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Introduction

What was a barrier few years ago, like the high costs of hardware (e.g GPS,

infrared sensors, cameras and so on) has become nowadays a set of affordable

devices. Thus, now, robot builders can add to robot’s structure these devices

with a reasonable expense.

Besides hardware aspects and its trend over time, software in robotics

has covered a great distance too. It plays a main role since is used to tell a

mechanical device (a robot) which are the tasks to perform and control its

actions. It is worth pointing out that specifying the control logic at software

level, provides more flexibility, in addition gives programmers an easy way

to extend and change the robot behaviour.

Like in the ’70s when Bill Gates and Paul Allen looked at the convergence

of new technologies and dreamed about the day when computers would have

become smaller and cheaper, hence in every home[8]. Thus, it is not so weird

to imagine a future where autonomous devices become a integrated parts of

our day-to-day lives. These devices are constantly the more powerful, cheaper

and smaller, the more time passes. The robotics domain has experienced a

shift from robots big and expensive -like the mainframes- to small and perva-

sives ones -personal computers. This shift can be interpreted as the transition

from robots who compose assembly lines of automobile manufacturing or in

military missions (e.g drones for US Army), to robots who perform compan-

ionship activities, physical assistance or cleaning tasks.

In this perspective, robot programming becomes a very important aspect,

like programming stardard applications. That is, robots are considered as

computer systems, not just electronic and mechanic devices. Considering

that, this thesis will mainly focus on programming robotic control systems,

that is a challenging tasks for today’s programmers with even a basic under-
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standing of robotics.

There is the need then to look up for models and architectures as well as

languages general purpose, to design a robot. Being general purpose is a

fundamental requirement for the robot’s control architecture that we take

into account to program robotics systems.

On the one side, different kind of general purpose well-suited architectures

are provided by the literature (e.g deliberative, reactive, hybrid, behaviour-

based) for programming robots. On the other side, traditional programming

languages are typically used to implement concretely robot programs. How-

ever, such languages do not provide either abstractions or mechanisms to

cope with critical aspects concerning robot programming. In particular, with

regard to the interaction between the environment and the design of reactive

and autonomous behaviour of the robot. Therefore there is a conceptual gap

between the high-level specification of robot’s behaviour and the implemen-

tation -and design- of the program.

This thesis aims at tackling this issue, taking into account an agent-based

approach for programming robots. In particular, we are going to use the

BDI (Belief, Desire, Intention) model, which directly encompasses all the

necessary features to program a robot and help to cope with typical robotics

issues.

With regard to the above considerations, this thesis will explore a method

to design robot controllers by means of high level languages and architectures

like Jason and CArtagO. In order to do the experiments and tests, the Webots

robot simulator platform is used. The platform allows to create simulated

worlds and robots, and provides proper API to develop the required bridge

to integrate heterogeneous programming language and systems for controlling

the robot.

A set of small but relevant programming examples is used to compare the

different approaches just mentioned. The different investigations will deal

both with standard and high level programming languages in order to fulfill

the aimed goals.

Of course programming robots is a non-trivial task, but in this work we

show how agent programming languages and technologies could be a promis-

ing approach for easing the development of articulated robot programs, im-
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proving their modularity and readability, and reducing the gap between the

design and implementation level. As a result, the contribution brought by

this thesis concerns the possibility to do robot programming in a easier way.

Organization of the thesis

This paper is organized as follows:

Chapter 1 In the first chapter we are going to explain what a robot and

robotics are concerned, especially tackling specific topics like autonomous

robots and domestic robotics. Afterwards will be showed some basic

control architectures that are used to be enforced for robotics purposes.

Then, the chapter goes ahead with some considerations about program-

ming systems, why robotics and its programming is so meaningful and

which are its drawbacks. Moreover, to provide a complete thesis back-

ground we will conclude talking about languages and platforms at the

state of the art for robotics as well as the Webots simulator.

Chapter 2 Describes what are agent programming languages and agent sys-

tems in order to understand how they can be used as a basic approach

in programming robots. With special regards to Jason BDI agent ar-

chitectures and languages, we will try to explain why that could be a

meaningful way to program an autonomous system like a robot.

Chapter 3 Shows how to use Jason and a related framework like CArtAgO

to describe robot controller architecture, that works over the Webots

simulator.

Chapter 4 Presents a bunch of examples implemented with both the agent-

oriented and the standard approach (written either in C). Starting from

a high level description of the problem and the related strategy, ending

up to the actual implementation of the strategy (in both ways).

Chapter 5 Here we will compare what turns out from the experimentations

showed in the previous chapter. By evaluating the differences between

the approaches, the modularity brought in by Jason and finally dis-

cussing roughly about the performance.

Finally, the last chapter discusses the limits of the proposed approach and

the extensions that can be considered in future work. For example:
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how and why it would be extremelly useful and interesting looking

ahead towards a connection between the mentioned languages and AI

techniques. Considering that, such work can brought to a robotics pro-

gramming more automated.



Chapter 1

Background

How could we define a robot1?

Of course an unique, correct and neat definition doesn’t exist because of

the complexity of such wide branch of technology, in addition there is a lot

of misunderstanding about this topic. But seeking among a great number of

articles a robot can be defined clearly as

”an autonomous system which exists in the physical wolrd, is

able to sense its environment and can act on it to achieve some

goals[7]”.

Two part of the above definition tell us what we have to deal with, when we

are going to face the robotics field. The autonomy means that a robot can

perform desired activity in unstructured environments without continuous

human guidance, moving either all or part of itself throughout the environ-

ment without human assistance and avoiding harmful situation for people or

itself. The ability of sensing (to touch, to see, to hear etc, by means of a set

of sensors) and acting on the environment (through some devices called actu-

ators/effectors) means that the robot has sensors in order to get information

from the world and respond according to them properly, taking actions to

achieve what is desired or rather to achive some goals, this may be considered

the ”intelligent part” of a robot.

1The word robot was introduced by a czech writer named Karel Capek in his play

Rossum’s Universal Robots in 1921, it comes from the Slavic word robota, which is used

to refer ”forced labor”.
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So, once we have defined what a robot is, we can now define what robotics

means and we think a well suited definition according to the robot’s one can

be

”Robotics is the branch of technology that deals with the design,

construction, operation and application of robots and computer

systems for their control, sensory feedback, and information processing[11].”

One of the main area of robotics research is to enable the robot to cope with

its environment whether this be on land, underwater, in the air, underground,

or in space in order to implement a fully autonomous robot which may also

learn or gain new capabilities like adjusting strategies for accomplishing its

task(s) or adapting to changing surroundings.

1 Programming Robots

Programming robots means to implement the robot software as the coded set

of commands that tell a mechanical autonomous device what task to perform

and control its action. The robotics industry faces many of the same chal-

lenges that the personal computer business tackled about 30 years ago: robot

companies have many problems regarding the standardization of robotic pro-

cessors, moreover only a little part of programming code used in a machine

that controls a robot, can be applied again to another one: in fact, whenever

a programmer wants to build a new robot, he has to start from square one

and program a new controller from the scratch. Programming robots is a

non-trivial task indeed, even though many software systems and frameworks

(see further) have been developed to make programming robots esier.

Early robot programming approaches used to rely on data flow based tech-

niques which model the whole robot’s lifecycle as a simple sequence of actions.

However as time went by, some robot software aims at developing intelligent

mechanical devices that should be able to react to different (and maybe un-

predicted) events: so pre-programmed hardware that (may) include feedback

control loops such that it can interact with the einvironemnt does not display

actual intelligent.

Thus, we have to take into account some different kinds of features to

program a robot properly:
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� the typology/purpose of robot we are going to develop (industrial, do-

mestic, military, totally autonomous etc.),

� the control architecture,

� the underlying programming system we choose (and the related lan-

guage).

It is worth to mention the high importance of a relevant model (and sim-

ulation, as we will show) of what we are going to program in terms of the

above points, as it’s hard to enforce our control program on a real autonomous

system, like a robot.

1.1 (Domestic)Robotics

The world’s robot population has been strongly rising during the last years;

today’s amount of robot has likely reached ten milion of units because of are

become more powerful, with more sensors, more intelligence and equipped

by cheaper components (as we told previously). As a result they moved out

of controlled industrial environments into uncontrolled service environments

such as houses, hospitals, and workplaces where they perform different sorts

activities ranging from delivery services to entertainment.

Some studies divide robots in two main categories, industrial and service

robots. The former category includes welding systems, assembly manipulators

and so on, that carry out heavy, expensive and several degrees of freedom of

tasks. The latter category is divided in two subcategories: professional service

robots like bomb disposal machine, surgical systems, chargo handler, milking

robots, and personal service robots like vacuum cleaners, lawn mowers, sev-

eral sorts of new generation toys and hobby kits.

The kind of autonomous mechanical devices we are going to analyze and

then to program along with this thesis is the one regarding the domestic

and, in general, personal service robots; such kind of robots is on the one

hand interesting beacause is the far more widespread (as we can see from the

bar chart in figure 1.1) and on the other hand we think these autonomous

devices lie on a field closer to our interest an farther from industrial ones.

In particular we are not going to consider that specific branch of robotics
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Figure 1.1: The service and industrial robots increase over four years.

concerning completely automated robots, which are based upon artificial in-

telligence techniques only, that allow to change and adapt dinamically their

behaviours, even though we will show how the afterwards work could be

extended towards such kind of programming.

