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Abstract

Il tumore al seno è il più comune tra le donne nel mondo. La radioterapia è comunemente

usata dopo la chirurgia per distruggere eventuali cellule maligne rimaste nel volume del seno.

Nei trattamenti di radioterapia bisogna cercare di irradiare il volume da curare limitando

contemporaneamente la tossicità nei tessuti sani. In clinica i parametri che definiscono il

piano di trattamento radioterapeutico sono selezionati manualmente utilizzando un soft-

ware di simulazione per trattamenti. Questo processo, detto di trial− and− error, in cui i

differenti parametri vengono modificati e il trattamento viene simulato nuovamente e valu-

tato, può richiedere molte iterazioni rendendolo dispendioso in termini di tempo. Lo studio

presentato in questa tesi si concentra sulla generazione automatica di piani di trattamento

per irradiare l’intero volume del seno utilizzando due fasci approssimativamente opposti

e tangenti al paziente. In particolare ci siamo concentrati sulla selezione delle direzioni

dei fasci e la posizione dell’isocentro. A questo scopo, è stato investigata l’efficacia di un

approccio combinatorio, nel quale sono stati generati un elevato numero di possibili piani

di trattamento utilizzando differenti combinazioni delle direzioni dei due fasci. L’intensità

del profilo dei fasci viene ottimizzata automaticamente da un algoritmo, chiamato iCycle,

sviluppato nel ospedale Erasmus MC di Rotterdam. Inizialmente tra tutti i possibili piani

di trattamento generati solo un sottogruppo viene selezionato, avente buone caratteristiche

per quel che riguarda l’irraggiamento del volume del seno malato. Dopo di che i piani che

mostrano caratteristiche ottimali per la salvaguardia degli organi a rischio (cuore, polmoni

e seno controlaterale) vengono considerati. Questi piani di trattamento sono matematica-

mente equivalenti quindi per selezionare tra questi il piano migliore è stata utilizzata una

somma pesata dove i pesi sono stati regolati per ottenere in media piani che abbiano carat-

teristiche simili ai piani di trattamento approvati in clinica. Questo metodo in confronto

al processo manuale oltre a ridurre considerevol-mente il tempo di generazione di un pi-

ano di trattamento garantisce anche i piani selezionati abbiano caratteristiche ottimali nel

preservare gli organi a rischio. Inizialmente è stato utilizzato l’isocentro scelto in clinica

dal tecnico. Nella parte finale dello studio l’importanza dell’isocentro è stata valutata; ne

è risultato che almeno per un sottogruppo di pazienti la posizione dell’isocentro può dare

un importante contributo alla qualità del piano di trattamento e quindi potrebbe essere un

ulteriore parametro da ottimizzare.
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Summary

Breast cancer is the most common cancer in women worldwide. Radiation therapy is fre-

quently used after surgery to destroy residual cancer cells inside the breast volume.

A constant challenge in radiotherapy treatment is to ensure delivery of a curative dose

to the target volume while simultaneously limiting normal tissue toxicity. Such tradeoffs in

radiotherapy treatment planning are solved by manual tuning of treatment parameters in

a treatment simulation software application, called treatment planning system. This often

requires many re-optimization steps, making the process time-consuming. The difficulty

of knowing when to terminate the search for better plans, and the lack of overview of the

possible plans also implies that no guarantee can be given that the best alternative among

all possibilities is found.

This study focuses on the automated generation of treatment plans for whole breast irra-

diation including beam angle and isocenter selection. To this aim, a combinatorial approach

is investigated, consisting of the generation of a large number of candidate plans with dif-

ferent combinations of (near-)opposite beam directions for which beam intensity profiles are

automatically optimized by an in-house algorithm. Among these candidate plans, a sub-set

of feasible plans is considered. Selection of the final plan is made by means of a weighted

sum, score function; the weights are tuned to obtain plans which on average resemble the

tradeoff between organs at risk sparing and target irradiation in clinical practice. Initially

all candidate plans were generated for the clinical isocenter. In the final stage of the study,

isocenter variation was investigated as well.

Chapter 1 In the first chapter, a brief description of the radiotherapy background is pre-

sented. It starts with sections on biological and medical aspects of cancer, with a particular

focus on breast cancer. Then it continues providing details on physics in radiotherapy and

treatment techniques and equipment for breast cancer treatments.

Chapter 2 This chapter provides a description of the optimizer used for beam intensity

profile optimization, called iCycle, with details on the applied multi-criteria approach. It

ends with the definition of the aim of the study.

4



CONTENTS

Chapter 3 In this chapter, the materials and methods for the investigations are described.

It includes a description of a method used for selection of the best treatment plan.

Chapter 4 This chapter discusses the results of the investigations.

Chapter 5 This chapter concludes and gives directions for further research.
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Chapter 1

Introduction to the study

1.1 Cancer

Cancer, medically known as malignant neoplasm, is a class of diseases characterized by

unregulated cell growth. Different factors can cause this disease, from genetic predisposition

to environmental factors that can directly damage genes or combine with existing genetic

faults within cells. In humans over 200 different cancers are known. Tumors are classified

by the type of cell that is initially affected.

Normal cells in the body follow a preordained path of growth, division, and death. The

programmed cell death is called apoptosis. Unlike regular cells, tumor cells do not experi-

ence programmatic death and instead continue to grow and divide. This leads to a mass

of abnormal cells that grows out of control. Figure 1.1 shows the reproductive process for

normal and tumor cells. When a cell is mutated, the mutation can be transmitted to the

daughter cells, which in turn continue to mutate and duplicate in an uncontrolled way. The

uncontrolled proliferation of cells can lead to benign or malignant disease; if not treated in

time both may harm the patient and could lead to death.

Benign tumors do not invade neighboring tissues or spread throughout the body; there-

fore, the patients may be cured with only local treatment with a high rate of survival.

Malignant tumors, on the other hand, can invade the organs near its primary site and

may also spread to more distant parts of the body through the lymphatic system or blood

stream. When cancer cells break away from the primary (original) tumor and travel to

other places in the body, another tumor may form. The new occurrences of disease thus

generated are referred to as metastases. The secondary tumor is of the same type as the

primary tumor. Metastatic tumors are very common in the late stages of cancer and are
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CHAPTER 1. INTRODUCTION TO THE STUDY

more difficult to treat.

Cancer is classified in five broad groups by the type of cell it originates from. Carcinomas

originate from cells covering internal and external part of the body, such as lung, breast and

colon cancer. Sarcomas are characterized by cells located in bone, cartilage, fat, connective

tissue, muscle and other supportive tissue. Lymphomas are tumors that originate from the

lymph nodes and immune system tissue while leukemias begin in the bone marrow and

often accumulate in the blood stream. Adenomas are cancers arising in the thyroid, the

pituitary gland, the adrenal gland and other glandular tissue.

Figure 1.1: Cell growth in normal cells (top) and cancer cells (bottom).

1.2 Breast cancer

Breast cancer is the most common cancer in women worldwide, with more than 1 million

new diagnoses each year [1]. More than 1 in 8 women receive a diagnosis of breast cancer at

some time during their lifetime [2]. Men as well can suffer for this disease; although this is

100 times less common than in women, men tend to have poorer outcomes due to delays in

diagnosis. Nowadays, the median age at diagnosis for breast cancer is 61 years of age while

diagnosis for women younger than 34 is rare.

Prognosis and survival rates for breast cancer greatly depend on the cancer type, stage,

treatment, and geographical location of the patient. In the western world, the overall 5-year

relative survival, which measures the survival of the cancer patients in comparison to the

general population to estimate the effect of cancer, is 89.0% [2].
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1.2.1 Breast anatomy

In women, the breasts overlay the pectoralis major muscles and usually cover much of the

chest (see Fig. 1.2). At the front of the chest, the breast tissue can extend from the clavicle

(collarbone) to the middle of the sternum (breastbone). At the sides of the chest, the breast

tissue can extend into the axilla (armpit), and can reach as far to the back as the latissimus

dorsi muscle, extending from the lower back to the humerus bone (the longest bone of the

upper arm).

As a mammary gland, the breast is an inhomogeneous anatomic structure composed of

layers of different types of tissue, among which two types predominate: adipose tissue and

glandular tissue. The glandular tissue effects the lactation functions of the breasts. The

adult breast contains 14–18 irregular lactiferous lobes that converge to the nipple, to ducts;

the milk ducts are immediately surrounded with dense connective tissue that functions as

a support framework. The glandular tissue of the breast is biochemically supported with

estrogen, therefore, breast structure and shape change with age. The dimensions and weight

of the breast vary among women, ranging from approximately 400 cc to 3000 cc.

Figure 1.2: Breast anatomy.

Figure 1.2 shows the breast anatomy together with the schematic representation of the

lymphatic system. Approximately 75% of the lymph fluid from the breast travels to the

ipsilateral axillary lymph nodes. The other 25% of the lymph fluid travels to the parasternal

nodes (adjacent the sternum bone), to the other breast, and to the abdominal lymph nodes.

8
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The axillary lymph nodes include the pectoral (chest), subscapular (under the scapula), and

humeral (humerus-bone area) lymph-node groups, which drain to the central axillary lymph

nodes and to the apical axillary lymph nodes.

1.2.2 Breast cancer staging

Diagnosis of breast cancer usually involves mammography. The results of noninvasive ex-

amination with mammography and additional tests, such as ultrasound or MR imaging, are

sufficient to warrant excisional biopsy to examine the tissue of interest. Most types of breast

cancer are easy to diagnose by microscopic analysis of the biopsy. After breast cancer has

been diagnosed, during the staging process, tests are done to find out whether cancer cells

have spread throughout the body.

The dense network of lymphatics in the skin may facilitate widespread cutaneous per-

meation by tumor. The most common sites of regional lymph node involvement in breast

cancer are the axillary, internal mammary and supraclavicular regions. As most of the

lymph fluid passes from the breast to the axillary nodes, these nodes are the major site of

regional metastases from breast carcinoma. Besides sentinel lymph node biopsy, additional

examinations during staging may include chest X-ray, CT scan, bone scan and PET scan

(Positron Emission Tomography).

A well-known and commonly used classification for cancer staging is the TNM system,

which classifies tumors based on size (T), involvement of lymph nodes (N), and whether the

tumor has metastasized (M) (spread to a more distant part of the body). Larger size, nodal

spread, and metastases have a worse prognosis. The main stages are:

• Stage 0 (carcinoma in situ) is divided in three classes.

– Ductal carcinoma in situ (DCIS) is a noninvasive condition in which abnormal

cells are found in the lining of a breast duct. The abnormal cells have not spread

outside the ducts to other tissues in the breast.

– Lobular carcinoma in situ (LCIS) is a condition in which abnormal cells are found

in the lobules of the breast. This condition seldom becomes invasive cancer.

– Paget disease of the nipple is a condition in which abnormal cells are found in

the nipple only.

• Stage I cancer is divided in two stages:

– stage IA the tumor is 2 cm or smaller and has not spread outside the breast.

– stage IB small clusters of breast cancer cells (larger than 0.2 mm but not larger

than 2 mm) are found in the lymph nodes.

9
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• Stage II to III tumor cells are within the breast or regional lymph nodes. The stages

(subdivided in IIA, IIB, IIIA, IIIB and IIIC) differ by location and dimension of the

tumor.

• Stage VI cancer has spread to other organs of the body, most often to distant lymph

nodes, bones, lungs, liver and brain.

Infiltrating or invasive ductal cancer is the most common histologic type of breast cancer

and comprises 70% to 80% of all cases.

1.2.3 Treatment modalities

The staging system reported in the previous section was created to provide a strategy for

grouping patients with respect to prognosis. Therapeutic decisions are formulated partly

according to TNM classification but primarily depend on tumor size, lymph node status,

estrogen-receptor and progesterone-receptor levels in the tumor tissue, human epidermal

growth factor receptor status, menopausal status, and the general health of the patient.

The treatment may include surgery, radiotherapy and adjuvant therapy (drugs-based) such

as hormone blocking therapy and chemotherapy or a combination thereof.

• Surgery involves the physical removal of the tumor, typically along with some of the

surrounding tissue. Frequently, a sentinel lymph node biopsy is done as well. Standard

surgery includes: mastectomy (removal of the whole breast), quadrantectomy (removal

of one quarter of the breast), lumpectomy (remove of a small part of the breast) and

oncoplastic surgery (breast reconstruction surgery).

• Radiotherapy All histologic types of invasive breast cancer may be treated with

breast-conserving surgery plus whole breast radiation therapy. Radiotherapy is con-

ventionally given, as adjuvant therapy after surgery to the whole breast and the region

of the tumor bed and regional lymph nodes, to destroy microscopic tumor cells that

may have escaped surgery. The addition of radiotherapy minimizes the local recur-

rence at the primary site (curative setting). Radiotherapy is also used in a palliative

setting where cure is not possible. The treatment aim is then local disease control or

symptomatic relief (e.g. pain).

• Hormone blocking therapy Some breast cancers require estrogen to continue grow-

ing, identified by the presence of estrogen receptors and progesterone receptors on the

tumor cell surface. These ER+ cancers can be treated with drugs that either block

the receptors or alternatively block the production of estrogen.

10
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• Chemotherapy is particularly beneficial in estrogen receptor-negative (ER-) dis-

ease. Most chemotherapy medications work by destroying fast-growing and/or fast-

replicating cancer cells usually by causing DNA damage upon replication.

