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Abstract (Italian)

La tecnica della virtualizzazione parziale è un approccio rivoluzionario
nel mondo della virtualizzazione. Viene a collocarsi nel mezzo tra la vir-
tualizzazione completa di interi sistemi (come QEMU e XEN) e quella di
singole applicazioni (come JVM e CLR). ViewOS può essere considerato
l’avanguardia di tale tecnologia, sviluppato ad-hoc dal laboratorio Virtual
Square con lo scopo di fornire ad ogni singolo processo una visuale person-
alizzata delle risorse del sistema su cui si trova, contrastando il principio
della Global View Assumption.

Virtual Square fornisce diverse tecniche per ottenere una virtualiz-
zazione parziale all’interno del sistema di ViewOS, sia a livello utente che
a livello kernel. Ognuno di questi diversi approcci ha i suoi vantaggi e svan-
taggi. Questa tesi si occupa di fornire un’analisi delle diverse metodologie
di virtualizzazione, sia tradizionale che parziale, e dei problemi ad esse
correlati.

Questa tesi è il risultato di un’estesa ricerca per individuare una nuova
tecnologia da impiegare nella creazione di virtualizzazione parziale, basan-
dosi sullo standard di eseguibile ELF. Inizia con una breve analisi delle
attuali alternative nel campo della virtualizzazione, per poi focalizzarsi
sullo studio del sistema di ViewOS, evidenziando i problemi correnti pre-
senti in esso. Il progetto vloader viene quindi proposto come una possibile
soluzione ad alcuni di questi problemi, con tanto di proof of concept fun-
zionante ed esempi che ne dimostrano le potenzialità.

Facendo injection di codice e librerie nel mezzo del processo di loading
dinamico degli eseguibili ELF, il progetto vloader riesce a promuovere un
approccio semplificato ed immediato per tracciare svariate system call.
Con i vantaggi elencati in seguito, questo metodo presenta performance
migliori e più portabilità fra i vari sistemi, rispetto alle attuali imple-
mentazioni di ViewOS. Per concludere, vengono presentati anche alcuni
svantaggi e problemi, con tanto di possibili soluzioni.
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Abstract (English)

The technology of partial virtualization is a revolutionary approach to
the world of virtualization. It lies directly in-between full system virtual
machines (like QEMU or XEN) and application-related virtual machines
(like the JVM or the CLR). The ViewOS project is the flagship of such
technique, developed by the Virtual Square laboratory, created to provide
an abstract view of the underlying system resources on a per-process basis
and work against the principle of the Global View Assumption.

Virtual Square provides several different methods to achieve partial
virtualization within the ViewOS system, both at user and kernel levels.
Each of these approaches have their own advantages and shortcomings.
This paper provides an analysis of the different virtualization methods
and problems related to both the generic and partial virtualization worlds.

This paper is the result of an in-depth study and research for a new
technology to be employed to provide partial virtualization based on ELF
dynamic binaries. It starts with a mild analysis of currently available
virtualization alternatives and then goes on describing the ViewOS sys-
tem, highlighting its current shortcomings. The vloader project is then
proposed as a possible solution to some of these inconveniences with a
working proof of concept and examples to outline the potential of such
new virtualization technique.

By injecting specific code and libraries in the middle of the binary
loading mechanism provided by the ELF standard, the vloader project
can promote a streamlined and simplified approach to trace system calls.
With the advantages outlined in the following paper, this method presents
better performance and portability compared to the currently available
ViewOS implementations. Furthermore, some of its disadvantages are
also discussed, along with their possible solutions.
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“You can’t trust code that you did not totally create yourself. No amount of
source-level verification or scrutiny will protect you from using untrusted code.

As the level of program gets lower, [...] bugs will be harder and harder to
detect. A well installed microcode bug will be almost impossible to detect.”

- Ken Thompson, Reflections on Trusting Trust, 1984
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1 Introduction

In the modern world of computing, virtual machines are employed in the major-
ity of development environments. If you are a developer, a system administrator
or even just a normal user, chances are you have been interacting with virtualiza-
tion every day. As a system administrator, managing multiple virtual machines
on a single host is much easier and more scalable than running everything on
individual and standalone machines. It provides an abstraction layer from hard-
ware defects and software incompatibilities.

On a smaller scale, targeting individual developers, virtualization can be pro-
vided through an integrated development environment. With quick prototyping
assisted by an interpreter and an appropriate language, like Java or C#, ap-
plications are often run on their own specialized virtual machine. It is much
simpler to program with a higher level language that can take advantage of
runtime optimizations and automatic memory management, compared to some
more traditional languages like C. It takes a great burden off the shoulders of
individual programmers.

A lot of research effort is still currently invested in optimizing and improv-
ing different virtualization techniques and mechanisms. Most of this effort,
however, is focused on researching new ways to achieve better results and gain
more and more performance out of the already existing virtualization methods.
Very few studies are actually aiming to propose new virtualization classes and
approaches to make the lives of the end users even easier than they currently are.

The concept of partial virtualization is exactly that: a newly proposed class
of virtualization that, unfortunately, has yet to reap the benefits of extensive
research and development. The idea is to provide a virtual machine monitor
to abstract individual applications and generate a separate view of the host’s
resources to each process. This approach has been formalized by the Virtual
Square laboratory through the ViewOS project.