1.2 Control Architecture

When we defined what a robot is, we talked about the set of devices that help

a robot to perceive its physical world in order to get information about itself

and the environment, the sensors. These devices are fundamental because

through a right unit of sensors a robot knows its state, or rather can get a

general notion of the current situation of the world in order to choose the

relevant actions to enforce by means of another set of devices that a robot is

equipped with, the actuators. The non-trivial operation that allow a robot

to take information from sensors and select which is the best action to apply

using the actuators is done by the controller(s).



1.1.2 Control Architecture 19

A controller plays the role of the ”brain” and the ”nervous system” of

an autonomous system, it provides the software that makes the robot au-

tonomous by using sensor inputs to decide what to do and then to control

the actuators to execute those actions in order to pursued certain goals. A

lot of controller categories exists, and we know that the simpliest one is the

feedback control (data flow technique) (see figure) that is a nice way to write

controllers for one-behaviour / simple-task robots which have no need of

thinking, however nowadays robots are assembled to perform more complex

tasks, whatever they are. Therefore putting together different simple feed-

back control loops is not the right answer to model a good controller, such

task is not simple if we want to achieve a well-behave robot.

Thus, like Design Patterns employed in software engineering, we need some

guiding principles and constraints for organizing the ”brain” of our robot

and then helping the designer to program its controller so that it behaves as

desired, in a language independent way. Such choice will be taken despite of

the programming language used to program a robot, in fact what matters is

the control architecture used to implement the controller and hereafter we

show some types of control.

Deliberative control

In this architecture there is some consideration in alternative courses of action

before an action is taken, so deliberation could be defined as thoughtfulness

in decision and action that involves the capacity to represent states referring

to hypothetical past or future states or as yet unexecuted actions. So, de-

liberative control goes hand in hand with AI in order to solve very complex

problems through planning operations.

Planning is the process of looking ahead at the outcomes of the possible

actions, to realize strategies as a sequence of actions that will be executed

by an intelligent agent in order to achieve a (set of) goal(s). However such

operation -according to the complexity of the problem to solve- might has to

take into account a huge amount of aspects; as result, that entail a cost in

terms of time, memory and a possible lack of information. Indeed for non-

trivial problems, the number of possible states that an agent in charge of



20 Background

Figure 1.2: Simple deliberative architecture.

planning have to analyze becomes even extremelly large. So the longer it

takes to plan, the slower a robot may become to enforce an action and it is

not a good in case a robot situated within an uncertain environment must

deal with hazardous situation. In addition, in such case a robot must get a

considerable amount of updated information -that concern a plenty storage

memory- in order to get consistent plan, but this is not always possible: if

planning operation takes much time and it is situated inside an high change-

ble world it is likely to use outdated information and then to produce a not

proper plan.

Of course there are some fields where pure deliberation is required -where

there is no time pressure, in a static environment and low uncertainty in

execution- even though they are rare and the have expanded the approach

seen in fig 1.2.

Reactive Control

Reactive control is one of the most commonly used method to control a robot.

These kinds of systems rely on a bunch of rules that connect sensory inputs

(stimuli/conditions) to specific actions (responses/behaviours) neither with

a representation of the external environment nor looking ahead to possible

outcomes related to the application of an action, just without the need of
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thinking.

A controller may select the suitable action to apply in different ways:

on the one hand since data from sensors are continuous, to implement a

correct reactive system we need an unique stimulus for given set of sensory

inputs which trigger a unique action, this is what is called mutually exclusive

condition. On the other hand is possible to have conflicts among the actions

the controller may apply, so an action selection process is needed in order to

decide the action to apply: a command arbitration looks like a selector that

choose one action among those applicable behaviours whereas a command

fusion combine multiple relevant behaviours ino a single one.

In reactive systems the action selection is challenging in case there are

several rules and sensors state to check concurrently instead of in sequence:

this means that first it has to support parallelism and then the underlying

programming language must have the ability to execute several processes and

commands in parallel2.

Hybrid control

So far we have seen two kinds of control that are worlds apart: deliberative

and reactive. The former is smart but bould become the slower the more

complex is the problem, the latter is fast but less flexible. It is obvious conse-

quence trying to take the best of both the approaches and put them together:

that’s the aim of hybrid control architectures. It is really complex to obtain

though. A hybrid architecture typically consists of three components: a re-

active layer, a planner and a middle layer that connects the previous

two.

Although the first two components are known, the role of middle layer is

blurry yet. Let’s image we have a robot that executes a set of activities to

reach some goals using both reactive rules and planning:

- what if it needs to start a certain activity in order to carry out a critical

objective even though there is not yet a proper plan to enforce?

- what if the planning operation is blocked due to outdated data?

2This topic could be require a lot of considerations about the priority and/or the

coordination among those rules
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Figure 1.3: Some hybrid architecture fashions, from [7]

- what if a hazard comes out? Should it wait or produce a brand new

plan?

- ....

When the reactive layer detects an unexpected situation that it cannot

handle, probably it will inform the deliberative layer about such situation

along with the related data. The deliberative layer take those information in

order to create new suitable plans and provide the bottom layer the guidelines

to act as correctly as possible.

That layer is useful to deal with above kinds of issue and its design (see

fig.1.3) is the biggest challenge for hybrid architectures.

Behaviour-based control

This kind of control architecture is inspired by biological systems and aim to

overcome those problems that turn out in the others approaches. That type

of control are closer to the reactive one than to others, as a matter of fact

a behaviour-based system is composed by behaviour modules. However,

while behaviour based systems embody some properties of reactive systems

and -usually- contain reactive components (behaviour modules) their compu-

tation is not limited to look-up and execution of simple functional mapping.
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Behaviours can be employed to store varius forms of state and implement

varius types of representation. As a result it neither have the limits of reac-

tive systems nor employ a hybrid structure -with middle layers. To perform

useful work in the real world we must have our robots do different things

under different cirumstances: here enters the concept of behaviour.

Behaviours are more complex than actions, in fact while a system con-

trolled by a sequence of simple actions like go-ahead or turn-left, this kind

of control architecture uses time-extended behaviours like reach-destination,

avoid-obstacle or follow-the-light. Such behaviours unlike actions, are not

instantaneous and aim at achieve and/or mantain a particular state. Be-

haviours modules are executed in parallel or concurrently, is activated in

response to incoming sensory inputs and/or outputs from another behaviour

and it can also be incrementally added to the system in order to achieve a

more skilled system. Given the last considerations the concept of behaviour

could result similar to the concept of reactive rule, but the latter can be used

with the purpose of obtaining more interesting results because:

”Behaviours are more expressive (more can be done with them) than simple

reactive rules are.”[7]

Since it is high probable the controller has to tackle concurrent execution

of different behaviours, an arbitraton component is needed to maintains the

execution correct at any time, even if there is competition among behaviours

for rescources. The simpliest and commonly used in behaviour-based systems

are fixed-priority arbiter3[12] in which a constant and unique numerical pri-

ority is assigned to each behaviour, obviously then two or more behaviours

conflicts the highest-priority behaviour is undertaken.

For example a vacuum cleaner robot that is wandering over a floor and

have the ability to recharge its battery automatically thanks to a sensor

that continuously check the battery level. The wander behaviour involves to

move throughout the house -cleaning each room. When triggered, the charge

behaviour issues motor commands that drive the robot toward the charging

device. But what if the charge-home behaviour and the wander behaviour

3Of course it is not the only method to combine conflicting behaviours such as variable

priority, subsumption architecture, motor schema, least commitment arbitration, etc.
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Figure 1.4: Behaviour-based system with potentially conflicting behaviours

for robot’s motor.

issue two different motor commands? For more complex case studies we need

to take into account several aspects to determine how to resolve such conflict;

in this case when the batteries are about to be exhausted it is more important

that the robot head to the charging point othewise all the others tasks cannot

be carried out. In fig1.4 we show a simple fixed-priority arbitration scheme.

BDI architecture

See Chapter 2

What we choose among the above categories will affect the subsequent

steps in robot designing, therefore to program robot’s control we must con-

sider different things that are meaningful to select which architectures employ

coherently such as:

♦ is there a lot of sensor/actuator noise?

♦ is the environment static or dynamic?

♦ does the robot sense all the information it needs?

♦ how fast do thing happens? do all components run at the same speed?



1.1.3 Robot Programming Systems 25

♦ which are the components of the control system?

♦ what does the robot know and keep in its brain?

♦ .....

The last three problematics, in particular, are treated in highly different

ways by each architecture.

We are not going to analyze further every control architecture, since this

thesis will mainly focus on the approach used with regard to diverse kinds of

programming languages. Although we will, after all, put our attention on the

last two mentioned in order to give some consideration about the application

of both the approaches concerning the same problem.

1.3 Robot Programming Systems

After the classification of the robot’s category and the architecture of the

control part of a robot, its ”brain”, we need to gather those information and

according to them, choose a consistent programming system so as we can

define a robot software architecture and provide a convenient control. As we

have claimed, most of today’s robots do not carry out just one simple task

furthermore they are more and more exposed to unskilled people, so what

turns out is that such autonomous devices must be easier to program and

manage than before.

Still better, as the average user will not want to program their own robot

at a low level, the programming system we want to implement has to provide

the required level of user control over the robot’s tasks or rather the right

level of abstraction. Thanks to that abstraction we can face such complexity,

building and adopting suitable framework, architectures and languages.

Robot programming is largely described in literature. Our analysis is

grounded on Biggs and MacDonald work[10], where relevant categories of

programming systems are showed and thanks to it we can figure out what

kind of software architecture implement. Programming systems can be di-

vided first of all into three main categories:

� Guiding systems. Where robot is manually moved to each desired

position and the joint position recorded.
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Figure 1.5: Different kinds of Robot Programming.