1.3 Biological mechanism of radiotherapy

In radiotherapy, ionizing radiation is used to induce damage to the DNA in the cells. Normal

cells have mechanisms for repairing single−strand DNA damage. Double−stranded DNA

breaks are more difficult to repair and contribute most to cell death.

Cancer cells are generally less differentiated and more reproductive than healthy dif-

ferentiated cells. In addition, they have a diminished ability to repair sub-lethal damage.

Single-strand DNA damage is then passed on through cell division; damage to the cancer

cells’ DNA accumulates, causing them to die or reproduce more slowly. This distinction be-

tween normal cell and tumor cell sensitivity to ionizing radiation is the main characteristic

that makes radiotherapy a successful treatment for cancer.

The DNA can be damaged by photons or charged particles by direct or indirect ionization

of the atoms which make up the DNA chain. In photon therapy most of the radiation effect

is through indirect ionization by free radicals. Free radicals are atoms, molecules or ions

that have an unpaired valence electron or an open electron shell, and are therefore highly

chemically reactive. Human tissues mainly constitute of water. When water molecules are

ionized hydroxyl radicals are created (HO•); the hydroxyl radical reacts with neighboring

molecules, usually by stealing hydrogen atoms, and regains the lost electron forming a water

molecule. If the hydroxyl radical steals the hydrogen from a piece of DNA, a genetic mutation

may occur resulting in a cancer gene being switched on.

Oxygen is a potent radiosensitizer, increasing the effectiveness of a given dose of radia-

tion by forming DNA-damaging free radicals. Solid tumors can outgrow their blood supply,

causing a low-oxygen state known as hypoxia. Tumor cells in a hypoxic environment may be

as much as 2 to 3 times more resistant to radiation damage than those in a normal oxygen

environment, limiting the efficiency of the photon radiation treatment.

The effect of radiation on the survival of cells can be investigated by in vitro or in vivo

techniques. Figure 1.3 shows the cell survival as a function of radiation dose by plotting the

surviving fraction on a logarithmic scale on the y-axis and absorbed dose on a linear scale on

the x-axis. The shape of the curve is influenced by the type of radiation. Depending on the

type of radiation, the cell survival curve exhibits an exponential function of dose (shown by

black lines), sometimes with an initial shoulder region for low dose administration. Several

factors can make cells less radiosensitive such as removal of oxygen to create a hypoxic state,

the use of low dose rates or multi-fraction irradiation.
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The red curves in Figure 1.3 show the cell survival curves a multi-fraction treatment.

Fractionation of the total dose is frequently used in radiotherapy to allow normal cells to

recover (and repair DNA damage). As tumor cells are less efficient in repair, and replicate

faster, DNA damage will accumulate over time. Moreover, tumor cells that were chronically

or acutely hypoxic (and therefore more radio-resistant) may re-oxygenate between fractions,

improving the tumor cell kill.

Figure 1.3: Typical dose-survival curves for mammalian cells exposed to X-rays and fast neutrons. Black

lines: single fraction treatment, red lines: multi-fraction treatment.
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1.4 Interaction of radiation with matter

Radiation is classified in two main categories, ionizing or non-ionizing radiation, depending

on its capability of ionizing matter (see Fig. 1.4). Radiotherapy uses ionizing radiation, such

as X-ray photons, electrons, protons and ions, to treat cancer. The particle interaction with

the surrounding tissues depends on the mass and charge. Charged particles directly ionize

the matter and deliver dose. Photons and neutrons (non-charged particles) can deliver dose

but indirectly.

When an X-ray beam passes through matter, high energy charged particles are produced

along the way by interactions of photons with atoms. These particles produce secondary

ionizations along their track, depositing energy in the matter.

Figure 1.4: Classification of radiation; radiotherapy uses ionizing radiation.

1.4.1 X-ray photons

1.4.1.1 Photon beam production and spectrum

X-ray photons are produced by the interaction of fast electrons with nuclei (bremsstrahlung)

or electrons (characteristic photons) of target atoms, usually a high-Z material such as tung-

sten in a linear accelerator (linac). The photon spectrum consists of a continuous distribution

in energy (due to contribution of bremsstrahlung) and discrete energy peaks originating from

the characteristic photons, as shown in Figure 1.5. The total bremsstrahlung spectrum, for

a target of atomic number Z, is given by the Kramer’s equation:

I(hν) = CZ(Em − hν) (1.4.1)

where I(hν) is the beam intensity of photons with energy hν, C is a proportionality constant

and Em is the maximum energy. Em is equal to the energy of the incident electrons, which is

generally between 4 and 25 MeV in radiotherapy. The mean photon energy is approximately

one third of the maximum energy.

13
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In radiotherapy, beam quality is globally indicated by the maximum photon energy in

the spectrum, as determined by the energy of the electrons used to generate the X-rays. For

example, a beam with a maximum photon energy of 6 MeV is a called a 6MV photon beam.

Figure 1.5: Spectral distribution of diagnostic X-rays calculated for a thick tungsten target. Dotted curves

are the spectral distributions without filtration and and the solid curves are for a filtration of 1 mm alu-

minum. The peaks on top of the continuous bremsstrahlung spectra are related to characteristic radiation

for the target material.

1.4.1.2 Modalities of photon interaction

X-rays interact with matter in different ways; the strengths of these interactions depend on

the energy hν of the X-rays and the atomic number Z of the material, but not much on

chemical properties since the X-ray photon energy is much higher than chemical binding

energies. X-ray photons may interact either with orbital electrons or with the nucleus of

the atoms. The diagnostic energy range, the interactions are always with orbital electrons.

The energy of interacting photons may be fully used for generating fast charged particles

such as electrons and positrons. A photon interaction may also generate a fast charged

particle plus a scattered photon. The generated charged particles gradually loose their

energy in the material and on their path ionizing atoms may be produced. In photon beam

radiotherapy the main interactions occurring are photoelectric effect, Compton scattering

and pair production.

Photoelectric effect The photoelectric effect is a mechanism by which photons can be

absorbed by matter. If a photon with a slightly higher energy than the binding energy of

the orbital electrons of the attenuator collides with one of them, the photoelectric effect can

14
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Figure 1.6: Schematic representation of the photoelectric effect.

Figure 1.7: Photoelectric cross section for lead. Peaks in the cross section correspond to electron binding

energies.

take place. The photon disappears, giving the electron sufficient energy to be emitted and

ejected from the atom with a kinetic energy Ek (Fig. 1.6) given by:

Ek = hν − Eb (1.4.2)

where hν is the energy of the incident photon and Eb is the binding energy of the electron.

Interaction probability decreases with increasing photon energy, roughly described by:

σph ∝ Z4(hν)−3.5 (1.4.3)

The photoelectric cross section σph of lead is shown in Figure 1.7 as a function of photon

energy. Different peaks are visible, corresponding to the binding energies of the lead’s orbital

electron. These peaks, called absorption edges, reflect the fact that for hν smaller than the

binding energy, it is not possible for photons to interact through the photoelectric effect
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with electrons in a certain shell, while they can interact for hν equal to or greater than the

binding energy.

Figure 1.8: Schematic representation of the Compton effect.

Compton effect The Compton effect (incoherent scattering) represents a photon inter-

action with a loosely bound electron. The incident photon energy hν is much larger than

the binding energy of the orbital electron. The photon transmits part of its energy to the

recoil electron and is scattered as photon with energy hν′ through a scattering angle θ, as

shown schematically in Figure 1.8. The angle φ represents the angle between the incident

photon direction and the direction of the recoil electron.

To satisfy the conservation of momentum and energy, the scattered photon is emitted

with energy (considering the electron as free):

hν′ =
hν0

1 + hν0
mc2 (1− cosθ)

(1.4.4)

where hν0 is the energy of the incident photon, m is the electron mass.

The probability that a photon interacts with a free electron by the Compton effect is

given by the Klein-Nishina equation. The cross section of the Compton effect, σc depends

linearly on the atomic number Z of the attenuator. As example, the cross section of the

Compton effect for the lead as a function of photon energy is shown in Figure 1.9.

Pair production In pair production the interacting photon disappears and an electron-

positron pair with a combined kinetic energy equal to hν − 2mec
2 is produced in the nu-

clear Coulomb field (see Fig. 1.10). Pair production has an energy threshold of 2mec
2 =

1.02MeV , equal to the sum of the rest masses of the generated electron and positron. When

the positron’s kinetic energy becomes close to zero, it will annihilate and create two photons.

The probability for pair production is zero for photon energies below the threshold energy

and increases rapidly with photon energy above 1.02 MeV . The cross section σpp varies

approximately as Z2, where Z is the atomic number of the attenuator.
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Figure 1.9: Cross section of Compton effect in lead attenuator.

Figure 1.10: Pair production.

1.4.1.3 Photon attenuation and absorption

Figure 1.11: Photon interaction: process of attenuation. A. Transmission; B. Scattering; C. Absorption.

When an X-ray beam passes through matter the beam intensity is reduced due to the

attenuation by the medium. Apart from absorption of photon, radiation is scattered (Fig.

1.11). The intensity is defined as the rate of flow of photon energy through a unit area
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perpendicular to the beam direction.

The intensity I(x) of a mono energetic photon beam, attenuated by an attenuator of

thickness x (expressed in [W/cm2]), is given as:

I(x) = I0e
−µ(hν,Z)x (1.4.5)

where I0 is the original intensity of the unattenuated beam and µ(hν, Z) is the linear at-

tenuation coefficient, which depends on photon energy hν and attenuator atomic number

Z.

The linear attenuation coefficient (expressed in [cm−1]) is related to the total cross section

for attenuation, σ, (expressed in [cm2/g])

σ =
µ

ρ
(1.4.6)

with ρ the density of the attenuator (in [g/cm3]). The total attenuation coefficient is given

by the sum of the coefficients for the individual photon interactions:

σ =
µph
ρ

+
µc
ρ

+
µpp
ρ

(1.4.7)

that represent the photoelectric effect, Compton effect and pair production, respectively.

The mass attenuation coefficient for soft tissues is reported in Figure 1.12. This graph

shows that the predominance of one effect over the others depends on the energy of the

beam.

In radiotherapy, beams energies range from 4 to 23 megavolt (MeV), so the predominant

effect is the Compton effect (see Fig. 1.12).
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Figure 1.12: Contribution of the photoelectric effect, Compton effect, pair production and Rayleigh scat-

tering to the mass attenuation coefficient µ/ρ as function of photon energy.

1.4.1.4 Dose delivery

When a photon beam enters the patient, it interacts with the body. Adsorbed Dose (D)

is defined as the energy deposited by ionizing radiation per unit of mass of the material, so

the mean energy dε deposited in the element of mass dm

D =
dε

dm
(1.4.8)

The unit of the absorbed dose is joule per kilogram (J/kg) but in radiation therapy the

unit Gray is more often used, 1 Gy = 1 J/kg.

Figure 1.13 shows dose deposition of a photon beam inside a patient. Beneath the surface

the dose first rises rapidly, reaches a maximum value at depth zmax and then decreases almost

exponentially until it reaches a minimum value at the patient’s exit point.

The dose region between the surface and depth zmax is called dose build−up region and

results from the relatively long range of energetic secondary charged particles (electrons and

positrons) that first are released in the patient by photon interactions and then deposit their

kinetic energy in the patient. High-energy photons produce high-speed electrons with a high

momentum component in the forward direction and the dose build-up region is larger than

for low-energy photons. The delivered dose as a function of depth in a medium depends
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on beam energy, field size, and the distance from the source. The percentage depth dose

(PDD) is given by

PDD(z) =
Dz

Dz0

× 100 (1.4.9)

where Dz is the absorbed dose at any depth z, and Dz0 is the absorbed dose at a fixed

reference point, defined by the highest dose (Fig. 1.13).

Figure 1.13: Dose deposition from a megavoltage photon beam in a patient. Ds is the surface dose at the

beam entrance side, Dex in the surface dose at the beam exit. Dmax is the dose maximum often normalized

to 100, resulting in a depth dose curve referred to as the percentage depth dose (PDD) distribution. The

region between z = 0 and z = zmax is called the dose build-up region [3].

1.4.2 Electrons

Megavoltage electron beams are used for radiotherapy of superficial tumors, e.g. in the skin.

As electrons travel through a medium they interact with atoms by Coulomb force interac-

tions with atomic orbital electrons and atomic nuclei. Through these collisions, electrons

loose their kinetic energy (collision and radiative losses) or change their traveling direction

(scattering). The rate of energy loss by collisional interactions depends on the electron

energy and on the electron density of the medium. More precisely the rate of energy loss

increases with the energy of the electron and the atomic number of the medium. Figure 1.14

shows depth doses for various electron beam energies; the general shape of the depth dose

curve for electron beams differs from that of photon beams (Fig. 1.13). Typically, electron

beams deliver high surface dose (compared to photon beams). After the dose maximum, the
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dose falls off rapidly and levels off at small low level dose component.

Figure 1.14: PDD curves in water for electron beams with energies of 6, 9, 12 and 18 MeV [3].

1.4.3 Protons and ions

Radiation therapy with protons and ions have gained attention, because of the specific depth

dose curves for these particles. Figure 1.15 compares a proton depth dose curve with curves

for electrons and X-ray photons of 2 different energies. With protons, dose is delivered to a

very localized region at the end of the particle’s range.

