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Abstract

In questo lavoro ci si propone di studiare la quantizzazione del campo vetto-
riale, massivo e non massivo, in uno spazio-tempo di Rindler, considerando
in particolare i gauge di Feynman e assiale. Le equazioni del moto vengono
risolte esplicitamente in entrambi i casi; sotto opportune condizioni, é stato
inoltre possibile trovare una base completa e ortonormale di soluzioni delle
equazioni di campo in termini di modi normali di Fulling. Si é poi analizzata
la quantizzazione dei campi vettoriali espressi in questa base.
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Preface

The study of the quantization of Vector Fields as experienced by a Rindler
observer, that is an accelerated noninertial observer, turns out to be really
useful and important when considering the description of many physical phe-
nomena.

First of all, it is known that accelerated observers are expected to expe-
rience the so-called Unruh Effect, according to which they measure a thermal
bath of particles with respect to the inertial observers and vice-versa, with a
characteristic temperature, called Unruh temperature, T = �a/2πkB, where
kB is the Boltzmann’s constant. Therefore, on the one hand, there is a great
interest for the Unruh effect and its consequences regarding the modern Cos-
mology and Particle Physics. As a matter of fact, since the particle structure
of the constituents of Dark Matter is so far unknown and is usually assumed
to be a non-baryonic weakly interacting massive particle (WIMP), and since
we live in an accelerated expanding universe, from the point of view of the ac-
celerated observes co-moving with the galaxies, a cosmological thermal bath
of WIMP particles is expected to be produced by the cosmic acceleration,
with an Unruh temperature T = �H/2πkB, where H is the Hubble’s para-
meter related to the cosmic acceleration acosmic = cH ≈ 2.1 × 10−9 m s−2.
It is then important to consider the description of real scalar particles, Ma-
jorana spinors and real vector particles as experienced by some uniformly
accelerated observers. The simplest class of such observers is given by the
so-called Rindler observers. The quantization of the first two kind of particles
in a Rindler space has been recently done [6], and thus the quantization of
real vector particles acquires interest to complete the overview. On the other
hand, many applications of the Unruh Effect concerning the Unruh-DeWitt
detectors have been analyzed and have become of growing interest in the last
years [8] [9], especially regarding the photon counting detectors.

Secondly, many aspects of the definition and properties of Black Holes can
be easily understood and clarified considering physical phenomena in a flat
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Minkowski spacetime, but from the point of view of a uniformly accelerated
observer. In fact, according to the Principle of Equivalence, the physical
laws in a local reference frame at rest in a gravitational field are equivalent
to those in a uniformly accelerated frame in a flat spacetime. In particular,
if we consider a small region near the event horizon of a Black Hole and use
a frame at rest there, the local effects in that region can be described in
an easier way from the point of view of a particular uniformly accelerated
observer, that is the Rindler observer, since this rigid reference frame turns
out to be equivalent to the former frame in the static gravitational field of
the region under consideration.

This work is organized as follows. In the first chapter we review the quan-
tization of both massive and massless vector fields in the usual Minkowski
space, considering in particular the Feynman gauge. The second chapter is
devoted to the analysis of Quantum Field Theory in a generical curved space-
time, focusing in particular on the Rindler space and the quantization of the
scalar field in this space-like region. In the last chapter we present the quan-
tization of the vector fields, both massive and massless, in a Rindler space
considering several gauges; we also describe some recent features concerning
photon counting detectors.

6



Chapter 1

Vector Fields in a Minkowski
space

In this chapter we review the quantization of the Vector Fields in the usual
Minkowski space. In the following we will denote the constant Minkowski
metric tensor with ηµν = diag(+1,−1,−1,−1) and use the natural units with
c = � = 1.

It is known that the Action which leads to the Maxwell equations for the
massless vector field is given by

S =

�
d4x

�
−1

4
Fµν(x)F

µν(x)

�
(1.1)

where Fµν = ∂µAν −∂νAµ is the electromagnetic antisymmetric tensor which
is invariant under the gauge transformation of the first kind

A�
µ(x) = Aµ(x) + ∂µf(x) (1.2)

where f(x) is any real function. The vacuum equations are recovered through
the principle of least action and read

∂µF
µν = 0 (1.3)

∂µFνλ + ∂λFµν + ∂νFλµ = 0 (1.4)

In order to find a unique solution, one must choose a particular gauge for
the potential Aµ; a covariant choice is then given by the Lorenz condition
∂µAµ = 0, which simplifies the field equations giving

�Aµ = 0 (1.5)
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and therefore Aµ satisfies the usual D’Alembert wave equations. Of course,
the gauge invariance is not a symmetry of the massive vector field, which is
described by the following Lagrangian density

L = −1

4
Fµν(x)F

µν(x) +
1

2
m2 Aµ(x)A

µ(x) (1.6)

and the consequent equations of motion

∂µF
µν(x) +m2 Aν(x) = 0 (1.7)

∂µA
µ = 0 (1.8)

Now, in order to describe both the massive and massless vector fields, keeping
the covariance manifest, we are left with the following Lagrangian density

L = −1

4
Fµν(x)F

µν(x)+
1

2
m2 Aµ(x)A

µ(x)+Aµ(x) ∂µB(x)+
1

2
ξ B2(x) (1.9)

where ξ is a real parameter and B is an auxiliary scalar field thanks to which
one recovers the gauge fixing condition for the massless case. As a matter of
fact, the field equations now read

∂µF
µν(x) +m2 Aν(x) + ∂νB(x) = 0 (1.10)

∂νA
ν(x) = ξ B(x) (1.11)

that can be recast as
�
ηµν

�
�+m2

�
−

�
1− 1

ξ

�
∂µ∂ν

�
Aν(x) = 0 (1.12)

∂νA
ν(x) = ξ B(x) (1.13)�

�+m2 ξ
�
B(x) = 0 (1.14)

It should be noticed that the auxiliary field B is a free real scalar field that
satisfies the Klein-Gordon wave equation with a square mass m2ξ, which is
positive for ξ > 0, while for ξ < 0 it becomes tachyon-like, and therefore
reveals that this field is not physical.

The field equations can be simplified choosing a particular value for the
real parameter ξ. The choice ξ = 0 is called Lorenz-Landau gauge, while the
Feynman gauge is given by ξ = 1 and is the one we will adopt. This way we
get

�
�+m2

�
Aν(x) = 0 (1.15)

∂νA
ν(x) = B(x) (1.16)�

�+m2
�
B(x) = 0 (1.17)

We will now analyze separately the Proca field and the massless field,
then proceeding to the quantization.
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1.1 Massive Vector Field

We first consider the quantization of the massive real vector field. In order
to find the normal modes decomposition, it is useful to take the following
gauge transformation of the vector potential, namely

Aµ(x) = Vµ(x)−
1

m2
B(x) (1.18)

so that the antisymmetric tensor becomes

Fµν = ∂µAν − ∂νAµ (1.19)

= ∂µVν − ∂νVµ (1.20)

and we recover the Proca field equations

�
�+m2

�
V ν(x) = 0 (1.21)

∂νV
ν(x) = 0 (1.22)�

�+m2
�
B(x) = 0 (1.23)

The solutions can be found through the Fourier transform

Vµ(x) =

�
d4k

(2π)3/2
Ṽµ(k) e

−ikµxµ
(1.24)

with the reality condition Ṽ ∗
µ (k) = Ṽµ(−k), and from the field equations

(1.21, 1.22) we get
Ṽµ(k) = δ(k2 −m2) fµ(k) (1.25)

where fµ(k) are four arbitrary functions, regular on the hyperboloid k2 = m2

and which satisfy the reality condition f ∗
µ(k) = fµ(−k) and the transversality

condition kµfµ(k) = 0, that means that there are only three indipendent
functions. Therefore, we can introduce three indipendent real unit vectors,
the linear polarization vectors eµr (k) (r = 1, 2, 3), which are dimensionless
and determined by the following properties

• kµ eµr (k) = 0 r = 1, 2, 3 k0 ≡ ωk = (k2 +m2)1/2

• −ηµν eµr (k) e
ν
s(k) = δrs (orthonormality relation)

•
�3

r=1 eµr (k) e
ν
r (k) = −ηµν+kµ kν/k2 = −ηµν+kµ kν/m2 (closure relation)
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One suitable choice is then given by

eµr (k) = (0, er(k)), er(k) · es(k) = δrs k · er(k) = 0 r, s = 1, 2

e03(k) =
| k |
m

e3(k) =
k̂

m
ωk (1.26)

so that we can expand the real vector field V µ(x) in terms of the normal
modes uµ

k, r(x), namely

V µ(x) =
�

k, r

�
fk, r u

µ
k, r(x) + f ∗

k, r u
µ∗
k, r(x)

�
(1.27)

uµ
k, r(x) =

1

[(2π)3 2ωk]
1/2

eµr (k) e
−iωkt+ik·x (1.28)

where we have used the shorthand notation

�

k, r

≡
�

dk
3�

r=1

(1.29)

We notice also that the set of normal modes uµ
k, r(x), which have canonical

dimensions
�
uµ
k, r

�
= cm1/2 in natural units, is a complete orhonormal set

which satisfies the following orthonormality and closure relations

−ηµν
�
uµ
k, r, u

ν
p, s

�
= −ηµν

�
dx uµ∗

k, r(x) i
←→
∂0 u

ν
p, s(x)

= δrs δ(k− p) (1.30)

ηµν
�
uµ
k, r, u

ν∗
p, s

�
= ηµν

�
uµ∗
k, r, u

ν
p, s

�
= 0 (1.31)

ηµν
�
uµ∗
k, r, u

ν∗
p, s

�
= δrs δ(k− p) (1.32)

�

k, r

�
uµ
k, r(x) u

ν∗
k, r(y)

�
= i

�
ηµν −

∂µ
x∂

ν
y

m2

�
D(−)(x− y) (1.33)

where D(−)(x− y) is the positive frequency scalar distribution

D(−)(x− y) = i

�
d4k

(2π)3
δ(k2 −m2) θ(k0) e

−ik·(x−y) (1.34)

Moreover, for the auxiliary scalar field B, we find that the normal modes
decomposition is given by

B(x) = m
�

k

[bk uk(x) + b∗k u
∗
k(x)] (1.35)

uk(x) =
1

[(2π)3 2ωk]
1/2

e−iωkt+ik·x (1.36)
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where we see that it has dimension [B] = cm−2 in natural units which are
not usual for a scalar field: this is another evidence of its unphysical nature.

1.1.1 Conserved Quantities of the Proca Field

In order to obtain a deeper insight of the Proca field, let us consider in more
detail the field equations and the conserved quantities of the system. First
of all, we notice that, using the gauge transformation (1.18), the Lagrangian
density (1.9) splits into the sum of a Lagrangian referred only to the field
V µ(x) and one referred only to the auxiliary field B(x), namely

LA,B = LV + LB

LV = −1

4
Fµν(x)F

µν(x) +
1

2
m2 Vµ(x)V

µ(x) (1.37)

LB = − 1

2m2
∂µB(x) ∂µB(x) +

1

2
ξ B2(x) (1.38)

which means that the two fields V µ and B are decoupled. We can now write
the canonical conjugate momenta of the fields:

Πµ(x) =
δLV

δ∂0Vµ(x)
=

�
0 for µ = 0

−F 0k = Ek for µ = k = 1, 2, 3
(1.39)

Π(x) =
δLB

δ∂0B(x)
= − 1

m2
Ḃ(x) (1.40)

and the consequent Poisson’s brackets

�
Vk(t, x), E

l(t, y)
�
= δlk δ(x− y) (1.41)

{B(t, x),Π(t, y)} = δ(x− y) (1.42)

the other ones vanishing. The energy-momentum tensor is given by

T µ
ν = δµν

�
1

4
F ρσFρσ −

1

2
m2 Vρ V

ρ

�
+m2 Vν V

µ − F µλFνλ − ∂λ
�
Vν F

µλ
�

− 1

m2
∂µB ∂νB + δµν

�
1

2m2
∂λB ∂λB − 1

2
ξ B2

�

≡ Θµ
ν − ∂λ

�
Vν F

µλ
�

(1.43)

where Θµ
ν is the improved symmetric energy-momentum tensor, which sa-

tisfies ∂µT µν = ∂µΘµν = 0 and turns out to be the sum of the vector and
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the auxiliary scalar parts. Therefore, the total angular momentum density
is given by

Mµρσ = xρ T µσ − xσ T µρ − Sµρσ

= xρ T µσ − xσ T µρ − F µρ V σ + F µσ V ρ

= xρ Θµσ − xσ Θµρ − ∂λ
�
xρ V σ F µλ − xσ V ρ F µλ

�
(1.44)

Since the last term does not contribute to the continuity equation ∂µMµρσ =
0, the total angular momentum tensor can always be written in the purely
orbital form

Mρσ =

�
dx [xρ Θ0σ(t,x)− xσ Θ0ρ(t,x)] (1.45)

which satisfies
Ṁρσ = 0 (1.46)

Therefore, we get the three spatial components

M ij =

�
dx [xi Θ0j(t,x)− xj Θ0i(t,x)] (1.47)

which correspond to an orbital angular momentum, the sum of the Poynting
vector and of the auxiliary scalar parts, and the spatial temporal components

M0k =

�
dx [x0 Θ0k(t,x)− xk Θ00(t,x)]

= x0P k −
�

dx xk Θ00(t,x) (1.48)

from which we can define the centre of energy for the total system of the
massive vector and the auxiliary fields

Xk
t ≡

�
dx

P0
xk Θ00(t,x) (1.49)

that satisfies the particle velocity relationship

Ṁ0k = 0 ⇔ Ẋk
t =

P k

P0
(1.50)
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1.1.2 Canonical Quantization of the Proca Field

Now we are ready to proceed to the canonical quantization of the system.
One way is to keep the covariance manifest. If we follow this criterion, we
can express the commutator between two vector fields in this covariant form:

[Vµ(x), Vν(y)] = i

�
ηµν −

1

m2
∂µ, x∂ν, y

�
D(x− y;m)

=
�

k, r

�
uµ;k, r(x) u

∗
ν;k, r(y)− u∗

µ;k, r(x) uν;k, r(y)
�
(1.51)

where D(x− y;m) is the Pauli-Jordan distribution for the scalar field, given
by

D(x− y;m) = i

�
dk

(2π)3
δ(k2 −m2) sgn(k0) e

−ik·(x−y) (1.52)

which is a Poincaré invariant solution of the Klein-Gordon wave equation,
with the initial conditions

�
�x +m2

�
D(x− y) = 0 (1.53)

lim
x0→y0

D(x− y) = 0 lim
x0→y0

∂

∂x0
D(x− y) = δ(x− y) (1.54)

the second equivalence in (1.51) coming from the closure relation (1.33).
Therefore, the above covariant commutator indeed fulfils all the fundamental
requirement, i.e.