� Robot-level systems. Where a programming language is provided

with the robot.

� Task-level systems. Where the goals to achieve are specified.

Robot-level systems can be divided again in

� Automatic programming. In which system’s programmers has little

or no direct control over the robot code (like learning systems, pro-

gramming by demonstration, etc.).

� Manual programming. Require the programmer to directly enforce

the desired behaviour of the robot, using a graphical or a text-based

programming language.

� Software architectures. Provide the underlying support as well as

access to the robots themselves.

Since the robots we want to program are not actually available, we must

create a robot controller by hand and then, this will be loaded into the

robot afterwards applying a sort of off-line programming, therefore manual

programming systems suit good in our context.

In [10] is showed another category subdivision regarding manual program-

ming systems, as we can see in fig. 1.6. Sparing the details that regard another

set of subcategories, in our work we are going to use a traditional text-based

system with a behavior-based programming language. That is because one

of the aims of this thesis is to present an alternative approach to procedural

languages that are commonly employed in robot programming. These kinds

of languages typically specify how the robot should react to different con-

ditions rather then providing a procedural sequence of actions to apply one

after the other.
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Figure 1.6: Subcategories of manual programming systems.

While controller-specific and generic procedural languages have a big prob-

lem regarding the lack of a universal standard between languages from differ-

ent manufacturers, using a behaviour-based language we can rise to a higher

level of abstraction providing a less complex and non-robot-specific way to

program the control.

1.4 Benifits and Drawbacks

Over time, robotics and its programming have brought lots of advantages

to our society from various points of view. Robots -in particular, the in-

dustrial ones- have dramatically improved product quality and speed of

production, with a level of consistency that is hard to achieve in other ways

thanks to operations performed with precision and repeatability. They have

increased workplace safety by moving human workers to supervisory roles

so that they are no longer exposed to hazardous circumstances. Additionally,

providing high-level platforms and tools to program robots is meaningful to

develop smart autonomous devices such as companionship robots for elderly
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or blind people assistants.

Nevertheless disadvantages in robotics and programming robots come up.

Besides problems regarding the expense of the initial investment that com-

panies and people in general have to undertake to purchase robotic equip-

ment either hardware -any kind of sensor or electrical device- or software

-development platforms, simulation tools. Morevore people who are pursuing

to robotics will require training not just in programming but also for what

concern physics, electronics and other fields.

Focussing on those aspects closely related to programming, is not always

possible for a programmer to have actually at its disposal all necessary infor-

mation because of it cannot have all the needed sensors whose in turn could

be affected by noise. In fact things never go smoothly for robots operating

in the real world, in particular, as reported in[12]:

- the robot’s program makes an assumption about the world that turns

out not to be true,

- a command intended to direct the robot to move in a particular way

instead, because of the uncertanty of a real environment, causes the

robot to move in a differently,

- the robot’s sensor(s) did not react when it should have, reporting a

condition that does not exist.

Thus a vital ability we aim to achieve as good robot programmers, is that

out robot keep functioning even if things do not go exactly as we expected.

Although along with the high complexity of the problems we have to face a

considerable range of sensors and related different types of data, for systems

whose will act in the real world, what matters is to reach the highest level of

autonomy as possible also in unexpected situation even though performance

will be affected.

2 Platforms and Languages

In this section we show some of the most relevant platform and tools that

everyone interested in robotics it is wise to know in order to make the right
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choice according to its own availability in terms of money, time, facilities,

expertise and so on. The former subsection will introduce some professional

tools whose are at the state of the art in robotics programming, the latter

will focus on the role entailed in this field by simulators.

2.1 State of the art

Microsoft Robotics Developer Studio

Also know as MRDS[14], is a Windows based environment for robot con-

trol and simulation, aimed at academic, hobbyst and commercial develop-

ers that can handles a large variety of robot hardware. It provides a wide

range of support to help make it easy to develop robot applications. MRDS

includes a programming model that helps make it easy to develop asyn-

chronous, state-driven application by means of what is named Concurrency

and Coordination Runtime, CRR, a .NET-based library that helps make it

easier to handle asynchronous inputs and outputs by eliminating the con-

ventional complexities of manual threading, locks, and semaphore. Another

relevant framework is the DSS (Decentralized Software Services) which allows

to create program modules that can interoperate in order to achieve com-

plex behaviours. MRDS provides moreover, a simple drag-and-drop visual

programming language that make easier to program robot applications and

a simulation environment (Visual Simulation Environmet, VSE ) to be able

to simulate and test robotic applications using a 3D physics-based simula-

tion tool. This allows developers to create robotics applications without the

hardware. Sample simulation models and environments enable you to test

your application in a variety of 3D virtual environments.

RobotC

Is probably, the most famous cross-platform robotics programming language

(C based) for educational robotics and competitions[13]. It gives program-

mers a powerful IDE for writing and debugging -thanks to a realtime debugger-

robot programs whose can be ported from one robotics platform to another

with little or no change in code. The usefulness of such tool is -also- repre-

sented by its powerful developing environment that furnishes a great number
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Figure 1.7: RobotC developing environment.

of features such as an user friendly customizable graphic interface, syntax

errors detections, drag-and-drop every single variable into the editor, a USB

joystick controller integration to drive the robot, and others.

It is currently supported on several different robot hardware platforms

like LEGO MINDSTORM, CORTEX, IFI VEX and Arduino as well. Fur-

thermore with RobotC Real World it is possible for programmers to test

their robots in a simulation environment before they test the code onto a real

mechanical system, using the same RobotC code used for simulation in real

environments. Maybe the matter that can be experienced by programmers

is to use not a standard programming language but a ”owner language”,

RobotC is indeed a language.

ROS

It is an open-source, C++ based, widespread software framework for robot

software development which gives operating system functionalities. Those
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functionalities are hardware abstraction, low-level device control, implemen-

tation of commonly-used features, message-passing between processes, and

package management. It is based on a graph architecture where each node

receive and process several messages from/to sensor, actuators about their

state. ROS -Robot Operating system- is composed by an operating system

and a suite of package called ros-pkg that implement a range of operations

like object identification, face recognition, motion tracking, planning, per-

ception, simulation, planning etc. It is released under the terms of the BSD

license.

URBI

Like the above framework, URBI is open source and based upon the pro-

gramming language C++ useful to create robot applications and complex

systems. It relies on a UObject4 components architecture and gives a paral-

lel and event-driven script language named urbiscript which can be used as

a glue among the UObject components into a functional behaviour. Thanks

to its parallelism and event-driven semantic it turns out suitable for most

robot programming and even for complex AI applications.

The goal of Urbi is to help making robots compatible, and simplify the

process of writing programs and behaviors for those robots. The range of

potential applications of Urbi goes beyond robotics, since it has been suc-

cessfully used in generic complex systems, where parallel and event-driven

orchestration on multiple agents is the rule[16].

2.2 Simulators

With regard to the professional tools and frameworks seen so far, we noticed

that the word ”simulation” often came out, why? The answer entail some as-

pects: first of all because sometimes -or rather often, in educational scenarios-

the mechanical devices (robots) we want to control are not so cheap, besides,

to reach an effective required behaviour we need to apply several number

of tests, which concern -for trials on a real robot- a considerable amount of

4A C++ component library that comes with robot’s standard API.



32 Background

resources and usually risks like broke components of the robot (and external)

or damages to user.

Thus with simulators it is possible di create robot applications without

depending physically on the actual machine, saving time and cost. Simula-

tion are stricly connected with off-line programming: it takes place on a

computer and models of the workcell5 with robot, pieces and surroundings

are used. The robot programs are verified in simulation and any errors are

corrected. The biggest advantage of off-line programming is that it does not

occupy production equipment, and in this manner production can continue

during the programming process. Advanced off-line programming tools con-

tain facilities for debugging and these assist effective programming.

The use of a fast prototyping and simulation software is really useful for

the development of most advanced robotics project. It actually allows the

designers to visualize rapidly their ideas, to check whether they meet the re-

quirements of the application, to develop the intelligent control of the robots,

and eventually, to transfer the simulation results into a real robot. Summing

up the main features of programming robots through simulation are:

� Fast robot prototyping

� Physics engines to reproduce realistic movements

� Realistic 3D rendering, used to build the environment in which the

robot is situated and interacts

� Testing a certain software or ideas in general onto an autonomous de-

vice, saving money and time

� Dynamic robot bodies with scripting (huge range of programming lan-

guage supported)

However simulation still have few problems: even if we spend a lot of time

to make a perfect simulation it is likely impossible to achive a total realistic

setting because of the infinite number of issues we have to take into account

for reproducing a world with its actual natural and physical laws. Further-

more simulations are often wrong: they are wrong because the experimenter

5A workcell is an arrangement of resources in a manufacturing environment to improve

the quality, speed and cost of the process. Workcells are designed to improve these by

improving process flow and eliminating waste[17].
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makes mistakes, or is not sure what features are most important and hence

oversimplifies - common for new experimental theories. Often complementing

the simulation with real life experiments is meanigful for comparison to make

sure the simulation is accurate.

In conclusion, simulation should be used as a complimentary tool, but is

not an end-all solution.

3 Webots

Seeking among a range of significant software, one of them results to be well-

suited for our aims, Webots�. It is worth it to dedicate to Webots its own

section, since it is the powerful tool we are going to use to perform following

works.