When a fast charged particle moves through matter, it ionizes atoms of the material and

deposits dose along its path. Because the interaction cross section increases as the charged

particle’s energy decreases a peak occurs over the last few millimeters of the particle’s range;

this maximum is called the Bragg peak. Proton range and therefore the Bragg Peak depth

in the tissue depends on proton energy, as shown in Figure 1.16.

Due to their relatively large mass, protons have little lateral scatter in tissue and the

beam stays focused, delivering only low-dose to surrounding tissue and maximum dose to

the tissue at the location of the Bragg peak.

In most treatments, protons of different energies with Bragg peaks at different depths are

applied to treat the entire tumor. The contributions of the individual beams (with different

energies) are shown as thin blue lines in Figure 1.17 and the total radiation dose of the

protons, called the Spread-Out Bragg Peak (SOBP), is shown as a heavy dashed blue line.

While tissues behind or deeper than the tumor receive no radiation from proton therapy,

the tissue in front of or shallower than the tumor still receives a considerable dose. As can

be seen in Figure 1.17, the proton beam PDD is still highly favorable compared to X-ray

photons.
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For heavy ions, the Bragg peak dose is higher than for protons offering an improved dose

conformation as compared to photon or proton beams. Heavy ions also exhibit potential

radiobiological advantages; very heavy ions (above oxygen) have the disadvantage that be-

yond the Bragg peak, the dose does not decrease to zero, since nuclear reactions between

the heavy ions and the atoms of the tissue lead to production of lighter ions which have a

higher range. Currently the availability of heavy ion radiotherapy is limited to the use of

carbon.

Radiotherapy equipment for photon beam treatments can (in general) be used for electron

beam treatments, while for protons and ion therapy large investments are required.

Figure 1.15: Dose depth profiles for X-rays (4 MeV: blue, 20 MeV: green), an electron beam (4 MeV:

purple) and protons (150 MeV, red).
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Figure 1.16: The in-depth position of the Bragg peak depends on energy of the proton particles. Typically,

the range of 180 MeV protons is approximately 23 cm.

Figure 1.17: Spread Out Bragg Peak (SOBP, dashed blue line) of a proton beam, compared to a photon

beam PDD (red line). The SOBP is the sum of several individual Bragg peaks (thin blue lines) at staggered

depths, generated with protons with variable energies. The red area represents the additional dose delivered

by x-ray radiotherapy which can be the source of damage to normal tissues and of secondary cancers.
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1.5 Radiotherapy treatment

In radiotherapy, dose can be delivered in two different ways; using radioactive sources im-

planted in the patient, within or close to the tumor (brachytherapy) or with beams of

ionizing radiation produced outside the patient and directed towards the tumor in so-called

teletherapy or external beam radiotherapy (EBRT). EBRT is more often used since it

is less invasive and not every kind of tumor can be treated with brachytherapy. Generally,

photons or electrons beams are used.

1.5.1 Brachytherapy

Brachytherapy, also known as internal radiotherapy, involves placement of short-range radi-

ation sources (radioisotopes) directly at the site of the tumor or next to the area requiring

treatment. With this technique, the dose is concentrated in the delivery area and falls off

very rapidly. Therefore, surrounding normal tissues receive substantially lower doses than

the tumor. Most common brachytherapy sources emit low energy photons, however, in a few

specialized situations β or neutron emitting sources are used. An advantage of brachyther-

apy is the accurate localization and immobilization of the somas relative to the tumor, which

removes the problem of organ movement and set-up errors present in fractionated external

beam radiotherapy. Brachytherapy is considered whenever possible to treat accessible local-

ized tumors of relatively small volume. It is used as a radical single modality treatment or

in combination with EBRT to deliver boost dose.

The three main types of brachytherapy treatment in terms of the placement of the

radioactive source are interstitial, intracavity and contact.

• In interstitial brachytherapy, sources are placed directly in the target tissue. For breast

cancer, e.g as boost after EBRT, it involves the temporary placement in breast tissue,

of several flexible plastic catheters. Each catheter is subsequently loaded with the

radiation source to deliver the planned radiation dose to the treatment area.

• With intracavity brachytherapy, an applicator loaded with radioactive sources is placed

inside a body cavity such as the vagina or anal canal. It may also be used after

lumpectomy for (accelerated) partial breast irradiation (APBI), where a single soft

catheter with a balloon at the tip is placed in the cavity. the balloon is then inflated

with a saline solution and a radiation source is inserted into the inflated balloon for

several minutes to deliver the dose of radiation (see Fig. 1.18).

• Superficial brachytherapy can be used for very superficial lesions less than 1 mm thick.
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Figure 1.18: Brachytherapy for breast cancer using a catheter with a balloon at the tip, placed in the

lumpectomy cavity.

1.5.2 External beam equipment

Since the discovery of X-rays in 1895, the technology to produce photon beams has been

greatly developed. In the early days, kV tubes were used to produce treatment beams.

Nowadays, a linear accelerator is used to produce high energy (MeV) electron beams. Most

common treatment units are gantry-based linear accelerators (linacs). A linac in a gantry

based treatment unit is shown in Figure 1.19; the gantry can rotate 360◦ around the patient,

lying on the couch. Gantry based systems are mostly suitable for delivery of coplanar

treatments (all beam directions lying in the plane perpendicular to the patient axis). If a

non-coplanar delivery has to be performed the couch must be rotated. This extends the

treatment time since the radiographers have to enter the treatment room each time the

couch has to be rotated and the patient has to be aligned again.

Medical linacs accelerate electrons to a kinetic energy from 4 to 25 MeV, using radio

frequency fields in the range from 103 MHz to 104 MHz; these electrons are produced by

a diode or triode electron gun. They contain a heated filament cathode and a perforated

anode. Electrons are emitted thermionically and focused with a potential difference between

cathode and anode. The electrons are then accelerated to the desired kinetic energy inside

a waveguide, a linear path in vacuum in which electrons are several times affected by a

potential difference, generated by the RF-field.

Figure 1.20 shows a schematic representation of the treatment head. For the production

of a photon beam, the electrons hit a X-ray target at the exit of the waveguide. After

primary collimation, the photon beam strikes a flattening filter made of high-Z material. If

the accelerator is designed to deliver X-ray beams produced by electrons of more than one

energy, a second flattening filter, optimized for that energy, will be rotated into position

using the carrousel. After the flattening filter the beam encounters the transmission ion

chamber used to monitor the beam intensity. In modern linacs, a multi-leaf collimator is

part of the secondary collimator to shape the treatment fields in accordance with the tumor
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shape. A typical multi-leaf collimator (MLC), shown in Figure 1.21, consists of 40-80 pairs

of opposing leaves, each around 5 mm to 10 mm wide and around 10 cm thick to attenuate

the X-rays. Each leaf in the MLC can be moved independently to block part of the field.

An MLC can also be used for intensity modulation within a field.

Figure 1.19: Gantry-based treatment unit.
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Figure 1.20: Schematic diagram showing the basic components of the treatment head of a linac [4].

Figure 1.21: Multi-leaf collimator.
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1.6 Radiotherapy treatment planning for breast cancer

Breast-conserving surgery in combination with external beam radiotherapy has become the

standard treatment for early stage breast cancer since the survival rates proved to be similar

to that with radical surgery. For many years, breast radiotherapy field borders were based on

the visible or palpable anatomy and/or fluoroscopy, while 2D dose planning was performed

on the basis of one or more single-density body-outline contours. Currently, breast cancer

radiotherapy has gradually shifted towards computed tomography (CT) guided treatment

planning. This enables the application of techniques such as three-dimensional-conformal

radiotherapy (3D-CRT) and intensity modulated radiotherapy (IMRT). In highly conformal

techniques such as 3D-CRT and IMRT, accurate target volume delineation is critical because

its size and shape directly affect the applied field sizes.

1.6.1 Target volume definition

Gross tumor volume (GTV), clinical target volume (CTV), internal target volume (ITV)

and planning target volume (PTV), see Fig. 1.22, can be defined to generate treatment

plans [5].

• GTV is the primary tumor or other tumor mass shown by clinical examination e.g.

medical imaging; this volume always contains the highest tumor cell density and may

be absent in case of complete surgical resection.

• CTV contains the GTV when present and/or subclinical microscopic disease that

has to be eradicated to cure the tumor. The required GTV-CTV margin is derived

from histological examination of tumor cell spreading around GTV and biological

characteristics of the tumor.

• PTV is the volume generated by adding a margin to the CTV to account for the

potential inter- and intra-fraction variation in tumor position and shape. The CTV to

PTV margin is used to ensure an homogeneous dose to the CTV.

• ITV may be as an intermediate volume for generating the PTV, describing internal

tumor motion, e.g. respiratory tumor motion in lung cancer.

Selection of unnecessary large margins will result in excessive dose delivery to organs at

risk (OAR). On the other hand, too small margins will lead to unacceptable risk of partially

under-dosing the tumor. The planning target volume is used in treatment planning to select

appropriate beams to ensure that the prescribed dose is actually delivered to the CTV.
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Figure 1.22: Graphical representation of volume of interest in radiotherapy.

1.6.2 Target delineation for breast cancer treatment

After palpation, the breast and surgical breast scar are marked with radio-opaque wires. A

CT scan is then acquired starting superior to the shoulder and including all of the ipsilateral

lung and 5 cm below breast tissue.

When breast target volume delineation on the CT slices is performed by the physician,

various references and landmarks are used: radiopaque wires visible on CT, glandular breast

tissue and bony structures. In practice, the breast CTV, including glandular breast tissue,

is delineated within the extent of the radiopaque wires marking the palpable breast. The

breast CTV is not extended into the pectoralis major or the ribs and does not include the

skin. The breast PTV is generated by adding a 3D-margin of 5 to 8 mm around the breast

CTV; in patients treated with the breath-hold technique the margin is currently 8 mm.

For boost GTV delineation surgical clips are used as well as hematoma (and seroma if

present), as visible on CT images. The boost CTV is generated by adding a 3D-margin of

10 mm around the lumpectomy cavity. The CTV to PTV margin (generally 5 mm) is then

added to account for respiration, inter- and intra-fraction variation in patient position and

breast swelling. Both breast and boost PTV are retracted to 5 mm within the skin surface

to exclude the build-up area from the planning treatment volume.
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Figure 1.23: Structures of interest for left-sided patient Le04.

1.6.3 Organs at risk and radiotherapy-induced complications

In breast cancer radiotherapy treatment, the heart, ipsilateral lung and contralateral breast

are considered as organs at risk (OAR). Irradiation of these OARs can lead to complications

after breast cancer radiotherapy. Figure 1.23 shows delineations of these structures, in

one CT slice. The heart is contoured (only in left-sided breast treatments) to the level

of the pulmonary trunk superiorly, including the pericardium, excluding the major vessels.

Both lungs are contoured in their entirety; the contralateral breast was contoured using an

automated, atlas-based, contouring system (ABAS).

• Heart Exposure of the heart increases the subsequent rate of ischemic heart disease.

In a population-based case-control study [6] the overall average of mean dose to the

heart was estimated to be 6.6 Gy for women with tumor in the left breast, versus

2.9 Gy for those with tumors in the right breast. According to this study, the rate of

major coronary events increased linearly with mean dose to the heart with no apparent

threshold.

• Ipsilateral lung Pulmonary complications following radiotherapy are quite common.

In a study, on short-term pulmonary complication following breast cancer radiother-

apy [7], the mean dose resulted as a robust parameter correlated with the risk of

pneumonitis. Mean dose to the ipsilateral lung ranged from 2.5 to 18 Gy (median 12

Gy).

• Contralateral Breast In patients treated for breast cancer, the most common sec-

ondary cancer is contralateral breast cancer, accounting for approximately 50% of all
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second cancers [8]. For patients treated with 25 fractions of 2 Gy (50 Gy of total dose)

to the regional lymph nodes and chest wall (using different techniques) the mean dose

to contralateral breast was in a range from 1.3 to 4.3 Gy [9]. Sachs and colleagues

introduced a model that predicts no increase of cancer risk with increasing dose over

the approximate dose range from 3 to 40 Gy [10]. For low doses of ionizing radia-

tion, non-linear dose-risk models are needed to describe the development of secondary

tumor following exposure to radiation [11].

Figures 1.23 and 1.24 show for 3 patients the position of the OARs relative to the target

volume. The individual anatomic characteristics vary greatly. Heart dimension and distance

from the PTV, chest wall curvature as well as target breast and contralateral breast sizes

and shapes have a significative influence on the final dose in these OARs.

Figure 1.24: CT slices of two left-sided breast cancer patients (left panel: Le15, right panel: Le01) with

delineation of PTV, contralateral breast, heart and ipsilateral lung. Among these patients a large variation

exists in terms of chest wall curvature, heart-to-target distance and breast dimension and shape.
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1.6.4 3D Conformal radiotherapy (3DCRT) treatment

planning for breast cancer

The total dose prescribed to the whole breast is 50 Gy, delivered in 25 fractions of 2 Gy.

Thereafter, an additional boost to the high risk area with prescribed total dose of 10 to 20

Gy, can be delivered in 5 to 10 fractions of 2 or 2.5 Gy.

