network at any time, and lean usually on heterogeneous network

infrastructures, which are often not reliable and resource-constrained in terms

of communication, computation and sometimes energy resources. All these

reasons focus one of the main aspects of efficient information dissemination:

the algorithm behind the network.

A straightforward but inefficient way to disseminate information network

wide is pure flooding protocol in which upon the first reception of a mes-

sage, every site of the network relays it once to its respective neighbors. In

this case a very large number of messages may be generated, which entails

broadcast storm problems [3]. Therefore, the algorithm must possess certain

properties to be implementable in such networks. First of all, it should be

topology-independent, i.e. it should perform well on almost every topology

(random graph, scale-free etc). Second, it should be scalable, in order to be

applied to large-scale networks. Third, it should be robust against network

dynamics and should not require synchronous message exchange. Finally, it

should utilize minimal computational and communication resources. These

constraints naturally lead to ‘Gossip’ algorithms: the key idea is that every

node forwards the message received to its neighbors with a given probability.

For a complete and detailed introduction to this topic, see [2].

The remainder of this document is organized as follows: chapter 1 de-

scribes the data dissemination problem and how gossip addresses it; chap-

ter 2 analyzes the main gossip approaches and introduces Degree-dependent

Dynamic Gossip, a novel gossip protocol; chapter 3 presents testbed and

experimental evaluation results of Degree-dependent Dynamic Gossip; chap-

ter 4 describes future work and possible improvements. Finally, concluding

remarks are reported in the last chapter.

Contents

Sommario i

Introduction iii

1 Data dissemination and gossip 1

1.1 The data dissemination problem 1

1.2 Data dissemination through gossip 2

1.3 Introduction to gossip algorithms 4

1.3.1 Gossiping strategies . 5

1.3.2 Hidden assumptions 6

1.3.3 Metrics . 8

1.4 Other uses of gossip . 9

2 Gossip algorithms on overlay networks 11

2.1 Theoretical notions and basic schemes 11

2.1.1 The SI model . 12

2.1.2 The SIR model . 13

2.2 Push algorithms . 14

2.2.1 Fixed Fanout Gossip 15

2.2.2 Probabilistic Edge Gossip 16

2.2.3 Probabilistic Broadcast Gossip 16

2.2.4 RingCast . 17

2.3 Pull algorithms . 18

2.3.1 CREW . 18

v

vi Contents

2.4 Hybrid algorithms . 19

2.4.1 PULP . 20

2.5 Adaptive algorithms . 21

2.5.1 Stimuli associated to receivers 22

2.5.2 Stimuli associated to generators 22

2.5.3 Stimuli associated to generators and receivers 24

2.6 Degree-dependent Dynamic Gossip (DDG) 24

2.7 Impact of network topology on gossip algorithms 28

3 DDG: testbed and performance evaluation 29

3.1 Simulation environment . 29

3.1.1 ARTÌS . 30

3.1.2 GAIA . 31

3.1.3 LUNES . 32

3.2 Performance evaluation scenario 35

3.2.1 Network graphs . 35

3.2.2 Dissemination probability 38

3.2.3 Model parameters . 39

3.3 Metrics . 40

3.4 Simulation results . 40

3.4.1 Random graphs . 41

3.4.2 Scale-free graphs . 41

3.4.3 DDG dissemination probability 42

4 Future work 77

4.1 Network topology . 77

4.2 Dissemination probability . 77

4.3 Graph knowledge . 78

4.4 Network dynamics . 78

Conclusions 81

Bibliography 83

List of Figures

3.1 Simulation environment stack (taken from [33] and modified) . 31

3.2 LUNES modules stack . 33

3.3 Sequence diagram of activations on ping message reception . . 34

3.4 Degree distribution of a random graph (double logarithmic scale) 36

3.5 Degree distribution of a scale-free graph (double logarithmic

scale) . 37

3.6 Polynomial probability function with α = 1 38

3.7 Logarithmic probability function with α = 1 39

3.8 Fixed Probability, Probabilistic Broadcast, and DDG with

polynomial function: coverage on random graphs 44

3.9 Fixed Probability, Probabilistic Broadcast, and DDG with

polynomial function: delay on random graphs 45

3.10 Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: coverage on random graphs 46

3.11 Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: delay on random graphs 47

3.12 DDG with polynomial and logarithmic function: coverage on

random graphs . 48

3.13 DDG with polynomial and logarithmic function: delay on ran-

dom graphs . 49

3.14 Fixed Probability, Probabilistic Broadcast, and DDG with

polynomial function: coverage on scale-free graphs with 3 ini-

tial nodes . 50

vii

viii List of Figures

3.15 Fixed Probability, Probabilistic Broadcast, and DDG with

polynomial function: delay on scale-free graphs with 3 initial

nodes . 51

3.16 Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: coverage on scale-free graphs with 3 initial

nodes . 52

3.17 Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: delay on scale-free graphs with 3 initial nodes 53

3.18 DDG with polynomial and logarithmic function: coverage on

scale-free graphs with 3 initial nodes 54

3.19 DDG with polynomial and logarithmic function: delay on

scale-free graphs with 3 initial nodes 55

3.20 Fixed Probability, Probabilistic Broadcast, and DDG with

polynomial function: coverage on scale-free graphs with 5 ini-

tial nodes . 56

3.21 Fixed Probability, Probabilistic Broadcast, and DDG with

polynomial function: delay on scale-free graphs with 5 initial

nodes . 57

3.22 Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: coverage on scale-free graphs with 5 initial

nodes . 58

3.23 Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: delay on scale-free graphs with 5 initial nodes 59

3.24 DDG with polynomial and logarithmic function: coverage on

scale-free graphs with 5 initial nodes 60

3.25 DDG with polynomial and logarithmic function: delay on

scale-free graphs with 5 initial nodes 61

3.26 Fixed Probability, Probabilistic Broadcast, and DDG with

polynomial function: coverage on scale-free graphs with 7 ini-

tial nodes . 62

ix

3.27 Fixed Probability, Probabilistic Broadcast, and DDG with

polynomial function: delay on scale-free graphs with 7 initial

nodes . 63

3.28 Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: coverage on scale-free graphs with 7 initial

nodes . 64

3.29 Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: delay on scale-free graphs with 7 initial nodes 65

3.30 DDG with polynomial and logarithmic function: coverage on

scale-free graphs with 7 initial nodes 66

3.31 DDG with polynomial and logarithmic function: delay on

scale-free graphs with 7 initial nodes 67

3.32 Fixed Probability: coverage on scale-free graphs with 3, 5, and

7 initial nodes . 68

3.33 Fixed Probability: delay on scale-free graphs with 3, 5, and 7

initial nodes . 69

3.34 Probabilistic Broadcast: coverage on scale-free graphs with 3,

5, and 7 initial nodes . 70

3.35 Probabilistic Broadcast: delay on scale-free graphs with 3, 5,

and 7 initial nodes . 71

3.36 DDG with polynomial function: coverage on scale-free graphs

with 3, 5, and 7 initial nodes 72

3.37 DDG with polynomial function: delay on scale-free graphs

with 3, 5, and 7 initial nodes 73

3.38 DDG with logarithmic function: coverage on scale-free graphs

with 3, 5, and 7 initial nodes 74

3.39 DDG with logarithmic function: delay on scale-free graphs

with 3, 5, and 7 initial nodes 75

List of Algorithms

1 SI gossip . 12

2 SIR gossip . 13

3 GossipFF . 15

4 GossipPE . 16

5 GossipPB . 17

6 Adaptive gossip with stimuli associated to receivers: gossiping

procedure executed by p . 23

7 Adaptive gossip with stimuli associated to receivers: monitor-

ing procedure executed by p 23

8 Adaptive gossip with stimuli associated to generators: gossip-

ing procedure executed by p 24

9 Degree-dependent Dynamic Gossip: generation of a new mes-

sage executed by node p . 27

10 Degree-dependent Dynamic Gossip: gossiping procedure exe-

cuted by node p . 27

xi

Chapter 1

Data dissemination and gossip

Data dissemination on peer-to-peer networks has been analyzed through

different perspectives. This thesis will address gossip (or epidemic) algo-

rithms, which are one of the feasible solutions for this problem, by showing

existing alternatives and proposing improvements.

1.1 The data dissemination problem

The spread of large-scale complex networks brought to light the need for

efficient information spread. Client-server architecture is often too expensive,

thus inappropriate to bear a massive network load and a highly dynamic

number of clients. In this scenario a decentralized network topology (i.e.

P2P networks) is often needed.

Data dissemination (or information dissemination) problem involves the

delivery of one or more messages to all the nodes within the network. The

communication could be one-to-many or many-to-many (messages are gen-

erated by a single node or many nodes), and it’s important that the trans-

mission has low latency and as little network overhead as possible. The most

trivial way to achieve this task is for every node to recursively broadcast each

message to its neighbors. This solution leads to heavy network load and very

high latency, making it unfeasible for almost any application (e.g., online

1

2 1. Data dissemination and gossip

games or video streaming).

Gossip protocols are one of the possbile ways described in literature,

aimed at minimizing communications on the network while maximizing mes-

sage reception rate of the clients (possibly 100%).

1.2 Data dissemination through gossip

Gossip algorithms have recently gained popularity as a potentially effec-

tive solution for disseminating information in large-scale systems, especially

P2P systems deployed on Internet or ad-hoc networks [4].

The spread of a message in a network through gossip follows the same

pattern of contagious diseases in human populations: nodes pass data to

randomly chosen neighbors the same way as infected individuals spread a

virus to those with whom they come into contact.

Most gossip algorithms are extremely simple, the implementation involves

a few lines of code and every node runs the same algorithm. Furthermore,

gossip protocols show inherent scalability and resilience to node churn (node

failures). This feature comes from gossip’s natural behavior: single or mul-

tiple node failures have no impact on actions taken by other nodes while

spreading messages (i.e., if a node is unable to receive a message, other nodes

won’t bother to send it again). Flexibility and simplicity are the most inter-

esting aspects of these algorithms and the reasons which led to the analysis

performed in this work.

When designing an epidemic algorithm is very important to consider prac-

tical constraints such as limited network or node resources, in order to con-

template realistic scenarios. The following lines summarize the main issues

presented in [4]:

• Membership: every node that receives a message can forward it only

to other known nodes. This knowledge means storing and updating

data structures in every node. Because of this, the criteria behind

membership information impact the performance of data dissemination

1.2 Data dissemination through gossip 3

and the scalability of the algorithm itself. Broadcast algorithms imply

a complete knowledge of the network (every node owns membership

information of the whole network). This is possible as long as the size

of the network is limited, because the storage needed grows linearly with

it. A solution to improve performances is to provide the nodes with a

partial view on the system, a limited subset of the whole network. It’s

also possible to include membership information to the dissemination

(piggybacking), so a node can update its membership list while receiving

messages.

• Network awareness : the concept of membership doesn’t involve any

kind of knowledge about network topology, so every node can freely

communicate with every other known one. This lack of communica-

tion constraints can impose a high load on the network, limiting the

application of gossip on Internet-wide settings. A feasible solution is

to create some kind of hierarchy to reflect the topology of the network

and then to ensure that messages are mostly forwarded to nodes within

the same branch of the hierarchy.

• Buffer management : in a realistic scenario, the dimension of the node

buffer is limited. Depending on broadcast rate, it might be insufficient

to forward every message enough times to achieve acceptable reliability.

Dropping new messages when buffer is full prevents the data from being

correctly disseminated, while dropping old messages in favor of new

ones could result in some old messages not being forwarded a sufficient

number of times. One solution is to assign priorities to messages, for

example based on the number of times a message has already been

forwarded (age-based prioritization).