Webots is a professional robot simulator for fast prototyping and mobile

robot simulation, widely for educational purposes and online contests. Its de-

veloping starts from 1996 by Dr. Olivier Michel at the Swiss Federal Institute

of Technology (EPFL) in Lausanne, Switzerland. Since it became a commer-

cial product, in 1998, has been sold to over 400 universities and research

centers6 all over the world[15]. Its main fields of application are:

- Fast prototyping of wheeled and legged robots

- Swarm intelligence (Multi-robot simulations)

- Artificial life and evolutionary robotics

- Simulation of adaptive behaviour

- Self-Reconfiguring Modular Robotics

- Teaching and robot programming contests

As shown in fig.1.8, Webots depicts a robotics project as a four steps

activity.

The first stage concerns designing the physical model of the environment

by filling it with any kind of object like obstacles, walls, stairs ect. All the

6 Besides universities, Webots is also used by companies like Toyota, Honda, Sony,

Panasonic, Pioneer, NTT, Samsung, NASA, Stanford Research Institute, Tanner research,

BAE systems, Vorverk, etc.
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Figure 1.8: Stages that compose a robotics project development using We-

bots.

physical parameter of these objects such as their mass distribution, friction

factor, bounding objects, damping constants can be properly defined in order

to simulate their physics too. Afterwards we must make up the body of the

robot7 including limbs, joints, rotor etc. Roughly speaking its set of sensors

and actuators. All these components are the building blocks of our robot and

we are allowed to modify them (as we like) dynamically in terms of their

shape, color, position, physical and technical properties -in case of sensors or

actuators.

The second stage consists of robot’s behaviour programming. Webots gives

a significant range of programming languages that can be used to program

the control, like Java, C, C++, Matlab, Python, URBI and allows to inter-

face with third party software through TCP/IP. Usually the robot’s control

to program runs endlessly gathering sensory inputs, reasoning about these

information -the actual core of robot behaviour- to get following action(s)

and then send actuators commands to perform them.

The third stage allows the programmer to start the simulation so as to

verify whether the robot behaves as expected. In this step we are be able to

7From now on we are going to use the singular term, but we are allowed to define and

add into the environment as many robots as we want.
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see the robot’s program in execution and interact dynamically with the en-

vironment by moving objects and even the robot. Simulate complex robotics

devices -including articulated mechanical parts- requires an exact physics

simulation; to achieve this Webots relies on a powerful tool named ODE

(Open Dynamics Engine), a physics engine used for simulating the dynamic

interactions between bodies in space. Webots simulation engine uses virtual

time, thus, it results possible to run the simulation much faster than a real

robot (up to 300 times faster) An important feature provided is the chance

to trigger the step-by-step mode to analyse, in detail, the behaviour of the

simulation.

The last stage is the transfer the robot’s control program into a real robot

that will run within a real environment. If we defined the behaviour correctly

-in terms of a well suited robot controller and sensors/actuators setting as

well as components inside the environment- the real robot should shows more

or less the same behaviour of its simulation counterpart. In case this would

not happen we have better to go back to previous stages and ensure that

we have not make coarse mistakes. If we did not any slip maybe there is the

need to refine the model of the robot.

With regards to sensors and actuators, Webots gives complete libraries so

that the programmer can exploit their values and send commands. A large

choice of sensors can be plugged into a robot: distance sensors, GPS, cameras,

light sensors, touch sensors, gyroscopes, digital compasses and so on. Simi-

larly, a handful of actuators can be added as well, like: servo motors (arms,

legs, wheel etc.), LEDs, emitters, grippers, pens, displays, linear motors (pis-

tons). Another relevant advantage of using Webots is that we do not need

to create our own robot -and its environment- from the scratch every time.

Indeed, a lot of world examples and commercially real robot models, like

Aibo, e-puck, e-puck, Lego Mindstorm and Khepera are ready-to-use.

In fig.1.9 is showed the user interface of Webots developing environment.

It is composed by:

� Scene tree on the left, where a programmer adds new objects and

edits all properties of these in the simulated world

� 3D window in the middle, where is possible view the simulated envi-
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Figure 1.9: Webots user interface.

ronment and interact with it

� Text editor on the right, where a programmer write the control code

� Console on the bottom, where there are showed build and run time

compilation errors/warnings. It plays the role of standard output.

4 Recapitulation

Summing up, the increasing availability of autonomous devices and systems

has brought to the need of programming technologies and tools -in robotics

area- more affordable and simpler to be used, even by non-robot program-

mers. However this spreading does not mean that each system or component

can be actually at programmer disposal, thus simulators have become prob-

ably the most significant tool for those people whose work in robotics field.

Surely in this chapter we have not analized deeply every aspects concerning

this branch of technology, because of we do not want to overwhelm this thesis

by unnecessary details (regarding our purposes). We wished to present just
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some key aspects, so as to show off -in the next chapter- how we can program

robot’s controllers in a new, meaningful way.





Chapter 2

Agent Oriented Programming

& BDI-based Programming

Languages

After discussing the basics of robotics and its programming, now we are

going to talk about the possibility to achieve a meaningful robot program-

ming by means of an agent-oriented approach. This chapter provides a brief

overview of agent oriented programming (AOP) and agent programming lan-

guages (APL), focussing the BDI architecture and pointing out its impor-

tance in robotics with regards to BDI agent model. Here are showed those

aspects that will turn out useful for the following chapters.

1 Agent Oriented Programming

Firs, we start by considering the typical way to program robots: at least

until last years , robot’s controllers were programmed through Functional

Programs. They are so called because, they could be depicted as a function

f:I 7→ O from some domain I of possible inputs -the sensor values- to some

range of possible outputs -actuator commands. Even thoug this there are a

wide range of well-known techinques to develop that kind of programs, un-

fortunately many programs do not have this simple input-output operational
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Figure 2.1: High-level interaction between an agent and its environment.

structure. More specifically many of this systems -in particular robotics ones-

need to have a ”reactive”, ”time-extended” flavour, in the sense they have to

mantain a long term, ongoing interaction with the environment. These pro-

grams do not want to perform a mere application of a function to an input

and then terminate. Thanks to the significant amount of literature that con-

cerns this topic, we know that agents, are a relevant (sub)class of reactive

systems that turns out to be well-suited for programming robot applications.

The term agent-oriented programming was conied in 1989 by Yoav Shoham

in order to describe a new programming paradigm based on cognitive and

societal view of computation. It was inspired by previous research in AI,

distributed/concurrent/parallel programming.

An agent is a system that are situated inside an environment, that means

it is able to sense the environment (via sensors) and the ability to perform

actions (via actuators) so as to modify such environment. The main issue that

an agent has to face is how to decide what to do1. Since the definition

of agent is anything but straightforward, we would rather define an agent

in terms of its key properties. In [24] Wooldridge and Jennings argued that

agents should have the following properties:

� Autonomy Typical functional programs doesn not take the initiative

1Like we defined in the previous chapter, this is very similar to the question that a

robot controller has to answer. This is because it results clear to choose an agent approach

to robot programming.
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in any sense, they just respond to our inputs. Roughly speaking our aim

is to delegate goals to agents, which decide how best to act in order to

achieve these goals. Agents are autonomous as they encapsulate control

and have no interface, so that they cannot be controlled or invoked. An

autonomous agent makes independent decisions about how to achivede

delegated goals without being driven by others.

� Proactiveness Agents are proactive by definition2: proactiveness means

”make something happen” rather than waiting for something to hap-

pen. Java objects, for example, cannot be thought as agents, as they

are essentially passive (we need to call a method to interact with them).

� Reactivity Robotics domains are characterised by highly dynamic

conditions: situations change, information is incomplete, resources are

scarce, the actions performed are not deterministic in their effects. This

means that an agent must be responsive to changes in the environment.

However implementing a system that achieves a balance between goal-

driven and reactive behaviour turns out to be tough.

� Social Ability Represents the ability of agents to cooperate and coor-

dinate activities with other agents, so as to ensure that delegated goals

will be reached. In many applications, have more agents that fulfill a

specific part of the overall computation could be useful to achieve a

goog level of work balancing.

In fig.2.2 we have depicted the most important categories of software

agents, with regard to their features and properties[26]. Briefly: (i) collabora-

tive agents are designed to cooperate with other agents, they have the ability

to decline an incoming request, (ii) interface agents mediate the communica-

tion with the user, playing the role of service provider, they are autonomous

and able to learn by experience however they have no interaction with ohter

agents, (iii) intelligent agents autonomous, endowed with the ability to learn

and cooperate. This type of agent has got an internal symbolic representation

of the surrounding world that helps to choose the right action to perform, so

as to fulfill its goals.

2The etimology of the word agent is from the Latin anges that means ”the one who

acts”.
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Figure 2.2: Different kinds of software agents, according to their skills.

In practice, systems composed of a single agent are rare: the more common

case is for agents that run an environment which contains other agents, called

multi-agent systems. In such environments, agents communicate with each

ohter and control parts of their environment in order to achieve either social

or individual goals. Thereby AOP turns out to be suitable to be applied in

robotics thanks to the above properties. Then, we can introduce hereafter

maybe the best agent model to convey the concept of intelligent entity into

a software component.

2 BDI Architecture

As computer systems become ever more complex, we need more powerful ab-

stractions and metaphors to explain their operation. Because of complexity

growing, mechanicistic / low level explanations become impractical. There-

fore an agent, in order to cope with this increase of complexity, need to have

mental components such as: belief, desire, intention, knowledge etc, a state-

ful agent or rather an intelligent agent (see fig.2.2). The idea is to use

the intentional stance3 as an abstraction in computing in order explain,

3When explaining human activity, it is often useful to make statements about whatever

is argued to be true or not. These statements can be read in terms of folk psychology, by

which human behaviour can be explained and can be predicted through the attribution of

mental attitudes, such as believing and wanting, hoping, fearing, and so on[1].
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understand, drive the behaviour and then program computer systems.

