ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
SEDE DI CESENA
SECONDA FACOLTA DI INGEGNERIA CON SEDE A CESENA
CORSO DI LAUREA MAGISTRALE IN INGEGNERIA
BIOMEDICA

TITOLO DELLA TESI

MODELING AND SIMULATION OF A SYNTHETIC
GENETIC CIRCUIT THAT IMPLEMENTS A
MULTICELLED BEHAVIOR IN A GROWING

MICROCOLONY OF E. COLI

Tesi in:

Bioingegneria Molecolare e Cellulare LM

Relatore

Prof. Ing. Stefano Severi

Correlatori Presentata da
Prof. Emanuele Domenico Giordano Andrea Samoré
Ing. Seunghee Shelly Jang
Prof. Ing. Eric Klavins

Sessione ITI
Anno Accademico 2011/2012

Contents

1 Molecular and Synthetic Biology 12
1.1 Nucleic Acids 12
1.2 DNA . . 13
1.3 RNA . . o 15
1.4 Transcription L 16
1.5 Translation L 17
1.6 Synthetic Biology oo 18

1.6.1 Gene Expression Regulation 19
1.6.2 Modeling 22

2 Leader Election Project 24
2.1 Introduction 24
2.2 Genetic Circuito 25
2.3 Genetic components 26

3 Mathematical Model 31
3.1 Input functions 31

3.1.1 Promoter regulated by a repressor 31
3.1.2 Promoter regulated by an activator 33
3.1.3 Binding of an inducer to a transcription factor 33
3.1.4 Hybrid promoter regulated by a repressor and an acti-
vator L 35
3.2 Enzyme Kineticso 36
3.3 Model of the Leader Election Circuit 38
3.3.1 Assumptions.o 38
3.3.2 Terms of the model 38
3.3.3 Parameters 0oL 41

4 Simulations and Results 43
4.1 groenvironmento 43
4.2 Sensitivity Analysis L 45

4.2.1 Cost Function 47

4.2.2 Ranking 49
4.3 Results. 51
4.4 Conclusions 60
4.5 Future application: pattern formation 61
4.5.1 Spots. 63
452 Rings 66
4.5.3 Considerations 68
Appendix 69
5.1 Python script to split simulations on a Linux cluster. 69
5.2 groModels. 78
5.2.1 Leader Election 78
5.2.2 Spots. 83
5.23 Ringso 84
5.3 Matlab Code 85

List of Figures

1.1
1.2
1.3
1.4

2.1

2.2
2.3
24

3.1
3.2
3.3

4.1

4.2

4.3
4.4

4.5
4.6

Nucleotides [1] 12
DNA chemical structure [2] 14
Scanning electron micrograph of Escherichia coli [3] 18
Structure of a bacterial promoter 20
Example of the wanted behavior. Leader cells are green, fol-

lowers are red and undecided are grey. 24
Proposed genetic circuit of the Leader Election project [4] . . 25
L-Arabinoseo 27
General structure of N-Acyl Homoserine Lactone (AHL) . . . 29

Input function of a gene regulated by a repressor with k; = 10 33
Input function of a gene regulated by an activator with k; = 10 34
Input function of an hybrid promoter with k4 = ksgr = 10

andn =2 36

Simulation of stochastic production and degradation of red
fluorescent protein (RFP). The cells are genetically identical
but the amount of protein differs slightly between individuals,
note the different red intensity oL 44
Example of sensitivity plot. The parameter (r,.; is varied
over about two orders of magnitude around its nominal value,
depicted as a yellow square. 48
Fitting of the cost function 48
Structure of the scatter plot used to rank the parameters. On
the left, the information that has been used to place the 57,1

dot in the right-hand graph. 49
The four zones of the scatter plot used to rank the parameters 50
Scatter plots when the goal is set to a majority of followers. . 52

4.7 The goal is set to a majority of followers. Left-hand column:
cost function of the four most promising parameters. Right-
hand column: the corresponding fraction of leaders, followers
and undecided cells are depicted in green, red and black.

4.8 Scatter plot when the goal is to obtain a population in which
there are about as many leaders as followers.

4.9 The goal is set to a colony split in half between leaders and
followers. Left-hand column: cost function of the four most
promising parameters. Right-hand column: the corresponding
fraction of leaders, followers and undecided cells are depicted
in green, red and black.o o000

4.10 Scatter plot when the goal is set to a majority of leaders. . . .

4.11 The goal is set to a majority of leaders. Left-hand column:
cost function of the four most promising parameters. Right-
hand column: the corresponding fraction of leaders, followers
and undecided cells are depicted in green, red and black.

4.12 Example of pattern created by a Ben-Jacob’s bacterial strain.
The image of P. vortex colony was created at Prof. Ben-
Jacob’s lab, at Tel-Aviv University, Israel

4.13 Simulation of the spots-forming finite state machine

4.14 Simulation of the rings-forming finite state machine

5.1 Python script diagram

29

Sommario

La Biologia Sintetica ¢ una disciplina relativamente nuova, nata nei primi
anni duemila, che porta il tipico approccio ingegneristico al campo delle bio-
tecnologie: astrazione, modularita e standardizzazione vengono utilizzati per
tentare di domare l’estrema complessita dei componenti e costruire sistemi
biologici artificiali con una funzione definita. Questi sistemi, tipicamente cir-
cuiti genetici sintetici, vengono perlopit implementati in batteri e semplici
organismi eucariotici come ad esempio i lieviti. La cellula diventa quindi
una macchina programmabile ed il suo linguaggio macchina ¢ costituito da
sequenze nucleotidiche.

Il lavoro di tesi e stato svolto in collaborazione con ricercatori del De-
partment of Electrical Engineering dell’Universita di Washington a Seattle
e con una studentessa del Corso di Laurea in Ingegneria Biomedica dell’U-
niversita di Bologna: Marilisa Cortesi. Nell’ambito della collaborazione ho
contribuito ad un progetto di Biologia Sintetica gia avviato nel Klavins Lab,
in particolare mi sono occupato della modellazione matematica e simulazione
di un circuito genetico sintetico pensato per implementare un comportamento
multicellulare in una microcolonia batterica.

Nel Primo Capitolo sono introdotte le basi della biologia molecolare, in
particolare si accenna alla struttura degli acidi nucleici e vengono illustrati i
processi di trascrizione e traduzione che danno luogo all’espressione genica.
Sono inoltre enunciati i principali meccanismi di regolazione dell’espressio-
ne genica sia al livello trascrizionale che traduzionale. Un’introduzione alla
biologia sintetica completa la sezione.

Nel Secondo capitolo e descritto il circuito genetico sintetico pensato per
far emergere spontaneamente due gruppi di cellule differenti, detti leaders e
followers, a partire da una colonia isogenica. Il circuito si basa sull’intrinseca
stocasticita dell’espressione genica e sulla comunicazione intercellulare per
mezzo di una piccola molecola segnale per rompere la simmetria nel fenotipo
della microcolonia. Sono illustrati inoltre i quattro moduli di cui il circuito
si compone (coin flipper, sender, receiver e follower) e le loro interazioni.

Nel Terzo Capitolo viene esposta la derivazione del modello matematico

dei singoli componenti del circuito genetico sintetico. Vengono poi esplici-
tate le varie assunzioni semplificative che si sono rivelate necessarie al fine
di ridurne la complessita e quindi permetterne la simulazione. Trascrizione
e traduzione sono modellate in un unico passo e ’espressione dei vari geni
dipende dalla concentrazione intracellulare dei fattori di trascrizione che agi-
scono sui promotori utilizzati. Sono infine elencati i valori dei vari parametri
e le fonti da cui sono stati ricavati.

Nel Quarto Capitolo sono dapprima descritte le caratteristiche principa-
li dell’ambiente di simulazione, gro, sviluppato dal Self Organizing Systems
Laboratory dell’Universita di Washington. Viene poi dettagliata 1’analisi di
sensitivita svolta per individuare quali caratteristiche dei diversi componenti
genetici sono desiderabili per il funzionamento del circuito. In particolare, e
definita una funzione costo basata sia sul numero di cellule che si trovano in
ognuno dei vari stati possibili al termine della simulazione che sul risultato
voluto. In base alla funzione costo e tramite un tipo particolare di scatter
plot, viene stilata una classifica di parametri. A partire da una condizione
iniziale in cui i parametri assumono valori in un ordine di grandezza compa-
tibile con le informazioni attualmente disponibili nella letteratura scientifica,
questa classifica suggerisce quale componente genetico conviene regolare al
fine di ottenere il risultato voluto. Il comportamento per cui il circuito e
stato ideato, ottenere una colonia in cui la quasi totalita di cellule siano nello
stato follower e solo qualcuna nello stato leader, sembra essere il piu difficile
da raggiungere. Poche cellule leader non riescono a produrre abbastanza se-
gnale per far passare il resto della colonia nello stato follower. Per ottenere
una colonia in cui la maggioranza di cellule sia nello stato follower ¢ necessa-
rio aumentare il pitt possible la produzione dell’enzima che genera il segnale.
Ottenere una colonia in cui meta delle cellule sia nello stato leader e I'altra
meta nello stato follower e pitt semplice. La strategia pit promettente sem-
bra essere aumentare leggermente la produzione di enzima. Per ottenere una
maggioranza di cellule leader, invece, ¢ consigliabile aumentare 1’espressione
basale dei geni nel modulo coin flipper. Al termine del capitolo, una possibile
applicazione futura del circuito genetico sintetico, la formazione spontanea
di pattern spaziali in una microcolonia, € modellata ad un alto livello di
astrazione tramite il formalismo degli automi a stati finiti. La simulazione
in gro fornisce indicazioni sui componenti genetici non ancora disponibili e
che & quindi necessario sviluppare al fine di ottenere questo comportamento.
In particolare, dato che entrambi gli esempi di pattern proposti si basano
su una versione locale di Leader Election, e essenziale utilizzare un metodo
di comunicazione intercellulare a corto raggio. Risulta inoltre fondamentale
sviluppare componenti genetici che permettano di rallentare la crescita di
specifiche cellule senza alterarne la capacita di espressione genica.

7

L’Appendice, infine, contiene il codice utilizzato per simulare il modello in
gro, il listato di uno script Python utile per parallelizzare 1’analisi di sensi-
tivita su un cluster Linux ed il codice Matlab con cui sono stati elaborati i
dati provenienti dall’analisi di sensitivita.

Abstract

Synthetic Biology is a relatively new discipline, born at the beginning of
the New Millennium, that brings the typical engineering approach (abstrac-
tion, modularity and standardization) to biotechnology. These principles
aim to tame the extreme complexity of the various components and aid the
construction of artificial biological systems with specific functions, usually by
means of synthetic genetic circuits implemented in bacteria or simple eukary-
otes like yeast. The cell becomes a programmable machine and its low-level
programming language is made of strings of DNA.

This work was performed in collaboration with researchers of the Depart-
ment of Electrical Engineering of the University of Washington in Seattle and
also with a student of the Corso di Laurea Magistrale in Ingegneria Biomed-
ica at the University of Bologna: Marilisa Cortesi. During the collaboration
I contributed to a Synthetic Biology project already started in the Klavins
Laboratory. In particular, I modeled and subsequently simulated a synthetic
genetic circuit that was ideated for the implementation of a multicelled be-
havior in a growing bacterial microcolony.

In the first chapter the foundations of molecular biology are introduced:
structure of the nucleic acids, transcription, translation and methods to reg-
ulate gene expression. An introduction to Synthetic Biology completes the
section.

In the second chapter is described the synthetic genetic circuit that was
conceived to make spontaneously emerge, from an isogenic microcolony of
bacteria, two different groups of cells, termed leaders and followers. The
circuit exploits the intrinsic stochasticity of gene expression and intercellular
communication via small molecules to break the symmetry in the phenotype
of the microcolony. The four modules of the circuit (coin flipper, sender,
receiver and follower) and their interactions are then illustrated.

In the third chapter is derived the mathematical representation of the
various components of the circuit and the several simplifying assumptions
are made explicit. Transcription and translation are modeled as a single
step and gene expression is function of the intracellular concentration of the

various transcription factors that act on the different promoters of the circuit.
A list of the various parameters and a justification for their value closes the
chapter.

In the fourth chapter are described the main characteristics of the gro
simulation environment, developed by the Self Organizing Systems Labora-
tory of the University of Washington. Then, a sensitivity analysis performed
to pinpoint the desirable characteristics of the various genetic components is
detailed. The sensitivity analysis makes use of a cost function that is based
on the fraction of cells in each one of the different possible states at the end
of the simulation and the wanted outcome. Thanks to a particular kind of
scatter plot, the parameters are ranked. Starting from an initial condition
in which all the parameters assume their nominal value, the ranking suggest
which parameter to tune in order to reach the goal. Obtaining a microcolony
in which almost all the cells are in the follower state and only a few in the
leader state seems to be the most difficult task. A small number of leader
cells struggle to produce enough signal to turn the rest of the microcolony
in the follower state. It is possible to obtain a microcolony in which the ma-
jority of cells are followers by increasing as much as possible the production
of signal. Reaching the goal of a microcolony that is split in half between
leaders and followers is comparatively easy. The best strategy seems to be
increasing slightly the production of the enzyme. To end up with a majority
of leaders, instead, it is advisable to increase the basal expression of the coin
flipper module. At the end of the chapter, a possible future application of
the leader election circuit, the spontaneous formation of spatial patterns in
a microcolony, is modeled with the finite state machine formalism. The gro
simulations provide insights into the genetic components that are needed to
implement the behavior. In particular, since both the examples of pattern
formation rely on a local version of Leader Election, a short-range commu-
nication system is essential. Moreover, new synthetic components that allow
to reliably downregulate the growth rate in specific cells without side effects
need to be developed.

In the appendix are listed the gro code utilized to simulate the model of
the circuit, a script in the Python programming language that was used to
split the simulations on a Linux cluster and the Matlab code developed to
analyze the data.

10

Ringraziamenti

Desidero qui ringraziare in primo luogo la mia famiglia, per tutto il supporto
fornitomi da sempre ma in particolare in questi anni di studio universitario,
senza il loro appoggio sarebbe stato tutto piu difficile.

Un ringraziamento speciale va a Marilisa per il continuo incoraggiamento,
le discussioni, le risate, il tempo passato insieme. Senza di lei questa tesi non
sarebbe stata possibile.

Un grazie enorme al Prof. Stefano Severi, che con la sua infinita disponi-
bilita ha reso realta il sogno di un periodo di studio all’estero. Grazie mille
anche al Prof. Emanuele Giordano e alla Dottoressa Francesca Ceroni per i
vari consigli ed il loro entusiasmo. Grazie a Shelly Jang ed Eric Klavins per
avermi gentilmente accolto nel loro gruppo di ricerca per un periodo di diver-
si mesi, durante i quali ho imparato molto ed appreso un approccio diverso
ai problemi.

Grazie a Yaoyu Yang per la cena in un ristorante giapponese in cui mi ha
fatto scoprire il sake! Grazie a William e Kristin, per tutto il tempo passato
insieme a Seattle, le chiaccherate (meta in italiano e meta in inglese) sulle
differenze fra Stati Uniti ed Italia, le birre, la casa stregata e la caccia agli
zombies!

Grazie a Gianluca Selvaggio, che dal Portogallo ha sempre diffuso buon
umore attraverso Skype e lo stesso ha fatto Claudio Silvani, pero dall’lta-
lia. Grazie infine a tutti gli amici che sono entrati nella mia vita ed hanno
contribuito a rendermi quello che sono.

11

Chapter 1

Molecular and Synthetic
Biology

1.1 Nucleic Acids

Nucleic Acids are linear macromolecules obtained by assembling, through
covalent bond, simple building blocks named nucleotides. Each nucleotide is
composed of three fundamental units: a pentose sugar, ribose o deoxiribose,
a nitrogenous base in position 1’, and a phosphoric acid esterified to the
alcoholic group of the sugar in position 5’ (Figure 1.1). Depending on the
sugar utilized, the nucleotides are classified in deoxiribonucleotides and ri-
bonucleotides. A molecule composed of the pentose sugar and a nitrogenous
base, bound in position 1’ is called nucleoside.

% Purines
\ 0 MNHz o]
B, g N N
075 igOmP—1 " ~p~ Base G iy G fk s
=) 1 S S~ NN N3 NH,
0O 0] O glycosidic bond
e Adenine Guanine
Pyrimidines
------- nucleoside - Nk @ 2
: . o E oo . SN
-nucleoside monophosphate--- [ls A5l E S T,_) i
---------------------- nucleoside diphosphatg-------- “'“"J"L\ : .| “So NS
nucleoside triphosphate---------- Cytosine Uracil Thymine

Figure 1.1: Nucleotides [1]

The DNA is formed of deoxyribonucleotides, while the RNA is composed
of ribonucleotides. There are five nitrogenous bases that are most commonly

12

used in the construction of nucleic acids: adenine (A), guanine (G), cytosine
(C) and thymine (T) in the DNA, adenine (A), guanine (G), cytosine (C)
and uracil (U) in the RNA, where the uracil substitutes the thymine.

1.2 DNA

The deoxyribonucleic acid (DNA) is the genetic material of the cell, it con-
tains all the information necessary for protein synthesis and for the regulation
of the cell’s functions. The structure of the DNA of prokaryotic cells is very
simple, it is indeed formed of a single circular chromosome free in the cytosol
that is not associated with any protein nor organized in complex structures,
unlike the eukaryotic ones. The DNA has a fundamental role because it
allows to describe the entire cell:

codes all the information necessary to the life of the cell;

its structure allows for a simple and elegant transmission of all the
information needed to build an organism from a generation to the next;

directs and controls the entire vital cycle of the cell;

can rarely mutate, change its description, in order to modify the infor-
mation that it codifies and thus, generate an evolution of the functions.

