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Abstract (English)

Turbulence is a physical phenomena that can be experienced every-

where and for more than one century it has been object of study.

Despite this, many issues are still unresolved and many efforts are

made by the scientific community in order to understand its dy-

namic.

A way to investigate turbulence is through experiments where hot

wire measurements are performed. Analysis of the influence of a

temperature gradient on hot wire measurements is the aim of this

thesis work. Actually - to author’s knowledge - this investigation is

the first attempt to document, understand and ultimately correct

the effect of temperature gradients on turbulence statistics.

However a numerical approach is used since instantaneous temper-

ature and streamwise velocity fields are required to evaluate this

effect. A channel flow simulation at Reτ = 180 is analyzed to make

a first evaluation of the amount of error introduced by temperature

gradient inside the domain. Hot wire data field is obtained pro-

cessing the numerical flow field through the application of a proper

version of the King’s law, which connect voltage, velocity and tem-

perature. A drift in mean streamwise velocity profile and rms is

observed when temperature correction is performed by means of

centerline temperature. A correct mean velocity profile is achieved

correcting temperature through its mean value at each wall normal

position, but a not negligible error is still present into rms. The key

point to correct properly the sensed velocity from the hot wire is the

knowledge of the instantaneous temperature field. For this purpose

three correction methods are proposed.

At the end a numerical simulation at Reτ =590 is also evaluated in

order to confirm the results discussed earlier.
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Abstract (Italiano)

La turbolenza è un fenomeno fisico comune che può essere facilmente

osservato in natura e per più di un secolo è stato oggetto di studi.

Nonostante ciò, molte delle sue caratteristiche non sono ancora com-

pletamente conosciute e molti sforzi sono compiuti dalla comunità

scientifica al fine di comprendere la sua dinamica.

Uno dei modi con cui viene studiata la turbolenza è attraverso es-

perimenti in laboratorio, dove vengono effettuate misure con sonde

a filo caldo. Lo scopo di questa tesi è quello di investigare gli ef-

fetti dei gradienti di temperatura sulle misurazioni con sonde a filo

caldo. Effettivamente - a conoscenza dell’autore - questo studio è

il primo tentativo di documentare, comprendere e infine correggere

l’effetto del gradiente di temperatura sulle misure statistiche dei flu-

idi in regime turbolento.

Vista la necessità di conoscere instantaneamente i campi di temper-

atura e la velocità, un approccio numerico è stato necessario per

analizzare questo effetto. Una simulazione del flusso in un canale, a

Reτ = 180 è stata analizzata allo scopo di effettuare una prima valu-

tazione della percentuale di errore introdotto dalla presenza del gra-

diente di temperatura all’interno del dominio. La velocità misurata

dalla sonda a filo caldo è stata riprodotta attraverso l’elaborazione

dei dati numerici effettuata per mezzo della legge di King, la quale

mette in relazione il potenziale elettrico del filo caldo e la velocità

e temperatura del flusso che investe la sonda. Uno scostamento nel

profilo medio della velocità longitudinale e nella deviazione standard

può essere osservato quando la correzione della temperatura è effet-

tuata tramite la temperatura al centro del canale. Utilizzando la

temperatura media per correggere l’equazione di King, si ottiene un

profilo medio di velocità longitudinale corretto, ma un errore non

trascurabile è presente nella deviazione standard. Il punto chiave

per correggere in modo efficace la velocità misurata dalla sonda a
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filo caldo, è quello di conoscere instantaneamente il campo di tem-

peratura sulla sonda. A questo proposito tre metodi correttivi sono

proposti. Infine, al fine di confermare le osservazioni fatte e i risul-

tati raggiunti, un’ulteriore simulazione di un canale a Reτ = 590 è

stata effettuata.
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Tesi - Versione Italiana

La turbolenza è un comune fenomeno fisico che può essere facilmente osservato

e vissuto in maniera diretta. I fluidi come acqua ed aria, infatti, sono ovunque

in natura e interagiscono continuamente con i corpi che vi si trovano immersi.

Con il movimento di questi fluidi, si creano dei flussi che possono trovarsi in

vari regimi: fra questi quello turbolento è molto comune, ed individuabile dalla

contemporanea presenza di specifici comportamenti che caratterizzano questo

tipo di flusso. Inoltre si possono distinguere flussi a turbolenza libera, quando

non sono presenti pareti o corpi con il quale il flusso può interagire, e flussi di

parete, dove l’interazione fra parete e flusso genera dinamiche, nei pressi della

parete, differenti rispetto a quelle tipiche dei flussi a turbolenza libera.

La turbolenza di parete è stata largamente investigata, vista la sua importanza

in applicazioni ingegneristiche. Flussi in condotti, resistenza generata su oggetti

in movimento come palle, automobili, aeroplani, etc. sono solo alcuni esempi di

interazione flusso - parete, dove spesso il flusso si trova in regime turbolento.

Dal punto di vista matematico, le equazioni che descrivono la dinamica dei fluidi

sono conosciute da circa due secoli: le equazioni di Navier Stokes sono state for-

mulate per la prima volta nel 1821. Nonostante ciò la loro soluzione è limitata

esclusivamente a casi semplificati 1.

Questa complessità ha spinto all’utilizzo di altri metodi di analisi dei flussi turbo-

lenti, come test sperimentali in gallerie del vento e analisi numeriche. Entrambi

i metodi presentano vantaggi e svantaggi che si necessita di conoscere se si vuole

comprendere quale metodo usare per lo specifico problema in esame.

L’analisi numerica si è sviluppata largamente solo negli ultimi decenni, grazie

allo sviluppo esponenziale delle potenze di calcolo, rendendo accessibili anal-

isi sempre più complesse. Esistono differenti tipi di analisi che possono essere

effettuate, come analisi numeriche dirette (DNS), simulazioni a grandi vortici

(LES) e simulazioni delle equazioni di Navier Stokes mediate alla Reynolds. Il

1 Clay Mathematics Institution ha inserito le equazioni di Navier - Stokes come uno dei
sette problemi del millennio (”Millennium Prize Problems”), mancando ancora una teoria
matematica che consenta di comprenderle appieno ed analizzarle. Il premio è di un milione
di dollari.

1
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primo metodo (DNS) si basa sulla soluzione completa delle equazioni di Navier

Stokes. Questo approccio è computazionalmente molto dispendioso dato che

tutte le scale del moto vengono risolte. Ciò significa che tutte le variabili del

moto vengono fornite in uscita, il che permette di effettuare molte analisi statis-

tiche che altrimenti non potrebbero essere svolte. Simulazioni a grandi numeri di

Reynolds non sono tuttavia ancora realizzabili. Se invece la dinamica di piccola

scala non viene risolta direttamente ma attraverso l’utilizzo di un modello, si ot-

tiene un metodo denominato LES - simulazioni a grand vortici. Questo metodo

rimane, seppur in modo inferiore rispetto ad una DNS, molto costoso com-

putazionalmente, il che non permette analisi su casi ad alti numeri di Reynolds.

I risultati ottenuti rimangono di buona qualità sebbene la validità del modello

utilizzato deve essere verificata. Metodi RANS vengono per lo più utilizzati

a livello industriale, vista la necessità di analizzare flussi ad elevati numeri di

Reynolds. Questo approccio fornisce solamente il campo medio delle varie vari-

abili. Tuttavia, questo sistema di equazioni non è risolvibile in maniera diretta

data la presenza di più incognite che equazioni. Infatti, mediando alla Reynolds

le equazioni di Navier Stokes, si ottiene un nuovo sistema di equazioni al cui in-

terno compare una nuova variabile, che prende il nome di tensore degli sforzi di

Reynolds. Un modello deve essere quindi introdotto al fine di rendere risolvibile

il sistema. Ciò fa si che sebbene le equazioni RANS permettano l’analisi di flussi

ad elevati numeri di Reynolds, la qualità della soluzione dipende fortemente dal

tipo di modello utilizzato per lo specifico problema fluidodinamico.

Tutto questo fa si che l’unico metodo per analizzare flussi ad elevati numeri di

Reynolds sia un approccio sperimentale. Questo metodo è utilizzato da più di

un secolo, e notevoli progressi nelle gallerie del vento e nei sistemi di misura

sono stati raggiunti. Nonostante ciò rimane ancora una sfida ottenere contem-

poraneamente alti numeri di Reynolds, alta risoluzione spaziale e convergenza

delle statistiche. Questa è la ragione della necessità della costruzione di nuove

strutture e sistemi di misura che rispondano a tali obiettivi. A questo scopo

l’università di Bologna è impegnata in prima linea con la creazione del ”Center

for International Cooperation in Long Pipe Experiments, CICLoPE” [Talamelli

et al., 2009].

Durante i test sperimentali, diversi tipi di misura possono essere effettuati, fra

cui il più utilizzato per conoscere il campo di velocità è la misura a filo caldo.

La ragione è l’elevata risoluzione frequenziale di questo strumento e la sua ac-

curatezza. Tuttavia diversi errori caratterizzano le misure di questo strumento:

il più influente risulta l’effetto di filtraggio dovuto all’eccessiva lunghezza del

filo rispetto alle piccole scale del moto. Infatti la temperatura avvertita dallo

strumento è solo una media di quella lungo il filo, vista la presenza di zone del

filo a diverse temperatura dovuta alle diverse fluttuazioni che si generano lungo
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di esso.

Inoltre un nuovo problema è stato supposto in recenti esperimenti su con-

dotti [Sattarzadeh et al., 2013], cioè l’effetto della presenza di gradienti di tem-

peratura all’interno del flusso, i quali possono modificare la temperatura vista

dal filo caldo dovuta alla sola convezione forzata. Infatti una non uniforme tem-

peratura all’interno del condotto genera fluttuazioni di temperatura - le quali

sono altamente correlate con quelle di velocità - che influenzano cos̀ı la temper-

atura del filo 2.

In questa tesi magistrale l’effetto del gradiente di temperatura sulla sonda a filo

caldo è investigata. L’approccio usato è numerico, dato che l’analisi richiede la

conoscenza istantanea di diverse variabili.

Risultati I principali risultati sono stati ottenuti analizzando la simulazione

numerica di un canale a Reτ = 180 e Pr = 0.71, realizzata tramite un codice

spettrale. La prima analisi è stata effettuata sulle statistiche classiche della

turbolenza, cioè profili di velocità media e deviazione standard, le quali hanno

mostrato la bontà della simulazione numerica realizzata. Successivamente la

presenza di una correlazione fra velocità longitudinale e temperatura è stata

verificata. Tale correlazione è maggiore vicino alla parete e minore avvicinan-

dosi al centro del canale. Il risultato raggiunto è di notevole importanza, poiché

permette di comprendere la fisica dietro all’influenza della temperatura sulla

sonda a filo caldo: fluttuazioni positive della velocità longitudinale generano

fluttuazioni positive delle fluttuazioni di temperatura, le quali generano un in-

nalzamento della temperatura della sonda. Questa maggiore temperatura non

permette allo strumento di percepire tutta la quantità di calore dispersa dal

flusso d’aria, cos̀ı che una minore velocità viene misurata. Viceversa una flut-

tuazione negativa fa si che la temperatura del filo venga diminuita, generando

una misura di velocità maggiore: in definitiva la velocità misurata istante per

istante viene smorzata da quella reale, come si può verificare dalla figura 5.2.

La successiva analisi è stata realizzata cercando di riprodurre a posteriori il

voltaggio generato da una sonda a filo caldo immersa virtualmente all’interno

del flusso: tale procedimento è stato realizzato attraverso l’utilizzo della legge

di King, che relaziona il voltaggio della sonda con la temperatura e velocità

istantanea. Due versioni della legge di King sono state analizzate, le quali gen-

erano gli stessi risultati se opportunamente relazionate. Una volta ottenuto il

campo di tensione, la velocità misurata è stata riprodotta attraverso un ulteri-

ore utilizzo della legge di King, dove però il campo istantaneo di temperatura,

2 La temperatura del filo è influenzata, da una parte, dal calore prodotto dal circuito elet-
trico, mentre dall’altra dal calore disperso dalla convezione naturale e forzata, dalla radiazione
e dalla conduzione sui supporti. Tuttavia l’effetto principale è quello della convezione forzata
dovuta al flusso che investe la sonda
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che non è noto, è stato sostituito da due diverse temperature di correzione: la

temperatura media al centro del condotto e il profilo di temperatura medio 3.

Il primo caso genera diversi tipi di errore. Il profilo di velocità presenta un

discostamento dal valore reale soprattutto vicino alla parete, dove è presente

una maggiore differenza fra la temperatura media di correzione, cioè quella alla

mezzeria, e la temperatura media locale. Inoltre anche la deviazione standard

presenta errori non trascurabili. Utilizzando invece il profilo medio di tem-

peratura come temperatura di correzione, un corretto profilo di velocità viene

misurato. Ciononostante, la deviazione standard della fluttuazione di velocità

longitudinale risulta sottostimata: questo comportamento risulta accentuato in-

nalzando la differenza di temperatura fra parete e mezzeria, o equivalentemente,

innalzando il gradiente di temperatura a parete.

Successivamente, l’effetto dei parametri sperimentali all’interno dell’equazione

di King sono stati analizzati. Innalzando il rapporto di surriscaldamento del

filo, il valore della deviazione standard viene innalzato, mentre aumentando il

valore del coefficiente di temperatura della resistività, la deviazione standard

subisce una decrescita. In entrambi i casi, la variazione di questi due parametri

non mostra influenze sensibili nel profilo medio di velocità.

A questo punto l’effetto della temperatura sulle misure effettuate con la sonda a

filo caldo, è stato paragonato agli effetti dovuti al filtraggio spaziale dovuto alla

lunghezza del filo. Innanzitutto il singolo effetto del filtraggio spaziale è consid-

erato. Esso non influenza il profilo medio di velocità, mentre genera una minore

deviazione standard. Combinando gli effetti di questi due errori, si può osser-

vare come la percentuale di errore dovuta all’influenza di temperatura rispetto

all’errore totale, sia maggiore per sonde piccole e in presenza di una maggiore

differenza di temperatura fra parete e mezzeria all’interno del canale. Seguendo

le linee guida presenti in Ligrani and Bradshaw [1987], per diminuire l’errore

dovuto al filtraggio spaziale un filo dovrebbe possedere una lunghezza inferiore

a venti lunghezze viscose: con questi valori di lunghezza del filo l’errore dovuto

alla temperatura non è trascurabile, soprattutto se alte differenze di temper-

atura fra parete e mezzeria sono presenti.

La quantificazione di questo errore ha permesso di ipotizzare alcuni metodi cor-

rettivi per la misura della velocità e la formulazione di metodi indiretti per la

misura della temperatura istantanea. Il primo metodo analizzato è l’utilizzo

di due sonde, le quali forniscono gli ingressi necessari per risolvere il sistema

composto da due equazioni di King. I risultati generati sono ottimi se virtual-

mente le due sonde fossero piazzate nello stesso punto, mentre divergono con

l’allontanamento delle due sonde fra loro. Questo fa si che questo metodo non

3 La temperatura è una variabile di cui non si riesce ad avere accesso istantaneamente
attraverso strumenti di misura durante prove sperimentali.
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sia praticamente utilizzabile.

Un altro metodo è quello di ipotizzare - vista l’alta correlazione fra fluttuazioni

di velocità longitudinale e temperatura - che le fluttuazioni di temperatura pos-

sano essere sostituite da quelle di velocità, opportunamente scalate. Innanzi-

tutto un profilo di velocità viene ottenuto correggendo l’equazione di King con

il solo profilo medio di temperatura: ciò permette di trovare un valore approssi-

mato della velocità dal quale ricavare le fluttuazioni di velocità. Quest’ultime

vengono utilizzate per una nuova misura della velocità misurata dalla sonda,

dove la correzione della temperatura nell’equazione di King, viene effettuata

tramite la somma fra il profilo medio di temperatura e la fluttuazione della ve-

locità, ottenuta precedentemente, opportunamente scalata. I risultati ottenuti

da questo metodo sono incoraggianti, soprattutto se un coefficiente aggiuntivo

viene introdotto per diminuire il valore delle fluttuazioni di velocità, all’interno

della variabile di correzione, lontano dalla parete. Ciò è dovuto alla minore

correlazione fra velocità e temperatura in prossimità della mezzeria.

Infine un metodo per la misura approssimata di un profilo medio di temper-

atura è proposto: invece di misurare la temperatura media in molti punti lungo

la direzione normale alla parete, la misura può essere effettuata solo in pochi

punti, ricostruendo il profilo medio tramite l’interpolazione di questi punti con

l’utilizzo di una legge lineare vicino alla parete e della legge logaritmica lontano

dalla parete. Il problema di questo metodo può risultare nella corretta misura

della temperatura viscosa a parete.

L’ultimo capitolo della tesi vuole invece verificare i risultati raggiunti su un’ul-

teriore simulazione numerica dove il numero di Reynolds è stato incrementato

a Reτ = 590. Risultati simili al caso precedente sono stati ottenuti, verificando

inoltre la bontà del metodo correttivo utilizzato. Tuttavia un’ulteriore miglio-

ramento di questo metodo è stato proposto, ma non verificato, riguardante

la modifica del coefficiente utilizzato per smorzare le fluttuazioni di velocità

all’interno del fattore correttivo. L’idea è di utilizzare non più un valore lineare

da parete a mezzeria, ma un coefficiente che agisca con maggiore forza vicino

alla parete per poi smorzarsi allontanandosi da essa.