• Message filtering : it might be possible that not all nodes are interested

in receiving all messages. In this case, the algorithm should partition

nodes in groups with the same ‘interest’ and then disseminate messages

only to interested nodes. An alternative is to allow nodes to express

4 1. Data dissemination and gossip

a preference towards messages and make sure they receive the appro-

priate ones, increasing the probability to receive a message they are

interested in and simultaneously decrease the probability to receive a

not interesting one. Implementing this, however, is not trivial.

Because of their abstraction level, the algorithms presented and proposed

here often don’t have to deal with some of the points above. The key ideas,

however, make them implementable and applicable in real scenarios. More

details will be presented in the following chapters.

1.3 Introduction to gossip algorithms

The essence behind gossip is probabilistic dissemination: the source of the

message sends it to all its neighbors, then every receiving node retransmits it

recursively to some of its neighbors, according to a probability distribution.

This idea laid the foundation for a large part of the algorithms presented in

literature.

The work in [3] evaluates the performances on different network topologies

of three gossip strategies, which can be considered the most simple examples

of this data dissemination approach:

• Fixed Fanout Gossip (GossipFF): this algorithm takes as input the

number n (fanout) of neighbors to send the message to. Upon the

reception of a message, the node randomly chooses n neighbors and

sends them the message. Notice that, if n (being fixed) is greater than

or equal to the biggest number of neighbors of every node, GossipFF

becomes a pure flooding algorithm.

• Probabilistic Edge Gossip (GossipPE): here the input is a probability

parameter p. The receiving node randomly chooses those edges over

which the message should be transmitted with regard to the value of

p. Even in this case it’s worth noticing that if p = 1 for all nodes, it

becomes a flooding algorithm.

1.3 Introduction to gossip algorithms 5

• Probabilistic Broadcast Gossip (GossipPB): as in GossipPE, the input

parameter of this algorithm is a probability p. In this case, p represents

the probability that the receiving node broadcasts the message to all its

neighbors. In particular, when p = 1 GossipPB becomes the flooding

algorithm.

The algorithms above are at the basis of more complex solutions, for example

adaptive protocols, which will be described in the next chapter.

1.3.1 Gossiping strategies

The algorithms introduced in the previous paragraph differ because of

message retransmission technique, but in all cases the nodes react just after

the reception of a message. However, nodes may behave in four different

ways [7]:

• Eager push: nodes send messages to random selected peers as soon as

they receive them for the first time.

• Pull : periodically, nodes query random selected peers for information

about recently received messages. When they gain knowledge of a mes-

sage they haven’t received yet, they explicitly request to that neighbor

the message.

• Lazy push: when a node receives a message for the first time, it gossips

only the message identifier and not the full payload. If peers receive an

identifier of a message they have not received, they make an explicit

pull request.

• Hybrid : gossip is executed in two distinct phases. A first phase uses

push gossip to disseminate a message in a best-effort manner. A second

phase of pull gossip is used in order to recover from omissions produced

in the first one.

6 1. Data dissemination and gossip

These approaches have pros and cons, depending on the context which they

have to be applied to. For example, eager push strategies produce more

redundant traffic but they also achieve lower latency than pull strategies, as

pull strategies require at least an extra round trip time to produce a delivery.

1.3.2 Hidden assumptions

An important aspect to consider when implementing every kind of al-

gorithm is to clarify and describe all the assumptions under which it is de-

veloped. In particular, communication algorithms have to cope with the

infrastructure on which they will run. This means possible bandwidth re-

strictions, node churn, limited buffer size, asynchronous message exchange

and so on. It has been chosen to report the main hidden assumptions behind

most gossip protocols, highlighted in [8].

1. In a gossip protocol, participants gossip with one or more partners at

fixed time intervals : this is a synchrony assumption, in which the clocks

of all nodes have the same rate of progress and real-time communica-

tions can’t be arbitrarily slow. This is obviously unrealistic because

in real situations there could be several bottlenecks, such as network

congestion or difference between CPUs processing time. Moreover,

real networks could be targeted by malicious attacks like DDoS, which

would increase network latency and invalidate synchrony assumption.

2. There is a bound on how many updates are concurrently propagated :

this assumption relates to the amount of resources that nodes need to

provide and it may impact gossip’s scalability. It can be expressed as

an assumption of unlimited cache. Most protocols assume that nodes

have enough resources to compute and store the data and gossiping

doesn’t exceed this limit. As a consequence, network overload caused

by dynamic message production rate or issues like DDoS is not taken

into account.

1.3 Introduction to gossip algorithms 7

3. Every gossip interaction is independent of concurrent gossiping between

other processes : this assumption involves an implied node communica-

tion independency, i.e. message losses are unrelated to each other. This

is not completely realistic, because gossip algorithms run on a physical

infrastructure, so a single link failure can result in a large amount of

dependent message loss. Even in the absence of link failures, losses can

happen for other reasons: overflows at router, difference between hosts’

computation time, and external traffic.

4. Any two processes can discover each other independently of the gossip

mechanism: this assumption hides the bootstrap problem, i.e. nodes

joining the network have to discover one another in order to start the

communication. Hence, a ‘discovery service’ is needed and it has to

be continuously available. Its task is not only to help a newly joining

node, but also to recover communication in case of failures: in fact, if

a group of nodes is cut off from the rest of the membership due to a

network failure, the network graph becomes partitioned and each parti-

tion can make progress independently. When partition resolves, gossip

can repair inconsistencies, but the discovery service must be available

to let nodes rediscover each other and restore regular communication.

5. Processes select gossip partners within a round in an unpredictable

random-like fashion: as stated in the previous sections, this is the key

point of gossip itself. Nodes must select their partners completely ran-

domly. If this doesn’t happen, data dissemination could be negatively

affected: the mixing time could be slowed, the graph may become par-

titioned and the transmission could lose its inherent reliability. There-

fore, it’s very important to choose a proper pseudo-random number

generator.

This enumeration is not intended to be exhaustive, but its aim is to focus on

the main set of problems which may undermine gossip robustness in a real

scenario. For a detailed discussion of limits and suitable solutions, see [8].

8 1. Data dissemination and gossip

1.3.3 Metrics

Literature offers a wide choice of metrics to sift graph properties and eval-

uate performances of network algorithms. With regard to graph properties,

some of the most used are the following (from [6]):

• Degree distribution: the degree of a node in an undirected graph is de-

fined as the number of its neighbors. In a directed graph it’s possible

to distinguish between out-degree and in-degree, the number of out-

going and incoming edges. The degree distribution is the probability

distribution of these degrees over the whole graph.

• Average path length: the shortest path length between two nodes is the

minimal number of edges that are necessary to reach one node from the

other in the graph. The average path length is the average of shortest

path lengths over all pairs of nodes in the graph.

• Clustering coefficient : the clustering coefficient of a node a is defined as

the number of edges between the neighbors of a divided by the number

of all possible edges between those neighbors. Intuitively, this coeffi-

cient indicates the extent to which the neighbors of a are also neighbors

of each other. The clustering coefficient of the graph is the average of

the clustering coefficients of the nodes, and always lies between 0 and

1. For a complete graph, it is 1, for a tree it is 0.

With regard to regards performance evaluation metrics, the points below will

briefly introduce some (from [3] and [5]):

• Coverage: denotes the fraction of nodes which actually received the

messages (higher is better).

• Delay : represents the average number of hops that a message traverses

before reaching a node (lower is better).

1.4 Other uses of gossip 9

• Fraction of total infected sites : is defined as the percentage of all nodes

in the system that delivered a message generated by a source in the

end of the dissemination.

• Latency : measures the number of hops required to deliver a message

to all recipients, i.e. the number of hops of the longest path among all

the shortest paths from the source to all other nodes that received the

message.

• Message complexity : measures the mean number of messages received

(or sent, if no message loss is taken into account) by each node.

• Reliability : is defined as the percentage of messages generated by a

source that are delivered by all nodes. A reliability value of 100% is

indicative that the algorithm was successful in delivering any given

message to all sites.

1.4 Other uses of gossip

The idea behind gossip is that of a ‘distributed’ and almost random mes-

sage exchange. This work focuses on gossip as a way to disseminate data

within a network, either physical or virtual. However, this approach is ap-

plied to other problems both in computer science and mathematics, especially

for its inherent scalability. For example, gossip algorithms are used to solve

the distributed averaging problem [9, 10, 11, 12] or distributed computation

of separable functions [13]. On the other side, some works analyzed gossip as

a suitable protocol for failure detection [14], ad-hoc routing [15], network size

estimation [16], load balancing [17, 18], and communication optimization in

wireless [19] and sensor networks [20, 21].

Chapter 2

Gossip algorithms on overlay

networks

The results of research on gossip algorithms offer a wide variety of so-

lutions for efficient and reliable information dissemination. As stated be-

fore, algorithms differ because of gossiping technique and assumptions about

message exchange, nodes’ properties or network graph knowledge. Most al-

gorithms described here rely on few assumptions, such as limited or absent

membership management services and partial network awareness. Some of

them are also the main source of inspiration for Degree-dependent Dynamic

Gossip (DDG), an evolution of the basic eager push approach, enriched by a

degree-dependent adaptivity. DDG has been designed to address the problem

of efficient and reliable message delivery on overlay networks, thus neglecting

low-level issues like routing, which is assumed to happen only along shortest

paths. More details as well as testbed and simulation results of DDG will be

presented later.

2.1 Theoretical notions and basic schemes

There are several gossiping strategies, but all hark back to three main

ones: push, pull and hybrid (push-pull). In order to better understand the

11

12 2. Gossip algorithms on overlay networks

behavior of each strategy, it’s worth introducing the algorithmic approach of

gossip by means of epidemiology, as carried out in [23]. According to this

terminology, when a single message is created, each node can be in one of

these three states:

• Susceptible (S): the node doesn’t know about the message.

• Infected (I): the node knows the message and is actively spreading it.

• Removed (R): the node has seen the message, but is not participating

in the spreading process (in epidemiology, this corresponds to death or

immunity).

These states are related to the behavior of a node with regard to a single

message. In the presence of multiple concurrent messages, each node is in a

different state for each message. Two known models are SI and SIR, which

differ in the number of possible states.

2.1.1 The SI model

In the SI model, each node can be susceptible or infected. Once infected,

a node cannot change its state anymore.

Algorithm 1 SI gossip

1: loop

2: wait(∆)

3: p← random peer

4: if push and in state I then

5: send message to p

6: end if

7: if pull then

8: send update-request to p

9: end if

10: end loop

11: procedure onUpdate(m)

12: store m.update

13: end procedure

14:

15: procedure onUpdateRequest(m)

16: if in state I then

17: send message to m.sender

18: end if

19: end procedure

2.1 Theoretical notions and basic schemes 13

Algorithm 1 (taken from [23]) represents the generic SI procedure. The

active thread (lines 1 - 10) is executed every ∆ time units. The parameter p

gets the value retrieved by a random peer sampling procedure. Statements at

line 5 and 8 trigger two other procedures: in the first case, the message sent

to node p is stored in its cache (line 12), thus making p switch to state I; in

the second case, an update-request executed by a node q makes p, if in state

I, send updates to q (line 17). The two boolean parameters push and pull

describe the dynamics of the algorithm. Depending on these parameters, we

can talk about push, pull, and push-pull gossip. In push gossip, susceptible

nodes are passive and infective nodes actively infect the population. In pull

and push-pull gossip each node is active [23].

2.1.2 The SIR model

According to the SI model, nodes continue forwarding useless updates

endlessly, because they don’t have memory of already forwarded messages.