The DNA is composed of two filaments with complementary orientation:
for every G in a filament there’s a C in the corresponding position in the
complementary filament, and vice-versa. Every A of a filament is associated
to a T and the other way around. The interaction between A and T and
between C and G is specific and stable: the nitrogenous base guanine, with
its double-ringed structure, is too big to fit in the space between the two
filaments of the DNA, if coupled with the double ring of the adenine or with
another guanine. Likewise, the nitrogenous base thymine, with its single-
ringed structure, is too small to pair with another single-ringed base like
cytosine or another thymine. Only the nitrogenous bases C and G, A and T
have the appropriate spatial conformation and chemical interaction needed
to form a stable base pairing (hydrogen bonds). Three hydrogen bonds form
between C and G, and only two between A and T. The two DNA filaments
are not just complementary but even antiparallel (Figure 1.2).

Triplets of nitrogen bases (codons) code for the twenty different amino
acids that compose proteins. Most of the amino acids are coded by more
than one triplet (4% = 64), three triplets don’t represent any amino acid and

13

Thymine
Adenine

S'end o
op’/ NH2"" 3'end
/N (N OH
o H
C
N

[o]
y
O=p' VAR N —°
_J \N HN 7 |
o) N —_—
\<0...H2N>\N 9
o P
Phosphate- P o---HzN \/Péo
deoxyrlbose /P\
backbone o N “
o\Pi;
o 0 (?//\, é
- NH™ N
oo R T
o NS
3'end Cytosine /
Guanine 5' end

Figure 1.2: DNA chemical structure [2]

14

are used as a stop signal for translation. This redundant code makes the
genetic information robust with respect to single nucleotide mutations.

Except for the mitochondrial DNA and the one of a small number of
prokaryotes, the genetic material is universal, meaning that it follows the
same rules in every living organism and virus.

1.3 RNA

The RNA has a structure that is very similar to that of DNA, in fact the
genetic code of some viruses is entirely composed of RNA. However, it has
assumed a totally different role in more complex organisms and so cells whose
chromosomes are made of RNA do not exist.

There are three main differences between ribonucleic acid and deoxyri-
bonucleic acid, in particular, the RNA:

e doesn’t usually assume the three dimensional double helix structure
typical of the DNA;

e contains ribose and not deoxyribose;

e contains the base uracil in place of thymine.

All the RNA present in the cell is synthesized from a DNA mold by
particular enzymes, RNA polymerases, while its degradation is performed
by another group of enzymes, the ribonucleases.

In a prokaryotic cell there are, in different quantities, three types of RNA:
messenger RNA, ribosomal RNA and transfer RNA. Each kind of RNA has

different functions:

e the messenger RNA (mRNA) provides to the protein synthesis appara-
tus a copy of the message codified in a gene of the DNA. The mRNA
represent only a small fraction of the RNA present in the cell, even
because a single RNA molecule can be used as a mold for many copies
of the protein that it codifies;

e the ribosomal RNA (rRNA) is the type of RNA that has the highest
concentration in the cell as it is part of the ribosomes, organelles that
decode RNA and synthesize proteins. The ribosomes that are found
in prokaryotic cells contain three different rRNAs named, after their
sedimentation coefficient, 23S, 16S and 5S.

15

e the transfer RNA (tRNA) is composed of small molecules of ribonucleic
acid that bind specifically and activate the single amino acids, while
bringing them to the mRNA-ribosome complex, to become part of the
forming polypeptidic chain. For every amino acid involved in protein
synthesis there’s, at least, a specific tRNA.

1.4 Transcription

The RNA is synthesized from molds of DNA through the activity of the
RNA polymerase. The RNA polymerase that can be found in E. coli cells
is a protein complex formed by four subunits, named as, 8,3’ and o. The
complex ap 33" contains the catalytic site and the sites responsible to bind the
DNA. The o subunit, instead, is involved in the first steps of transcription:
it is able to recognize the beginning of transcription due to the presence of a
DNA region named promoter, and helps the opening of the double helix. The
o subunit is released when the RNA synthesis begins, while the remainder
of the complex continues the synthesis.

In order to fulfill its function, the RNA polymerase needs triphosphate
nucleotides, the DNA sequence to be copied and bivalent ions (M g**, Mn>*").
The RNA polymerase scans the DNA sequence, looking for a specific sequence
that marks the beginning of the region to transcribe. The ¢ subunit of the
RNA polymerase recognizes the consensus sequences of the promoter, placed
35 and 10 nucleotides upstream of the beginning of transcription.

The higher the affinity between a particular promoter sequence and the
o subunit of the RNA polymerase, the higher will be the frequency of tran-
scription of that gene. There are seven different o subunits in the E. coli cell
and the possibility of building RNA polymerases with significantly different
o factors allows the cell to activate or deactivate entire systems of genes with
similar promoters.

The proteins produced by some genes are useful only in combination
with other proteins. For this reason some groups of prokaryotic genes are
under the control of the same promoter, this structure is called operon. A
typical example is the lactose operon that contains three genes involved in
the metabolism of this sugar. The transcription of an operon produces a long
mRNA molecule that will be used by the ribosomes to synthesize the various
proteins.

Some regulatory proteins, transcription factors, can precisely modulate
transcription in response to external stimuli. The lactose operon, for exam-
ple, has a promoter recognized by the 70 RNA polymerase but its expression
is maximized when the environment is rich in lactose and devoid of glucose.

16

When the levels of lactose are low, the protein Lacl binds to a specific se-
quence in the lac promoter just downstream of the -10 box, termed operator
site. When Lacl is bound to the operator, the steric bulk prevents the RNA
polymerase from transcribing the downstream sequence, therefore it acts as
a negative regulator (repressor). Lacl is even able to bind allolactose, a lac-
tose metabolite. When that happens the affinity of Lacl for the operator site
drastically diminishes thus increasing the probability of transcription of the
genes of the operon. The consensus sequences of the promoter driving the
lactose operon are not very similar to the ones better recognized by the RNA
polymerase, so the lactose operon isn’t expressed at high levels even when
Lacl is not bound to the promoter. The receptor protein for the cyclic AMP
(CRP) that, when the levels of glucose are low, is able to bind a sequence in
the lac promoter, increases the transcription rate and thus acts as a positive
regulator (activator).

1.5 Translation

The translation process, that leads to protein synthesis, can be subdivided
in three steps: initiation, elongation and termination. In the initial phase
the ribosome finds the point at which translation starts by recognizing a
particular sequence of nucleotides in the mRNA, named ribosome binding
site (RBS), to which it binds. The elongation phase consist of a sequence of
iterated reactions:

e combination of aminoacyl-tRNA, ribosome subunits, other proteic fac-
tors and the codon in the mRNA;

e formation of the peptide bond between the a-amminic group, of the
amino acid bound to the tRNA, and the a-carboxylic one of the last
amino acid of the polypeptidic chain forming on the ribosome. This
causes the release of the tRNA bound to the second to last amino acid
added to the chain;

e sliding of the ribosome on the mRNA till the next codon;

The termination phase, that begins when the ribosome reads one of the
stop codons, causes the release of the polypeptidic chain. The correct imple-
mentation of these phases rely on the contribution of both proteic and non
proteic factors.

17

1.6 Synthetic Biology

Synthetic biology is a relatively new discipline, founded at the beginning of
the 2000s with the realization of the Repressilator [5] and the Toggle Switch
[6]. It aims to engineer biology: the goal is to create a systematic engineering
science, founded on the standardization of cellular chassis, the types of parts
available, their manufacture, their characterization and protocols for their
interconnection, analogous to those that underlie and enable the scalability
of mechanical, electrical and civil engineering [7]. In order to do that, the
engineers involved in this new field have started to apply some of the clas-
sical principles of engineering to biology: standardization, decoupling and
abstraction.

The most used organism in synthetic biology applications is Escherichia
coli (Figure 1.3), a gram negative bacteria often found in the intestine of
warm blooded organisms. Most E. coli strains are not pathogens, but some
of them are cause of acute food poisoning.

Figure 1.3: Scanning electron micrograph of Escherichia coli [3]

This bacterium plays a very important role in biotechnology and synthetic
biology because it is quite easy to handle and it has been very widely used as
laboratory organism. The work of Stanley Norman Cohen and Herbert Boyer,
in which plasmids and restriction enzymes are used to build recombinant
DNA in E. coli, is one of the foundations of biotechnology.

18

After being studied for over sixty years, E. coli is the organism better
understood at molecular level and most of what is known about molecular
processes can be ascribed to fundamental discoveries made in E. coli. Tamed
strains, like K12, are well adapted to the laboratory environment and, unlike
the wild type strains, have lost their capability to proliferate in the intestine
and form biofilms.

The aim of a synthetic biology project is usually to build a synthetic ge-
netic circuit that implements a particular function inside the cell. Regulation
of gene expression at both the transcription and translation level is the chief
way to make a group of genes solve a defined task.

1.6.1 Gene Expression Regulation

The necessity to tune gene expression and adapt it to the changes in the
environment, has pushed the cell to develop mechanisms to change the rate
of production of the different proteins. Synthetic biology exploits the reg-
ulatory elements of the cell to achieve a specific objective. It is important
to remember that all the tuning methods that are described in the following
sections can be combined in order to obtain the desired expression rate.

Regulation of Transcription

Regulation of transcription is needed to tune the amount of mRNA that
is produced by the molecular machinery in a defined amount of time. It
is mainly accomplished by modifying the promoter region of the considered
gene or group of genes. The typical structure of a promoter is represented
in Figure 1.4, the regions identified with -35 and -10 are the fundamental
components of every promoter, since they are the sequences recognized by
the o subunit of the RNA polymerase. Their activity can be modulated by
substituting single bases of the standard sequences for these elements, or by
changing their relative distance.

A modification of the sequence of these regions usually diminishes the
affinity between the RNA polymerase and the promoter, this decreases the
rate of transcription and, as a consequence, the amount of mRNA available
for translation. Indirectly, the concentration of the protein inside the cell
will diminish. The variation in gene expression due to a different length of
the core sequence is more difficult to predict. Intuitively there will be an
optimal spacing, defined by the distance between the DNA-bounding regions
of the RNA-polymerase, and any significant variation from that value will
reduce the transcriptional strength of that promoter. If the promoter is

19

[distal (-35] core (-10] proximal I+I

Promoter Gene

Figure 1.4: Structure of a bacterial promoter

constitutive, modifying these regions is the main way to tune gene expression
at the transcriptional level.

A regulated promoter is a promoter whose action is modulated by one or
more transcription factors. A transcription factor is a molecule that gener-
ally conveys an important information about an event, like a change in the
environment in which the cell resides. This class of promoters is fundamental
because it allows the cell to adapt the protein production to a necessity that
changes in time.

The structure of a regulated promoter is the same as the one reported in
Figure 1.4, the -10 and -35 boxes still have the same function and they can be
used to control gene expression in the same way. In this case, though, there
is an additional layer of regulation: the promoter contains even consensus
sequences for the transcription factor, called operator sites. The transcription
factor can bind to these sequences that are usually placed in one, or more,
of the other regions of the promoter (Figure 1.4). Some consensus sequences
are even found far from the promoter, both upstream and downstream, but
they usually are functional only if coupled with another operator site in
the promoter region. Due to the secondary importance of these sites, and
the difficulty of defining clearly their activity, they are used very rarely for
synthetic applications.

A transcription factor can be either an activator or a repressor, this means
that there are transcription factors that promote the transcription of a gene,
increasing the rate of transcription upon binding, and others that, when
bound, reduce the production of mRNA, usually by preventing the RNA
polymerase-promoter complex formation.

The region of the promoter in which an operator site is placed has a
fundamental effect on its functionality. Repressors usually work by physically
hampering the polymerase, thus preventing it from transcribing the DNA | so
they will be maximally effective in the proximal or core regions. Activators,
on the other hand, increase the transcription by favoring the binding between
the RNA-polymerase and the promoter, so they are usually placed in distal,

20

where they can carry out their function without unintentionally obstruct the
promoter.

This kind of regulation is incredibly specific, most promoters can respond
to at most two transcription factors and the sensitivity and the strength of
the modulation can be tuned by changing the consensus sequence and/or its
location. In order to utilize a particular regulated promoter in a synthetic
circuit and avoid unwanted interactions, it is necessary to understand its
functioning in the bacterial environment. The activity of several transcrip-
tion factors can be modulated by the interaction with a number of small
molecules, named inducers. Several examples of this class of regulatory ele-
ments will be described in the following chapter.

Regulation of Translation

Regulation of translation can be mainly achieved by acting on the Shine-
Dalgarno region, also named ribosome binding site (RBS) after its function.
The interaction between the ribosome and the RNA is quite well understood,
computational models allow to predict the translational efficiency of a par-
ticular RBS and to design new ones with defined strength. The possibility to
tune the level of protein produced is extremely important in most synthetic
biology applications, and this technique is often more accurate than the ones
that act at transcriptional level, since it affects directly the translation pro-
cess. Modifying the RBS region can be really effective to place the protein
production in the desired order of magnitude, but its action is too coarse to
tune it finely.

Another technique to regulate gene expression at the translational level
that has been recently devised consists in modifying the length of the spacer
between the RBS and the first codon of the sequence of the protein [8]. By
increasing the span of this region it is possible to down-regulate the rate
of translational initiation, since the relative positions of the Shine-Dalgarno
region and the first codon will not be optimal. This method has been tested
in E. coli using simple sequence repeats (SSR) to alter the spacer. The use
of simple sequence repeats couples the translational regulation of gene ex-
pression with an increase of the mutation rate of the spacer region, because
repeated sequences have a strong bias for insertions/deletions. This second
aspect of the tuning technique allows to take advantage of evolution to opti-
mize the length of the spacer region.

The SSR used to implement this kind of regulation are composed of the
repetition of one or two nucleotides and, from the characterization performed
in [8], it is clear the possibility to tune gene expression over several orders of

21

magnitude. In the same paper it is even described how the nucleotidic com-
position of the SSR can influence the decrease of the translational initiation
rate. In particular, a SSR composed of only adenines will have the steep-
est decline, while a poly-thymines sequence should grant the most gradual
decline.

Sequence repeats seem ideal to tune gene expression because the relation
between the length of the sequence and its effect on translation is very well
defined. Besides, the regulatory range achievable by coupling this method
with other techniques, like promoter engineering, is very large. The choice of
using repetitions of nucleotides makes it really easy to experimentally sample
the expression space, through combinatorial modifications the SSR region.

A third way to regulate gene expression at the translational level utilizes
small antisense RNAs that target specific mRNAs in the cell. The antisense
RNA is usually a short ribonucleotidic sequence that binds to a transcribed
mRNA. The steric bulk interferes with translation while double stranded
RNA is targeted for degradation. This kind of regulation is faster than tran-
scriptional regulation mediated by transcription factors because it removes
from the cytoplasm genes that have been already transcribed.

1.6.2 Modeling

The application of the previously mentioned engineering principles is greatly
limited by various factors [9]:

e inability to avoid or manage biological complexity;

e tedious and unreliable construction and characterization of synthetic
biological systems;

e cvolution.

As a consequence, even simple modules can take a significant amount
of time and resources to construct from devices, often requiring multiple
revisions to optimize the behavior. Modeling greatly aids in overcoming
module design problems [10].

An accurate computational representation of the system can help de-
vise reliable synthetic genetic circuits by determining, for example, which
architecture is the most robust or the one that better adapts to a certain
application. A mathematical model might even be fundamental for the char-
acterization of the system, since it might be able to identify the most critical

22

components and provide useful suggestions about the assays necessary to
completely analyze the behavior of the circuit.

Simulations have two fundamental advantages over the wet laboratory:
they are usually much cheaper and also quicker than experiments. While
a certain minimum amount of experiments will be required for a particular
study, models can help reduce their number by scanning a wide spectrum of
possible components of the circuit or different experimental conditions, and
allow to select only the most promising options to test in vivo. Shrinking
the number of experiments means reducing the cost of the endeavor both in
time and money required.

Another nice feature of the computational representation of the circuit
is the possibility of having complete control over the virtual experiment and
being able to extract values of quantities not actually measurable with labo-
ratory techniques. This ability extend the usefulness of the model even to the
troubleshooting phase of the construction of a genetic component. Having
direct access to every intracellular part and process can be really helpful to
identify the source of unexpected or undesired behavior.

In order to be useful, the model needs to faithfully represent the biologi-
cal system, at least in the aspects that need to be investigated. This might
mean that it is going to be necessary to build more than one model for the
same circuit, to accurately capture each phenomenon. The same biological
system can be described with different mathematical formalisms, but even
with different parameters’ sets, that define the regime in which the system
operates. In order to find the better composition of mathematical represen-
tation and values for the parameters it is necessary to couple the realization
of the model to the biological system. Direct or indirect measures of some
characteristics of the genetic components can be used to define the system’s
working point in the parameter’s space or, at least, define the physiological
ranges of the quantities involved. Even if this phase might be very challeng-
ing, especially when it is necessary to combine data from different sources,
it is clear that computational modeling is becoming a fundamental tool in
synthetic biology projects.

23

Chapter 2

Leader Election Project

2.1 Introduction

The Leader Election project aims to engineer a multicellular behavior in a
growing microcolony of E. coli, a unicellular prokaryote. The objective is
the spontaneous emergence of two different groups of cells from a colony of
genetically identical individuals.