• it is a solution of the field equations (1.21)

�
�x +m2

�
[Vµ(x), Vν(y)] =

�
�y +m2

�
[Vµ(x), Vν(y)] = 0 (1.55)

• it satisfies the transversality condition

∂µ
x [Vµ(x), Vν(y)] = ∂ν

y [Vµ(x), Vν(y)] = 0 (1.56)

• it fulfils the symmetry, hermiticity and microcausality properties

[Vµ(x), Vν(y)] = − [Vµ(x), Vν(y)]
† = − [Vν(y), Vµ(x)]

[Vi(x), Vj(y)] = 0 ∀(x− y)2 < 0, i, j = 1, 2, 3

lim
x0→y0

[V0(x), Vj(y)] = − i

m2
∇j δ(x− y) (1.57)
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• the equal time canonical commutation relations that arise from the
Dirac correspondence principle applied to the classical Poisson’s brac-
kets (1.41) are recovered: as a matter of fact, we have

�
Vj(x), E

l(y)
�

= [Vj(x), ∂0Vl(y)− ∂lV0(y)]

=
∂

∂y0
[Vj(x), Vl(y)]−

∂

∂yl
[Vj(x), V0(y)]

= i δlj
∂

∂x0
D(x− y;m) (1.58)

that in the equal-time limit reduces to

lim
x0→y0

�
Vj(x), E

l(y)
�
= i δlj δ(x− y) (1.59)

We can verify that also the other equal-time commutators are regained,
namely

lim
x0→y0

[Vj(x), Vi(y)] = 0 (1.60)

lim
x0→y0

�
Ej(x), El(y)

�
= 0 (1.61)

Therefore these covariant canonical commutation relations are the unique
operator solution of the field equations which fulfil all the fundamental re-
quirements. We can then proceed to the quantization of the Proca vector
field, that now becomes an operator valued tempered distribution:

V µ(x) =
�

k, r

�
fk, r u

µ
k, r(x) + f †

k, r u
µ∗
k, r(x)

�
(1.62)

The algebra of the creation and destruction operators can be immediatly
derived from (1.51) and reads

[fk, r, fp, s] = 0
�
f †
k, r, f

†
p, s

�
= 0

�
fk, r, f

†
p, s

�
= δrs δ(k− p) (1.63)

It can be now verified that the energy momentum operator becomes dia-
gonal when expressed in terms of the creation and destruction operators:
it indeed corresponds to the sum over an infinite set of indipendent linear
harmonic oscillators, one for each indipendent polarization and for each com-
ponent of the wave vector k ,

P0 =
�

k, r

ωk f
†
k, r fk, r

P =
�

k, r

k f †
k, r fk, r (1.64)
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1.1.3 The Ghost Field

For what concerns the auxiliary scalar field, some features are to be con-
sidered in more detail. First of all, from (1.40) we see that the conjugate
momentum of the field B has the wrong sign with respect to a usual scalar
field:

Π(x) =
δLB

δ∂0B(x)
= − 1

m2
Ḃ(x) (1.65)

This peculiarity is of great importance, as we shall see in a while. As a matter
of fact, from the normal modes decomposition of both B and Π, which reads

B(x) = m
�

k

�
bk uk(x) + b†k u

∗
k(x)

�
(1.66)

Π(x) =
1

m

�

k

i ω�
k

�
bk uk(x)− b†k u

∗
k(x)

�
(1.67)

uk(x) =
1

[(2π)3 2ω�
k]

1/2
e−iω�

kt+ik·x ω�
k ≡

�
k2 +m2 ξ

�1/2
(1.68)

in order to recover the ordinary canonical commutation relations between the
auxiliary field and its conjugate momentum corresponding to the classical
Poisson’s brackets (1.42), i.e.

[B(t, x), Π(t, y)] = i δ(x− y) (1.69)

we must require �
bk, b

†
p

�
= − δ(k− p) (1.70)

all the other commutators vanishing. Moreover, the energy momentum ope-
rator takes the form

P0 = −
�

k

ω�
k b

†
k bk ≡ HB

P =
�

k

k b†k bk (1.71)

from which we see that for ξ ≥ 0, HB becomes negative definite and un-
bounded by below, while for ξ < 0 for low momenta k2 < | ξ | m2 the energy
becomes imaginary. Therefore, no physical meaning can be assigned to the
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hamiltonian operator of the auxiliary scalar field. Furthermore, defining the
Fock space as usual, i.e. defining the vacuum state as

bk |0� = 0 ∀k ∈ 3 (1.72)

and considering the proper 1-particle states given by

|b� ≡
�

dk b̃(k) b†k|0�,
�

dk |b̃(k)|2 = 1 (1.73)

we see that they have negative norm:

�b|b� = − 1 (1.74)

Hence the auxiliary scalar field B has no physical interpretation: this is why
it is called ghost field. However, although its presence endows the whole
Fock space of both the Proca vector field and the auxiliary scalar field with
an indefinite metric, so that it contains states with positive, negative and
null norm, the ghost field is necessary to build up a renormalizable theory.
Neverthless, we have to select a physical subspace Hphys of the whole Fock
space in which no quanta of the auxiliary field are allowed. We can then
impose the following subsidiary condition

B(−)(x) |phys� = 0 ∀ |phys� ∈ Hphys (1.75)

where B(−)(x) is the positive frequency destruction part of the auxiliary
scalar field,

B(−)(x) = m
�

k

bk uk(x) (1.76)

the vacuum state becoming, this way, physical and cyclic, all the excited
states being generated by the Proca creation operators f †

k, r.

1.1.4 The Feynman Propagator

We can then turn the attention to the propagators of the theory. Now, since
the equations of motion of the Proca vector field and the auxiliary scalar
field are decoupled, it can be easily verified that the following commutation
relations hold, namely

[Vµ(x), Vν(y)] = i
�
ηµν −m−2 ∂µ, x∂ν, y

�
D(x− y;m) (1.77)

[Vµ(x), B(y)] = 0 (1.78)

[B(x), B(y)] = im2 D(x− y; ξ m) (1.79)
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Then, considering the propagators, we find

�0|T (Vµ(x)Vν(y))|0� = DF
µν(x− y;m) = −

�
ηµν +m−2 ∂µ∂ν

�
DF (x− y;m)

�0|T (B(x)B(y))|0� = −m2 DF (x− y; ξ m) (1.80)

where DF (x− y;m) is the Feynman propagator for the scalar field with the
causal prescription

DF (x− y;m) = i

�
d4k

(2π)4
e−i k·(x−y)

k2 −m2 + iε
(1.81)

so that the total propagator of the vector field Aµ(x) is given by

DF
µν(x− y;m, ξ) = �0|T (Aµ(x)Aν(y))|0�

= i

�
d4k

(2π)4

�
−ηµν + kµ kν/m2

k2 −m2 + iε
− kµ kν/m2

k2 − ξ m2 + iε�

�
e−i k·(x−y)

= i

�
d4k

(2π)4
e−i k·(x−y)

k2 −m2 + iε

�
−ηµν +

(1− ξ) kµkν
k2 − ξ m2 + iε�

�
(1.82)

It is now apparent why the introduction of the auxiliary field is necessary:
if we consider the leading asymptotic behaviour for large momenta of the
momentum space Feynman propagator

D̃F
µν(k;m, ξ) =

i

k2 −m2 + iε

�
−ηµν +

(1− ξ) kµkν
k2 − ξ m2 + iε�

�

we see that it is like

D̃F
µν(k;m, ξ) ∼ k−2dµν (|kµ| → ∞) (1.83)

where dµν is a constant 4 × 4 matrix, and hence it decreases in a scale ho-
mogeneous quadratically way and with a momentum space isotropic law.
Instead, if we considered only the Proca vector propagator, the leading be-
haviour would have presented a lack of scale homogeneity and naive power
counting property: regarding the interacting theory, it would not have been
renormalizable order by order in the perturbative expansion. Therefore, since
the power counting property is one of the crucial necessary hypothesis for
the perturbative order by order renormalizability of any interacting quantum
field theory, the introduction of the ghost field appears to be unavoidable,
even though in the interacting case the subsidiary condition to be imposed
in order to decouple the auxiliary field from the physical sector will be non-
trivial.
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1.2 Massless Vector Field

We can now turn the attention to the real massless vector field. To begin
with, let us rewrite the Lagrangian density in the Feynman gauge ξ = 1

L = − 1

4
Fµν(x)F

µν(x) + Aµ(x) ∂µB(x) +
1

2
B2(x) (1.84)

The field equations read

∂µF
µν(x) + ∂νB(x) = 0 (1.85)

∂µA
µ(x) = B(x) (1.86)

which can be recast as

�Aν(x) = 0 (1.87)

�B(x) = 0 (1.88)

that means that both the vector and the auxiliary fields obey the D’Alembert
wave equation. In particular, by means of the Fourier transform for Aµ(x)

Aµ(x) =

�
d4k

(2π)3/2
Ãµ(k) e−i k·x (1.89)

we find that Ãµ(k), which satisfies the reality conditions Ãµ∗(k) = Ãµ(−k),
is of the form

Ãµ(k) = δ(k2) fµ(k) (1.90)

where fµ(k) are four arbitrary functions regular on the light-cone k2 = 0,
with the property fµ∗(k) = fµ(−k). Therefore, we look for four linearly
indipendent real and dimensionless polarization vectors εµA(k) defined on the
light-cone k0 = ± |k|. We can choose two of them orthogonal to the wave
vector k and to each other, namely

kµ ε
µ
A(k) = 0, εµA(k) = (0, εA(k)), k0 ≡ ωk = |k|

εA(k) · εB(k) = δAB A,B = 1, 2 (1.91)

and one on le light-cone k0 = |k|,

εµL(k) ≡ kµ/|k|, εµL(k) εµ,L(k) = 0 (1.92)

so that ηµν ε
µ
A(k) ε

ν
L(k) = 0. We can take the fourth one as another light-like

vector, given by

εµS(k) ≡
kµ
∗

2|k| , kµ
∗ = (|k|,−k) (1.93)
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which satisfies εµL(k) εµ, S(k) = 1, the labels L, S standing for longitudinal and
scalar polarizations respectively. The orthonormality and closure relations
are then

− ηµν ε
µ
A(k) ε

ν
B(k) = η�AB (1.94)

�

A,B=1,2,L,S

η�AB εµA(k) ε
µ
B(k) = −ηµν (1.95)

kµ ε
µ
S(k) = |k|, kµ ε

µ
A(k) = 0 A = 1, 2, L (1.96)

where

η�AB =





1 0 0 0
0 1 0 0
0 0 0 −1
0 0 −1 0



 (A,B = 1, 2, L, S) (1.97)

The real massless vector field can now be written in terms of the normal
modes decomposition,

Aµ(x) =
�

k, A

�
gk, A uµ

k, A(x) + g∗k, A uµ∗
k, A(x)

�
(1.98)

uµ
k, A(x) =

1

[(2π)3 2|k|]1/2
εµA(k) e

−i|k|t+ik·x (1.99)

while the auxiliary scalar field is given by

B(x) = ∂µA
µ(x) =

= −i
�

k

�
gk, S kµ u

µ
k, S(x)− g∗k, S kµ u

µ∗
k, S(x)

�
(1.100)

We notice that the normal modes uµ
k, A(x) form a complete orthonormal set

of positive frequency solutions that satisfy the following orthonormality and
closure relations

−ηµν
�
uµ
k, A, u

ν
p, B

�
= −ηµν

�
dx uµ∗

k, A(x)i
←→
∂0 u

ν
p, B(x)

= η�AB δ(k− p) (1.101)

�

k, A

�
uµ
k, A(x) u

ν∗
k, A(y)

�
= i ηµν η�AB ∆(−)(x− y) (1.102)
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where ∆(−)(x− y) is the scalar massless positive fequency distribution

∆(−)(x− y) = i

�
d4k

(2π)3
δ(k2) θ(k0) e

−i k·(x−y) (1.103)

1.2.1 Canonical Quantization of the Massless Vector
Field

We are now ready to consider the quantization of the massless vector field.
First we notice that the canonical conjugate momenta are now given by

Πµ(x) =
δL

δ∂0Aµ(x)
=

�
0 for µ = 0

−F 0k = Ek for µ = k = 1, 2, 3
(1.104)

Π(x) =
δL

δ∂0B(x)
= A0 (1.105)

so that A0 becomes the conjugate momentum of the auxiliary field. The
consequent Poisson’s brackets are

�
Ak(t, x), E

l(t, y)
�
= δlk δ(x− y) (1.106)

{B(t, x),Π(t, y)} = δ(x− y) (1.107)

In order to quantize the massless vector field, as we did for the massive vector
field, we follow the manifestly covariant formulation. This way, it turns out
that the covariant commutation relations are given by

[Aµ(x), Aν(y)] = i ηµν ∆(x− y) (1.108)

[B(x), Aν(y)] = i ∂ν
x∆(x− y) (1.109)

[B(x), B(y)] = 0 (1.110)

and in particular

[F µρ(x), Aν(y)] = i (ηρν ∂µ
x − ηµν ∂ρ

x)∆(x− y) (1.111)

[B(x), F νρ(y)] = 0 (1.112)

where ∆(x− y) is the massless Pauli-Jordan real distribution,

∆(x− y) = lim
m→0

D(x− y;m) (1.113)

20



which satisfies the Klein-Gordon equation together with the initial conditions

�∆(x− y) = 0 (1.114)

lim
x0→y0

∆(x− y) = 0, lim
x0→y0

∂0∆(x− y) = δ(x− y) (1.115)

Thus, it can be verified that the above commutation relations fulfil all the
fundamental requirements, i.e. they are solutions of the field equations, en-
code the symmetry, hemiticity and microcausality properties and also the
equal-time commutation relations corresponding to the classical Poisson’s
brackets (1.106, 1.107) are recovered, namely

�
Ak(t, x), El(t, y)

�
= i ηkl δ(x− y) (1.116)

[B(t, x), Π(t, y)] = i δ(x− y) (1.117)

In particular, the electric and magnetic components of the massless vector
field do not commute at spacelike separations, i.e.

�
Bi(t, x), El(t,y)

�
= i εilk ∇kδ(x− y), ε123 = +1 (1.118)

We notice also that for a usual massless scalar field φ(x) the commutators
are given by

[φ(x), φ(y)] = −i∆(x− y) (1.119)

so that for A0 the relations (1.108) have the wrong sign: A0 does not behave
as a standard scalar field.

From the normal modes decomposition and the above commutation rela-
tions, it is easy to derive the algebra of the creation and destruction operators,
that reads �

gk, A, g
†
p, B

�
= η�AB δ(k− p) (1.120)

all the other commutators vanishing. We can now proceed to the quanti-
zation, the massless vector field and the auxiliary field becoming operator
valued tempered distributions

Aµ(x) =
�

k, A

�
gk, A uµ

k, A(x) + g†k, A uµ∗
k, A(x)

�
(1.121)

B(x) = −i
�

k

�
gk, S k · uk, S(x)− g†k, S k · u∗

k, S(x)
�

(1.122)

In order to define a physical Fock space, we first notice that the algebra of the
creation and destruction operators (1.120) entails some not ordinary proper-
ties. As a matter of fact, while the tranverse polarizations A = 1, 2 satisfy
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the usual commutation relations, owing to the indefinite metric η�AB, the lon-
gitudinal and scalar polarizations encode negative and null norm states. In
fact, consider for instance the following states

1√
2

�
g†k, L + g†k, S

�
|0�, g†k, L|0�, g†k, S|0� (1.123)

we see that the first one has negative norm,

1

2
�0| (gp, L + gp, S) (g

†
k, L + g†k, S)|0� = − δ(p− k) (1.124)

while the other two have null norm. Clearly we must impose some conditions
in order to define a physical Fock space. We notice also that the massless
vector field has only two indipendent polarizations, which means that we
have considered too many components so far. Therefore, we should reduce
the whole Fock space to one containing only states with positive and null
norm. To this aim, we can define a physical state by the following auxiliary
condition

|phys� ∈ Hphys ⇔ B(−)(x) |phys� = 0 (1.125)

where B(−)(x) is the positive frequency part of the auxiliary field,

B(−)(x) = − i
�

k

k · uk, S(x) gk, S (1.126)

As a matter of fact, this way all states with negative norm are are excluded,
since only the states with positive and null norm satisfy the conditions

B(−)(x) g†k, A |0� = 0, A = 1, 2, S

�0| gp, B g†k, A |0� =
�

δAB δ(p− k) A,B = 1, 2
0 A,B = S or A,B = S, 1, 2

Hence, Hphys contains the transverse polarization states with positive norm
plus an arbitrary number of states with null norm which do not change the
probability densities: the Fock space is then partitioned in equivalence classes
with respect to the states with null norm, and therefore has a semidefinite
metric. We just point out that this feature represents the quantum mechani-
cal counterpart of the classical gauge invariance of the first kind (1.2), which
entails an equivalence class of gauge potentials obeying the invariant Lorenz
condition.
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We finally consider the physical observables present in this contest. We
define a gauge invariant local observable O(x) as a self-adjoint operator that
maps the physical Hilbert space Hphys into itself, i.e.