Agents are explained in terms of mental attitudes, or mental states, whose

contain an explicit, symbolic model of the world. Every agent makes decisions

on what is the next action to perform to reach a desired goal, via symbolic

pratical reasoning [2] -theory developed by the philosopher Michael Bratman-

that could be defined as:

”The activity to choose the action to perform once the next internal mental

state is defined, according to the perception of the external environment and

its previous internal mental state.”

An agent with mental state represents its knowledge with percepts, beliefs

while its objectives are represented with goals, desires ; here arise the concept

of BDI (Belief Desire Intention) model. The intentional system just explained

is used to refer to a system whose behaviour can be predicted and explained

in terms of attitudes such as belief, desire and intention. The idea is to that

we can talk about computer programs as if they have a mental state, thus

when we talk about BDI systems, we are talking about computer programs

with computational analogues of beliefs, desires and intentions.

Hereafter we are report a roughly definition of each basic element of the

model[3][4]

� Beliefs are information the agent has about the world, that could be out

of date and/or inaccurate. They are expected to change in the future

as well as the environment changes. Typically ground sets of literals.

� Desires are all the possible state of affairs that the agent might like to

accomplish. Having a desire does not imply that the agents acts upon

it: it is just an influencer of the agent’s actions.

� Intentions are those states of affairs that the agent has decided to

apply. They may be goals that are delegated to the agent or may result

from considering options. Intentions are emergent properties reified at

runtime by selecting a given desire for achieving a given goal.

This idea of programming computer systems in terms of mentalistic no-

tions such as belief, desire and intention is a key component of the BDI model

and they are the basic data structures of AOP. As we mentioned, the tricky
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Figure 2.3: Simple representation of inputs and outputs involved in means-

end reasoning.

activity is to shift from beliefs, desires and intentions to its actions. The

particular model of decision-making underlying the BDI model in known as

pratical reasoning, defined as:

”Is a matter of weighing conflicting considerations for and against

competing options, where the relevant considerations are provided by what

the agent desires/values/cares about and what the agent believes[2].”

It is the human-based reasoning direct towards actions, the process of

figuring out what to do in order to achieve what desired. It consists in two

main activities: deliberation and means-end reasoning. The former happens

when the agent makes decision on what state of affairs the agent desire

to achieve, the latter happens when the agent makes decisions on how to

achieve these states.

The output of deliberation activity, are the intentions (what agent desires

to do/achieve) whereas the output of means end reasoning (see fig.2.3) is the

selection of a course of action the agent needs to do to achieve the goals. It

is widely known -especially in AI- as a planning activity that takes as inputs

the representations of goals to achieve, the information about the state of the

environment and the actions available to the agent, so as to generate plans
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Figure 2.4: Means-end reasoning control loop. B, D, I means respectively,

beliefs, desires and intentios.

as course of actions to follow with the purpose of achieving the goals.

Since the means end reasoning control loop showed in fig.2.4 in quite far

away from the actual implementation, because of we do not know the imple-

mentation of each function as well as what is the content of B, D, I. Therefore

we are going to introduce another relevant agent architecture: Procedural

Reasoning4. In Procedural Reasoning Systems (PRS), an agent is equipped

with a library of pre-compiled plans, manually contructed in advance, by

agent programmers -instead of do planning. Such plans are composed by: a

goal (post-condition of a plan), a context (the pre-condition of a plan) and

a body (the course of action to carry out).

A goal tells us, what a plan is good for, the context part defines what must

be true in the environment in order for the related plan, to be true. Finally

the body, can be whatever richer than a simply list of sequential actions. As

a matter of fact, it is possible to have disjuntions of goals, loops and so forth.

An BDI-based agent comprise three dynamic and global structures repre-

4The Procedural Reasoning system, orinigally developed at Stanford research Institute

by Michael Georgeff and Amy Lansky, was perhaps the first agent architecture to explicitly

embody the BDI paradigm, and has proved to be one of the most durable approaches to

developing agents to date. PRS has been re-implemented several times from different

universities, so as to create new instances of it.
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Figure 2.5: Procedural Reasoning System (PRS).

senting its beliefs, desires and intentions, along with an input queue of events.

These events could be external -coming from the environment- or internal

-come from some reflexive action.

Summing up, a BDI system are based on sets of:

- beliefs,

- desires (or goals),

- intentions ,

- internal events, in response either to a belief change (updates, deletion,

addition) or to goal events (new goal adoption, goal achievement),

- external events, from the interaction with external entities (signals,

incoming message, etc.); and

- a plan library

As we have mentioned previously, this model is another important category

of control architecture on which robots programming can be based despite

of the well-known architectures are much more widespread in that area.

3 Agents & Artifacts meta-model

Robert Amant and Donald Norman, in their articles remarked the funda-

mental role that tools and, more generally, artifacts play in human society.

They wrote:
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”The use of tool is a hallmark of intelligent behaviour. It would be hard to

describe modern human life without mentioning tools of one sort or

another[6].”

”Artifacts play a critical role in almost all human activities [...] indeed, the

development of artifacts, their use, and then the propagation of knowledge

and skills of the artifacts to subsequent generation of humans are among the

distinctive charactetistics of human being as a specie[9].”

These considerations arose because of almost any cooperative working con-

text accounts for different kind of object, tool, artifact in general that humans

adopt, share and properly exploit so as to support their working activities.

Such entities turn out to be fundamental in determining the success of the

activitiesas well as their failure. According to the aims -not just of this thesis-

we think that a robot controller, composed by agents could take several ad-

vantages using different sorts of artifacts. In conclusion, we introduce -and

then use, further- a programming meta-model called A& A (Agents and

Artifacts) to model and engineer the working environment for a society of

intelligent (cognitive) agents.

Artifacts

Roughly speaking we may define an artifact as a computational entity aimed

at the use by an agent. Given that we claim that an artifact are designed for

use, to serve some purposes, so when designing anm artifact we have to take

into account their function rather than the actual use of the artifact by the

agent.

An artifact has to comply with two basic properties: it should ensure trans-

parency and predictability. The first property is important because, in order

to be used by an agent, artifact function sould be available and understand-

able by agents, whereas the second is needed to promote agent’s use since

artifact behaviour should be predictable. Essentially it is designed to serve

and be governed, an artifact is not autonomous, is a tool whereby an agent

is endowed. Hence it is totally reactive.

The functionality[28] of an artifact is structured in terms of operations,

whose execution can be triggered by an agent through artifact usege inter-

face composed of a set of controls that agents can use to trigger and control
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operation execution. Besides the control aspect, the usage interface can pro-

vide a set of observable properties: properties whose dynamic values can

be observed by agents without -necessarily- interact with the artifact. The

executio of some operations upon the artifact could cause a series of ob-

servable events like observable property changes or signals5. Finally, more

artifacts can be linked together in order to enable an artifact-artifact inter-

action as a principle of composition, by means of link interfaces. This feature

ensures both to define explicitly a principle of composability for artifacts -

allowing to achieve a complex artifact by linking together simplier ones- and

to realise distributed artifacts by linking artifacts from different workspaces

(and different network nodes).

Summing up, artifacts are coarsely subdivided into three categories:

� Personal artifacts, designed so as to ensure functionalities for a single

agent use

– agenda, timer, etc.

� Social artifacts, designed to provide some kind of global functionalities,

concerning coordination, organisation, comunication etc.

– blackboard, tuple spaces, bounded buffers, pipes, etc.

� Boundary artifacts, designed to wrap the interaction with external sys-

tems or to represent the external system inside the MAS.

– GUI, Web Services, etc.

In a system that adopt the A&A meta-model, a working environment

in conceived as a dynamic set of artifacts -whose support system’s working

activities- organised in workspaces. A workspace is a container of artifacts,

useful to define the topology of the environment and provide the notion of

locality for agents, in order to move towards a distributed multi-agent system

(MAS). In fact, different workspaces could be spread over the network and

each agent could run on different internet nodes.

A&A MASs are made of pro-active autonomous agents and reactive ar-

tifacts whose provide some functions: the interaction between these kinds

5Every artifact is meant to be equipped with a manual, which describe the artifact

function(purpose), the usage interface and the operating instructions (like a protocol, or

better how to correctly use the artifact so as to take advantage from its functionalities.
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Figure 2.6: Abstract representation of an artifact.

of entities generates the overall behaviour of the MAS. In those systems,

such fundamental entities give raise to four different sorts of admissible

interactions[5]:

� communication agents speak with agents

� operation agents use artifacts

� composition artifacts link with artifacts

� presentation artifacts manifest to agents

Finally, from [29] we can see how the overall A&A meta-model could be

depicted (see below).

3.1 CArtAgO

Besides the A&A abstract programming model, we are going to present the

actual, concrete technology which aim is to be used to experiment that model

in this thesis: the CArtAgO technology.

CArtAgO (Common Artifact Infrastructure for Agent Open environ-

ment), is a framework that providing essentially:
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Figure 2.7: A&A meta-model depicted in UML-like notation.

- Suitable API for agents whose work with artifacts and workspaces.

By means of proper API that aim at extending the basic set of agent

actions with a new one, so as to create, dispose and interact (with)

artifacts through their usage interface.

- The capability to define new artifacts type. Thanks to these API, a pro-

grammer can implement new types of artifacts by extending the basic

class Artifact, new operations and operations step by defining methods

tagged by @OPERATION and @OPSTEP. Moreover it is possible

to write the artifact function description and the list of observable prop-

erties, explicitly declaring the @ARTIFACT MANUAL annotation

before the class declaration.