Algorithm 2 SIR gossip

1: loop

2: wait(∆)

3: p← random peer

4: if push and in state I then

5: send message to p

6: end if

7: if pull then

8: send update-request to p

9: end if

10: end loop

11:

12: procedure onFeedback(m)

13: switch to state R with prob. 1/k

14: end procedure

15: procedure onUpdate(m)

16: if in state I or R then

17: send feedback to m.sender

18: else

19: store m.update

20: end if

21: end procedure

22:

23: procedure onUpdateRequest(m)

24: if in state I then

25: send message to m.sender

26: end if

27: end procedure

14 2. Gossip algorithms on overlay networks

The SIR model faces the termination problem considering the age of

each message and basically discarding too ‘old’ messages, thus stopping their

propagation. In other words, each node switches to the removed state in

relation to a message when its age crosses a threshold value. Lifespan of

messages represents a tradeoff between complete coverage and redundancy.

In fact, the expected result of a gossip protocol is a 100% coverage with as

little network overhead as possible, that is absence of redundant messages.

Algorithm 2 shows the SIR gossip variant. It’s the same as SI gossip,

but it shows a different behaviour in procedure onUpdate (line 15). The first

reception of a message makes the node switch to state I. A new reception of

the same message has a probability of 1/k to make the node switch from state

I to state R, which means immunity. If this happens, the node is not able to

forward that message anymore, neither by pushing (line 4) nor answering to

an update request (line 24). Thus, a correct tuning of the value k is crucial

for good performances.

SI and SIR are the basic propagation models and they can be implemented

using push, pull or push-pull approach.

2.2 Push algorithms

Push protocols are based on the recursive forwarding of messages among

peers. A node receiving a message actively passes it on to a few random

other nodes, which recursively do the same until some termination condition

is met. The termination condition ensures that the recursion does not go

on forever. For instance, messages could be augmented by a Time-to-Live

(TTL) field to limit the number of hops they can take. Alternatively, nodes

could be programmed to forward messages only upon their first reception

and ignore subsequent copies [22].

In this simple approach, nodes aren’t aware of messages received by

their neighbors from other nodes. It may result in a retransmission of ‘old’

messages, which have already spread on a specific portion of the network,

2.2 Push algorithms 15

thus fruitlessly increasing overhead. Furthermore, this ‘massive’ propagation

doesn’t ensure a quick complete coverage. In the first steps of propagation,

one or two random forwards are enough to reach a not-yet-informed node,

but this number increases considerably for the last few nodes. Assume a

generic push model, in which nodes are selected uniformly at random and

one at a time. At each iteration, the message is forwarded to the selected

node, whether it is already informed or not. Under these assumptions, the

expected number of times a message should be forwarded to reach all n nodes

is in the order of O(n lnn) [22]. However, this is an approximated evalua-

tion, because gossip itself isn’t able to ensure a complete coverage as well as

a restrained redundancy, especially in real scenarios.

2.2.1 Fixed Fanout Gossip

This is probably the simplest eager push gossip algorithm. After the

reception of a message, each node forwards it to a fixed number (fanout) of

neighbors. If the fanout value is greater than or equal to the number Vi of

Algorithm 3 GossipFF
Require: message, fanout

1: if fanout ≥ Vi then
2: toSend← Λi

3: else

4: toSend← ∅
5: for f = 1 to fanout do

6: random select sj ∈ Λi/toSend

7: toSend← toSend
⋃
sj

8: end for

9: end if

10: for all sj ∈ toSend do

11: Send(msg, sj)

12: end for

neighbors of node si (denoted Λi), the message will be obviously forwarded

16 2. Gossip algorithms on overlay networks

to all of Λi elements. Otherwise, the list toSend is filled with fanout random

nodes taken from Λi (lines 5-8). If the condition of line 1 is true for each

node, GossipFF becomes a pure broadcast algorithm.

The analysis performed in [3] on Bernoulli (Erdös-Rényi), scale-free, and

random geometric graphs shows that network topology strongly influences

performances of gossip algorithms. GossipFF turns to be the best choice in

terms of infected sites, reliability and latency on random geometric graphs,

whereas it performs badly on scale-free graphs.

2.2.2 Probabilistic Edge Gossip

In this case, node si randomly chooses the edges over which the message

will be forwarded. Unlike GossipFF, the second input parameter is a fixed

Algorithm 4 GossipPE
Require: message, pe

1: for all sj ∈ Λi do

2: if Random() ≤ pe then
3: Send(msg, sj)

4: end if

5: end for

probability. The function Random() generates a random number in [0, 1].

If this number is less than or equal to pe for a given edge, the message is

forwarded on that edge.

The performances of GossipPE on random geometric graphs are not as

good as GossipFF, whereas it performs well on graphs with high degree

variance and low edge dependency such as scale-free networks. Instead, the

behavior of GossipFF and GossipPE on Bernoulli graphs is similar.

2.2.3 Probabilistic Broadcast Gossip

This is a variation of pure broadcast, in which the node randomly chooses

whether broadcasting the message to its neighbors. Even in this case, the

2.2 Push algorithms 17

Algorithm 5 GossipPB
Require: message, pv

1: if Random() ≤ pv then

2: for all sj ∈ Λi do

3: Send(msg, sj)

4: end for

5: end if

function Random() generates a random number in [0, 1]. If this number is

less than or equal to pe, the node broadcasts the message to all its neighbors.

GossipPB shows the same performances of GossipPE on scale-free and

random geometric graphs. On Bernoulli graphs, it behaves the same way as

both GossipFF and GossipPE.

2.2.4 RingCast

A viable solution to disseminate data within networks other than gossip

is deterministic dissemination. This technique doesn’t focus on optimiza-

tion of message forwarding, but on network topology. In fact, deterministic

algorithms build an overlay network and spread messages on it by means

of flooding. The requirement to ensure a complete dissemination starting

from any node is to form a strongly connected graph including all nodes.

Many topologies have been proposed, showing different results in relation to

the metrics described in the previous sections. For example, spanning trees

are optimal with respect to message overhead, but a single link failure in a

non-leaf node disconnects the tree.

The drawback of deterministic approaches is that reliability is achieved

by imposing a fixed structure on overlays, which is unfeasible in massive-scale

dynamic networks. In the end, probabilistic protocols are good at spreading

messages very quickly, but they don’t ensure reliability, whereas deterministic

algorithms are reliable, but they don’t scale well.

RingCast [24] addresses data dissemination problem by mixing probabilis-

18 2. Gossip algorithms on overlay networks

tic and deterministic strategies. It establishes two types of links among nodes,

namely random links (r-links) and deterministic links (d-links). The set of

d-links forms an overlay network with a global bidirectional ring structure,

which constitutes a strongly connected graph. This topology is compliant

to the deterministic protocols’ requirement, thus a complete dissemination

is guaranteed. Instead, r-links are links randomly selected by a membership

management protocol.

After generating or receiving a new message, the node forwards it to its

two ring neighbors (across two outgoing d-links) and to other peers across F−
2 randomly selected r-links, being F the system-wide fanout parameter. If the

message has been received through a ring neighbor, the node relays it across

the other d-link and selects other F − 1 random r-links. The overlays are

built using epidemic protocols too: r-links are sampled by means of CYCLON

[25], an epidemic protocol that is an instance of the Peer Sampling Service

[26]; d-links are maintained using a proximity-based topology construction

epidemic protocol, Vicinity [27].

2.3 Pull algorithms

In a pull protocol, each node periodically probes random peers in the

network hoping to reach an already informed peer, and retrieves new mes-

sages when available. Typically, during a pull round, random pairs of peers

exchange information about the messages they have recently received and

request missing messages from each other [22]. However, this technique isn’t

often very effective in terms of latency, because messages are forwarded only

during periodic pull rounds.

2.3.1 CREW

CREW [29] is a pull-based algorithm which tries to address the prob-

lem of flash dissemination, that is rapid dissemination of varying amounts

of information to a large number of recipients in a very short period of time,

2.4 Hybrid algorithms 19

for example a service which provides accurate and timely information about

seismic events. In this kind of situations, the events to be monitored are un-

predictable and communication has to be efficient and it can’t be scheduled.

Moreover, the number of entities which have to get the information is not

fixed and the underlying network may be heterogeneous in bandwidth and

latency, especially if end receivers are geographically distributed.

In the basic version of CREW, every message is divided into chunks,

each of them having a unique chunk-ID. The list of chunk IDs is called

metadata. Metadata about the chunks are known by all nodes before they

start gossiping. Instead of being randomly pushed, chunks undergo a pull

logic: a pull-initiator node sends out the list of the IDs of already received

chunks to a target node, selected uniformly at random. The target node then

sends one chunk that the initiator does not have, chosen randomly. If the

target node has no ‘missing’ chunks, it sends an error message. Once a node

receives all chunks listed in the metadata, it immediately stops gossiping.

When all nodes stop gossiping, each node has all chunks, thus achieving a

complete deterministic dissemination. For all the extensions of basic CREW

algorithm and for further details, see [29].

2.4 Hybrid algorithms

Push protocols allow an exponential spread of data in the first steps of dis-

semination, but after some time the rate of the dissemination diminishes and

the cost of reaching uninformed nodes increases dramatically, due to higher

amount of redundant messages. On the other side, pull protocols show a

slow initial progress of message dissemination. However, once a message has

reached a sufficient number of nodes, it quickly spreads to all the remain-

ing ones. Therefore, push is an eccellent candidate for the early stages of

dissemination, when a fast dissemination is needed. Pull, on the other side,

appears good for the final stages, because it succeeds in delivering messages

to all remaining nodes without overloading the network with useless redun-

20 2. Gossip algorithms on overlay networks

dant messages. Hybrid protocols try to combine the best of both push and

pull worlds.

2.4.1 PULP

PULP [22] blends push and pull, trying to pursue three main objectives:

first, limit push to the first stages of dissemination, in order to have a good

bootstrap mechanism without overloading the network with redundant mes-

sages; second, avoid useless redundant pulls, probing only when a message

is known to be missing; third, adapt the pull probing frequency to match

current message rate.

It assumes fully decentralized operations, asynchronous message exchanges

and multiple concurrent generated messages. With regard to supporting

mechanisms and technologies, PULP uses CYCLON as a peer sampling ser-

vice and each node maintains a partial view of the network, periodically

updated by exchanging some links with other peers. Nodes need to have

also a rough estimate of the network size, provided by the interval density

algorithm [28].

The dissemination provided by the first push phase is strongly influenced

by TTL and fanout parameters. In PULP, these two values are strictly de-

pendent, one of them is fixed and the other is derived accordingly. Push stage

is used to reduce probing requests of pull one. In fact, forwarded messages

by the push component carry information about which other messages are

available, helping the pull phase.

Each node maintains a history of recently received messages and a trading

window, a list of messages available to other nodes on request. When a

node N generates a message or receives it for the first time, it registers the

message in its history and, if TTL threshold has not been reached, forwards

it to fanout random peers. Furthermore, the message is piggybacked by the

IDs saved into N ’s trading window. Each receiving peer checks for messages

not contained in its own history. If it discovers some messages it has missed,

it inserts them in the missing set. These messages will be asked for by the

2.5 Adaptive algorithms 21

periodical pull thread, which simply selects a random peer and sends it a

pull request.

The adaptation of the pulling frequency is performed by a separate thread,

which periodically monitors the number of useful and useless pulls that were

performed during that period and the dimension of the set of messages which

a node has heard of, but it has not received (missing set), in the same period.

If the size of the missing set is too large, the adaptation thread lowers the

period of pull thread. On the other hand, if the size of missing set shrinks,

the evolution depends on useless and useful pull operations ratio.

2.5 Adaptive algorithms

It’s possible to characterize a fourth additional family of algorithms,

namely adaptive gossip. The concept of adaptivity can be applied both

to push and pull schemes and involves the response of the system to the

dynamics of real networks, such as churn, network topology evolution or

communication rate variability.