Struttura Questa tesi è composta da sette capitoli, redatti in lingua inglese. I

primi tre si concentrano su alcuni concetti teorici, che spaziano dalla turbolenza

(capitolo primo), alle equazioni della fluidodinamica e termodinamica (capitolo

secondo) fino alla descrizione della sonda a filo caldo (capitolo terzo). Succes-

sivamente la simulazione numerica a Reτ = 180 e Pr = 0.71 viene descritta

del capitolo quarto e i risultati ottenuti nel capitolo cinque. Il capitolo sesto

si concentra sui metodi correttivi mentre il settimo ed ultimo capitolo descrive

la simulazione numerica a Reτ = 590 e Pr = 0.71, insieme ai risultati ottenuti
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su questa simulazione prima e dopo aver applicato uno dei metodi correttivi

proposti.



Chapter 1

Introduction

Even though turbulent flows can be frequently observed in everyday life, turbu-

lence is still a physical phenomenon, which is not completely known. Turbulent

flow can be free (jets, wakes) or may interact with surfaces (ducts or boundary

layers). In this case we will talk about wall bounded turbulence. Wall turbu-

lent flows have been deeply investigated, due to their importance in engineering

applications, e.g. flow in ducts, on aerodynamic surfaces, which in most of the

industrial applications are in turbulent regime.

The fundamental equations of fluid dynamics are known since almost two cen-

turies. When they are written for Newtonian fluids they are called Navier Stokes

equations. Even though they are well known, an analytical solution for these

equations is achievable only for simplified cases 1.

The complexity of these equations forces us to use other approaches to give

insight into this problem. Investigations are performed through experimental

wind tunnel tests or numerical simulations. Both methods have their advantages

and disadvantages that need to be known in order to chose the best approach

for each specific flow problem.

Numerical simulations have become an affordable method only in the last decades,

with the increasing of computer performances. Different type of simulations can

be performed using numerical methods. The most used nowadays are the Di-

rect Numerical Simulations (DNS), the Large Eddy Simulations (LES) and the

Reynolds Averaged Navier - Stokes equations (RANS). The first one is based

on the numerical solution of the complete Navier - Stokes equations. This ap-

proach is computational expensive since all details of flow movements are solved.

A complete data flow field is provided by this method, for each time field and

1 Clay Mathematics Institution inserts Navier - Stokes existence and smoothness problem
in the list of the seven ”Millennium Prize Problems”. The prize to the scientist who will solve
this problem is of one million dollars.

7
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for every point of the domain. Its weakness is that only low Reynolds number

cases can be actually solved.

Turbulent flow is characterized by the simultaneous presence of scales of dif-

ferent size. If the small scale behavior is modeled, Navier - Stokes equations

can be filtered in order to reduce its computational cost (LES). However, this

method remains computationally expensive and high Reynolds number are still

not affordable. Moreover, the accuracy of the model introduced must be proven.

Due to the Reynolds number limit of previous methods, industrial applications

are typically solved by means of RANS method, where the Navier - Stokes equa-

tions are averaged in time. In this way only mean values are fully simulated

(even though unsteady flows can be solved by introducing the variable time in

the model). However, this set of equation, due to the presence of more unknowns

than equations, is not directly solvable. The term that arises after the averaging

operation, is called Reynolds stress tensor, which needs to be modeled. High

Reynolds number simulations become computationally affordable through this

method, but the quality of the solution is highly dependent on the model used.

In many applications, these limits make experimental tests the only way to in-

vestigate high Reynolds number problems. Despite the enormous progresses

made by the facilities and measurements instruments from the beginning of tur-

bulence investigation - around one century ago - nowadays is still challenging

to obtain at the same time high Reynolds number, high spatial resolution and

well converged statistics. For this reason, new facilities are currently designed

and realized in order to achieve these goals. With this purpose at the University

of Bologna is, for instance, created the Center for International Cooperation in

Long Pipe Experiments, CICLoPE [Talamelli et al., 2009].

In these turbulence experiments, velocity is mainly measured through hot wire

anemometry. The reason lie on the high frequency resolution and its accuracy.

However, some weaknesses characterizes hot wires, like the spatial averaging

effect along the wire of the probe, which basically has the effect to filter small

turbulent scales.

A new problem arose in recent experiments [Sattarzadeh et al., 2013], i.e. the

temperature gradient influence on hot wire measurements. Indeed, if a non uni-

form temperature is present inside the pipe, the wire temperature is subjected

to an influence made by temperature fluctuations - which are highly correlated

with velocity ones - besides the main influence made by the forced convection 2.

In this thesis, the temperature gradient influence on hot wire measurements is

investigated. To assess this phenomenon a numerical approach is used, since

2 Wire temperature is also influenced by natural convection, conduction to the prongs and
radiation. However the strongest influence is the forced convection made by the air moving
against the probe.
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it can easily provide at each time in the entire domain all the flow parameters

needed. The presence of a correlation between velocity and temperature is ver-

ified. This means that positive fluctuation of temperature are associated with

positive fluctuations of velocity, thus wire senses a smaller temperature differ-

ence compared to the one achievable considering the only forced convection.

After that, the velocity sensed by the hot wire is estimated through King’s law

equation - a law that relates flow velocity and wire voltage - and compared with

the numerical original results. Finally, the quantification of the error introduced

by temperature gradient allows the formulation of some correction methods.

This thesis is composed by first three chapters focusing on theoretical issues,

as turbulence (1st chapter), fluid dynamic equations and thermodynamics (2nd

chapter) and hot wire (3rd chapter). Numerical simulation of a channel flow at

Reτ = 180 and Pr = 0.71 is described in 4th chapter and its results are discussed

in 5th chapter. Correction methods of temperature influence are discussed in

6th) chapter; meanwhile a turbulent channel flow at Reτ = 590 and Pr = 0.71 is

analyzed in the 7th) chapter, where a similar analysis to the one in 5th chapter

is performed together with correction of the results achieved.
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Chapter 2

Turbulence

2.1 Introduction to turbulence

The name turbulence derives from the old Greek ”τυρβη” which means disorder,

chaos. Those are two of the main characteristics of this phenomena.

However a proper definition of turbulence is not given yet, due to its complex

behavior. In fact as Richard Feynman says: ”there is a physical problem that

is common to many fields, that is very old, and that has not been solved. [...]

Nobody in physics has really been able to analyze it mathematically satisfactorily

in spite of its importance to the sister sciences. It is the analysis of circulating

or turbulent fluids” [Feynman et al., 1966, pag.3-9]. Thus only a description of

the main features of turbulence can be provided.

Turbulence can be described as a flow regime, characterized by irregularity,

diffusivity, large Reynolds numbers, three dimensional velocity fluctuations and

dissipation [Tennekes and Lumley, 1972, pagg.1-3]. Moreover is a continuum

phenomena that occurs at many flow scales, which are always larger enough

than molecular scales.

In spite of its complexity, turbulence is a very common phenomena. Even in a

house’s kitchen the presence of turbulence can be experienced: from the plumes

of the stove to the tap water, from the boiling water to the diffusion of food’s

smell.

2.1.1 Turbulence features

In this paragraph the turbulence features listed in the paragraph 2.1 are dis-

cussed.

First of all turbulence characterizes flows and not fluids. It means that different

11
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fluids have a similar turbulence dynamic, since this phenomena is not depend-

ing on molecular properties of the particular fluid [Tennekes and Lumley, 1972,

pag.3]

Irregularity is one of the fundamental characteristics of a turbulent flow. This is

well empathized by Hinze through his definition of turbulence: ”turbulent fluid

motion is an irregular condition of flow in which the various quantities show a

random variation with time and space coordinates, so that statistically distinct

average values can be discerned” [Hinze, 1975]. This definition points out the

chaotic motion of the flow, where each particle seems behave differently instant

by instant. However, this chaotic behavior is only apparent, since flows are

described by Navier-Stokes equations, which are deterministic.

The apparent discrepancy by deterministic equations and irregular motion, is

explained by Lorentz in 1963. He discovered a high dependence from initial con-

ditions of certain non linear equations [Lorenz, 1973]. The deterministic side

of turbulence is recovered inside statistical analysis. In fact statistical quan-

tities, such as mean values, root mean squares, etc, can be compared among

different experiments, meanwhile different behaviors characterize the signal in-

stantaneously in different experiments.

However irregularity itself is not a sufficient condition to determine if a flow is

turbulent or not. In fact, considering the contrails of jet aircrafts, they show

high irregular motion, but, except for the closest region to the airplane, these

contrails are not turbulent. In fact their diameter is almost constant, starting

from a distance to the airplane of some chords and ending several kilometers

after the aircraft. The missing ingredient for this flow, in order to be considered

turbulent, is the diffusivity [Tennekes and Lumley, 1972, pag.2]. In fact turbu-

lent flows are always characterized by high mix of momentum, mass and heat.

This example shows that flows can experience not only turbulent condition, but

they behave in different ways. The first intensive study of different flow regimes

is made by Reynolds during 1883. Observing the motion of an ink jet inside a

pipe flow, he notices different behaviors for different velocity of the flow. When

the flow velocity is small he notices that the ink follows a straight line. In-

creasing the velocity the ink starts to oscillate and mixing with the surrounding

water, coloring it. Using Reynolds own words: ”As the velocity was increased by

small stages, at some point in the tube, always at a considerable distance from

the trumpet or intake, the colour band would all at once mix up with the sur-

rounding water, and fill the rest of the tube with a mass of coloured water. Any

increase in the velocity caused the point of break down to approach the trumpet,

but with no velocities that were tried did it reach this. On viewing the tube by

the light of an electric spark, the mass of colour resolved itself into a mass of

more or less distinct curls, showing eddies” [Reynolds, 1883, pag.942]. Thus
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Reynolds observes how the flow evolves from laminar condition (straight ink

line) to turbulent one (all water colored), passing through instability (breaking

point of laminar condition and first oscillations).

Moreover he understands that velocity and distance has a similar role on break-

ing the laminar condition. In fact he realizes the importance of the not di-

mensional number ρLU
µ on the break down of the laminar condition. Thus a

turbulent flow is characterized by a high value of this number, that is called

Reynolds number 1. Sommerfeld [1908] is the first scientific paper where this

quantity is referred as Reynolds number.

Reynolds figures out also the presence of eddies into a turbulent flow. These

structures are three dimensional. This is very important in order to self main-

tain the vorticity in the flow, through the vortex stretching mechanism [Tennekes

and Lumley, 1972].

Another characteristic of turbulent flows is dissipation. This means that energy

has to be continuously supplied to a flow to keep it turbulent, otherwise kinetic

energy is dissipated into heat. The latter process is performed at small scales

due to the viscosity.

Another characteristic is the simultaneous presence of a wide number of scales.

As Richardson states: ”Big whirls have little whirls that feed on their velocity,

and little whirls have lesser whirls and so on to viscosity” [Richardson, 1922,

pag.66].

2.2 The statistical approach to turbulence

As introduced in paragraph 2.1.1, turbulence is a chaotic phenomena, since

equations that describe fluid flows are highly dependent on initial conditions.

Thus a statistical approach is the only one available to recover the deterministic

side of turbulence and make possible flow analysis.

The starting point is to consider different parameters, e.g. velocity, pressure, as

composed by an average and a fluctuating part:

u = u+ u′ = U + u′

1The Reynolds number has also several interpretations and its role in fluid dynamic is
fundamental. A way to look on it, is to think to the ratio between inertial (mass times

acceleration) and viscous forces
(ρL3)(u0/t)

µL2/t
= ρLu0

µ
. Moreover the Reynolds number is the

only parameter appearing in the not dimensional Navier-Stokes equations. Thus the Reynolds
number is the only independent variable in these equations. This reduces the number of
experiments needed to analyze different flow cases. From the Kolmogorov theory is also the
only factor who rules the scale separation in the flow, between integral scales and Kolmogorov
scales, see also paragraph 2.3.
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where u is the instantaneous signal, meanwhile U and u′ are the mean and the

fluctuation. This decomposition is well known as Reynolds decomposition.

An important property is that the average of the fluctuating part is equal to

zero
1

T

∫
t

udt = U →
∫
t

u′dt = 0 (2.1)

since the fluctuation indicates the signal deviation from its mean value.

An useful function built from the signal quantity is the probability density

function B(u). This function represents the probability to find the signal u

inside a certain range of values ∆u around u, hence it gives informations about

the relative time spent by the instantaneous signal on that range:

B(u)∆u = lim
t→∞

1

t

∑
∆t

where
∑

∆t is the sum of each time interval the signal u spends inside the range

[u, u+ ∆u].

According to the probability theory, the integral of the probability density func-

tion, between [−∞,+∞], is equals to 1. Thus inside the range of the probability

density function, the event is certainly happening:

B(u) ≥ 0;

∫ ∞
−∞

B(u)du = 1

Starting from these quantities, several statistics values can be constructed.

2.2.1 Statistical moments

Moment is the name used to indicate the mean value of the powers of the signal

u. A general definition of a moment of k−order is

uk =

∫ ∞
−∞

ukB(u)du (2.2)

Another moment often used is the central moment, that is the mean value of

the powers of the fluctuation.

u′k =

∫ ∞
−∞

u′kB(u′)du′ (2.3)

From these definitions is possible to see how the mean value, equation 2.1 can

be represented through equation 2.2, thus the moment of first order is equal to

U =

∫ ∞
−∞

uB(u)du
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and it represents also the ”center of gravity” of the probability density function.

The property of the zero value of the fluctuation average is expressed also using

the central moment of first order. Other moments often used are the variance,

the skewness and the flatness, all of them are central moments. The variance is

the central moment of second order

σ2 = u′2 =

∫ ∞
−∞

u′2B(u)du =

∫ ∞
−∞

u′2B(u′)du′

The square root of the variance, σ, is called as standard deviation, or root mean

square (rms). This quantity represents the average distance of the signal from

its mean value and its an useful to represent the width of the probability density

function of the fluctuating signal B(u′).

A similar quantity to the variance, is the co-variance, which is a central second

moment where two different signals are averaged:

σ1σ2 = u′v′ =

∫∫ ∞
−∞

u′v′B(u′v′)du′dv′ (2.4)

The skewness is the nondimensional central moment of third order

S =
u′3

σ3
=

∫∞
−∞ u′3B(u′)du′

σ3

It gives information about the asymmetry of B(u′) about the mean value. If

the signal is symmetric with respect to the mean, the skewness is zero.

The flatness, or kurtosis, is the nondimensional central moment of fourth order:

F =
u′4

σ4
=

∫∞
−∞ u′4B(u′)du′

σ4

It also gives information about the shape of the probability density function

B(u′). In particular a large flatness means, as it is possible to understand from

the meaning of the word flatness, that peak values, both positive or negative,

have a larger probability than the case where the flatness value is small, that

means that the probability density function is more flat.

2.2.2 Two point statistic: correlations

One of the main statistic quantity which describe the turbulence is the correla-

tion function. It is used for the first time to describe turbulent flows by Taylor

[1935].

Informations about the relation between two different signals are provided by

correlation and autocorrelation function.

The covariance, expressed in equation 2.4, is an example of correlation, since it
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is not a pure moment but a joint moment, that is a moment that combines the

information of two different signals.

In particular the correlation provides information about how two different sig-

nals, e.g. shifted in time, space or having different orientation, are related each

other.

If the correlation is equals to 0, it means that the two variables are not corre-

lated. However this not mean they are independent each other. In fact consid-

ering two sine waves shifted in phase of π/2, they are not correlated

1

2π

∫ 2π

0

sin(x)sin(x+π/2)dx =
1

2π

∫ 2π

0

sin(x)cos(x)dx = − 1

4π
[cos(2x)]2π0 = 0

but it can be noticed they are represented by the same curve but shifted along

x-axis, thus they are not independent.

Statistical independence is obtained only if the the probability density of one

variable is not influenced by the probability density function of the other one

if B(u′, v′) = B(u′)B(v′)→ u′v′ are statistical independent

In general a correlation function is a 9 degree tensor:

R(x, r) = u′(x)u′(x+ r)

where x is the spatial position and r is the separation vector between the two

signals. When r is equals to 0, the correlation is equal to the variance.

The most common correlation are the longitudinal one, i.e. the separation vector

is orientated along the direction of the vectors under analysis, and the trans-

verse one, i.e. the separation vector is orientated perpendicular to the vectors.

Non dimensionalizing this quantity through the variance, the correlation coeffi-

cient is obtained:

ζ(x, r) =
R(x, r)

u′2

If this coefficient is equals to 1, the two signals are perfectly correlated, mean-

while when it is equal to -1 they are anti-correlated. No-correlation is obtained

when the coefficient is equal to 0. When the separation vector is 0, the coeffi-

cient is equal to 1.

When two different signals are analyzed with this method, e.g. longitudinal

and normal to wall velocity components, cross correlation are obtained. Similar

relation as above can be written for this quantity.