- A runtime dynamic management of working environments. Conceptu-

ally it is the virtual machine when artifacts and agents are instantiated

and managed: it is responsible of executing operation on artifacts and

gathering observable events generated by artifacts.

The CArtAgO architecture implements suitably the abstract model de-
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Figure 2.8: MAS exploiting the CArtAgO working architecture.

scribed above, indeed it does not introduce any specific model or architec-

ture for agents and their societies, but it is meant to be integrated and

used with existing agents platforms -and languages, as showed further. The

CArtAgO working environment is composed by three main building blocks

as we can see in fig.2.8, agent bodies6 that make the agents situated in the

working environment , artifacts useful to structure the working environment

and workspaces as logical containers of artifacts, whose define the topology

of the environment.

6They are what actually connect the agent mind and the working environment. It

contains actuators/effectors to perform actions upon the environment and sensors to collect

information from it. The concept of ”agent” that we conceive so far, is the part that actually

govern the agent body in order to perceive the events generated by artifacts -and collected

by sensors as stimuli- and execute actions provided by agent mind, so as to affect the

environment.
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4 APLs (Agent Programming Languages)

The growing studies about MAS have brought to the development of pro-

gramming languages and tools, that are suitable for the implementation of

those systems. Analyzing the literature, several proposals for APL come out:

some are implemented from the scratch, others are obtained by extending

existing languages that satisfy some required aspects concerning agent pro-

gramming issues. Using these specific languages rather than more conven-

tional ones, turns out really useful when a problem we have to face is mod-

elled in an agent-oriented fashion (goals to reach, beliefs about the state of

the world etc.). In spite of the significant number of languages and tools that

has been developed over time the activity regarding the implementation of

a MAS still tough because of the lack of specialised debugging tools and re-

quired skills that are necessary to map agent design concepts to programming

language constructs.

From [18] we know that APLs can be roughly divided in: purely declarative,

purely imperative and hybrid. These languages -not all- have some underlying

platform which implements the semantics of the APL, but we are going to

give just few hints. Hereafter we are going to give a brief overview of most

considerable languages for each class and afterwards what language we chose

for developing our following explorations.

Hybrid approach

In order to combine significant features of both imperative and declarative

languages, an hybrid approach turns out to be a good choice. This program-

ming languages are declarative while at the same time provides some con-

structs, useful for using code implemented with an imperative programming

language -so as it is possible to use legacy code. 3APL(An Abstract Agent

Programming Language) is a language for implementing cognitive agents that

have beliefs, goals and plans as mental attitudes. The main task in 3APL con-

sists in programming constructs to implement mental attitudes of an agent

as well as the deliberation process thanks to which those attitudes can be

manipulated. These specifications are: beliefs, goals, plans, actions (building

blocks of plans) and reasoning rules. As we mentioned before, it supports
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the integration of Prolog and Java, where the former is declarative and the

latter is imperative. Others well-known hybridi programming languages are

Go! and IMPACT7.

Probably the most widely APL, which it is worth of a dedicated section,

since it will be the approach used during the course of this thesis.

4.1 Jason

Jason is an extension of AgentSpeak [21]8 programming language, which has

been one of the most influential abstract languages based on the BDI archi-

tecture. Jason is the first fully-implemented interpreter, it is Java-based and

open-source and additionally, if we decide to implement a MAS in Jason, this

can be effortlessly distributed over the network.

As Jason is a BDI architecture based language, we already know the basic

components whose compose the agent: a belief base that are continuously

updated according to changes in the perceived environment, the agent’s goal

which are reached by means of the execution of plans -present inside the plan

library- that consists of a set of actions whose change the agent’s environment

in order to achieve its goal(s). These changes in the environment are applied

by another component of the architecture, according to the choices selected

on the course of actions.

The interpretation of the agent program determines the agent’s reason-

ing cycle, analogous to the BDI decision loop seen previously in fig.2.4. The

agent cycle can be described -sparing the details- as the constant repetition

of these ten steps: (i) perceiving the environment, (ii) updating the belief case,

(iii) receiving communication from other agents, (iv) selecting ”acceptable”

messages, (v) selecting an event, (vi) retrieving all relevant plans, (vii) deter-

minig the applicable plans, (viii) selecting one applicable plan, (ix) selecting

7To retrieve meaningful information about these hybrid languages, it is possible to

look through their official web sites. 3APL http://www.cs.uu.nl/3apl/ , Go language:

http://golang.org/ , IMPACT: http://www.cs.umd.edu/projects/impact/
8The AgentSpeak language introduced by Rao, represents an attempt to distill the key

feature of the PRS into a simple (fig.2.5), unified programming language. Rao wanted a

programming language that provided the key features of PRS, but in a suffciently simple,

uniform language framework that it would be possible to investigate it from a theoretical

point of view, for instance by giving it a formal semantics.

http://www.cs.uu.nl/3apl/
http://golang.org/
 http://www.cs.umd.edu/projects/impact/
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Figure 2.9: Agent’s reasoning cycle expresses in pseudo code.

an intention for further execution and (x) executing one step of an intention.

Before restarting the cycle, in case there are some some suspended inten-

tions, waiting for a feedback action execution or message reply, the interpreter

checks whether the feedback/message are available, and if it so it updates the

intention including that in the set of intentions, so that it may be selected in

subsequent steps (ix).

Summing up, a Jason agent program is composed of a belief base9 at the
beginning,

colour(box1,blue)[source(bob)].

~colour(box1,white)[source(john)].

colour(box1,red)[source(percept)].

Besides beliefs that the agent has got initially, we can also provide goals
that the agent will attempt to achieve from the start, the achieve goals, for
example:

9Within the square brackets are specified the belief annotation: complex terms pro-

viding details that are strongly associated with that particular belief.
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Figure 2.10: Jason reasoning cycle expresses through its architectural coun-

terpart, from [27].
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Figure 2.11: Types of triggering events.

!findBox.

Beliefs and goals, are two important mental attitudes we can express in
the actual agent source code. The third essential construct of a Jason agent
program are plans. These are composed by three parts:

triggering_event : context <- body.

� triggering event : tell the agent, which are the specific events (see fig.2.11)

for which a certain plan will be used;

� context : very important for reactive planning systems in dynamic envi-

ronments. The context of a plan is used exactly for checking the current

situation so as to determine whether a particular plan, among the al-

ternative ones, is likely to succeed in handling the event;

� body : is simply a sequence of formulae determining the course of actions.

Not all these actions aimed at changing the environment, some of them

could start new goals, called in this case subgoals.

Therefore a plan can be written as:

+!boxFound: colour(_,blue)[source(S)]

<- println("Hi! ",S," I’ve found your blue box!"); !findBox.

...

Furthermore between beliefs and initial goals it is possible to add to source
code a set of rules, written in Prolog, which allow programmers to conclude
new things based on things that are already known. Including such rules in
an agent’s belief base can simplify certain tasks

likely_colour(C,B)

:- colour(C,B)[source(S)] & (S == self | S == percept).
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The first rule says that the most likely colour of a box is either that which

the agent deduced earlier, or the one it has perceived.

We can now conclude this section, showing few features provided by the

Jason language10, besides interpreting AgentSpeak.

- Strong negation, so it is available not only the close-world assumpion,

but also the open-world,

- handling plan failures,

- annotations, so that beliefs can be enriched with meta-level information

and can be used by elaborate selection functions,

- possibility to run a multi-agent system distributed over a network using

JADE or Saci, or other user-defined distribution infrastructures,

- fully customisable selection function and overall agent architecture (in

Java)

- support for developing environments -not programmed in AgentSpeak

but in Java,

- straightforward extensibility by user-defined internal actions,

- an IDE both in the form of jEdit and Eclipse plugin, along with a

”mind inspector” that plays the role of debugger.

4.2 JaCa

An application in JaCa[20] is designed and programmed as a set of agent

which work and cooperate inside a common environment. Programming the

application means then programming the agent on the one side -encapsulating

the logic of control of the task to perform- and programming the environ-

ment on the other side -as the abstraction that providing the actions and

the functionalities exploited by the agents to fulfil their tasks. In JaCa, Ja-

son is adopted as a programming language to implement and execute agents

and CArtAgO -that, in turn, follows the A&A meta-model- as the frame-

work to program and execute the environment where agents are situated.

JaCa programming model integrates Jason and CArtAgO so as to make

the use of artifact-based environment by Jason agents seamless. As a result,

10Retrieved official website: http://jason.sourceforge.net/wp/description

http://jason.sourceforge.net/wp/description
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Figure 2.12: Interaction between a Jason agent and a CArtAgO artifact.

the overall set of external actions that an agent can perform, is determined

by the overall set of artifacts available inside the workspace in which such

agents are situated. Moreover, the whole set of percepts that Jason agents

can observe is given by the observable properties and observable events of

the artifacts available in the workspace at runtime. If a Jason agent want to

exploits an artifact, sensing its events, observing its properties and using its

functionalities, it has to explicitly declare its interest by means of a specific

action named focus. Once we call that action, artifacts’ observable properties

are automatically added -as beliefs- to agent’s belief base and every time

such properties change, connected beliefs are updated accordingly. Interac-

tion through signals are slightly different: indeed a signal is not added to the

belief base but is processed as a non persistant percept possibly triggering a

plan.