The adaptive algorithm presented in [5] focuses on employing gossip to

improve performances in MOGs, where responsiveness and scalability are the

main aspects to be taken into account. It exploits the typical behavior of

MOG players, who commonly generate game events according to some inter-

generation probability distribution between successive moves, thus making

an optimization of message distribution possible. It considers a MOG sys-

tem in which peers communicate through an arbitrary overlay. Messages are

distributed through the overlay and peers which are not directly connected

must exploit multi-hop communication. Moreover, each peer knows the list of

peers interacting in a given area of the virtual world and maintains statistical

information on received messages for each other peer.

The algorithm is a basic push scheme, in which each node forwards new

information (either received or generated) to a subset of its neighbors ac-

cording to a dissemination probability. The adaptivity lies in the variation

22 2. Gossip algorithms on overlay networks

of this probability: in fact, as soon as a node p observes that it is receiv-

ing messages from another peer q at a rate lower than expected, it asks the

neighbor n, from which it usually receives messages originated from q, to

increase its dissemination probability of game events. This request from p

to n (stimulus) remains active at n for a limited period of time, then the

dissemination probability returns to the original value. This main idea has

been converted into three variants of the same algorithm.

2.5.1 Stimuli associated to receivers

The gossiping procedure executed by each node (algorithm 6) resembles

basic push: when a node p receives or generates a new message, forwards it

to each neighbor n (except to the original sender, if the message has been

received) with a probability vn. Initially, all values vn are set to a constant

value v0, but they are periodically updated by a monitoring procedure (al-

gorithm 7) running on every peer.

This procedure monitors the reception rate of game events originated at

each node of the overlay, exploiting the information stored in the node. As

soon as p observes a lower game event reception rate from a peer j, it selects

the neighbor q from which it usually receives messages containing game events

generated by j; then, p sends q a stimulus message to request the increase

of the value of p stored at q. This stimulus decays over time, i.e. its effects

terminates after a deadline and vp gets back the default value v0.

For further details on procedures ComputeThreshold and RetrievePeer-

sLowRate, see [5].

2.5.2 Stimuli associated to generators

The second algorithm adapts the dissemination threshold in a different

way (algorithm 8). Each peer p maintains an array of dissemination thresh-

olds, one for each node in the network. As soon as a new message generated

by s has to be disseminated by p, a threshold γs ≤ 1 is computed for every

2.5 Adaptive algorithms 23

Algorithm 6 Adaptive gossip with stimuli associated to receivers: gossiping

procedure executed by p
Require: message generated at p or received from a peer q

1: Np ← p’s neighbors \ q . q = NULL if message originated at p

2: if message is a duplicate then

3: Return

4: end if

5: for all n ∈ Np do

6: currentTime ← GetTime()

7: vn ← ComputeThreshold(n, currentTime)

8: if Random() < vn then

9: Send(message,n)

10: end if

11: end for

Algorithm 7 Adaptive gossip with stimuli associated to receivers: monitor-

ing procedure executed by p
1: loop

2: Sleep(monitoringPeriod)

3: peerList ← RetrievePeersLowRate() . Retrieve peers with low reception rate

4: for all j ∈ peerList do

5: q ← Forwarder(j) . Neighbor that sends messages from j

6: Send(q,’low rate from j’)

7: end for

8: end loop

24 2. Gossip algorithms on overlay networks

neighbor of p. The value γs is used to determine whether the message has to

be gossiped to a given neighbor.

Algorithm 8 Adaptive gossip with stimuli associated to generators: gossip-

ing procedure executed by p
Require: message generated at p or received from a peer q

1: if message is a duplicate then

2: Return

3: end if

4: Np ← p’s neighbors \ q . q = NULL if message originated at p

5: s← peer that generated message

6: currentTime ← GetTime()

7: γs ← ComputeProb(s, currentTime)

8: for all n ∈ Np do

9: if Random() < γs then

10: Send(message,n)

11: end if

12: end for

2.5.3 Stimuli associated to generators and receivers

The third variant is derived from the previous one and uses a different

mechanism to adapt gossip threshold, while the rest of the algorithm remains

the same. Each peer maintains a set of arrays of dissemination thresholds,

one for each neighbor. In this case, each stimulus changes the probability

of disseminating the messages originated by a specific node which should be

forwarded to a given neighbor. The aim of the protocol is to generate a

higher amount of more specific stimuli.

2.6 Degree-dependent Dynamic Gossip (DDG)

The algorithm proposed in this work belongs to the family of eager push

protocols. It combines a probabilistic component with a deterministic one,

2.6 Degree-dependent Dynamic Gossip (DDG) 25

because each message is spread according to a certain probability, which is

decided for each node in a dynamic and deterministic way. It is assumed

that the algorithm runs on an overlay network, in which each node can

communicate only with its neighbors in the network graph.

DDG tries to exploit the characteristics of overlay networks to make nodes

gain awareness of their rough position within the graph (i.e., their distance

from the center) and the ‘importance’ of their contribution to data dissem-

ination. This awareness is obtained by making each node exchange degree

information with its neighbors, in order to better tune dissemination proba-

bility.

After the generation of a new message (algorithm 9), node p computes the

value of its degree and attaches it to the payload of the message - shown in

line 2 with struct notation of C language - then sends it to all its neighbors.

Algorithm 10 describes the gossiping procedure executed by node p upon the

reception of a message from a neighbor q: if the message msg is not known,

i.e. its ID isn’t stored in p’s cache, node p retrieves the value of q’s degree,

which is stored together with the payload of the message, and saves it in q’s

position of its neighborhood array, denoted Λq
p. In the following part of the

procedure, node p forwards the message to its neighbors with a probability

γn which is computed according to the degree of each neighbor n of p (lines

6-10). Then, a random threshold is computed, and if it’s less than or equal

to γn, p attaches the value of its own degree to the message and forwards it

to node n.

In the early steps of the algorithm, neighborhood information is missing,

thus p is forced to compute forwarding probability by selecting the recipi-

ents of the message uniformly at random (line 7). However, after the initial

bootstrap phase, neighbors’ data are filled by means of information piggy-

backed on messages, and the algorithm can start working properly. The core

of nodes’ selection is the function ComputeProbability, whose details will be

described later.

The key point of gossip algorithms is that each node should forward

26 2. Gossip algorithms on overlay networks

messages in order to achieve the highest possible coverage with the lowest

possible network overhead (in this case, represented by the amount of redun-

dant messages). A few assumptions on network structure or nodes’ global

knowledge make this goal be harder to reach, but they allow the algorithm

to be more suitable to real network infrastructures. DDG tries to solve data

dissemination problem on P2P networks by tuning dissemination probability

to nodes’ neighbors degree. The rationale behind DDG is that nodes with a

low degree ‘compensate’ their little amount of links with a higher reception

probability (i.e., neighbors increase their dissemination probability), whereas

nodes with high degree have a higher probability to receive a message from

one of their neighbors, thus reception probability can be safely lowered. This

last countermeasure is taken to avoid a flood of redundant messages.

As it’s easy to see, this algorithm allows an automatic and continuous

monitoring of network status. Assuming that each node can easily know if one

of its neighbors is online or offline, node churn doesn’t have a strong influence

on message propagation, because dissemination probability is consequently

tuned - obviously unless a link or node failure disconnects a whole portion of

the network overlay graph. With regard to assumptions (section 1.3.2) and

constraints (section 1.2), message creation can be arbitrarily asynchronous,

multiple messages can be generated by different nodes at the same time, and

no assumptions on nodes’ buffer size are made. Moreover, no membership

management service is needed, because each node dynamically builds its local

membership information on its own.

2.6 Degree-dependent Dynamic Gossip (DDG) 27

Algorithm 9 Degree-dependent Dynamic Gossip: generation of a new mes-

sage executed by node p
1: msg = GenerateMessage()

2: msg.degree =Size(Λp)

3: for all n ∈ Λp do

4: Send(msg, n)

5: end for

Algorithm 10 Degree-dependent Dynamic Gossip: gossiping procedure ex-

ecuted by node p
Require: msg received from neighbor q

1: if msg ∈ cachep then

2: return

3: end if

4: Λqp ← msg.degree

5: for all n ∈ Λp\{q} do
6: if Λnp = 0 then

7: γn = 1/Size(Λp)

8: else

9: γn = ComputeProbability(Λnp)

10: end if

11: threshold = Random()

12: if threshold ≤ γn then

13: msg.degree ← Size(Λp)

14: Send(msg, n)

15: end if

16: end for

28 2. Gossip algorithms on overlay networks

2.7 Impact of network topology on gossip al-

gorithms

It’s worth mentioning the analysis performed in [30], in which the role of

overlay topology in gossiping in ad hoc networks is evaluated. Researchers

modelled a static ad hoc network as a set of distributed processes communi-

cating by message passing, defined by an undirected graph.

Tests have been conducted on several topologies, including random and

scale-free graphs, using three different algorithms: Neighborhood Indepen-

dent Strategy (i.e., Fixed Fanout Gossip), Standard Gossiping Strategy (i.e.,

Probabilistic Edge Gossip), and Neighborhood Dependent Strategy (NDS).

This last protocol is similar to Probabilistic Edge Gossip, but nodes are sep-

arated into two sets and each set has a different dissemination probability,

based on nodes’ degree, so that nodes with a high degree gossip with a high

probability, and nodes with a low degree gossip with low probability. More-

over, a variant of NDS has been considered, in which the number of redundant

messages is reduced using a blacklist of already received messages.

Simulation results have shown that scale-free topology turns to be the best

in terms of dissemination speed and nodes reached when using Probabilistic

Edge Gossip. Instead, NDS achieves the same results in terms of nodes

reached on both random and scale-free graphs, but dissemination speed is

higher in scale-free graphs. The use of a blacklist turns out to be more

efficient with scale-free topology in terms of amount of sent messages. Finally,

Fixed Fanout Gossip performs better on random topologies than in scale-free

only with low fanout values. High fanout values increase the gain with scale-

free topology, in terms of number of messages and dissemination speed.

The overall conclusion is that scale-free graphs exhibit the most favorable

topology for information dissemination through the most common gossip

protocols. For further information, see [30].

Chapter 3

DDG: testbed and performance

evaluation

The probabilistic component of gossip protocols doesn’t often allow an

a priori analysis of computational cost or upper bounds and lower bounds

for forwarded messages or dissemination latency. These issues become even

bigger if algorithms are supposed to run on heterogeneous network configu-

rations with unpredictable message creation rate. Therefore, the best way to

analyze the behavior of gossip algorithms is to test them under several net-

work configurations and evaluate their performances by means of common

metrics (as described in 1.3.3). DDG has been tested in the simulation envi-

ronment created by Parallel and Distributed Simulation Research Group [38]

(Department of Computer Science, Università di Bologna), and simulation

results have been compared with those of other known gossip algorithms.

3.1 Simulation environment

DDG has been executed on a three-tier simulation environment: the core

of simulation is the Advanced RTI System (ARTÌS) [32], a parallel and dis-

tributed simulation middleware, inspired by the High Level Architecture

standard [31]. ARTÌS has been integrated with the Generic Adaptive In-

29

30 3. DDG: testbed and performance evaluation

teraction Architecture (GAIA), a framework which is in charge of migrating

simulation elements in the distributed environment to improve performances.

On the top of this complex architecture stands the Large Unstructured NEt-

work Simulator (LUNES) [34], which uses the services provided by ARTÌS

and GAIA to simulate complex protocols on top of network graphs.

Parallel And Distributed Simulation (PADS) is the acronym used to re-

fer to execution of concurrent simulation processes over tightly coupled, or

loosely coupled computation architectures, respectively [32]. In other words,

a parallel and distributed simulation environment is composed by a set of

Physical Execution Units (PEUs) such as hosts, CPUs or CPU-cores, con-

nected to a common network (e.g., shared memory, LAN, Internet).