Furthermore, there are multiple techniques that can be employed to achieve
partial virtualization. The current state of the ViewOS project supports differ-
ent approaches, each with their own pros and cons. This paper tries to improve
on that by proposing a new technology and proof of concept, the vloader, with
also its own pros and cons, improving on performance and simplicity but losing
on security compared to the alternatives. The vloader project applies system
call tracing and hijacking in order to create partial virtualization to individual
ELF binaries on Linux systems.
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2 The ELF Binary Format

The Executable and Linkable Format (ELF) is the de-facto standard for exe-
cutables in any modern Unix Operating System. It was first created and imple-
mented on System V machines[1] and then properly standardized by the Tool
Interface Standard[2]. It was later adopted by multiple Unix machines and
Unix-like systems, notably by Linux.

There are three main types of ELF object files: relocatable, executable and
shared objects.

Relocatable Files They hold all the data and code required to be linked to-
gether into a single executable or shared object by the static linker.

Executable Files These are what normal users refer to when talking about
”programs”, the file type contains the specifications and details required
to be executed by the operating system.

Shared Object Files They hold the code and data required to be linked in
two specific and different contexts. First, the static linker can process these
together with other shared or relocatable objects to create a new object
file. Second, the dynamic linker can process and combine them into a
single executable file to create a running process image in the operating
system memory.

The versatility of this format is that it can be both interfaced at static and
dynamic link time: the file layout presents a dualistic interface depending on
how and when the object file is being read.

Figure 1: The layout of an ELF file.

To achieve such dualism and have each object suitable for multiple tasks the
ELF binary layout, as portrayed in Figure 1, is composed of a file header, a
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program header table and a section header table which instruct the linkers and
loaders on where to find and how to read the required data:

Figure 2: The structure of an ELF file being read.

• The ELF header resides at the beginning of the file and holds data de-
scribing its structure, which ELF version is being used, what is the target
machine architecture and where to find the section and program headers.

• The section header table contains information describing each file section.
Sections are used by the static linker to assemble relocatable files together
as executable or shared objects.

• The program header table tells the system how to create a process image,
it is not needed on relocatable files but is required on executable ones.

This paper will be focusing mostly on program header segments as they play a
focal role in the virtualization process.

2.1 Shared Libraries

Shared ELF objects are often used as a means to achieve proper shared libraries
on a system. A shared library is a piece of data and collection of sub-routines
that can be shared and changed in a modular fashion[3]. There can be both
static and dynamic libraries usually with either .a or .so extension and both of
them play a different role in the process of building and running binary exe-
cutables.

A static library is bound to an executable program at compile time, the static
linker takes the code and data from the library and copies them into the final
executable. A dynamic library, in contrast, is not bound at compile time and
can be explicitly linked and loaded inside a process at runtime provided it is
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present in memory when the process is executed.

There can be many advantages of using dynamic libraries compared to static
libraries, the most obvious ones being having an executable smaller in size, hav-
ing an easier time when upgrading/bugfixing commonly shared routines and
being able to load code at runtime which makes development easier for plugin
developers.[4] The majority of modern operating systems favor dynamic shared
libraries over static shared ones for these reasons.

2.2 The Dynamic Loader

The dynamic loader (also known as runtime linker) is a program that is called by
the operating system’s kernel when it detects a dynamically linked executable
being launched or some specific system calls like dlopen(2) being invoked. The
task of the dynamic loader is to read and properly resolve all the symbols present
in the libraries and program being executed. This is because dynamic libraries
are usually compiled with PIC (Position Independent Code) and dynamically
compiled executables often have unresolved symbol references that need to be
tied together at runtime.[5]
To facilitate this process the ELF standard provides sections of data called
GOT(Global Offset Table)[6] and PLT(Procedure Linkage Table)[7] which are
tables of addresses and symbols to be filled at runtime by the linker when the
required symbols are requested by the process (lazy binding).

To link together a dynamic executable and its runtime linker the ELF standard
specifies a special segment called PT INTERP which contains the pathname
for the required interpreter on the system, this location is mostly standard and
consistent on Unix-like systems.

The peculiar aspect of the ELF dynamic loader, though, is that it is itself
an ELF binary, just more complex. It is not loaded in memory and it is han-
dled differently compared to other dynamic binaries in the system: it does not
specify any PT INTERP segment, it expects the kernel to give it full control
over its own memory mapping as it bootstraps itself.
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3 The Virtual Square Project

Virtual Square is a set of different projects sharing the idea of exploiting virtu-
ality by unifying concepts and creating tools for interoperability[8].

Figure 3: Tools and libraries in Virtual Square

The research field of Virtual Square involves several various aspects of vir-
tualization providing a range of different tools for specific tasks and purposes
as shown in Figure 3.

3.1 View-OS

View OS is a part of the Virtual Square project that focuses on virtual machines
to give to each individual process its own view of the underlying system. View
OS allows the users to change the perspective of their processes and work against
the global view assumption standardized by all other operating systems[9]. Each
process running inside the View OS virtual machine refers to a monitor that
traps and captures all the system calls executed and, on discretion of the user,
changes the context and resource requested by them. This makes it possible to
have a process running in a partially virtualized environment where all accesses
to a specific resource can be transparently rerouted to a different one.
Implementing virtual filesystem accesses (ViewFS) and virtual networking stacks
(VDE/Umnet) is rather trivial thanks to the rest of the tools provided by the
Virtual Square laboratory and users can individually manage different contexts
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and sandboxed environments on a single machine without having to load an
entirely new guest virtual machine.
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4 Virtual Machines

Virtual machines were originally defined as an efficient, isolated duplicate of
a real machine[10], their purpose is to provide a virtualized environment for
processes and systems while keeping as much transparency as possible with the
underlying host system. Virtual machines can be employed for a wide range of
different tasks.
By deploying a series of virtual machines inside a single hardware machine it
is possible to cut back a lot of budget and maintainability costs that usually
come with the need to keep track of multiple hardware devices. All of this at
the expense of some computational resources lost in the virtualization process
itself.[11] There are two main categories of virtual machines: those involving full
hardware/system virtualization and those concerning individual application and
process virtualization. The focus of this paper, however, lies exactly in-between
those two categories, through the definition of partial virtual machines.