Two opposite tangential beams are selected to create a dose distribution conformal to

the breast PTV. Gantry angles are determined to achieve maximum avoidance of the heart,

ipsilateral lung and contralateral breast. Shielding is adapted with use of the multi-leaf

collimator (MLC). Wedges and a maximum of three MLC segments per beam may be used

to obtain a homogenous dose distribution. Figure 1.25 shows a dose distribution generated

by a technician using a commercial treatment planning system (TPS), the wedges and the

two tangential beams are visible as well. For most patients, 6 MV (range 4-8 MV) photons

are chosen as optimal. However, for large breast volume and separation, 6 MV energy may

be used in combination with higher energies (commonly 10 MV) to produce better dose

homogeneity.

If additional dose is necessary to the tumor bed, a boost plan can be created conformal

to the boost PTV. It generally consist of 3 beams coming from the patient front. Wedges

and MLC shielding are applied in such a way that the 95%-isodose line closely encompasses

the boost PTV in three dimensions.

Beam’s-eye-view projections are used to define gantry angles, isocenter position, MLC

shapes and other parameters. In treatment plan generation all these parameters are tuned by

a technician, using a commercial treatment planning system (TPS), in an iterative trial and

error process. The 3D dose calculation algorithm, implemented in the TPS, generates the

resulting dose distribution. If the dose distribution is not satisfactory, the operator changes

some parameters, based on experience, for a new run of the dose calculation algorithm.

The iterative process, schematically shown in Fig. 1.26, continues until the dose distribu-

tion is satisfactory according to the planner; the plan then has to be reviewed and approved

by the treating physician. This process is time consuming and can lead to sub-optimal plan

quality depending on the skills of the operator and the physician and the time available for

the trial-and-error process.
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Figure 1.25: Dose distribution generated with a commercial treatment planning system (TPS) for 3D-

CRT. The volumes of interest are highlighted by different colors (e.g. the PTV in red); the beam directions

and openings are represented with orange lines while the wedges in front of each beam are depicted as grey

triangles. Isodose lines of different colors give a representation of the dose distribution.
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Figure 1.26: Diagram that describes the steps taken in the generation of a 3D-CRT treatment plan

with a commercial treatment planning system. The iterative loop represents the manual (trial and error)

adjustment of the angles, isocenter position, collimator opening, wedge factors, beam energies and weights.
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1.6.5 Intensity modulated radiation therapy

In intensity modulated radiation therapy (IMRT), beam intensity profiles are modulated

by dividing each treatment beam into subfields, each with a different shape, intensity, and

position. The subfields are shaped using the MLC (see Fig. 1.27). Two methods can be

used to deliver IMRT fields with an MLC:

• static or step-and-shoot: dose delivery is switched off between changes in MLC

position from one subfield to the next subfield.

• dynamic: dose is continuously delivered while the leaves move with varying speeds.

Figure 1.27: Schematic representation of IMRT delivery by using several (3) subfileds.

Treatment parameters for IMRT can be tuned by means of forward or inverse planning.

• Forward planning is an extension of conventional treatment planning since the se-

lection of the subfields is performed manually similar to conventional trial-and-error

3DCRT planning (see Sect. 1.6.4 and Fig. 1.26). More than one subfield may be

used for each beam direction. Manual definition of the subfields relies on the intuitive

choices of MLC segment shapes based on the beam’s eye view of the PTV or structure

created from isodose lines. The weights of the segments can be optimized using a

computer optimization algorithm to achieve the desired dose distribution.

• Inverse planning or computer optimization of intensity profiles. The idea is to first

define the desired dose distribution and then try to obtain it by optimizing intensity
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profiles. In inverse planning, the radiation oncologist and physicist decide the pre-

scribed target volume dose coverage objectives and constraints together with the ones

for normal tissue sparing. In this method the optimization of the fluence profiles from

each beam direction made by minimization of an objective function. Subsequently,

sequencing transforms each optimization profile into a series of segments, which can

be delivered with a multi-leaf collimator.

Data in literature suggest an advantage of IMRT over conventional (non-optimized)

treatment of the breast with regard to a reduction in breast and skin toxicity. It is therefore

expected that the use of IMRT will increase over the coming years to improve dose homo-

geneity in the breast and to standardize treatment planning procedures.
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Multi-criteria optimization and

aim of the study

2.1 Pareto-optimal plans

In radiotherapy treatment planning the aim is to eradicate the tumor cells by delivering

a sufficient high dose to the target volume while trying to keep the dose to surrounding

healthy tissues as low as possible. The treatment planning problem is defined by constraints

and objectives for the PTV and the OARs. This typically results in a optimization problem

with multiple criteria. In multi-criteria optimization, multiple objectives are in competition

with each other, so that reaching one objective can lead to not fully fulfilling the others.

Typically, no single optimal solution exists that simultaneously optimizes each objective.

A solution is called non− dominated or Pareto− optimal if none of the objective functions

can be improved without deteriorating other objective values. Without additional prefer-

ence information, all Pareto optimal solutions can be considered mathematically equally

good. Therefore, user-defined preferences are necessary to differentiate and choose between

solutions.

An example is given in Figure 2.1. It shows for one right-sided patient, mean lung

and contralateral breast doses for IMRT plans generated with various sets of beam angles.

Among all plans generated, only a subset are Pareto-optimal for contralateral breast and

lung mean dose. The Patero-optimal plans, shown in cyan, lie in the lower left corner of the

graph, where the lower values for contralateral breast and/or lung mean dose can be found.
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Figure 2.1: The Pareto-optimal plans, represented in cyan squares, for contralateral breast (CB) and

ipsilateral lung mean doses.

2.2 iCycle for treatment planning

iCycle is a novel in-house developed algorithm for automated, multi-criteria optimization of

beam angles and IMRT fluence profiles. In iCycle, both selection of optimal beam orienta-

tions and optimization of beam profiles are based on a user-defined wish− list, containing

hard constraints and objectives with ascribed priorities (Breedveld et al 2007 [12]).

• Constraints must be strictly met, otherwise the plan is considered invalid. Too strict

constraints may limit possibilities to generate attractive plans.

• Objectives are wishes, goals to be met as much as possible (within the imposed

constraints).

Priorities are used for having a relative importance ranking of the objectives; the higher

an objective priority is, the higher the probability that the corresponding objective will be

approached closely, reached or even exceeded. Both size and shape of the breast as well as

the size and location of the OAR (heart, lungs and contralateral breast) vary significantly

between patients (see Fig. 1.23 and 1.24). Including multiple levels in the wish-list grad-

ually reduces dose in the OARs. In this way, large initial dose reduction in some OARs is
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prevented, leaving space for dose reduction in other OARs. In the first step, objectives have

relatively easy goal value to achieve while in the later steps the goal values are set to more

demanding values (i.e. greater dose reduction in OARs).

The wish-list construction is made in collaboration with physicians and technicians to

ensure the generation of plans clinically acceptable and of good quality. If the wish-list

(constraints, objectives and priorities) is well-defined, it will produce a class solution, which

can be used for a group of patients.

Furthermore, a list of candidate beam orientations has to be given in input; it can be

restricted to a coplanar beam arrangement, or extended for generation of non-conplanar

plans. Directions can be excluded from the candidate set, e.g., to eliminate beam directions

that may cause collisions between the treatment couch (or the patient) and the gantry.

Figure 2.2: iCycle routine for beam angle selection and IMRT fluence profile optimization: the optimal

beam is selected and added to the previously optimized plan. A multi-criteria optimization is done with the

plan composed by the previously selected beams plus the candidate beam to generate a Pareto-optimal IMRT

plan. The output from the latter optimization is used to define the problem to be solved in the next iteration.

Picture from [12] .

2.2.1 Plan generation

Generation of a treatment plan is performed in an iterative procedure, schematically repre-

sented in Figure 2.2. The generation of the plan for a patients starts with an empty plan, i.e.,

no beams selected. Sequentially, optimal beam orientations are selected from the candidate

beams and added to the plan till a maximum number of beams (user-defined) is reached.

Iteration i starts with selection of the ith beam orientation to be added to the plan.

To select this new optimal direction all the not yet selected candidate beams have to be

evaluated one-by-one by solving for each of them an IMRT optimization problem for a beam

arrangement consisting of the previous i− 1 beams plus the candidate beam. The selected

candidate will be the one obtaining the most favorable score. Finally iCycle generates a

Pareto-optimal IMRT plan including the beam directions selected so far using the 2pεc
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method (see Sect. 2.2.2). The output of this 2pεc optimization is used to define the IMRT

optimization problem to be solved in the orientation selection of the i+ 1 optimal beam.

Consequently, plan generation for a patient always results in a series of plans with an

increasing number of beams all of them Pareto-optimal for beam intensity profiles. It was

shown that beam addition in iCycle always results in improved plan quality regarding the

highest prioritized objective that can still be improved on (Breedveld et al 2012 [13]).

2.2.2 2pεc optimization

Given the wish-list and a set of chosen beams, the beam profile optimization in iCycle is

made with the 2pεc algorithm. This algorithm is based on the ε-constraint method (Haimes

et al. [14]), in which each objective is optimized separately, and then constrainted during

the optimization of the other (lower prioritized) objectives. This method is extended to a 2-

phase ε-constraint optimization (2pεc), where a goal value can be assigned to each objective

used in the first phase of the optimization. In the second phase a full optimization of the

objectives is pursued (Breedveld et al. [12]).

All constraints and prioritized objectives are given in a prioritized list, i.e. the wish-list

which leads the optimization. The basic idea behind this method is that when is possible to

minimize the dose below a certain threshold (i.e. its goal) for one objective, it is often more

desired to minimize the dose for the other (lower priority) objectives first than to directly

minimize the dose for the higher objectives to its fullest extent.

During the first iteration of the first phase, the objective having highest priority is being

optimized:

minimize f1(x) (2.2.1)

subject to g(x) ≤ 0

where f1(x) is the objective function with priority 1, associated with goal b1, while g(x)

represents the (hard) constraints, summarized in a vector.

This optimization results in x∗, and gives a bound for the optimized objective (eq. 2.2.2)

which is set as constraint during the optimization of the following objective. The new bound

is chosen according to the following rule:

εi =

bi, fi(x
∗)δ < bi

fi(x
∗)δ, fi(x

∗)δ ≥ bi
(2.2.2)

where bi and εi are the goal and new bound of the objective i, fi(x
∗) is the obtained

value for the objective fi and δ is a slight relaxation to create some space for subsequent
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optimizations (usually set to 1.03, i.e. 3%). The next optimization optimizes f2 keeping f1

constrained:

minimize f2(x) (2.2.3)

subject to g(x) ≤ 0

f1(x) ≤ ε1.

This is repeated for all the n objectives.

In the second phase of multi-criteria optimization, all objectives which met their goals are

minimized to their fullest while keeping all others constrained starting, with the highest

priority objective.

2.3 Aim of the study

This study investigates automated generation of an IMRT treatment plan for whole breast

irradiation with two tangential beams with automated beam angle and isocenter selection.

Beam angle selection was not performed by iCycle (see Sect. 2.2). Instead, for each patient

a set of candidate plans was generated using different beam arrangements (combinatorial

approach). For each beam arrangement the intensity beam profiles were automatically

optimized using iCycle, based on a wish-list with a description of plan constraints and

objectives. Among all these plans, plans were identified that were Pareto-optimal with

respect to beam arrangement (and isocenter position). To identify the single ’best’ plan, a

score function was used that on average resulted in the clinically selected beam configuration.

Clinical questions investigated in this study were:

• What wish-list results in high quality IMRT plans for whole breast treatment with

tangential fields?

• How sensitive are PTV coverage and OAR dose distributions for beam configuration

and isocenter selection?

• Is it possible to automatically select for each patient the beam configuration and

isocenter for at least a plan quality as obtained clinically by technicians?

• How critical is the isocenter positioning for plan quality?
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Materials and methods

3.1 Patient data

For this study, 30 patient data sets were randomly selected from the database of patients

treated with surgery plus breast conserving therapy in the Erasmus MC between October

2012 and April 2013 (15 left-sided and 15 right-sided breast cancer patients). For 7 left-sided

patients, the CT-scan was acquired in deep inspiration breath-hold (BH). These patients

have an unfavorable position of the heart with respect to the breast. With the breath-hold

technique a larger spacing between the thoracic wall and heart is created, compared with

normal breathing, resulting in a lower dose to the heart.

The resolution of all CT-scans was 0.98 x 0.98 x 2.5 mm3. Clinical treatment plans were

made using commercial treatment planning software XiO (Elekta). Clinical plans consisted

of two opposing tangential beams encompassing the whole breast, and if applicable, 2 or 3

additional beams to deliver an extra dose to the tumor bed. Wedges were used to modulate

the beam profiles.

For all patients, the whole breast (CTV) as well as the organs at risk were delineated.

A planning target volume (PTV) was generated by first adding a margin of 5 mm to the

CTV and then retracting it by 5 mm from the skin. For breath-hold patients, a margin of

8 mm was used. For evaluation purposes, PTV8mm was considered as well; this structure

was generated by retracting the PTV 8 mm from the skin to exclude the region of the

build-up area (see Sect. 1.4.1.4). Radiotherapy for breast cancer often involves incidental

exposure of the nearby healthy organs. Lungs and contralateral breast were delineated as

OAR for all patients. Heart was delineated for left-breast treatment only, as for the right-

breast treatment, dose to the heart is generally low because of the large separation between

heart and PTV. Contralateral breast was delineated by an atlas-based contouring program

(ABAS, Elekta).
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3.2 Treatment plan generation

Clinically, the directions of the 2 nearly opposing tangential beams are selected by a dosimetrist.