3.1.1 ARTÌS

The complexity of simulated system under PADS approach can strongly

influence performances, due to communication and synchronization services,

which are used by model components (formally known as federates) to inter-

act. Therefore, interprocess communication may become the main bottleneck

of the distributed simulation paradigm [32]. ARTÌS performs adaptive eval-

uation of the communication bottlenecks. It supports both conservative and

optimistic synchronization: the first is implemented with time-stepped ap-

proach and the Chandy-Misra-Bryant algorithm, while the second relies on

a Time Warp algorithm implementation.

ARTÌS follows a component-based design and it is formed by a set of

modules organized in a stack-based architecture. At the bottom of the ar-

chitecture is located the communication layer, which can handle different

network protocols as well as manage shared memory. Above it stands the

runtime core layer, composed by management modules inspired by a typical

HLA-based simulation middleware. Examples of such modules are Data Dis-

tribution Management or Federation Management. The user simulation layer

uses the service provided by the underlying core by means of a set of APIs,

namely the University of Bologna APIs. Additional orthogonal modules are

3.1 Simulation environment 31

{
{
{
{

Simulation model

Adaptive framework

Runtime middleware

Distributed execution
architecture

GAIA

ARTÌS

LUNES

PEU
1

PEU
2

PEU
3

Figure 3.1: Simulation environment stack (taken from [33] and modified)

dedicated to other specific features, like the adaptive runtime management

of synchronization and communication overheads [32].

ARTÌS supports the Concurrent Replication of Parallel and Distributed

Simulations (CR-PADS), i.e. the concurrent execution of many indepen-

dent simulation runs based on the same model definition, in order to de-

crease the wall-clock time required to complete a set of simulations. More-

over, a further enhancement of performances in complex simulation scenarios

is achieved by both data marshalling (implemented in ARTÌS) and Intel R©

Hyper-Threading
TM

technology.

3.1.2 GAIA

As stated before, parallel and distributed simulation has to face some

problems related to resource management, both in terms of network overhead

and physical execution units load. Entites on the same PEU are able to com-

municate via low latency and low overhead networks, namely shared memory.

On the other side, simulated model entities (SMEs) allocated on distributed

32 3. DDG: testbed and performance evaluation

PEUs must communicate, for example, by means of a LAN connection, which

has a higher latency. The best solution to reduce communication and syn-

chronization overhead is to allocate the whole set of entities on the same

PEU, but it turns to be the worst solution in terms of load-balancing. GAIA

framework aims at reducing simulation costs by adapting model partition-

ing and execution architecture to runtime requirements. Basically, GAIA

performs a selective migration of SMEs, to optimize both communication

between distributed PEUs and load of a single PEU.

GAIA allows the reduction of communication overhead by using two

heuristics: the first (base heuristic) monitors communication pattern of SMEs

and spots potential candidates to be migrated, i.e. highly interacting SMEs,

while the second (group heuristic) analyzes the results of basic heuristic to

find and evaluate entire groups of SMEs to be migrated.

The load balancing mechanism is based on the presence of synchroniza-

tion barriers during the simulation execution, which are exploited to obtain a

ranking of logical processes (groups of SMEs) based on arrival to the synchro-

nization barriers. The logical processes on top of the ranking are marked as

‘fast’, while the ones at the bottom are marked as ‘slow’. The load-balancing

mechanism triggers additional migrations to improve the balancing of the

distributed system, enabling the slowest logical processes to migrate some

SMEs to the fastest ones.

3.1.3 LUNES

On the top of the simulator stack (figure 3.1) there is LUNES, an agent-

based discrete-event simulator. The goal of LUNES is to provide a tool for

the simulation of complex protocols on large graphs of whatever topology.

It is written according to a modular approach, which allows an easier inte-

gration of external tools as well as the possibility to create and implement

new protocols within the simulator. The main modules reflect the phases of

protocols’ simulation:

• Network topology creation: in the current version, LUNES uses igraph

3.1 Simulation environment 33

mig_agents

user_event_handlers

lunes

Figure 3.2: LUNES modules stack

[39] tool to create and manipulate both directed and undirected graphs.

They can be used for an on-the-fly evaluation of communication algo-

rithms as well as stored into ‘corpuses’ for a later use. It’s worth under-

lining that igraph represents only one possible way to generate network

graphs, and the usage of an external tool doesn’t imply a static topol-

ogy. Instead, during the simulation execution it’s possible to modify

network topology and deal with dynamic systems [34].

• Protocol simulation: the whole LUNES platform relies on the services

provided by GAIA and ARTÌS, thus the implementation of new algo-

rithms doesn’t have to deal with low-level simulation issues. Moreover,

LUNES offers a set of functions that help the user deal with the com-

mon operations of dissemination protocols (message forwarding, actions

on message reception and so on).

• Performance evaluation: together with protocol simulation, the per-

formance evaluation module is the most demanding, both in terms of

disk space and computational resources. The simulation of a network

with a few hundred nodes creates a huge amount of traces (some giga-

34 3. DDG: testbed and performance evaluation

Figure 3.3: Sequence diagram of activations on ping message reception

bytes per run), which are stored in temporary folders to be parsed and

analyzed at the end of the simulation. Trace analysis is implemented

using a mixture of shell scripts and C language code, in order to be

efficient and easily extensible.

The whole simulator is written in C language for efficiency reasons, and

it’s completed by a set of shell scripts which allow a batch execution of pro-

vided gossip algorithms. These scripts can be easily modified to fit whatever

protocol.

As shown in figure 3.2, the core of LUNES can be roughly divided into

three communicating modules, here identified by the respective source code

file names. These modules use other orthogonal services, for example hash

table management or trace management, which are not depicted in the above

scheme.

The main simulation loop is run by mig_agents, which is in charge of call-

ing the appropriate handlers after the reception of a low-level message (i.e.,

a message sent by GAIA). The set of functions of user_event_handlers

represents a bridge between user simulation level and the GAIA-ARTÌS

platform: in fact, events like the reception of a new message trigger a spe-

3.2 Performance evaluation scenario 35

cific call to the upper layer, the lunes module, which handles the high-

est abstraction level of protocols. However, high-level lunes functions al-

ways call primitives of user_event_handlers, which communicate directly

with the simulation level. For example, the reception of a new message

(called ping message) triggers the function user_ping_event_handler in

user_event_handlers, which calls the lunes_user_ping_event_handler.

Figure 3.3 depicts the Unified Modeling Language (UML) sequence dia-

gram of function calls after the reception of a new message: the simulation

level calls the correct event handler, which communicates with user level

by means of lunes primitives. The core of dissemination protocols lies in

lunes_forward_to_neighbors and lunes_real_forward functions, which

implement algorithms’ dissemination rules. However, these two user-level

functions rely again on user event handler module to execute the real mes-

sage delivery, by calling execute_ping. In the end, this function is in charge

of initializing message properties and sending it to GAIA layer.

3.2 Performance evaluation scenario

Degree-dependent Dynamic Gossip has been tested on the simulation en-

vironment described above. As already stated, no assumptions on network

topology or nodes’ knowledge have been made, thus letting DDG be a suit-

able solution for communication on whatever kind of network infrastructure.

DDG performances have been compared with those of two of the algorithms

described in section 2.2, namely Probabilistic Broadcast Gossip and Proba-

bilistic Edge Gossip (from now on, it will be called Fixed Probability Gossip).

3.2.1 Network graphs

The tests have been executed on two graph corpuses, each of them con-

taining 100 connected graphs, and each graph composed of 100 nodes. The

corpuses differ by their topology:

36 3. DDG: testbed and performance evaluation

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.5 1 1.5 2 2.5

lo
g(

P
(k

))

log(k)

Figure 3.4: Degree distribution of a random graph (double logarithmic scale)

• Random networks : random graphs corpuses are included in LUNES

distribution. They are built using a function provided by igraph, ac-

cording to the Erdös-Rényi model [35]. The graphs of the corpus have

the following characteristics: each node has two edges, that is 200 edges

in the whole network, without self-loops, and graph diameter is 8.

• Scale-free networks : scale-free graph corpuses aren’t included in LUNES

package. For these simulations, ad-hoc scale-free corpuses have been

created according to the Barabási-Albert construction model [36] by

using a modified version of the tool developed and described in [37].

Three corpuses have been generated, each of them having different

starting graph dimension; more precisely, fully connected graphs of 3,

5 and 7 nodes respectively.

Figures 3.4 and 3.5 depict the degree distribution of a sample of both

random and scale-free corpus’ graphs in double logarithmic scale. Figure 3.4

3.2 Performance evaluation scenario 37

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.5 1 1.5 2 2.5 3 3.5 4 4.5

lo
g(

P
(k

))

log(k)

Figure 3.5: Degree distribution of a scale-free graph (double logarithmic

scale)

clearly shows that, except some outliers, the degree of nodes varies within

a narrow range. The workload in real networks with random topology is

equally shared among all peers, but such networks are also more prone to

partitioning after random failures.

On the other side, figure 3.5 highlights the main topological peculiarity

of scale-free graphs, that is a minimum amount of highly connected nodes

(hubs) against a large part of nodes with a low degree. Therefore, scale-

free networks have a low diameter, which in general ranges from loglogN to

logN , being N the number of nodes [5]. This means that a message requires

very few hops to travel from a node to any other node. The presence of

hubs makes the workload not balanced, because hubs must maintain a high

number of active connections and they will likely substain a higher workload

than the other low-degree nodes [5]. Moreover, scale-free networks are known

to be resilient against random failures.

38 3. DDG: testbed and performance evaluation

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

D
is

se
m

in
at

io
n

pr
ob

ab
ili

ty

n

Figure 3.6: Polynomial probability function with α = 1

The choice of an initial graph of 3, 5 and 7 nodes has been made to test

the behavior of the algorithms when increasing the number of potential hubs.

Simulation results will be shown later.

3.2.2 Dissemination probability

The peculiarity of DDG is that gossip’s probabilistic component is mixed

with a deterministic one. More specifically, dissemination probability is com-

puted considering the degree of each node’s neighbor, as described in section

2.6. After the reception of a message, node p checks the dimension of each

neighbor’s q neighborhood and computes the dissemination probability, ac-

cording to a specific function. For experimental evaluation, the two following

functions have been used:

3.2 Performance evaluation scenario 39

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5 6 7 8 9 10

D
is

se
m

in
at

io
n

pr
ob

ab
ili

ty

n

Figure 3.7: Logarithmic probability function with α = 1

P (n) =

1, n = 1, 2

1
nα , n > 2

P (n) =

1, n = 1, 2

1
ln(α·n) , n > 2

being n the number of neighbors of q, and α a user parameter. Figures 3.6

and 3.7 show an example of both functions with α = 1 for some values of n.

3.2.3 Model parameters

Apart from dissemination probability, which is a DDG-specific parameter,

LUNES has been configured as follows: each simulation run is 5000 time steps

long and each node in the network can generate new messages during the

whole simulation lifespan; the time between successive messages is generated

according to a typical exponential distribution.

Nodes’ cache has a size of 256 items, and it’s managed using the Least

Recently Used (LRU) replacement algorithm. Moreover, each message has a

40 3. DDG: testbed and performance evaluation

Time-To-Live (TTL) property, in order to limit its lifetime in the network.

As usual, each hop reduces this value up to discarding. For these simulations,

the TTL has been set to 8, a value that is always greater than or equal to

the diameter of both random and scale-free graphs used for the simulations.

Algorithms have been tested on 10 runs (each of them on a different

graph) for each of the 100 chosen values of α on the whole corpus. The

result of each run block is computed as the average of the 10 runs.

3.3 Metrics

As described in section 1.3.3, there are many possible metrics to evaluate

network graphs algorithms. Among those provided by LUNES, the following

ones have been chosen:

• Coverage: the fraction of nodes which actually received the messages

(higher is better).