4.1 System Virtualization

As technology evolves, new techniques are developed to improve the quality and
stability for all types of virtual machines. The most effort is usually spent on full
system virtualization, trying to cut down as much performance loss as possible
while still maintaining a fully virtualized environment. The most common full
virtual machine environments on Linux systems are Qemu/KVM, Virtualbox,
VMWare Workstation, Xen and Usermode Linux.

4.1.1 Qemu and KVM

Qemu (short for Quick Emulator) is a free software virtual machine that per-
forms full hardware virtualization. It can run in two different operating modes,
full system emulation and user mode emulation. The former provides a full
platform virtualization and emulates all the components and peripherals of a
computer including the processor. The latter provides an application level vir-
tualization which can be used to compile and execute foreign architectures on
the host machine.[12] One of its great advantages is to provide a development
platform and testbed for multiple architectures which would be too expensive
to purchase and use as real hardware.
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Figure 4: Qemu interfacing with kvm device.

In contrast, KVM (Kernel-based Virtual Machine) is a free software virtual-
ization infrastructure which usually goes hand in hand with Qemu. It is not by
itself a real virtual machine, it just provides a kernel-based virtualization inter-
face which can be used by user-space processes (usually Qemu) to set up guest
virtual machines, as shown in Figure 4. The advantage of using KVM virtualiza-
tion instead of native Qemu, aside from the obvious performance improvements
at the kernel layer, is that it simplifies the virtualization process using hardware
features of the processor itself like Intel VT or AMD-V.[13][14][15]

4.1.2 Virtualbox

Virtualbox is an open source virtualization software package developed by Or-
acle. Like KVM it can take advantage of hardware virtualization technologies
but does not require them except for some specific cases. The concept behind
its virtualization design is very similar to Qemu, in some cases it also takes ad-
vantage of its recompiler for software based virtualization.[16] One of its main
disadvantages, though, is that it supports only x86 (32 and 64 bit) virtualization
and no other foreign architecture.

4.1.3 VMWare and VMWare Workstation

VMWare is a company that develops proprietary virtualization products, their
flagship is the VMWare Workstation, a hypervisor running on x64 architectures
that lets the user set up multiple guest virtual machines as full system virtu-
alization. Very similarly to its open source competitors VMWare workstation
employs several virtualization techniques at binary level, translating machine
code at runtime and taking advantage of hardware virtualization features of the
CPU.[17]

4.1.4 Xen and Hardware Hypervisors

Unlike the other examples, Xen should probably be listed in a category of its
own. It is a free software native hypervisor, it runs on the bare metal and acts
as host operating system in order to run in a more privileged CPU state. It can
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host several full system virtual machines as guests called domains. The main
one is labeled dom0 and it operates on a higher privilege level, it is the only
domain with direct access to the underlying hardware of the machine and it is
used to setup and launch all the other guest domains(domU).

Figure 5: Xen system architecture.

What is revolutionary about Xen, which excels over other virtual machine
designs, is that it runs its own operating system kernel on the bare metal to pro-
vide as little overhead as possible. It has its own scheduler and memory manager
and it offloads all the hardware support and drivers to the guest OS running as
dom0. It contains only the code required to detect and start secondary processes,
set up interrupt routing and perform PCI bus enumeration.[18] This makes it
very small with very little memory footprint as it tries to be as unintrusive as
possible.

4.1.5 User Mode Linux

User mode Linux(UML) should also deserve its own category, it is a virtual
Linux machine that runs on Linux itself. As its creator said “UML is a port of
Linux to Linux [...] it is a port to the software interface defined by Linux rather
than the hardware interface defined by the processor”.[19]
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Figure 6: Structure of UML running inside Linux.

The main trait that differentiates UML to other virtualization technologies
is that it is not really a virtual machine by traditional meaning, it is an actual
process running a custom virtual OS as user mode, as seen in Figure 6. This
makes it more independent and isolated from both the host and the underlying
hardware architecture, although it makes it lack in performance.

4.2 Process Virtualization

On the other side of the coin, opposed to full system virtualization, lies pro-
cess virtualization. This type of virtualization focuses on providing a contained
environment for individual processes without having to create a full system un-
der them. Examples of notable process virtual machines are the JVM (Java
Virtual Machine), Microsoft’s CLR (Common Language Runtime) and Dalvik.
This type of virtualization usually comes with specific platforms and program-
ming languages being compiled to a target intermediary bytecode which is then
interpreted by the virtual machine.[20]
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Figure 7: Architecture of the JVM

There are several advantages with this type of approach, by providing an
intermediate step between compilation and actual execution it is possible to
defer specific types of optimization at runtime while offloading most of the com-
pilation process to the actual virtual machine. This type of technique is known
as Just-in-time Compilation or Selective Optimization[21] and has become very
popular in modern high level programming languages. Another important ad-
vantage is the portability and universality of a single application which can be
executed on any host and architecture as long as an appropriate interpreter is
provided.[22]

4.3 In-between: Partial Virtual Machines

In the middle, between these virtual machines, lies the idea of a partial virtual
machine. Its purpose is to virtualize only portions of a specific application (or
multiple applications) on demand by the user. It cannot be considered a full
virtual machine because it does not apply full virtualization to a whole envi-
ronment and yet it is not an application-specific virtual machine because its
virtualization can be applied to generic processes and not only to a specific sub-
set of programs (unlike the JVM, for example, which requires binaries compiled
in Java bytecode). It is thanks to this type of technology that it is possible to
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develop tools like View OS for the Virtual Square laboratory.