O(x) : Hphys → Hphys ; O(x) |phys� ∈ Hphys ∀|phys� ∈ Hphys

O†(x) = O(x) (1.127)

which implies that

B(−)(x)O(x) |phys� =
�
B(−)(x), O(x)

�
|phys� ∝ B(−)(x) |phys� = 0 (1.128)

It follows that, for instance, the Maxwell field equations and the energy
momentum tensor hold true only as matrix elements between physical states.
In fact, ∀|phys’�, |phys� ∈ Hphys , we find

�phys’|∂µF µν(x) + ∂νB(x)|phys� = �phys’|∂µF µν(x)|phys�

�phys’|Θµν(x)|phys� = �phys’| 1
4
ηµν F

ρσFρσ − F ρ
µFνρ |phys�

since

[B(x), F νρ(y)] = 0, [B(x), Θνρ(y)] = 0

while
[B(x), T νρ(y)] �= 0 (1.129)

Therefore, we can also verifiy that only the six components of the angu-
lar momentum operator, which is of purely orbital form, are the observable
quantities, namely

Mλµν =

�
dx : xµ Θλν(t,x)− xν Θλµ(t,x) : (1.130)
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Chapter 2

Field Theory in curved
spacetime

In this chapter we will focus on the tools and problems regarding the quan-
tization of arbitrary fields in a curved spacetime.

To start with, we recall the most important principles of General Relativi-
ty and their consequences, which stand as a basis for all the developments
about Field Theory in any Riemannian space, and in particular in a Rindler
space, the one about we will be concerned in this work. Of course, the
first and most important principle from which all the other descend is the
Principle of Equivalence, that rests on the equality between gravitational and
inertial mass, and states that at every space-time point xµ in an arbitrary
gravitational field, there always exists a locally inertial coordinate system
such that, within a sufficiently small region around xµ where the field can be
considered sensibly constant, the laws of Nature take the same form as in an
unaccelerated Cartesian coordinate system in the absence of gravity: the laws
of special relativity are then recovered. It should be noticed also that this
principle actually reflects a geometrical property of the Riemannian spaces,
i.e. every curved manifold is locally flat like a Minkowski space, where gµν =
ηµν and Γµ

µλ = 0. From this geometrical point of view, differential geometry
gains a fundamental role in the description of all physical phenomena.

From the Principle of Equivalence, we gain a way to find the equations of
motion for a system in a gravitational field: first write down the equations
that hold in a locally inertial reference frame, and then perfom a coordi-
nate transformation to the non-inertial reference frame of interest to obtain
the corrisponding equations. Clearly, this method would be very tedious
when the system under consideration is not simple; however, the Principle of
General Covariance states that a physical equation holds in a general gravi-
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tational field iff

1. the equation is generally covariant, that is it preserves its form under
a general coordinate transformation;

2. the equation holds in the absence of gravitation, that is it agrees to
the laws of special relativity when the metric gµν = ηµν and the affine
connection vanishes Γµ

µλ = 0.

It should be noticed, however, that the Principle of General Covariance is
not just a merely generalization of the Lorentz covariance for special rela-
tivity: this time we do not want to make any restriction on the equation we
start with because the presence of gµν and Γµ

νλ �= 0 indeed represents the
gravitational field and its effects on the system under study. Therefore, this
is not an invariance principle, but it is a statement about the existence and
consequences of the gravitational field. Moreover, it neither implies Lorentz
invariance. Finally, we would like to remark that this principle actually ap-
plies only on scales small compared with the spacetime distances typical of
the gravitational field: it is only on these scales that we are surely able to
construct a locally inertial reference frame, thanks to the Principle of Equiv-
alence.

One way to build up such physical equations is to use tensor equations.
Neverthless, since differentiation of a tensor in general does not yeld ano-
ther tensor, we have to define the so called covariant derivative, that for a
controvariant vector V ν is given by

∇µ V
ν ≡ V ν

;µ ≡ V ν
, µ + Γν

µλ V
λ (2.1)

and for a covariant vector

∇µ Vν ≡ Vν ;µ ≡ Vν , µ − Γλ
νµ Vλ (2.2)

We just recall that the covariant derivative of the metric tensor vanishes,
gµν ;λ = 0, since it vanishes in locally inertial coordinates, where Γµ

νλ = 0
and gµν , λ = 0. Then, as covariant differentiation converts tensors to other
tensors and reduces to ordinary differentiation in the absence of gravity, we
can safely say that, in order to find the equations of motion of a system in a
general gravitational field, we can first write the corrisponding equations in
the absence of gravity, as in special relativity, and then replace ηµν with gµν
and all derivatives with covariant derivatives.

We can now turn the attention to the quantization of an arbitrary field in
a curved spacetime. In general, it would be more useful to choose, if possible,
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a coordinate system in which the field equations can be solved by separation
of variables, so as to quantize the resulting normal mode structure in analo-
gy to the standard quantization of a free field in flat space and recover the
positive and negative frequency parts of the solutions, in order to interpret
them in terms of particles. However, as we shall see, even in this contest, the
notions of particles and vacuum state would be completely different from the
ones obtained in the usual Minkowki space. This ambiguity would also affect
the definition of the enegy-momentum tensor, which is the most important
observable of the system in a gravitational field.

As an example, let us consider the quantization of a scalar field in an
arbitrary gravitational field. Consider the Lagrangian density

L(x) = 1

2
[−g(x)]−

1
2
�
gµνφ(x),µ φ(x),ν −m2 φ(x)2

�
(2.3)

whose equations of motion are

(gµν ∇µ ∂ν +m2)φ(x) = 0 (2.4)

If we now introduce the following invariant inner product between two solu-
tions of the above equation

(φ1, φ2) ≡
�

Σ

φ∗
1(x) i

←→
∂λ φ2(x) dΣ

λ (2.5)

where Σλ is a three-dimensional Cauchy hypersurface and

dΣλ =
1

6
ελµνρ dxµ dxν dxρ

√
−g

=
1

6
ελµνρ gµα(x) gνβ(x) gργ(x) dx

α dxβ dxγ √−g (2.6)

is the invariant oriented hypersurface element with ε0123 = 1, it is possible
to find a complete set of mode solutions ui(x) of (2.4) that are orthonormal
in the above inner product:

(ui, uk) = δik, (u∗
i , u

∗
k) = −δik, (ui, u

∗
k) = 0 (2.7)

This way, the field φ(x) can be expanded as

φ(x) =
�

i

[ai ui(x) + a†i u
∗
i (x)] (2.8)

The covariant quantization is then implemented by adopting the canonical
commutation relations

[ ai, a
†
k ] = δik (2.9)
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all the other commutators vanishing. It is therefore possible to construct a
vacuum state, a Fock space and proceed in the same way as in the Minkowski
case, but this time an ambiguity in the formalism arises: in the Minkowski
space the metric is static, so the vector ∂/∂t is a Killing vector, orthogonal
to the spacelike hypersurfaces t = const, and the modes

uk(x) =
1

[2ω(2π)3]1/2
e−iωt+ik x

are its eingenfunctions with eingenvalues −iω for ω > 0; the vacuum is inva-
riant under the Poincaré group. However, in curved spacetime the Poincaré
group is no longer a symmetry group of the spacetime and in general there
will not even be any Killing vectors with which define positive frequency
modes. Actually, this is a consequence of the Principle of General Relativity:
there does not exist a privileged coordinate system and a consequent natural
mode decomposition based on separation of variables.

In order to show this ambiguity in more detail, consider, for instance, an
other complete orthonormal set of modes vj(x) satisfying the equation (2.4).
We can then expand φ as

φ(x) =
�

i

[ bi vi(x) + b†i v
∗
i (x) ] (2.10)

and we can define a new vacuum state |0�b
bj|0�b = 0 ∀j (2.11)

and the corresponding Fock space. Since both sets are complete, we can
expand the new modes vj in terms of the ui: namely

vj(x) =
�

i

(αji ui(x)− βji u
∗
i (x)) (2.12)

and conversely
ui(x) =

�

j

(α∗
ij vj(x) + β∗

ij v
∗
j (x)) (2.13)

These relations are known as Bogolyubov transformations and αij, βji Bo-
golyubov coefficients, which can be evaluated as

αij = (vi, uj) βij = −(ui, v
∗
j ) (2.14)

From (2.8, 2.10) and the above equations, we can also write

ai =
�

j

(αji bj − β∗
ji b

†
j), (2.15)

bj =
�

i

(α∗
ji ai + βji a

†
i ) (2.16)
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and find

[ ai, a
†
k ] =

�

j

(αij α
∗
kj − β∗

ij βkj) = δik, (2.17)

[ bi, b
†
k ] =

�

j

(αji α
∗
jk − βji β

∗
jk) = δik (2.18)

all the others vanishing. From (2.15) it is easy to see that the two Fock
spaces belonging to the modes ui(x) and vj(x) respectively are different as
long as βij �= 0: as a matter of fact, ai does not annichilate |0�b:

ai|0�b =
�

j

β∗
ij |1�b �= 0 (2.19)

and the expectation value of the particle operator Ni = a†iai in the |0�b states
does not vanish:

b�0|Ni = a†iai |0�b =
�

j

|βij|2 (2.20)

This means that the two vacuum states are actually different, that is, the
vacuum of the vj modes contains

�
j |βij|2 particles of the ui modes. It should

be noticed also that if any βij �= 0, the vj modes will contain a mixture of
positive (say ui) and negative (say u∗

i ) frequency modes and particles of this
kind will be present in the |0�b vacuum state. If, instead, ui are positive
frequency modes with respect to some timelike Killing vector and vj are a
linear combination only of the ui, then βij = 0 and the two vacuum state
will be the same.

This phenomenon is the so called Unruh Effect. Of course, there is not a
privileged set of modes which can give the closest description of a physical
vacuum as our experience of no particles: in fact, the state of motion of
the measuring device can affect the observation of particles. For instance,
an accelerated detector will register some particles even in the vacuum state
defined in the usual Minkowski space. What makes the Minkowski space so
special is its global invariance under the Poincaré group, thanks to which all
inertial measuring devices agree in defining the same vacuum state.

From these considerations, it is easy to realize that the particle concept
becomes an observer-dependent quantity and looses its universal significance.
In order to overcome this astonishing fact, in many problems the spacetime
can be treated as asymptotically flat, recovering this way the Minkowski
vacuum as usually defined and its well understood physical meaning, that is
the absence of particles according to all inertial observers in the asymptotic
regions. However, the two vacua, i.e. the asymptotic past and future ones,
not necessarily coincide: this is what is commonly referred to as particle
“creation” by the time dependent gravitational field.
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2.1 Rindler spacetime

In our work we will focus on the behaviour of Vector Fields as experienced
by a uniformly accelerated noninertial observer. The simplest, but very
interesting coordinate system that describes such observers is the so called
Rindler space. In the following we will set c = � = 1. Let us introduce this
spacetime.

Consider the four dimensional Minkowski spacetime with line element

ds2 = ηαβ dX
α dXβ (2.21)

where ηαβ = diag(+,−,−,−) is the constant metric tensor and Xα =
(τ,X, Y, Z) are the inertial coordinates. Let us consider now an observer
in the right Rindler wedge,

MR = {Xµ ∈ 4; X ≥ 0, τ 2 ≤ X2} (2.22)

that is an uniformly accelerated noninertial observer, described by the coor-
dinates xµ = (t, x, y, z):

τ = x sinh(at) (2.23)

X = x cosh(at) (2.24)

Y = y (2.25)

Z = z (2.26)

where a > 0 is the constant acceleration. The above coordinate transforma-
tion can be readily inverted:

t =
1

a
arth

� τ

X

�

x =
√
X2 − τ 2 ≥ 0

y = Y

z = Z (2.27)

so that we can also write line element

ds2 = gµν(x) dx
µ dxν = a2 x2 dt2 − dx2 − dY 2 − dZ2 (2.28)

Thus, in this region the metric takes the form

gµν(x) =





a2x2 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




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with determinant g = det gµν = −a2x2. Let us denote ξ = ax, η = at; the
change of coordinates is then simply given by

∂Xα

∂xµ
=





ξ cosh η sinh η 0 0
ξ sinh η cosh η 0 0

0 0 1 0
0 0 0 1



 ≡ ζαν (ξ, η)

We can also find that, among the Christoffel symbols

Γλ
µν(x) =

1

2
gλk(x){∂µ gνk(x) + ∂ν gµk(x)− ∂k gµν(x)} (2.29)

the only nonvanishing ones are

Γ0
10(x) = 1/x = Γ0

01(x) (2.30)

Γ1
00(x) = a2x (2.31)

Note that the other spacelike region of the Minkowski spacetime is covered
by changing both signs in (2.23, 2.24), i.e. performing a time reversal and a
parity transformation:

ML = {Xµ ∈ 4; X ≤ 0, τ 2 ≤ X2} (2.32)

Some comments are now in order. First of all, we notice that a translation
in the coordinate t, with x fixed, corresponds to a homogeneous Lorentz
transformation in the (τ,X) space: this is the reason why the metric of flat
space has an explicit static form with respect to the curvilinear coordinates
(t, x). Then, it is easy to see that the classical Cauchy problem should be
well posed for initial conditions on any hypersurface t = const. Secondly,
tajectories with x = const are hyperbolae and therefore represent the world
lines of a uniformly accelerated observer (see Figure 2.1). In order to under-
stand better the meaning of this coordinate system, let us write (x, t) in a
slight different way (that is often used in many texts): namely

τ =
eaξ

a
sinh(aη) (2.33)

X =
eaξ

a
cosh(aη) (2.34)

with −∞ < η, ξ < ∞; the line element becomes

ds2 = e2aξ(dη2 − dξ2) (2.35)
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Figure 2.1: Rindler coordinates in Minkowski space: both in R and L lines with con-
stant t are straight lines through the origin, while lines with x = const are hyperbolae
representing uniformly accelerated observers, with null asymptotes u = 0, v = 0. The
Rindler coordinates are non-analytic across u = 0 and v = 0: the four regions R,L, F, P
must be covered by separate coordinate patches.

from which we can see that it is a conformal transformation of the Minkowski
metric. Of course, the coordinates (η, ξ) still cover the same region MR of
the Minkowski spacetime as (t, x). We can see as before that lines with
constant η are straight, X ∝ τ , while lines of constant ξ are hyperbolae,
X2 − τ 2 = a−2e2aξ = const, where ae−aξ is the proper acceleration. Thus,
lines of large positive ξ, i.e. far from X = τ = 0, represent weakly accelerated
observers, while the hyperbolae that approach X = τ = 0 carry a high proper
acceleration. It should be noticed that all the hyperbolae are asymptotically
null, that is, approach the null rays (let us call them as u = 0, v = 0) of
the light cone of the Minkowski space: the accelerated observers get close to
the speed of light as η → ±∞. Therefore, it is easily understood that the
causal structure of the Rindler wedge is not trivial. The Rindler observers
approach, but do not cross the null rays u = 0, v = 0 : these, then, act
as event horizons and the two regions MR and ML are causally disjoint.
No event from the region of the Minkowski spacetime beyond the null rays
can be witnessed by the Rindler observers, neither can causally influence
them. This can also be seen in the Penrose conformal diagram below (Figure
2.2), where timelike lines with x = const do not intersect the vertices i± as
they do in the Minkowski space, but the lower ones. Thus, for instance, the
upper null ray acts as a future horizon and events in the portion marked
F cannot causally influence the diamond shaped R region. Moreover, we
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notice that a three-dimensional hypersurface with t = const describes events
that are simultaneous from the point of view of the accelerated observers.
This surface is a hyperplane with constant ratio τ/X. All such hyperplanes
cross one another at τ = X = 0, and therefore it is evident that the proper
distance between world lines of Rindler observers is time indipendent, and
thus the Rindler frame is rigid. Finally, we notice that, in order for the
frame to be rigid, two trajectories of the family with different values of X
must have different accelerations at a given moment of time τ ; this means
that the larger is the value of X, the smaller is the acceleration.