Ideally, starting from a single cell in a undecided state that grows and
divides, at a certain point we want a cell to switch to a different state,
named leader. Then, a leader cell must be able to turn the rest of the
microcolony to the follower state (Figure 2.1). The leader and follower
states are characterized by the expression of particular genes.

Figure 2.1: Example of the wanted behavior. Leader cells are green, followers
are red and undecided are grey.

The construction of this system would provide an essential tool for the
realization of cooperative behaviors in bacteria. The ability of a population
of prokaryotes to work together toward a common goal by solving different
aspects of a single task will make it possible to realize very complex func-

24

tionalities, without risking to make the metabolic burden unsustainable for
the cells.

2.2 Genetic Circuit

The genetic circuit that was conceived to elect a group of leaders in a growing
microcolony of E. coli is illustrated in Figure 2.2.

Arabinose

| y 080 _ oOo
| o8 | 0

0©° “
J:ED—EIM}—
BAD/Tet BAD Lux/Lac

pLac

T o?o T eSe

p

Coin Flipper Sender Receiver Follower & Signal Relay

Figure 2.2: Proposed genetic circuit of the Leader Election project [4]

It can be subdivided in 4 different modules: coin flipper, sender, receiver
and follower. Its modular structure was devised to allow the realization and
testing of each component before the final assembly in the complete circuit.
This exploits the decoupling principle, allowing to solve the issues of each
module almost independently from the others.

The coin flipper module is composed of an hybrid promoter with operator
sites for both the repressor TetR and another transcription factor named
AraC. The hybrid promoter regulates the expression of an operon containing
the coding sequences for two transcription factors: AraC and Lacl.

The sender module is composed of a promoter, regulated by AraC, that
controls the expression of LuxI, an enzyme that converts a couple of sub-
strates into the messenger molecule AHL.

The receiver module is composed of a promoter, regulated by the re-
pressor Lacl, that drives the expression of LuxR. When LuxR binds AHL it

25

becomes an activator for the hybrid promoter of the last module, the follower
one, downstream of which there is a coding sequence for the repressor TetR
and another copy of the LuxI gene.

AraC acts as a repressor when the environment doesn’t contain arabinose,
and becomes an activator in presence of that sugar. Before induction with
arabinose, each cell of the microcolony is in the undecided state, in which
there is negligible production of all the genes of the system, except LuxR, due
to the basal expression of the various promoters. Leakiness is crucial for the
pBAD/Tet promoter of the coin flipper module. With time, the stochastic
leaky transcription and translation of AraC will give rise to a distribution of
AraC concentration in the cells of the colony. Upon induction with arabinose,
only the cells in which the concentration of AraC is above a certain threshold
will be able to activate the positive feedback that leads to the substantial
production of AraC and Lacl that defines the leader state. Once the posi-
tive feedback is on, Lacl deactivates the receiver module and AraC activates
the sender module. Leaders start producing LuxI, the enzyme catalyzes the
formation of a chemical signal that diffuses in the extracellular environment
and causes the nearby cells to activate the follower module. This last module
represses the coin flipper with a negative feedback mediated by TetR. The
second copy of the LuxI gene in the follower module is needed to relay the
signal. With this second copy, cells that switch to the follower state start
producing both TetR and signal, so that the information that a leader is
already present in the colony, and for this reason the remaining cells should
stop flipping coins, is spread quickly.

All the individuals of the colony contain the same construct, but not all
the modules are "on” in every cell. The coin flipper and sender modules are
active in leaders, the receiver and follower ones are expressed in followers,
while in undecided cells the only operating module is the receiver one.

2.3 Genetic components

In the following, a brief review of the natural function of the various molecular
components of the circuit is presented.

26

AraC

In Nature, AraC is part of a complex system that allows the bacteria to
exploit, as a source of carbon and energy, the pentose L-arabinose (Figure
2.3).

Ox M

H——OH
HO——H
HO——H

CH,OH

Figure 2.3: L-Arabinose

The wild type ara system is composed of various genes and promoters
[11], [12]:

e arakl is a gene that is needed for arabinose uptake and is controlled by
the pE promoter;

e aral, araG and araH are also needed for arabinose uptake and are in
an operon controlled by the pFGH promoter;

e araC encodes for a transcription factor and is under the control of the
pC promoter;

e araB, araA and araD are a ribulokinase, an isomerase and an epimerase
respectively and are under the control of the pBAD promoter.

AraC is a dimer that can interact with different operator sites: 11 and 12
are placed in the pBAD promoter and another one, 02, is about 200 base
pairs upstream the other two. In absence of arabinose AraC binds to I1 and
02 and forms a loop in the DNA. In this conformation it is a repressor for
both pBAD and pC. When arabinose is added to the environment, AraC
binds to it and assumes a different 3D conformation that allows it to bind
the 11 and 12 operator sites and act as an activator for the pBAD promoter.

27

Lacl

Lacl is part of another natural system involved in the utilization of a partic-
ular sugar, lactose, as carbon source. Even this module is composed of many
different parts:

e lacl is a repressor for the pLac promoter, it is constitutively transcribed
and prevents the expression of the other three genes;

e lacZ codes for an enzyme, named [-galactosidase, that cleaves the dis-

accharide lactose into glucose and galactose, prime carbon sources for
E.coli;

e lacY is a gene that codes for a transport protein, f-galactoside per-
mease, that anchors to the cell’s membrane and facilitates the lactose
intake;

e lacA is the third gene of the operon controlled by pLac, it produces
another enzyme, (-galactoside transacetylase, whose function is still
unclear.

A Lacl tetramer can bind the wild type pLac promoter in two points,
the O1 operator site is the main one and is placed between the promoter
and the beginning of LacZ. The other two sequences that Lacl can bind in
addition to O1 are O2 and O3, they can be found in positions +400 and
-80 with respect to the beginning of translation. When the Lac repressor
binds two operators sites at the same time, it causes the DNA to form a loop
that makes the promoter virtually unaccessible by the RNA polymerase.
The availability of lactose in the environment causes the removal of this
block. The few molecules of sugar that cross the cell membrane are degraded
by the small number of enzymes produced despite the repression. A side
product of the metabolism of lactose, allolactose, binds to Lacl, modifying
its structure and making it unable to continue its repressive action. Another
level of regulation of the lac operon is realized by the cAMP-CRP protein
complex, the production of cAMP is catalyzed by the absence of glucose in
the environment. This molecule activates the CRP protein, that is able to
bind a specific site upstream of the pLac promoter and increases the affinity
of the RNA polymerase for this element [13].

When only one operator site is present, like in many synthetic applica-
tions, Lacl still manages to repress transcription, despite less tightly than
when all the operator sites are in the right place. Lacl is easily inducible
with Isopropyl 5-D-1-thiogalactopyranoside (IPTG), an analog of allolactose
that cannot be metabolized.

28

LuxI and LuxR

LuxI and LuxR are part of the luciferase enzyme complex. This system,
initially identified in the marine bacteria Vibrio fischeri, controls the quorum
sensing regulated luminescence production. These bacteria can establish a
symbiotic relation with some marine animals that exploit the light produced
by them to hunt at night or hide from predators. The light production is
triggered by the increase of the cell concentration over a certain threshold
that is not achievable when the bacteria are free in the ocean.
The natural luciferase enzyme complex is composed of many genes [14]

e luxl is the enzyme that produces acyl homoserine lactone (AHL), a
signaling molecule (Figure 2.4), it is constitutively transcribed;

e luxR is the signal receptor, it resides in the cytoplasm and is produced
continuously in Vibrio fischeri;

e luxC, luxD and luxE code for components of acid reductase that con-
verts the long-chain fatty acid tetradecanoic acid into fatty-aldehyde
substrate (tetradecanal) for the light-producing enzyme luciferase;

e luxA, luxB encode the a and [subunits of luciferase enzyme;
e luxG has still a non-identified function.

LuxI produces the AHL signal at a low rate starting from S-adenosylmethionine
(SAM) and an acylated acyl carrier protein (ACP) from the fatty acid biosyn-
thesis pathway. Apparently, the fatty acid substrate for LuxI is acquired from
the pool of acyl-ACPs generated during fatty acid biosynthesis rather than
from products of fatty acid degradation. This would allow for a continuous
supply of the fatty acid substrate regardless of the growth conditions [15].

All the genes of this system, except LuxI and LuxR, are part of an operon
regulated by the protein LuxR activated by AHL.

)

PPN

N R
H
O

Figure 2.4: General structure of N-Acyl Homoserine Lactone (AHL)

29

The signal produced by the cells diffuses across their membranes and
accumulates in the environment. AHL binds to the LuxR protein. The
consequent conformational change seems to cause the complex LuxR-AHL
to dimerize. The dimer activates the genes responsible for the production of
luminous signal.

Parts of this system have been imported in E. coli and conveniently pro-
vide a means of intercellular communication.

TetR

TetR is a dimer that is part of the most abundant resistance mechanism
against the antibiotic tetracycline in gram-negative bacteria [16]. In Nature,
this protein binds to the operator sites TetO1 and TetO2 and represses its
own production and that of TetA, a protein that is responsible for the export
of the tetracycline-magnesium complex. The presence of the tetracycline-
magnesium complex in the environment inactivates TetR, thus the exporter
is produced and the intracellular concentration of antibiotic diminishes.

Since TetR is easily induced with anhydrotetracycline (ATc), a tetracy-
cline analog, it is often employed in synthetic genetic circuits.

30

Chapter 3

Mathematical Model

The classical modeling strategy in biology and engineering makes use of or-
dinary differential equations (ODE). Starting from a structural model of the
interactions, like the one described in the previous chapter, it is possible to
map the reaction network into a system of coupled ODEs. These equations
can then be solved numerically in order to track the effects over time of the
simultaneously occurring reactions [17].

3.1 Input functions

Most of the information used to construct the models of the various input
functions comes from [18].

3.1.1 Promoter regulated by a repressor

As previously stated, a repressor is a protein that, upon interaction with
DNA at a promoter site, decreases the probability of transcription of the
downstream genes.

Considering a repressor R that binds to a promoter P, the resulting com-
plex is R-P. If multiple repressors are needed in order to achieve repression, it
is possible to consider the simultaneous binding of more repressor molecules
with the parameter n. The RNA polymerase manages to transcribe the
coding sequences downstream the promoter only when the repressor is not
bound.

The binding of the transcription factor to the promoter can be described
by mass-action kinetics:

dnR — P]

—— = ki [R]" - [P] —k_y - [nR — P (3.1)

31

Considering the equation at steady state:

0=ky-[R"-[P]—k1-[nR— P (3.2)
R = P = (R (7] (33)
k- [nR — P = [R]" - [P] (3.4)

Where the dissociation constant kq™ [M] has been introduced. The lower kg,
the higher the strength of interaction between the transcription factor and
the promoter.

It is now possible to write an equation that expresses the conservation of
DNA binding sites P:

[Pl +[nR — P] = [Pt (3.5)

Where [Pyy] is the total concentration of DNA binding sites in the cell.
Combining (3.4) with (3.5) it is now easy to express the fraction of free
promoter sites as an Hill function:

Pl kq" B 1
[Ptot] - k,dn _|_ [R]n - 1 + [de]: (36)

Figure 3.1 shows the monotonically decreasing input function of a pro-
moter regulated by a repressor for different Hill coefficients n.

When the concentration of repressor equals the dissociation constant, half
of the promoters are inactivated. As the Hill coefficient rises, the function
tends to approximate a step and the slope of the region where the concen-
tration of repressor is about k,; increases.

32

0.9

333>
SO =

Gene Expression
o o o o o o
(] S [} D ~ e]

o
o

0.1

| 1 |
0 5 10 15 20 25 30 35 40 45 50
[repressor]

Figure 3.1: Input function of a gene regulated by a repressor with k; = 10

3.1.2 Promoter regulated by an activator

If a transcriptional activator A is considered, it is possible to describe the
fraction of bound promoter sites as:

[P] e e 0 [A]"

Pod T RAAT T RP LA RS AT

Figure 3.2 shows the monotonically increasing input function of a pro-

moter regulated by an activator for different Hill coefficients n. Even in this

case half of the promoters are inactivated (and half activated) in presence of
a concentration of transcription factor that equals k4.

(3.7)

3.1.3 Binding of an inducer to a transcription factor

Some transcription factors, TF, can bind small molecules named inducers,
I, that alter their affinity for the DNA binding site. It is possible to describe
this condition with mass-action kinetics:

dTF — 1]

o = ky [TF] - [I) = kot - [TF 1] (3.8)

33

0.6

Gene Expression

> 3 5 5
]

i
AW N =

1 1 1 1 1 1 1 I
15 20 25 30 35 40 45 50
[activator]

Figure 3.2: Input function of a gene regulated by an activator with k; = 10

34

With the conservation equations:

TFlu = [TF) + [TF - I (3.9)
L)oo = [1] + [TF ~ 1] (3.10)

At steady state equation (3.8) becomes:

0=k [TF)-[I]—k_,-[TF —1I] (3.11)
% [TF — I =[TF]- 1] (3.12)
ks [TF —1I]=[TF]-[I] (3.13)

Combining (3.13) with the two conservation equations (3.9) and (3.10)
we get:

ks [TF =1 = (TFut] = [TF = 1) - ([Liod] = [TF = 1]) (3.14)
ki - [TF — I = [TFyq] - [Teot] — [TFyoi] - [TF — 1] = [TF — 1] - [Lig] + [TF — I]?
(3.15)

Reordering leads to

[TF — 1> = [TF — 1) - (kg + [T Fro] + [Liot]) + [TFrot] - [Iiot] =0 (3.16)

Solving the second order equation and discarding the solution that is not
physically grounded, we get:

(ks 4+ [T Fyor] + [Ltot)) — \/(ks + [T Fiot] + [L1ot])? — 4 - [T Foot] - [L10t]
2

[TF—I] =

(3.17)
Equation (3.17) gives the concentration of the complex.

3.1.4 Hybrid promoter regulated by a repressor and
an activator

An hybrid promoter is a promoter that can bind different transcription fac-
tors. Let’s consider the case of a promoter regulated by an activator and a
repressor. By multiplying the fraction of operator sites that don’t bind the

35

repressor with the fraction of operator sites that bind the activator we get
equation (3.19), that constitutes a three-dimensional input function for the
promoter (Figure 3.3).

[Pactive] [A] " 1

= . 3.18
Pl hat” + (A T4 I (319
kar
i,
= A (3.19)
[A]" [R]™ [A]"-[R]™
1+ kaa™ + kar"™ + kqa™-kar"

o o
o © -

I
~

Gene Expression

0.2

0 30 [repressor]

[activator]

Figure 3.3: Input function of an hybrid promoter with k;4 = kyr = 10 and
n=>2

The hybrid promoter input function shows that gene expression is high
only when there is no repressor and a lot of activator. As with the previous
two-dimensional hill functions, it can be shown that the behavior becomes
more switch-like when n increases.

3.2 Enzyme Kinetics

Let’s consider the case of an enzyme E that needs two different substrates
S; and S3 in order to catalyze the reaction that leads to a product P. The

36

enzyme first binds one of the two substrates and forms a complex, C; (3.20).
This complex is now able to bind a second substrate to form the complex Cs.
At this point, the enzyme catalyzes the reaction between the two substrates
and a molecule of the product is produced (3.21).

E+8 2 (3.20)
Cy+ Sy 22, Cy =y, P+ E (3.21)

The differential equations that describe this process are (3.22) to (3.27)

E

C;—t:kg'CQ—Fk’_l'Cl—kfl'E'Sl (322)
dd—il:k_l-cl—kl'E'Sl (3.23)
dd—sf - k,Q : CQ - kg . Cl . SQ (324)
dCy
W:kl'E'Sl—Fk,Q'Cg—k,l'Cl—kQ'Cl'SQ (325)
dC:
d_tz - kQ . Cl . SQ - (k@g + kg) : CQ (326)
dP

With the conservation equations (3.28), (3.29) and (3.30).

E=Fy—Cy —C, (3.28)
S =8,—-C1—Cy—P (3.29)
SQ - SQO - Cg - P (330)

Where Ejy, Siy and Sy, are the total concentrations of enzyme, first sub-
strate and second substrate, respectively.

If the enzyme has a low turnover like LuxI [15], it is possible to consider
(3.23) and (3.24) at steady state. In this condition it can be shown that (3.27)
reduces to (3.31) and the production of P is proportional to the amount of
enzyme.

-~ —_K-.E 31
— : (3:31)

Where K is a constant.

37

3.3 Model of the Leader Election Circuit

The model is at a medium level of abstraction, transcription and translation
are considered in a single step. The transcription and translation rate at a
given time depends on the concentration of active transcription factor that
is present inside the cell.

3.3.1 Assumptions

A number of assumptions were made in order to simplify the model and
reduce simulation time:

e a saturating concentration of arabinose is present at all times, so that
all AraC molecules inside the cell are bound with arabinose and thus
act as transcriptional activators;

e the basal expression rate of hybrid promoters and promoters regulated
by an activator only is very low;

e both the substrates that LuxI needs to produce AHL are present in
saturating concentrations;

o given the high diffusion constant of AHL of about 5.5 - 10~8[<2°] [19],
the small simulation volume of 160 - 103um?, and the fact that AHL
can freely diffuse across cell membranes [20], the concentration of AHL
is considered uniform;

e interactions between transcription factors and inducers or between tran-
scription factors and DNA are at steady state.