Figure 8: Virtualization in ViewOS

What a partial virtual machine needs to do, in order to be considered such,
is to have a way to detect and re-route all possible system calls from a running
process. System calls provide a way from user space to communicate with kernel
space and request/operate system-wide resources at the control of the underly-
ing kernel. By placing a monitor in the middle of each system call it is possible
to redirect them (either some specific syscall or all of them at once) somewhere
else and create a fake kernel that virtualizes the machine.
Currently there are three ways to inject this type of virtualization inside exe-
cutable processes in ViewOS: Ptrace, Utrace and LD PRELOAD[23], this paper
will introduce a fourth method in the following sections: the virtual loader (or
vloader in short).

4.3.1 Ptrace

Ptrace (which stands for process trace) is a debugging and tracing facility found
on most Unix-like systems, its primary use is to trace programs and it is widely
used by tools like gdb and strace. ViewOS uses this type of technology as well
to listen to all the system calls and capture the ones requiring virtualization,
routing them to the umview monitor. Ptrace, however, was not designed for
virtualization since its original purpose was debugging, its performance is not
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optimal and has some limitations and downsides.

First of all, the standard ptrace interface is only able to transfer just one word of
memory to the kernel for each syscall trapped which in turn forces many context
switches between user and kernel if more memory is required. This causes a lot
of performance loss since context switches are very slow and taxing operations.
Furthermore it is not possible to nest ptrace calls, this makes it impossible to
use programs and tools that require the ptrace interface to work (like gdb and
strace) inside the virtual machine itself.
Another big problem of ptrace, again performance related, is that it is not pos-
sible to avoid a context switch between kernel and user space when the traced
process invokes a system call. This gives a lot of performance overhead, espe-
cially on those syscalls that do not require any kernel interaction because they
should just be rerouted to the virtualization monitor instead.

4.3.2 Utrace and Kmview

Utrace is the natural evolution of ptrace on the kernel side. It is a tracing
utility for kernel modules developed by Roland McGrath. It serves as a general
purpose substitute of ptrace at kernel level for developers to implement in their
own modules. Kmview takes advantage of that and enables ViewOS to apply
the required virtualization at kernel-level thanks to its kernel module.

Performance-wise, compared to ptrace, utrace is an obvious winner. The speed
up received by running the virtualization monitor at kernel level is similar to
kvm compared to normal qemu, it is simply faster. There is no forced context
switching on system calls and there are no memory limitations when communi-
cating with the monitor.

However, there are two big problems to utrace: first of all, it is not officially
recognized by the Linux Kernel and requires custom patches and custom builds,
this makes it harder to distribute and run for common users and less likely to be
implemented on most Linux distributions. As a consequence, the second issue,
its development has mostly been dropped and the maintainers have all moved
on to other projects. Every time a new kernel is released the utrace patches
have to be applied and with no developers willing to work on it, it simply means
that the utrace/kmview approach is not the optimal solution.
Another problem that utrace does not solve, compared to ptrace, is that it does
not allow for properly nested virtual machines.

4.3.3 LD PRELOAD and Purelibc

Purelibc is a C library developed at the Virtual Square laboratory to provide
“pure” access to the system call interfacing functions of the C language. It runs
on eglibc and glibc but tries to abstract the actual features of the language from
their implementation, keeping them “pure”. Through the LD PRELOAD fea-
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ture it is possible to preload the purelibc functions and interpose them between
the process and the monitor. This way it is possible to capture the syscalls and
either let them through the kernel or reroute them to ViewOS.

With this approach it is possible to bypass the forced context switch for virtual-
ized system calls and provide a performance improvement to the virtualization
process. Although it does not perform as well as kmview it is easier to imple-
ment because it does not require any additional modification to the kernel and
is widely available to all Linux users.

At the same time, though, it does have its own problems. It does not behave
properly on some specific syscalls like dlopen(2) and fopen(2) and is overall in-
consistent. Some specific setuid programs cannot be injected with LD PRELOAD
because of security reasons and it is still required to fall back to the ptrace ap-
proach for most cases.
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5 Virtualization on ELF Binaries

There are different ways to possibly overcome some of the the partial virtual-
ization limitations outlined in the previous section and develop a new way to
capture system calls. The most straightforward approach would be to analyze
and modify the binary format used to interface with the kernel. When a system
call is executed, a very specific instruction is passed to the processor and is then
trapped by the kernel. Originally, on the old i386 architecture, the int 0x80
interrupt vector was used to transfer control to the kernel.[24] This would have
been the perfect point to attack on programs in order to capture every possible
system call being executed.

5.1 ASM Injection

This approach requires proper analysis of the program to be able to provide
modifications before it gets executed. Eventually, all instances of int 0x80 in
the compiled executable must be replaced with trampolines pointing to a virtual
system call dispatcher embedded into the target itself.