So a Jason agent should specify plans that react to changes of beliefs that

concern observable properties -or trigger a relevant plan according to the

value of that belief- and plans that react to incoming signals -that may come

not only from artifacts, like in the case of message receipt events. In fig.2.12

we can depict the interaction among Jason agents and CArtAgO artifact in

terms of events and utilization.
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We think it is worth showing a simple example of the interaction between a

Jason agent and CArtAgO platform so as to be not overwhelmed by theoreti-

cal details. This example is retrieved from CArtAgO official documentations[19]

and helps us to understand better JaCa execution, even though it is a classic

-trivial- counter example. The artifact concerned plays the role of a simple

counter with an internal value, providing the increment operation. Such ar-

tifact is defined like this:

public class Counter extends Artifact {

void init(){

defineObsProperty("count",0);

}

@OPERATION void inc(){

ObsProperty prop = getObsProperty("count");

prop.updateValue(prop.intValue()+1);

signal("tick");

}

}

The init method represents the artifact constructor that will be executed

when the makeArtifact action is performed. In this method the artifact defines,

by means of the defineObsProperty primitive, all its properties whose will

be observable by agents. In this case the observable property is the tuple

”count” with one numerical argument -of integer type- which starting value

is 0. The operation provided by the artifact is that method annotated with

@OPERATION, called inc, which take no parameters and is meant to be used

in order to increment the value of the internal ”count” variable. An artifact

provides the getObsProperty primitive to retrieve the property and then the

updateValue to change the value of it. When the internal value is updated,

then a signal is generated so as to notify the agent.
The agent in turn is implemented as we show below:

!observe.

+!observe : true <- ?myTool(C); // discover the tool

focus(C).

+count(V) <- println("observed new value: ",V).
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+tick [artifact_name(Id,"c0")] <- println("perceived a tick").

+?myTool(CounterId): true <- lookupArtifact("c0",CounterId).

-?myTool(CounterId): true <- .wait(10);

?myTool(CounterId).

Through the lookUpArtifact primitive provided by the CArtAgO environ-

ment, the agent can discover the identifier of the artifact with the specified

name (in this case ”c0”), so that it can put the focus on it (thanks to the

primitive focus(ArtifactId). By putting the focus onto an artifact, observable

properties are mapped onto agent’s belief base. So, changes to the observ-

able are detected as changes inside the belief base (in this case +count(V)

would be the triggered event.). Furthermore by focussing an artifact, signals

generated by an artifact are detected as changes in the belief base, in this

example +tick is the event.
The last step regarding the use of both Jason and CArtAgO, concerns the

definition of the environment in which the agent runs. Indeed we have to
specify in the MAS settings,

MAS counter_example {

environment:

c4jason.CartagoEnvironment

agents:

counter_user agentArchClass c4jason.CAgentArch;

/*classpath definition*/

}

That is, the agent can exploit the CArtAgO APIs.

5 BDI languages for Robot Programming

So far we have pointed out how relevant is the choice of an BDI programming

language, so as to provide a better support for implementing autonomous

robotic control systems. However someone might wondering: is this the only

exploration of the BDI approach in robot programming? or
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is this approach already explored and tested?.

The answer is, yes.

In fact, the aim of the thesis regarding the exploration of Jason -or better,

JaCa - as the language to program robot’s control and thus using the BDI

control architecture, which are anything but unknown in this field. Many

other projects have chosen a BDI approach to create robot control programs.

One of these are clearly presented in the paper [23], that summarizes a re-

search by Luxembourg and Utrecht universities with the aim to provide nec-

essary methodologies and requirements to facilitate the use of BDI-based

APLs for implementing robotic control in a modular and systematic way.

In that project the working team used -for an application scenario- a NAO

robot11 the 2APL BDI programming language along with a robotic frame-

work like ROS (already mentioned both, during this paper). The integration

of both of them is a fundamental requirement to facilitate controlling and

communication with functional modules developed in this framework (e.g

face/voice recognition and a number of high-level actions such as sit-down,

turn-neck etc.). This can encourage the use of APLs by robot community and

facilitate their use for rapid prototyping and development of autonomous sys-

tems.

Another requirement was to provide deliberation capability and, at the

same time preserving reactivity. To ensure this requirement the researchers

thought to adopt one of the most well-known hybrid architectures, like the

classic three layered architecture.

Moreover, the researchers focused on different issues whose have to be faced

for developing such sort of systems, such as real-time reactivity, raw data

processing and monitoring and management of parallel execution of plans.

11NAO is a programmable humanoid robot sold by Aldebaran Robotics and adopted

by many universities for academic purposes. See http://www.aldebaran-robotics.com/

en/Discover-NAO/Key-Features/hardware-platform.html

http://www.aldebaran-robotics.com/en/Discover-NAO/Key-Features/hardware-platform.html
http://www.aldebaran-robotics.com/en/Discover-NAO/Key-Features/hardware-platform.html
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6 Recapitulation

In this chapter we have seen the basic abstractions about agent oriented

programming such as agents, artifacts, architectures, explaining the most

significant concepts. These have been brought to practice with the JaCa

programming technology, which we are going to use in order to perform some

explorations in the next chapters. Such choice is due to JaCa characteristics

whose fit suitably with the requirements of robots controllers. As a matter

of fact a robot could be depicted as an autonomous entity that sense and

proactively interact with the surrounding environment by means of passive

devices like sensors and actuators. These devices represent fundamental tools

for the robot’s lifecycle and can be considered -from our point of view- as the

boundary artifacts. Given those reasons we figured that using an BDI-based

agent oriented programming architecture could become a right way to pro-

gram robot’s ”brain”, probably enhancing the current and more conventional

programming methods. So in the next chapter we will show how to apply our

approach in programming robots thanks to the Webots simulator.



Chapter 3

Using the BDI architecture for

Robot Programming: A

Jason-based Approach

As for developing this thesis, we will not have a real mechanical system to

be programmed. Therefore, as discussed in Chapter1 we need to perform a

significant number of simulations of that by means of a simulator (Webots).

Moreover, in Chapter2 we have seen the set of approaches to robot program-

ming, focusing on the BDI model and explaining why such choice is relevant

in robotics area. In this chapter we are going to talk about the issues brought

by the Jason APL from the point of view of a robot programmer. Afterwards

we are going to figure out how we could design the agent system, using the

JaCa programming architecture. So then how we discuss how to integrate

the agent system with the simulator so as to depict the overall system we

will use in the course of this thesis.

1 Jason for robot programming

Starting from the conclusions of the previous chapter, we can assert that the

controller of a robot is going to be mapped into a suitable agent. Indeed, a

robot is a physical agent, it has both a computational and physical nature
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-complexity of physical world enters the agent boundaries, and cannot be

confined within the environment. Besides, robot is intrisically situated, be-

cause its intelligent behaviour cannot be considered as such separately from

the environment where the robot lives and acts.

Now, the question is:

How many agents shall we program in order to define a robot controller?

This is an important design issue that depends on many aspects. On the one

hand, a multi-agent system avoids work overload and allows to allocate a

specific task to a specific agent, on the other hand, if the problem must not

achieve very complex goal or the subtasks whose compose the main activity

are not so tricky we should use just a single agent. In fact in the latter case,

if we decide to use more than one agent we have to tackle -as a consequence-

others issues like coordination and communication between agents activities.

These issues involve a rise of complexity and then the benefits brought by the

multi-agent approach may be nullified. With regard to further explorations

that entail a single robot which perform tasks that are not too tough, we are

going to develop a single agent, representing the robot ”brain”.

1.1 Layered Architecture

This is a fundamental stage that we have to go through so as to start with the

experiments, we start to reason about how we ought to organize the control

program. We refer to control architectures we have seen in Chapter1, sorting

out the program code according to different approaches for example some

could be purely procedural like C and its libraries, or RobotC that has its

own architectural elements inside the code (e.g RobotC behaviour).

Using agent programs to create cognitive layer in a robot control ar-

chitecture is natural and provides several benefits. Similar to the others ap-

proaches, a BDI-based robotic control system also need a functional layer

to interface with robotic hardware and provide sensory inputs and actions at

different levels of abstraction.

Designing and developing software control architectures for robots poses

several challenges. Robots are embedded systems that operate in physical,
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dynamic environments and need to be capable of operating real-time, in addi-

tion a range of perceptions and motor control activities need to be integrated

in the architecture. So, providing a proper balance between deliberation and

reaction has been always a major concern in research on robotic control

systems. Indeed, deliberation capability is desired for autonomous robots,

however it requires on the other hand, a time-bounded reactivity to events it

receives from the environment, with the purpose of ensuring robot’s safety.

Moreover, for the system can be particularly difficult to generate meaningful

symbols to represent sensor data or to perform some low-level tasks such as

control of motors. These kinds of activities are delegated to components in

other lower layers.

Summing up, to address the above issue we believe that is necessary to

structure the overall system using a classic three-layers architecture, in

a way that the highest level has got neat and straightforward information

-that are provided by the lower layers.

� The main functions for controlling a robot and supervising the temporal

execution of the plans are placed in the (symbolic) cognitive layer.

� The functional layer is interfaced with hardware and provides low-level

perception and action capabilities to higher layers. It is also responsi-

ble for interpretating of symbolic messages that represent actions and

making robot perform these actions in its physical world.

� The executive layer residing between the other two and its main func-

tionality -besides manage the interaction between them- is to refine

plans into low-level actions. Furthermore it provides mechanisms to

overcome the issue that sensory data is typically noisy, incomplete,

quantitative measurements, whereas the cognitive layer needs the sym-

bolic representation of those information, to support logical reasoning[25].