3.3.2 Terms of the model

It is possible to separate the contribution of three different components when
the variation of the concentration of a protein in time is considered (3.32).
d[P]

Where [P] indicates protein concentration, BE stands for basal expression,
PR is the production term and finally DGR takes into account protein
degradation. In the following, the basal expression of the coin flipper module
will be termed leakiness and the basal expression of all the other promoters
leakiness2.

38

In this model, production terms depend on the promoter input function.
Since for each operator site used in the circuit at least a dimer of the cor-
responding transcription factor is needed to achieve activation or repression,
the Hill coefficients are set to 2. The various terms for each module of the
circuit are detailed in the following.

Coin flipper production term

The coin flipper module is composed of an hybrid promoter that drives the
expression of two genes in an operon. The hybrid promoter contains operator
sites that can bind two different transcription factors: AraC and TetR. When
the sugar arabinose is present in the environment, AraC acts as a transcrip-
tional activator. TetR, instead, always acts as a transcriptional repressor.

The first gene of the operon encodes for AraC, while second one is a
coding sequence for the transcription factor Lacl.

AraC'
— BATCLC) (I[(dAra]C)2
- ra e AraC]-[Te
1+<[A C})2+([TtR])2 ([Cl-[TetR])2

Kdarac Kdreir Kdarac-Kdretr

PR (3.33)

Where B 4.qc is a factor that defines the maximal transcription and trans-
lation rate of the genes that are under the control of this hybrid promoter
when it is fully activated by AraC and not repressed by TetR.

Sender production term

The sender module consists of a promoter regulated by the activator AraC
that controls the expression of a coding sequence for the enzyme LuxI. LuxI
is an enzyme that converts two different substrates in a signaling molecule,
AHL.

BLu:vI : [ATG/C]Q
[AraC]? + Kd3, .0

Where B1..1 is a factor that defines the maximal transcription and trans-

lation rate of the LuxI gene in this module when the promoter is fully acti-
vated by AraC.

PR =

(3.34)

Receiver production term

The receiver module is composed of a promoter regulated by the repressor
Lacl. The gene downstream the promoter encodes for the protein LuxR, that
acts as a signal receptor.

39

ﬁLqu

1+ (el y

Where Br..r is the maximal transcription and translation rate of the
LuxR gene when the promoter is not repressed by Lacl.

(3.35)

Follower production term

The follower module contains another hybrid promoter that drives the ex-
pression of an operon. The two genes in the operon are coding sequences for
the repressor TetR and the enzyme LuxI. LuxI is present even in the follower
module so that cells that activate this part of the circuit start producing
signal and relay the information that somewhere a leader is already present.

AHL—LuzR] \2
Bretr - <ﬁ)

- [AHL—LuxzR] \o [Lacl] \o [AHL—LuxzR]-[Lacl] \o
L+ (KdAHL—Lqu) + (KdLacI) + (KdAHLfLqu‘KdLacI)

PR

(3.36)

Where [AHL — LuzR] is calculated with (3.17) and Srer is a factor
that defines the maximal transcription and translation rate of the genes that
constitute the operon when the hybrid promoter is fully activated by AHL-
LuxR and not repressed by Lacl.

Protein degradation

The degradation terms are protein-specific and can be modeled with equa-
tion (3.37) for each protein i of the circuit, when appropriate degradation
constants are considered.

DGRi = Kdgrp; - [Pi] (3.37)

Where Pi is the considered protein.

Signal production and degradation

LuxI is an enzyme that in presence of two different substrates, SAM and
hexanoyl-ACP, produces a small signaling molecule named AHL. The two
substrates of the enzyme are assumed to be present in saturating concentra-
tions, so that the contribution of each cell to the production term is propor-
tional to the intracellular concentration of the enzyme.

- i(”max [Luxl];) — Kdgrapr, - [AH L] (3.38)

i=1

d[AHL]
dt

40

Where [LuxI]; is the concentration of enzyme in the simulation volume
due to cell 4, N, is the number of cells in the microcolony and [AHL] is the
concentration of signaling molecule in the volume of simulation.

3.3.3 Parameters

The circuit is assumed to be assembled on a low copy number plasmid, and
the parameters that describe this condition are reported in Table 3.1.
Converting the concentration of the various molecules in their copy num-
bers is straightforward: considering that the volume of an E. coli cell is
about 2um? it follows that if the cell contains only 1 molecule of a specific

substance, then its concentration is

1molecule — 1molecule ~ 1nM.

2pm3 2/l
’ Parameter H Value \ Unit ‘
growth rate		0.02	[min~!	
Umaz	11	[min~!]		
leakiness2 [0.01	[min~!]			
leakiness [0.01	[min~!			
Brwr	40	[min™!]		
Barac	5	[min~!]		
Bruar	40	[min~!]		
Bretr	40	[min~!]		
Kdgrpuwer		0.02	[min~!]	
Kdgraac		0.01	[min=!]	
’ Kdgriaer H 0.02 ‘ [min~!] ‘				
Kdgrpu.s		0.01	[min™!]	
[Kdgrrar	002	[min1]		
Kdgragy	0.0018	[min]		
KSanp—rusr	100	[molecules - f1I71]		
Kdanp—rwr	10	[molecules - f17']		
Kdaac		5	[molecules - fI7']]	
Kdper		6	[molecules - fI7']	
Kdrar	5	[molecules - fI7']		

Table 3.1: Table of parameters

The growth rate of 0.02 corresponds to a doubling time of 50 minutes,
this value is not much higher than 20 minutes, that is widely considered the

41

bottom limit [21]. It is possible to vary the doubling time by changing the
growth medium or the temperature of the local environment.

Since the substrate of Luxl is assumed to be present in saturating concen-
trations, the enzyme produces AHL at the rate of about 1.1 AHL molecule
per LuxI molecule each minute [15].

The values assigned to the betas are in a realistic range according to [22],

where the maximal production rate of Lacl and GFP was set to about

proteins
20gene-min‘
Barec has a lower value than the others because preliminary simulations

made it clear that, with the actual dissociation constants, the production
of 40 proteins per minute of AraC and Lacl would have biased the system
toward the leader state. This low rate of protein synthesis can be achieved by
tuning gene expression, for example by varying the RBS spacer sequence [§].
Even the degradation constants of AHL, Lacl, LuxR-AHL and AraC were
obtained from literature [23], [24], [25], while the TetR one was assumed to
be in the same order of magnitude as that of the other proteins.

K SanL—ruzr 18 in the same order of magnitude as in [26], moreover the acti-
vation threshold is consistent with [20]. The value for Kdp..; was obtained
considering that a single operator site in the promoter can reduce the protein
production about 20 fold [27], in presence of about 40 monomers of Lacl [28].
In these conditions, using equation (3.6) it is possible to estimate a Kdpqer
between 107% and 107°. The same reasoning led to the choice of Kda,qec,
because 40 monomers are enough to activate gene expression in rapidly grow-
ing cells [12]. The in vivo affinity between TetR and its operator site tetO is
assumed to be in the same order of magnitude of the one between Lacl and
O,. That explains the similar value of Kdper and Kdpg.s.

From in wvitro experiments, it was shown that the binding constant between
LuxR and its operator site is about twice the one between TetR and tetO
[29], [30].

42

Chapter 4

Simulations and Results

4.1 gro environment

gro is a specification and simulation language developed by the Klavins Lab-
oratory at the University of Washington. This section describes the main
features of the simulation environment and its peculiar characteristics [31].

With gro, it is possible to simulate a mathematical model of a synthetic
genetic circuit at different levels of abstraction in each cell, and observe the
emergent behavior of the growing microcolony. gro combines a distributed
systems and parallel computing approach. With gro it is possible to simulate
the growth of a microcolony in a monolayer, visualize it as would be viewed
with a fluorescence microscope (Figure 4.1) and export data like the copy
number of each molecule in each cell.

gro models growth, division, contact forces between cells and small molecule
diffusion. Cells are assumed to be approximately cylindrical, with radius
r = 0.5um and initial length of [= 2um. The time resolution of each sub-
process of the simulation is controlled by the time step parameter dt that
can be adjusted to reduce numerical errors.

The initial volume of the cell is V = mr? .| ~ 1.57fL and the growth of
each cell is modeled according to the differential equation ‘fi—‘t/ =k -V where
the growth rate k can be varied. Each cell grows until it has approximately
doubled in size, at which point it divides approximately in two. The mean
and variance of the division size are also parameters that can be set in gro.
Although the volume of the microcolony grows smoothly, the number of cells
increases according to a discrete stochastic process.

The cells are constrained in a single layer so the contact forces can be
modeled using a simple two-dimensional physics engine, the one that is im-
plemented in gro was originally developed to simulate physics in computer

43

Cells: 404, Max: 1000, t = 181.86 min

Figure 4.1: Simulation of stochastic production and degradation of red fluo-
rescent protein (RFP). The cells are genetically identical but the amount of
protein differs slightly between individuals, note the different red intensity

44

games. The effect is intended to be only qualitatively similar to the actual
process.

Cell to cell communication via small molecules is simulated using the
finite difference method with a 2D grid of square elements, the resolution
of which can be specified when a model is implemented. The dynamics
are simulated using Euler integration. When a new signaling molecule is
declared, its diffusion and degradation rates can be specified. Cells emit,
sense and absorb small molecules.

Each cell in the simulation runs a program written in the gro programming
language. It is possible to specify the behavior at the most appropriate level
of abstraction for the current design phase. For example, it is equally possible
to specify the production of a particular molecule at a particular rate or model
in detail the processes of transcription and translation.

gro is a strongly typed, interpreted programming language. To model
parallelism, gro programs consist of sets of unordered guarded commands of
the form g:c where g, the guard, is a boolean expression and ¢, the command,
is a list of statements that can be either assignments or function calls. In each
step of the simulation, each guard is evaluated: if it evaluates to true, then the
associated command is evaluated. Each guarded command specifies a distinct
process in the cell and all such processes occur effectively simultaneously.
Following a standard approach in modeling parallelism, guarded commands
are executed in an unspecified order despite being listed in a particular order
in the code.

To model stochastic events in the cell, gro provides a special function,
rate(), that takes one argument and returns true or false randomly. In par-
ticular, rate(r) returns true upon a given evaluation with probability r - dt
and false the rest of the time, where dt is the simulation time step. The
rate function allows gro to approximate the Master Equation with Euler
integration.

4.2 Sensitivity Analysis

To take into account the stochasticity of gene expression, the differential
equations that constitute the mathematical model of the Leader Election
circuit, described in the previous chapter, were approximated by using the
rate() function of the gro language.

Starting from a condition in which the parameters of the model have
their nominal value, reported in Table 3.1, a sensitivity analysis by varying
one factor at a time around that central point in the parameters’ space was
performed.

45

Nine parameters were varied in a range that spans two orders of magni-
tude: the four betas, the four Kds and the leakiness of the coin flipper
module.

The parameters to be varied were chosen on the base of their relation to
the genetic components of the circuit and the possibility to physically tune
them:

e The betas define the maximal protein production per minute, they can
be tuned by modifying the RBS sequence, by choosing an appropriate
RBS spacer or by modifying the promoter region;

e The Kds are related to the binding affinity of the transcription factor
to the promoter, thus it should be possible to tune them by varying
the sequence of the operator site in the promoter region;

e The leakiness of the coin flipper is the basal transcription and transla-
tion rate of the hybrid promoter when no transcription factor is acting
on it, it can be tuned by modifying the sequence of the promoter region;

The size of the range of variation was chosen to be of about two orders
of magnitude because it is deemed to be an achievable range in the physical
tuning of the different genetic parts.

A simulation starts with a single cell that grows and divides and stops
when there are more than 50 cells in the simulation volume. The threshold
of 50 cells was chosen because, by the time that the colony reaches that pop-
ulation size with the nominal set of parameters, almost all the cells manage
to end up in either the leader or the follower state.

A cell is classified as a leader if its intracellular concentration of AraC
is above 20 [melecules] and its intracellular concentration of TetR is below 20

7l
[%], it is considered a follower if its intracellular concentration of AraC

is below 20 [%] and the one of TetR is above 20 [%], otherwise
the cell is undecided. Given the previous criterion, a cell can be undecided
for two different reasons: both AraC and TetR above the threshold or both
below it.

In each simulation there are various sources of stochasticity: protein pro-
duction, the size at which a cell divides and even the order of the various
reactions. Since the outcome critically depends on an initial stochastic event
that makes leader cells emerge, one hundred repetitions of the simulations
were performed in order to obtain a meaningful statistic and draw conclu-
sions. Each simulation is independent from the others, so it is possible to

46

speed up the sampling of the parameter’s space by running multiple instances
at the same time. To this end, a Python script to send simulations to the
nodes of a Linux cluster via ssh was developed. The script is described in
the appendix.

4.2.1 Cost Function

To grade the outcome of each simulation, a cost function based on the differ-
ence between the fraction of cells in each of the three states and the wanted
outcome was defined (4.1).

% Leaders — % Leaders
Cost = % Followers — % Followers (4.1)
%Undecided — %Undecided

2

Where ||-]|, is the 2 norm and the square brackets indicate a column
vector. The cost function reaches the value zero when the outcome of the
simulation is exactly the wanted one all the time, it gets to v/2 ~ 1.4 when
the outcome is the furthest from the goal.

The sensitivity analysis consists of a series of plots, one for each parameter
that is varied, where on the x axis is present the value of the parameter while
on the y axis is represented the corresponding value of the cost function. Since
each simulation is stochastic, dots represent the mean of the cost function
over all repetitions and bars represent the standard deviation (Figure 4.2).

With the sensitivity plot, it is possible to calculate the average slope that
separates the central value of the considered parameter and the value where
the cost function is minimized. A linear fitting in semilogaritmic space was
computed using the least squares method and the result is the red line in
Figure 4.3.

The higher the slope of the red line, the quicker it will be possible to reach
the optimal value of the parameter. An high slope also means that even a
small variation in the physical characteristics of the genetic component that
correspond to the considered parameter, will improve the outcome by a great
extent.

47

0.1 Leaders, 0.9 Followers, 0 Undecided

TR

N
N -
N

0.8 |

Cost
/.

0.6 RN

0.4

bEtaLuxl

Figure 4.2: Example of sensitivity plot. The parameter (. is varied over
about two orders of magnitude around its nominal value, depicted as a yellow
square.

0.1 Leaders, 0.9 Followers, 0 Undecided

TR

0.8 |

Cost
/

0.6 R

04r-

0.2k L

beta

Figure 4.3: Fitting of the cost function

48

4.2.2 Ranking

To rank the parameters on the base of both the previously mentioned slope,
and the minimum of the cost function that it is possible to obtain by varying
each parameter in the considered range, a special version of scatter plot was
ideated. The structure of the plot is illustrated in Figure 4.4.

0.1 Leaders, 0.9 Followers, 0 Undecided
08

0.7

I

I

I

I

I

I

06 !
I

|

05 I
I

|

I

9
04— —
@

beta
fdmg Pt]

Fo, e — — —

EEEEEEEE

Figure 4.4: Structure of the scatter plot used to rank the parameters. On
the left, the information that has been used to place the Br,.r dot in the
right-hand graph.

On the x axis is indicated the minimum of the cost function that is pos-
sible to reach by varying the considered parameter, while on the y axis is
indicated the absolute value of the average slope between the central value
and the one that minimizes the cost function. The various parameters are
indicated as color-coded dots in the graph. If the dot is red, then the slope
of the fitting is negative and the analysis suggest to increase the value of the
parameter in order to approach the goal, see the case of [r,.r in Figure 4.4
as an example. Otherwise, if the dot is blue, that means that the average
slope is positive, thus the parameter needs to be decreased in order to get
close to the desired behavior.

The scatter plot can be divided in the four different zones of Figure 4.5.

In the top-left corner (red), the slope is high while it is also possible to

49

0.1 Leaders, 0.9 Followers, 0 Undecided

0 0.1 0.2 03 0.4 05 0.6 07 08
min(cost function)

Figure 4.5: The four zones of the scatter plot used to rank the parameters

reach a low value of the cost function, there the most important parameters
reside, because, by varying one of them, it is possible to improve quickly the
outcome and get very close to the goal. The bottom-left corner (orange) is
an important zone too, because by tuning one of the parameters in there
it is possible to obtain the wanted behavior. The low slope tells that the
optimal outcome is not very far from that of the circuit with the nominal
components.

The right-hand half of the graph encompasses a region in which the cost
function is high, varying a parameter that is in that zone will push the system
toward the goal but it will not be possible to reach it. The top-right corner
(yellow) is just slightly more important than the bottom-right one (grey)
because, on top, the slope of the cost function is high and at least the cost
can be lowered quickly.

Parameters that minimize the cost function when their value is the central
one are not shown in the scatter plots because modifying them would make
the system perform worse than before.

It is important to note that, since the sensitivity analysis was performed
by varying one factor at a time, what happens when more than one parameter
is varied at the same time cannot be predicted.

30

4.3 Results

By setting different combinations of optimal values in the definition of the
cost function, it is possible to explore a number of behaviors that the cir-
cuit can implement just by modifying the quantitative characteristics of its
components (e.g. level of affinity between transcription factors and opera-
tor sites) and not their qualitative nature, that defines the structure of the
circuit.

In fact, modifying the optimum makes the shape of the sensitivity plots
change. This reflects itself in a different ranking of the various parameters
in function of the behavior that is set as the optimal one.

In the following, three different optimal outcomes are considered.