Implementing this solution manually is trivial, using Unix provided tools like ob-
jdump and hexedit it is possible to create copies of system binaries and save them
as their own independent executable. Doing the same automatically through
a script or a program written in C is a bit more troublesome: detecting all
proper int 0x80 instructions is not immediate and requires more advanced an-
alytical techniques. Sometimes it is possible to encounter a byte sequence that
translates to an int 0x80 while not being actually so, it could be a payload of
a function, for example, some variable in the code or even just a misaligned
memory address in the binary. A big limitation to this is also imposed by the
system itself and its security features that prohibit the user from patching and
excuting binaries at runtime with arbitrarily injected code. Re-creating a single
binary in a specially allocated slot of memory and then running it (through
a jmp instruction for example) is far from simple and often denied by several
kernel hardening features on specific systems.

Regardless of the difficulties outlined above, in reality this strategy would still
be irrelevant on most modern systems for the following reasons:

Permissions
Due to the impossibility of running patched binaries from memory at run-
time, it is necessary to save the patched program someplace else on the
filesystem. A good location would be /tmp for example (ignoring some
systems which deny executing applications from /tmp, easy to circum-
vent). As a consequence to this, however, all permissions and setuid flags
from the original binary are lost and most operations will most likely fail
to execute properly.
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Sysenter/Sysexit
Due to the processor’s architecture, starting from the Pentium II, x86
platforms have been very slow at handling int 0x80 requests, hence Intel
provided new instructions called sysenter and sysexit for faster context
switching between user and kernel mode. Since the 2.5 kernel, Linux sys-
tems have implemented support for these instructions pushing forward this
new interface. Through a complex and ingenious trick the Linux kernel
now provides an abstraction layer called linux-vdso.so (previously linux-
gate.so) under the shape of a virtual dynamic library. With this library
all system calls are routed through this gateway and then processed by
the kernel without relying on interrupts[25], effectively rendering manual
interrupt patching impossible to achieve.

Dynamic Binaries
Except for some peculiar systems and specific corner cases, nowadays all
Linux systems make heavy use of shared libraries and dynamic binaries
when compiling software. This means that one would have to recursively
analyze, re-write and re-assemble most libraries and that implies a mag-
nitude of complexity too bigger to handle. Especially when considering
advanced dynamic binding techniques like dlopen(2) which allow a process
to add new libraries at runtime.

5.2 Libc Manipulation

The next logical step is to look for a commonly shared interface between all
processes that wraps around every system call at a higher level of the call chain.
This abstraction layer is the actual libc library: the implementation of the
standard C functions provided by the system which also include every syscall
available to the kernel.

By monitoring the libc it is possible to capture every single system call at a
native library level regardlessly of the kernel’s implementation or architecture.
This idea resembles the LD PRELOAD hack used by ViewOS and in reality the
base concept is not far from that. As outlined in the previous section, lower-
ing the abstraction level to machine code is not feasible and raising it higher
than the libc lets through too much unmonitored data. Directly in the middle
between these two levels lies a program whose task is to assemble code from
multiple libraries into a single process: the dynamic loader.
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Figure 9: Injection example with a dynamic loader.

Through specific techniques and hacks used to capture the loading process it
is possible to let an attacker successfully interpose his own library implementa-
tion in the middle between the target application and the native libc, as shown
in Figure 9. Doing so efficiently re-routes all the system calls to custom func-
tions without the added overhead that comes with ptrace or the inconveniences
of an utrace-patched kernel.

23



6 The Vloader Project

The purpose of the virtual loader project is to provide a simple and easy inter-
face to partial virtualization through modifications of the Linux ELF dynamic
loader in a similar fashion to the one explained in the previous section.

There are several problems to take in consideration when working on ELF bi-
naries and especially on the dynamic loading process. Although the ELF stan-
dard is unified and universally accepted by every Unix-like system, there are
still plenty of differences between architectures and implementations. The vari-
ous processor architectures provide multiple ways to achieve memory relocation
and dynamic loading and a loader has to keep that in mind when operating on
each ELF segment to map in memory. The SPARC architecture, for example,
is much less developer-friendly compared to x86 architectures when relocating
addresses[26] and a lot of corner cases and specific hacks come into play to
achieve a unified algorithm on all platforms. With the advent of multithreaded
and multicore technologies, ELF binaries had to be adapted to support proper
threading and data storage through TLS (thread-local storage) capabilities[27]
which have not been fully supported on all systems (especially older ones) yet.
This, in some ways, breaks compatibility with some specific binaries and li-
braries compiled for TLS on non-TLS operating systems and in turn makes
some loaders effectively incompatible on unsupported platforms.

6.1 The Technology

The task of a dynamic loader is a very complex one, it has to allocate memory
addresses and map the executable to be run. It has to resolve all various reloca-
tion issues, look for all the dynamic libraries in the specified paths, fix memory
alignment problems and even bootstrap itself. Most of the time such procedure
is ran recursively into each library, keeping track of all visited symbols, their
version number, their precedence and whether or not they are compatible with
the format requested by their dependencies.

The most important feature of a dynamic loader is the necessity to be hooked
into the running process in order to be able to resolve lazy symbol bindings and
relocations at runtime. Whenever a process calls for an unresolved symbol, the
loader provides this hooking mechanism by pointing all the PLT entries on the
ELF binary to the same GOT address, the first, which is an entry point for a
shared lookup function.
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Figure 10: Resolving lazy binding with PLT and GOT lookup.

This function compares the requested symbol with a list of available hashes
and, if the correct library was previously loaded, the selected PLT entry is
modified to point to the proper GOT address.[28] This makes it possible for
subsequient calls to the same function to directly jump to the resolved address
without passing through the loader, causing only a slight overhead on the first
call but not on the ones following, as shown in Figure 10. This is the method
exploited by the vloader project to capture every single libc call before it reaches
the kernel.