• Delay : the average number of hops that a message traverses before

reaching a node (lower is better).

• Overhead ratio: accurately described in [5], overhead ratio ρ is defined

as follows:

ρ =
Delivered messages

Lower bound

where ‘delivered messages’ is the total number of messages that are

delivered in a simulation run by a specific dissemination protocol, and

the ‘lower bound’ is the minimum number of messages (in each graph)

that are necessary to obtain a complete coverage [5].

3.4 Simulation results

Simulations aim at comparing the two configurations of DDG presented in

3.2.2 with Fixed Probability Gossip and Probabilistic Broadcast on random

3.4 Simulation results 41

and scale-free graphs. Experimental evaluation is focused on showing the

cost of the three algorithms, represented by overhead ratio on x-axis, with

respect to their effectiveness, i.e. coverage and delay on y-axis.

3.4.1 Random graphs

Even though degree distribution is almost uniform in random graphs,

both polynomial (figures 3.8 and 3.9) and logarithmic (figures 3.10 and 3.11)

functions perform better than the other algorithms in terms of coverage (in

some cases more than 10%, overhead being equal). However, they both show

in some cases a bit higher delay (less than one hop on average). This is

caused by DDG forwarding policy, which reduces the amount of redundant

messages by lowering reception probability of high connected nodes. As a

result, DDG shows a higher coverage and a lower average value of total sent

messages in each dissemination, but each message is forced to follow a little

longer path to reach all nodes.

3.4.2 Scale-free graphs

The most interesting experimental results are provided by tests run on

scale-free networks. First of all, there is a loose dependency between coverage

and initial graph dimension for all the algorithms: in fact, figures 3.32, 3.34,

3.36, and 3.38 show that the overhead-coverage results are almost the same

for initial graphs of 3, 5, and 7 nodes. Fixed Probability and Probabilistic

Broadcast are able to reach a complete coverage with ρ ∼ 3, while all DDG

configurations reach the same point with ρ ∼ 2, i.e. they show a better

exploitation of network topology and fewer messages are forwarded (figures

3.14, 3.16, 3.20, 3.22, 3.26, and 3.28). This is not an unexpected result: in

fact, the key characteristics of scale-free networks are their particular degree

distribution and the existence of hubs. DDG is able to exploit these pecu-

liarities due to its deterministic component: nodes with a very low degree

(the largest part in scale-free networks) are always eligible to receive new

42 3. DDG: testbed and performance evaluation

messages, while hubs’ degree limit forwarding redundancy.

With regard to delay, DDG performs in almost all configurations bet-

ter than the other algorithms (figures 3.15, 3.17, 3.21, 3.23, 3.27, and 3.29).

Even in this case, the reason can be found in its deterministic component:

scale-free networks have a low diameter, thus messages should spread all

over the network in a few hops. However, Fixed Probability and Probabilis-

tic Broadcast don’t consider the distance of nodes from the center of the

network, because probabilistic dissemination is applied to all nodes the same

way. Therefore, messages may ‘bounce’ between lots of nodes (increasing

overhead ratio) before reaching poorly connected ones. The dynamics of dis-

semination probability applied by DDG overcomes this issue, because hubs

act as ‘forwarding amplifiers’ of nodes with low connectivity.

Opposed to the behavior towards coverage, the dimension of initial graph

has a strong influence on delay of all algorithms (figures 3.33, 3.35, 3.37,

and 3.39): the bigger is the size of initial graph, the higher is the average

delay. A possible explanation for this phenomenon is that a higher number

of potential hubs makes nodes with low degree express different preferential

attachment, thus network topology doesn’t appear as a proper star. In other

words, during the growing phase, each new node has a wider choice of hubs

to attach to. As a result, network topology is less centralized and messages

have to traverse a bit more hops to reach all nodes.

3.4.3 DDG dissemination probability

The deterministic component of DDG strongly influences algorithm per-

formances, but the two tested functions seem to behave similarly (figures 3.12

and 3.13 for random graphs, and 3.18, 3.19, 3.24, 3.25, 3.30 and 3.31 for scale-

free graphs), even though probability distributions’ slopes are quite different.

The explanation for the similar behavior of both polynomial and logarithmic

function can be found in the very high amount of messages produced by the

nodes, together with the considerable length of simulation (5000 time steps)

and the small size of graphs. The slope of probability distributions is the

3.4 Simulation results 43

cause of the high density of values both in random and scale-free graphs ex-

hibited by logarithmic function when varying the value of α: the influence of

α as a multiplication coefficient is indeed lower than as an exponent.

44 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Dissemination protocol comparison: coverage

degree-dependent dynamic gossip (polynomial function)
fixed probability

probabilistic broadcast

Figure 3.8: Fixed Probability, Probabilistic Broadcast, and DDG with poly-

nomial function: coverage on random graphs

3.4 Simulation results 45

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.5 1 1.5 2 2.5 3 3.5

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Dissemination protocol comparison: delay

degree-dependent dynamic gossip (polynomial function)
fixed probability

probabilistic broadcast

Figure 3.9: Fixed Probability, Probabilistic Broadcast, and DDG with poly-

nomial function: delay on random graphs

46 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Dissemination protocol comparison: coverage

degree-dependent dynamic gossip (logarithmic function)
fixed probability

probabilistic broadcast

Figure 3.10: Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: coverage on random graphs

3.4 Simulation results 47

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 0.5 1 1.5 2 2.5 3 3.5

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Dissemination protocol comparison: delay

degree-dependent dynamic gossip (logarithmic function)
fixed probability

probabilistic broadcast

Figure 3.11: Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: delay on random graphs

48 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Dissemination protocol comparison: coverage

degree-dependent dynamic gossip: logarithmic function
degree-dependent dynamic gossip: polynomial function

Figure 3.12: DDG with polynomial and logarithmic function: coverage on

random graphs

3.4 Simulation results 49

 2.8

 3

 3.2

 3.4

 3.6

 3.8

 4

 4.2

 4.4

 4.6

 4.8

 5

 0 0.5 1 1.5 2 2.5 3

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Dissemination protocol comparison: delay

degree-dependent dynamic gossip: logarithmic function
degree-dependent dynamic gossip: polynomial function

Figure 3.13: DDG with polynomial and logarithmic function: delay on ran-

dom graphs

50 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Dissemination protocol comparison: coverage

degree-dependent dynamic gossip (polynomial function)
fixed probability

probabilistic broadcast

Figure 3.14: Fixed Probability, Probabilistic Broadcast, and DDG with poly-

nomial function: coverage on scale-free graphs with 3 initial nodes

3.4 Simulation results 51

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.5 1 1.5 2 2.5 3

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Dissemination protocol comparison: delay

degree-dependent dynamic gossip (polynomial function)
fixed probability

probabilistic broadcast

Figure 3.15: Fixed Probability, Probabilistic Broadcast, and DDG with poly-

nomial function: delay on scale-free graphs with 3 initial nodes

52 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Dissemination protocol comparison: coverage

degree-dependent dynamic gossip (logarithmic function)
fixed probability

probabilistic broadcast

Figure 3.16: Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: coverage on scale-free graphs with 3 initial nodes

3.4 Simulation results 53

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 0.5 1 1.5 2 2.5 3

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Dissemination protocol comparison: delay

degree-dependent dynamic gossip (logarithmic function)
fixed probability

probabilistic broadcast

Figure 3.17: Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: delay on scale-free graphs with 3 initial nodes

54 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Dissemination protocol comparison: coverage

degree-dependent dynamic gossip: logarithmic function
degree-dependent dynamic gossip: polynomial function

Figure 3.18: DDG with polynomial and logarithmic function: coverage on

scale-free graphs with 3 initial nodes

3.4 Simulation results 55

 1.98

 1.99

 2

 2.01

 2.02

 2.03

 2.04

 2.05

 1.6 1.8 2 2.2 2.4 2.6 2.8 3

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Dissemination protocol comparison: delay

degree-dependent dynamic gossip: logarithmic function
degree-dependent dynamic gossip: polynomial function

Figure 3.19: DDG with polynomial and logarithmic function: delay on scale-

free graphs with 3 initial nodes

56 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Dissemination protocol comparison: coverage

degree-dependent dynamic gossip (polynomial function)
fixed probability

probabilistic broadcast

Figure 3.20: Fixed Probability, Probabilistic Broadcast, and DDG with poly-

nomial function: coverage on scale-free graphs with 5 initial nodes

3.4 Simulation results 57

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.5 1 1.5 2 2.5 3 3.5

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Dissemination protocol comparison: delay

degree-dependent dynamic gossip (polynomial function)
fixed probability

probabilistic broadcast

Figure 3.21: Fixed Probability, Probabilistic Broadcast, and DDG with poly-

nomial function: delay on scale-free graphs with 5 initial nodes

58 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Dissemination protocol comparison: coverage

degree-dependent dynamic gossip (logarithmic function)
fixed probability

probabilistic broadcast

Figure 3.22: Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: coverage on scale-free graphs with 5 initial nodes

3.4 Simulation results 59

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.5 1 1.5 2 2.5 3 3.5

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Dissemination protocol comparison: delay

degree-dependent dynamic gossip (logarithmic function)
fixed probability

probabilistic broadcast

Figure 3.23: Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: delay on scale-free graphs with 5 initial nodes

60 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Dissemination protocol comparison: coverage

degree-dependent dynamic gossip: logarithmic function
degree-dependent dynamic gossip: polynomial function

Figure 3.24: DDG with polynomial and logarithmic function: coverage on

scale-free graphs with 5 initial nodes

3.4 Simulation results 61

 2.02

 2.03

 2.04

 2.05

 2.06

 2.07

 2.08

 2.09

 2.1

 2.11

 2.12

 2.13

 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Dissemination protocol comparison: delay

degree-dependent dynamic gossip: logarithmic function
degree-dependent dynamic gossip: polynomial function

Figure 3.25: DDG with polynomial and logarithmic function: delay on scale-

free graphs with 5 initial nodes

62 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Dissemination protocol comparison: coverage

degree-dependent dynamic gossip (polynomial function)
fixed probability

probabilistic broadcast

Figure 3.26: Fixed Probability, Probabilistic Broadcast, and DDG with poly-

nomial function: coverage on scale-free graphs with 7 initial nodes

3.4 Simulation results 63

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 0.5 1 1.5 2 2.5 3 3.5

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Dissemination protocol comparison: delay

degree-dependent dynamic gossip (polynomial function)
fixed probability

probabilistic broadcast

Figure 3.27: Fixed Probability, Probabilistic Broadcast, and DDG with poly-

nomial function: delay on scale-free graphs with 7 initial nodes

64 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Dissemination protocol comparison: coverage

degree-dependent dynamic gossip (logarithmic function)
fixed probability

probabilistic broadcast

Figure 3.28: Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: coverage on scale-free graphs with 7 initial nodes

3.4 Simulation results 65

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 0.5 1 1.5 2 2.5 3 3.5

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Dissemination protocol comparison: delay

degree-dependent dynamic gossip (logarithmic function)
fixed probability

probabilistic broadcast

Figure 3.29: Fixed Probability, Probabilistic Broadcast, and DDG with log-

arithmic function: delay on scale-free graphs with 7 initial nodes

66 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Dissemination protocol comparison: coverage

degree-dependent dynamic gossip: logarithmic function
degree-dependent dynamic gossip: polynomial function

Figure 3.30: DDG with polynomial and logarithmic function: coverage on

scale-free graphs with 7 initial nodes

3.4 Simulation results 67

 2.15

 2.2

 2.25

 2.3

 2.35

 2.4

 2.45

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Dissemination protocol comparison: delay

degree-dependent dynamic gossip: logarithmic function
degree-dependent dynamic gossip: polynomial function