Goal 1: Majority of followers and minority of leaders

The top scatter plot in Figure 4.6 considers as a target a colony with 90% of
cells in the follower state, 10% of cells in the leader state and none undecided.
This is the goal the circuit was ideated for.

As we can see, all the parameters fall in the grey region, so it is not
possible to reduce significantly the cost. Anyway, as it is evident from the
bottom plot in Figure 4.6, it seems to be possible to obtain a microcolony in
which the majority of cells is in the follower state.

To reach this condition, the parameters that the analysis suggest to tune
are either Kdapgrru.r, that is related to the affinity of the LuxR-AHL com-
plex to the lux operator site in the promoter of the follower module, or
Bruer that is the maximal transcription and translation rate of the promoter
that drives the production of enzyme in the sender module of the circuit.
Kdagrruw:r would need to be decreased, that means that, in order to get
more followers than leaders, the promoter of the follower module needs to
be very sensitive to the activator. The less activator is needed to promote
transcription, the better. Since the relation between operator sequences and
affinity for transcription factors is still not well understood, it might be better
to focus on increasing the transcription and translation rate of the enzyme
and thus increasing 5r,.1-

Figure 4.7 shows a series of plots: in the left-hand column is displayed
the cost function of the top-4 parameters, ranked from top to bottom in
increasing order on the base of the minimum that is possible to reach by
varying them. The right-hand column contains the fraction of leaders, fol-
lowers and undecided cells at the end of the simulation in function of the
parameter’s value, for the same parameters of the left-hand column. In the

o1

0.1 Leaders, 0.9 Followers, 0 Undecided
0.8

0.7

0.6~

0.5

04— — == mmm et e

slope

0.3 Kd
* AHLLuxRKdL I

* beta.
* TetR

Kd
*

01 TetR;EetaL“XH

|
|
|
!
|
|
02t : : |
|
|
|
|
|
|
1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
min(cost function)

0.25 Leaders, 0.75 Followers, 0 Undecided
0.8 1

|
|
|
|
|
|
0.6~ 1
|
|
|
|
|
|

04— — == m—m et e

slope

Kd
o2l *

beta .o
KdLabId
* Ty TeR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
min(cost function)

Figure 4.6: Scatter plots when the goal is set to a majority of followers.

52

right-hand plots, dots represent the average fraction of cells in each state, over
one hundred repetitions of the simulations, and bars represent two standard
deviations in total.

It is easy to see that, to obtain the best outcome, the parameter that
should be varied is one of the two described before. By varying either Sr,.r
or Kdagrrur it is possible to reach most of the time a majority of followers
in the microcolony, while tuning the third or fourth best candidate leads to
a mix of followers and undecided cells in one case and an equal fraction of
leaders and followers in the other.

33

0.1 Leaders, 0.9 Followers, 0 Undecided

1.4 1.2
1.2 : %«% 1
S+
1 % % 0.8
=)
g 0.8 Z 0.6 i
“ - - ~
© 06 . R 04 -
~
0.4 0.2 R
<
0.2 0 % B % ke
04) X = _0'24) 5 = ‘
10 10 10 10 10 10 10 10 10 10
KdAHLLuxR KdAHLLuxF(
0.1 Leaders, 0.9 Followers, 0 Undecided
1.4 v v 1.2
1.2 R TR R L LRREE SRR Y [1
Pk
1 0.8
N
=)
3 0.8 iy 0.6 P
RS) -
© o6 < = 04 B S
0.4 0.2 Z
02 : . ob e L \,\%_%<%
0) - ‘2 0.2 0 ‘ ‘2 ‘
10 10 10 10 10 10 10 10
betal_ux| betal_uxI
0.1 Leaders, 0.9 Followers, 0 Undecided
1.4 v T 1.2
12 1
1 0.8
O A A S 5
% 0.8 = N 2 o6
IS] L aJ Y
0.6 X X 04 71/
I it 4
0.4 0.2 o 4
02 0 ST
0 -0.2
107" 10° 10’ 10° 107 10° 10’ 10°
Kdp el Kdp el
0.1 Leaders, 0.9 Followers, 0 Undecided
1.4 1.2
12p g % RS 1
1 \Jf - 0.8
5 08 = 2 06
IS e 4 =
0.6 R 04 SR
0.4 02 = -
02 of k- E T \% ~;}
03 ‘ ~ 3 -0.2 5 v ~ s
10 10 10 10 10 10 10 10

betaryq

Figure 4.7: The goal is set to a majority of followers. Left-hand column: cost
function of the four most promising parameters. Right-hand column: the
corresponding fraction of leaders, followers and undecided cells are depicted
in green, red and black.

o4

Goal 2: Balanced population of leaders and followers

Considering the case in which the aim is to obtain a microcolony that is split
in half between leaders and followers, all the parameters fall in the orange
region of the scatter plot (Figure 4.8). This means that reaching this goal is
relatively easy, because the variation of almost every parameter in the right
direction can be effective.

0.5 Leaders, 0.5 Followers, 0 Undecided
0.8

0.7
0.6~

0.5

g
o04Fr—-———-——————— = — = — = — e e
@ |
|
|
0.3 i
bemLuxl |
|
021 i !
|
* AHi(dfgcl i
bet: |
011 oKy |
|
betaLuxH\
0 1 1 1 | 1 1 1]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

min(cost function)

Figure 4.8: Scatter plot when the goal is to obtain a population in which
there are about as many leaders as followers.

As before, the four parameters that can can push the system closer to the
optimum than the others are ranked in Figure 4.9, where the plot has the
same structure as the previous one. Note that in the first and fourth row, the
optimum that the cost function suggests is not the one that is easily guessed
by looking at the corresponding plot on the right. This happens because the
mean value of the cost function is calculated by averaging each cost of the
one hundred simulations. Since the cost is calculated via a 2-norm, outliers
weigh a lot.

Even if either one the first three parameters analyzed in Figure 4.9 ap-
pears to be a good choice, when the suggested direction is taken into account
the easiest to tune in the laboratory are the betas. Between them, the best
one seems to be (1,1, because it needs a smaller increase than Sr.;r and also

95

0.5 Leaders, 0.5 Followers, 0 Undecided

1.4 1.2
1.2 1
1 08
= 08
%
o — —
© 06 3 % % N

%L,F,U
o o
N
N
I
Bl e e
\
N
/A
\
\
R %\
L
\

0 1

10

g | SHIL

betal_uxI betal_uxI

0.5 Leaders, 0.5 Followers, 0 Undecided

1.4 1.2
12 1
1 0.8
pu]
5 0.8 2 os
8§, T-F 3 E
0.6 RENS ®¥ 04 i
04 <l 0.2 Pt T
0.2 I e T %
03 1 2 3 -0.2 5 1 2 3
10 10 10’ 10 10 10 10’ 10
betar g betar

0.5 Leaders, 0.5 Followers, 0 Undecided

1.4 1.2
1.2 1
1 08

Cost
%L,F,U

: e S L
4 HH ! F iRty

05 0 i 2 3 -0.2) 1 2 3
10 10 10 10 10 10 10 10 10 10
KdLLum KdaLLur
0.5 Leaders, 0.5 Followers, 0 Undecided
1.4 12
12 : - 1
1 0.8
=)
g 0.8 g 0.6
-
© 06 R 04 X
2 S i Bt atadis S
0.4 ~g i ¥ 02 Sk 4
02 0 B
0 -0.2
107 10° 10’ 10° 107 10° 10’ 10°
Kd Kd
Lacl Lacl

Figure 4.9: The goal is set to a colony split in half between leaders and follow-
ers. Left-hand column: cost function of the four most promising parameters.
Right-hand column: the corresponding fraction of leaders, followers and un-
decided cells are depicted in green, red and black.

56

the standard deviation of undecided cells looks smaller when the maximal
production rate of the enzyme is high.

Goal 3: Majority of leaders and minority of followers

The third and last objective analyzed is sort of the complementary of the
first one: a microcolony in which the number of leaders dominate that of the
followers. In the top scatter plot of Figure 4.10, the target is set to three
quarters of leaders and one quarter of followers. All the parameters reside in
the left-hand half of the graph, this indicates that it is quite easy to obtain
this behavior. Considering the bottom scatter plot of Figure 4.10 it seems to
be relatively easy even to get a microcolony composed of almost all leaders
and a few followers. In both plots the four most important parameters are
the leakiness, Kdarqc, Barac and Kdrer.

As in the previous cases, Figure 4.11 ranks them in increasing order on
the base of the minimum that is possible to reach by varying them one at
a time. In this case the goal is set to 90% leaders, 10% followers and none
undecided.

Considering that increasing the affinity of AraC to its operator site might
prove to be difficult in the laboratory, the two parameters that can easily
bias the system towards a majority of leaders are the leakiness of the coin
flipper module and S 4,4c, the maximal transcription and translation rate of
the genes of the same module. In fact, while even increasing Kdr.;zr makes
the number of leaders dominate the one of the followers, the high standard
deviations of all the three different states indicates that the outcome would
be quite unpredictable.

57

0.8

0.7

0.6

0.5

0.4

slope

0.3

0.2

0.1

0.8

0.7

0.6

0.5

0.4

slope

0.3

0.2

0.1

0.75 Leaders, 0.25 Followers, 0 Undecided

9!eakmess

beta
*

Kd

|
|
|
|
|
|
|
|
beta
Ara\?ﬁ(d,r R Luxgﬁ
|
* Lacl 1

Kd
I I 5 (AHLLUXR I I I]

0 0.1

Jeakiness

0.2 0.3 0.4 0.5 0.6 0.7 0.8
min(cost function)

0.9 Leaders, 0.1 Followers, 0 Undecided

0 0.1

Figure 4.10:

Scatter

min(cost function)

plot when the goal is set to a majority of leaders.

28

0.9 Leaders, 0.1 Followers, 0 Undecided

1.4 1.2
12k : S [Lo 1
1 0.8
g 08 § = 06 b
Q A T -~ \
o -
0.6 * 04 A
N N
0.4 0.2 o N
) : \i\#
0.2 ! X 0 s e
0 S = = 0 0.2 - = " = 0
10 10 10 10 10 10 10 10 10 10
leakiness leakiness

0.9 Leaders, 0.1 Followers, 0 Undecided

1.4 THFTF 1.2 : :
12 L ; . 1 Sk K
/ /
1 ; 08 ;
/ > /
5 08 / o 06 /
8 g
© o6 ! ® 04 7
0.4 0.2 £ J[= i /}‘ N
N
0.2 {5—7 = 0 —¥ = —F ‘%” TH—K
05 0 1 2 -0.2 0 1 2
10 10 10 10 10 10 10 10
KdAraC KdAraC
0.9 Leaders, 0.1 Followers, 0 Undecided
1.4 TR 1.2
1.2 | : 1 Fer ok
\ Tx
1 ; 0.8 \
\ =] \
w 0.8 e 0.6 |
S \ < \
© s o R 04
Sl
0.4 SN 0.2 LAl }[
02 - \%‘ 0 PR T st T g
05 0 1 -0.2 0 1 2
10 10 10 10 10 10 10 10
betay .q betay .c
0.9 Leaders, 0.1 Followers, 0 Undecided
1.4 12
12 : - 1
1 0.8
=)
g 0.8 ~ § z 0.6
© o6 > R 04 ST
0.4 R s RIS 0.2 L
0.2 0 [
0 -0.2
107 10° 10’ 10° 107 10° 10’ 10°
Kdroim Kdrom

Figure 4.11: The goal is set to a majority of leaders. Left-hand column: cost
function of the four most promising parameters. Right-hand column: the
corresponding fraction of leaders, followers and undecided cells are depicted
in green, red and black.

39

4.4 Conclusions

The Leader Election circuit is a complex structure of non-linearly interacting
genetic components. Modeling and simulation provide a quick and inexpen-
sive mean to analyze the relation between parts and determine the required
characteristics for a correct behavior of the system.

The analysis of the different goals shows that obtaining a majority of
follower cells in a microcolony is the most difficult task. Since the analysis
suggests to increase the production of enzyme or increase the sensitivity of
the promoter in the follower module, the limiting factor seems to be the
amount of signal in the environment. A small number of leader cells in a
microcolony struggle to produce quickly the volume of signal that is needed
to turn the rest of the colony in the follower state. As time passes, the
probability that new leader cells will emerge increases. When the production
of enzyme is quick enough, and thus more signal is produced early in the
simulation, the outcome is most of the time a microcolony that contains a
majority of cells in the follower state.

Achieving a microcolony in which the cells are equally split between the
leader and follower state is comparatively easy. The best strategy to reach
this goal is to slightly increase the transcription and translation rate of the
enzyme in the sender module. Alternative approaches consist in increasing
either the affinity of the promoter in the folower module for the complex
AHL-LuxR or increasing the transcription and translation rate of the genes
in the same module.

Finally, it is possible to attain reliably a majority of leader cells in a
number of different ways. The first approach, increasing the basal expression
rate of the coin flipper module, can push the system to the extreme condition
in which all the colony switches to the leader state. A smaller increment,
instead, leaves a few followers at the end of the simulation. The second
strategy, instead, involves either the increase of the expression of the genes in
the coin flipper module or the increase in affinity between the activator AraC-
Arabinose and its corresponding operator sequence. Both the modifications
make the number of leaders dominate that of followers and also minimize the
number of undecided cells.

60

4.5 Future application: pattern formation

Pattern formation is a common phenomenon in the natural world and its best
exemplification is morphogenesis. The ability to produce artificially spatial
patterns in a microcolony of growing cells might have implications in the
fields of tissue engineering and biomaterials production. In future, the tech-
nology might allow the growth of complex structures in response to external
stimuli or the biological fabrication of valuable products only in defined re-
gions of space.

The seminal paper about modeling the emergence of a spatial pattern in
a system of reacting and diffusing substances was published in the 1950s by
Alan Turing [32]. In order to develop a definite, stationary pattern, the two
chemicals need to be able to diffuse and interact non-linearly. [33].

In the early 1990s, it was discovered that particular strains of bacteria,
collectively called Ben-Jacob’s bacteria, are able to grow in a macroscopic
colony that displays a definite pattern of cell concentration like the one in
Figure 4.12 [34].

In the recent past, synthetic genetic circuits that form macroscopical
patterns in Petri dishes have been devised. In [24] the authors were able
to realize a concentration bandpass filter by placing a disk of sender cells
in the center of a Petri dish on which two different strains of receiver cells
were uniformly spread. The sender cells were engineered to emit a signal
that, diffusing into the extracellular environment, developed a concentration
gradient. After a number of hours of incubation, it was possible to visualize
the bull’s eye pattern formed by the receiver cells. The two strains were sen-
sitive to different concentrations of the signal and so, if the concentration in
that region of the dish was in their detecting range, a fluorescent protein was
produced. More complex patterns were obtained by accurately positioning
disks of sender cells in the experimental environment.

This system is a very important step toward the engineering of a synthetic
pattern formation system in vivo, but it is just a proof of principle: different
groups of cells receive and send the signal and the sender cells are artificially
placed in the most convenient position. Furthermore, some natural organ-
isms form pattern at a smaller spatial scale than the one considered in this
application.

The Leader Election circuit is a perfect example of symmetry breaking,
since, starting from an uniform population of bacteria that developed from
a single cell, it aims to obtain two distinct classes of cells that display phe-
notypically different characteristics. This behavior can be exploited for the

61

Figure 4.12: Example of pattern created by a Ben-Jacob’s bacterial strain.
The image of P. vortex colony was created at Prof. Ben-Jacob’s lab, at
Tel-Aviv University, Israel

62

generation of patterns because it allows to make a structure emerge in a pre-
dictable way, without manually positioning the different components. For
this reason, the realization of spatial patterns was analyzed, using the fi-
nite state machines formalism, as a future application of the Leader Election
system.

A finite state machine is a computational model that describes a par-
ticular system or problem. Each machine has a defined number of states
connected through arcs, each state represent a configuration of the system,
while the arcs define the allowed transitions between the states. A transition
is triggered by an external event or a particular condition. This representa-
tion is particularly convenient to reason on a system without worrying about
the details of the physical realization.

With gro, it is easy to implement a finite state machine in cells. In
contrast to the deterministic ODE models proposed in the past, each cell is
genetically identical, the environment is uniform and the symmetry is broken
due to the presence of stochasticity in the process of switching states, that
in a more detailed model would be due to stochastic gene expression.

4.5.1 Spots

In the following, a finite state machine that gives rise to a spotty pattern
is illustrated. It can be described by three states, two different signals and
two thresholds. The thresholds define the conditions that must be satisfied
in order to move from one state to the other.

A single cell starts in the undecided state U, it grows and divides. If
the signal s1 is below a certain threshold, a cell in the undecided state U
can switch, with a certain probability, to the transmitter state T in which it
remains trapped.

Once in the transmitter state, the cell decreases its growth rate, produces
a green fluorescent protein (GFP) and emits two different signals: s1 is a long
range signal (cyan in Figure 4.13) while s2 is a short range signal (purple in
Figure 4.13).

Cells that didn’t switch to the transmitter state T and detect that the
amount of s2 is above a certain threshold switch to the R state and produce
a red fluorescent protein (RFP). A cell in the R state can switch back to the
undecided state if s2 goes below the previous threshold.

63

@ (sl < thsl)AProb
start — UJ

s2 < ths2 s2 > ths2

s2 > ths2

Since new transmitter cells can emerge only where s1 is not present, the
distance between these cells is characterized by a lower bound.