The last kind of correlation analyzed is the auto-correlation. This function is

a correlation between the same signal in different time instants, i.e. the same
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signal shifted in time:

C = u′(t)u′(t′) =
1

T

∫ T

0

u′(t)u′(t′)dt =
1

T

∫ T

0

u′(t)u′(t+ τ)dt

Since the signals considered in turbulence are statistically stationary 2, the auto-

correlation is not function of the two different time instants, but only of their

difference τ = t− t′.
An auto-correlation coefficient is obtained dividing the auto-correlation function

with the variance of the signal

u′(t)u′(t′)

u′2
= ρ(τ) = ρ(−τ)

2.2.3 Spectral analysis

Fourier [1808], introduces the idea to split up a signal in a series of harmonics,

each one with a different weight, in order to reproduce the signal itself. Thus

signal domain is moved from temporal to frequency.

Considering a periodic signal u(t), Fourier series is a signal decomposition made

through different harmonics, each one with a different weight:

u(t) =

+∞∑
n=−∞

(an + ibn) eiωnt = Ane
iωnt (2.5)

where An is a complex coefficient. This is the spectral representation of the

signal u(t).

Averaging the multiplication between eq. 2.5 and the −m-th mode, Fourier

coefficients are obtained [Pope, 2000], i.e. they are the product of the correlation

between the signal and the harmonics:

(e−iωmtu(t))T =

(
+∞∑

n=−∞
Aneiωnteiωmt

)
T

=

+∞∑
n=−∞

Anδn,m = Am

Fourier transform operator is now introduced as:

Fωn(ut) = (u(t)e−iωnt)T =
1

T

∫ T

0

u(t)e−iωntdt (2.6)

2 For statistical stationarity is meant that statistic are time independent.
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This decomposition is allowed only when the original signal is periodic. However

assuming an infinite period for the signal, Fourier series can be applied to every

signal. Thus the signal is represented as the integral of different harmonics, each

one with a different weight A(f):

u(t) = Ft(A(f)) =

∫ ∞
−∞

A(f)ei2πftdf (2.7)

The latter formula is the Fourier transform of the weight A(f). It is known also

as Fourier anti-transformation or plus-i Fourier transform. The weight A(f)

is obtained using the Fourier transform on the signal u(t) (or minus-i Fourier

transform):

A(f) = Ff (u(t))

∫ +∞

−∞
u(t)e−i2πftdt (2.8)

that means the weight is given by the correlation between the temporal signal

and the specific harmonic, i.e. how much that harmonic weights on the signal

history.

Often the term 2πf is renamed as the frequency ω = 2πf . This transformation

yields to a new way to represent equations 2.7 and 2.8, i.e. Fourier antitransform

and Fourier transform [Bracewell, 2000, pag.23]u(t) = Ft(A(ω)) = 1
2π

∫∞
−∞A(ω)eiωtdω

A(ω) = Fω(u(t)) =
∫ +∞
−∞ u(t)e−iωtdt

(2.9)

2.2.4 Discrete analysis

In spite of the beauty of continuous systems, both data from experiments and

computations are obtained in a discrete domain. Fourier transforms has to be

adapted to this different kind of domain, i.e. discrete instead of continuous

domain. First of all a time step ∆t is defined as:

∆t =
T

N

where T represents the finite period time and N the number of samples. Thus

a certain instant tj is defined as tj = n ·∆t, with n = 0, . . . , N − 1. Moreover

u(tj) = uj , i.e. the discrete signal is equal to the real one at the same sampled

time.

A signal can be decomposed using discrete Fourier series as follow:

u(tj) = a0 +

T−1∑
n=1

an cos(2πfntj) + ibn sin(2πfntj)
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where n determines the frequency of each harmonic. The Fourier coefficients

are equal to:

a0 =
1

T

T−∆t∑
tj=0

u(tj);

an =
1

T

T−∆t∑
tj=0

u(tj)cos(2πfntj);

bn =
1

T

T−∆t∑
tj=0

u(tj)sin(2πfntj)

This decomposition is allowed only when the original signal is periodic. How-

ever, as before, assuming an infinite period, the Fourier series can be applied to

every signal.

Fourier transform can also be adapted to a discrete domain, obtaining the dis-

crete Fourier transform, DFT. Using symmetry properties, different strategies to

speed up DFT can be obtained: these methods are called fast Fourier transform,

FFT.

2.2.5 Energy relations

Spectra analysis is important during turbulence analysis thanks to several prop-

erties they are characterized by.

One of the main interesting aspect of spectra analysis can be investigated start-

ing from Fourier transform of autocorrelation function C(t, τ). Assuming sta-

tistical independence, autocorrelation function depends only on time spacing of

the two signals, τ . Thus the Fourier transform of autocorrelation coefficient can

be written as:

S(ω) =
1

2π

∫ +∞

−∞
ρ(τ)e−iωτ dτ (2.10)

meanwhile the anti Fourier transform is:

ρ(τ) =

∫ +∞

−∞
S(ω)e+iωτ dω (2.11)

The quantity S(ω) is known as power spectral density (PSD) or spectrum Ten-

nekes and Lumley [1972].

Spectrum is related with signal energy. In order to show this correspondence,

Parseval’s theorem is introduced. It establishes that energy contain of a sig-

nal in temporal domain is the same in frequency domain, i.e. applying Fourier
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transform to a squared signal its energy is not modified∫ +∞

−∞
|u(t)u∗(t)| dt =

1

2π

∫ +∞

−∞
|A(ω)A∗(ω)| dω

where A(ω) =
∫ +∞
−∞ u(t)e−iωt dt. In order to avoid convergence problem 3 a

finite time can be considered:

AT (ω) =

∫ +T/2

−T/2
u(t)e−iωt dt

then the multiplication between the Fourier transform of a signal and its complex

conjugate becomes

AT (ω)A∗T (ω) =

[∫ +T/2

−T/2
u(t)e−iωt dt

][∫ +T/2

−T/2
u(t′)eiωt

′
dt′

]

Assuming t′ = t+ τ , the equation above becomes

AT (ω)A∗T (ω) =

∫ +T/2

−T/2

∫ +T/2

−T/2
u(t)u(t+ τ)e−iωτ dt dt′ (2.12)

Averaging equation 2.12 the autocorrelation function appears

AT (ω)A∗T (ω) =

∫ +T/2

−T/2

∫ +T/2

−T/2
C(τ)e−iωτ dt dt′ (2.13)

Using some multi-variable calculus and considering an infinite period T through

the use of a limit, equation 2.13 becomes:

lim
T→∞

AT (ω)A∗T (ω) = lim
T→∞

T

∫ +T

−T
C(τ)e−iωτ dτ =

lim
T→∞

1

T
AT (ω)A∗T (ω) =

∫ +∞

−∞
C(τ)e−iωτ dτ = S(ω) (2.14)

This is the same result inside the Wiener–Khinchin theorem. The S(ω) unity

of measure is equal to the square of the signal unit over frequency.

3Many signals do not have a finite value of their integral over an infinite time.
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Integrating PSD over all the frequencies, the total amount of energy is obtained:∫ +∞

−∞
S(ω) dω =

∫ +∞

−∞

∫ +∞

−∞
C(τ)e−iωτ dτ dω =

= lim
T→∞

1

T

∫ +T/2

−T/2
AT (ω)A∗T (ω) dω =

= lim
T→∞

2π

T

∫ +T/2

−T/2
u(t)u∗(t)dt (2.15)

Thus from equation 2.14, it can established that Fourier transform of autocor-

relation function is equal to the power spectrum, i.e. the square of the Fourier

transform of the signal.

In turbulence, the kinetic energy distribution among different wave numbers is

described by the energy spectrum 4. Thanks to the above results, this energy

distribution is equal to the correlation between two velocities [Batchelor, 1959].

Also this concept is introduced for the first time by Taylor [1938].

However, considering spatial correlation of velocity, the wavenumber becomes a

three component vector, such that Fourier transform has to be rewritten as:

F (u(x)) = A(κ) =

∫∫∫
u(x)e−iκ·xdx1dx2dx3 (2.16)

Thus the energy associated of each wave, or eddies, is the information provided

by the spectrum at a given frequency. From it, several conclusions about spectral

dynamic and how energy is transfered from large scale to smaller scaler can be

achieved.

Similar results to the ones obtained considering the autocorrelation function can

be achieved. Fourier wave number spectrum is defined as:

Φi,j(κ) =
1

(2π)3

∫∫∫ +∞

∞
u′i(x, t)u

′
j(x + r, t)e−iκ·xdr =

=
1

(2π)3

∫∫∫ +∞

∞
Ri,j(r)e−iκ·xdr (2.17)

where κ is the wave number vector defined as κ = 2π/λ with λ defined as

wavelength.

2.3 The scales of turbulence

Turbulent fluid flows are characterized by simultaneous presence of structures

of different sizes. Thus several length scales can be defined inside a flow field.

4 The difference between power and energy spectrum is that the former is integrates on an
infinite domain meanwhile the latter is integrated on a finite range of values.
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The larger scales are defined by the geometric dimension of domain meanwhile

the smallest scale is defined using Kolmogorov scales. In between these scales,

an energy cascade process takes place.

Thus energy is produced at larger scales. Eddies are both characterized by a

certain life time and subjected to instability process which make possible the

breaking down of the structure in smaller ones [Verzicco, 2002]. The eddy evo-

lution is depending on the faster event: eddies are breaking into smaller ones

if the instability amplification process is faster than the life time of the eddies,

otherwise their energy is dissipated into heat before creating new sub-vortices.

The breaking down process usually is interrupted at small scales where viscosity

effects are high, hence the structure life time is smaller than the time needed to

instabilities to grow.

This theory is known as cascade process and it is elaborated by Kolmogorov

[1991] under the assumptions of homogeneous and isotropic flow.

The scales where energy dissipation takes place are known as Kolmogorov scales.

Assuming that at small scales, eddies are independent by geometric conditions

and only a dependence on viscosity ν and viscous dissipation ε([m2/s3]) is

present, using a dimensional analysis the following results can be achieved:

η = (ν3/ε)1/4 Kolmogorov length scale

tη = (ν/ε)1/2 Kolmogorov time scale

vη = (νε)1/4 Kolmogorov velocity scale

Integral scales are dependent by outer geometric conditions. From the Kol-

mogorov theory is at these scales that energy is inserted. An approximation of

the length over the signal is correlated with itself, is given by the integral length

scale, defined as:

L =

∫ +∞

0

R(r)

R(0)
dr

Integral time scale is defined through autocorrelation coefficient ρ:

Λ =

∫ +∞

0

ρ(τ) dτ

Another important turbulent scale is the Taylor micro scale, introduced by Tay-

lor [1935]. It is defined from the second derivative of the correlation coefficient

when the distance between the two signals is zero. In the longitudinal case is:

λx(t) =

[
−1

2
ζ ′′x (0, t)

]−1/2

=

[
−1

2

(
∂2ζ

∂r2
x

) ∣∣∣∣
rx=0

]−1/2

(2.18)
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From a graphical point of view, the value of Taylor micro scale is the intersection

between the parabola tangent at the origin of the correlation function, ζx(0, t),

and the abscissa axes, i.e. rx. From this point of view, it can be understood

that over Taylor micro scale signal is still strongly correlated.

Moreover Taylor micro scale can be related to velocity derivatives using eq. 2.18:

−u′2ζ ′′x (0, t) = −u′2 lim
r→0

∂2

∂r2
x

ζx(rx, t) =

= − lim
r→0

∂2

∂r2
x

(u′(x+ rx, y, z, t)u′(x, y, z, t)) =

= − lim
r→0

((
∂2u′

∂x2

) ∣∣∣∣
x+rx

u′(x, y, z, t)

)
=

= −
(
∂2u′

∂x2
u′
)

= −

(
∂

∂x

(
u′
∂u′

∂x

)
−
(
∂u′

∂x

)2
)

=

=

(
∂u′

∂x

)2

Thus (
∂u′

∂x

)2

=
2u′2

λ2
x

(2.19)

Using ζz, transverse Taylor micro-scale can be computed. Longitudinal and

transverse Taylor micro-scales are related by λz(t) = λx(t)/
√

2.

With the assumptions of homogeneous and isotropic turbulence, dissipation ε

can be related with Taylor micro-scales as:

ε = 15ν

(
∂u′

∂x

)2

= 15ν
u′2

λ2
z

Taylor micro scale is an intermediate scale between integral and Kolmogorov

one.

Recent papers, as Segalini et al. [2011b], empathizes the role of Taylor micro

scale in turbulence.

2.4 Leonardo da Vinci

As introduced in the first paragraph, a proper definition of turbulence does not

exist, but usually it is described through its behavior and characteristics, e.g.

irregularity, three dimensional, diffusivity, presence of eddies etc.

Deep investigation and analysis started mainly during the twentieth century.

However some of typical characteristics of a turbulent flow were already observed

by Leonardo da Vinci, during his hydrodynamic studies made in between 1508
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- 1510.

This is what he wrote referring to his drawing in picture 2.1 5 (translation

by [Richter, 1883, ref. to drapery 389]) In ”Codex ”This is the translation of

his words , about his drawing in picture

Observe the motion of the surface of the water which resembles that of hair,

and has two motions, of which one goes on with the flow of the surface, the

other forms the lines of the eddies; thus the water forms eddying whirlpools one

part of which are due to the impetus of the principal current and the other to

the incidental motion and return flow.

Figure 2.1: Leonardo da Vinci: Left An Old Man Seated Right Water studies,
flow after a vertical plate perpendicular to it. (ca. 1508-10). Windsor, Royal
Library

This is not the only drawing from Leonardo da Vinci, where he shows a great

power of observation about flow movements. In fact flow behavior is also well

represented in picture 2.2. Where it is possible to observe the accuracy with

he reproduced flow patterns, e.g. showing the different behavior of the water

when it flows around a plate positioned in different ways with respect to flow

direction. Concept of turbulence was not known by Leonardo, but observing

nature, he got many of the features that characterize certain flow regime.

Moreover, Leonardo was the first to understand what today is called ”the prin-

ciple of aerodynamic reciprocity”. Following the translation found in Johnson

[1998], Leonardo states: ”As it is to move the object against the motionless air

so it is to move the air against the motionless object” and ”The same force as

is made by the thing against air, is made by air against the thing”.

5 Original version from Codex Atlanticus: ”Il moto del vello dell’acqua, il quale fa a uso
de’ capelli, che hanno due moti, de’ quali l’uno attende al peso del vello, l’altro al liniamento
delle sue volte; cos̀ı l’acqua ha le sue volte revertiginose, delle quali una parte attende a
l’impeto del corso principale, l’altra attende al moto incidente e refresso.”
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Figure 2.2: Leonardo Da Vinci: Up Water flowing against plates positioned in
different positions with respect to flow direction Down Water falling into a pool.
(ca. 1508-09).

Other contributions to fluid dynamic are made by Leonardo, regarding conser-

vation of mass for a low speed flow and qualitative pressure distribution over a

lifting airfoil Anderson [1999].
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Chapter 3

Equations

3.1 Fluid dynamic equations

In the first chapter, turbulence is introduced as a flow characteristic. The study

of fluid movements and their interaction with bodies is the main subject of fluid

dynamic.

3.1.1 Continuity equation

Considering a volume V (t) constituted by the same particles at each time in-

stant, i.e. a material volume, the mass inside that volume is time invariant. In

a mathematical point of view, the mass conservation is written as

D

Dt

∫
V (t)

ρdV = 0 (3.1)

In order to consider the material rate of each particle instead of the entire

volume, Reynolds transport theorem [Reynolds, 1903] has to be used, since

the volume is time depending. This theorem states that to ”transport” the

material derivative inside the integral sign, a correction term has to be added.

The correction term is made up by the multiplication of the quantity under

integration, density, and the velocity flux:

D

Dt

∫
V (t)

ρdV =

∫
V (t)

Dρ

Dt
+ ρ∇ · u dV = 0

Since this equation holds for any control volumes, the integrand vanishes and

the latter equation becomes

Dρ

Dt
+ ρ∇ · u = 0 (3.2)

27
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Another way to look on this formula is

Dρ

Dt
+ ρ∇ · u =

∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u =

∂ρ

∂t
+∇ · (ρu) = 0

In non compressible flow, density does not vary in space and time then

∇ · u = 0 (3.3)

3.1.2 Momentum conservation

Momentum is conserved inside a closed system in time. This conservation law

can be derived from second Newton’s law

F = q̇ =
d

dt
(mu) = m

du

dt
(3.4)

Considering a material volume, and using the Reynolds transport theorem and

the continuity equation 3.2, the right hand side of equation 3.4 becomes

D

Dt

∫
V (t)

ρu dV =

∫
V

D(ρu)

Dt
+ ρu∇ · (u) dV =

=

∫
V

u

(
∂ρ

∂t
+ u∇ρ+ ρu∇ · u

)
︸ ︷︷ ︸

=0

+ρ
∂u

∂t
+ ρu∇ · u dV

=

∫
V

ρ
Du

Dt
dV

(3.5)

The left hand side of equation 3.4, is made by the sum of two different forces,

volume and superficial forces

F =

∫
V

ρfdV +

∫
S

tdS (3.6)

where t are the superficial stresses. Those are function of time, position, surface

orientation and geometrical derivatives. Through the Cauchy tensor, T, the

surface stresses becomes function of only surface orientation, time and position.