Beam orientations are chosen from partial arcs of typically 40 degrees at the lateral and me-

dial side of the patients (see Fig. 3.1). Because of the limited set of candidate beam

configurations, a combinatorial approach was used to investigate automated beam angle

selection, instead of using the multi-criterial beam-angle optimization procedure in iCycle

(Sect. 2.2). The combinatorial approach consists of the automatic generation of a plan for

each possible combination of beam angle candidates, using iCycle for optimization of the

beam profiles. Therefore, for each patient, from n medial candidate beams and m lateral

candidate beams, nxm plans are generated.

The central beams in the two arcs were matched to the beam angles chosen by the

technician for the clinical treatment plan. The width of the arcs was set to 20◦ and beams

within the arcs were defined with a separation of 2◦, as illustrated in Figure 3.2. In this

way, 11 beams are defined on both the medial and the lateral side, resulting in 121 possible

combinations of beams, for which an IMRT plan was generated. All patients were treated

clinically with 6 MV beams and for most of them also higher energy beams were added

to obtain a more homogenous dose distribution. For patients clinically treated with two

energies, IMRT plans were generated using beams of 6 and 10 MV.
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Figure 3.1: Frequency of use of medial and lateral gantry angles in clinical treatment planning (Erasmus

MC 2012), for left and right breast treatments.
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Figure 3.2: Definition of the candidate beams in the combinatorial approach.

3.2.1 iCycle for IMRT plan generation

The wish-list was made in collaboration with physicians and technicians. The clinical 3D

conformal plans were used as reference dose distribution for the selection of the objectives in

the wish-list. As the beam models implemented in iCycle and the clinical TPS are not exactly

the same, no high accuracy direct comparison can be made between the dose distributions.

Therefore, in the rest of the study, comparisons were made only between plans generated

with iCycle.

Table 3.1 shows the final wish-list used in the study. Objectives concerning the heart

are only present in the wish-list for left breast treatments. The objectives will be discussed

in Sections 3.2.1.1 and 3.2.1.2.
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Table 3.1: Wish-list for left and right side breast. Dp = prescribed dose, α = parameter related to cell

survival, S = sufficient parameter.

Constraints

Volume Type Limit

PTV Maximum 53.5 Gy (=107% of Dp for PTV)

Patient Maximum 53.5 Gy

Objectives

Priority Volume Type Goal Parameter

left right

1 1 PTV LTCP 1 Dp = 50 Gy,

α = 0.8, S = 0.5

2 2 Contralateral breast Mean 1 Gy

3 3 Ipsilateral lung Mean 12 Gy

4 - Heart Mean 7 Gy

5 - Heart Maximum 50 Gy

6 4 PTV Variance 1.5

7 5 Contralateral breast Maximum 10 Gy

8 6 Patient Maximum 50 Gy

9 - Heart Mean 4 Gy

10 - Heart Maximum 42.5 Gy

11 7 Ipsilateral Lung Mean 6 Gy

12 8 Patient ring 3 cm Maximum 42.5 Gy

3.2.1.1 PTV coverage and dose homogeneity

The highest priority in radiotherapy treatment is generally the irradiation of the whole vol-

ume enclosed in the PTV, i.e. breast glandular tissue plus a safety margin to a high dose.

Even though the PTV dose in clinical plans can range from 95% to 112% of the prescribed

dose (Dp), homogeneous dose is highly desirable. In clinical practice, small volumes receiv-

ing 112% are accepted if a complex patient anatomy requires it. For optimizing the dose

distribution, iCycle uses only a sub-set of voxels, randomly sampled in the structures of

interest, and a small degree of freedom is left to the achievement of goals (see Sect. 2.2.2).

Therefore the PTV dose was constrained to 107% of Dp to ensure that even the dose inside

a single voxel of PTV was always below the 112%. Choosing this maximum dose constraint
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for the PTV also helped to avoid hot spots in the normal tissue outside the PTV.

The highest priority is given to the objective that optimizes the PTV dose distribution

using a LTCP (Logarithmic Tumor Control Probability, Alber and Reemtsen 2007 [15]),

cost function:

LTCP =
1

m

m∑
j=1

e−α(dj−D
p)

where m is the number of voxel in the target structure, Dp the prescribed dose, dj the

dose in voxel j and α the cell sensitivity parameter. The LTCP will penalize underdosage,

but still allows partial underdosage. For a homogeneous dose equal to Dp, the value of

LTCP approaches 1.

A higher value for α results in larger penalty for voxels with low dose. Therefore a higher

percentage of the PTV will receive at least 95% of the prescribed dose. Setting the α value

goal to 0.8 always allows to achieve a high PTV coverage. The ′Sufficient′ (S) parameter

value is used to stop the minimization of this objective at the defined S value in the first

phase of the optimization, to leave room for minimization of lower prioritized objectives

(Sect. 2.2.2).

To obtain a more homogeneous dose in the PTV, the variance objective was introduced,

in the lower level of the wish-list; this parameter was defined as:

V ar =
1

n
‖Ax− d‖2

where d is the current mean dose and Ax is the dose in the individual n voxels belonging to

the PTV. Minimizing this parameter (in conjunction with the LTCP) allows squeezing the

dose in a small interval around Dp. During the optimization of the wish-list, the influence

of the variance on the dose distribution was studied.

3.2.1.2 Organs at risk objectives

Sparing of OARs was obtained in two steps by using a so-called two-level wish-list (Table

3.1). In the first level (objectives with priority 2 to 5) dose is reduced with a high priority

but to a relatively modest level. In the second level (priority 7 to 11), doses are reduces

to a lower level. In this way the optimizer will gradually reduce the dose delivery in the

OARs, preventing that large initial reduction in one of the organs compromises sparing of

the others.

Due to high risk of secondary tumor induction, the contralateral breast received the

highest priority among the OARs in both levels of the wish-list. The request for a mean

dose reduction below 1 Gy is just after the objective for PTV coverage while in the second

level, according to the clinical practice, the request is to confine the 10 Gy isodose line

outside the contralateral breast.
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Heart was the second OAR to be considered since the risk of ischemic disease increases

linearly with the dose with no apparent threshold [6]. In the majority of patients with a left

breast tumor the heart is not directly adjacent to the PTV and the ipsilateral lung fills the

space between heart and target volume. Therefore, giving a higher priority to the ipsilateral

lung, instead of the heart itself, helped to create a steeper dose gradient in the region of the

chest wall resulting in sparing both lung and heart. In the second level of the wish-list the

priorities of heart and lung are reversed.

The goals for mean dose reduction in ipsilateral lung and heart in the first level were

chosen considering the more difficult cases for which even a high dose of 11 Gy for lung

and 7 Gy for heart can still be accepted by the physicians. The goals for these organs in

the second level have been tuned considering the best possible sparing achieved in clinics.

For the heart, an additional objective for minimization of maximum dose was introduced to

induce a steeper gradient between PTV and this structure.

In whole breast treatments with tangential beams, high dose regions outside the PTV

(≥107% of the prescribed dose) may appear on the patient side especially for patients with

pendulous breast or high body mass index. To avoid these hot spots, a restriction to 50

Gy is given to the patient volume outside the PTV. In addition, at a later stage during

the optimization (priority 12 in Table 3.1), the dose to a volume at the lateral side of the

patient, 2 cm from the PTV and 3 cm under the skin (orange structure in Fig. 3.3), is

minimized to the 85% of Dp.

Figure 3.3: Contours of the structures use in the wish-list.
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3.2.2 Treatment plan evaluation

Evaluation of dose distributions was based on the following parameters:

• PTV coverage, PTV V95%, defined as the percentage of volume receiving at least 95%

of the prescribed dose,

• Dxcc, representing the minimum dose received by x cubic centimeter of the target,

• Dx%, representing the minimum dose received by x% of the target volume,

• Heterogeneity index (HI) for PTV, estimated as

HI =
D5%

D95%
(3.2.1)

• Mean dose for PTV and OARs

To exclude underdosage in the build-up region from the analyses, Dxcc and Dx% were

evaluated for PTV8mm.

3.2.3 Feasible plans

For each patient, a subset of the 121 generated plans was selected as feasible. These feasible

plans were characterized by a high PTV coverage in order to guarantee the effectiveness of

the radiotherapy treatment. Therefore, the starting point of each plan selection consisted

of detecting feasible plans and leave aside plans with a sub-optimal PTV dose distribution.

Feasible plans were selected considering only the V95% of PTV5mm and the near-minimum

dose DV−2cc of PTV8mm. The effectiveness of radiotherapy could be compromised when

the minimum request on PTV V95% and DV−2cc are not achieved.

Thresholds for PTV V95 (thV ) and DV−2cc (thD) were assigned, patient per patient, by

thV =

99%, V med95 ≥ 99%

V med95 , V med95 < 99%
(3.2.2)

thD =

46.5Gy, Dmed
V−2cc ≥ 46.5Gy

Dmed
V−2cc, Dmed

V−2cc < 46.5Gy
(3.2.3)

where V med95 and Dmed
V−2cc are the median values of PTV coverage and near-minimum

dose in the 121 plans for each patient respectively. Only plans for which both the PTV

parameters were equal or higher than the sufficient values were taken into consideration.
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3.2.4 Score function for selecting favorable Pareto-optimal plans

Breast-only tangential radiotherapy is associated with a low, but real risk of pneumonitis

and cardiac disease, as well as secondary tumor induction. Therefore, the quality of the dose

distributions of all feasible plans was discriminated based on OARs sparing.

For right-sided patients, the only OARs are ipsilateral lung and contralateral breast, so

Pareto-optimal plans can be represented on a frontier in the plane of lung and contralateral

breast mean dose. For left-sided patient the heart was considered as well, therefore Pareto-

optimal plans are distributed on a surface in the space of the OAR mean doses.

To select among the feasible plans only the favorable Pareto-optimal plans, a weighted

sum score function was used. Given a set of solutions a weighted sum can only select a

special class of Pareto-optimal solutions, as demonstrated by Gass and Saaty [16]. Multiple

criteria are combined into a single criterium by multiplying each objective with a positive

weight and summing up the weighted objectives. A solution to the resulting single criterium

problem is a solution with special performance characteristics. By varying the individual

weights, the weighted sum can be tuned to generate special optimal solutions.

To select favorable plans for a patient considering the relative sparing of OARs, the mean

doses in the organs at risk were used as objectives. Performance values sij were evaluated

comparing the mean dose in OAR j for plan i (Di
j) with the average value of the mean dose

of organ j considering all feasible plans, Dj :

sij = Di
j −Dj for j = 1, 2. . . N (3.2.4)

For right-sided patients the objectives are only two (N = 2) while for left-sided patient

the heart was considered as well (N = 3). The total score of plan i is then given by the

sum of all the performance values multiplied by the relative weights wj and divided by a

normalization factor, as follows

Scorei =

N∑
j

wj
sij√∑
i(sij)

2

M

for i = 1, 2. . .M (3.2.5)

where M is the number of feasible plans and the coefficients wj were defined as the

relative weight of the objective Oj . Since low mean doses in organs at risk are desired, the

best plan for OARs sparing, given a set of relative weights, is obtained by minimizing the

total score. The use of the standard deviation as a normalization factor is necessary to not

be sensible to particular anatomic characteristics of the patient.
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3.2.5 Selection of weights

By tuning the weights it is possible to give more importance to sparing of one organ instead

of an other. In the attempt to find weights for selection of the Pareto-optimal plan that

matches best with the clinical practice, the plans generated with the clinically used angles

were considered as reference plan. However, it turned out that the clinically used angles did

not produce a Pareto-optimal plan for all patients.

To better understand how different sets of weights affect plan selection, 9 different sets

of weights were systematically evaluated for all 30 patients. The sum of the weights was set

equal to 1.

For right side breast, only two objectives were considered, one for contralateral breast

and one for ipsilateral lung; the 9 sets of weights were defined starting from 0.9 for the

contralateral breast and 0.1 for the lung and continued increasing ipsilateral lung weight

by steps of 0.1 while consequently decreasing the contralateral breast weight. For left side

breast, three objectives were used, for heart, lung and contralateral breast; considering the

linear relation between heart and lung mean dose for those two organs the same weights were

used. Therefore, the 9 sets of weights were generated starting from a weight of 0.05 for both

heart and ipsilateral lung and a weight of 0.9 for contralateral breast and then heart and

lung weights were increased of 0.05 in each step while the contralateral breast weight was

decreased by consequence. For each set of weights, the feasible plan with the lowest score is

selected as the best Pareto-optimal plan. This resulted in the selection, for each patient, of 9

best plans starting with the extreme case of selecting the plan with best contralateral breast

sparing characteristics (at the expense of a higher exposure of ipsilateral lung and heart)

passing from an equal importance for all the OARs (equal weights) and going to the extreme

opposite case of a plan with low dose in lung (at the cost of higher dose in contralateral

breast).

The 9 plans selected with different sets of weights were compared, one by one, to the the

plan generated with clinical angles. For this purpose the euclidean distance between these

plans and the clinical plan in the OAR mean dose space was calculated. The plan with

smallest distance has the more similar characteristics in OAR sparing to the plan with the

clinical beams. Since one plan can be selected by different sets of weights, the frequency

with which a set of weights selected the plan closest to the clinical angles plan was evaluated

and analyzed. The more frequent sets of weights were used in the weighted sum for best

plan selection.