64

Cells: 1002, Max: 1000, t = 220.71 min

Figure 4.13: Simulation of the spots-forming finite state machine

65

4.5.2 Rings

A slightly different finite state machine, composed of three states, one signal
and three thresholds, implements a pattern of rings. A single cell starts
in the undecided state U then grows and divides. If the signal is below a
certain threshold, a cell in the undecided state U can switch with a certain
probability to the transmitter state T.

A cell in the transmitter state T decreases its growth rate, produces GFP
and emits the signal. Cells in the undecided state U can detect the signal
and, if it is in a specified range of concentrations, respond by switching to
the R state and produce RFP.

@(signal < thLL)AProb
start — UJ

signal > [thL,thH] signal € [thL,thH]

signal € [thL,thH]

The result of the simulation is a microcolony in which rings of RFP-
producing cells emerge (Figure 4.14).

66

Cells: 796, Max: 1000, t = 204.31 min

Figure 4.14: Simulation of the rings-forming finite state machine

67

4.5.3 Considerations

Both patterns rely on a short-range form of intercellular communication. At
present, the available well characterized genetic components that implement
a communication system in bacteria rely on the diffusion of small molecules
like AHL. These signals are not adequate because their diffusion coefficient
is usually high, this makes it very difficult to generate a steep enough signal
gradient around the transmitter cell. A possible solution might come from
the use of nitric oxide as a signaling molecule because it was shown that its
range of action can be very short [35]. E. coli cells can sense and produce
nitric oxide [36], but its use in a synthetic circuit will require a thorough
characterization of the various components involved.

Another key requirement for the emergence of the spatial pattern in the
previous examples is that transmitter cells need to decrease their growth rate
without hampering protein production. Known toxin-antitoxin systems can
regulate the rate of cellular division but usually they also affect the amount
of protein that the cell can produce in a given amount of time [37]. Further
research is needed to invent a satisfactory mechanism to precisely tune the
growth rate of single baterial cells with minimal side effects.

68

Chapter 5

Appendix

5.1 Python script to split simulations on a
Linux cluster

In a sensitivity analysis, the parameters’ space is sampled. Since each simu-
lation of this study is independent, it is possible to speed up the computation
by running a lot of different instances at the same time.

The Department of Electrical Engineering at the University of Washing-
ton has a cluster that can be accessed remotely by researchers and students.
The cluster is composed of 30 nodes, located in a server room, that run
the Red Hat Enterprise distribution of the Linux operating system. Taken
together, the machines total 88 processors and more than 90 GB of RAM.

To take advantage of that commodity, a Python script to split the various
simulations on the cluster and retrieve the results was developed.

The client on which the script runs, that can also be one of the nodes of
the cluster, needs to be a Unix system (like Linux, BSD, Mac OSX, etc..)
with Python 3 installed. Client and cluster communicate via secure shell
(ssh). Passwordless access to the various nodes is needed and easily set up.

The script takes as inputs:
e the name of the gro file containing the model that needs to be simulated;

e a parameter’s text file in which it is defined the central point in the
parameters’ space and the range of variation of each parameter for the
sensitivity analysis;

e the number of times that each point needs to be sampled to obtain a
statistic.

69

Each point in the parameters’ space has to be sampled more than once be-
cause gro simulations embed various sources of stochasticity.

A gro model that needs to be simulated on the cluster by means of the
python script must accept the values of the parameters that are varied from
command line and return the result of the simulation to the standard output
via the print() function. To avoid problems, a stop condition that terminates
the simulation with the exit() function when a certain event happens (e.g.
simulation time above a threshold or number of cells above a limit) must be
placed in the gro code.

The parameters’ file is a simple text file that must start with a line con-
taining either the word ”sum” or "mult” and must end with an empty line.
This file can have one of two alternative structures that are useful for different
kinds of sensitivity analyses.

The first one is handy for a local sensitivity analysis: each parameter is
varied from a lower value to an upper value by iteratively adding a step.
The structure is illustrated in Table 5.1, where each row represent a different
parameter and the columns contain, in order: lower value, upper value, step
and central point of the considered parameter.

Parameter H From ‘ To ‘ Step ‘ Central ‘

P1 0.01 | 2 | 0.02 1
P2 2 40 1 18

P3 0.5 | 50| 0.25 30

Table 5.1: Example of the first structure of the parameters’ file.

To sample broadly the parameters’ space, it is better to use the second
structure. Each parameter is varied by multiplying the central value to a
series of factors. The structure is illustrated in Table 5.2, where the last
column contains the central point of the analysis and the others consist of
the various factors by which the central point is multiplied, while the rows
have the same meaning as before.

This script is general and not model-specific, so it can be used to simulate
every gro model as long as it satisfies the requisites stated before.

Upon launch, the script requests some information to the user, then reads
the parameters’ file and generates a list of simulations (Figure 5.1). After
that, the instances are sent to the nodes. Each node receives a number of
instances that equals the number of cores on that machine. Once all the

70

Parameter H F1 H F2 H F3 H H Central ‘

P1 0.01 || 0.1 1 || 10)
P2 0.1 0.5 1) 400
P3 0.005 || 0.05{ 0.5 | 5 2.5

Table 5.2: Example of the second structure of the parameters’ file

simulations of the first repetition are sent, the script waits for all the nodes
to complete the computation. Then, the results of the first repetition are
compressed, sent to the client and removed from the cluster’s filesystem.
The cycle repeats itself until all the repetitions have been simulated.

71

/

(

remove from
cluster

)

info from user

)
J

generate list
of simulations

read
parameters file

split simulations
between nodes

For each
repeat

[send to client]4—[

\

wait for
all to finish

)

compress

results’ folder

)

Figure 5.1: Python script diagram

72

10

15

20

25

30

35

40

45

50

55

#!/usr/local /bin/python3
Coded by Andrea Samore’
import os

import time

import subprocess

Get info from the user ##H#

username = input(’User name: ’)
Name of the gro program on the cluster
groFile = input(’gro program name: ’)

Name of the parameters file on the client , it must be in the same folder
where this script is

parFileName = input(’Parameters file:)

parFile = open(’./’+parFileName,’r?)

Number of times that each simulation needs to be repeated in order to
obtain a statistic

repeats = int (input(’Repeats: ’))

Read the parameters file and set the number of workstations

lines = parFile.readlines ()

numPar = len (lines)—1 # The first line defines how to vary the parameters

numWorkstations = 31 # There are 31 nodes in the UW EE server room

print (’Your model has ’ + str(numPar) + ’ parameters!’)

Parameters are varied in a ”linear” way #H##
if str(lines[0]) = ’sum\n’:

This list will contain the lowest value for each parameter

fromList = []

This list wil contain the highest value for each parameter

toList = []

This list will contain the step by which each parameter is varied

stepList = []

This list contains the nominal value of all the parameters (
InitialGuessList)

IGList = []

Extract the information from the parameters’ file and fill the
previous 4 lists
for i in range(numPar):
linea = lines [i+1]
print (linea)
lun = len(linea)
lista = []
lastIndex = —1
for j in range(lun):
if (linea[j] = ’,’) | (linea[j] = ’\n’):
lista.append(linea [(lastIndex+1):j])
lastIndex = j

print (lista)

fromList .append(float (lista [0]))
toList .append (float (lista[1]))
stepList .append(float (lista [2]))
IGList .append(float (lista [3]))

print (fromList)
print (toList)
print (stepList)
print (IGList)

73

60

65

70

75

80

85

90

95

100

105

110

Build a big list with each set of parameters that needs to be
simulated and calculate the number of simulations needed

bigList = []

currentList = []

Let’s start in the nominal condition

currentList [:] = IGList [:];

nSim = 0

For each parameter..
for i in range(numPar):
if (i>=1):
currentList [i —1] = IGList [i—1]

Starting from the lowest value, increase it by the step
and add the set of parameters to the big list
containing all sets that need to be simulated

currentList [i] = fromList [i]

if (stepList[i] != 0):

simPar = int (round ((toList[i] — fromList[i])/
stepList [1],3))
print (’simPar: ’ 4 str(simPar))
for j in range(simPar+1):
bigList .append(currentList [:])
nSim = nSim +1
currentList [i] = round(currentList[i] + stepList|[i

],5)

Parameters are varied by multiplication with constants
str(lines [0]) = ’mult\n’:

This list will contain all the factors that will multiply the
considered parameters

factorList = []

This list contains the nominal value of all the parameters (
InitialGuessList)

IGList = []

simPar = []

For each parameter..
for i in range(numPar):

linea = lines [i+1]
print (linea)
lun = len(linea)
lista = []
lastIndex = —1
for j in range(lun):
if (linea[j] = ’,’) | (linea[j] = ’\n’)

lista .append(linea [(lastIndex+1):j])
lastIndex = j

print (lista)

Llista = len(lista)

simPar.append (int (Llista —1))

print (Llista)

for k in range(Llista —1):

factorList .append(float (lista [k]))
IGList.append(float (lista [Llista —1]))

print
print
print
print

factorList)

len (factorList))
1GList)

simPar)

—~~ e~

4

115 bigList = [];

currentList = [];
currentList [:] = IGList [:];
nSim = 0;

120 numPar = len (IGList)

for i in range(numPar):
if (i>=1):
currentList [1 —1] = IGList [i—1]
125 for j in range(simPar[i]):

currentList [i] = round(factorList [nSim]*IGList[i],5)
nSim = nSim +1
print (currentList)
130 bigList .append(currentList [:])
print (str(nSim) + ° simulations!’)
print (bigList)

Build a list containing the number of cores of each of the 31 workstations
135 CW = []
for n in range(numWorkstations):
Find the number of cores of the considered workstation

commandCores = ’ssh -1 ’4username+’ -q linux’+str(n+12)4’.ee.
washington.edu "cat /proc/cpuinfo | grep processor | wc -1"’
numCores = int (subprocess.check_output ([commandCores], shell=True,
universal_newlines=True))
140 CW. append (int (numCores))

print (’CoreList: ’4str (CW))

145 for umm in range(repeats):

Make a new folder for each repeat

resultsFolder = ’results’+str (umm)

subprocess.call ([’ssh -1 ’4username+’ -q linux13.ee.washington.edu
cd grong && mkdir ’+4resultsFolder+’ && exit"’],shell=True)

150
Split the simulations on the 31 workstations that are in the
server room
indiceBigList = 0
smallList = []
155 stop = False
while stop = False:
for k in range(numWorkstations):
if stop == True:
break
160 # Send to each workstation a number of simulations
that equals the number of cores
for nc in range(int (CW[k])):
comando = ’ssh -1 ’Husername+’ -q linux’4str
(k+12)+’ .ee.washington.edu "cd grong ;
J
print (str (indiceBigList))
smallList [:] = bigList [indiceBigList][:]
165 comando = comando + ’./grong ./’+groFile
for i in range(numPar):
comando = comando +’ ’+4str(smallList

[i])

5

175

180

185

190

200

205

Polling ...

results

comando = comando + ’ > ’+resultsFolder+’/’
for i in range(numPar):
if i = 0:
comando = comando + str ("
{0:.3£}" . format (
smallList [1]))
else:
comando = comando +’_’+str ("
{0:.3f}".format (
smallList [i]))
comando = comando + ’.txt && °’
indiceBigList = indiceBigList+1
if indiceBigList = nSim:
comando = comando + ’ exit" &’
subprocess. call ([comando], shell=True

stop = True

else:
comando = comando + ’ exit" &’
subprocess. call ([comando], shell=True

time . sleep (1)
print (’stop:’ +str(stop))
if stop == True:

break

Once there is no instance of gro running I can compress the

folder , send it back locally and remove the folder and the

compressed folder from the cluster ##H#

stopCond = False
while stopCond = False:

activeGro = 0
print (’Polling..’)
Check if there is any instance of grong running on the
cluster
for i in range(numWorkstations):
commandProcess = ’ssh -1 ’+username+’ -q linux’4str
(i412)+’ .ee.washington.edu "ps -f -C grong |
grep ’4username4’ | wc -1 ; exit"’
activeGro = activeGro + int(subprocess.check_output
([commandProcess]|, shell=True,
universal_newlines=True))
time. sleep (1)
if activeGro = 0:
stopCond = True
Compress the current results and remove the
corresponding folder from the cluster
print (’Compressing..’)
zipCommand = ’ssh -1 ’4username+’ -q linuxil4.ee.
washington.edu "cd grong && tar -cjf ’+
resultsFolder+’.tar.bz2 ’4resultsFolder+’ &&
rm -rf ’HresultsFolder+’ && exit"’
subprocess. call ([zipCommand], shell=True)
Copy the compressed file that contains the current
result folder locally

copyCommand = ’scp ’Husername+’@linuxi4d.ee.
washington.edu:grong/’+resultsFolder4’.tar.bz2
s

subprocess. call ([copyCommand], shell=True)
Remove the current result from the cluster
removeCommand = ’ssh -1 ’4username+’ -q linuxl4d.ee.

76

210

else:

washington.edu "cd grong && rm ’+4resultsFolder
+’.tar.bz2 && exit"’

subprocess. call ([removeCommand]|, shell=True)

break

print (’activeGro: ’+ str(activeGro))
time.sleep (5)

7

5.2 gro Models

This section contains the gro code that has been used to simulate the pre-
viously described models. For more information on the syntax of the code,
consult [38]

5.2.1 Leader Election
// Coded by Andrea Samoré

include gro

srand(-3);

// Set time step and growth rate
set ("dt",0.0025);
set ("ecoli_growth_rate", 0.02);

// Global variables
numCells := 1;

t = 0;

s := 0;
leaders := 0;
followers := 0;

undecided := 1;

// The signal has a constant concentration due to the fast diffusion of AHL
// I am supposing that the bacteria are in a box with sides 400um x 400um
// and height 1 pum.

globalSignal := 0O;

// Input functions of the various promoters and binding of AHL to LuxR

fun repressor beta X Kd . beta / (1+ (X/Kd)"2);

fun activator beta X Kd . (beta * X"2) / (X"2 + Kd~2);

fun michment S Xt Ks . ((Ks + Xt + S) - sqrt((Ks + Xt + S)72 - 4x(Xt*S8)))/2;

fun actrepr beta X Y Kx Ky . (betax(X/Kx)"2) / (1 + (X/Kx)"2 + (Y/Ky)~2 + ((X*Y)/(Kx*Ky))~2);

// Parameters
// Maximal transcription and translation rate of the sender module

betaLuxR := atof (ARGV[2]);

// LuxR protein degradation constant
KdgrLuxR := 0.02;

// Equilibrium constant of AHL-LuxR binding
KsAhlLuxR := 100;

// Equilibrium constant of AHL-LuxR binding the promoter
KdAhlLuxR := atof (ARGV[3]);

// Maximal transcription and translation rate of the operon in the coin-flipper module
betaAraC := atof (ARGV[4]);

// Equilibrium constant of AraC-Arabinose binding the promoter
KdAraC := atof (ARGV[5]);

// AraC protein degradation rate
KdgrAraC := 0.01;

78

// Equilibrium constant of LacI binding the promoter
KdLacI := atof(ARGV[6]);

// Lacl protein degradation rate
KdgrLacI := 0.02;

// Maximal transcription and translation rate of the sender module
betaLuxI := atof (ARGV[7]);

// LuxI protein degradation constant
KdgrLuxI := 0.01;

// Maximal transcription and translation rate of the follower module
betaTetR := atof (ARGV[8]);

// Equilibrium constant of TetR binding the promoter
KdTetR := atof (ARGV[9]);

// TetR protein degradation constant
KdgrTetR := 0.01;

// Basal expression of the coin-flipper module
leakiness := atof (ARGV[10]);

// Basal expression of all the other modules
leakiness2 := 0.01;

// Degradation constant of the signal
KdgrAHL := 0.0018;

program le(leakiness,leakiness2,betaluxR,KdLacI,KdgrLuxR,betaluxI,KdAraC,KdgrLuxI,
betaAraC,KdTetR,KdgrAraC,KdgrLacI,betaTetR,KsAhlLuxR,KdAhlLuxR,KdgrTetR,KdgrAHL)

// Initialization

rfp := 0;

gfp := 0;

araC := 0;

lacI := 0;

luxI := 0;

luxR := 0;

tetR := 0;

state := [value:= 0];
daughter : {

numCells := numCells + 1;
state.value := 0;
undecided := undecided +1;
};

// Degradation terms

rate (KdgrAraC * araC/volume) { araC := araC - 1};
rate (KdgrLacI * lacI/volume) : { lacI := lacI - 1};
rate (KdgrLuxI * luxI/volume) : { luxI := luxI - 1};
rate (KdgrLuxR luxR/volume) : { luxR := luxR - 1};
rate (KdgrTetR * tetR/volume) : { tetR := tetR - 1};

// GFP and RFP are fixed to the amount of AraC and tetR for visualization purposes

true : {
gfp := araC;

79

{

rfp := tetR;
};

// Coin-flipper module production term
rate(actrepr betaAraC (araC/volume) (tetR/volume) KdAraC KdTetR) : {

araC := araC + 1;
lacI := lacl + 1;
};

// Coin-flipper module basal expression
rate(leakiness): {

araC := araC + 1;
lacI := lacIl + 1;
};

// Sender module production term
rate(activator betaLuxI (araC/volume) KdAraC) : {
luxI := luxI +1;

};

// Sender module basal expression
rate(leakiness2) : {
luxI := luxI + 1;

};

// Receiver module production term
rate(repressor betaLuxR (lacI/volume) KdLacI) : {
luxR := luxR +1;

};

// Receiver module basal expression
rate(leakiness2) : {

luxR := luxR + 1;

};

// Follower module production term

rate(actrepr betaTetR (michment (globalSignal) (luxR/volume) KsAhlLuxR) (lacI/volume) KdAhlLuxR KdLacI) : {
tetR := tetR +1;

luxI := luxI + 1; // Signal relay!