This simplification allows to develop equation 3.6 as∫
V

ρfdV +

∫
S

tdS =

∫
V

ρfdV +

∫
S

T · ndS =

∫
V

(ρf +∇ ·T) dV (3.7)

Moreover, Cauchy tensor can be split in isotropic, −p, and anisotropic τ com-

ponents. Under Newton-Stokes fluid condition, the anisotropic component is



3.2. THERMODYNAMICS EQUATIONS 29

assumed to behave as

τ = −2

3
µ(∇ · u)δi,j + µ

(
∂ui
∂xj

∂uj
∂xi

)
(3.8)

Using the results into equations 3.5,3.7,3.8, and mass conservation (eq.3.2);

equation 3.4 can be rewritten as∫
V

ρ
Du

Dt
dV =

=

∫
V

(
ρf +∇ ·

(
−p + µ

(
∂ui
∂xj

∂uj
∂xi

)))
dV =

=

∫
V

(
ρf −∇p+ µ∇2u

)
dV

(3.9)

Like continuum equation, momentum equation has to be valid for any control

volume, hence integrand vanishes, then:

Du

Dt
= f − ∇p

ρ
+ ν∇2u (3.10)

Equation 3.10 is the conservation of momentum for non compressible flow, with

fluid behavior described by Newton-Stokes model.

3.2 Thermodynamics equations

The main subject of thermodynamics is to relate the various property of materi-

als without considering their internal structure [Feynman et al., 1966, pag.44-1].

The most important relations are introduced in this chapter, as a basis of the

other demonstrations present in the following chapters.

3.2.1 Fundamental laws of thermodynamics

The zeroth law affirms that if two systems are in thermal equilibrium with a

third one, all of them are are each other in thermal equilibrium [Dugdale, 1996,

pag.24].

ifA
T.E.−−−→ C,B

T.E−−→ C =⇒ A
T.E.−−−→ B (3.11)

The first law is known also as the conservation of energy. It states that the

changing in the internal energy function inside a system is due to the work done

on it and the heat entering in it 1.

1In Dudgale book [Dugdale, 1996, pag.21] an example is present to explain in a simple way
the internal energy function. Let say that the internal energy function is like a bank account.
The possible ways to modify the amount of money is drawing/deposit money and pay/receive
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This can be summarized using the classical notation:

∆U = ∆Q+ ∆W (3.12)

where U is the internal energy function, Q is the heat 2 and W is the work.

Hence the first law states that energy cannot be created by machines, but it does

not state any limit of conversion of energy from one form to another one. This

limit is expressed by the second law of thermodynamics [Fermi, 1956, pag.29].

The second law of thermodynamics expresses that heat is spontaneously moving

from a hot body to a cold one, when they are thermally in contact. This

idea is firstly originated by Carnot, years before the discovering of the first

law of thermodynamics. Carnot states ”partout où il existe une différence de

température, il peut y avoir production de puissance motrice” [Carnot, 1872,

pag.401] (Wherever a temperature difference exists, work can be produced).

Generalizing this statement, work can be produced whenever thermodynamic

equilibrium is not present 3, that means when, for example, a temperature,

pressure, chemical potential difference is present.

Moreover Carnot understands that the heat is moving from the body with higher

temperature to the one with lower temperature, when they are thermally in

contact, until they reach a thermal equilibrium. However Carnot uses the caloric

theory, since the first principle of thermodynamic was not available at his time.

The concept of heat moving from the hotter to the colder body is postulated

by the second law of thermodynamic. There are two versions of it, one from

Clausius:”Heat can never pass from a colder to a warmer body without some

other change, connected therewith, occurring at the same time.” [Clausius, 1854,

pag.86] 4 and one from Kelvin: ”It is impossible, by means of inanimate material

agency, to derive mechanical effect from any portion of matter by cooling it

below the temperature of the coldest of the surrounding objects” [Kelvin), 1851,

pag.13].

It can be proven that the two statements are the same.

cheque. The final amount of money do not distinguish between the different kind of money
moving, but it is the sum of both. Thus the internal energy function do not distinguish
between work and heat, but only their sum is important.

2Q is positive if the heat is entering the system.
3Thermodynamic equilibrium is achieved if thermodynamic properties, e.g. pressure, vol-

ume, mass, are not varying in time and not large scale flow are present [Dugdale, 1996, pag.12]
4 This statement is present into Clausius work [Clausius, 1854] in German, 1854 and in

English 1856. However the first demonstration by Clausius is dated 1850 in German and 1851
in English [Clausius, 1850].
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3.2.2 The entropy

In order to define the entropy, the Clausius’ theorem is firstly introduced. Given

a system T, subjected to a cyclic transformation, which is split in several in-

finitesimal steps, the Clausius’ theorem states:∮
dq

T
≤ 0 (3.13)

where dq is an infinitesimal quantity given to the system from a source at tem-

perature T 5, and
∮

represents an integration over a cycle. The equality is

achieved only for reversible cycles. If the integral is taken from a state A to a

state B, it can be demonstrated that the integral quantity depends only by the

initial state and the final one, and not by the intermediate ones.

Finally the entropy S can be defined as:

S(A) =

∫ A

0

dq

T
(3.14)

where 0 is a fixed state, and A is a general equilibrium state and a reversible

transformation move the system from the state 0 to the state A (thus T is

equal to the system temperature). There is not dependence on the particular

reversible transformation but only on the state A since the state 0 is fixed [Fermi,

1956, pagg.46-76].

When a infinitesimal reversible transformation is considered, the infinitesimal

rate of entropy can be written, from equation 3.14, as:

dS =
dQ

T
(3.15)

3.2.3 State equation

The operating fluid under consideration is considered as an ideal gas. Ideal gas

is a theoretical gas made by particles which move randomly and not interact

each other, and this gas obeys to a specific state equation. In general form

the state equation expresses the dependence of the pressure to the density ad

temperature, P = f(ρ, T ), meanwhile for ideal gases can be specified as:

P

ρ
= RT (3.16)

5T is the temperature of the source, that can be different from the temperature of the
system, however when the transformation is reversible the source and system temperatures
are the same.
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where ρ is the density and R is the universal gas constant 6.

3.2.4 The entropy equation

The entropy equation is a particular form of the energy equation. The energy

equation rewritten for the internal energy e 7 is equals to:

ρ
De

Dt
= −p∂uj

∂xj
+

∂

∂xj

(
κ
∂T

∂xj

)
+ µ

(
∂uk
∂xj

+
∂uj
∂xk
− 2

3

∂us
∂xs

δkj

)
∂uk
∂xj

(3.17)

This equation is an important starting point to develop the entropy equation.

In fact from equation 3.15 and the first law of thermodynamic, equation 3.12,

the following result is achieved:

Tds = dQ = de+ pd(1/ρ) = de− p

ρ2
dρ (3.18)

where s = S/m is the entropy per unit mass and T, e, p, ρ are the temperature,

inner energy, pressure and density respectively.

Differentiating equation 3.18, the following result is achieved:

T
Ds

Dt
=
De

Dt
− p

ρ2

Dρ

Dt
(3.19)

The first term on the left hand side is obtained by equation 3.17, meanwhile the

right hand side can be obtained by the mass conservation equation written in

convective form:
Dρ

Dt
+ ρ

Duj
Dxj

= 0 (3.20)

Inserting equations 3.17 and 3.20 into 3.19 the entropy equation is obtained:

ρT
Ds

Dt
=

∂

∂xj

(
κ
∂T

∂xj

)
+ µ

(
∂uk
∂xj

+
∂uj
∂xk
− 2

3

∂us
∂xs

δkj

)
∂uk
∂xj

(3.21)

3.2.5 Temperature equation

The temperature equation is another form of the energy equation. It can be

easily found from the entropy equation 3.21 [Zuccher, 2012], where the entropy

term is opportunely developed.

Since the entropy is a function of temperature and pressure, it can be expanded

6R = nR′ that is the product of moles and the universal gas constant per mole, equals to
R′ = 8.314 J

molK
. For dry air R = 287.06 J

kgK
.

7 Internal energy is connected with the total energy by the following formula etot = e+
|u|2
2

.
Moreover from now the internal energy is indicated as e and not U
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as:

ds = dp

(
∂s

∂p

) ∣∣∣∣
T

+ dT

(
∂s

∂T

) ∣∣∣∣
p

= dp

(
∂s

∂p

) ∣∣∣∣
T

+
dT

T

(
T
∂s

∂T

) ∣∣∣∣
p

(3.22)

Using the definition of specific heat at constant pressure and using equation

3.15,the second term of equation 3.22 can be related with cp: The second term

of equation 3.22 can be found using :

cp =

(
dQ

dT

)
p

= T

(
ds

dT

)
p

(3.23)

The first term of equation 3.22, can be derived starting from Maxwell’s thermo-

dynamics relations (
∂s

∂p

) ∣∣∣∣
T

= −
(
∂v

∂T

) ∣∣∣∣
p

(3.24)

and using the definition of the thermal expansion coefficient

β =
1

v

(
∂v

∂T

)
p

(3.25)

thus (
∂s

∂p

) ∣∣∣∣
T

= −
(
∂v

∂T

) ∣∣∣∣
p

= −βv = −β
ρ

(3.26)

Joining results of relations 3.26 and 3.23 with 3.22, and considering its material

rate, a relation for the entropy dynamic can be achieved:

Ds

Dt
=
cp
T

DT

Dt
− β

ρ

Dρ

Dt
(3.27)

Inserting this equation inside the entropy equation 3.21, the only variable left

is the temperature, thus temperature equation is obtained:

ρcp
DT

Dt
= βT

Dp

Dt
+

∂

∂xj

(
κ
∂T

∂xj

)
+ µ

(
∂uk
∂xj

+
∂uj
∂xk
− 2

3

∂us
∂xs

δkj

)
∂uk
∂xj

ρcp
DT

Dt
= βT

Dp

Dt
+

∂

∂xj

(
κ
∂T

∂xj

)
+ Φ (3.28)

where:

Φ = µ

(
∂uk
∂xj

+
∂uj
∂xk
− 2

3

∂us
∂xs

δkj

)
∂uk
∂xj

is the rate of work spent by the stresses to distort fluid particles. This energy

is transformed into heat, i.e. dissipation of mechanical energy.

The other mechanical energy term is the pressure one, βT (Dp/Dt). It is derived

by the isotropic component of the stress tensor, thus it is the work done by the
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stresses in order to compress the fluid [Kay and Nedderman, 1974].

Considering low fluid velocity, heat transfer generated by the mechanical energy

terms Dp/Dt and Φ, are usually small. This lead to write the temperature

equation for a fluid element as:

DT

Dt
=

κ

ρcp
∇2T (3.29)

3.3 Scalar equation

In this section the passive scalar equation for the temperature is derived. Con-

sidering a control volume, the scalar can move inside or outside of it by two

different kind of process: convection or diffusion.

Considering the scalar quantity T in a fixed point, its value is function of

T1 = T (t1, x1, y1, z1) = T (t,χ1)

Moving on a trajectory the scalar quantity is function of the point χ2, that is:

T2 = T (t2, x2, y2, z2) = T (t+ ∆t,χ1 + ∆χ)

If ∆χ is small, Taylor expansion can be used:

T2 = T1 + ∆T = T1 + ∆x
∂T

∂x
+ ∆y

∂T

∂y
+ ∆z

∂T

∂z
+ ∆t

∂T

∂t

Considering an infinitesimal time step and infinitesimal length size, temperature

difference between states 1 and 2 becomes infinitesimal, ∆t = δt. Thus the

ratio between T2 − T1 and infinitesimal time step dt provides a relation for the

temperature convection

T2 − T1

dt
=
dT

dt
= u

∂T

∂x
+ v

∂T

∂y
+ w

∂T

∂z
+
∂T

∂t
=
∂T

∂t
+ u · ∇T (3.30)

These quantities represent the variation of the scalar in time and space due to

the velocity.

Another mechanism for the scalar to vary is through the diffusion. Let say

that the scalar is not uniformly distributed. This not equilibrium affects the

scalar motion, since it tries to restore an equilibrium state. This means that

the diffusion can be seen as a flux of the scalar acting in the opposite direction

of the scalar gradient [Kirby, 2010].

Thus the diffusivity of the scalar is equal to:

q̇ = −κ∇T
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where κ is the thermal conductivity of the material. Considering a control

volume, the integral effect of diffusion, i.e. net transfer of scalar towards the

boundaries of the volume, is∫
A

q̇ · ndA = GaussGreen =

∫
V

∇ · q̇dV = −κ
∫
V

∇2TdV (3.31)

Integrating over the control volume V the equation 3.30 and adding the

diffusion relation above, equation 3.31, the integral scalar conservation equation

is obtained ∫
V

(
∂T

∂t
+ u · ∇T

)
dV − κ

∫
V

∇2TdV = 0

Since the function is continuous and the control volume is arbitrary, the equation

is satisfied also by the terms under integration, then the scalar equation becomes

∂T

∂t
+ u · ∇T = κ∇2T

DT

Dt
=

κ

ρcp
∇2T (3.32)

Equation 3.32, obtained considering scalar dynamic as composed by convection

and diffusion, is equal to the temperature equation 3.29 derived from energetic

considerations.
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Chapter 4

Hot wire anemometry

4.1 Introduction to hot wire

Fluid dynamic experiments are usually performed inside facilities called wind

tunnels. Several different kind of measurement can be performed, depending

on the quantity under analysis, geometric aspects, frequency resolution, etc..

Considering turbulent flows, measurements are often performed using hot wire

anemometers.

The working principle of this instrument is based on the cooling of a heated

wire made by the moving flow surrounding the probe. Electrical current is used

to heat the wire, thus the wire becomes a resistance for the current passage.

This resistance is temperature depending, this means that the surrounding flow

can cause variations on the resistance values through convection and diffusion

mechanisms. Moreover the wire is subjected to heat conduction to wire supports

and to radiation.

This working principle is the basing idea of different kind of hot wires. The most

common are the constant temperature anemometry (CTA) and the constant

current (CCA) 1.

4.2 Heating on a cylinder

According to King [1915], since the beginning of the XX century, the idea that

a heated wire could be used to measure fluid velocity was known and several

papers about this topic were circulating inside the scientific community. The

first works were made, according to King, by Shakespear, at Birmingham from

1902, but his work was discontinuous for the lack of suitable whirling table

1 Other different kind of hot wires exist, however they are not treated in this thesis.

37
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for the calibration of the wires. Few years later, many other scientists start to

investigate the convection on a hot wire immersed in a moving flow, as Kennelly

et al. [1909], Bordoni [1912] and Morris [1912]. However, the first milestone

about hot wire anemometry is the King’s work in 1914 [King, 1914].

Here a general overview on the basic equilibrium energy equation along a heated

wire is provided.

The main hypothesis is to assume a thermal equilibrium condition over the wire,

i.e. the heat generated per unit time by the current passing through the wire

is equal to the heat losses. Thus, considering an infinitesimal length of the wire

dx, several phenomenas influence the heat equilibrium:

dQ̇e = dQ̇fc + dQ̇cond + dQ̇rad + dQ̇stor (4.1)

• dQ̇e = I2χw
Aw

dx is the heat rate produced by Joule’s effect;

• dQ̇fc = πdh(Tw − Ta)dx is the heat loss rate due to forced convection;

• dQ̇c is the heat transfer rate due to conduction to the supports;

• dQ̇r is the radiative heat transfer rate;

• dQ̇s is the heat storage rate;

where I is the current passing through a wire with cross sectional area Aw and

resistivity χw, meanwhile d, h, Tw, Ta are respectively the wire diameter, the

heat-transfer coefficient, the wire temperature and the fluid temperature.

Considering the forced convection as the main source of heat loss 2, the equilib-

rium equation 4.1 can be rewritten as:

I2χw
Aw

dx = πhd(Tw − Ta)dx = πκg(Tw − Ta)Nudx (4.2)

where κg is heat conductivity of the fluid at temperature Ta, and Nu is the not

dimensional Nusselt number.

4.2.1 The Nusselt number

The Nusselt number is defined as:

Nu =
hd

κg

2 In first papers the heat conduction rate was neglected since an infinite wire was consid-
ered. However, with a finite length of the wire, heat loss due to conduction to supports can
not be neglected, thus the final formula will be slightly modified to take in account also this
phenomena. Anyway, in literature, several authors studied this effect on hot wire measure-
ments.
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and it can be expressed as a function of

Nu = f

[
Re, Pr,Gr,

Tw − Ta
Ta

, Ec,
l

d
, φ

]
i.e. the Nusselt number is function of Reynolds number, Prandtl number,

Grashof number, overheat ratio Tw−Ta
Ta

, Eckert number, length to diameter ratio

and angle between wire axis and flow direction φ. The overheat ratio 3 depen-

dence is due to the modification of fluid property closed to the wire due to the

non uniform distribution of temperature, meanwhile Eckert number becomes

important when dynamic flow effects cause temperature differences comparable

with the temperature difference Tw − Ta (this number is also related to Mach

number) [Hinze, 1975].

However a simplification of this formula is needed in order to be used for practi-

cal reasons in hot wire anemometry. King proposes a relation where the Nusselt

number has a square root dependence with Péclet number:

Nu = 1 +
√

2πP é

that can be generalized as

Nu = C1(Pr) + C2(Pr)Re1/2 (4.3)

where the most important result is the square root dependence on the Reynolds

number.