For all of the reasons outlined above and the huge scale of the project, the
current version of the vloader is implemented on top of the existing glibc dy-
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namic loader (specifically, the eglibc loader, version 2.13). The main purpose is
to provide a working proof of concept to be improved and eventually specialized
in the future.

The first step taken to develop the vloader was to find the appropriate lookup
function in the glibc code. Adding a few lines of code to said function al-
lows the loader to call specialized functions from an external library (called
libviewload.so) and overrule some requested system calls. This lookup function
is the dl lookup symbol x() found in the elf/dl-lookup.c source file.

l ookup t
i n t e r n a l f u n c t i o n
d l l ookup symbo l x ( const char ∗undef name ,

s t r u c t l ink map ∗undef map ,
const ElfW(Sym) ∗∗ r e f ,
s t r u c t r s cope e l em ∗ symbol scope [ ] ,
const s t r u c t r f ound ve r s i on ∗ vers ion ,
i n t t yp e c l a s s , i n t f l a g s ,
s t r u c t l ink map ∗ skip map )

{

. . .

bool modi f i ed ;
undef name = obta in v i r t name ( undef name , &modi f i ed ) ;

. . .

}

s t a t i c const char ∗
obta in v i r t name ( const char ∗ r ea l , bool ∗mod)
{

∗mod = f a l s e ;
v i r t l i b r a r y ∗ l i s t = v i r t l i s t ;
whi l e ( l i s t != NULL){

i f ( strcmp ( rea l , l i s t −>check ) == 0){
∗mod = true ;
break ;

}
l i s t = l i s t −>next ;

}
i f (∗mod)

return l i s t −>v i r t add r ;
r e turn r e a l ;
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}

Libviewload.so is a library that can be provided ad-hoc by the user and has
to be paired with a configuration file called vloader.conf. Through the usage
of this external configuration file, parsed by the vloader, it is possible to add
and remove function symbols to be virtualized without recompiling the whole
project. If the vloader executable cannot find the libviewload.so library in its
library paths it will print an error and virtualization will fail to start.

The following syntax is used to tell the vloader to map a certain function on top
of another one. Through a double indirection and a dummy function it is then
possible to call the originally redirected function, providing full transparency to
the target process.

r e a l f u n c t i o n −> v i r t u a l f u n c t i o n
dummy function −> r e a l f u n c t i o n

This snippet of code, in the configuration file, will transform all calls to real function()
into virtual function() and all dummy function() into real function(). Note that
the number and type of parameters are not specified. Implementing the correct
signature among different functions is a task of the developer and not of the
loader itself. With an incorrect number and/or type of parameters the behavior
is undefined.

With this virtualization mechanism one could implement the Virtual Square
purelibc library on top of the libviewload.so library and then drop the ViewOS
dependencies from ptrace, or similar hooking techniques, in favor of this more
streamlined and simplified approach.

6.2 Examples

Providing standard system call tracing with vloader is simple. Following are
two examples of vloader.conf and libviewload.so files to generate a tracing ap-
plication with a behavior similar to strace or even manipulate the results of libc
system calls to create different outcomes in standard applications.

For instance, through a bash script, it is possible to read the system’s con-
figuration and header files to generate a list of all the accepted system calls.
It is then possible to parse such results and generate the following setup (the
actual files are much too bigger to include in this paper, these are small excerpts
taken from the originals):

vloader.conf

. . .
#Red i rec t f o r read
read −> v i r t r e a d
r e a l r e a d −> read
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#Redi rec t f o r open
open −> v i r t open
r ea l open −> open
. . .

viewload.c

. . .
//Dummy func t i on f o r read
i n t r e a l r e a d ( void ∗ params )
{

r e turn −1;
}

i n t v i r t r e a d ( void ∗params )
{

f pu t s (” read was c a l l e d \n” , s t d e r r ) ;
r e turn r e a l r e a d ( params ) ;

}
i n t r e a l open ( void ∗ params )
{

r e turn −1;
}

i n t v i r t open ( void ∗params )
{

f pu t s (” open was c a l l e d \n” , s t d e r r ) ;
r e turn r ea l open ( params ) ;

}
. . .

This code can be compiled with the following command and the result has
to be placed in the appropriate LD LIBRARY PATH:

gcc −o l i bv i ew l oad . so −Wl,−soname , viewload \
−fPIC −shared viewload . c

Vloader paired with this type of library is now able to trace most system calls
on the host system.

Linux $ . / v loader /bin / l s
g e t r l im i t was c a l l e d
uname was c a l l e d
s t a t f s 6 4 was c a l l e d
s t a t f s 6 4 was c a l l e d
i o c t l was c a l l e d
l i b s r c v loader v loader . conf
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e x i t was c a l l e d
Linux $ /bin /more . . / h e l l o
He l l o world !
Linux $ . / v loader /bin /more . . / h e l l o
a c c e s s was c a l l e d
a c c e s s was c a l l e d
a c c e s s was c a l l e d
s i g n a l was c a l l e d
s i g n a l was c a l l e d
s i g n a l was c a l l e d
s i g n a l was c a l l e d
s i g n a l was c a l l e d
f c n t l was c a l l e d
He l lo world !
e x i t was c a l l e d