Figure 3.31: DDG with polynomial and logarithmic function: delay on scale-

free graphs with 7 initial nodes

68 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Fixed Probability: coverage on scale-free graphs

initial graph: 3 nodes
initial graph: 5 nodes
initial graph: 7 nodes

Figure 3.32: Fixed Probability: coverage on scale-free graphs with 3, 5, and

7 initial nodes

3.4 Simulation results 69

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0 0.5 1 1.5 2 2.5 3 3.5

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Fixed Probability: delay on scale-free graphs

initial graph: 3 nodes
initial graph: 5 nodes
initial graph: 7 nodes

Figure 3.33: Fixed Probability: delay on scale-free graphs with 3, 5, and 7

initial nodes

70 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 0 0.5 1 1.5 2 2.5 3 3.5

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Probabilistic Broadcast: coverage on scale-free graphs

initial graph: 3 nodes
initial graph: 5 nodes
initial graph: 7 nodes

Figure 3.34: Probabilistic Broadcast: coverage on scale-free graphs with 3,

5, and 7 initial nodes

3.4 Simulation results 71

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 0 0.5 1 1.5 2 2.5 3 3.5

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Probabilistic Broadcast: delay on scale-free graphs

initial graph: 3 nodes
initial graph: 5 nodes
initial graph: 7 nodes

Figure 3.35: Probabilistic Broadcast: delay on scale-free graphs with 3, 5,

and 7 initial nodes

72 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Degree-dependent Dynamic Gossip: coverage on scale-free graphs

initial graph: 3 nodes
initial graph: 5 nodes
initial graph: 7 nodes

Figure 3.36: DDG with polynomial function: coverage on scale-free graphs

with 3, 5, and 7 initial nodes

3.4 Simulation results 73

 1.95

 2

 2.05

 2.1

 2.15

 2.2

 2.25

 2.3

 2.35

 2.4

 2.45

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Degree-dependent Dynamic Gossip: delay on scale-free graphs

initial graph: 3 nodes
initial graph: 5 nodes
initial graph: 7 nodes

Figure 3.37: DDG with polynomial function: delay on scale-free graphs with

3, 5, and 7 initial nodes

74 3. DDG: testbed and performance evaluation

 0

 20

 40

 60

 80

 100

 2.04 2.06 2.08 2.1 2.12 2.14 2.16 2.18 2.2 2.22 2.24

C
ov

er
ag

e
(%

)

Overhead ratio (ρ)

Degree-dependent Dynamic Gossip: coverage on scale-free graphs

initial graph: 3 nodes
initial graph: 5 nodes
initial graph: 7 nodes

Figure 3.38: DDG with logarithmic function: coverage on scale-free graphs

with 3, 5, and 7 initial nodes

3.4 Simulation results 75

 2

 2.05

 2.1

 2.15

 2.2

 2.25

 2.3

 2.35

 2.04 2.06 2.08 2.1 2.12 2.14 2.16 2.18 2.2 2.22 2.24

D
el

ay
 (

nu
m

be
r

of
 h

op
s)

Overhead ratio (ρ)

Degree-dependent Dynamic Gossip: delay on scale-free graphs

initial graph: 3 nodes
initial graph: 5 nodes
initial graph: 7 nodes

Figure 3.39: DDG with logarithmic function: delay on scale-free graphs with

3, 5, and 7 initial nodes

Chapter 4

Future work

Experimental evaluations have shown that DDG performs better than

some of the most common push gossip approaches, obtaining a much higher

coverage with a bit higher delay. However, time and limited computational

resources didn’t allow a deeper analysis of some further details of DDG, which

could undergo a redesign in order to improve performances.

4.1 Network topology

Simulations have shown that DDG performs well on graphs with both

high and low edge dependency, i.e. scale-free and random topologies. How-

ever, it has to be determined whether the algorithm could be considered fully

topology-independent, so tests have to be performed on other known mod-

els (for example small-world). Moreover, limited computing resources didn’t

allow DDG to be tested on larger graphs (thousands of nodes) to verify its

scalability.

4.2 Dissemination probability

The rationale behind polynomial and logarithmic functions is that dissem-

ination probability has to be inversely proportional to a function of node’s

77

78 4. Future work

degree. However, further experiments should be performed to verify how

other degree-dependent probability distributions behave on aforementioned

topologies, and an a priori analysis of the most suitable distributions should

be made. The tuning of dissemination probability may be also improved by

adding a pull-based component to DDG: nodes could monitor message recep-

tion rate of their neighbors and eventually increase dissemination probability

of ‘neglected’ nodes or decrease dissemination probability of node which gen-

erate too much network traffic, thus making DDG shift from a pure push to

an adaptive approach (see 2.5).

4.3 Graph knowledge

The ‘basic’ version of DDG uses neighborhood dimension as the only

lightweight information to tune dissemination probability. More sophisti-

cated techniques can be designed and implemented, such as an heuristic by

means of which each node can discover how far it is from the center of the net-

work and exploit this information to decrease overhead on both network in-

frastructure and nodes. Other lightweight data structures may be forwarded

together with messages, in order to keep further statistics and consequently

tune dissemination parameters or even dynamically switch between different

probability distributions.

4.4 Network dynamics

The last aspect which requires a deeper analysis is the behavior of DDG

as well as other classic push gossip protocols towards modifcations of the

simulated system, both statically and dynamically (i.e., during the whole

simulation lifespan). More precisely, static elements which can be modified

are nodes’ cache size and maximum value of message’s TTL, while the most

important dynamics of networks is the change of topology and reachabil-

ity, caused by node churn. Even in this case, the above parameters may

4.4 Network dynamics 79

be exploited to tune dissemination probability and, consequently, message

forwarding rate.

Conclusions

Today, client-server paradigm is not efficient enough to be the only tech-

nique employed for data dissemination. Since a decade, especially after the

birth of BitTorrent protocol, peer-to-peer paradigm has become one of the

most used dissemination approaches, due to its efficiency, resilience and scal-

ability, at the price of a possibly lower bandwidth than centralized architec-

tures.

This thesis has addressed the problem of efficient data dissemination on

peer-to-peer networks, focusing on the perspective provided by an almost

new class of algorithms, the so-called ‘gossip protocols’. The main purpose

of gossip algorithms is to minimize the overhead on both network infras-

tructure and nodes, trying to maximize the spread of messages within the

network. Many probabilistic forwarding approaches have been studied, each

of them having pros and cons. In chapter 2 only some of the possible solu-

tions to the problem have been analyzed and summarized, with particular

regard to the most general and adaptable ones. In fact, literature is full of

variants of gossip algorithms, specifically designed to perform well under cer-

tain hypotheses, related to both network infrastructure and algorithm’s final

purpose (for example, gossip protocols tuned to better adapt to video stream-

ing). Moreover, it has been chosen to focus the analysis on those algorithms

which have been considered almost completely ‘free from constraints’, in the

sense that they are supposed to run in whatever environment with a few

assumptions on it. The algorithms have been observed at a high abstraction

level, by means of graph theory.

81

82 Conclusions

A large part of the material provided by literature has been the source

of inspiration for Degree-dependent Dynamic Gossip, which belongs to the

family of push gossip protocols, and whose experimental results are shown in

chapter 3. DDG shows better performances than some of the most common

push gossip algorithms, even if many other tests and improvements have

to be performed, as described in chapter 4. To the best of my knowledge,

gossip algorithms, as any other solution, have to be considered as one of

the feasible alternatives to solve data dissemination problem on peer-to-peer

networks, and their applicability must be evaluated for every instance of a

specific problem.

Gossip is certainly a viable solution to many problems (see 1.4) and re-

search can contribute by finding other fields of application. However, litera-

ture shows that, even in the case of gossip protocols, there isn’t any ‘silver

bullet’, which can completely solve the data dissemination problem in the

most effective and efficient way. In fact, it’s very important not only to un-

derstand whether gossip algorithms are a suitable approach to solve a prob-

lem, but also what kind of gossip approach is the most correct (push, pull,

hybrid or others) depending on environmental constraints, such as network

infrastructure, predicted workload and network size.

Bibliography

[1] OECD (2012), Machine-to-Machine Communications: Connecting Bil-

lions of Devices, OECD Digital Economy Papers, No. 192, OECD Pub-

lishing.

[2] Devavrat Shah. Network gossip algorithms. Acoustics, Speech and Sig-

nal Processing, 2009. ICASSP 2009. IEEE International Conference on,

pages 3673 - 3676.

[3] Ruijing Hu, Julien Sopena, Luciana Arantes, Pierre Sens and Isabelle

Demeure. A fair comparison of gossip algorithms over large-scale ran-

dom topologies.

[4] Patrick T. Eugster, Rachid Guerraoui, Anne-Marie Kermarrec, Laurent

Massoulié. Epidemic information dissemination in distributed systems.

Computer, volume 37, issue 5, pages 60 - 67.

[5] Gabriele D’Angelo, Stefano Ferretti, Moreno Marzolla. Adaptive event

dissemination for peer-to-peer multiplayer online games. Proceedings of

2nd ICST/CREATE-NET Workshop on DIstributed SImulation and

Online gaming (DISIO 2011). In conjunction with SIMUTools 2011.

Barcelona, Spain, March 2011. ISBN 978-1-936968-00-8.

[6] Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, Maarten van

Steen. Gossip-based unstructured overlay networks: an experimental

evaluation. Technical Report UBLCS-2003-15, December 2003.

83

84 Bibliography

[7] João Leitão. Gossip-based broadcast protocols. Master the-

sis, Department of Informatics, University of Lisbon. DOI:

http://hdl.handle.net/10455/3076.

[8] Lorenzo Alvisi, Jeroen Doumen, Rachid Guerraoui, Boris Koldehofe,

Harry Li, Robbert van Renesse, Gilles Tredan. How robust are gossip-

based communication protocols?. ACM SIGOPS Operating Systems Re-

view, Volume 41 Issue 5, October 2007, Pages 14 - 18.

[9] Ming Cao, Daniel A. Spielman, Edmund M. Yeh. Accelerated gossip

algorithms for distributed computation. In Proc. 44th Annu. Allerton

Conf. Commun. Control Comput., Monticello, IL, Sep. 2006.

[10] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, Devavrat Shah. Analy-

sis and optimization of randomized gossip algorithms. Decision and Con-

trol, 2004. CDC. 43rd IEEE Conference on, volume 5, pages 5310 - 5315.

[11] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, Devavrat Shah. Gossip

algorithms: design, analysis and applications. INFOCOM 2005. 24th

Annual Joint Conference of the IEEE Computer and Communications

Societies. Proceedings IEEE. Volume 3, pages 1653 - 1664.

[12] Paolo Frasca, Fabio Fagnani. Broadcast gossip averaging algorithms:

interference and asymptotical error in large networks. arXiv preprint

arXiv:1005.1292, 2010.

[13] Damon Mosk-Aoyama, Devavrat Shah. Fast distributed algorithms for

computing separable functions. Information Theory, IEEE Transactions

on, july 2008. Volume 54, issue 7, pages 2997 - 3007.

[14] Robbert van Renesse, Yawn Minsky, Mark Hayden. A gossip-style failure

detection service. Middleware’98, 1998, pages 55 - 70.

[15] Zygmunt J. Haas, Joseph Y. Halpern, Li Li. Gossip-Based ad hoc rout-

ing. INFOCOM 2002. Twenty-First Annual Joint Conference of the

Bibliography 85

IEEE Computer and Communications Societies. Proceedings. IEEE.

Volume 3, pages 1707 - 1716.

[16] Ali Ghodsi, Sameh El-Ansary, Supriya Krishnamurthy, Seif Haridi. A

self-stabilizing network size estimation gossip algorithm for peer-to-peer

systems. Technical Report T2005:16, SICS (2005).

[17] Mauro Franceschelli, Alessandro Giua, Carla Seatzu. Load balancing on

networks with gossip-based distributed algorithms. Decision and Control,

2007 46th IEEE Conference on, pages 500 - 505.