4.2.2 The wire resistance

The wire resistance is a function of the resistivity, cross sectional area and

length of the wire. However, if a not uniform temperature characterizes the

wire, resistivity becomes also not uniform along the wire. In order to know the

real wire resistance, resistivity has to be integrated over the wire length:

Rw =

∫ +L/2

−L/2

χw
AW

dx (4.4)

The wire resistivity can be expressed by the temperature depending formula

χw = χ0

[
1 + α0(Tw − T0) + β0(Tw − T0)2

]
(4.5)

3 Two different kind of overheat ratio can be defined: · temperature overheat ratio, aT =
(Tw − Tref )/Tref ; · resistance overheat ratio, aR = [R(Tw) − R(Tref )/R(Tref )], where Tref
is a reference temperature, that can be the fluid one. These two overheat ratio are related
through the formula ar = αelTrefaT , where αel is the temperature coefficient of electrical
resistivity.
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where the subscript 0 means at a temperature of 0◦C and α and β are tempera-

ture coefficient. Usually the quadratic term is neglected when velocity measures

are considered. Inserting equation 4.5 into 4.4, integrating and averaging (same

subscript w is used now to indicate the averaged case) the following result is

achieved

Rw = R0 [1 + α0(Tw − T0)] (4.6)

However for hot wire measurements usually the temperature of 293.15K (20◦C)

is used as reference temperature, and not the 273.15K (0◦C).

4.2.3 King’s law

Considering a length l segment of an infinite wire (thus the conductive end losses

can be neglected), the equation 4.2 can be re-written, using relations 4.3 and

4.6, as

I2Rw,∞ = πlκg

(
Rw∞ −Ra
α0R0

)(
C1(Pr) + C2(Pr)Re1/2

)
Considering hot wire applications, several parameters can be merged, and the

following formula is obtained:

I2Rw,∞
Rw∞ −Ra

= A∞ +B∞U
0.50 (4.7)

The equation 4.7 can be modified to take in account conductive end loss for the

case of a finite wire, i.e. it becomes

I2Rw
Rw −Ra

= A+BUn (4.8)

The three unknowns A,B, n can be determined for each hot wire using a proper

calibration method, thus the only unknown becomes the instantaneous velocity

U.

Moreover, using the equation 4.6 and merging α0 and R0 into the calibration

constants A and B, the equation 4.8 becomes:

E2
w

Rw
= (A+Bun) (Tw − Ta) (4.9)

where the wire voltage Ew is equal to Ew = IRw. This is slightly different then

the original King’s law but it is still referred as King’s law.

It is also often used the shortest version of this formula:

E2
w = A+Bun
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4.3 CCA and CTA

Two of the most used operating mode for hot wire anemometers are the CCA,

constant current mode, see figure 4.1, and CTA, constant temperature mode,

see figure 4.2.

R₁

R₂ R₃

Probe

Difference
voltage

E

a

b

I

Figure 4.1: Constant current anemometry scheme [courteously M.Ferro]

Ampli�ier

Offset
voltage

R₁

R₂ R₃

Probe

Difference
voltage

E

a

b

Figure 4.2: Constant temperature anemometry scheme [courteously M.Ferro]

In both cases, the wire is placed inside a Wheatstone bridge. This electron-

ical circuit is usually used in order to compute one of the four resistance that

compose it. In hot wire anemometry, one of the four resistance is the wire itself,

which vary its resistance value due to the forced convection of the flow on the

heated wire itself.

Using a CCA, the current passing through the wire is kept constant, thus flow

fluctuations cause variations on the wire temperature, hence the wire resistance.

This fluctuation creates variations on the voltage measured on the two sides of

the bridge, since

E = IR(T )



42 CHAPTER 4. HOT WIRE ANEMOMETRY

This bridge voltage is related with wire voltage and then with the flow velocity.

This operating method is the first one developed for hot wires anemometry, it

is easy to build but its frequency resolution is lower than a CTA. Its use during

the first experiments was due to a technological lack about the stabilization of

the CTA operating mode.

In fact CTA mode is based on feedback control system, where the resistance,

thus, the temperature of the wire, is kept constant. This system is inherently

unstable, thus feedback control is needed to keep the system stable. Since this

issue is not a problem anymore, CTA is widely used nowadays.

In order to keep constant the resistance, the heat produced by the wire through

Joule’s effect, P = I2R, should change accordingly to the flow fluctuations, thus

the current along the wire fluctuates.

4.4 Spatial averaging

One of the main characteristics of a turbulent flow is the the presence of nu-

merous structures with a wide range of length scales. In order to make correct

measurements, the length of the wire should be smaller than the smallest struc-

ture, otherwise a different forced convection, thus velocity, can be experienced

in different points of the wire. This leads to an average measure of the effective

velocity along the wire. This phenomena is called spatial averaging and it is

one of the main source of error in hot wire measurements.

This effect is well known since the first era of hot wire. Dryden in 1937 studied

the effects of a not complete homogeneity of velocity fluctuations along the wire

on measurements of velocity fluctuation correlation, which are connected with

the scales of turbulence [Dryden et al., 1936]. Theoretical approach, combined

with homogeneous and isotropic turbulence assumption, is also kept Frenkiel

[1949].

However, for wall turbulence, the isotropy hypothesis is not guaranteed near

the wall, where high velocity gradients are experienced. Higher effects of spatial

averaging on measurements are achieved in this region.

The spatial resolution effect in anisotropic turbulence starts to be investigated

intensively only since eighties, using different measurements made with wires

of various length. Johansson and Alfredsson [1983] investigate how spatial av-

eraging effects turbulence statistics as turbulence intensity peak, zero crossing

of skewness factor, pdf, number of bursting events etc. using two hot wire of

different length.

A deeper investigation, using several hot wire of different lengths, is made

by Ligrani and Bradshaw [1987]. They provide also two guidelines about hot

wire dimensions: in order to reduce conductive end loss, the length to diameter
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should be larger than 200, meanwhile to reduce spatial averaging effect, the

length of the wire should be kept smaller than 20 viscous units.

Hutchins et al. [2009], finds a Reynolds number effect on near wall peak measure-

ments besides the spatial averaging. Moreover the spatial averaging influences

even beyond the near wall region.

Several correction schemes are developed in order to compensate, from the mea-

surement performed, the spatial averaging error. Empirical versions are made

by Chin et al. [2009], Chin et al. [2011], Smits et al. [2011] and Monkewitz et al.

[2008]. Dryden approach is rediscovered and improved Segalini et al. [2011a].

4.5 Temperature correction

Wind tunnel experiments are performed at various ambient condition, e.g. with

different laboratory temperature. Moreover the fan inside the facility, heat the

flow, increasing its temperature. In order to obtain comparable results among

several experiments, velocity measurements should be corrected for different

temperature values.

In order to compensate changes in temperature values, formula 4.9 can be used

as starting point

E2
w

Rw
= (A+Bun) (Tw − Ta)→ E2

w(Ta) = f(u)(Tw − Ta) (4.10)

During the calibration procedure, equation 4.10 can be rewritten as follow:

E2
w(Tref ) = f(u)(Tw − Tref ) (4.11)

where here Tref is reference temperature during the calibration procedure, thus

Ew(Tref ) is the voltage output that hot wire should measures if it is surrounded

by a fluid at the calibration temperature Tref instead that Ta.

Since temperature is considered a passive scalar, it not influences flow dynamics,

hence velocity dependence for both equations is supposed to be equal. The ratio

between equations 4.10 and 4.11 becomes:

E2
w(Ta)

E2
w(Tref )

=
Tw − Ta
Tw − Tref

E2
w(Tref ) = E2

w(Ta)

(
Tw − Ta
Tw − Tref

)−1

(4.12)

Using the resistance overheat ratio formulation

ar = αelTrefaT = αel (Tw − Tref )



44 CHAPTER 4. HOT WIRE ANEMOMETRY

equation 4.12 can be rewritten as

E2
w(Tref ) = E2

w(Ta)

(
1− Ta − Tref

Tw − Tref

)−1

= E2
w(Ta)

(
1− Ta − Tref

aTTref

)−1

=

= E2
w(Ta)

(
1− Ta − Tref

aR/αel

)−1

(4.13)

Two experimental parameters as overheat ratio and αel are present. Between

them, only αel is unknown, since the fluid temperature Ta can be measured with

a cold wire and the overheat ratio is fixed by the user.

In fact the tabulated values of electrical resistivity αel are slightly different

compared to the ones found during experiments [Dijk and Nieuwstadt, 2004,

Örlü, 2009], thus iterative process has to conducted to characterize αel for each

probe.



Chapter 5

Simulation details

5.1 General idea

The General idea of this work is to investigate how a thermal gradient inside a

channel can effect hot wire measurements. Sattarzadeh et al. [2013], introduces

the idea of temperature fluctuations influence on the velocity measured by a

hot wire. This is due to the high correlation between streamwise velocity and

temperature fluctuations [Kim et al., 1987], above all close to the wall. An idea

of this interaction magnitude between temperature and streamwise velocity is

given by figure 5.1, where cross moment coefficient has a value close to 1 near

the wall. After around 10 viscous lengths its value starts to decrease.

Thus, when hot wire is invested by a not constant temperature, scalar fluc-

tuations modify the quantity of heat transferred by convection from the wire

to the flow. A positive velocity fluctuation is associated with a positive scalar

fluctuation, which increases the temperature of the wire, i.e. a smaller heat flux

from the wire is sensed by the instrument thus the resulting velocity is smaller.

On the contrary, negative temperature fluctuations leads to a larger sensed ve-

locity. The overall effect is to reduce instantaneously the fluctuations intensity

of sensed velocity from the real averaged one.

This can be observed from figure 5.2, where sensed velocity by the hot wire (blue

dot line) is smaller than simulated velocity (blue solid line) when temperature

(red solid line) exceeds mean temperature value (dash red line) and viceversa.

These instantaneous quantities are referred to a single snapshot at wall normal

position y+ ≈ 15.

In order to evaluate and quantify temperature influence, a numerical approach

is preferred. In fact, experimentally, temperature can be measured through

a cold wire, however this instrument does not provide a sufficient frequency

resolution, yielding to difficult analysis.

45
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Figure 5.1: Cross moment between temperature and velocity, not dimesionalized
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is u+ from simulation, · blue dot line is u+ sensed by the hot wire with a ∆T =
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5.2 Simulation characteristics

Turbulent channel flow at Reτ = uτh/ν = 180 is simulated through the pseudo-

spectral code Simson. No-slip condition is assumed at walls and the flow is

initialized through a parabolic profile with a certain amount of noise to speed-

up the turbulence development. Mass flow rate condition is used in order to

keep the Reτ value while simulation is advancing in time. Sketch of the channel

is showed in figure 5.3.

Temperature is considered as a passive scalar, thus it can be solved using scalar

equation. Prandtl number is fixed to 0.71. Thermal boundary conditions are

set as Dirichlet condition at wall, i.e. T |wall = 0. This kind of boundary

condition fix the wall temperature to zero, but allows a heat flux through the

walls. This heat loss has to be balanced by a heat source in order to preserve

the temperature profile inside the channel.

The temperature source is chosen as an uniform heat inside the domain, i.e. all

the domain is warmed in same way. However in order to satisfy the temperature

bcs, a flux through top and bottom walls diffuse the scalar outside the domain

and the temperature assumes an averaged profile similar to the velocity one.

The balance between heat flux and heat loss is an important feature to be

achieved in order to know if passive scalar has reached statistically steady state.

Its formulation is introduced into paragraph 5.3.1.

Figure 5.3: Sketch of the channel

5.3 Numerical procedure

Unsteady Navier-Stokes equation are solved using the pseudo spectral code

Simson [Chevalier et al., 2007]. Velocity field is solved through the compu-

tation of not dimensional incompressible Navier-Stokes equations written using

a velocity-vorticity formulation. Once velocity field is obtained, scalar field is
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Direction Box size #Nodes/Modes Grid spacing
x 4π 128 17.67 l+

y 2 129 min: 0.055 l+

z 2π 128 8.84 l+

Table 5.1: Number of nodes/modes of channel domain and spacing in viscous
units l+ = ν/uτ = Reτ since the semi channel height h is equal to 1. Note
that wall normal nodes distribution is made using Chebyshev polynomial then
spacing is smaller close to walls and larger far from it.

computed solving not dimensional version of scalar equation 3.32:

∂T ∗

∂t∗
+ u∗ · ∇T ∗ =

1

ReτPr
∇2T ∗ +Q∗ (5.1)

where ∗ is used now to represent not dimensional variables and Q∗ = Qh
Tτuτ

is a

not dimensional heat source term, i.e. the one used to introduce heat into the

domain.

The box dimensions are 4πx2x2π, where the first dimension is referred to stream-

wise direction, the second to wall normal direction and the third to spanwise

direction. The number of grid points is around 2x106, i.e. 128 modes are used

both in streamwise and spanwise directions, and 129 nodes in wall normal direc-

tion. Domain characteristics are summarized into table 5.1. Spatial derivatives

are computed with Fourier series in the periodic directions, streamwise and

spanwise, meanwhile with Chebyshev polynomial along the wall normal. Time

derivatives are approached in two different ways: Runge-Kutta 3 is used for

temporal derivatives of non linear terms meanwhile Crank- Nicholson for linear

terms.

OpenMP parallelization strategy on 12 processors is used in order to speed-up

the computation.

5.3.1 Heat balance

In order to obtain correct statistics, variables should reach a statistical station-

arity. For temperature case, a balance between heat production and heat loss

has to be reached. Starting from equation 5.1 (∗ is neglected for a better visu-

alization), heat production and dissipation terms can be found.
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Integrating all over the volume, convective term at lhs of equation 5.1, becomes:

∫∫∫
V

u · ∇TdV =

∫∫∫
V

∇ · (uT )− T∇ · u︸ ︷︷ ︸
=0 for continuity

 dV Gauss−Green
=

=

∫∫
S

(uT ) · ndS =

∫∫
∆y,∆z

uTdydz︸ ︷︷ ︸
=0 for simmetry

=

∫∫
∆x,∆y

wTdxdy︸ ︷︷ ︸
=0 for simmetry

=

=

∫∫
∆x,∆z

vTdydz︸ ︷︷ ︸
=0 for b.c.

= 0

Integrating the diffusive term on the rhs of equation 5.1 the following result is

achieved:

1

ReτPr

∫∫∫
V

∇2TdV =
1

ReτPr

∫∫∫
V

(
∂2T

∂y2
+
∂2T

∂z2
+
∂2T

∂x2

)
dxdydz =

=
1

ReτPr

[∫
x

(
∂2

∂x2

∫∫
y,z

Tdydz

)
dx+

∫
y

(
∂2

∂y2

∫∫
x,z

Tdxdz

)
dy+

+

∫
z

(
∂2

∂z2

∫∫
x,y

Tdxdy

)
dz

]
Dividing each term in round brackets for the corresponding surface (LxLy,

LxLZ or LY LZ), mean temperature on that surface is obtained thus:

1

ReτPr

[
LyLz

∫
x

∂2T
y,z

∂x2
dx+ LxLz

∫
y

∂2T
x,z

∂y2
dy + LxLy

∫
z

∂2T
x,y

∂z2
dz

]
=

=
1

ReτPr

LyLz ∂T
y,z

∂x

∣∣∣∣x=4π

x=0︸ ︷︷ ︸
=0 for symmetry

+LxLz
∂T

x,z

∂y

∣∣∣∣y=2

y=0

+ LxLy
∂T

x,y

∂z

∣∣∣∣z=2π

z=0︸ ︷︷ ︸
=0 for symmetry

 =

=
LxLz

ReτPr

∂T
x,z

∂y

∣∣∣∣y=2

y=0

This term represent heat loss across the wall.

Heat production is given by the source term integrated all over the volume.

However Q is fixed as a constant, i.e. the same heat flux in each point, thus:∫∫∫
V

QdV = QLxLy Lz
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Thus, if statistical stationary condition is achieved for temperature the following

balance should be valid::

LxLz

ReτPr

∂T
x,z

∂y

∣∣∣∣y=2

y=0

= QLxLy Lz

1

Ly Reτ Pr

∂T
x,z

∂y

∣∣∣∣y=2

y=0

= Q (5.2)

i.e. balance between heat loss (lhs) and heat production (rhs).

5.3.2 Dimensional and not dimensional quantities

Considering wall turbulence, e.g. turbulent flow inside a channel flow, two dif-

ferent dynamics are present, that characterize respectively the regions close and

far from the wall, i.e. inner and outer region. In fact the presence of no-slip

condition on the wall, modifies the usual turbulent flow behavior. In free wall

condition, turbulence increases mixing and tends to smear out gradients, how-

ever close to the wall, viscosity forces the flow to adhere to the wall, generating

a higher gradient, thus higher shear stress and drag, than laminar flow case.

Inner region is thinner than outer one and it is characterized by high anisotropic

and inhomogeneity behavior, and complex turbulence structures like streaks.

can be observed inside this layer.

This is the reason to use two different length scales to describe these two re-

gions. Due to high viscosity influence, thus shear stress, the inner lengthscale

is defined as l+ = uτ/ν where uτ is the viscous velocity equal to

uτ =
√
τw/ρ

For Channel flow the outer region lengthscale is defined as the semi channel

height h.