Another interesting setup for the vloader is to actually modify the behavior
of some individual system calls to simulate partial virtualization. The follow-
ing configuration makes vloader change every instance of open(“/etc/passwd”)
into open(“/etc/hosts”), in a naive attempt to prevent a user from reading the
passwd file:

vloader.conf

open −> v i r t open
r ea l open −> open
s t a t −> v i r t s t a t
r e a l s t a t −> s t a t

viewload.c

i n t v i r t open ( const char ∗pathname , i n t f l a g s )
{

i f ( strcmp (pathname ,”/ e t c /passwd ”) == 0)
return r ea l open (”/ e t c / hos t s ” , f l a g s ) ;

e l s e
re turn r ea l open ( pathname , f l a g s ) ;

}

i n t r ea l open ( const char ∗pathname , i n t f l a g s )
{

r e turn −1;
}

i n t v i r t s t a t ( const char ∗path , s t r u c t s t a t ∗buf )
{

i f ( strcmp ( path ,”/ e t c /passwd ”) == 0)
return r e a l s t a t (”/ e t c / hos t s ” , buf ) ;
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e l s e
re turn r e a l s t a t ( path , buf ) ;

}

i n t r e a l s t a t ( const char ∗path , s t r u c t s t a t ∗buf )
{

r e turn −1;
}

readpasswd.c

This is the example program used to read the actual passwd contents.

i n t main ( void )
{

i n t fd = open (”/ e t c /passwd ” , ORDONLY) ;
char buf [ 4 0 9 6 ] ;
s s i z e t sz ;
whi l e ( ( sz = read ( fd , buf , 4096)) != 0){

p r i n t f (”%s ” , buf ) ;
}

c l o s e ( fd ) ;
r e turn 0 ;

}

If the readpasswd program is run normally, without vloader, it just opens the
contents of /etc/passwd and prints them on screen. However, since the open(2)
and stat(2) system calls are being virtualized inside vloader, this is the result
of readpasswd run inside the virtual environment:

Linux $ . / v loader . / readpasswd
1 2 7 . 0 . 0 . 1 l o c a l h o s t
1 2 7 . 0 . 1 . 1 l i nux

# The f o l l ow i n g l i n e s are d e s i r a b l e f o r IPv6 capable hos t s
: : 1 ip6−l o c a l h o s t ip6−loopback
f e00 : : 0 ip6−l o c a l n e t
f f 0 0 : : 0 ip6−mcastpre f i x
f f 0 2 : : 1 ip6−a l l n od e s
f f 0 2 : : 2 ip6−a l l r o u t e r s
Linux $

These are the contents of the /etc/hosts file, not /etc/passwd. As expected, the
virtualization mechanism is working properly.

There are several other ways to play around with this technology, injecting new
features and experimenting with different system calls is very straightforward
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and simple, there is no additional compilation time required. A user just has
to modify the vloader.conf file and write his own version of the libviewload.so
library.

6.3 Advantages

There are several advantages with this method compared to all the other cur-
rently used techniques in ViewOS:

Speed

Injecting libraries through a native loader is fast. It is much faster than
forcing a context switch with ptrace and there is virtually no overhead.
Every injected function behaves exactly as if it existed in the original code,
no slowdowns except for the symbol lookup. By disabling lazy binding
(through the LD LAZY environment variable) the loader will be slower to
initialize but the lookup overhead will disappear completely as well. The
injection process is not affected by it.

Architecture independence

Using an already existing codebase (the glibc) gives the advantage of plat-
form independence. Ptrace depends heavily on the specific architecture,
different registers and cpu models behave differently and hooking system
calls is harder to achieve through a universal algorithm. The loading and
linking code in the glibc is already ported on all CPU architectures, re-
lieving the burden of such task from the ViewOS developers.

No kernel modules required

Contrary to the utrace approach, all Linux kernels support dynamic load-
ing of binaries and the vloader project does not require specific kernel
features that would need to be compiled by the end user.

Nested virtual machines

The dynamic load hook process is completely transparent in regards of the
running applications. Unlike ptrace and kmview it allows for a simple nest-
ing mechanism to run virtualization inside an already existing instance of
ViewOS. It just has to be handled by the partial virtual machine monitor,
independently of the syscall trapping procedure.

Ptrace inside ViewOS

It is theoretically possible to run a ptrace process inside the virtualized
environment. This gives the advantage of some tools like strace and gdb in-
side the virtual machine which are not currently supported by the ViewOS
project.

6.4 Inconveniences

Although the advantages may be tempting, vloader still has its own fair share
of inconveniences too:
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Glibc size

The glibc (and its eglibc variant) is massive. It has a very big amount of
code and dependencies that are very cumbersome to work with, especially
since most of its code is related to the actual C library and not to the dy-
namic loader itself. Although the platform independence advantages have
already been explained, the disadvantages may as well outweigh them.
In order to compile and run a simple instance of vloader, it is necessary
to compile (with multiple passes) the whole C library and related GNU
utilities. This process can take hours upon hours on weaker machines and
most of its outcome is unnecessary for the purpose of the project itself.
This also makes the glibc depend heavily on its version and platform: dif-
ferent Linux distributions support different versions and variations of the
same C library and may or may not be entirely supported between each
other. Custom patches have to be provided with the vloader project to
run on each specific Linux system.

Security issues

Security-related problems are twofold for the vloader project. Firstly,
running vloader with root privileges is not suggested and accidentally in-
stalling it on top of the original Linux loader will create a lot of security
troubles. Vloader is designed to be run with individual user privileges in
order not to cause any actual harm to the system.

Secondly, the security issue is rooted within the nature of virtual ma-
chines. Traditionally, one should not be able to escape outside of the
virtualization environment. Due to the technology used by the vloader
project, it is still possible to write native asm code and manually call the
underlying kernel, escaping out of the virtualization’s walls. Depending on
the requirements of the end-user, a different approach (like ptrace) would
be more secure, yet slower.