50



CHAPTER 3. MATERIALS AND METHODS

3.3 Sensitivity to isocenter position

The generation of treatment plans requires the selection of the position of the beam isocenter.

In clinical practice, this parameter is chosen by the technician who makes the plan. The

guideline for positioning the isocenter is to place it inside the PTV volume, in the slice where

the breast has the biggest volume, within a distance from the lung surface of approximately

2 cm. Each patient is a separate case to be considered by the planner. For the 30 patients in

this study, the distance of the isocenter from the ipsilateral lung contouring was measured.

The combinatorial optimization was repeated for different isocenter positions, resulting

in 121 plans per patient per isocenter position. The isocenter was moved in the z direction

(same x and y in the axial slice) 1 cm cranially (up) and 1 cm caudally (down) with respect

to the slice containing the clinical isocenter. In addition, 4 isocenter positions were defined

at a distance of 0.5, 1, 2 and 3 cm from the ipsilateral lung contour in the axial slice of the

clinical isocenter. The direction of movement across the PTV was set to be perpendicular

to the line connecting the two points generated from the lead wire positioned around the

palpable breast. Figure 3.4 illustrates the 4 isocenter positions used (colored stars) and the

clinical isocenter (yellow point), in the slice of the clinical isocenter. For three patients the

breast size was too small to consider the isocenter at 3 cm from the lung.

Figure 3.4: Axial CT slice of a left sided patient. To investigate the sensitivity of isocenter position, 4

isocenters were defined at 5 mm (magenta), 1 cm (green), 2 cm, (blue) and 3 cm (cyan). The clinical

isocenter position, in this case 24 mm distant from the ipsilateral lung, is represented by a yellow dot.
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Results

This chapter starts with the tuning of the variance parameter (Section 4.1) and the evalua-

tion of the PTV dose parameters (Section 4.2). In Section 4.3 the thresholds for the feasible

plan selection are discussed. In Section 4.4 the selection of Pareto-optimal plans using the

weighted sum is presented. A detailed description of the results for one patient is presented

in Section 4.5. Then, the results on the plan selection for 30 patients are summarized, ana-

lyzed and discussed in Section 4.6. Finally in Section 4.7 the isocenter positioning analysis

is presented, for 10 left and 10 right breast patients.

4.1 Wish-list optimization: variance objective

The variance parameter in the wish-list was varied from 0.5 to 2.5 and plans were generated

with clinically used beam angles for 10 patients. Figure 4.1 shows the effect of this parameter

on V95%, heterogeneity index (HI) and mean dose in heart and ipsilateral lung. A value of

0.5 results in a good PTV coverage, but also in an increase in mean and significant maximum

dose in OARs. In most of patients, relaxing the variance at 1.5 still guarantees a high PTV

coverage while at the same time a reduction of mean dose (up to 0.5 Gy) in OAR can be

achieved. The intermediate value of 1.5 is superior to 2.5, as only a small or no gain in OAR

sparing can be achieved at the cost of lower PTV coverage and a less homogeneous dose.
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Figure 4.1: The graphs represent, starting from the upper left and going clock wise, the effect of the

variance objective on PTV coverage, heterogeneity index and heart and ipsilateral lung mean dose. Solid

lines: 5 left-sided patients, dashed lines: 5 right-sided patients.
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4.2 Evaluation of PTV dose parameters

The near-minimum and near-maximum doses were investigated for 20 patients (121 plans

per patient) to find significant parameters to discriminate on in the plan selection. Near-

minimum and near-maximum values can be estimated using the dose-volume parameters

Dx% and Dxcc.

To estimate the near-maximum dose, D2cc and D2% were calculated in each of the 121

plans, patient by patient (see Fig. A.1 in Appendix A). The D2cc values were in general

higher than D2% (ranging approximately from 8 to 45 cc). No values larger than 53.8 Gy

were found. This shows that including constraints at 107% of the prescribed dose (53.5 Gy)

guarantees that the maximum PTV dose is indeed always lower than maximum accepted

value of 112% (56 Gy).

Also the near-minimum was considered; this value was evaluated for PTV8mm, to exclude

underdosage in the build-up region under the skin. The dose received by a percentage x of

PTV8mm was investigated with the values D98% and D95% (not shown). In all the patients

the minimum dose received by 98%, and therefore also 95%, of the volume is always larger

than 95% of the Dp, with these parameters no apparent under-dosage is present. A second

disadvantage of these parameters is that the volume considered directly relates to the PTV

volume, and will change from patient to patient.

Therefore, the minimum dose received by the total volume minus x cc was analyzed

(DV−xcc). For 20 patients this parameter was evaluated with x ranging from 0.1 to 5 cc,

to evaluate the minimum dose received by the total volume minus x cc. This parameter

ensures that the under-dosage is confined to a certain volume x regardless of the dimensions

of the target volume.

This data of 121 plans per patient is graphically represented in Figure 4.3 using box and

whisker plots for the parameter DV−2cc. In the box and whisker plot, the central mark of

each box represents the median value, the edges of the box are the 25th and 75th percentiles,

the whiskers extend to the 2nd and 98th percentiles, and outliers are plotted individually.

In the graphs a fluctuation of the median values for the different near-minimum parameters

among patients is observed. Also the extension of the boxes varies from patient to patient.

Figure 4.2 shows the median value of all plans per patient as a function of the volume x

cc (see box and whisker plots A.2 in Appendix A). When the parameter x is changed from

5 cc to 0.1 cc the near-minimum dose decreases for all patients and the variation in near-

minimum dose between plans for individual patients becomes larger. These volumes relate

to a volume of less than 800 voxels. Discriminating on such a small volume may discard too

many (good) plans.

The median values for DV−5cc and DV−3cc for most patients are higher than 47 Gy and

higher than 46.5 Gy for all patients. This means that the volume receiving less than 46.5
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Gy (93% of prescribed dose) is always smaller than 3 cc in more than 50 % of the plans

generated.

In the end the dose to a volume of PTV8mm minus 2 cc was chosen to evaluate the

near-minimum dose. For 14 of the 20 patients the median value of this parameter in the

121 plans was higher than 46.5 Gy. In clinical plans, an underdosage of 46.5 Gy is usually

accepted if this is not in the volume of PTV boost and occurs in a small volume (smaller

than 5 cc).
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Figure 4.2: Near-minimum dose as a function of the volume x (cc). Each point represents for a single

patient the median of the doses received by a volume (V - x cc) of PTV8mm in the 121 plans.
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Figure 4.3: The values of the DV −2cc, in 121 plans, are represented with box and whisker plot for 20

patients.

4.3 Selection of feasible plans

Once the 121 plans with all the possible combinations of beam directions were generated,

plans were selected based on PTV coverage and the near-minimum value in PTV8mm.

A plan having the 99% for PTV V95% and a value of 46.5 Gy (93% of Dp) for DVtot−2cc

is characterized by a high coverage in combination with an acceptable underdosage in a

volume as small as 2 cc. There is no need to ask for better values, since this usually comes

with increased mean dose in OARs. The 99% for PTV V95% and 46.5 Gy for DVtot−2cc were

considered sufficient values for selecting the feasible plans.

Due to the large variations in breast and chest wall size and shape it was not possible to

achieve a median PTV coverage larger than 99% for all patients. As a consequence, the use

of predefined thresholds to select the feasible plans for all patients would result in discarding

too many initially generated plans. Patient specific sufficient values were defined to select

feasible plans.

If, for a patient, the median values (V med95% and Dmed
V−2cc) for PTV DV−2cc and V95%

(considering all the 121) plans were lower than 99% and 46.5 Gy respectively these median

values were used as sufficient values.

Figure 4.4 shows graphically for two patients how the feasible plans are selected with

these two thresholds. From these graphs it is clear that it was not possible for all patients
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to fulfill the a-priori set sufficient parameters (due to specific anatomy). For the patient

represented in the left graph V med95 and Dmed
V−2cc were higher than 99% and 46.5 Gy, so the

latter were used to choose the feasible plans (blue points); while the other patient (right

panel in Fig. 4.4) had lower V med95 and Dmed
V−2cc so these two values where used as selection

criteria (solid lines).
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Figure 4.4: Selection of feasible plans (blue) for two patients. a priori set thresholds and applied (patient-

specific) sufficient value are represented by dashed and solid lines respectively. For the patient in the right

graph, the application of the a priori thresholds (99% for V95% and 46.5 for DV −2cc) would result in only

10 feasible plans.
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4.4 Selection of Pareto-optimal plans using a weighted

sum score

4.4.1 Relation between heart and lung dose

For left-sided patients the Pareto-optimal plans are distributed on a surface in the space of

heart, ipsilateral lung and contralateral breast mean doses. Figure 4.5 shows heart mean

dose versus lung mean dose for all Pareto-optimal plans for the 15 left-sided patients. An

approximately linear relation exist between those two parameters and the slope and doses

values depends on the specific patient anatomy. Therefore in the next sections as well as

in Appendix the Pareto-optimal plans for left-sided patients are projected in the ipsilateral

lung and contralateral breast mean dose plane.
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Figure 4.5: Mean heart dose as a function of the mean dose in the ipsilateral lung for 15 left-sided patients.

Each marker represents a Pareto-optimal plan.
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4.4.2 Selection of coefficients for the weighted sum
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Figure 4.6: Mean doses for contralateral breast and ipsilateral lung for all feasible plans of two patients are

reported (left-sided patient in the left panel and right-sided patient in the right panel). The Pareto-optimal

plans for OAR are represented by cyan squares. Among them, the Pareto-optimal solutions that can be

selected using the weighted sum used for this study with varied weights (red dots).

Only a single plan is selected when a set of weights is used (see Section 3.2.5). To

analyze the effect of different weights on plan selection, 9 sets of weights were used to

select plans on the Pareto-optimal surface. For left-sided tumors, the heart, ipsilateral lung

and contralateral breast were considered while in right-sided tumors only two weights were

considered (for ipsilateral lung and contralateral breast). The weights were varied between

maximum relative importance to the contralateral breast sparing (at cost of high mean dose

in lung and heart) to maximum relative importance of lung and heart sparing (with a lower

importance to contralateral breast).

Figure 4.6 shows for two patients plans at the Pareto-optimal frontier (cyan squares)

and the selected plans by the different sets of weights (red points). Different sets of weights

may result in the selection of the same plan (set of beam angles); instead of having 9 plans

(red points) per patient on the Pareto frontier only 3 (right panel) and 7 (left panel) were

selected because some plans were chosen multiple times by different weights.

For each selected plan (red points), the distance in the graph in the OAR values to the

plan with clinically used angles was calculated. Then for each set of weights the frequency

with which a set of weights selects the plan more similar to the reference plan was counted.

Figure 4.7 displays bar plots of these results.
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Figure 4.7: Left and right side patients bar plots representing the number of times that one set of weights

had permitted to obtain a best plan as close as possible to the IMRT plan generated with the angles chosen

in clinic by the technician. The set number 1 for right-sided correspond to wL = 0.1 and wCB = 0.9, these

values are changed with a step of 0.1 so that set 9 is wL = 0.9 and wCB = 0.1. For the left-sided the sets

range from wL = wH = 0.05 and wCB = 0.9 to wL = wH = 0.45 and wCB = 0.1 with a step of 0.05 for

wL and wH .

For the left-sided patients (right panel in Fig. 4.7), the combination of weight set 5

produces a plan with characteristics similar to the clinical one, for most of the patients. This

set consists in equal weighting for heart and lung of 0.25 and a value of 0.5 for contralateral

breast.

In right-sided patients (left panel in Fig. 4.7), two sets of weights occur with higher

frequency. For two on 15 patients these sets of weights select different plans. The set with

contralateral breast weight (wCB) at 0.6 and ipsilateral weights (wL) at 0.4 gave, for both

patients, a plan closer to the clinical angles plan. Therefore, this set was selected, instead

of the one with equal weights. A detailed analysis showed that in case of mean dose in

ipsilateral lung higher than 10 Gy and mean dose in contralateral breast lower than 1.5 Gy,

the best set of weights gave higher priority to ipsilateral lung (wL = 0.7 and wCB = 0.3). In

case of high dose of contralateral breast and relatively low dose in lung (lower than 10 Gy)
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the set of weights with wL = 0.3, wCB = 0.7 turned out to be the more suitable. Therefore,

three different sets of weights were defined for right-sided patients depending on the median

value in contralateral breast and lung mean doses in the feasible plans (Dmed
CB and Dmed

L ).

The weights are thus chosen according to the scheme

• {Dmed
CB < 1.5Gy} ∧ {Dmed

L < 10Gy} → wCB = 0.6, wL = 0.4

• {Dmed
CB < 1.5Gy} ∧ {Dmed

L > 10Gy} → wCB = 0.3, wL = 0.7

• {Dmed
CB > 1.5Gy ∧Dmed

L > 10Gy} ∨ {Dmed
CB > 1.5Gy ∧Dmed

L < 10Gy}
→ wCB = 0.7, wL = 0.3

Figure 4.8 shows the selected plans using these 3 sets of weights for two right-sided

patients. With this choice of coefficients for the weighting sum, is possible, on average, to

select the best plan with OAR sparing characteristics similar to those chosen for the clinical

treatments.
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Figure 4.8: Influence of weight selection for two right-sided patients with high dose in ipsilateral lung.