Not dimensional velocity from Simson is based on the centerline laminar velocity

thus the Reynolds number defined with this velocity is equal to:

Recl =
Uclh

ν
= 4200

In order to obtain velocity output in wall/viscous units, is sufficient to use the

following formulation:

u+ = u∗
Recl
Reτ
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Dimensional velocity is obtained assuming several dimensional parameters. Semi-

channel height is fixed to 3cm and kinematic viscosity to 1.53 · 10−5 1. Real

velocity is then calculated starting from a reference velocity, i.e. centerline

laminar velocity, computed from the vales assumed before:

Ucl =
Re νexp
hexp

−→ ureal = u+Ucl

where the Reynolds value used is Re = Recl = 4200.

Temperature is treated in a slightly different way. Reference temperature is set

to 1, thus in order to compute viscous temperature, the only step is to divide

not dimensional temperature T ∗ with the friction temperature Tτ :

T+ =
T ∗

Tτ
(5.3)

where

Tτ =
q̇|w
uτ

=
κdTdy

∣∣
w

cpρuτ
=
dT

dy

∣∣∣∣
w

ν

uτ

κ

νcpρ
=

1

ReτPr

dT

dy

∣∣∣∣
w

(5.4)

Dimensional temperature field is created fixing both wall and centerline tem-

perature. Then

T ∗ =
T − Tw
Tcl − Tw

→ T = T ∗(Tcl − Tw) + Tw (5.5)

Ferro’s experiments [Ferro, 2012] were characterized by 10K of temperature

difference between wall and ambient temperature meanwhile 2K between wall

and centerline. Those values are used as reference values inside this project.

Here ambient temperature is fixed to 293.15 K (20 ◦).

5.4 Hot wire data simulation

Channel flow simulation provides velocity and temperature fields. From these

data, it is aimed to reconstruct the velocity field sensed by the hot wire. Once

obtained this value, it is possible to study how flow temperature influences

sensed velocity, since, as it was introduced in section 5.1, wire temperature is

influenced by flow temperature fluctuations.

The first step is to reconstruct hot wire output, i.e. the hot wire voltage output

needed to compensate heat loss due to forced convection and flow temperature

fluctuations. This goal can be satisfied through King’s law 4.9, where the vari-

ables u and Ta are respectively the instantaneous velocity and instantaneous

1 These two values are taken from Marco Ferro’s experiment [Ferro, 2012]. However in
that project thesis a pipe is considered instead of a channel.
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flow temperature obtained from simulation.

During experiments, coefficients A,B andn are usually calculated through a

calibration procedure. Here, their value is fixed following the results found in-

side Bruun [1975]. Wire settings Rw andTw are also fixed by the user. Then

the following values are chosen:

• A = 0.000085

• B = 0.000045

• n = 0.5

• Rw = 7Ω

• Tw = 503.15K(230◦C)

Calculation of wire resistance and wire temperature is a hard issue during ex-

periments. This is the reason to convert King’s law, equation 4.9, in a slightly

different expression where thermal coefficient of resistivity and over heat ratio

substitute wire resistance and temperature. Starting from King’s law equa-

tion 4.9 and temperature correction 4.13, it is possible to obtain a new relation

between voltage output and instantaneous velocity and temperature:

E2
w = (A+Bun)

(
1− T − Tref

aR/αel

)
(5.6)

where Tref is the calibration reference temperature, which is considered zero in

this work and T is the instantaneous temperature field from the simulation.

Overheat ratio and thermal coefficient are instead fixed to:

• ar = 1.1

• αel = aR
Tw−Tref = 4.782 · 10−3

Once obtained the wire voltage output for each node of the domain, velocity

sensed by hot wire has to be computed. Considering a probe with a cold and hot

wire, it is possible to know experimentally velocity and temperature. However,

as already stated, frequency resolution of cold wire is smaller than hot wire’s

one, thus it is not possible to compensate instantaneously voltage output of

hot wire. The usual procedure, when a temperature correction is used, is to

correct hot wire voltage output through centerline temperature or, for each wall

normal position, through the averaged temperature profile. This means that



5.4. HOT WIRE DATA SIMULATION 53

sensed velocity from hot wire is equal to:

uHW =

[
E2
w

RwB(Tw − Tc)
− A

B

]1/n

(5.7)

uHW =

 E2
w

B
(

1− Tc−Tref
ar/αel

) − A

B

1/n

(5.8)

where equation 5.7 is the velocity sensed by hot wire using King’s law 4.9, mean-

while equation 5.8 is referred to equation 5.6. Temperature Tc is the correction

temperature used to evaluate temperature influence: both cases, i.e. correc-

tion made with centerline temperature Tc = Tcl and with averaged temperature

Tc = Tav are considered.

Summarizing, velocity sensed by hot wire is computes as

usim

Tsim

}
King’s law−−−−−−→ E2

W
Rev. King’s law−−−−−−−−−−→
↑
Tc

uHW
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Chapter 6

Results

Results chapter is split in two main sections. In the first one statistical turbu-

lence behavior of the flow is analyzed. Results from simulation are discussed and

compared with other works [del Alamo and Jimenez, 2001] and with analytical

results, i.e. the log law for velocity and temperature profiles (their derivation is

made simultaneously with the visualization of numerical results). The second

part is focused on the main topic of this thesis, i.e. temperature influence on

hot wire measurements. Both King’s equations 5.7, 5.8 are used:

uHW =

[
E2
w

RwB(Tw − Tc)
− A

B

]1/n

uHW =

 E2
w

B
(
Tc−Tref
ar/αel

) − A

B

1/n

and also both temperature correction Tc are analyzed, i.e. centerline tempera-

ture Tcl and average temperature at a certain wall normal position Tav(y).

6.1 Turbulence statistic

This section is focused on statistical turbulence analysis of a channel flow at

Reτ = 180. Single point statistics and several correlations coefficients are pre-

sented in next paragraphs.

6.1.1 Velocity profile

Logarithmic velocity profile scaled in viscous units is showed in figure 6.1. A-

greement with Jimenez channel flow simulation [del Alamo and Jimenez, 2001]

and with log law (where coefficients values κ = 0.4 , B = 5.5 are suggested

55
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Figure 6.1: Velocity profile in viscous units. Blue solid line is the simulation
case, red dot line is log law with κ = 0.4 and B = 5.5 and green circle are data
from Jimenez.

by Kim et al. [1987]) is achieved.

This curve is characterized by high gradient close to the wall (inner region),

meanwhile it decreases going closer to the centerline (outer region) thus two

different dynamics are present. Mean velocity at high Reynolds numbers, is

assumed to depend only to viscous scale y+ inside the inner region [Prandtl,

1925], thus the law of the wall is established:

U+ =
U

uτ
= Φ(y+) (6.1)

With no pressure gradients, in the area between the wall and y+ = 5, a viscous

sublayer can be defined. This region is characterized by a linear mean velocity

profile with viscous units.

Outer region is scaled with semi-channel height h. Not dimensional wall normal

coordinate in this layer becomes Y = y/h. Von Karman [1931] formulates

velocity defect law, which describes deviation from free-stream behavior in the

region far from the wall:
U∞ − U
uτ

= Ψ(Y ) (6.2)

In between inner and outer regions, Von Karman assumes the existence of a

layer where both laws 6.1 and 6.2 hold simultaneously, i.e. an overlap layer.

Matching their derivatives, a lengthscale independence is achieved in order to
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Inner layer Y < 0.1
Viscous sublayer y+ < 5
Outer layer y+ > 50
Overlap region y+ > 50 & Y < 0.1
Log law region y+ > 30 & Y < 0.3

Table 6.1: Description of region limits inside a channel flow Pope [2000]
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Figure 6.2: Temperature profile in viscous units. Blue solid line is the simulation
case and red dash line is temperature log law with κ = 0.423 and CT = 3.16

satisfy the equivalence, thus:

y

uτ

∂U

∂y
= y+ dΦ

dy+
= −Y dΨ

dY
= const.

and integrated gives a logarithmic profile, known also as logarithmic law, which

seems to hold for a bigger area than overlap layer:

Φ(y+) =
1

κ
ln y+ +B (6.3)

Ψ(Y ) = − 1

κ
lnY + + C (6.4)

where κ is the Von Karman constant.

Coefficient values are still object of studies, since a not perfect agreement be-

tween different works is achieved, as for the layers bounds. Classical layer

boundaries Pope [2000] are summarized into table 6.1. However these values

have been criticized by several studies.

6.1.2 Temperature profile

Temperature profile is showed in figure 6.2. Assuming constant wall temper-
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ature, zero mean pressure gradient on x-direction, steady flow, statistical ho-

mogeneity on x and z direction, incompressible fluid, constant fluid properties

and passive behavior of the heat, a logarithmic law for heat transfer can be

also established. Moreover a fully developed heat region is considered and only

forced convection has a significant effect.

This law is derived for the first time by Squire 1959 1. Here derivation based

on the articles of Kader and Yaglom [1972] and Bradshaw and Huang [1995] is

followed.

In analogy with the law of the wall for the velocity profile, the temperature

distribution close to the wall can be written as:

Tw − T (y) = Tτφ(
u∗y

ν
,
ν

α
≡ Pr) (6.5)

where Tτ is the friction temperature defined in equation 5.4. This law is for-

mulated on the assumption that close to the wall outer scale does not influence

the temperature value. Thus the temperature in this region depends only on

the heat flux at the wall, q̇w, density ρ, pressure coefficient cp, friction velocity

uτ , kinematic viscosity ν and heat molecular diffusivity α.

If Reynolds and Péclét numbers are high enough, molecular transfer is neg-

ligible compared to the turbulent heat transfer in the outer region, thus the

dependance of the temperature defect from ν and α is negligible. This allows

the formulation:

T (y)− T1 = Θτφ1(
y

L
) (6.6)

where L is the outer length scale, e.g. semi channel height and Θ1 is the cen-

terline temperature.

For high enough Reynolds and Péclét numbers, the regions where the laws 6.5

and 6.6 are valid, overlap. Thus a simpler formulation can be achieved, in

analogy with the velocity case:

Tw − T (y)

Tτ
=

1

κT
ln(

uτy

ν
≡ y+) + CT (Pr) (6.7)

Following Bradshaw indications, this law should be valid for large y+ and y+Pr

(around y+Pr > 30 − 50). The outer limit of overlap region depends on the

thickness of temperature profile δT .

These conditions are more restrictive than the ones for the velocity profile. In

fact, in the latter case, the inner boundary for log law region is y+ > 30 − 50,

which is more reliable for Prandtl numbers smaller than one. Moreover the

1 The first paper where it was written about logarithmic law temperature seems to be
Squire - An extended Reynolds analogy, Proc.6th Midwestern Confer. Fluid Mech., pp.16-33,
Univ. of Texas. Austin (1959).
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layer thickness (or semi channel height) δ is larger than the thermal one. Using

a least square method, simulation coefficients are fixed to CT = 3.16 and κT =

0.423.

6.1.3 Velocity and temperature moments

As seen in paragraph 2.2.1, statistical moments are derived from probability

density function. Figure 6.3 shows mean value of velocity (left) and tempera-

ture (right), together with probability density function, pdf. Temperature pdf

exhibits a wide width similar to velocity pdf.

First statistical moment analyzed are root mean square for velocity, fig-
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Figure 6.3: Left Black solid line represents inner scaled velocity profile, blue
solid lines pdf of instantaneous streamwise velocity: contour levels represent
confidence interval for 50, 10, 1 %, dash blue lines are the extreme values of
pdf. Right Same as Left figure, however, for the passive scalar (temperature).
Location of the widest pdf, i.e. y+ ≈ 15, is indicated through vertical dashed
line

ure 6.4(a) and temperature 6.4(b). The former statistic is compared with del

Alamo and Jimenez [2001]. A good agreement is achieved, with a small devia-

tion of 0.33% on the root mean square peak, at y+ ≈ 15.

Skewness and flatness of velocity (left) and temperature (right) are represented

in figure 6.5. Skewness, both for velocity and temperature, shows a positive peak

around y+ = 6 meanwhile a negative peak is only present on velocity skewness

(y+ ≈ 28). However both skewness show a negative value after 12 viscous length

for velocity and 16 for temperature

Flatness has a peak close to the wall, around 17 viscous length for velocity and

19 for temperature.
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Figure 6.4: A: Blue line - streamwise velocity rms, red circle streamwise velocity
from Jimenez; B : Red line - temperature rms

6.1.4 Correlation

Streamwise and spanwise correlations close to the wall (y+ ≈ 15) are analyzed

in this section. Classical formula 6.8 is used to evaluate different correlation

coefficients around the wall normal position of rms peak:

ζi,j(x, r) =
αi(x)αj(x+ r)

α2
i α

2
j

(6.8)

where αi, αj can assume the value of streamwise, spanwise, wall normal velocity

fluctuation or temperature fluctuation.

Correlation of velocity quantities, u′u′, u′v′, v′v′ and w′w′ are shown in fig-

ure 6.6. Converge to zero value is not achieved by streamwise velocity correla-

tion, thus the domain used is not large enough to solve correctly flow structures.

However, this characteristic does not influence the key point of this work, i.e.

temperature influence on hot wire measures.
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Figure 6.5: Skewness value of streamwise velocity (top left) and temperature
(top right), flatness of streamwise velocity (bottom left) and temperature (bot-
tom right)

Cross correlations between velocity and passive temperature are shown in fig-

ure 6.7. It is possible to note a high correlation between streamwise velocity

and temperature. This characteristic is one of the starting point of this work.

In effect velocity fluctuations generate temperature fluctuations that influence

the hot wire response. Moreover a correlation between temperature and wall

normal velocity is also present.

Figure 6.8 shows the similarity among correlations T ′T ′, u′u′ and T ′u′. Spanwise

correlations are provided in figures 6.9, 6.10 and 6.11. Information about struc-

tures span dimensions can be achieved by these kind of correlations. A similar

behavior is showed in span direction, as well for streamwise one, by u′u′, T ′T ′

and T ′u′ correlations.

6.2 Temperature influence on hot wire measure-

ments

Temperature influence on the velocity sensed by hot wire is evaluated through

King’s law equation, applied on data obtained from simulation. Firstly equation

5.7 is used, after that eq. 5.8 is considered.

Real temperature profile are generated fixing wall temperature to 303.15 K (30◦

C), meanwhile centerline temperature is swept between 303.15 K and 309.15

K (30◦ C ÷ 36◦ C), as shown in figure 6.12. This approach generates differ-
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Figure 6.6: Streamwise velocity correlation: · blue solid line u′u′ correlation, ·
green dots u′v′, · red dashed line v′v′, · cyan dash dot w′w′
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Figure 6.9: Spanwise velocity correlation: : · blue solid line u′u′ correlation, ·
green dots u′v′, · red dash line v′v′, · cyan dash dot w′w′
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Figure 6.10: Spanwise velocity-temperature correlation: · blue solid line u′T ′

correlation, · green dashed lined v′v′, · red dash dot line w′T ′
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Figure 6.12: Dimensional temperature profiles for different ∆T

ent temperature profiles, characterized by a own wall - centerline temperature

difference and a own heat flux at the wall. However these two quantities are

directly related.

Using the linear property of derivation and not dimensional temperature ex-

pression:

T ∗ =
T − Tw
Tcl − Tw

a relation for dimensional temperature flux can be established:

dT

dy
=
d(T ∗∆T + Tw)

dy
= ∆T

dT ∗

dy
(6.9)

Since dT ∗/dy is the same for each curve, a linear dependence between temper-

ature flux on the wall and temperature difference between centerline and wall

temperature is present.

In following analysis, terms sensed and measured velocity are referred to velocity

computed after King’s law is applied, meanwhile statement ”from simulation”

is referred to the numerical result from simulation, i.e. the ”correct” value to

achieve with the virtual measuring of the hot wire.

6.2.1 First method analysis

In this section hot wire’s voltage is evaluated through equation 4.9 meanwhile

sensed velocity through equation 5.7. Both temperature correction Tc are made,

i.e. centerline temperature first and mean temperature profile after.

Centerline temperature correction Using a centerline temperature correc-

tion, averaged sensed velocity shows a certain displacement from the computed
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velocity profile. Figure 6.13 represents mean velocity profile where all the curves

are not dimensionalized by the same viscous unit uτ , derived from the simula-

tion. Obviously mean profile shows the largest percentage error close to the wall.
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Figure 6.13: Velocity profile in viscous units for different ∆T . Temperature
correction is performed through centerline temperature and uτ from simulation
is used to perform not dimensionalization

The reason is due that close to the wall, the largest temperature difference with

centerline temperature is achieved. Moreover increasing the temperature differ-

ence, sensed mean velocity increases.

Considering for each curve own viscous unit, uτ,j with j = 1, ..., 7, behavior

changes. In fact, since sensed velocity has a different behavior close to the wall,

friction velocity, thus Reτ , changes due to its dependence to wall viscous stress.