3

// Follower module basal expression
rate(leakiness2) : {

tetR := tetR +1;

luxI := luxI + 1; // Signal relay!
3

// Signal production term, each cell contributes with its intracellular concentration of LuxI
true : {

globalSignal := globalSignal + (1.1*1uxI/(160000) * dt);

};

// Classification

// Undecided --> Leader
(state.value = 0) & (araC/volume > 20) & (tetR/volume < 20) : {

state.value := 1; // Leader!
leaders := leaders +1;
undecided := undecided -1;
};

// Follower --> Leader

80

(state.value = 2) & (araC/volume > 20) & (tetR/volume < 20) : {

state.value := 1; // Leader!
leaders := leaders +1;
followers := followers -1;
};

// Undecided --> Follower
(state.value = 0) & (araC/volume < 20) & (tetR/volume > 20) : {

state.value := 2; // Follower!
followers := followers +1;
undecided := undecided -1;

};

// Leader --> Follower
(state.value = 1) & (araC/volume < 20) & (tetR/volume > 20) : {

state.value := 2; // Follower!
followers := followers +1;
leaders := leaders -1;

};

//Leader --> Undecided
(state.value = 1) & (araC/volume > 20) & (tetR/volume >20) : {

state.value := 0; // undecided

undecided := undecided +1;

leaders := leaders -1;

};

(state.value = 1) & (araC/volume < 20) & (tetR/volume < 20): {
state.value := 0; //undecided

undecided := undecided +1;

leaders := leaders -1;

};

// follower --> undecided
(state.value = 2) & (araC/volume > 20) & (tetR/volume > 20) : {

state.value := 0; // undecided!
followers := followers -1;
undecided := undecided +1;
};
(state.value = 2) & (araC/volume < 20) & (tetR/volume < 20) : {
state.value := 0; // undecided
followers := followers -1;
undecided := undecided +1;
};
};
program report() := {

needs lacI;
needs araC;
needs luxI;

needs tetR;

needs luxR;

needs p;

selected : {message(l,tostring(id) <> " [luxI]: " <> tostring(luxI) <> " [ahl]: "
<> tostring(globalSignal) <> " [tetR]: " <> tostring(tetR/volume))};
selected : {message(2,tostring(id) <> " [araC]: " <> tostring(araC/volume) <> ...
" [lacI]: " <> tostring(lacI/volume) <> " [luxR]: " <> tostring(luxR/volume))};
I

program p(leakiness,leakiness2,betaluxR,KdLacI,KdgrLuxR,betaluxI,KdAraC,KdgrLuxI,
betaAraC,KdTetR,KdgrAraC,KdgrLacI,betaTetR,KsAhlLuxR,KdAhlLuxR,KdgrTetR,KdgrAHL) :=
le(leakiness,leakiness2,betaluxR,KdLacI,KdgrLuxR,betaluxI,KdAraC,KdgrLuxI,betaAraC,KdTetR,

81

KdgrAraC,KdgrLacI,betaTetR,KsAhlLuxR,KdAhlLuxR,KdgrTetR,KdgrAHL)
+ report() sharing lacI , araC, luxI, tetR, luxR, gfp, rfp, p;

program main() := {

// Signal degradation term
true : {globalSignal := globalSignal - KdgrAHL * globalSignal * dt};

true : {t
true : {s

t + dt};
s + dt};

// Stop condition
numCells >= 50 : {

exit();

};

// Output every minute

s>1 @ o
print(t,",",numCells,",",leaders,",",followers,"," ,undecided,"\n") ;
s := 0;

};

};

// Place a single E. coli cell in the center of the volume and start the simulation
ecoli ([x := 0, y := 0], program p(leakiness,leakiness2,betaluxR,KdLacI,KdgrLuxR,betaluxI,KdAraC,
KdgrLuxI,betaAraC,KdTetR,KdgrAraC,KdgrLacI,betaTetR,KsAhlLuxR,KdAhlLuxR,KdgrTetR,KdgrAHL)) ;

start();

82

5.2.2 Spots

// Coded by Andrea Samoré

include gro

set ("dt",0.05);

// Short range signal definition
SR := signal (0.3,1);

// Long range signal definition
LR := signal (3,0.5);

program gi() := {

// Initialization

rfp := 0;

gfp := 0;

p :=[state := 0, thSR :

1, thLR := 0.5];

// RFP degradation
rate(0.05*%rfp) : {rfp := rfp-1};

// Switch with a certain probability from the undecided state to the leader state if
// the long range signal is below a specified threshold

(p.state = 0) & rate(0.01) & (get_signal(LR) < p.thLR) : {

p.state := 1;

3

// Once in the leader state, emit the two signals, decrease the growth rate and
// become green

(p.state = 1) : {

emit_signal (SR,70);

emit_signal (LR,100);

set ("ecoli_growth_rate",0.001);

gfp := 100;

};

// If in the undecided state and the short range signal emitted by a leader is above a
// certain threshold then switch to the "red" state

(p.state = 0) & (get_signal (SR) > p.thSR) : {

p.state := 3;

s

// In the "red" state the cell produces rfp. It gets out of the "red" state if the short
// range signal emitted by the leader is below a certain threshold

(p.state = 3) : {

rfp := rfp + 1;

p.state := if (get_signal (SR) < p.thSR) then O else 3 end;

};
3

program report() := {
needs rfp;
selected : {

message (1,tostring(id) <> " rfp: " <> tostring(rfp) <> " SR:" <> tostring(get_signal(SR)) <> ...

" LR:" <> tostring(get_signal(LR)))
I
3

program p() := gl() + report() sharing gfp,rfp;

ecoli([x := 0,y:=0], program p());
start();

83

5.2.3 Rings

// Coded by Andrea Samoré

include gro
// Set the integration step.
set ("dt",0.05);

// Initialization of the random number generator, a negative number means that t is
// initialized each time with a different seed.
srand(-3);

// Declare the signal’s diffusion and degradation rates
aS := signal (4,0.5);

program gl () := {

// Initialization of the copy number of the fluorescent markers.
rfp := 0;
gfp := 0;

// RFP degradation rate.
rate(0.05*rfp) : {rfp := rfp-1};

// N.B. GFP does not degrade because it is used only to highlight the cell that emits the
// signal.

// A record protects these variables from being split upon cell division.
p :=[state := 0, thLL := 0.01, thL := 0.5, thH := 1.5];

// If the cell is in the undecided state O and the signal is below a certain threshold
// then it can switch to the transmitter state with a specified probability and emit a
// burst of signal in the transition.

(p.state = 0) & rate(0.001) & (get_signal(aS)<p.thLL) : {

emit_signal (aS,1000);

p.state :=1;

};

// Once in the transmitter state, the cell keeps emitting signal and slows its growth
// rate.

(p.state = 1) : {

emit_signal (aS,100);

gfp := 100;
set ("ecoli_growth_rate",0.001);
};

// A cell in the undecided state switches to the band state if it detects that the signal
// is in a specified range of concentrations.

(p.state = 0) & ((get_signal(aS) > p.thL) & (get_signal(aS) < p.thH)) : {

p.state := 4;

};

// Once in the T state, it produces RFP. If the detected signal is now outside the specified
// range, the cell switches back to the undecided state.

(p.state = 4) : {

p.state := if (get_signal(aS) < p.thL) | (get_signal(aS) > p.thH) then O else 4 end;

rfp := rfp+l;

3

};

// This code show information about the content of RFP and the level of signal detected
// by a cell when it is selected from the simulator.

84

10

15

20

25

30

35

program report() := {

needs rfp;

selected : {

message (1,tostring(id) <> " rfp: " <> tostring(rfp) <> " aS:" <> tostring(get_signal(aS)))
};

};

// Program composition.
program p() := gi() + report() sharing gfp,cfp,rfp;

// Initialization of a single E. coli cell in the center of the field of view.

ecoli([x:=0,y:=0], program p());
start();

5.3 Matlab Code

The data analysis was performed using MATLAB (r2012a, The MathWorks,
Natick, MA). This section contains the code.

% Coded by Andrea Samore’

%% Load results

clear

close all

clc

[a b] = system(’1ls -al results*.tar.bz2 | wc -1’);

% Number of repeats
b= = str2double (b);

% Name of each parameter
namePar = {’beta_{LuxR}’ ;7 Kd_{AHLLuxR}’;’beta_{AraC}’;’Kd_{AraC}’; ’Kd_{
LacI}’ ...
; ’beta_{LuxI}’; ’beta_{TetR}’; ’Kd_{TetR}’; ’leakiness’};

numPar = length (namePar) ;

%Extract from tarball
fprintf(’%d results to extract!\n’,b);

for i = 0:(b-1)
fprintf(’Extracting result %d of %d\n’,i+1,b);
name = sprintf(’./results%d.tar.bz2’,i);
system (sprintf(’tar -jxf Y%s’,name));

end

fprintf(’\nDone!\n’)

% Central point in the parameters space.
centralPoint = [40 10 5 5 6 40 40 5 0.01];

% Factors by which the parameters are multiplied. This script works only if
% the number of factors is the same for all the parameters.

factorList = [0.05 0.1 0.25 0.5 1 2.5 5 10];

% Big Matrix containing all the combinations of parameters (filled in the

following cycles)

85

bigM = [];

40
% All values for the considered parameter
parlist = [];
indice = 1;
45 for j = l:numPar
for gg = l:length(factorList)
parlist (gg) = factorList (gg)*centralPoint (j);
end
50
for i = 1l:length(parlist)
bigM (indice ,:) = centralPoint;
bigM (indice ,j) = parlist (i);
55

% For each repeat
for k = 0:(b-1)
% Print what you want to open
fprintf(’./results%d/%.5¢_%.5f_%.5f_%.5f_%.5f_%.5f_%.5f_%.5f_%.5
f.txt\n’ ,k,bigM(indice ,1) ,bigM(indice ,2) ,bigM(indice ,3),
bigM (indice ,4) ,bigM (indice ,5) ,bigM(indice ,6) ,bigM(indice
,7) ,bigM (indice ,8) ,bigM(indice ,9));
60 % Then open it and put it in a matrix
part = csvread (sprintf(’./results¥%d/%.5f_%.5f_%.5f_%.5f_%.5%f_%.5
f_%.5f_%.5f_%.5f.txt’ k,bigM(indice ,1) ,bigM(indice ,2) ,bigM
(indice ,3) ,bigM(indice ,4) ,bigM(indice ,5) ,bigM(indice ,6) ,
bigM (indice ,7) ,bigM(indice ,8) ,bigM (indice ,9)));
% Calculate the fraction of leaders, followers and undecided
% and if everything goes smoothly put them in a cell

% array
65 if “isnan(part(end,3:end)./sum(part(end,3:end)))
% j: number of parameters;
% i: number of steps of the considered parameter;
% k: number of repeats — 1
% Consider only the fraction of cells in the various states
70 % of the last step of the simulation.
res{j,i}(k+1,:) = part(end,3:end)./sum(part(end,3:end));
end
clear part
end
75 indice = indice + 1;

end
end

80 % a: number of parameters;
% 1: maximum number of steps.

[a 1] = size(res);
85 for i = 1:a
for j 1:1

if “isempty(res{i,j})
MS{i}(j,1:3) = mean(res{i,j});
MS{i}(j14:6) = std(res{i,j});
90 end
end
end

86

95 % matrix of ”x axes”

100

105

110

115

120

125

135

140

145

150

155

matrice = zeros(length(centralPoint),

for w = 1l:length(centralPoint)
for y = 1:length(factorList)
matrice (w,y) = factorList (y)*centralPoint (w);

end

end

%% Plot raw results

clos

for

end

e all

i=1:a
h = figure(i);
hold on

nameFig = sprintf(’./figsDots/figld.eps’,i);

indice = 8;
for k = 1:indice

plot (factorList (k)*centralPoint (i) ,res{i,k}(:,
plot (factorList (k)*xcentralPoint (i) ,res{i,k}(:,
plot (factorList (k)*xcentralPoint (i) ,res{i,k}(:,

end
ylabel (?%L,F,U%);

xlabel (sprintf(’%s’ ,namePar{i,:}));

set (gca, ’xscale’, ’log’)
grid
print (h,’

-depsc2’ ,nameFig) ;

length (factorList));

1),7gx’);
2),0r*);
3),’ko”);

%% Plot of the mean and standard deviation of the fractions over

clos

for

end

e all

i=1:a
h = figure(i);
hold on

nameFig = sprintf(’./figsMean/figld.e

errorbar (matrice (i,:

) .
errorbar (matrice (i,:) ,MS{i
errorbar (matrice (i,:) ,MS{i}
errorbar (matrice(i,:) ,MS{i}
errorbar (matrice (i,:) ,MS{i}
) .

errorbar (matrice (i
ylabel (?%L,F,U”);

xlabel (sprintf(’%s’ ,namePar{i,:}))

set (gca, ’xscale’, ’log’)
grid

print (h, >-depsc2’ ,nameFig) ;

%% All Costs

close all

% Optimal fraction of leaders,
opt = [0.1 0.9 0];

%opt = [0.5 0.5 0];

Yopt = [0.9 0.1 0];

(::1) M
(+,1) MS{i
(+,2) MS{i
(+,2) MS{i
(+,3) MS{ i
(:,3) ,Ms{i

followers

87

ps’,i);

}(74)7’g__])
F(i,4),0%g)
}(75)7’1.__’)
F(:,5) %)
}(76)’7k__,)
F(:,6) 7 %k)

and undecided

all

repeats

% Calculate mean and ds of the cost function

for i = 1:a
for j = 1:1
160 for k = 1:length(res{i,j}(:,1))
if “isempty(res{i,j})
allCosts{i,j}(k,1) = norm([res{i,j}(k,1)—opt(1l),res{i,j}(k
,2)—0pt(2),res{i,j}(k,3)—opt(3)],2);
end
end
165 cost{i}(j,1) = mean(allCosts{i,j}(:,1));
cost{i}(j,2) = std(allCosts{i,j}(:,1));
end
end
170 for i = 1:a
h = figure(i);
hold on
errorbar (matrice(i,:) ,cost{i}(:,1),cost{i}(:,2),’k--")
errorbar (matrice(i,:) ,cost{i}(:,1),cost{i}(:,2),’*k’)
175 [minCost, Ind]= min(cost{i}(:,1));
if Ind < 5
fitting (i,:) = polyfit(loglO(matrice(i,Ind:5)),cost{i}(Ind:5,1)7,1);
line = polyval(fitting (i,:),logl0O(matrice(i,Ind:5)));
plot (matrice(i,Ind:5) ,line ,’r’)
180 end
if Ind > 5
fitting (i,:) = polyfit(loglO(matrice(i,5:Ind)),cost{i}(5:Ind,1)’,1);
line = polyval(fitting (i,:),logl0O(matrice(i,5:Ind)));
plot (matrice(i,5:Ind),line ,’r’)
185 end
if Ind = 5
fitting (i,:) = polyfit(logl0(matrice(i,:)),cost{i}(:,1)’,1);
line = polyval(fitting (i,:),logl0(matrice(i,:)));
plot (matrice(i,:) ,line,’r’)
190 end

nameFig = sprintf(’./figsCost/figld.eps’,i);

ylabel (’Cost’);

xlabel (sprintf(’%s’ ,namePar{i,:}));

Vlim ([0 sart(2)])

195 plot (centralPoint (i),cost{i}(5,1),’s’,’MarkerEdgeColor’, ’k’,”’

MarkerFaceColor’,’y’,’MarkerSize’ ,10)

set (gca, ’xscale’, ’log’)

set (gca, ’xscale’, ’log’)

title (sprintf(’%g Leaders, %g Followers, %g Undecided’ ,opt(1l),opt(2),opt
(3)))

grid

200 print (h, ’-depsc2’ ,nameFig) ;
end

%% subplot 0.1L 0.9F 0U
205 close all

% Optimal fraction of leaders, followers and undecided
opt = [0.1 0.9 0];

210 % Calculate mean and ds of the cost function

for i = 1l:a
for j = 1:1
for k = 1:length(res{i,j}(:,1))
if Tisempty(res{i,j})