Figure 2.2: Penrose conformal diagram of Rindler system. Timelike lines with x = const
do not intersect i± as they do in Minkowski space: events in F cannot be witnessed in R,
so that the null rays u = 0, v = 0 act as event horizons.
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2.2 Scalar Field in a Rindler Space

As a first example, let us consider the quantization of the Scalar Field in the
right Rindler wedge MR, as the results achieved here will be useful for the
study of the quantization of the Vector Field that we are going to explore in
the next chapter.

We start with the Lagrangian density

L(x) = 1

2
[−g(x)]−

1
2
�
gµν(x)φ(x) ,µ φ(x) ,ν −m2 φ(x)2

�
(2.36)

whose equations of motion are

(gµν(x)∇µ ∂ν +m2)φ(x) = 0 (2.37)

that can be explicitly rewritten as
�

1

a2x2

∂

∂t2
−∆− 1

x

∂

∂x
+m2

�
φ(t, x, y, z) = 0 (2.38)

where ∆ is the Laplace operator. In order to find the solution, it is useful to
introduce the partial Fourier Transform, given by

φ(t, x, y, z) =

� +∞

−∞

dE√
2π

�
d2k⊥
2π

φ̃(E, k⊥, x) e
−iEt+ik⊥·x⊥ (2.39)

where
x⊥ = (y, z), k⊥ = (ky, kz) (2.40)

so that the equation (2.38) simplifies in

�
d2

dx2
+

1

x

d

dx
+

E2

a2x2
− (m2 + k2

⊥)

�
φ̃(x,E, k⊥) = 0 (2.41)

the solutions of which are expressed in terms of Bessel functions of imaginary
order, i.e.

φ̃(x,E, k⊥) = c1(E, k⊥) Iiα(b x) + c2(E, k⊥)Kiα(b x) (2.42)

where

α =
E

a
, b =

�
m2 + k2

⊥ (2.43)

However, the solutions Iiα(b x) are usually rejected since they are exponen-
tially increasing for large positive x, so that we must set c1(E, k⊥) = 0. We
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are thus left with the normal modes decomposition of the real Scalar Field
in the right Rindler wedge: namely,

φ(t, x, y, z) =

� +∞

−∞

dE√
2π

�
d2k⊥
2π

�
f(E, k⊥)Kiα(b x) e

−iEt+ik⊥·x⊥ + c.c.
�

(2.44)
where the reality conditions

f(−E,−k⊥) = f ∗(E, k⊥) (2.45)

and the property Kiα(b x) = K−iα(b x) are to be taken suitably into account.
We can now introduce an invariant inner product between any two solu-

tions of the covariant Klein-Gordon equation (2.38) of the form

(φ1, φ2) ≡
�

Σ

φ∗
1(x) i

←→
∂λ φ2(x) dΣ

λ (2.46)

In particular, as a Cauchy hypersurface, let us consider the initial time three
dimensional hypersurface with

dΣ0 = − 1

a x
θ(x) dx d2x⊥ dΣi = 0, i = 1, 2, 3 (2.47)

A complete orthonormal set of positive frequency solutions of eq. (2.38) is
then given by the generalization of the so called Fulling modes:

ϕ̃E,k⊥(x) =
θ(x)

2 π2
√
a

�

sinh

�
πE

a

�
Kiα(b x) e

−iEt+ik⊥·x⊥ (2.48)

where the normalization constant can be fixed e.g. by the requirement

(ϕ̃E,k⊥ , ϕ̃E�,k�⊥
) = δ(E − E �) δ(2)(k⊥ − k�

⊥) (2.49)

This way, our invariant scalar normal modes have standard canonical
dimensions [ϕ̃E,k⊥ ] = cm1/2 in natural units. We can therefore expand the
scalar field φ(x) in terms of these modes and proceed to the quantization,
obtaining

φ(x) =

� +∞

−∞
dE

�
d2k⊥

�
aE,k⊥ ϕ̃E,k⊥(x) + a†E,k⊥

ϕ̃∗
E,k⊥

(x)
�

(2.50)

where the operators a, a† satisfy the following commutation relations
�
aE,k⊥ , a

†
E�,k�⊥

�
= δ(E − E �) δ(2)(k⊥ − k�

⊥) (2.51)
�
aE,k⊥ , aE�,k�⊥

�
= 0 (2.52)

�
a†E,k⊥

, a†E�,k�⊥

�
= 0 (2.53)

∀k⊥, k�
⊥ ∈ 2 and ∀E,E � ∈ (2.54)
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and have canonical dimensions [a] = cm3/2 in natural units. It should be
noticed that the spinless and chargeless quanta

a†E,k⊥
|0� (E, k⊥ ∈ 3) (2.55)

correspond to pseudoparticles, with indefinite energy E ∈ , but fixed trans-
verse wave numbers k⊥ ∈ 2. Clearly, the same would be true for the multi-
pseudoparticles completely symmetric states. 1

1An explicit calculation of the Bogolyubov coefficients and the rigorous check of the
completeness of the generalized Fulling normal modes (2.48) can be found in [6].
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Chapter 3

Vector Fields in a Rindler
Space

In this chapter we will focus on the quantization of the Vector Field, both
massive and massless, in the right Rindler wedge MR. We will consider two
gauges in particular, that is the Feynman gauge and the axial gauge, as they
appear to be the most interesting ones in this contest.

Before starting, we would like to point out that in our metric the following
properties hold true, namely

Fµν = ∇µ Aν −∇ν Aµ

= ∂µ Aν − Γλ
νµ Aλ − ∂ν Aµ + Γλ

µν Aλ

= ∂µ Aν − ∂ν Aµ (3.1)

while

F µν = gρµ gσν Fρσ = gρµ gσν (∂ρ Aσ − ∂σ Aρ)

= gρµ ∇ρ g
σν Aσ + gρµ gσν Γλ

σρ Aλ − gσν ∇σ g
ρµ Aρ − gρµ gσν Γλ

ρσAλ

= ∇µ Aν −∇ν Aµ

= gµρ ∇ρ A
ν − gνρ ∇ρ A

µ

= gµρ (∂ρ A
ν + Γν

ρλ A
λ)− gνρ (∂ρ A

µ + Γµ
ρλ A

λ)

= ∂µ Aν − ∂ν Aµ + gµρ Γν
ρλ A

λ − gνρ Γµ
ρλ A

λ (3.2)

and in particular, by taking two covariant derivatives of the field strenght
tensor one gets

∇ν ∇µ F
µν =

�
∂ν Γ

µ
µλ

�
F λν = 0 (3.3)
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Moreover, since the Rindler spacetime is flat, one obtains

[∇µ, ∇ν ]A
ρ = −Rρ

λµν A
λ = 0 (3.4)

3.1 Quantization of the Vector Field in the
Feynman gauge

Consider the Vector Field in the space-like region MR: it is described by the
Lagrangian density

L =
√
−g

�
− 1

4
Fµν(x)F

µν(x) +
1

2
m2 Aµ(x)A

µ(x) + Aµ(x) ∂µB +
1

2
ξ B2(x)

�

(3.5)
which leads to the equations of motion for Aν and B, namely

∇µF
µν(x) +m2Aν(x) + ∂νB(x) = 0 (3.6)

∇µA
µ(x) = ξ B(x) (3.7)

These equations can be simplified choosing the Feynman gauge ξ = 1, so
that they become

∇µF
µν(x) +m2 Aν(x) + ∂νB(x) = 0 (3.8)

∇νA
ν(x) = ∂ν A

ν(x) + Γν
νλ A

λ(x) = B(x) (3.9)

(∇µ ∂
µ +m2)B(x) = 0 (3.10)

which can be explicitly written in the form
�

1

a2x2
∂2
t −∆+m2 − 3

x
∂1

�
A0(x) = − 2

a2x3
∂0 A

1(x) (3.11)
�

1

a2x2
∂2
t −∆+m2 − 1

x
∂1 +

1

x2

�
A1(x) = − 2

x
∂0A

0(x) (3.12)
�

1

a2x2
∂2
t −∆+m2 − 1

x
∂1

�
A⊥(x) = 0 (3.13)

and �
1

a2x2
∂2
t −∆+m2 − 1

x
∂1

�
B(x) = 0 (3.14)

In particular, considering the second equation (3.12), if we sobstitute the
transversality condition (3.9),

∂0 A
0(x) = B(x)− ∂1 A

1(x)− ∂⊥ · A⊥(x)− 1

x
A1(x) (3.15)
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the equation can be recast as
�

1

a2x2
∂2
t −∆+m2 − 3

x
∂1 −

1

x2

�
A1(x) = −2

x

�
B(x)− ∂⊥ · A⊥(x)

�
(3.16)

Now, in order to find the solutions, it is convenient to introduce the partial
Fourier Transform for Aµ and B given by

Aµ(t, x, y, z) =

� +∞

−∞

dk0√
2π

�
d2k⊥
2π

Ãµ(k0, k⊥, x) e
−ik0t+ik⊥·x⊥ (3.17)

B(t, x, y, z) =

� +∞

−∞

dk0√
2π

�
d2k⊥
2π

B̃(k0, k⊥, x) e
−ik0t+ik⊥·x⊥ (3.18)

In fact, this way the equations simplify, obtaining
�
d2

dx2
+

1

x

d

dx
+

k2
0

a2x2
− (m2 + k2

⊥)

�
B̃(x, k0, k⊥) = 0 (3.19)

�
d2

dx2
+

1

x

d

dx
+

k2
0

a2x2
− (m2 + k2

⊥)

�
Ã⊥(x, k0, k⊥) = 0 (3.20)

�
d2

dx2
+

3

x

d

dx
+

k2
0

a2x2
− (m2 + k2

⊥)

�
Ã0(x, k0, k⊥) = − 2

a2x3
i k0 Ã

1 (3.21)

�
d2

dx2
+

3

x

d

dx
+

1

x2

�
k2
0

a2
+ 1

�
− (m2 + k2

⊥)

�
Ã1(x, k0, k⊥) =

2

x
(B̃ − i k⊥ · Ã⊥)

(3.22)

Now we see that the equations for B̃ and Ã⊥ are just the same as the ones
obtained for the Scalar Field (see 2.41), so that we can immediatly write
down the solutions for the real transverse vector field and the auxiliary field
in terms of the normal modes, namely

B(t, x, y, z) =

� +∞

−∞

dk0√
2π

�
d2k⊥
2π

�
f(k0, k⊥)Kiα(b x) e

−ik0t+ik⊥·x⊥ + c.c.
�

A⊥(t, x, y, z) =

� +∞

−∞

dk0√
2π

�
d2k⊥
2π

�
f⊥(k0, k⊥)Kiα(b x) e

−ik0t+ik⊥·x⊥ + c.c.
�

(3.23)

where again the reality conditions

f⊥(−k0,−k⊥) = f⊥∗(k0, k⊥) and f(−k0,−k⊥) = f ∗(k0, k⊥) (3.24)

and the property Kiα(bx) = K−iα(bx) are to be taken suitably into account.
For what concerns Ã0 and Ã1, some more steps are necessary. Consider
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Ã1 first: the solution of the equation (3.22) is the sum of the homogeneous
solution and of the inhomogeneous one. For what concerns the homogeneous
equation, we see that it is a special case of the general differential equation

x2 y��(x) + (1− 2s) x y�(x) +
��
s2 − r2 ν2

�
+ a2 r2 x2r

�
y(x) = 0 (3.25)

whose most general solutions are of the form

y(x) = (±x)s Zν(± a xr) (3.26)

where Zν is a Bessel function of any kind: in our case we have to set

s = −1, r = 1, a = i b, ν = i α = i k0/a

so that, if we write

Ã1(x, k0, k⊥) = Ṽ 1(x, k0, k⊥) + Ĩ1(x, k0, k⊥) (3.27)

where Ṽ 1 is the solution of the homogeneous equation, we have

Ṽ 1(x, k0, k⊥) = f 1(k0, k⊥)
Kiα(b x)

x
(3.28)

while we can obtain the solution Ĩ1 through the Green function G(x, x�)
which satisfies the differential equation

�
x2 d2

dx2
+ 3 x

d

dx
+

k2
0

a2
+ 1− x2 (m2 + k2

⊥)

�
G(x, x�) = δ(x− x�) (3.29)

By writing G(x, x�) in the form

G(x, x�) = c1(x
�) θ(x− x�)

Kiα(b x)

x
+ c2(x

�) θ(x� − x)
Iiα(b x)

x
(3.30)

one obtains

G(x, x�) =
1

b x x�
θ(x− x�) Iiα(b x�)Kiα(b x) + θ(x� − x)Kiα(b x�) Iiα(b x)

K �
iα(b x

�) Iiα(b x�)− I �iα(b x
�)Kiα(b x�)

(3.31)
Thus, we have

Ĩ1(x, k0, k⊥) =

� ∞

0

dx� 2 x� G(x, x�) (B̃(x�, k0, k⊥)− i k⊥ · Ã⊥(x�, k0, k⊥))

(3.32)

40



In order to evaluate this expression at least asymptotically, we recall the
expansion of the Bessel functions given by

Iν(z) ∼ ez√
2πz

�
1− 1

2 z

Γ(ν + 3
2)

Γ(ν − 1
2)

+ · · ·
�

(3.33)

Kν(z) ∼
�

π

2z
e−z

�
1 +

1

2 z

Γ(ν + 3
2)

Γ(ν − 1
2)

+ · · ·
�

(3.34)

I �ν(z) =
1

2
[Iν+1(z) + Iν−1(z)]

∼ ez√
2πz

�
1− 1

4 z

�
Γ(ν + 5

2)

Γ(ν + 1
2)

+
Γ(ν + 1

2)

Γ(ν − 3
2)

�
+ · · ·

�
(3.35)

K �
ν(z) = −1

2
[Kν+1(z) +Kν−1(z)]

∼
�

π

2z
e−z

�
1 +

1

4 z

�
Γ(ν + 5

2)

Γ(ν + 1
2)

+
Γ(ν + 1

2)

Γ(ν − 3
2)

�
+ · · ·

�
(3.36)

Now we can get for the leading behaviour

Kν(z) I
�
ν(z) ∼ 1

2 z

�
1− 1

4 z

�
Γ(ν + 5

2)

Γ(ν + 1
2)

+
Γ(ν + 1

2)

Γ(ν − 3
2)

− 2
Γ(ν + 3

2)

Γ(ν − 1
2)

�
+ · · ·

�

−Iν(z)K
�
ν(z) ∼ 1

2 z

�
1 +

1

4 z

�
Γ(ν + 5

2)

Γ(ν + 1
2)

+
Γ(ν + 1

2)

Γ(ν − 3
2)

− 2
Γ(ν + 3

2)

Γ(ν − 1
2)

�
+ · · ·

�

so that, for large x and x� we have

b−1 [K �
iα(b x

�) Iiα(b x
�)− I �iα(b x

�)Kiα(b x
�)]−1 ≈ −x� (3.37)

G(x, x�) ≈ 1

2 b x

−1√
x x�

�
θ(x− x�) ex

�−x + θ(x� − x) ex−x�
�

(3.38)

Then, the integral in (3.32) is well definite and convergent, although it can-
not be expressed in closed form. However, this will not be a problem, as we
shall see in the next section.