Figure 6.14 is obtained not dimensionalizing each curve for each own viscous

velocity. Here maximum percentage error is shifted to 8 viscous lengths and be-

havior of sensed velocity, as temperature function, is changed. Increasing wall

heat flux measured viscous velocity decreases its value due to the higher viscous

stress at the wall. Moreover linear wall law is not followed by measured veloc-

ities. This can be interpreted as a consequence of how temperature correction

is performed, i.e. using centerline temperature.

Root mean square analysis are also analyzed on previous cases. As for velocity

profile, if velocity rms not dimensionalization is performed using simulated fric-

tion velocity, largest error is obtained close to the wall, where sensed velocity

rms is increasing with larger ∆T , see figure 6.15. However, after around 1 vis-

cous unit from the wall, this behavior is reverted and smaller rms is measured

increasing ∆T . Obviously error is larger for higher temperature difference.
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Figure 6.14: Velocity profile in viscous units for different ∆T . Temperature
correction is performed through centerline temperature and adimensionalization
is performed through the proper uτ of each curve
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Figure 6.15: Streamwise velocity rms in viscous units for different ∆T . Tem-
perature correction is performed through centerline temperature and uτ from
simulation is used to perform not dimensionalization
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Figure 6.16: Streamwise velocity rms in viscous units for different ∆T . Tem-
perature correction is performed through centerline temperature and adimen-
sionalization is performed using own uτ from each curve

Performing not dimensionalization of rms by own friction velocity on each curve,

see figure 6.16, smaller rms are measured increasing temperature difference.

Furthermore, rms peak moves farther from the wall, i.e. from around 15 y+ to

around 25 y+.

Mean temperature correction Temperature correction is performed through

mean temperature profile, thus each wall normal position is corrected with the

proper mean temperature at that height. This correction provides good results

when measured mean velocity is computed, see figure 6.17. In fact agreement

is achieved for curves with different ∆T . Maximum percentage error is smaller

than 1%. This mean velocity behavior yields to close values of friction velocity,

thus to almost equal Reτ , among different cases. Hence only cases with not

dimensionalization performed by own friction velocity are showed.

With this temperature correction method, a good improvement on measured

rms is also achieved. As shown in figure 6.18, if temperature difference between

wall and centerline is increasing, rms value is decreasing. The inner plot in fig-

ure 6.18 shows the percentage error on the peak value, which increases almost

linearly with ∆T .
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Figure 6.17: Velocity profile in viscous units for different ∆T . Temperature
correction is performed through mean temperature and adimensionalization is
performed through the proper uτ of each curve
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Figure 6.18: Main Streamwise velocity rms in viscous units: red circles from
simulation, solid lines sensed velocity with a different ∆T . Correction tempera-
ture fixed to mean temperature values. Inner Relative streamwise velocity rms
percentage error at the inner peak, y≈15
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6.2.2 Second method analysis

Here hot wire’s voltage is evaluated through equation 5.6 meanwhile sensed

velocity through equation 5.8. Parameters are fixed with values showed in para-

graph 5.4, i.e.:

• ar = 1.1

• αel = 4.782 · 10−3 (2)

Here velocity not dimensionalization is performed using always the friction ve-

locity of each curve. Results are close to the ones achieved in the previous case.

The reason lie on the possibility to derive in the same way these two versions

of King’s law. This method is also used for analysis in next sections, since it

contains experimental parameters which are already known by experimentalist.

Here both temperature correction Tc are made, i.e. centerline temperature first

and mean temperature profile after.

Centerline temperature correction Centerline temperature is used to cor-

rect equation 5.8. Figure 6.19 shows mean velocity profile, meanwhile figure 6.20

shows streamwise velocity rms.
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Figure 6.19: Streamwise mean velocity profile in viscous units for different ∆T .
Temperature correction is performed through centerline temperature and adi-
mensionalization is performed using own uτ from each curve. King’s equation
with experimental parameters is used.

2 αel value is computed using the relation ar = αel (Tw−Tref ) where Tref = 0 and Tw =
503.15 K (230 ◦C)
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Figure 6.20: Streamwise velocity rms in viscous units for different ∆T . Tem-
perature correction is performed through centerline temperature and adimen-
sionalization is performed using own uτ from each curve. King’s equation with
experimental parameters is used.

Mean temperature correction Mean temperature is used to correct equa-

tion 5.8. Figure 6.21 shows mean velocity profile, meanwhile figure 6.22 shows

streamwise velocity rms.

6.3 Experimental parameters analysis

King’s law 5.6 is used to evaluate experimental parameters effects on the mea-

sured sensed velocity. Each analysis is performed keeping constants all the

other parameters. Moreover temperature difference between wall and centerline

is fixed to 2K and mean temperature is used as temperature correction.

6.3.1 Temperature coefficient αel analysis

Over heat ratio is fixed to a value of 1.1 meanwhile temperature coefficient of

electrical resistivity is swept between a range of 0.0015 < αel < 0.005.

Velocity profile is not affected by temperature coefficient value when mean tem-

perature is used to correct data. Streamwise velocity rms, is influenced by the

value of temperature coefficient of resistivity (figure 6.23). Rms value shows a

decreasing of its value when temperature coefficient αel is increased.
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Figure 6.21: Velocity profile in viscous units for different ∆T . Temperature
correction is performed through mean temperature and adimensionalization is
performed using own uτ from each curve. King’s equation with experimental
parameters is used.
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Figure 6.22: Streamwise velocity rms in viscous units for different ∆T . Tem-
perature correction is performed through mean temperature and adimension-
alization is performed using own uτ from each curve. King’s equation with
experimental parameters is used.
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Figure 6.23: Streamwise velocity rms in viscous units

6.3.2 Over heat ratio analysis

Temperature coefficient of electrical resistivity is fixed to 0.004872, while over

heat ratio varies in between 0.5 < ar < 1.5. Sweeping over heat ratio, like

for temperature coefficient, mean sensed velocity does not show any evident

modification of its profile. Root mean square of streamwise velocity, instead,

shows an increasing of its value when overheat ratio has a larger value, see

figure 6.24

6.4 Spatial averaging

The aim of this section is to investigate one other issue of hot wire measuring:

spatial averaging. As already explained, wire is usual larger than smaller eddies

that are contained in the flow. This means that different point of the wire are

characterized by different velocity fluctuations. Thus the measured voltage is

the result of a spatial averaging over the entire wire.

On mean velocity this phenomena does not produce any visible effect. Anyway

rms are strongly affected by spatial averaging. Figure 6.25 shows rms velocity

once a top hat filter is applied on streamwise velocity along spanwise direction,

in order to reproduce wire effect. Moreover, percentage rms error at the rms

peak value, y+ ≈15, obtained after filter is applied on data from simulation, is

showed into the small box inside figure 6.25.

In order to evaluate combined effect of spatial averaging with temperature in-
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Figure 6.24: Streamwise velocity rms in viscous units
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Figure 6.25: Main Streamwise velocity rms in viscous units: red circles from
simulation, solid lines after spatial averaging with a top hat filter with length
from 8.8 L+ to 79.58 L+. Inner Relative streamwise velocity rms percentage
error at the inner peak, y≈15
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Figure 6.26: Streamwise velocity rms in viscous units: · red circles, from simu-
lation; · solid lines, with filter L+ =8.8 and for different ∆T

fluence on hot wire measurements, top hat filter is applied on hot wire voltage

data after the latter is computed through King’s law 5.6. After that streamwise

velocity is computed by the use of 5.8. Results are shown in paragraph 6.4.1.

6.4.1 Combined effect of temperature and spatial averag-

ing

Effects of both temperature fluctuations and spatial averaging are analyzed in

this paragraph. Figures 6.26, 6.27, 6.28 show temperature influence on filtered

data with length of the filter (thus wire length) of 8.8 L+, 26 L+ and 44 L+

respectively. It is possible to note that both increasing wire length and wall

- centerline temperature difference, the total error is increasing. An overview

about total error and temperature influence error at rms peak is provided by

figure 6.29. In the upper figure is possible to observe an almost linear total

error increasing with larger wire lengths. This is achieved for all different ∆T

cases. This error is made up by two contributions: spatial averaging and tem-

perature fluctuation errors. From the bottom figure it is possible to observe the

percentage of temperature fluctuations errors in relation with the total one:

E∆T

Etot
=
urms − urms,L+=0

urms

urms
urms − urms,totErr

Considering for example ∆T = 2K case, error due to temperature fluctuation

is around 40% of the total error with a wire length of 10 l+, ≈ 20% with a
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Figure 6.27: Streamwise velocity rms in viscous units: · red circles, from simu-
lation; · solid lines, with filter L+ =26 and for different ∆T
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Figure 6.28: Streamwise velocity rms in viscous units: · red circles, from simu-
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Figure 6.29: Up: Percentage total error (spatial averaging and temperature
influence) in function of filter length for different ∆T (blue ∆T = 0, green
∆T = 2, red ∆T = 4, cyan ∆T = 6); Down Relative percentage error between
temperature influence error and total error in function of filter length, same
color as figure above.

wire length of 20 l+ and ≈ 10% of the total with a wire length of 45 l+. These

relative percentage errors increase for larger ∆T .Thus temperature influence is

an important feature to take care above all when wire length is small and for

high ∆T .

According to Ligrani and Bradshaw [1987], wire length should be smaller than

20 l+ in order to reduce spatial averaging error. At these wire lengths, temper-

ature fluctuation influence is not negligible if a correct measure is aimed.

In next chapter some methods to measure instantaneous temperature and cor-

rect velocity values are proposed.



Chapter 7

Correction methods

Considering King’s equation 5.6, three variables are present: hot wire voltage

E2, streamwise velocity u and temperature T . Voltage is the output of the hot

wire, thus it is known. However it is related with two variables, temperature

and velocity, but only one equation is provided: this means that problem cannot

be solved directly since unknowns are more than equations.

A method to overcome this issue, is to use a cold wire together with the hot

wire: cold wire provides the required temperature field which is necessary to

calculate velocity using the King’s law equation and the output voltage from

the hot wire. However cold wire is characterized by a lower frequency resolu-

tion than hot wire thus it is not possible to measure velocity and temperature

simultaneously. This means that it is not possible to correct instantaneously

the King’s law for computing the velocity, causing a velocity error. The result

is that a combination of hot and cold wire cannot be used to properly correct

the temperature influence on velocity measurements 1.

This is the reason to move the focus to temperature measure and to temper-

ature error correction in this chapter. Three methods are analyzed, i.e. two

probes method, correlation between temperature and velocity fluctuation and

temperature log law.

7.1 Two probes methods

Another way to solve the problem of instantaneous temperature measurements

is to use two hot wires with a certain span displacement, in order to have two

unknowns, velocity and temperature, and two equations, given by King’s law.

This method is well explained in [Bruun, 1995, chap.7].

1 In the last chapter was showed two ways to correct King’s law equation, i.e. centerline
temperature and mean temperature. Best results were achieved using the latter method.
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In order to have a solution, the two equations cannot be equal: this is achieved

using a different over heat ratio for probes. Hence system 7.1 is obtained:
u =

[
E2

1

B
(

1−
T−Tref
ar,1/αel

) − A
B

]1/n

u =

[
E2

2

B
(

1−
T−Tref
ar,2/αel

) − A
B

]1/n (7.1)

This system is obtained making a strong hypothesis: the two probes are assumed

to behave similarly, i.e. coefficients A, B, n and αel are the same for both probes.

This assumption is not correct in reality, however here it is made to simplify

the approach and to have an idea about the results obtained with this method.

In order to solve the system 7.1, another strong assumption has to be done:

same velocity and same temperature is sensed by both probes despite the span

displacement.

Making an equivalence between the two equation in system 7.1, the following

result is obtained:
E2

1ar,1
ar,1 − Tαel

=
E2

2ar,2
ar,2 − Tαel

which solved for temperature gives:

T =

(
E2

1 − E2
2

)
ar,1ar,2

αel (ar,1E2
1 − ar,2E2

2)
(7.2)

meanwhile velocity can be computed from one of the equation of system 7.1.

The two probes are placed at zero distance firstly, meanwhile span displacement

is increased in the next analysis.

7.1.1 Zero displacement results

Zero displacement between the probes is fixed. This choose is not reliable in

reality since it is not possible to overlap the two probes. Anyway this choice is

made in order to check the formula used.

Following parameters are chosen for this analysis:

• A = 0.000085

• B = 0.000045

• n = 0.5

• αel = 4.782 ∗ 10−3

• ∆T = 2 K
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• Twall = 30 K

• Tw,1 = 150 −→ ar,1 = 0.7173

• Tw,2 = 270 −→ ar,2 = 1.2911

High difference between wire temperatures is chosen in order to avoid numerical

errors.

From figure 7.1 it is possible to observe velocity and rms profile, for both velocity

and temperature. Matching between results from simulation and the two probes

method is perfectly achieved when the two probes are placed in the same point.
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Figure 7.1: Up: Mean streamwise velocity profile from simulation (blue solid
line) and from two probes evaluation (dash dot green line) and mean tempera-
ture profile from simulation (red solid line) and from two probes evaluation (dash
dot cyan line); Down: Rms profiles, line colors referred to the same quantity as
before

7.1.2 Results with span displacement between probes

Same formulation as before is now used to compute velocity and temperature

for the case when the two probes are placed with a certain span displacement.

Figure 7.2 shows mean velocity profiles, considering ∆z = 0, 8.8 L+ and 88 L+.
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Errors on velocity profiles are achieved already for span displacement equals to

8.8 l+, meanwhile for a large displacement, 88.8 y+, after the near wall peak this

method fails to reproduce the flow dynamic, with a smaller velocity measured.

Velocity rms can be observed in figure 7.3. Formulation used to solve sys-
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Figure 7.2: Mean velocity profile: - blue solid line, from numerical simulation;
- green dash dot, from two probes evaluation at 0 distance; - dash red line,
from two probes evaluation at 8.8 l+ distance; - dots magenta, from two probes
evaluation at 88.4 l+ distance. Black dash line indicates near wall peak at ≈ 15
l+

tem 7.1, lacks to capture the dynamics of the flow. Even larger errors are

obtained for temperature profile and rms.

These errors are due to the small size of structures that breaks the strong as-

sumption made: same velocity and temperature sensed by the two hot wires.

7.1.3 Future ideas about two probes method

Further investigations has to be performed in order to find a correction term

that take in account the instantaneous difference of velocity and temperature

between the probes.

A possible way to solve this problem, is to average the two equations in sys-

tem 7.1. In fact the system 7.3 obtained, is characterized by same mean velocity
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Figure 7.3: Streamwise velocity rms: - blue solid line, from numerical simulation;
- green dash dot, from two probes evaluation at 0 distance; - dash red line, from
two probes evaluation at 8.8 l+ distance; - dots magenta, from two probes
evaluation at 88.4 l+ distance. Black dash line indicates near wall peak at ≈ 15
l+

and mean temperature.
u1 = U =

[
E2

1

B
(

1−
T1−Tref
ar,1/αel

) − A
B

]1/n

u2 = U =

[
E2

2

B
(

1−
T2−Tref
ar,2/αel

) − A
B

]1/n
(7.3)

A satisfactory mathematical solution for the system 7.3 was not possible to be

achieved by the author.

7.2 Velocity - temperature correlation

Temperature and velocity are characterized by high correlation. This result is

used in this chapter to reconstruct the temperature signal. Experimentally a

hot wire probe with a thermocouple can be used to perform this method, or a

combined hot and cold wire works as well.

The idea is to use velocity fluctuations in substitution of temperature ones. How-

ever from figure 5.1, it is possible to observe that correlation between velocity

and temperature decreases going farther from the wall, meanwhile is higher close

to it. The following temperature correction is proposed in order to evaluate the
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efficacy of the previous reasoning:

Tc = Tm + ∆T ∗ u′ ∗ < u′T ′ >√
u′2
√
T ′2

(7.4)

Results are showed in figure 7.4 for velocity profile, and figure 7.5, for rms. Ve-

10
−2

10
−1

10
0

10
1

10
2

10
3

0

2

4

6

8

10

12

14

16

18

20

u+

y+

 

 
fromSim
∆T=0
∆T=2
∆T=4
∆T=6

Figure 7.4: Mean velocity profile with temperature correction made by the
summation of average temperature and scaled velocity fluctuation. - Red circles,
from simulation; - blue line, sensed velocity from hot wire with ∆T = 0; - green
line, sensed velocity from hot wire with ∆T = 2; - red line, sensed velocity from
hot wire with ∆T = 4; - cyan line, sensed velocity from hot wire with ∆T = 6

locity profile is not affected by this correction type, keeping the matching with

the real curve that was already achieved using the only average temperature.

Rms shows instead a great improvement in comparison with average temper-

ature correction case, see inner plot inside 7.5. A maximum error of around

2.18% at y+ ≈ 15 is obtained with a ∆T = 6.

However this correction is performed using two quantities that are not known

a priori, i.e. real streamwise velocity fluctuations and cross moment coefficient

between velocity and temperature fluctuations.

The idea to overcome the impasse, is to solve twice the reversed King’s law

equation 5.8. As first step King’s law is solved using mean temperature for cor-

rection. This step is required in order to obtain a streamwise velocity field, from

which is possible to compute velocity fluctuations. In the second step, temper-

ature correction is built by the summation of the mean temperature profile and
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Figure 7.5: Main Velocity rms with temperature correction made by the sum-
mation of average temperature and scaled velocity fluctuation. - Red circles,
from simulation; - blue line, sensed velocity from hot wire with ∆T = 0; - green
line, sensed velocity from hot wire with ∆T = 2; - red line, sensed velocity from
hot wire with ∆T = 4; - cyan line, sensed velocity from hot wire with ∆T = 6.
Inner Percentage error between sensed and simulated velocity, at y+ = 15

a proper scaled velocity fluctuation 2, derived from the previous application of

King’s law.