88

215

220

225

235

240

245

250

260

265

270

allCosts{i,j}(k,1) = norm([res{i,j}(k,1)—opt(1l),res{i,j}(k
,2)70pt(2),res{i,j}(k,3)fopt(3)],2);
end
end
cost{i}(j,1) = mean(allCosts{i,j}(:,1));
cost{i}(j,2) = std(allCosts{i,j}(:,1));
end
end
indiceplot = 1;
for i = [2 6 5 7]
subplot (4,2, indiceplot)
errorbar (matrice(i,:) ,cost{i}(:,1),cost{i}(:,2),’k--")
hold on
errorbar (matrice(i,:) ,cost{i}(:,1),cost{i}(:,2),’*k”’)
[minCost, Ind]= min(cost{i}(:,1));
if Ind < 5
fitting (i,:) = polyfit(loglO(matrice(i,Ind:5)),cost{i}(Ind:5,1)7,1);
line = polyval(fitting (i,:),logl0(matrice(i,Ind:5)));
plot (matrice(i,Ind:5) ,line,’r?)
end
if Ind > 5
fitting (i,:) = polyfit(loglO(matrice(i,5:Ind)),cost{i}(5:Ind,1)’,1);
line = polyval(fitting (i,:),logl0O(matrice(i,5:Ind)));
plot (matrice(i,5:Ind),line ,’r’)
end
if Ind =5
fitting (i,:) = polyfit(loglO(matrice(i,:)),cost{i}(:,1),1);
line = polyval(fitting (i,:),logl0O(matrice(i,:)));
plot (matrice(i,:) ,line,’r’)
end
ylabel (’Cost’);
xlabel (sprintf(’%s’ ,namePar{i,:}));
vlim ([0 sart(2)])
plot (centralPoint (i),cost{i}(5,1),’s’,’MarkerEdgeColor’, ’k’,”’
MarkerFaceColor’,’y’,’MarkerSize’ ,10)
set (gca, ’xscale’, ’log’)
title (sprintf(’%g Leaders, %g Followers, %g Undecided’ ,opt(1l),opt(2),opt
(3)))
grid
indiceplot = indiceplot +2;
end
indiceplot = 2;
for i = [2 6 5 7]
subplot (4,2,indiceplot)
hold on
errorbar (matrice (i,:) ,MS{i}(:,1) MS{i}(:,4),’g--")
errorbar (matrice (i,:) ,MS{i}(:,1) MS{i}(:,4),’*g’)
errorbar (matrice (i,:) ,MS{i}(:,2) MS{i}(:,5),’r--")
errorbar (matrice (i,:) ,MS{i}(:,2) MS{i}(:,5),’*r’)
errorbar (matrice(i,:) ,MS{i}(:,3) MS{i}(:,6),’k--")
errorbar (matrice (i,:) ,MS{i}(:,3) MS{i}(:,6),’*k’)
ylabel (?%4L,F,U”);
xlabel (sprintf(’%s’ ,namePar{i,:}));
set (gca, ’xscale’, ’log’)
grid
indiceplot = indiceplot + 2;
end

%% subplot 0.5L 0.5F 0U
close all

89

275 % Optimal fraction of leaders, followers and undecided

280

285

290

300

305

310

315

320

325

330

opt

= [0.5 0.5 0];

% Calculate mean and ds of the cost function

for

end

i=1:a
for j = 1:1
for = 1l:length(res{i,j}(:,1))
f Tisempty (res{i,j})
allCosts{i,j}(k,1) = norm([res{i,j}(k,1)—opt(1l),res{i,j}(k

))7
72)_0pt(2) 7res{i ,j}(k,3)—0pt(3)] 72))

1
k
i

end
end
cost{i}(j,1)
cost{i}(j,2)

mean (allCosts{i,j}(:,1));
std (allCosts{i,j}(:,1));

end

indiceplot = 1;

for

end

i=1[672 5]

subplot (4,2,indiceplot)

errorbar (matrice(i,:) ,cost{i}(:,1),cost{i}(:,2),’k--")

hold on

errorbar (matrice(i,:) ,cost{i}(:,1),cost{i}(:,2),’*k’)

[minCost, Ind]= min(cost{i}(:,1));

if Ind < 5
fitting (i,:) = polyfit(loglO(matrice(i,Ind:5)),cost{i}(Ind:5,1)",1);
line = polyval(fitting (i,:),logl0(matrice(i,Ind:5)));
plot (matrice(i,Ind:5) ,line ,’r’)

end

if Ind > 5
fitting (i,:) = polyfit(loglO(matrice(i,5:Ind)),cost{i}(5:Ind,1)’,1);
line = polyval(fitting (i,:) ,logl0(matrice(i,5:Ind)));
plot (matrice(i,5:Ind),line ,’r’)

end

if Ind = 5
fitting (i,:) = polyfit (logl0(matrice(i,:)),cost{i}(:,1)7,1);
line = polyval(fitting (i,:),logl0(matrice(i,:)));
plot (matrice(i,:) ,line ,’r’)

end

ylabel(’Cost?);

xlabel (sprintf(’%s’ ,namePar{i,:}));

ylim ([0 sart (2)])

plot (centralPoint (i),cost{i}(5,1),’s’,’MarkerEdgeColor’, ’k’,”’
MarkerFaceColor’,’y’,’MarkerSize’ ,10)

set (gca, ’xscale’, ’log’)

title (sprintf(’%g Leaders, %g Followers, %g Undecided’,opt(1l),opt(2),opt
(3)))

grid

indiceplot = indiceplot +2;

indiceplot = 2;

for

i=1[672 5]
subplot (4,2, indiceplot)
hold on

errorbar (matrice (i,:) ,MS{i}(:,1) MS{i}(:,4),’g--")
errorbar (matrice(i,:) MS{i}(:,1) MS{i}(:,4),’*g’)
errorbar (matrice (i,:) ,MS{i}(:,2) MS{i}(:,5),’r--")
errorbar (matrice(i,:) MS{i}(:,2) MS{i}(:,5),’*r’)
errorbar (matrice (i,:) ,MS{i}(:,3) MS{i}(:,6),’k--")

335

340

345

350

355

360

365

370

375

380

385

390

end

errorbar (matrice (i,:) ,MS{i}(:,3) MS{i}(:,6),’*k’)
ylabel (?%4L,F,U”);

xlabel (sprintf(’%s’ ,namePar{i,:}));

set (gca, ’xscale’, ’log’)

grid

indiceplot = indiceplot + 2;

%% subplot 0.9L 0.1F 0U

close all

% Optimal fraction of leaders, followers and undecided
opt = [0.9 0.1 0];

% Calculate mean and ds of the cost function

for

end

i=1:a
for j = 1:1
for = 1l:length(res{i,j}(:,1))
f “isempty(res{i,j})
allCosts{i,j}(k,1) = norm([res{i,j}(k,1
)

12)—opt (2) ,res{i,j}(k,3)—opt(3)],

1
k
J—opt (1) ,res{i,] }(k
2);
end
end
cost{i}(j,1) = mean(allCosts{i,j}(:,1));
. cost{i}(j,2) = std(allCosts{i,j}(:,1));

en

indiceplot = 1;

for

i =19 43 8]

subplot (4,2, indiceplot)

errorbar (matrice(i,:) ,cost{i}(:,1),cost{i}(:,2),’k--")

hold on

errorbar (matrice(i,:) ,cost{i}(:,1),cost{i}(:,2),’*k’)

[minCost, Ind]= min(cost{i}(:,1));

if Ind < 5
fitting (i,:) = polyfit(loglO(matrice(i,Ind:5)),cost{i}(Ind:5,1)7,1);
line = polyval(fitting (i,:),logl0(matrice(i,Ind:5)));
plot (matrice(i,Ind:5) ,line ,’r’)

end

if Ind > 5
fitting (i,:) = polyfit(loglO(matrice(i,5:Ind)),cost{i}(5:Ind,1)’,1);
line = polyval(fitting(i,:),logl0O(matrice(i,5:Ind)));
plot (matrice(i,5:Ind),line ,’r’)

end

if Ind = 5
fitting (i,:) = polyfit(loglO(matrice(i,:)),cost{i}(:,1),1);
line = polyval(fitting (i,:),logl0(matrice(i,:)));
plot (matrice(i,:) ,line,’r’)

end

ylabel (’Cost’);

xlabel (sprintf(’%s’ ,namePar{i,:}));

ylim ([0 sart (2)])

plot (centralPoint (i),cost{i}(5,1),’s’,’MarkerEdgeColor’,6’k’,”’
MarkerFaceColor’,’y’,’MarkerSize’ ,10)

set (gca, ’xscale’, ’log’)

title (sprintf(’%g Leaders, %g Followers, %g Undecided’,opt(1l),opt(2),opt
(3)))

grid

indiceplot = indiceplot +2;

91

end

indiceplot = 2;
395 for i = [9 4 3 8]
subplot (4,2,indiceplot)
hold on

errorbar (matrice(i,:) ,MS{i}(:,1) MS{i}(:,4),’g--")
errorbar (matrice(i,:) MS{i}(:,1) MS{i}(:,4),’*g’)
400 errorbar (matrice (i,:) ,MS{i}(:,2) MS{i}(:,5),’r--")
errorbar (matrice (i,:) ,MS{i}(:,2) ,MS{i}(:,5),’*r”)
errorbar (matrice (i,:) ,MS{i}(:,3) MS{i}(:,6),’k--")
errorbar (matrice(i,:) ,MS{i}(:,3) MS{i}(:,6),’*k’)
ylabel (?%L,F,U”);
405 xlabel (sprintf(’%s’ ,namePar{i,:}));
set (gca, ’xscale’, ’log’)

grid
indiceplot = indiceplot + 2;
end
410
%% Scatter plots: dCost/d(log(parameter))

close all
415 % Matrix of optimal values
opt = [0.9 0.1 0;0.75 0.25 0;0.5 0.5 0;0.25 0.75 0;0.1 0.9 0];

color = [’b’,’g’,’r’,’c’];

% Calculate mean and ds of the cost function
420 for ndi = 1:length(opt(:,1))

for i = 1l:a
for j = 1:1
for k = 1l:length(res{i,j}(:,1))

if “isempty(res{i,j})
425 allCosts{i,j}(k,1) = norm([res{i,j}(k,1)—opt(ndi,1),res{
i,j}(k,2) opt (ndi,2) ,res{i,j}(k.3)—opt(ndi,3)],2);
end
end
cost{i}(j,1) = mean(allCosts{i,j}(:,1)
cost{i}(j,2) std(allCosts{i,j}(:,1))
430 end
end

? ;

h = figure(ndi);

hold on
435 nameFig = sprintf(’./figsSamo/figld.eps’ ,ndi);
for i = 1:a
[minCost2(ndi,i), Ind]= min(cost{i}(:,1));
if Ind < 5
440 fitting (i,:) = polyfit(logl0(matrice(i,Ind:5)),cost{i}(Ind:5,1)
1)
end
if Ind > 5
fitting (i,:) = polyfit(logl0(matrice(i,5:Ind)),cost{i}(5:Ind,1)
1),
end
445 if Ind =5
fitting (i,:) = polyfit(loglO(matrice(i,:)),cost{i}(:,1)’,1);
end
if Ind "= 5
if fitting (i,1)>0
450 plot (minCost2(ndi, i) ,abs(fitting (i,1)),’b*’)

92

text (minCost2(ndi, i) ,abs(fitting (i,1)),namePar(i),’
VerticalAlignment’ ,’bottom’);
end
if fitting (i,1)<0
plot (minCost2(ndi, i) ,abs(fitting (i,1)),’r*’)
455 text (minCost2 (ndi, i) ,abs(fitting (i,1)) ,namePar(i),”’
VerticalAlignment’,’bottom’);
end
end
end

460 plot ([0 .8],[0.4 0.4],°k--")
plot ([0.4 0.4],[0 .8], k--7)
xlim ([0 .8])
ylim ([0 .8])
xlabel (’min(cost function)’)
465 ylabel (’slope’)
title (sprintf(’%g Leaders, %g Followers, %g Undecided’ ,opt(ndi,1) ,opt(
ndi,2) ,opt(ndi,3)))
grid
print (h,’-depsc2’ ,nameFig) ;

470 end

93

Bibliography

1]
2]
3]
[4]

[5]

[6]

[7]

8]

[10]

[11]

[12]

Mankind. http://en.wikipedia.org/wiki/Nucleotides.
Mankind. http://en.wikipedia.org/wiki/DNA.

Mankind. http://en.wikipedia.org/wiki/Escherichia_coli.
S. Jang and E. Klavins. Manuscript in preparation. 2013.

M.B Elowitz and S Leibler. A synthetic oscillatory network of transcrip-
tional regulators. Nature, 403(6767):335-338, 2000.

T.S Gardner, C.R Cantor, and J.J Collins. Construction of a genetic
toggle switch in escherichia coli supplementary information.

Adam P Arkin and Daniel A Fletcher. somewhat in control. Genome
Biol, 7(8):114, Jan 2006.

R Egbert and E Klavins. Fine-tuning gene networks using simple se-
quence repeats. Proceedings of the National Academy of Sciences, Jan
2012.

Drew Endy. Foundations for engineering biology. Nature, 438(7067):449—
453, Nov 2005.

Ernesto Andrianantoandro, Subhayu Basu, David K Karig, and Ron
Weiss. Synthetic biology: new engineering rules for an emerging disci-
pline. Molecular Systems Biology, 2:1-14, May 2006.

R Schleif. Regulation of the-arabinose operon of escherichia coli. Trends
in Genetics, 16(12):559-565, 2000.

R Schleif. Arac protein, regulation of the l-arabinose operon in es-
cherichia coli, and the light switch mechanism of arac action. FEMS
microbiology reviews, 34(5):779-796, 2010.

94

[13]

[14]

[15]

[21]

22]

23]

O Diaz-Hernandez and M Santillan. Bistable behavior of the lac operon
in e. coli when induced with a mixture of lactose and tmg. Frontiers in
Physiology, 1, 2010.

C Fuqua and E Greenberg. Listening in on bacteria: acyl-homoserine
lactone signalling. Nature Reviews: Molecular ..., Jan 2002.

A.L Schaefer, D.L Val, B.LL Hanzelka, J.E Cronan Jr, and EP Greenberg.
Generation of cell-to-cell signals in quorum sensing: acyl homoserine
lactone synthase activity of a purified vibrio fischeri luxi protein. Pro-

ceedings of the National Academy of Sciences, 93(18):9505-9509, 1996.

P Orth, D Schnappinger, W Hillen, W Saenger, and W Hinrichs. Struc-
tural basis of gene regulation by the tetracycline inducible tet repressor-
operator system. Nature structural biology, 7(3):215-219, 2000.

Z Szallasi, J Stelling, and V Periwal. System Modeling in Cell Biology:
From Concepts to Nuts and Bolts. Jan 2006.

Uri Alon. An Introduction to Systems Biology: Design Principles of
Biological Chircuits. 2006.

G Dilanji, J Langebrake, P Deleenheer, and S.J Hagen. Quorum acti-
vation at a distance: spatiotemporal patterns of gene regulation from
diffusion of an autoinducer signal. Bulletin of the American Physical
Society, 57, 2012.

H.B Kaplan and EP Greenberg. Diffusion of autoinducer is involved

in regulation of the vibrio fischeri luminescence system. J Bacteriol,
163(3):1210-1214, 1985.

A.G Marr. Growth rate of escherichia coli. Microbiological reviews,
55(2):316-333, 1991.

Francesca Ceroni, Simone Furini, Emanuele Giordano, and Silvio Caval-
canti. Rational design of modular circuits for gene transcription: A test
of the bottom-up approach. Journal of Biological Engineering, 4(1):14,
Nov 2010.

Yu Tanouchi, Dennis Tu, Jungsang Kim, and Lingchong You. Noise
reduction by diffusional dissipation in a minimal quorum sensing motif.

PLoS computational biology, 4(8):e1000167, Aug 2008.

95

[24]

28]

[29]

S Basu, Y Gerchman, C.H Collins, F.H Arnold, and R Weiss. A syn-
thetic multicellular system for programmed pattern formation. Nature,
434(7037):1130-1134, 2005.

D Kolodrubetz and R Schleif. Identification of arac protein on two-
dimensional gels, itsj ij, in vivoj/i; instability and normal level. Journal
of Molecular Biology, 149(1):133-139, 1981.

ML Urbanowski, CP Lostroh, and EP Greenberg. Reversible acyl-
homoserine lactone binding to purified vibrio fischeri luxr protein. J
Bacteriol, 186(3):631-637, 2004.

S Oehler, E.R Eismann, H Kramer, and B Miiller-Hill. The three op-
erators of the lac operon cooperate in repression. The EMBO journal,

9(4):973, 1990.

J Elf, G.-W Li, and X. S Xie. Probing transcription factor dynamics at
the single-molecule level in a living cell. Science, 316(5828):1191-1194,
May 2007.

N Qin, S. M Callahan, P. V Dunlap, and A. M Stevens. Analysis of
luxr regulon gene expression during quorum sensing in vibrio fischeri. J
Bacteriol, 189(11):4127-4134, Jun 2007.

A Kamionka. Two mutations in the tetracycline repressor change the
inducer anhydrotetracycline to a corepressor. Nucleic Acids Research,
32(2):842-847, Jan 2004.

S Jang, K Oishi, R Egbert, and E Klavins. Specification and simulation
of synthetic multi-celled behaviors. ACS Synthetic Biology, Jan 2012.

A.M Turing. The chemical basis of morphogenesis. Philosophical Trans-
actions of the Royal Society of London. Series B, Biological Sciences,
237(641):37-72, 1952.

AJ Koch and H Meinhardt. Biological pattern formation: from ba-
sic mechanisms to complex structures. Reviews of Modern Physics,
66(4):1481-1507, 1994.

E Ben-Jacob. Bacterial self-organization: co—enhancement of com-
plexification and adaptability in a dynamic environment. Philosophical
Transactions of the Royal Society of London. Series A: Mathematical,
Physical and Engineering Sciences, 361(1807):1283-1312, 2003.

96

[35] Wright WW Vanderkooi JM and Erecinska M. Nitric oxide diffusion
coefficients in solutions, proteins and membranes determined by phos-
phorescence. Biochimica et biophysica acta, 1994.

[36] S Spiro. Nitric oxide-sensing mechanisms in escherichia coli. Biochemical
Society Transactions, 34:200-202, 2006.

[37] Yoshihiro Yamaguchi and Masayori Inouye. Regulation of growth and
death in escherichia coli by toxin-antitoxin systems. Nature Reviews
Microbiology, 9(11):779-790, Sep 2011.

[38] Eric Klavins. http://depts.washington.edu/soslab/gro/.

97