3.1.1 Polarization Vectors

In order to introduce properly the polarization vectors, it is useful to consider
a particular solution of the field equation with

B(x)− ∂⊥ · A⊥(x) = 0 (3.39)
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Actually, this choice enables us to decompose the vector field Aµ only in
terms of the homogeneous solutions of the equations (3.20 - 3.22): namely,

Ã⊥(x, k0, k⊥) ≡ Ṽ ⊥(x, k0, k⊥) (3.40)

Ã1(x, k0, k⊥) = Ṽ 1(x, k0, k⊥) (3.41)

Ã0(x, k0, k⊥) = Ṽ 0(x, k0, k⊥) = − i

k0

�
d

dx
+

1

x

�
Ṽ 1(x, k0, k⊥)(3.42)

and equation (3.15) reduces to

∂tV
0 +

�
∂x +

1

x

�
V 1 = 0 (3.43)

which involves only the two components V 0 and V 1. We can then write the
components of the vector field in terms of normal modes of the Fulling type,
i.e.

ϕ̃⊥
E, k⊥

(x) = f⊥(E, k⊥)Kiα(b x) e
−iEt+ik⊥·x⊥ (3.44)

ϕ̃1
E, k⊥

(x) = f 1(E, k⊥)
Kiα(b x)

x
e−iEt+ik⊥·x⊥ (3.45)

ϕ̃0
E, k⊥

(x) = − i

E
f 1(E, k⊥)

bK �
iα(b x)

x
e−iEt+ik⊥·x⊥ (3.46)

We are now ready to define the inner product between any two solutions
φµ
r (x) of equations (3.8, 3.9). We proceed as follows: if we consider the

covariant vector current

Jλ(x) = gµν(x)φ
µ∗
r (x) i

←→∇λ φ
ν
s(x) (3.47)

we can immediatly verify that, thanks to the equations of motion satisfied
by φµ

r (x), it is covariantly conserved, i.e. ∇λJλ = 0. Thus we can define the
product

(φµ
r , φ

ν
s) =

�

Σ

dΣλ φµ∗
r (x) i gµν(x)

←→∇λ φ
ν
s(x) (3.48)

which is a straightforward generalization of the scalar inner product (2.5); in
particular, we will consider the initial time three dimensional hypersurface
with

dΣ0 = − 1

a x
θ(x) dx d2x⊥ dΣi = 0, i = 1, 2, 3 (3.49)
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so that (3.48) becomes

(φν
s , φ

µ
r ) =

�

Σ

dΣ0 gµν(x)φ
ν∗
s (x) i

↔
∇0 φ

µ
r (x)

=
1

a

�
d2x⊥

� ∞

0

dx

x
gµν(x)

�
−φ ν∗

s (x) i
↔
∂t φ

µ
r (x)

+ iΓν
0ρ(x) [φ

µ∗
s (x)φ ρ

r(x)− φ ρ∗
s (x)φµ

r (x) ]
�

=
1

a

�
d2x⊥

� ∞

0

dx

�
1

x
φ ∗

s (x) i
↔
∂t φ


r(x)

− a2xφ 0∗
s (x) i

↔
∂t φ

0
r(x)

− 2i a2
�
φ 1∗

s (x)φ 0
r(x)− φ 0∗

s (x)φ 1
r(x)

� �

In order to compute explicitly the above inner product, it is convenient to
introduce the following orthogonal controvariant vectors

e01(x,E, k⊥) =
− i

E x
K �

iα(b x) e11(x,E, k⊥) =
1

b x
Kiα(b x), e⊥1 (x,E, k⊥) = 0

(3.50)

eµ2(x,E, k⊥) = Kiα(b x) δ
µ
2 , eµ3(x,E, k⊥) = Kiα(b x) δ

µ
3 (3.51)

which clearly satisfy

gµν(x) e
µ
r (x,E, k⊥) e

ν
s(x,E, k⊥) = 0 for r �= s, r, s = 1, 2, 3 (3.52)

the first one representing a longitudinal polarization along the acceleration
axis, while the other two being transverse polarizations, orthogonal to each
other and to the direction of the acceleration. We can thus build up the
vector analogues of the Fulling scalar normal modes, i.e.

uµ
E, k⊥, r(x) = Nr e

µ
r (x,E, k⊥) e

−iEt+ik⊥·x⊥ (3.53)

where Nr are real normalization constants to be suitable defined. Owing to
(3.52), these vector normal modes are orthogonal to each other:

gµν(x) u
µ
E, k⊥, r(x) u

ν
E, k⊥, s(x) = 0 for r �= s, r, s = 1, 2, 3 (3.54)

For the transverse polarizations, the normalization constants Nr can be set
considering the inner product

�
uj
α�, k�⊥, r(x), u

j
α, k⊥, r(x)

�
=

�
d2x⊥

� ∞

0

dx

ax
uj
r, α�, k⊥

(x)
←→
∂0 uj

s, α�, k�⊥
(x)

= (2π)2 δ2(k⊥ − k�
⊥) (α + α�) e−ia(α−α�)t N 2

r

� ∞

0

dx

ax
Kiα�(bx)Kiα(bx)

= (2π)2 δ(2)(k⊥ − k�
⊥)N 2

r π2 csch(−πα) δ(α− α�) (3.55)
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so that we can define

Nr =

�
sinh (πE/a)

2
√
a π2

(3.56)

and thus the normal modes become

uµ
E, k⊥, r(x) =

�
sinh (πE/a)

2
√
a π2

Kiα(bx) δ
µ
r e

−iEt+ik⊥·x⊥ r = 2, 3 (3.57)

which, as expected, have the same form as the normal modes obtained for the
scalar field, since the equations satisfied by both are the same. It should be
noticed also that these normal modes have canonical dimensions [uµ

E, k⊥, r] =

cm1/2 in natural units, as they have in the usual Minkowski space, while now
satisfy

�

Σ

dΣλ uµ ∗
E�, k�⊥, r(x) i gµν(x)

←→∇λ u
ν
E, k⊥, s(x)

= a−1 δ(2)(k⊥ − k�
⊥) δ(α− α�) (3.58)

Instead, for what concerns the longitudinal normal modes, the inner product
turns out to be a little bit more complicated, since in our metric the covariant
derivative involves directly these modes. We have

�

Σ

dΣλ gµν(x) u
µ∗
E�, k�⊥, 1(x) i

↔
∇λ u

ν
E, k⊥, 1(x)

=
1

a

�
d2x⊥

� ∞

0

dx

�
1

x
u 1∗
E�, k�⊥, 1(x) i

↔
∂t u

1
E, k⊥, 1(x)

− a2x u 0 ∗
E�, k�⊥, 1(x) i

↔
∂t u

0
E, k⊥, 1(x)

− 2i a2
�
u 1 ∗
E�, k�⊥, 1(x) u

0
E, k⊥, 1(x)− u 0 ∗

E�, k�⊥, 1(x) u
1
E, k⊥, 1(x)

��

= (2π)2 δ(2)(k⊥ − k�
⊥) N 2

1

� ∞

0

dx

x
I(α, α �; bx) e− it(E−E�) (3.59)

where we have set

I(α, α �; ζ) ≡
�
α + α �

ζ 2
Kiα�(ζ)Kiα(ζ)−

α + α �

αα � K �
iα�(ζ)K �

iα(ζ)

− 2

ζ

�
Kiα�(ζ)K �

iα(ζ)
1

α
+

1

α � K
�
iα�(ζ)Kiα(ζ)

��
(3.60)

with ζ = b x . Notice that the integrand I(α, α �; ζ) is even under the exchange
of α and α � , as it does. Anyway, the integral in (3.59) can be understood
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and evaluated thanks to the analytic continuation (see Appendix A). This
way, the inner product between the longitudinal normal modes gives

�

Σ

dΣλ gµν(x) u
µ∗
E�, k�⊥, 1(x) i

↔
∇λ u

ν
E, k⊥, 1(x)

= (2π)2 δ(k⊥ − k�
⊥) N 2

1

� ∞

0

dx

x
I(α, α �; bx) e− it(E−E�)

= (2π)2 δ(2)(k⊥ − k�
⊥) N 2

1

π2

α 2
csch(− πα) δ(α− α � ) (3.61)

and we can set
N1 =

α

2π2

�
a−1 sinh(πα) (3.62)

We are thus left with a complete orthonormal set of normal modes of the
Fulling-type, with three indipendent polarizations, i.e.

uµ
α, k⊥, r(x) =

1

2π2

�
a−1 sinh(πα) eµ

r (α, k⊥; x) e
ik·x−i a α t (x > 0)

r = 1, 2, 3 α = E/a ∈

k⊥ ∈ 2 b =
�

k2
⊥ +m2 (3.63)

with

eµ
1(α, k⊥; x) =

1

x

�α

b
Kiα(bx) δ

µ
1 +

i

2a
[Kiα−1(bx) +Kiα+1(bx) ] δ

µ
0

�

(3.64)

eµ
r (α, k⊥; x) = Kiα(bx) δ

µ
r r = 2, 3 (3.65)

which fulfil the orthonormality relations

−
�

Σ

dΣλ gµν(x) u
µ∗
E�, k�⊥, 1(x) i

↔
∇λ u

ν
E, k⊥, 1(x)

= a−1 δ(2)(k⊥ − k�
⊥) δ(α− α � ) δrr� (3.66)

together with the reduced Lorenz condition

∂ 0 u
0
α, k⊥, r(x) +

�
d

dx
+

1

x

�
u 1
α, kα, r(x) = 0 (3.67)

α ∈ k⊥ ∈ 2 r = 1, 2, 3

Notice that the normal modes have canonical dimensions [ uµ
α, k⊥, r ] =

√
cm ,

in natural units, just like the Fulling scalar functions (2.48) and their usual
Minkowski counterparts (1.28).
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3.1.2 Canonical Quantization

We can now write the Vector and the auxiliary fields in terms of the normal
modes solutions just found, namely,

V µ(x) =
�

α, k⊥, r

�
fα, k⊥, r u

µ
α, k⊥, r(x) + f ∗

α, k⊥, r u
µ ∗
α, k⊥, r(x)

�
(3.68)

B(x) = a
�

α, k⊥

�
bα, k⊥ uα, k⊥(x) + b∗α, k⊥ u ∗

α, k⊥
(x)

�
(3.69)

where we have introduced the shorthand notations

�

α, k⊥, r

≡ a

� ∞

−∞
dα

�
d2k⊥

3�

r=1

�

α, k⊥

≡ a

� ∞

−∞
dα

�
d2k⊥ (3.70)

fα, k⊥, r and bα, k⊥ being complex coefficients. The general solutions of the
field equations (3.6, 3.7) are then given by

Aµ(x) = V µ(x) + ∆Aµ(x) (3.71)

∆A2(x) = ∆A3(x) = 0 (3.72)

∆A1(x) = 2 δ µ
1

� ∞

−∞
dx� x� G(x, x�)B(t, x�, x⊥) (3.73)

∆A0(x) = 2δ µ
0

� ∞

−∞

dα

iα
e−i a α t ×

��
d

dx
+

1

x

�� ∞

−∞
dx� x� G(x, x�) �B(α, x�, x⊥)− 1

2
�B(α, x, x⊥)

�
(3.74)

B(x) = B(x)− ∂⊥ · V ⊥(x) = a

� ∞

−∞
dα e−i a α t �B(α, x, x⊥) (3.75)

We can then proceed to the canonical quantization by replacing the classical
field functions with the corrisponding operator valued distributions

V µ(x) =
�

α, k⊥, r

�
fα,k⊥,r u

µ
α,k⊥,r(x) + f †

α,k⊥,r u
µ ∗
α,k⊥,r(x)

�
(3.76)

B(x) = a
�

α, k⊥

�
bα, k⊥ uα,k⊥(x) + b†α, k⊥ u ∗

α,k⊥
(x)

�
(3.77)

which satisfy the canonical commutation relations

[ fα, k⊥, r , f
†
α�, k�⊥, r� ] = a−1 δ(2)(k⊥ − k�

⊥) δ(α− α�) δrr� (3.78)

[ fα, k⊥, r , fα�, k�⊥, r� ] = [ f †
α, k⊥, r , f

†
α�, k�⊥, r� ] = 0 (3.79)
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[ b †α, k⊥ , bα�, k�⊥
] = a−1 δ(2)(k⊥ − k�

⊥) δ(α− α�) (3.80)

[ bα, k⊥ , bα�, k�⊥
] = [ b †α, k⊥ , b †α�, k�⊥

] = 0 (3.81)

3.2 Quantization of the Vector Field in the
axial gauge

Consider now the massless Vector Field in the space-like region MR: in the
axial gauge, it is described by the Lagrangian density

L =
√
−g

�
−1

4
Fµν(x)F

µν(x) + Aµ(x) ηµ B(x)

�
(3.82)

where ηµ = (0, 1, 0, 0) is a constant four-vector, thanks to which we recover
the condition A1 = 0: in fact, the equations of motion for Aν and B are

∇µF
µν(x) + ην B(x) = 0 (3.83)

ηµ A
µ(x) = 0 ⇒ A1(x) = 0 (3.84)

and taking one more covariant derivative of (3.83), we obtain

ην ∂νB(x) = 0 (3.85)

from which, for suitable boundary conditions, can be set B(x) = 0. This way
(3.83) becomes

∇µF
µν(x) = 0 = ∇µ(∇µAν(x)−∇νAµ(x) ) (3.86)

and hence, making a contraction with ην yelds

ην (∇µ ∇µ)Aν(x)− ην g
νλ(x) ∂λ (∇µ A

µ(x) ) = 0

g11 ∂1 (∇µ A
µ(x) ) = g11 ∂1 (∂µ A

µ(x) ) = 0 (3.87)

that entails ∂µ Aµ = 0, with opportune boundary conditions. The equations
(3.83) can be explicitly written as

�
∂µ ∂

µ − 3

x
∂1

�
A0(x)− 1

a2x3
∂0 ∂µ A

µ(x) = 0 (3.88)
�
∂µ ∂

µ − 1

x
∂1

�
A⊥(x) + ∂⊥ ∂µ A

µ(x) = 0 (3.89)
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which, using ∂µ Aµ = 0, simplify, as they decouple:
�
∂µ ∂

µ − 1

x
∂1

�
A⊥(x) = 0 (3.90)

∂0 A
0(x) = −∂⊥ · A⊥(x) (3.91)

the component A0 being dependent on A⊥ because of the condition ∂µAµ = 0.
Thus we are left with only two indipendent component of the massless vector
field as we should. To proceed further, we first notice that the equation (3.90)
satisfied by A⊥ has just the same form as the one satisfied by the transverse
vector field in the Feynman gauge, so that we can find the solutions in the
same way as in the previous section using the partial Fourier transform. We
have