[18] Mauro Franceschelli, Alessandro Giua, Carla Seatzu. Load balancing

over heterogeneous networks with gossip-based algorithms. American

Control Conference, 2009. ACC ’09, pages 1987 - 1993.

[19] Eytan Modiano, Devavrat Shah, Gil Zussman. Maximizing throughput

in wireless networks via gossiping. SIGMETRICS ’06/Performance ’06

Proceedings of the joint international conference on Measurement and

modeling of computer systems, pages 27 - 38.

[20] Alexandros G. Dimakis, Soummya Kar, José M. F. Moura, Michael G.

Rabbat, Anna Scaglione. Gossip algorithms for distributed signal pro-

cessing. Proceedings of the IEEE, november 2010, volume 98, issue 11,

pages 1847 - 1864.

[21] Konrad Iwanicki, Maarten van Steen. The PL-Gossip algorithm. Tech-

nical Report IR-CS-034.

[22] Pascal Felber, Anne-Marie Kermarrec, Lorenzo Leonini, Etienne Rivière,

Spyros Voulgaris. PULP: An adaptive gossip-based dissemination proto-

col for multi-source message streams. Peer-to-Peer Networking and Ap-

plications, March 2012, Volume 5, Issue 1, pp 74-91.

[23] Márk Jelasity. Gossip. Self-organising software, 2011. pages 139 - 162.

86 Bibliography

[24] Spyros Voulgaris, Maarten van Steen. Hybrid Dissemination: Adding

Determinism to Probabilistic Multicasting in Large-Scale P2P Systems.

Middleware 2007, 2007. Volume 4834, pages 389-409.

[25] Spyros Voulgaris, Daniela Gavidia, Maarten van Steen. CYCLON: Inex-

pensive Membership Management for Unstructured P2P Overlays. Jour-

nal of Network and Systems Management, June 2005. Volume 13, Issue

2, pages 197-217.

[26] Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, Maarten

van Steen. The peer sampling service: experimental evaluation of

unstructured gossip-based implementations. Proceedings of the 5th

ACM/IFIP/USENIX international conference on Middleware, 2004.

Pages 79 - 98.

[27] Spyros Voulgaris, Maarten van Steen, Konrad Iwanicki. Proactive

gossip-based management of semantic overlay networks. Concurrency

and computation: practice and experience. Volume 19, issue 17, 10 De-

cember 2007, pages 2299 - 2311.

[28] Dionysios Kostoulas, Dimitrios Psaltoulis, Indranil Gupta, Kenneth P.

Birman, Alan J. Demers. Active and passive techniques for group size

estimation in large-scale and dynamic distributed systems. Journal of

Systems and Software, october 2007. Volume 80, issue 10, pages 1639 -

1658.

[29] Mayur Deshpande, Bo Xing, Iosif Lazardis, Bijit Hore, Nalini

Venkatasubramanian, Sharad Mehrotra. CREW: A gossip-based flash-

dissemination system. Distributed Computing Systems, 2006. ICDCS

2006. 26th IEEE International Conference on.

[30] Benôıt Garbinato, Denis Rochat, Marco Tomassini. Impact of scale-free

topologies on gossiping in ad hoc networks. Network Computing and

Applications, 2007. NCA 2007. Sixth IEEE International Symposium

on, pages 269-272.

Bibliography 87

[31] IEEE Computer Society. 1516-2000 - IEEE Standard for Modeling and

Simulation (M&S) High Level Architecture (HLA) - Framework and

Rules.

[32] Luciano Bononi, Michele Bracuto, Gabriele D’Angelo, Lorenzo Do-

natiello. Scalable and efficient parallel and distributed simulation of

complex, dynamic and mobile systems. Techniques, Methodologies and

Tools for Performance Evaluation of Complex Systems, 2005. (FIRB-

Perf 2005). 2005 Workshop on, pages 136 - 145.

[33] D’Angelo, G. and Bracuto, M. (2009) Distributed simulation of large-

scale and detailed models. Int. J. Simulation and Process Modelling, Vol.

5, No. 2, pp.120 - 131.

[34] Gabriele D’Angelo, Stefano Ferretti. LUNES: Agent-based Simulation

of P2P Systems (Extended Version). Proceedings of the International

Workshop on Modeling and Simulation of Peer-to-Peer Architectures

and Systems (MOSPAS 2011). As part of The 2011 International Con-

ference on High Performance Computing and Simulation (HPCS 2011),

ISBN 978-1-61284-382-7.

[35] Paul Erdös, Alfréd Rényi. On the evolution of random graphs.

[36] Albert-László Barabási, Réka Albert. Emergence of Scaling in Random

Networks. Science, vol 286, 15 October 1999.

[37] Giulio Cirnigliaro. Progettazione ed implementazione di strumenti per

la valutazione di reti complesse con proprietà scale-free. Bachelor de-

gree thesis, 2011. http://amslaurea.unibo.it/2664/1/cirnigliaro_

giulio_tesi.pdf.

[38] http://pads.cs.unibo.it/dokuwiki/doku.php?id=

[39] http://igraph.sourceforge.net/

http://amslaurea.unibo.it/2664/1/cirnigliaro_giulio_tesi.pdf
http://amslaurea.unibo.it/2664/1/cirnigliaro_giulio_tesi.pdf
http://pads.cs.unibo.it/dokuwiki/doku.php?id=
http://igraph.sourceforge.net/

Acknowledgements

The last part of this work is dedicated to all the people who help me

enjoy every single aspect of my life every day. I’m sorry for foreign language

readers, but I prefer writing this section using my mother tongue.

Paradossalmente, una delle parti più complicate ma, allo stesso tempo,

fondamentali di questo lavoro è proprio quest’ultima sezione, quella in cui

occorre condensare, in poco spazio, un insieme pressoché infinito di pensieri,

parole, gesti e momenti di vita vissuta. Troppe sono le persone a cui devo

come minimo un ringraziamento, perché in fondo ritengo che ognuno di noi sia

fondamentalmente ciò che lo circonda: nessuno, infatti, può definirsi ‘com-

pleto’ se non viene completato dagli altri. I ringraziamenti sono talmente

tanti, che non saprei neanche con quale criterio esporli per non dimenticarne

nessuno: pertanto, mi affido ad un libero flusso di pensieri.

In primo luogo, desidero ringraziare chi sostiene la mia vita tutti i giorni

da quando sono nato, affrontando anche le asperità che la vita stessa pone

innanzi con una naturalezza ed una ‘normalità’ che credo abbiano poche

persone, ossia i miei genitori: mio padre, che mi ha sempre sostenuto ed

ha sempre invidiabilmente minimizzato e reso praticamente ‘spontanea’ ogni

possibile situazione di apparente difficoltà. A mia madre, invece, non può

che andare il più grande ringraziamento: per descriverla non basterebbero

volumi che, comunque, sarebbero insufficienti; inutile perdermi in parole che

sarebbero solo parziali o retoriche, ritengo sufficiente dire che senza il suo

fondamentale apporto, non sarei mai arrivato a questo traguardo; grazie

mamma. Un altro grande ringraziamento va a tutto il resto della famiglia,

che mi ha sempre supportato durante il mio percorso di vita, se pur da una

grande distanza geografica: zie, zii, nonni e cugini, sempre pronti a farsi in

quattro e che non posso che ringraziare.

Un altro importante riconoscimento va e deve andare a tutte quelle per-

sone che sono parte della mia vita da ormai tanti anni e con le quali ho condi-

viso e condivido sostanzialmente tutto, che sopportano tutte le mie ‘rotture

di scatole’, che sono sempre stati presenti e che non posso che considerare

un’ulteriore parte di famiglia: Taso, Ricci, Zacca, Berna, la Silvia, la Fede,

la Bea, la Marty e tutti i ragazzi della 5◦C, che sono entrati nella mia casa

molti anni fa e con i quali ho vissuto e voglio vivere importanti momenti che

rimarranno sempre l̀ı, come un’istantanea, impressi nella mia mente.

Un ringraziamento enorme va a tutti coloro i quali hanno contribuito alla

riuscita di questa ‘titanica impresa’ degli ultimi anni, sia di triennale che

di magistrale, sotto tutti gli aspetti: grazie a tutto lo staff di via Sacchi

e, in particolare, ai miei ‘angeli della portineria’ Cesare, Floriana e Franca,

che hanno pazientemente ascoltato e risolto tutte le mie (e non solo mie)

problematiche di ogni tipo, sempre con il sorriso sulle labbra. Grazie a tutti

coloro che hanno allietato la mia permanenza durante il corso della triennale

e che non saprei nominare tutti: Gianno, Zavo, Diego, Francesco, Mike,

Marv, Cops, Comand, Nico, Matteo, Andrea, Lorenzo, Sara, Gessica, Elisa,

Eleonora e tutti quelli che non ho citato per nome. Grazie anche a Fux,

Fabri, Davide, Matteo, Buccio, Marco, Villa, Alex, Giacomo, Timothy e

Viviana che hanno, invece, alleviato l’irto percorso della laurea magistrale.

Un ringraziamento particolare, però, va a tre persone: un primo grazie va a

Teo Rigoni, il mio eterno compagno di progetti, senza il cui contributo umano,

informatico e didattico, alcuni esami non avrebbero avuto assolutamente la

stessa riuscita. Altri due enormi ringraziamenti vanno a due persone senza

le quali sarei ancora bloccato e non starei scrivendo queste parole: Max e

Spada, due grandi menti e meravigliosi compagni di viaggio; sono stati e sono

colleghi, consiglieri, veri amici e autentici mentori. Da loro ho avuto lezioni

di matematica, informatica ed anche di vita, delle quali non posso che fare

tesoro. Troppo ci sarebbe da dire: grazie, grazie, grazie.

In ultima istanza (ma solo cronologicamente), desidero ringraziare Gabriele

D’Angelo, magnifico insegnante, ma anche impareggiabile relatore, grazie al

quale mi sono appassionato al mondo delle reti in ogni suo aspetto. Ha sop-

portato le valanghe di mail inviate da me, noiosissimo tesista, per due tesi

di laurea ed un tirocinio, sempre con disponibilità e gentilezza, guidandomi

passo dopo passo verso l’agognata meta.

License

Copyright c© 2013 by Giulio Cirnigliaro.

This work is made available under the terms of the Creative Commons

Attribution-NonCommercial-ShareAlike 3.0 Unported (CC BY-NC-SA 3.0)

license, http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

http://creativecommons.org/licenses/by-nc-sa/3.0/legalcode

	Sommario
	Introduction
	Data dissemination and gossip
	The data dissemination problem
	Data dissemination through gossip
	Introduction to gossip algorithms
	Gossiping strategies
	Hidden assumptions
	Metrics

	Other uses of gossip

	Gossip algorithms on overlay networks
	Theoretical notions and basic schemes
	The SI model
	The SIR model

	Push algorithms
	Fixed Fanout Gossip
	Probabilistic Edge Gossip
	Probabilistic Broadcast Gossip
	RingCast

	Pull algorithms
	CREW

	Hybrid algorithms
	PULP

	Adaptive algorithms
	Stimuli associated to receivers
	Stimuli associated to generators
	Stimuli associated to generators and receivers

	Degree-dependent Dynamic Gossip (DDG)
	Impact of network topology on gossip algorithms

	DDG: testbed and performance evaluation
	Simulation environment
	ARTÌS
	GAIA
	LUNES

	Performance evaluation scenario
	Network graphs
	Dissemination probability
	Model parameters

	Metrics
	Simulation results
	Random graphs
	Scale-free graphs
	DDG dissemination probability

	Future work
	Network topology
	Dissemination probability
	Graph knowledge
	Network dynamics

	Conclusions
	Bibliography