For the patient on the left panel (Ri01) Dmed
CB < 1.5 Gy while Dmed

L > 10 Gy, so the set of weights

wCB = 0.3, wL = 0.7 was selected. For the patient on the right panel (Ri07) Dmed
CB > 1.5 Gy and Dmed

L > 10

Gy resulting in the set of weights wCB = 0.7, wL = 0.3. In both cases the selected plans are closer to the

clinical angles plan than the plans selected with the more frequent set of weight (wCB = 0.6, wL = 0.4).
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4.5 Results for one patient

121 IMRT plans were generated using all combinations of the 11 candidate directions on

the medial and 11 on the lateral side of the patient; each plan had its intensity profiles

automatically optimized with iCycle using the wish-list.

The feasible plans were selected on PTV quality; if the PTV coverage (V95%) and the near

minimum value were below the thresholds, defined per patient, the plans were deleted and

no more considered. This distinction between plans on PTV dose distribution is graphically

represented in Figure 4.9, where the feasible plans (blue dots) are in the upper right region

where PTV parameter values are higher. For this patient, the V95% median value was lower

than the 99% (dashed line). Therefore, the threshold for this parameter was set at the

median value (98.8 %, represented with solid line); while the threshold for DVtot−2cc in this

case was 46.5 Gy.
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Figure 4.9: Each of the 121 IMRT plans is represented as a dot according to PTV coverage (V95%) and

significant minimum value (DVtot−2cc). In this patient the feasible plans (blue points) fulfill the request

of 98.7% on PTV coverage and of a maximum under-dosage of 46.5 Gy (solid lines). The green points

represent the deleted plans that will be no more considered in the plan selection.

Figure 4.10 shows mean doses for the heart (left panel) and the left lung (right panel)

as function of the contralateral breast mean dose for all feasible plans. The Pareto-optimal

plans are selected using a weighting sum score having as objectives the OAR mean doses. It

is clear that for this patient the plan generation with the clinically used beam angles (green

triangle) is not at the Pareto surface (cyan points in the graph). Even though OAR mean
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Figure 4.10: The heart and ipsilateral lung mean doses of feasible plans are plotted versus the mean dose

in contralateral breast (CB). Among these Pareto-optimal plans (cyan squares), the red point denotes the

plan selected with the weighted sum. The plan generated with the clinical angles is represented by the green

triangle.

doses were already low, a different choice of angles would have resulted in a better sparing.

With the method proposed in this study, the selected plan is a Pareto-optimal plan that

is lower both in ipsilateral lung, heart and contralateral breast mean dose by a considerable

amount with respect to the clinical plan. Figure 4.11 shows the set of tangential beams

in the clinical plan (dashed lines) and in the selected plan (solid violet lines). To achieve

a better contralateral breast and lung sparing, the lateral beam was tilted by 8 degrees.

The resulting dose distribution for PTV and organs at risk for both plans is also shown

in the dose-volume histogram in Figure 4.12. For OARs, the DVH of the plan selected by

the weighted summation is always lower than the clinical angles plan meaning that for this

patient plan quality could be improved.
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Figure 4.11: CT slice, where the clinical isocenter is defined (white cross) of a left-sided patient. The

beam selected from the technician, at 120 and 303 degrees, are graphically represented with dashed cyan

lines. The beams of the Pareto-optimal plan selected with the weighted sum were at 128 and 301 degrees

(violet lines).
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Figure 4.12: Comparison of the dose volume histograms (DVHs) of two plans generated with different sets

of tangential beams for a left side tumor. Dashed lines: IMRT plan with beam directions of the clinical plan

(technician defined). Solid lines: the best plan selected among Pareto-optimal plans using a weighted sum

score. While dose to the PTV is similar in both plans, dose to organs at risk can be reduced by selecting

different sets of tangential beams.
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4.6 Best plan selection

The selection of the best plan among all the plans generated with the combinatorial approach

was performed on 30 patients. Results are tabulated in Tables 4.1 and 4.2; plots of the

feasible and Pareto-optimal plans with the selected plan for each patient are reported in

Appendix B.

For 10 patients the thresholds used for the selection of feasible plans were set to less

demanding values than 99% for V95% and 46.5 for DV−2cc allowing a larger number of

remaining plans. For 8 of these patients the best plans selected were selected among the

feasible plans with PTV V95% and/or DV−2cc smaller than 99% and 46.5 meaning that

relaxing the requests on PTV coverage was possible to find a better plan for OAR sparing.

Figure 4.13 shows the values of PTV coverage, lung, heart and contralateral breast mean

doses obtained for the selected plan versus the clinical beam plans, for all patients. As a

result of the required PTV coverage for feasible plans, all selected plans have a PTV V95%

higher than the 98.5%. For left-sided patients, the heart mean dose in the selected plan is

always equal or lower than in the clinical plan. For the majority of patients, the mean dose

in ipsilateral lung in the selected plans is slightly better or equal to the clinical plan. For

only a few patients the mean lung dose increases. The same conclusion can be drawn for

the contralateral breast mean dose. Actually, as the mean dose to contralateral breast and

lung are conflicting objectives and plans are selected from Pareto-optimal plans, dose to one

OAR cannot be lowered without sacrificing the sparing of the other OAR, see also Tables

4.1 and 4.2.

Finally, the near-minimum dose inside the boost volume (retracted 8 mm from the skin)

was evaluated on DVboost−0.1cc. For 9 of 14 patients, who had a delineated booster volume,

the near-minimum dose was higher than 47.5 Gy (95% of Dp). For the other 5 patients

the underdosage ranged from 47.4 to 44.7 Gy. Without addition of extra objectives in the

wish-list, no guarantee can be given that the small underdosage, allowed at the selection of

feasible plans, is not present in the booster volume.

The generation of the 121 plans requires a computational time ranging from 15 to 150

minutes depending on the volumes of the structures optimized and if one of two beam

energies were used.

65



CHAPTER 4. RESULTS

Table 4.1: Comparison between the PTV coverage and mean dose values of the OARs obtained in the plan

with clinical angles and the values obtained in the plan selected with the weighted summation (bold print),

patient by patient for the left side breast tumor.

Patient PTV I. lung Heart C. breast

V95%(%) Dmean (Gy) Dmean (Gy) Dmean (Gy)

Le01 98,78 12,49 7,86 0,54

99,16 12,00 7,42 0,48

Le02 98,74 6,17 1,86 1,11

99,15 5,61 1,51 0,51

Le03 99,09 12,46 4,81 0,58

99,30 11,87 3,84 0,61

Le04 99,35 4,15 5,31 0,14

99,37 4,34 5,40 0,12

Le05 99,17 8,36 1,54 0,51

99,11 7,45 1,36 0,56

Le06 99,24 9,99 2,85 0,51

99,24 9,99 2,85 0,51

Le07 99,02 9,94 3,46 0,64

98,84 10,11 3,28 0,57

Le08 99,22 6,82 3,09 1,09

99,24 6,21 2,99 1,18

Le09 99,33 9,42 4,31 0,56

99,33 9,42 4,31 0,56

Le10 99,41 7,11 2,06 0,52

99,20 7,35 2,01 0,49

Le11 99,21 9,31 5,22 0,36

99,23 8,58 4,67 0,40

Le12 99,09 7,19 2,31 0,21

99,13 6,88 2,26 0,23

Le13 99,20 6,47 6,14 0,44

99,17 7,07 6,01 0,28

Le14 97,20 11,31 4,23 0,25

98,77 11,46 3,73 0,22

Le15 99,49 11,95 2,92 0,41

99,41 10,14 2,13 0,59
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Table 4.2: Comparison between the PTV coverage and mean dose values of the OARs obtained in the plan

with clinical angles and the values obtained in the plan selected with the weighted summation (bold print),

patient by patient for the right side breast tumor.

Patient PTV I. lung C. breast

V95%(%) Dmean (Gy) Dmean (Gy)

Ri01 99,63 5,10 0,28

99,52 5,10 0,25

Ri02 98,98 7,44 0,20

99,14 7,36 0,17

Ri03 99,02 7,08 0,43

99,07 7,06 0,33

Ri04 99,28 11,99 1,61

99,30 11,52 1,38

Ri05 98,08 4,72 0,164

98,61 4,71 0,12

Ri06 99,41 4,57 0,69

99,35 4,64 0,56

Ri07 99,13 6,56 0,39

99,08 6,18 0,27

Ri08 99,43 10,22 0,45

99,29 10,19 0,45

Ri09 99,33 6,06 0,22

99,00 5,99 0,17

Ri10 99,21 9,09 1,79

99,19 8,91 1,46

Ri11 99,44 8,69 0,99

99,40 7,88 1,16

Ri22 99,60 5,48 0,26

99,33 5,05 0,32

Ri13 98,97 7,70 1,00

99,01 7,36 1,04

Ri14 99,24 11,25 1,6

99,32 11,29 1,19

Ri15 99,16 6,04 0,05

99,25 6,05 0,04
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Figure 4.13: Comparison of the values of PTV V95% and mean doses in contralateral breast, ipsilateral

lung and heart, obtained in plan with clinical angles and in the plan selected. The values for the left-sided

patients are reported in magenta while the blue points are the right-sided patients.
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4.7 Isocenter position sensitivity

For 20 patients, 10 for each tumor side, the isocenter was moved along the z direction and

within the PTV, so that 6 more isocenter positions were defined. The clinical isocenter

distance from the ipsilateral lung is reported for all patients in Table 4.3. For each new

beam isocenter 121 plans, with all angle combinations, were generated and analyzed. For

every patient, the best plan, per isocenter position was selected with the weighted sum,

where the normalization factor was calculated considering all the feasible plans generated

with the 7 different isocenter positions. In this way the scores obtained from the best plan,

per isocenter position, can be compared among each other.

Table 4.3: Clinical isocenter position expressed as the distance from the ipsilateral lung in the axial side,

for all patients.

Patient Isoc. position Patient Isoc. position

(mm) (mm)

Le01 9 Ri01 3

Le02 9 Ri02 35

Le03 23 Ri03 27

Le04 5 Ri04 15

Le05 13 Ri05 13

Le06 22 Ri06 13

Le07 11 Ri07 14

Le08 8 Ri08 32

Le09 20 Ri09 20

Le10 17 Ri10 3

Figure 4.14 shows the Pareto-optimal plans obtained for the 7 different isocenters position

for one left-sided patient. Results for the other patients are reported in Appendix C1 and

C2. For some patients a large difference in Pareto frontier shape was noted while for other

patients the isocenter position does not significantly change plan quality. For all patients

only small differences were found between the Pareto-optimal plans obtained after movement

of the isocenter in caudal and cranial direction (see left panel in Fig. 4.14).

In Figure 4.15 the best plans scores as function of the isocenter position are represented

for all patients, divided in left and right tumors. No isocenter position shows better scores

with respect to the others for all patients; the clinical isocenter for most of the patients does
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not score the lowest value, meaning that another isocenter could improve the best plan.

The contralateral breast, ipsilateral lung and heart mean doses obtained for the best plan

for each isocenter position were investigated. For each of these parameters the differences

with the values obtained in the best plan with clinical isocenter were graphically represented

(see Appendix C.3). It was not possible to find a general behaviour connecting the plan

quality to the position of the isocenter, although for 5 patients an improvement in the

sparing of all OARs was possible by moving the isocenter from the clinical position to

another position (see Table 4.4). We conclude from this data that it might be beneficial for

plan generation to include isocenter position in the optimization as well.

Table 4.4: Difference in mean dose in OARs (%) between the parameter values in the best plan with the

clinical isocenter and the isocenter x cm from the lung in the axial slice. Only plans are shown with an

improvement in OAR sparing.

Patient Clin. Iso. position Isoc. position I. lung C. breast Heart

(mm) (mm) (%) (%) (%)

Le01 9 5 4 2 5

Le02 8 10 1 2 2

Le06 22 10 6 4 13

Ri01 3 20 6 24 -

30 7 24 -

Ri03 27 5 2 4 -

To support this finding with statistical data, Wilcoxon signed rank test was used to

compare the best plan scores for different isocenter positions. It is a paired difference test

comparing the results two by two. A mean difference was considered significant if p-values

were smaller than 0.05. The test was performed grouping the patients in 3 ways, only left

or right sided patients, or all 30 patients together. No evident correlation between the plan

quality and the isocenter position was found in these groups of patients, all p-values were

larger than 0.1 (see Tables in Appendix C.3).

In order to have a fully automated treatment generation an initial isocenter has to be

given in input as starting point for optimization of isocenter position. This can be done using

the CT-scans of the patient and processing the images. Referring to the clinical guidelines,

the position on the cranial-caudal direction has to be set at the height of the nipple while in

the axial slide usually the isocenter has to be positioned at 2 cm form the ipsilateral lung.
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This strategy could be implemented in further studies.
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Figure 4.14: Left breast patient 05 (Le05) for which the clinical isocenter was positioned at 13 mm

from ipsilateral lung. Pareto-optimal plans generated with the clinical isocenter (red stars) and other 6

isocenter positions are shown. In the left panel movement of the isocenter in the cranial-caudal direction

are considered while in the right panel the isocenter was moved in the axial slice at 4 distances from the

ipsilateral lung.
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Figure 4.15: Scores obtained for the best plan for each isocenter position in 10 patients with tumor in left

breast and 10 in the right breast. For 3 patients the lack of data for position of the isocenter at 3 cm from

the lung was due to small breast size.