A⊥(t, x, y, z) =

� +∞

−∞

dE√
2π

�
d2k⊥
2π

Ã⊥(E, k⊥, x) e
−iEt+ik⊥·x⊥ (3.92)

and this way the equation (3.90) becomes
�
d2

dx2
+

1

x

d

dx
+

E2

a2x2
− k2

⊥

�
Ã⊥(x,E, k⊥) = 0 (3.93)

the solutions of which are again expressed in terms of the modified Bessel
functions of imaginary order. We end up with

Ã⊥(x) = c1(E, k⊥)Iiα(κx) + c2(E, k⊥)Kiα(κx) (3.94)

where

α =
E

a
, κ = |k⊥|

However, as we have already pointed out, the solutions Iiα(κx), are usually
rejected since they are exponentially increasing for large positive x, so that
we must set c1(E, k⊥) = 0. We are thus left with the normal modes de-
composition of the real massless vector field in the axial gauge in the right
Rindler wedge:

A⊥(t, x, y, z) =

� +∞

−∞

dE√
2π

�
d2k⊥
2π

f⊥(E, k⊥)Kiα(κx)e
−iEt+ik⊥·x⊥ + c.c.

where the reality conditions

f⊥(−E,−k⊥) = f⊥∗(E, k⊥) (3.95)

and the property Kiα(κx) = K−iα(κx) are to be taken suitably into account.
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Let us define the inner product between any two solutions φµ
r (x) of equa-

tions (3.83, 3.84) as before (see section 3.1.1). It is now convenient to intro-
duce the following orthogonal controvariant vectors

eµ2(x,E, k⊥) = Kiα(κx) δ
µ
2 (3.96)

eµ3(x,E, k⊥) = Kiα(κx) δ
µ
3 (3.97)

which clearly satisfy

gµν(x) e
µ
r (x,E, k⊥) e

ν
s(x,E, k⊥) = 0 for r �= s, r, s = 2, 3 (3.98)

and from which it is possible to build up the vector analogues of the Fulling
scalar normal modes, i.e.

uµ
E, k⊥, r(x) = Nr e

µ
r (x,E, k⊥) e

−iEt+ik⊥·x⊥ (3.99)

where again Nr are real normalization constants that can be defined in the
same way as in section 3.1.1. We have

Nr =

�
sinh (πE/a)

2
√
a π2

(3.100)

and thus

uµ
E, k⊥, r(x) =

�
sinh (πE/a)

2
√
a π2

Kiα(κx) δ
µ
r e

−iEt+ik⊥·x⊥ r = 2, 3 (3.101)

We can therefore expand the real Vector field in terms of these Fulling
modes

Aµ(x) =

� ∞

−∞
dE

�
d2k⊥

2�

r=1

[fr,E,k⊥u
µ
r,E,k⊥

(x) + f ∗
r,E,k⊥

uµ ∗
r,E,k⊥

(x)] (3.102)

remembering that �
∂0A0 = −∂⊥ · A⊥

A1 = 0

The canonical quantization is then obtained by replacing the classical
field functions with operator valued tempered distributions

Aµ(x) =
�

E, k⊥, r

�
fr,E,k⊥ uµ

r,E,k⊥
(x) + f †

r,E,k⊥
uµ ∗
r,E,k⊥

(x)
�

(3.103)

where the creation and destruction operators satisfy the canonical commu-
tation relations

[ fα, k⊥, r , f
†
α�, k�⊥, r� ] = a−1 δ(2)(k⊥ − k�

⊥) δ(α− α�) δrr� (3.104)

all the other commutators vanishing.

49



3.2.1 Massless Vector Field in the Lorenz-Landau gauge

In this section, we present the quantization of the massless vector field in the
Lorenz-Landau gauge, following the method used in [7].

In order to simplify the calculations, we consider only the two dimensional
Minkowki spacetime with metric

ds2 = dτ 2 − dX2 = dx− dx+ (3.105)

where x− = τ − X and x+ = τ + X are the standard light-cone coordi-
nates. The two-dimensional right Rindler wedge MR is then recovered by
the following coordinate transformation

τ =
1

a
ea ξ sinh(aη) (|X| > τ)

X =
1

a
ea ξ cosh(aη) (3.106)

that in terms of the light-cone coordinates is given by

u =
1

a
e−a (η−ξ) = − x−

v =
1

a
ea (η+ξ) = x+ (3.107)

where η, ξ ∈ . The line element then becomes

ds2 = e2 a ξ
�
dη2 − dξ2

�
(3.108)

The above coordinate transformations can be inverted, giving

ξ =
1

a
ln a

√
u v =

1

a
ln a

√
X2 − τ 2

η =
1

a
ln

�
v

u
=

1

a
ln

�
X + τ

X − τ
(3.109)

Moreover, we can define the following derivatives

∂− = − ∂η

∂u
∂η −

∂ξ

∂u
∂ξ =

1

2
ea (η−ξ) (∂η − ∂ξ) (3.110)

∂+ =
∂η

∂v
∂η +

∂ξ

∂v
∂ξ =

1

2
e−a (η+ξ) (∂η + ∂ξ) (3.111)

so that

� = ∂−∂+ =
1

4
e−2aξ (∂2

η − ∂2
ξ ) (3.112)
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We now first review the quantization of the massless vector field in the
Lorenz gauge ∂µAµ = 0 in the Minkoswki space. The equations of motion
then become

∂µ F
µν = 0 ⇒

�
∂2
τ − ∂2

X

�
Aν = 0 (3.113)

∂τ A
0 + ∂X A1 = 0 (3.114)

that can be recast in the light-front form by defining

A± = A0 ± A1 = A∓ (3.115)

One obtains

∂u∂vA
±(u, v) = 0 (3.116)

∂vA+ − ∂uA− = 0 ⇐⇒ ∂−A+ + ∂+A− = 0 (3.117)

whose standard orthonormal set of positive frequency solutions is given by

ϕν
k(τ, X) = eν(k)ϕk(τ, X) ∂νϕ

ν
k(τ, X) = 0 (3.118)

ϕk(τ, X) =
1

(4πω)1/2
e−iωτ+ikX ω = |k|, k ∈ (3.119)

eν(k) = (sgn k, 1) (3.120)

For our purposes it is useful to introduce the light-front polarization vectors

e± = e0 ± e1 e± = ± 2 θ(±k) (3.121)

This way, the normal modes with k > 0, which are right-moving waves with
right polarization along the rays x− = const, are given by

(8πω)−1/2 e+ e−iωx−
(3.122)

while, for k < 0, the left-moving waves with left polarization along the rays
x+ = const can be written as

(8πω)−1/2 e− e−iωx+
(3.123)

We can then expand the real vector field in terms of these normal modes and
quantize, Aν becoming an operator valued tempered distribution

Aν(τ, X) =

� +∞

−∞
dk

�
fk ϕ

ν
k(τ, X) + f †

k ϕ
ν ∗
k (τ, X)

�
(3.124)
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where the creation and destruction operators satisfy the canonical commu-
tation relations

�
fk, f

†
p

�
= δ(k − p) [fk, fp] =

�
f †
k , f

†
p

�
= 0 (3.125)

Moreover, if we write the vector potential Aµ in terms of the light-cone fields,
we find that they are a pair of tempered distributions with opposite light-
front polarizations, namely

A+(x−) =

� +∞

0

dk
1

(2πk)1/2

�
fk e

−ikx−
+ f †

k e
ikx−

�
(3.126)

A−(x+) = −
� +∞

0

dk
1

(2πk)1/2

�
f−k e

−ikx+
+ f †

−k e
ikx+

�
(3.127)

which clearly satisfy both the field equations and the Lorenz condition

∂−∂+ A+(x−) = 0 ∂−∂+ A−(x+) = 0 (3.128)

∂+A
+(x−) = 0 ∂−A

−(x+) = 0 (3.129)

A representation of the solutions in all the regions R,L, F, P (see Figure 2.1),
that is the whole Minkowski space, can then be gained by writing

A+(x−) = θ(−x−)A+(u) + θ(x−)A+(−u) (3.130)

A−(x+) = θ(x+)A−(v) + θ(−x+)A−(−v) (3.131)

However, since the metric in MR is conformal to the Minkowski one, one can
follow an alternative procedure for the quatization of the vector potential
based on the solutions obtained solving directly the field equations and the
Lorenz condition in the right Rindler wedge, that, thanks to the conformal
invariance, take now the form

�
∂2
η − ∂2

ξ

�
A±(η, ξ) = 0 (3.132)

(∂η ± ∂ξ)A
±(η, ξ) = 0 (3.133)

The solutions can be expressed again in terms of positive frequency normal
modes

φk(η, ξ) =
1

(4πω)1/2
e± iωη+ikξ ω = |k| > 0, k ∈ (3.134)

so that in the quantization, the two light-cone tempered distributions become

A+(u) =

� +∞

0

dω
1

(2πk)1/2
�
gω (a u)

iω/a + g†ω (a u)
−iω/a

�
(3.135)

A−(v) = −
� +∞

0

dω
1

(2πk)1/2

�
g−ω (a v)

−iω/a + g†−ω (a v)
iω/a

�
(3.136)
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where the creation and destruction operators satisfy the canonical commu-
tation relations

�
gω, g

†
ω�

�
= δ(ω − ω�) [gω, gω� ] =

�
g†ω, g

†
ω�

�
= 0 (3.137)

The relation between the two set of modes, that is the Minkowski one and the
Rindler one, can be obtained through the method presented in [7]. Consider
then any real tempered distribution f ∈ S �(R). The Mellin transform of its
restriction f+ to the real positive half-line v > 0 is defined by

F+(s) =

� ∞

0

dv f+(v) v
s−1 �e s > 0 (3.138)

for which exists the analytic continuation to a meromorphic function in the
whole complex plane with simple poles at s ∈ −

0 . The inversion formula is
given by

f+(v) =
v−λ

2π

� ∞

−∞
dσ F+(λ+ iσ) v−iσ

=
v−λ

2π

� ∞

0

dσ F+(λ+ iσ) v−iσ + c.c. (3.139)

where v, λ ∈ , and therefore we can identify σ = ω/a for λ → 0, obtaining

f+(v) ≡ A+(v) F+(iσ) = −a1/2−iσ

�
2π

σ
g−σa v > 0, σ > 0 (3.140)

Moreover, from (3.138) and (3.127) we can write

−
� ∞

0

dv A+(v) v
s−1 =

� ∞

0

dv vs−1

� +∞

0

dk
1

(2πk)1/2

�
f−k e

−ikv + f †
−k e

ikv
�

(3.141)
Also, from the relation

� ∞

0

dv e±ik vs−1 = Γ(s) k−s e±iπs/2 (3.142)

we get

F+(s) = − Γ(s)√
2π

� ∞

0

dk k−s−1/2
�
f−k e

−iπs/2 + f †
−k e

iπs/2
�

(3.143)

F+(iσ) = − Γ(iσ)√
2π

� ∞

0

dk k−iσ−1/2
�
f−k e

πσ/2 + f †
−k e

−πσ/2
�

= − a1/2−iσ

�
2π

σ
g−σa (3.144)
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so that we have the Bogolyubov transformation

g−ω =

√
ω

2πa
Γ

�
iω

a

�� ∞

0

dk√
k

�
k

a

�−iω/a �
f−k e

πω/2a + f †
−k e

−πω/2a
�

(3.145)

which leads to the Bogolyubov coefficients

α−k,−ω =

√
ω

2πa
Γ

�
− iω

a

� �
k

a

�iω/a eπω/2a√
k

(3.146)

β−k,−ω =

√
ω

2πa
Γ

�
iω

a

� �
k

a

�−iω/a e−πω/2a

√
k

(3.147)

The square modulus of the above coefficients corresponds the Bose-Einstein
probability distributions at equilibrium temperature T = a/2πkB, which is
the Unruh temperature:

|α−k,−ω|2 →
e2πω/a

e2πω/a−1
= 1−Nω,T (3.148)

|β−k,−ω|2 →
1

e2πω/a−1
≡ Nω,T (3.149)

In a similar way, we can calculate the other Bogolyubov coefficients, obtaining
first

� ∞

0

duA+(u) us−1 =

� ∞

0

du us−1

� +∞

0

dk
1

(2πk)1/2

�
fk e

−iku + f †
k e

iku
�

(3.150)
and then

F+(s) =
Γ(s)√
2π

� ∞

0

dk k−s−1/2
�
fk e

−iπs/2 + f †
k e

iπs/2
�

(3.151)

F+(s) =
Γ(iσ)√

2π

� ∞

0

dk k−iσ−1/2
�
fk e

πσ/2 + f †
k e

−πσ/2
�

= a1/2−iσ

�
2π

σ
g†σa (3.152)

so that the Bogolyubov transformation now reads

g†ω =

√
ω

2πa
Γ

�
iω

a

�� ∞

0

dk√
k

�
k

a

�−iω/a �
fk e

πω/2a + f †
k e

−πω/2a
�

(3.153)

and hence the Bogolyubov coefficient is given by

αk,ω =

√
ω

2πa
Γ

�
iω

a

� �
k

a

�−iω/a e−πω/2a

√
k

(3.154)

|αk,ω|2 → Nω,T (3.155)
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3.3 Photon counting detectors

In this section we present some applications of the Unruh Effect, focusing in
particular on the detection of photons and the experimental devices used for
this purpose.

Particle detectors have often been used as an evidence of the Unruh Ef-
fect and the consequent thermal bath experienced by some non-inertial ob-
servers, although, clearly, different detectors will give, in general, contrasting
responses about the same feature of the bath. On the other hand, by the
awareness of the existence of the Unruh Effect, many relations between the
effects recorded by inertial and accelerated detectors can be investigated.
In particular, recent researches [8] on photon counting devices have demon-
strated that the coordinates of photons absorbed by a pair of counteracce-
lerating detectors in the two causally disconnected Rindler regions MR and
ML are indeed correlated and that, when a photon is absorbed by a single
accelerated detector, the Minkowski vacuum collapses into a state containing
at least one photon that can eventually be absorbed by an inertial detector.
Let us describe in more detail how these devices work.

The most common Unruh-DeWitt detector used to model an accelerated
device is given by a two-level point monopole coupled to a real massless
scalar field. In particular a semiconductor band structure that allows absor-
ption of a wide band of frequencies can be used. Then, any photon crossing
the surface of the device is eventually absorbed and, by using a bias of the
semiconductor pn-junction, it is not reemitted, since the electric field se-
parates the electron-hole pair created by the photon and emission can then
be neglected in an ideal device. Moreover, in general, the accuracy in the
measurement of the position of a photon is related to the size of the device.
A pixel that would absorb the low-frequency photons characteristic of the
Unruh Effect should then be large. A method for the description of the po-
sition measurement performed by a photon counting array detector is given
by a positive operator valued measure (POVM), that are projectors onto a
complete set of exactly localized states. An important feature of this basis
is that it does not impose any limitations on the size of the detector, nor on
the form of the field incident on it. Furthermore, these states turn out to be
useful to calculate the probability densities for absorption and emission of
photons as a function of spacetime location on a hypersurface. In fact, the
probability density for the absorption is then given by the absolute square
of the projection of the photon state vector onto the localized states. More-
over, since in Quantum Field Theory particles are counted on a spacelike
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Cauchy surface, thanks to which it is possible to identify positive and nega-
tive frequencies and the creation and destruction operators can be defined,
the elements of the POVM should be given by projectors onto the localized
states on such spacelike Cauchy hypersurfaces. Although some problems
arise regarding the mathematical definition of the exactly localized states,
as the fact that the fields describing localized states are themselves nonlocal
and spread throughout the space instantaneously and the fact that they lead
to negative scalar products, for practical purposes, it can be verified that the
spacetime probability amplitude turns out to be local, the nonlocal effects
appearing only outside the spacelike hypersurface of interest, and that since
positive frequencies are associated with absorption and negative frequencies
with emission, the integral over the spacelike hypersurface gives the difference
between the absorbed and emittend photons (a photon that is reemitted is
not counted), which indeed is what is really important. Then, since the
scalar product is invariant, inertial and accelerated detectors will agree on
the number of atomic transitions and on the net absorption minus emission
probability, even if they will not agree on the description of the phenomenon.