Summarizing, the steps performed are:

• Computing the output voltage from the wire, using King’s law, eq. 5.6,

with real temperature and velocity field

• Computing sensed velocity, through eq. 5.8, with output voltage and mean

temperature as temperature correction Tc

• Calculating Reτ and streamwise velocity fluctuation from the sensed ve-

locity field, and Tτ from the mean temperature

• Create the new correction temperature:

Tc = T +
u′

Reτν
Tτ (7.5)

• Computing sensed velocity, through eq. 5.8, with output voltage and the

new correction temperature from eq. 7.5

2 Sensed velocity fluctuations become smaller increasing the heat flux at the wall, i.e. the
temperature difference ∆T .
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Results are showed in figures 7.6 and 7.7. The velocity profile is not affected by

the new correction temperature meanwhile the streamwise velocity rms shows a

remarkable improving on the near wall peak, decreasing the percentage error (

see figure 7.8, left one). This case is characterized by a new behavior, i.e. the rms

is overestimated and not anymore underestimated. The most negative feature
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Figure 7.6: Mean velocity profile with temperature correction in equation 7.5.
- Red circles, from simulation; - blue line, sensed velocity from hot wire with
∆T = 0; - green line, sensed velocity from hot wire with ∆T = 2; - red line,
sensed velocity from hot wire with ∆T = 4; - cyan line, sensed velocity from
hot wire with ∆T = 6

of this correction method is the increasing of the error close to the centerline,

(see figure 7.8 on the right), in effect velocity and temperature are less correlated

going farther from the wall, thus the idea to use velocity fluctuations instead

temperature ones becomes less efficient close to the centerline. Since it is not

possible to measure properly the cross moment coefficient, a linear coefficient CL

with value 0.9 at wall and 0.5 at the centerline 3, is multiplied to the fluctuation

velocity term into the previous correction temperature, equation 7.5, giving the

following correction temperature:

Tc = T +
u′

uτ
TτCL = T +

u′

Reτν
TτCL (7.6)

where CL is equal to:

CL = [(1− y) · 0.4] + 0.5

3 These values are chosen to have an agreement with the cross moment coefficient.
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Figure 7.7: Velocity rms with temperature correction in equation 7.5. - Red
circles, from simulation; - blue line, sensed velocity from hot wire with ∆T =
0; - green line, sensed velocity from hot wire with ∆T = 2; - red line, sensed
velocity from hot wire with ∆T = 4; - cyan line, sensed velocity from hot wire
with ∆T = 6
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Figure 7.8: Percentage error between sensed and simulated velocity, at y+ = 15
(Left) and at y+ = 180 (Right)

This modification of the correction temperature gives the rms curve 4 in fig-

ure 7.9. Curves have an analogous shape, and from figure 7.10 the error

behavior can be observed. Curves oscillated several times around the result for

∆T = 0.

The weakness of this approach is the linear coefficient used: its validity has to

be verified for other Re and Pr numbers.

4 As for the cases before, streamwise velocity profile matches the profile from the simulation,
thus it is not showed.
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Figure 7.9: Velocity rms with temperature correction made by equation 7.6
with a linear coefficient that multiplies the fluctuating term. - Red circles, from
simulation; - blue line, sensed velocity from hot wire with ∆T = 0; - green line,
sensed velocity from hot wire with ∆T = 2; - red line, sensed velocity from hot
wire with ∆T = 4; - cyan line, sensed velocity from hot wire with ∆T = 6
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7.2.1 Iteration method

An evolution on the procedure explained in the previous paragraph, is to iterate

the application of the reversed King’s law 5.8. In fact, what was performed in

the last chapter was to guess a first velocity field correcting the temperature

with the mean temperature. After that the fluctuation velocity field created

was used together with the mean temperature in order to find a second velocity

field, where velocity rms shows a remarkable improvement.

The new idea is to use this second velocity field to guess another velocity field,

theoretically improving the convergence towards the real data.

However this analysis is not provided here.

7.2.2 Two probes method for cross moment evaluation

In this paragraph an analytical derivation for a similar term to the cross moment

is provided. Here different temperature and velocity for the two probes are

considered. However, mean temperature and mean velocity are equals, thus:

T1 = T2 = T

u1 = u2 = u

Starting from system 7.1, first equation can be developed as:

E2
1 = A−AT1

α

ar,1
+Bun1 −

Bα

ar,1
un1T1 (7.7)

Equation 7.7 is then averaged:

E2
1 = A−AT α

ar,1
+Bun − Bα

ar,1
unT (7.8)

Subtracting to this equation the one constructed in the same way but referred

to the second probe (thus ar,2 instead of ar,1), the following result is obtained:

E2
1 − E2

2 = −ATα
(

1

ar,1
− 1

ar,2

)
−BαunT

(
1

ar,1
− 1

ar,2

)
which solved for unT gives:

unT =
E2

2 − E2
1

Bα

(
ar,1ar,2
ar,2 − ar,1

)
− A

B
T (7.9)

The critical point is the knowledge of mean temperature value, which can be

measured through the use of a thermocouple or a cold wire.
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7.3 Temperature log law correction

Measure of the entire temperature profile can be an issue during experiments.

Here a simplification of this measure procedure is made using the temperature

log law expressed in 6.7 combined with few mean temperature measurements.

However in order to get the two unknowns coefficients, κT and CT , at least

two mean temperature measurements are needed,in order to make solvable the

following system: {
T+

1 (y+
1 ) = 1

κT
ln(y+

1 ) + CT (Pr)

T+
2 (y+

2 ) = 1
κT

ln(y+
2 ) + CT (Pr)

(7.10)

The idea is to extend the use of this formulation to a range going from the near

wall peak to the centerline. This is going to cause a measurement error, but

also a great reduction of experimental time needed for mean temperature profile

measurement is achieved.

Two cases are analyzed now:

• Case A: Linear law from the wall to near wall peak, log law from near wall

peak to centerline

• Case B: Linear law from the wall to y+ ≈ 10, log law from y+ ≈ 35

to centerline, and a fitting between these two regions made with another

logarithmic profile

This means that case A needs two measurements meanwhile case B three in

order to get the viscous temperature profile 5. However another measurement,

temperature at the wall, is needed if the real temperature profile is required.

The mean temperature profiles obtained for the two cases are showed in fig-

ure 7.11. A general agreement between these curves and the real mean tem-

perature profile can be observed, above all for the case B curve. Future step is

to analyze the velocity profile and rms obtained with the assumptions made on

mean temperature profile behavior and the errors introduced by this method.

5Assuming to know friction temperature Tτ .
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Figure 7.11: Mean temperature profiles made with linear wall law and log laws.
Up Using three mean temperature virtual measurements; Down Using four mean
temperature virtual measurements
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Chapter 8

Channel flow at Reτ = 590

This chapter focuses on the results obtained from a simulation at Reτ = 590.

Similar statistics and analysis of previous case are performed.

8.1 Simulation details

Numerical simulation of a channel flow at Reτ = 590 is described in this para-

graph. Parameters are fixed following the work of Moser et al. [1999] and

summarized into table 8.1. No slip condition is reproduced at wall fixing the

velocity boundary condition with a zero value. Temperature parameters are set

as for Reτ = 180 numerical simulation, described in paragraph 5.3. Thus:

• Dirichlet b.c. at walls temperature, with a value set to 0

• Pr = 0.71

Numerical simulation is performed at department of Mechanics of KTH.

Direction Box size #Nodes/Modes Grid spacing
x 2π 384 9.65 l+

y 2 257 min: 0.044 l+

z π 384 4.83 l+

Table 8.1: Number of nodes/modes of channel domain and spacing in viscous
units l+ = ν/uτ = Reτ since the semi channel height h is equal to 1. Note
that wall normal nodes distribution is made using Chebyshev polynomial then
spacing is smaller close to walls and larger far from it.

91
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8.2 Turbulence statistics

Firstly, general turbulence statistics are showed in order to see the behavior at

this Reτ and compare the results with MKM 1. Velocity and temperature profile

are shown in figure 8.1, where it is possible to observe agreement with data from

MKM for streamwise velocity profile. Velocity and temperature rms are showed
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Figure 8.1: Solid blue line, mean streamwise velocity from simulation, cyan cir-
cles mean streamwise velocity from MKM, red dot line mean mean temperature

in figure 8.2. Last statistic showed in this section, see figure 8.3, is the cross

moment coefficient between streamwise velocity fluctuation and temperature

one, for both numerical simulation performed, i.e. Reτ = 180 and Reτ = 590.

Numerical results for the simulation at higher Reynolds, shows a similar cross

moment to the one at Reτ = 180. This is an useful information regarding the

linear coefficient used for the correction method explained in section 7.2.

8.3 Hot wire measuring and correction

First step of this section is to evaluate the velocity measured by a hot wire using

the King’s law in equation 5.8 together with a mean temperature correction.

Mean velocity profile, as for Reτ = 180 case, is correctly measured for each ∆T

as it is shown in figure 8.4. Streamwise velocity rms, shows instead a certain

displacement once ∆T is increasing, as is possible to observe in figure 8.5. This

1 MKM is used to refer to Moser et al. [1999], meanwhile ”FM” to refer to the simulation
performed during this thesis work.
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result confirms the results achieved in section 6.2.2, for the homologous case at

Reτ = 180, i.e. data correction performed with mean temperature introduces

an error on streamwise velocity rms results.

Applying the correction expressed in equation 7.6, i.e. using a scaled velocity

fluctuation and linear coefficient, errors in streamwise rms are remarkably re-

duced, as shown in figure 8.6, where the inner plot focuses on the error at the

mean peak value for both corrections’ method analyzed: blue line is the case

with mean temperature correction meanwhile the green one is referred to tem-

perature correction with equation 7.6.

Error behavior all over the curve, in figure 8.7, shows a percentage error higher
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sensed velocity from hot wire respectively with ∆T = 2, ∆T = 4 and ∆T = 6.
Inner Percentage error, at y+ = 15, between sensed and simulated velocity with
mean temperature correction, blue line, and with equation 7.6 (green line).

close to the wall, with values bounded to an error of 0.5% for ∆T = 2, of 1.5%

for ∆T = 4 and of 2.5% for ∆T = 6.

Last analysis performed about this correction method, is spectra analysis.

Measures with hot wires allows to temporal spectra analysis 2. However, using

Taylor’s frozen flow hypothesis on numerical data obtained with the simulation,

one dimensional streamwise spatial spectra are considered. Worst case, at ∆T =

6 is considered.

Firstly is analyzed spectra close to the wall, y+ ≈ 14.3, see figure 8.8. Improv-

2 Spatial spectra can be obtained using combination of hot wires
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ing of the error is achieved when fluctuation correction method, explained into

equation 7.6, is used, as it is possible to observe in figure 8.9. Error is decreased

of about three times, from around 10 - 12% for mean temperature correction

case to around 0-3 % of fluctuation correction case.

Spectra far from the wall, at y+ ≈ 99.4, is showed in figure 8.10. Here fluctua-

tion correction method presents a non optimal behavior. Indeed from figure 8.11

is possible to note that for small wavenumbers, fluctuation correction method

improves the spectrum quality. However, for large wavenumbers an overestima-

tion of the spectra is achieved with fluctuation correction method, meanwhile

mean temperature correction shows a good agreement with the numerical data.

This is an important conclusion, since far from the wall, considering viscous

units, mean temperature correction gives a good estimation of large wavenum-

bers energy spectra, meanwhile fluctuation correction gives better results for

small ones.

Few ideas can be followed theoretically 3 to improve the results far from the

wall:

• Use the iterative approach explained in section 7.2.1

• Use a different linear coefficient CL. An idea is to split the coefficient

into two curves: value from 0.9 to 0.5 in the range between zero and the

3 Quantitative evaluation of the error estimation using these ideas is not performed yet.
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beginning of the log layer; value from 0.5 to 0 in the remain range of the

wall normal coordinate.

In fact, close to the wall, fluctuation correction is needed in order to improve

measurements’ quality and achieve correct rms and energy spectra for all wave

numbers.
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Chapter 9

Conclusions

Numerical simulations of a turbulent channel flow at Reτ = 180 and 590 were

performed in order to evaluate temperature gradient influence on hot wire mea-

surements. Temperature was considered as a passive scalar and its dynamic

solved using a scalar equation with Pr = 0.71.

As a first step, temperature - velocity correlation was verified. This correlation

is higher close to the wall and smaller far from it. This is an important re-

sult, since it gives a physics explanation to how the presence of a temperature

gradient influences the hot wire measurements: positive fluctuations of stream-

wise velocities are in correspondence with positive fluctuations of temperature,

which increases hot wire temperature. This yields to a less heat generated by

the electrical system of hot wire to compensate the real effect of the forced

convection on the wire. This means that hot wire operates underestimating

flow velocity, due to temperature effect. Vice-versa, negative streamwise veloc-

ity fluctuation transports negative temperature fluctuations: wire temperature

becomes smaller than the one expected considering the only forced convection

on the wire. In this case, streamwise velocity is overestimated: summarizing,

sensed streamwise velocity fluctuations by the hot wire are damped down due

to temperature influence.

Hot wire measurement was reproduced from numerical data applying two ver-

sions of King’s law, which provide same results if properly related. These equa-

tions were applied together to real streamwise velocity and real temperature

from the numerical simulation to firstly estimate hot wire voltage output. From

this value, it is possible to measure streamwise velocity reverting the King’s law

and using the voltage computed and a proper temperature correction: in fact

experimentally is not possible to have an instantaneous measure of the temper-

ature. In the first case centerline temperature was chosen, meanwhile in the

second case mean temperature for each wall normal position was set.

101
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The first temperature correction used shows different kind of errors, mainly due

to a wrong mean streamwise velocity profile sensed above all close to the wall,

where difference between real temperature and centerline correction tempera-

ture is highest. This generates a wrong friction velocity sensed which effects the

Reτ measured. A strong underestimation of the root mean square is achieved,

which increases for higher temperature difference between wall and centerline,

∆T , or equivalently for higher temperature gradient at the wall.

The second case, i.e. mean temperature profile used as correction temperature,

is characterized by a perfect match of mean streamwise velocity profile for any

∆T . However, root mean square is underestimated above all close to the wall

peak value. This error increases for larger ∆T . All the following analysis were

performed using this method.

King’s law experimental coefficients are swept into a range of values in order to

observe their effect on the sensed velocity: increasing the overheat ratio, stream-

wise velocity rms increases, meanwhile increasing the temperature coefficient of

resistivity streamwise velocity rms is decreasing. Mean streamwise velocity pro-

file is not affected by their value.

The next step was to compare temperature effect with the most known problem

in hot wire measurements: spatial averaging. Firstly only the spatial average

effect was considered: increasing the wire’s length, small scale turbulence is fil-

tered. This leads to an underestimation of the root mean square. Combining

the two measurement’s errors, it is possible to note that temperature influence

gives a not negligible contribution to the total error when small wires are con-

sidered and mainly if high temperature difference between wall and centerline

is present inside the flow. For instance, with ∆T =2 and wire length L+ ≈20,

temperature influence error is around 20% of the total error at the near wall

peak.

Estimation of temperature influence’s error, allows to formulate some correction

methods, in order to generate the correct streamwise velocity root mean square

starting from the one affected by temperature gradient.

The first method proposed is the two probes method: measuring flow velocity

with two probes with a different overheat ratio and placed at different span

positions, it is theoretically possible to know instantaneously temperature and

velocity. However the results achieved are perfect only with a zero distance

between the probes, meanwhile the error quickly increases for larger span dis-

placement.

The second method has been developed using the high streamwise velocity - tem-

perature correlation result: the idea is to use streamwise velocity fluctuations

instead of temperature ones, inside the instantaneous temperature correction,

i.e. the temperature correction inside the King’s law equation is made up the
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sum of mean temperature and a proper scaled velocity fluctuation. Best re-

sults are achieved scaling the velocity fluctuation with friction temperature and

friction velocity, and multiplying the modified temperature fluctuation with a

linear coefficient which decreases its value going farther from the wall, since

a smaller velocity - temperature correlation is present far from the wall. The

velocity fluctuations were measured by a first iteration using mean temperature

profile as correction temperature.

The aim of the last method proposed is to estimate the mean temperature

profile using only few temperature measurements, and interpolating the points

obtained with a linear law close to the wall and the logarithmic law in the rest

of the domain. The temperature profile obtained is similar to the real one.

However some errors can be introduced for the measuring of the friction tem-

perature.

All these results were obtained considering a numerical simulation at Reτ = 180,

but same results are achieved considering a Reτ = 590 channel flow numerical

simulation, which is described in the last chapter. Temperature fluctuation cor-

rection method is also verified and an improvement of this method is proposed.
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S. Carnot. Réflexions sur la puissance motrice du feu et sur les machines propres

à développer cette puissance. In Annales scientifiques de l’É.N.S., volume I
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