Statically compiled binaries

Statically compiled binaries do not require a dynamic loader to be exe-
cuted. They are directly mapped in memory by the kernel and then exe-
cuted without having to load external libraries or dependencies. Although
more and more systems are moving to dynamic binaries for everything,
there are still cases where running statically compiled executables is sug-
gested (i.e. embedded systems and critical recoveries). In this case, the
vloader program will not be able to run the virtualization environment,
hence static binaries are not yet supported with this mechanism.
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7 Current State of the Project

The current version of the vloader project is still in heavy development, it relies
on the glibc and it is very sensitive to different versions and systems. Due to
the peculiar versioning of the glibc and all its different forks and distro-specific
backports, it can be very unstable on most systems. The current release can be
successfully run on the Debian GNU/Linux distribution on x86, both 32 and 64
bits. It is technically possible to run the project on every glibc version, effec-
tively targeting any Linux distribution, it is only required to select the proper
libc version. The series of patches necessary to implement the vloader on top
of the standard loader are not affected by the individual versioning number.

At the moment the virtualization process has come out successful with all types
of function calls and system calls from the C library. The hooking mechanism is
not affected by the parameters or by different symbol versions for the requested
libraries, it presents no problems nor inconsistencies. It is not possible to escape
the virtualized environment unless communicating with actual assembly code,
as outlined in the previous section. It is also possible to load further libraries
through standard means like LD PRELOAD or simply running ptrace on top
of it. The procedure is entirely transparent.

The current vloader is only presented as a working proof of concept and has
not yet been implemented inside ViewOS or any other Virtual Square project.
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8 Future Developments

There are still a lot of features to be implemented in the project, all the flaws
and imperfections will have to be eventually fixed. The most troublesome of all
is the huge net of dependencies taken from the glibc. A solution would be to
effectively branch off from the original glibc code and separate the actual loader
from the rest of the C library. This means modifying and removing all the
makefile and scripts currently deeply rooted in the build process of the whole
library. It is not an easy and simple task. A more sensible approach would be
to re-write the actual loader code from scratch as a standalone project, taking
architecture dependent code from the original GNU code. Separating the actual
vloader from the glibc means keeping an independent codebase and not being
influenced by every individual glibc versioning change which could potentially
break compatibility with the various Linux distributions.

Another very important problem to tackle would be the current impossibility
to virtualize statically compiled binaries. A possible theoretical solution would
be to analyze the ELF binary structure of static executables and look for the
GOT addresses encoded in the data. A simple re-route of such addresses to the
injected library would then emulate the same behaviour presented in dynami-
cally loaded binaries and provide an opening for the actual virtualization hook.

The matter of security is a tougher issue than the others. As explained ear-
lier, when working with virtualization one should always be aware of what type
of security and what type of performance are required. Undoubtly, ptrace is
better security-wise: it is simply impossible to escape the virtual jail created by
ptrace. The vloader approach, though, leaves space for asm code and old fash-
ioned int 0x80 instructions to simply escape its virtual net. Employing extensive
binary analysis techniques it could be possible to detect dangerous executables
and libraries trying to escape the jail and have the vloader refuse to start them.
This approach, unfortunately, is very taxing and difficult to develop successfully.

Another interesting improvement would be checking the linux-vdso.so library,
the virtual library used by the kernel to provide a user space kernel mapped
interface for system calls. If it were possible to hook the vloader library at that
level, instead of the native libc layer, the whole mechanism would be faster, more
secure and overall more independent from the Linux system and its supported
system calls.
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9 Conclusion

There are multiple ways to achieve proper virtualization on modern computer
systems. Some of them focus on the task of “traditional” virtualization of com-
plete system environments, like cloning a specific machine or platform to be
run inside a host. Some others, instead, target single applications and pro-
vide a smaller virtual environment for such programs to live in. Both of these
approaches live at the two antipodes of a fictional virtualization scale. Right
in-between lies a different mechanism: the Virtual Square laboratory’s idea for
partial virtualization through the ViewOS project.

Partial virtualization, as employed by ViewOS and the Virtual Square project,
takes care of abstracting the view each single process has of its own system,
working against the global view assumption. It traps each system call, a mecha-
nism used to communicate with the kernel, and uses a monitor to decide whether
or not some specific resources should be virtualized. There are different ways
to build a monitoring program to trap system calls, it is possible to hook to a
process at user level via the ptrace interface, it is possible to develop specific
kernel modules to avoid some context switching overhead and it is also possi-
ble to interpose custom developed libraries like the purelibc to intercept some
function calls.

The vloader project is a new approach to partial virtualization, it is a working
proof of concept designed to hook into the code in charge of loading processes
and their related dynamic shared libraries. Modifying the loading behavior it
is possible to intercept the C library interface of each individual system call,
redirecting it from the application’s level to either an external monitor or to
the kernel itself. It is an alternative that shows no noticeable overhead but
provides some possible security holes in the virtualization jail which have yet to
be resolved.

The world of virtualization is still in heavy development, there are plenty of
different approaches and techniques employed in the design of virtual machines.
These mechanisms span from data analysis and runtime optimization to somet-
ing closer to the metal, like processor-based hardware virtualization and literal
machine code translation. The vloader project itself, with its original design,
is still a working experiment with various openings and challenges to be solved
and implemented to allow the project itself to grow and mature enough to be
eventually implemented inside the ViewOS system and the Virtual Square in-
ternational laboratory.
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