Firstly, let us recall and define some operators describing the massless
vector field in the Lorenz gauge in the Minkowski space. As in the subsection
(3.2.1), we will consider only the two-dimensional case for simplicity, so that
the potential vector Aµ(x) reduces to just one indipendent component, say
φ(τ, X), which satisfies the massless Klein Gordon wave equation �φ = 0.
The electric field operator is then given by E = − ∂tφ. We can define the
absorption and the emission density operators as

n(+)(τ, X) = i φ(−)(τ, X)
←→
∂τ φ(+)(τ, X) (3.156)

n(−)(τ, X) = i φ(+)(τ, X)
←→
∂τ φ(−)(τ, X) (3.157)

where φ(±) are the positive and negative frequency parts of the scalar field
φ, and for instance

φ(+)(τ,X) =

� ∞

−∞
dk uk,M(τ,X) ak,M (3.158)

uk,M(τ,X) =
ei k(X−εk τ)

�
4π |k|

εk = k/|k| (3.159)

the subscript M standing for “Minkowski”. Then, the probability density to
count a photon at (τ �, X �) for an electromagnetic field initially in the state
|ψ� is

w(+)(τ �, X �) = �ψ|n(+)(τ �, X �) |ψ� (3.160)
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while, since in different pixels the field operators commute, the two photon
correlation function is simply given by

w(+)
2 = �ψ|n(+)(τ �, X �)n(+)(τ ��, X ��) |ψ� (3.161)

The invariant scalar inner product evaluated on a hypersurface with τ =
const is then

(φ1, φ2) = i

� ∞

−∞
dX φ∗

1(τ,X)
←→
∂t φ2(τ,X) (3.162)

and the orthonormality relations satisfied by the plane waves uk,M are

(uk,M , uk�,M) = δ(k − k�)�
u∗
k,M,, u

∗
k�,M

�
= − δ(k − k�)

�
u∗
k,M , uk�,M

�
=

�
uk,M , u∗

k�,M

�
= 0 (3.163)

For what concerns the positive frequency Rindler plane waves, we have

uK,MR(η, ξ) =

�
eiK(ξ−εK η)√

4π |K|
in MR

0 in ML

(3.164)

uK,ML(η, ξ) =

�
0 in MR
eiK(ξ+εK η)√

4π |K|
in ML

(3.165)

where εK = K/|K|, ω = |K|. In both wedges, waves with K > 0 are seen by
an inertial observer as outward propagating waves, while K < 0 as inward
propagating waves. On any hupersurface with η = const, the Rindler plane
waves satisfy analogous orthonormality relations as (3.163). The Bogolyubov
coefficients that relate the Minkowski and Rindler plane waves, evaluated on
the hypersurface τ = η = 0 for convenience, since there the Rindler POVM
is at rest, are then

αk,ω;MR = (uk,M , uK,MR)

=

� ∞

X0

dX
ω/(aX) + |k|
4π

�
|k|ω

e−i kX (aX)iK/a

αk,ω;MR =

√
ω

2πa
Γ

�
iK

a

� �
|k|
a

�−i ω/a eπω/2a�
|k|

δεK ,εk + F (K) (aX0)
iK

(3.166)
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βk,ω;MR =
�
u∗
k,M , uK,MR

�

=

� ∞

X0

dX
ω/(aX)− |k|
4π

�
|k|ω

ei kX (aX)iK/a

=

√
ω

2πa
Γ

�
iK

a

� �
|k|
a

�−i ω/a e−πω/2a

�
|k|

δεK ,εk + F (K) (aX0)
iK

(3.167)

where the lower limit X0 was introduced to have a well definite integral and
the factor δεK ,εk excludes antiparallel Minkowski and Rindler wave vectors.
These relations are in accordance with (3.146), (3.147), and (3.154). In ML

the Bogolyubov coefficients are of the same form as the ones above, but with
X → |X| and δεK ,εk → δε−K ,εk . The probability density for absorption is
then given by

|βk,ω;MR,L|2 =
1

2πa|k|
1

e2πω/a − 1
(3.168)

from which we see, as already pointed out in subsection (3.2.1), that the
Minkowski vacuum is indeed a thermal bath of particles with temperature
T = a/2π. In particular, it can be verified [9] that for descrete wave vectors,
the Minkowski vacuum can be written in terms of the Rindler plane waves
as

|0M� =
∞�

j=−∞

�
1− e−2πωj/a

∞�

nKj
=0

e−nKj
πωj/a |nKj ,MR� ⊗ |n−Kj ,ML�

(3.169)
We notice that in this description both Rindler and Minkowski plane

waves are respectively functions of the variables ξ,X, with K, k fixed. In
order to build up the localized states in momentum space, it is sufficient to
replace the variables with K, k, while fixing a particular value of ξ,X, so that
the Minkowski localized states on any hypersurface with τ = const become

uX,M =

�
2|k| e−i k (X−εk τ)

√
2π

k ∈ (3.170)

The localized state at (τ �, X �) will be given by

uX�,M(τ,X) =

� ∞

−∞
dk

e−i k [(X−X�)−εk (τ−τ �)]

2π
�

2|k|
(3.171)

which, at τ = τ �, can be integrated, giving uX�,M(τ,X) =
√
2π |X −X �|−1/2,

that is nonlocal. It can be easily verified that these localized states are
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orthonormal, satisfying

(uX,M , uX�,M) = δ(X −X �)�
u∗
X,M,, u

∗
X�,M

�
= − δ(X −X �)

�
u∗
X,M , uX�,M

�
=

�
uX,M , u∗

X�,M

�
= 0 (3.172)

where now the inner product is done in the momentum space. In the same
way, the orthonormal Rindler localized states on a hypersurface with η =
const will be given by

uξ,MR(η, ξ) =

� √
2ω e−iK (ξ−εK η)

√
2π

in MR

0 in ML

(3.173)

uξ,ML(η, ξ) =

�
0 in MR√

2ω e−iK(ξ+εK η)
√
2π

in ML
(3.174)

with K ∈ . In order to calculate the probability amplitudes for the Rindler
localized states as seen by an inertial observer, it is first useful to expand the
Rindler plane waves in terms of the Minkowski localized states. To this aim,
we find the following probability amplitudes, namely

(uX,M , uK,MR) =

� ∞

−∞
dk αk,ω;MR

ei kX√
2π

�
u∗
X,M , uK,MR

�
=

� ∞

−∞
dk βk,ω;MR

e−i kX

√
2π

where αk,ω;MR , βk,ω;MR are the Bogolyubov coefficients found before (3.166),
(3.167). These integrals can be evaluated, giving for X > 0

(uX,M , uK,MR) =
(aX)iK/a

√
2πaX

e2πω/a−� ω/a g(K) + f(K) (3.175)

�
u∗
X,M , uK,MR

�
=

(aX)iK/a

√
2πaX

i εK g(K)− f(K) (3.176)

while for X < 0

(uX,M , uK,MR) = − i
|aX|iK/a

√
2πaX

εK eπω/a g(K) + f(K) (3.177)

�
u∗
X,M , uK,MR

�
=

|aX|iK/a

√
2πaX

eπω/ag(K)− f(K) (3.178)
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where

g(K) ≡ (−1)1/4

2π
εK

�
ω

a
Γ

�
1

2
− i

K

a

�
Γ

�
i
K

a

�
e−πω/a (3.179)

|g(K)|2 =
�
e4πω/a − 1

�−1
(3.180)

The small constant � was introduced to give a convergent integral and a finite
linewidth. f(K) is the integral term of F (K) in (3.166), that for X0 � X
reduces to

f(K) =
i (aX0)iK/a

�
2πω/a

(3.181)

Here (3.180) suggests a temperature for the thermal bath of T = a/4π, which
is half the Unruh temperature found before. However, since the creation and
destruction operators are the same as before, the thermal bath seen by the
Rindler observer is still characterized by the temperature T = a/2π. The
difference in the result just found comes from the fact that g(K) takes into
account the nonlocality of the fields. Therefore, for X > 0 the emission and
absorption probabilities seem to have a temperature of T = a/4π, while for
X < 0, they are equal.

Now we can find the Bogolyubov coefficients between the Rindler and
Minkowski localized states, namely

αX,ξ;MR = (uX,M , uξ,MR)

=

� ∞

−∞
dK (uX,M , uK,MR)

e−iKξ

√
2π

(3.182)

βX,ξ;MR =
�
u∗
X,M , uξ,MR

�

=

� ∞

−∞
dK

�
u∗
X,M , uK,MR

� e−iKξ

√
2π

(3.183)

while inML they are given by αX,ξ;ML = −α|X|,ξ;MR
and βX,ξ;ML = −β|X|,ξ;MR

.
It can be verified numerically that if the Minkowski observer sees the Rindler
localized states as exactly localized, then the graph of | (uX,M , uK,MR) | should
be flat with respect to K, while the other K integrands should be zero. This
feature is fulfilled for all K, but near K = 0, where the above integrals di-
verge as ω−1/2. Then, the flat regions lead to a delta function proportional
to (ln |aX|−aξ)/|aX|1/2, while the thermal peaks give additional delocalized
components to all curves, which are largest in ML.

Let us consider now another feature of these photon counting devices.
Photons are counted when they cross the detector surface and are absorbed
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within a penetration depth of a few wavelenghts; at normal incidence, it
is possible to describe the probability per unit time to absorb a photon in
terms of the number density J (+) in the localized states basis (on a spacelike
hypersurface), namely

�ψ|n(+)(τ,X) |ψ� = ± 1

c
�ψ| J (+)(τ,X) |ψ� (3.184)

where the positive flux is for left to right propagation, while the converse is
true for the negative flux. It is also assumed that only photons from one
directions are counted, the others in the opposite direction being traced out.
In particular, since the Minkowski vacuum state (3.169) in first approxima-
tion can be described by a pair of photon with opposite wave vectors in the
two Rindler wedges, it is possible to study the entanglement transfer from
the vacuum to the that pair of counteraccelerated detectors, which is due to
the fact that, although the two causally disconnected Rindler regions can-
not commucate, a Minkowski observer can receive signals from both wedges.
What is found is that the coincidence rate for absorption of correlated pho-
tons in the two Rindler wegdes MR and ML is a Lorenzian function of the
difference between the null Rindler coordinates (say v�− v��, v = η+ ξ), with
linewidth 2π/a, where a is the proper acceleration on ξ = 0.

In fact, if we consider only the first term with nK = 1 in (3.169), for pho-
tons propagating from right to left described by the Rindler null coordinate
v = η + ξ, the probability amplitude for two photon absorption is given by

�uv,MR , uv�,ML |0M� =

� 0

−∞
dK e−πω/a e

iK (v−v�)

2π

=
1

2π

1

i (v − v�) + π/a
(3.185)

that represents Lorentzian spacetime correlations with linewidth 2π/a, which,
for a → 0 it becomes infinite, while for a → ∞ we have

�uv,MR , uv�,ML |0M� → −1

2
δ(v − v�)− i

2π
PV

�
1

v − v�

�
(3.186)

where PV is the Principal Value distribution. Then, including both positive
and negative K, the above probability amplitude tends to the delta func-
tion −δ(v − v�), that is, the spacetime correlations are exact in the infinite
acceleration limit. In particular, if the photon in ML is not detected, the
probability density to count a photon in MR is given by tracing out over v�

the absolute square of (3.185), namely,
� ∞

−∞
dv� |�uv,MR , uv�,ML |0M�|2 = a

4π2
(3.187)
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We notice that the above quantity gives the probability per unit Rindler time.
Then, the probability per unit proper time for a detector with an absorbing
surface at ξ to count a photon is simply equal to ā/4π, where ā = a e−aξ

is the proper acceleration and dt̄ = ±(a/ā) dη is the proper time interval.
It can be also verified that the photon state prepared when an accelerated
detector in MR counts a photon can lead to absorption by either an inertial
detector or an accelerated one in ML.

If we now include all nj terms of (3.169), we will see that the probability
that an accelerated detector will absorb a photon from the Minkowski vacuum
in enhanced. To show this, let us introduce the Rindler number density
operators

n(+)
j (ξ) = i φ(−)

j

←→
∂η φ(+)

j j = MR, ML (3.188)

where now

φ(+)
j (η, ξ) =

� ∞

−∞
dK uK, j(η, ξ) bK, j φ(−)

j = φ(+) †
j (3.189)

For right to left propagation, the probability density to count a photon for
an electromagnetic field on the Minkowski vacuum is given by

w(+)
MR

= �0M |n(+)
v,MR

|0M�

=

� 0

−∞

dK

2π
C2

K

∞�

nK=0

e−2πωnK/a nK

=

� 0

−∞

dK

2π

�
e2πω/a − 1

�−1
(3.190)

which diverges at ω = 0 and where CK =
√
1− e−2πω/a. However, any real

detector has a lower limit to the frequency response, so that we can introduce
it as Ω0 = |K0|, thus finding

w(+)
MR

= − 2a ln
�
1− e−2πΩ0/a

�
(3.191)

We see that in the limit 2πΩ0/a � 1, w(+)
MR

� − 2a ln(2πΩ0/a), which di-
verges as Ω0 → 0. The two photon correlation function is given by

w(+)
MR,ML

= �0M |n(+)
v,MR

n(+)
v,ML

|0M� (3.192)

which can be evaluated considering that

b−K,ML bK,MR |0M� = CK

∞�

nK=0

nK e−nK πω/a |nK − 1,MR� ⊗ |n−K − 1,ML�

(3.193)
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Then we have

w(+)
MR,ML

=

����
� −Ω0

−∞
dK

eπω/a−iK (v�−v)

2π(e2πω/a − 1)

����
2

+ w(+)
MR

w(+)
ML

(3.194)

where the second term does not depend on the spacetime coordinates. Fur-
thermore, in order to obtain the probability densities per unit proper time,
we have to replace a with ā. However, now the minimum frequency is
ω0 = Ω0 e−aξ, so that Ω0/a = ω0/ā. In particular, using the SI units, we
can replace a with the acceleration frequency a/c with dimesions of s−1. An
Unruh Temperature of T = a�/2πckB = 1K corresponds to an acceleration
frequency of a/c = 2× 1012 s−1. Then, for instance, for Ω0 c/a = 0.01 a tem-
perature of 1K requires a detector that can absorb a photon with angular
frequencies greater than 2× 1010 rad/s.
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Conclusions

In this work we studied the quantization of both massive and massless vector
fields in a Rindler space. Regarding the massive vector field, as in the usual
Minkowski space, we focused on the Lagrangian density which led to a gene-
ralized linear and invariant transversality condition (eqn. 3.7). However, in
this case, a different choice of the auxiliary field B turned out to be more
convenient. As shown in the first chapter, in the usual Mikowski space the
Proca vector field does not admit any gauge symmetry; therefore the field B
can be chosen to be either B = 0, or, in order to build up a renormalizable
theory, its insertion becomes necessary, even though one can always choose a
particular gauge with Aµ = V µ− ∂µ B/m2, thanks to which one recovers the
Proca field equations, and the two fields V µ and B appear to be decoupled.
In the Rindler case, instead, it is more useful to make another choice for
B, namely B − ∂⊥ · A⊥ = 0 (these two fields have formally the same form,
so it is always possible to impose this condition), so that the vector field
can be expressed only in terms of the known homogeneous solutions of the
field equations. Moreover, this condition is suggested by the fact that in the
2-dimensional Rindler space, where A⊥ = 0 = B, the Proca vector field has
only one indipendent component, i.e. the longitudinal one, in the direction of
the acceleration, which satisfies the same equation as the homogeneous solu-
tion of the 4-dimensional vector field. With this choice, that in a way removes
the auxiliary field from the physical relevant aspects, an explicit subsidiary
condition to select a physical subspace is no more necessary. In the general
case, an analogous condition as (1.75) can be used; then, the inhomogeneous
solutions of the vector field will depend only upon the transverse field, which
formally has the same form as the field B.