71



Chapter 5

Conclusions and future research

In this study, an in-house developed beam profile optimizer (iCycle), was used in combination

with a combinatorial approach for beam angle selection to generate plans for irradiation of

the whole breast with two tangential beams.

A wish-list, describing the desired dose distribution, was produced to steer the iCycle

intensity profile optimization algorithm. The multi-objective problem of selecting optimal

beam angles was solved by the generation of multiple plans, with different combinations

of beam directions belonging to 2 opposite partial arcs. A first selection concerning the

PTV coverage and estimation of possible underdosage in the target volume gives feasible

plans. Among these solutions Pareto-optimal plans were considered using a weighted sum

score function, for OAR sparing. With an appropriate selection of the sum weights it was

possible to choose the Pareto-optimal plans with the trade-off between the conflicting dose

minimization OARs, as applied in clinical practice.

This method was tested on 30 patients in case of tumors occurring in left or right breast.

The beam angles chosen for the clinical treatment did not always lead to Pareto-optimal

plans due to the manual selection process (although for many patients it was nearly Pareto-

optimal). The beam directions selected with this method always resulted in a Pareto-optimal

solution, while for the clinical angles there may be deviations from Pareto-optimality.

The analysis of plan generation with different isocenters from the clinical chosen isocen-

ter showed sensitivity of plan quality to this parameter for some patients; however, no

evident correlation between isocenter position and OAR sparing emerged from this analysis.

Therefore optimization of isocenter position might be beneficial in terms of plan quality

and organs at risk sparing for a (sub) group of patients. A further investigation may aim

at finding a connection between patient anatomic characteristics (i.e. chest wall curvature,

heart distance to the PTV, breast dimensions) and optimal isocenter position.
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In the graphs displaying the results of the feasible plans for contralateral breast and

ipsilateral lung mean dose for individual patients, artifacts generated from the wish-list levels

can be noted. Especially in some of the patients with a mean dose in ipsilateral lung higher

than 10 Gy is possible to detect a stepwise shape of the Pareto-frontier in correspondence

of 12 Gy (see patient Le01, in Appendix B). The introduction of an additional level to the

actual wish-list may improve the plans by lowering the dose in more steps.

For this study, the candidate beams considered for the combinatorial plan generation

were pre-defined by using a fixed arc around the clinically used beam angles. For complete

automation of plan generation also the candidate beams have to be defined automatically.

Image processing of the patient CT scan provides useful information on breast dimensions

and shape together with chest wall curvature. The lead wire marking the breast can be

used to define patient specific partial arcs for the plan generation using the combinatorial

approach.

Future implementations of the method presented in this study may support physicians

and technicians in the generation of treatment plans, finding the most preferred Pareto-

optimal solution according to their preferences.
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Appendix A

Evaluation of PTV parameters
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Figure A.1: Box and whisker plots of near-maximum PTV doses, for 20 patients, D2% (left) and D2cc

(right). On each box, the central mark is the median value, the edges of the boxes are the the 25th and 75th

percentiles, the whiskers extend to the 2nd and 98th percentiles; outliers are plotted individually. The green

line at 53.5 Gy (107% of Dp) represents the constraint imposed on the maximum dose in the PTV in the

wish-list.
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Figure A.2: Box and whisker plots of the parameters DVtot−0.1cc, DVtot−0.5cc, DVtot−1cc, DVtot−2cc,

DVtot−3cc and DVtot−5cc of PTV8mm for 20 patients. Patients 1 to 10 had left breast tumor while patients

11 to 20 in right breast. On each box, the central mark is the median value, the edges of the box are

the the 25th and 75th percentiles, the whiskers extend to the 2nd and 98th percentiles; outliers are plotted

individually. The green line represents the threshold at 46.5 Gy.
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Appendix B

Results per patient: selection of

feasible plans and

Pareto-optimal plans

B.1 Left-sided patients
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Figure B.1: Patient left breast 01 (Le01): feasible plans and Pareto-optimal plans.
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PARETO-OPTIMAL PLANS
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Figure B.2: Patient left breast 02 (Le02): feasible plans and Pareto-optimal plans.
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Figure B.3: Patient left breast 03 (Le03): feasible plans and Pareto-optimal plans.
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Figure B.4: Patient left breast 04 (Le04): feasible plans and Pareto-optimal plans.
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Figure B.5: Patient left breast 05 (Le05): feasible plans and Pareto-optimal plans.
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Figure B.6: Patient left breast 06 (Le06): feasible plans and Pareto-optimal plans.
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Figure B.7: Patient left breast 07 (Le07): feasible plans and Pareto-optimal plans.
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Figure B.8: Patient left breast 08 (Le08): feasible plans and Pareto-optimal plans.

98 98.5 99 99.5 100
44.5

45

45.5

46

46.5

47

47.5

48

48.5

PTV V
95%

 (%)

P
T

V
8
m

m
 D

V
t−

2
c
c
 (

G
y
)

 

 

Non−feasible plans

Feasible plans

8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

I. Lung D
mean

 (Gy)

C
B

 D
m

e
a
n
 (

G
y
)

 

 

Non Pareto−optimal plans

Pareto−optimal plans

Selected plan

Clinical angles plan

Figure B.9: Patient left breast 09 (Le09): feasible plans and Pareto-optimal plans.

82



APPENDIX B. RESULTS PER PATIENT: SELECTION OF FEASIBLE PLANS AND
PARETO-OPTIMAL PLANS
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Figure B.10: Patient left breast 10 (Le10): feasible plans and Pareto-optimal plans.
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Figure B.11: Patient left breast 11 (Le11): feasible plans and Pareto-optimal plans.
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Figure B.12: Patient left breast 12 (Le12): feasible plans and Pareto-optimal plans.
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Figure B.13: Patient left breast 13 (Le13): feasible plans and Pareto-optimal plans.
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Figure B.14: Patient left breast 14 (Le14): feasible plans and Pareto-optimal plans.
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Figure B.15: Patient left breast 15 (Le15): feasible plans and Pareto-optimal plans.
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B.2 Right-sided patients
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Figure B.16: Patient right breast 01 (Ri01): feasible plans and Pareto front.
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Figure B.17: Patient right breast 02 (Ri02): feasible plans and Pareto front.
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Figure B.18: Patient right breast 03 (Ri03): feasible plans and Pareto front.
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Figure B.19: Patient right breast 04 (Ri04): feasible plans and Pareto front.
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Figure B.20: Patient right breast 05 (Ri05): feasible plans and Pareto front.
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Figure B.21: Patient right breast 06 (Ri06): feasible plans and Pareto front.
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Figure B.22: Patient right breast 07 (Ri07): feasible plans and Pareto front.
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Figure B.23: Patient right breast 08 (Ri08): feasible plans and Pareto front.
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Figure B.24: Patient right breast 09 (Ri09): feasible plans and Pareto front.
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Figure B.25: Patient right breast 10 (Ri10): feasible plans and Pareto front.
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Figure B.26: Patient right breast 11 (Ri11): feasible plans and Pareto front.
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Figure B.27: Patient right breast 12 (Ri12): feasible plans and Pareto front.

91



APPENDIX B. RESULTS PER PATIENT: SELECTION OF FEASIBLE PLANS AND
PARETO-OPTIMAL PLANS

98 98.5 99 99.5 100
45.5

46

46.5

47

47.5

48

48.5

PTV V
95%

 (%)

P
T

V
8
m

m
 D

V
t−

2
c
c
 (

G
y
)

 

 

Non−feasible plans

Feasible plans

7 8 9 10 11 12
0

0.5

1

1.5

2

2.5

3

I. Lung D
mean

 (Gy)

C
B

 D
m

e
a
n
 (

G
y

)

 

 

Non Pareto−optimal plans

Pareto−optimal plans

Selected plan

Clinical angles plan

Figure B.28: Patient right breast 13 (Ri13): feasible plans and Pareto front.
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Figure B.29: Patient right breast 14 (Ri14): feasible plans and Pareto front.
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Figure B.30: Patient right breast 15 (Ri15): feasible plans and Pareto front.
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Appendix C

Effect of the isocenter on

Pareto-optimal plans

C.1 Left-sided patients
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Figure C.1: Patient left breast 01 (Le01). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 9 mm from ipsilateral lung.
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Figure C.2: Patient left breast 02 (Le02). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 9 mm from ipsilateral lung.

8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

1.2

Lung D
mean

 (Gy)

C
B

 D
m

e
a
n
 (

G
y
)

 

 

Isoc. 1cm Down

Isoc. 1cm Up

Clin. Isocenter

8 10 12 14 16 18 20 22
0

0.2

0.4

0.6

0.8

1

1.2

Lung D
mean

 (Gy)

C
B

 D
m

e
a
n
 (

G
y
)

 

 

Isoc. 5mm in PTV

Isoc. 1cm in PTV

Isoc. 2cm in PTV

Isoc. 3cm in PTV

Clin. Isocenter

Figure C.3: Patient left breast 03 (Le03). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 23 mm from ipsilateral lung.
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Figure C.4: Patient left breast 04 (Le04). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 5 mm from ipsilateral lung.
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Figure C.5: Patient left breast 05 (Le05). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 13 mm from ipsilateral lung.
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Figure C.6: Patient left breast 06 (Le06). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 22 mm from ipsilateral lung.
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Figure C.7: Patient left breast 07 (Le07). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 11 mm from ipsilateral lung.
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Figure C.8: Patient left breast 08 (Le08). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 8 mm from ipsilateral lung.
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Figure C.9: Patient left breast 09 (Le09). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 20 mm from ipsilateral lung.
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Figure C.10: Patient left breast 10 (Le10). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 17 mm from ipsilateral lung.
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C.2 Right-sided patients
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Figure C.11: Patient right breast 01 (Ri01). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 3 mm from ipsilateral lung.
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Figure C.12: Patient right breast 02 (Ri02). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 35 mm from ipsilateral lung.
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Figure C.13: Patient right breast 03 (Ri03). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 27 mm from ipsilateral lung.
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Figure C.14: Patient right breast 04 (Ri04). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 15 mm from ipsilateral lung.
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Figure C.15: Patient right breast 05 (Ri05). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 13 mm from ipsilateral lung.
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Figure C.16: Patient right breast 06 (Ri06). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 13 mm from ipsilateral lung.
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Figure C.17: Patient right breast 07 (Ri07). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 14 mm from ipsilateral lung.
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Figure C.18: Patient right breast 08 (Ri08). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 32 mm from ipsilateral lung.
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Figure C.19: Patient right breast 09 (Ri09). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 3 mm from ipsilateral lung.
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Figure C.20: Patient right breast 10 (Ri10). Pareto frontier for plans generated with the clinical isocenter

and other 6 isocenter positions. Clinical isocenter position 20 mm from ipsilateral lung.

105



APPENDIX C. EFFECT OF THE ISOCENTER ON PARETO-OPTIMAL PLANS

C.3 All patients
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Figure C.21: Variation in heart mean dose (%) between the value obtained for the best plan with clinical

isocenter and the best plan selected with the other isocenter positions. Results for 10 left side patients.
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Figure C.22: Variation in ipsilateral lung (%) and contralateral breast mean dose between the value

obtained for the best plan with clinical isocenter and the best plan selected with the other isocenter positions.

Results for 10 left side patients.
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Figure C.23: Variation in ipsilateral lung and contralateral breast mean dose (%) between the value

obtained for the best plan with clinical isocenter and the best plan selected with the other isocenter positions.

Results for 10 right side patients.
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Table C.1: Wilconxon signed ranked test p-values, for left breast patients.

Clin. iso. 10 mm 10 mm 5 mm 10 mm 20 mm 30 mm

caudal cranial axial axial axial axial

Clin. iso. - 0.70 0.62 0.50 0.68 1.00 1.00

10 mm caudal - 0.43 1.00 1.00 0.76 0.64

10 mm cranial - 0.92 0.43 0.49 0.46

5 mm axial - 0.92 0.84 0.84

10 mm axial - 0.28 0.94

20 mm axial - 0.74

30 mm axial -

Table C.2: Wilconxon signed ranked test p-values, for right breast patients.

Clin. iso. 10 mm 10 mm 5 mm 10 mm 20 mm 30 mm

caudal cranial axial axial axial axial

Clin. iso. - 0.85 0.49 0.76 0.16 0.49 0.21

10 mm caudal - 0.84 0.62 0.43 0.38 0.10

10 mm cranial - 0.43 0.13 0.28 0.14

5 mm axial - 0.43 0.16 0.11

10 mm axila - 0.92 0.13

20 mm axial - 0.16

30 mm axial -
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Table C.3: Wilconxon signed ranked test p-values, for all patients.

Clin. 10 mm 10 mm 5 mm 10 mm 20 mm 30 mm

isocenter caudal cranial axial axial axial axial

Clin. iso. - 0.48 0.37 0.50 0.48 0.60 0.23

10 mm caudal - 0.40 0.71 0.55 0.30 0.12

10 mm cranial - 0.85 0.11 0.14 0.10

5 mm axial - 0.51 0.20 0.18

10 mm axial - 0.41 0.20

20 mm axial - 0.41

30 mm axial -
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