For what concerns the massless vector field, we preferred not to consider
the Feynman gauge, since in this case the theory turned out to be more
complicated. As a matter of fact, in the Rindler case the mass m plays just
the role of a parameter, the presence or absence of which in the equations
of motion is irrelevant. There is not any mass-shell condition. Thus, in the
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limit of m → 0, the equations and the results found before for the massive
vector field do not change their form, nor any complication or divergence
appears. Neither the coupling to the auxiliary field changes. Then, trying to
reduce the indipendent polarizations from three (massive case) to two (mass-
less case) becomes a more complicated problem than it is in the Minkowski
case. Therefore, it turned out to be more convenient to investigate the solu-
tions for the massless vector field considering another gauge. We focused our
attention on the axial gauge in particular, since this way one component, the
longitudinal component, of the vector field cancels immediatly thanks to the
equations of motion. Then, only two indipendent components are left, the
other one being related to these two by the condition ∂µAµ = 0. As one could
intuitively expect, these two polarizations are transverse to the direction of
the acceleration, as the ones found in the massive case, where the third one
was longitudinal to the acceleration axis. We notice that the orthogonal po-
larization vectors could have been chosen in a different way. Our choice was
due to convenience and simplicity, since this way the orthonormality and clo-
sure relations for the normal modes of the vector field followed directly from
the generalization of the Fulling normal modes for the scalar field (see Ap-
pendix A). We considered also the Lorenz-Landau gauge in a 2-dimensional
spacetime for the massless vector field, as in this case the computation of the
Bogolyubov coefficients turned out to be quite simple and in full accordance
with [7] for the scalar field (in a 2-dimensional spacetime, the vector field
reduces to only one indipendent component, i.e. a scalar field).

Finally, the canonical quantization for both the massive and massless vec-
tor fields was obtained by replacing the classical field functions with operator
valued tempered distributions, whose creation and destruction operators sa-
tisfy the commutation relations (3.78, 3.79, 3.80, 3.81, 3.104), analogous to
the ones found for the scalar field.
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Appendix A

The Inner Products of the
Vector Normal Modes

In this section we present the computation of the inner products between the
normal modes of the vector field on a Rindler space. To start with, we recall
[3] the basic integral: namely,

� ∞

0

ζ −λ Kµ(ζ)Kν(ζ) dζ =
2−2−λ

Γ(1− λ)

× Γ

�
1− λ+ µ+ ν

2

�
Γ

�
1− λ− µ+ ν

2

�

× Γ

�
1− λ+ µ− ν

2

�
Γ

�
1− λ− µ− ν

2

�

with Reλ < 1−|Reµ|− |Re ν| . Next, let us first show how to get the norma-
lization of the Fulling scalar normal modes (2.48), since the inner products in
the vectorial case can be handled in very same way. Therefore, after setting
E/a = υ , E �/a = υ � we can write

E + E �

2πa

� ∞

0

x

x
KiE �/a(κx)KiE/a(κx)

= lim
�→ 0+

υ + υ �

16πΓ(�)
Γ

�
�+ iυ + iυ

�

2

�
Γ

�
�− iυ + iυ

�

2

�

× Γ

�
�− iυ − iυ

�

2

�
Γ

�
�+ iυ − iυ

�

2

�

Now, it turns out that for υ �= υ � (υ, υ � ∈ ) the above expression is an
analytic function of � > 0 , which vanish in the limit � → 0+ . Then we can
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safely write

E + E �

2πa

� ∞

0

x

x
KiE �/a(κx)KiE/a(κx) = 0 for E �= E

�
(A.1)

Moreover, recalling the following properties

Γ(ε+ z) = Γ(z)[ 1 + ε ψ(z) + · · · ] (0 ≤ ε � 1) (A.2)

|Γ(iy) |2 = π

y sinh(πy)
(y ∈ )

we can write

υ + υ �

2π

� ∞

0

x

x
Kiυ�(κx)Kiυ(κx) = lim

�→ 0+

1

16πΓ(�)

× 2π

sinh[ π(υ + υ �)/2 ]
· 2π

(υ − υ �) sinh[ π(υ − υ �)/2 ]

×
�
1 +

�

2
ψ

�
−iυ − iυ

�

2

�
+

�

2
ψ

�
iυ + iυ

�

2

�

+
�

2
ψ

�
−iυ + iυ

�

2

�
+

�

2
ψ

�
iυ − iυ

�

2

�
+ O(�2)

�

Next, if we replace υ
� − υ �→ η + i� and contextually υ � υ

�
, then we can

recast the above expression in the form

υ + υ �

2π

� ∞

0

x

x
Kiυ�(κx)Kiυ(κx) = lim

�→ 0+

π

4 Γ(�)

× �e 1

sinh(πυ) sinh
�

1
2π(η + i�)

� ·
�
PV

�
1

η

�
− iπδ(η)

�

×
�
1 + 1

2 � [ψ(−iυ) + ψ(iυ) + ψ(1− iη) + ψ(1 + iη) ] +O(�2)
�

where PV denotes the Cauchy-Hadamard principal value prescription. It
follows that the leading singular part for η → 0 with � �= 0 of the RHS of the
above equality becomes

�e csch(πυ)

4iΓ(�)

�
PV

�
1

η

�
− iπδ(η)

��
2

�
+

π2

12
� + · · ·

�

×
�
1 + 1

2 � [ψ(−iυ) + ψ(iυ)− 2C ] +O(�2)
�

� ↓ 0−→ − 1
2 π csch(πυ) δ(υ − υ � )

where C is the Euler-Mascheroni constant, while the limit � ↓ 0 must be
taken at the very end in the sense of the distributions.
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Now we are ready to handle the inner product of the normal modes for the
vector field. In particular, we consider the normalization of the longitudinal
polarization, computing all the addenda in the expression (3.60) following
the method just described. To start with, for λ = 3−ω and µ = iυ , ν = iυ �

we obtain

I1(υ, υ
� ;ω) = (υ + υ �)

� ∞

0

ζ ω−3 Kiυ(ζ)Kiυ�(ζ) dζ

=
2ω−5

Γ(ω − 2)
(υ + υ �) ×

× Γ

�
ω − 2 + iυ + iυ �

2

�
Γ

�
ω − 2− iυ + iυ �

2

�

× Γ

�
ω − 2 + iυ − iυ �

2

�
Γ

�
ω − 2− iυ − iυ �

2

�

with Reω > 2 . It turns out that, for υ �= υ � , the RHS of the above equality
is an analytic function of the complex variable ω ∈ , with simple zeros
for ω ∈ − ∪ {0, 1, 2} . Hence, for υ �= υ � , it does represent an analytic
continuation, say I1(υ, υ � ;ω) , of the integral (A.3) in the half-plane Reω <
2 , which includes the physical value ω = 0 . Then we can write

lim
ω→ 0+

I1(υ, υ
� ;ω) = 0 υ �= υ � (A.3)

Furthermore for ω ∈ , ω < 2 , we have

I1(υ, υ
� ;ω) =

2ω−5

Γ(ω − 2)
(υ + υ �) ×

×
��

ω − 2 + iυ + iυ �

2

��
ω − 2− iυ + iυ �

2

�

×
�
ω − 2 + iυ − iυ �

2

��
ω − 2− iυ − iυ �

2

��−1

×
����Γ

�
ω + iυ + iυ �

2

�
Γ

�
ω + iυ − iυ �

2

� ����
2

(A.4)

Now it is convenient to set

ω = � (0 < � � 1) υ � − υ = ξ + i� (A.5)

69



so that for � → 0+ and ξ ∼ 0 we obtain the leading behaviour

I1(υ, ξ; �) = �e 1

8Γ(�− 2)

��
�− 2 + 2iυ

2

�

×
�
−2 + iξ

2

��
2�− 2− iξ

2

��
�− 2− 2iυ

2

��−1

× π2 csch(πυ)

sinh[ π(ξ + i�)/2 ]

�
PV

�
1

ξ

�
− iπ δ(ξ)

��

ξ→ 0∼ �e �− 2

Γ(1 + �)
· πi csch(πυ)

(�− 2)2 + 4υ2

�
PV

�
1

ξ

�
− iπ δ(ξ)

�

� ↓ 0−→ − π2 csch(πυ)

2 (1 + υ2)
δ(υ − υ � )

Thus we eventually come to the physical limit value for ω ↓ 0

lim
ω→ 0+

I1(υ, υ
� ;ω) ≡ I1(υ, υ

� ) = − π2csch(πυ)

2(1 + υ2)
δ(υ − υ � ) (A.6)

Moreover for λ = 1− ω and µ = iυ ± 1 , ν = iυ � ± 1 we get

I 2(υ, υ
� ;ω) =

υ + υ �

4υυ �

� ∞

0

dζ ζ ω−1 [Kiυ�−1(ζ) +Kiυ�+1(ζ) ]

× [Kiυ−1(ζ) +Kiυ+1(ζ) ] = 2ω−5 υ + υ �

υυ � Γ(ω)
×

×
�
Γ

�
ω − 2 + iυ + iυ �

2

�
Γ

�
ω − iυ + iυ �

2

�

× Γ

�
ω + iυ − iυ �

2

�
Γ

�
ω + 2− iυ − iυ �

2

�

+

�
Γ

�
ω + iυ + iυ �

2

�
Γ

�
ω − 2− iυ + iυ �

2

�

× Γ

�
ω + 2 + iυ − iυ �

2

�
Γ

�
ω − iυ − iυ �

2

�
+ υ ←→ υ �

�

+ Γ

�
ω + 2 + iυ + iυ �

2

�
Γ

�
ω − iυ + iυ �

2

�

× Γ

�
ω + iυ − iυ �

2

�
Γ

�
ω − 2− iυ − iυ �

2

��

≡ I (−)
2 (υ, υ � ;ω) + I (◦)

2 (υ, υ � ;ω) + I (+)
2 (υ, υ � ;ω)
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always with Reω > 2 . The analytic continuation for Reω < 2 yields

I (−)
2 (υ, υ � ;ω) = 2ω−5 υ + υ �

υυ � Γ(ω)
· ω − iυ − iυ �

ω − 2 + iυ + iυ �

×
����Γ

�
ω + iυ + iυ �

2

�
Γ

�
ω − iυ + iυ �

2

� ����
2

so that
lim

ω→ 0+
I (−)
2 (υ, υ � ;ω) = 0 υ �= υ � (A.7)

while

I (−)
2 (υ, ξ; �) = �e 2 �−5 2

υ Γ(�)
· �− 2iυ

�− 2 + 2iυ

× π

υ sinh(πυ)
· 2π

sinh[π(ξ + i�)/2]

�
PV

�
1

ξ

�
− iπ δ(ξ)

�

ξ→ 0∼ �e 2 �−2 − i

υ Γ(1 + �)
· �− 2iυ

�− 2 + 2iυ
· π

υ sinh(πυ)

×
�
PV

�
1

ξ

�
− iπ δ(ξ)

�
(A.8)

� ↓ 0−→ π2

4 (1 + υ2) sinh(πυ)
δ(υ − υ � ) (A.9)

Furthermore we find for Reω < 2

I (◦)
2 (υ, υ � ;ω) = 2ω−5 υ + υ �

υυ � Γ(ω)
· ω + iυ − iυ �

ω − 2− iυ + iυ �

×
����Γ

�
ω + iυ + iυ �

2

�
Γ

�
ω − iυ + iυ �

2

� ����
2

+ υ ←→ υ �

that yields

lim
ω→ 0+

I (◦)
2 (υ, υ � ;ω) = 0 υ �= υ � (A.10)

together with

I (◦)
2 (υ, ξ; �) = �e 2 �−5 2

υ Γ(�)
· 2�− iξ

−2 + iξ

× π

υ sinh(πυ)
· 2π

sinh[ π(ξ + i�)/2 ]

×
�
PV

�
1

ξ

�
− iπ δ(ξ)

�
+ ξ ←→ − ξ

ξ→ 0∼ � 2 � π2 δ(ξ)

2Γ(1 + �) υ2 sinh(πυ)
� ↓ 0−→ 0
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Moreover we get

I (+)
2 (υ, υ � ;ω) = 2ω−5 υ + υ �

υυ � Γ(ω)
· ω + iυ + iυ �

ω − 2− iυ − iυ �

×
����Γ

�
ω + iυ + iυ �

2

�
Γ

�
ω − iυ + iυ �

2

� ����
2

whence we obtain

lim
ω→ 0+

I (+)
2 (υ, υ � ;ω) = 0 υ �= υ � (A.11)

while

I (+)
2 (υ, ξ; �) = �e 2 �−5 2

υ Γ(�)
· �+ 2iυ

�− 2− 2iυ

× π

υ sinh(πυ)
· 2π

sinh[π(ξ + i�)/2]

�
PV

�
1

ξ

�
− iπ δ(ξ)

�

ξ→ 0∼ �e 2 �−2 − i

υ Γ(1 + �)
· �+ 2iυ

�− 2− 2iυ
· π

υ sinh(πυ)

×
�
PV

�
1

ξ

�
− iπ δ(ξ)

�
(A.12)

� ↓ 0−→ π2

4 (1 + υ2) sinh(πυ)
δ(υ − υ � ) (A.13)

By summing up the three addenda we eventually get

I2(υ, υ
� ) =

π2 csch(πυ)

2(1 + υ2)
δ(υ − υ � ) (A.14)

Finally, for λ = 2− ω and µ = iυ , ν = iυ � ± 1 we have

I3(υ, υ
� ;ω) =

1

υ

� ∞

0

ζ ω−2 Kiυ(ζ) [Kiυ�−1(ζ) +Kiυ�+1(ζ) ] dζ

+ υ ←→ υ � =
2ω−4

υΓ(ω − 1)
×

×
�
Γ

�
ω − 2 + iυ + iυ �

2

�
Γ

�
ω − 2− iυ + iυ �

2

�

× Γ

�
ω + iυ − iυ �

2

�
Γ

�
ω − iυ − iυ �

2

�

+ Γ

�
ω + iυ + iυ �

2

�
Γ

�
ω − iυ + iυ �

2

�

× Γ

�
ω − 2 + iυ − iυ �

2

�
Γ

�
ω − 2− iυ − iυ �

2

��
+ υ ←→ υ �
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always with Reω > 2 . Once again the analytic continuation drives to

I3(υ, υ
� ;ω) =

(ω − 1) 2ω

2υΓ(ω)
×

×
����Γ

�
ω + iυ + iυ �

2

�
Γ

�
ω − iυ + iυ �

2

� ����
2

× (ω − 2)2 + (υ + υ � )(υ − υ � )

[ (ω − 2)2 + (υ + υ � )2 ][ (ω − 2)2 + (υ − υ � )2 ]
+ υ ←→ υ �

and thereby

I3(υ, υ
� ) =

π2 csch(πυ)

υ 2(1 + υ2)
δ(υ − υ � ) (A.15)
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