So, this layer process raw sensory data into sensory information at dif-

ferente level of abstraction to be used by the control component of

the robot for the actions decision process.
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Figure 3.1: First sketch of our three-layer software system.

2 System Overview

Identifying the layers that allow us to separate properly each concern turns

out significant, in order to focus on those aspects regarding the strategy to

solve the encountered problems. The next stage we must go through is to

identify who are the JaCa (and Webots) counterparties that can be mapped

onto each layer roughly depicted in fig.3.1.

Obviously, in the highest level will reside the cognitive intelligent agent,

written in Jason. Althought by choosing the BDI architecture we must take

into account another issue

How can we model the perceptions?

In the BDI model, all the robot’s perceptions are mapped into proper

beliefs inside the knowledge base of the agent, so that it can be constantly

aware about the state of the world and act accordingly. Besides, since we are

going to use JaCa and then the Jason programming language as well as the

CArtAgO technology, we know that agents exploit one or more artifact (their

functionalities) to fulfill their tasks. So, in order to structure the software

system as simple as possible, the executive layer is composed by a suitable
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Figure 3.2: Another coarse representation of the system, pointing out the

interactions among the layers.

CArtAgO artifact which perform the activities mentioned above. Finally, the

lowest level will be represented by the robot platform provided by Webots

simulator (this aspect will be analyzed deeply, later).

2.1 Interaction

Each layer has to interact with its adjacent one. The kind of such interaction

is very important because these affect the overall behaviour and execution of

the system.

The agent and the artifact -cognitive and executive layers- communicate

by means of useful Java-based API provided by the CArtAgO technology. To

make this possible, we -as programmers- have to define that the controller

agent working inside the CArtAgO environment (see 2.3). Whereas between
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the artifact and the robot platform -representing the functional layer- we

need to employ a basic mechanism, like TCP sockets, since one side will run

upon an agent environment while the other side will work inside its own

environment (the simulator).

The lack of well-designed interactions bring inevitably to a wrong / un-

feasible / non-fluid execution of the system.

2.2 Implementation

As we said in the chapter about agent programming languages, some of

them are endowed with IDEs so as to make easier and fruitfully the program

development. Thus, we are going to exploit the Eclipse IDE along with its

Jason plugin and the CArtAgO platform library1. The implementation of

that system has been possible thanks to few simple steps.

� Initially we have created a new Jason project from the wizard menu,

� once the project is created we can insert agents and java file (artifacts

and extensions of agent class) and implement their properties and in-

teractions,

� then we can set the whole system such as, the infrastucture, the envi-

ronment, the source path where retrieve the agent files (.asl) and the

list -and the number- of them (see fig.3.3).

Concerning the use of the artifact from the agent, this last point is funda-

mental, because here we must define that the agents of the MAS are situated

inside a CArtAgO environment, so as to exploit its API and thus, use arti-

facts’ functionalities. To express this, we specify:

environment: c4jason.CartagoEnvironment

In conclusion, the last step to execute is the integration of agent environ-

ment with the simulator.

1See official websites. Eclipse Juno http://www.eclipse.org/juno/, Jason Eclipse

Plugin Install http://jason.sourceforge.net/mini-tutorial/eclipse-plugin/ and

CArtAgO on SourceForge http://cartago.sourceforge.net/.

http://www.eclipse.org/juno/
http://jason.sourceforge.net/mini-tutorial/eclipse-plugin/
http://cartago.sourceforge.net/
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Figure 3.3: MAS setting definition on Eclipse.

2.3 Integration with Webots simulator

Once we set the Eclipse working environment, we need to set its simulator as

well. This simulator is provided by the Webots platform, already showed in

the first chapter at section3, which execution run on a proper application. A

straightforward way to make interoperable two different applications whose

running on the same machine2 is means means of TCP/IP sockets.

As depicted in fig.3.4 below, one of the artifact’s main activities is to get

raw sensor information in order to create symbolic information whose com-

pose the agent’s knowledge base. With this purpose, the artifact creates a

new ServerSocket on a well-know port -at least, let’s pretend that it is so- ,

waits for a connection request from the robot platform, and then when that

happens, it opens a new socket with it. Through this TCP connection, exec-

utive artifact can receive raw data from sensors and issue robot commands

whose are further transformed by the functional level in simple mechanical

actions.

2This is our scenario, however there is no problem if we move the code of the functional

layer (that interfacing the physical world) onto a different network node, since in the future

such code will be execute on a real robot.
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Figure 3.4: Interaction between the lower layers through TCP socket.

To facilitate the use of agent programming languages for developing robotic

control systems, such languages should provide suitable interfaces to integrate

with existing robot frameworks. These interfaces ideally provides built-in sup-

port for communication and control mechanism of robotic frameworks[23](e.g

ROS seen in Chapter1). However in our explorations we are not going to use

a specific robotic framework -even though it is possible using ROS / URBI

along with Webots- but we will exploit the Webots APIs. Webots provides

several APIs written in a handful of languages like C, C++, Matlab, URBIs-

cript, Java and Python. These APIs allow programmers to interact directly

with the robot with a set of methods -in Java for example- and to obtain

sensor values.

Using these APIs instead of others commercial frameworks standard inter-
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faces for accessing heterogeneous robotic hardwares, carry the same advan-

tages in terms of facilitate robotic software development and reuse by using

software engineering techniques such as component based software develop-

ment.

It is worth it to point out what is exactly the robot platform that is

interfaced with the artifact layer. Simply, it is the real controller of the

robot. As a matter of fact, since Webots is meant to be used actually as a

standalone robot simulator -though in this thesis we have moved the loci of

control, to the agents platform, on Eclipse- we must to write the program

that controls the robot, right here. Then, when a simulation starts, Webots

launches the specified controllers, each as a separate process, and it associates

the controller processes with the simulated robots[7]. This control code is

compiled / interpreted or both of them (for that reason Webots run its own

JVM).

2.4 Sensory Input & Actuator Commands

The controller just mentioned will be developed in Java3, so it turns out

necessary to define a class that will be tailored to represent information from

sensors. It is composed of two parameters: the former suggests an integer

representing the type of sensor data (e.g an image from camera, a double

value from a distance sensor and so on), the former is the actual value of

such sensor information. In AppendixA we show the SensorInfo Java class

-with its methods to set up and modify sensor information to send-, which is

the actual object that will be send (through readObject() Java method) and

read through the socket.

In order to get every SensorInfo object we need in addition to define what in

CArtAgO is named a BlockingCommand. Roughly speaking, in order to im-

plement an artifact that provides I/O functionalities for interacting with the

external world -like network communication in this case-, CArtAgO provides

a kind of await primitive that accept an IBlockingCommand object repre-

senting a command to be executed. The primitive await(IBlockingCommand)

3This choice is due to our programming languages background and skills.
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Figure 3.5: Parallel activities perfomed by functional level.

suspends the execution inside the artifact until the specified command -

typically some kind of I/O operation with blocking behaviour, such as the

readObject() method called by the artifact to receive a sensor data- has been

executed. So, using that primitive, the artifact is awakened and can starts to

process the received data.

It is worth remarking that, since the functional layer has both to contin-

uously send sensory data and receive robot command, the robot platform

controller is composed of two parallel Java thread whose run concurrently.

Each thread executes one of the above activities, so as to do not suspend

to send information when a new command has received through the same

communication channel.

After talking about information that flows from the robot to the agent, we

must specify how the system behaves according to the stream of commands

addressed from the agent -and from the agent in turn- to the robot. We de-

cided to employ the easiest approach to do this: the artifact simply send an

integer number through the OutputStream. When the simulator side receive
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Figure 3.6: Final system layout. To achieve this result we drew on the work

carried out by Wei and Hindriks in [25]

this integer, read its value and acts accordingly. Of course, initially both the

sides have to agree on the means of each integer value (eg. the number zero

could means ”stop moving”, the one ”go forward” and so forth) coherently,

otherwise several problems may arise.

In conclusion, we have encompassed every relevant aspects regarding the

development of the software working environment that we set up, in order

to be exploited for the experiments introduced in the next chapter. Now, as

depicted in fig.3.6 we have a complete overview of the software system, along

with its components and ”joints” among them.
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3 Recapitulation

Actually it is not so easy to extricate among the large number of applicable

architectures for modelling the agent system. Thanks to the BDI model taken

into account to define the nature of the agent which controls an autonomous

system like a robot, we have been able to implement the software architecture

of the system straightforwardly.

It is obvious that there would be a lot of work left to do if we want to en-

hance different aspects that concern what already done. Indeed, we have not

gone so deep for what regards some technicalities like the low-level commu-

nication infrastructure or the customisation of Jason agent environment, its

class or internal actions. Which are these future extensions and improvement

will explain better in the -concluding- Chapter6.



Chapter 4

Experiments

In order to understand what reasoning about the organization and the design

programming of a robot means, in this chapter we show four case studies in-

volving a robot with a growing set of skills and then of complexity coefficient.

We have exploited two kind of robots, both have two differential wheels (we

can set different speeds to each one) situated inside an unknown dynamic

environment we created before. The former has just two distance sensors sit-

uated on the front left and right whereas the latter, has five distance sensors

(one in front of it and two for each side), a camera and a gripper. Finally, in

the third example the robot is endowed with a GPS and a compass.

Firts, we provide a high-level description of the experiment we want to

put into practice. Afterwards we give a general resolution strategy, as the

set of behaviours the robot has to adopt, to achieve the above requirements,

pointing out the critical aspects.

We make the effort to provide a resolving strategy platform and language

independent as general as possible, as if we say it to another person and not

to a robot:

the higher is the level of the description of such strategy the closer we get to

the solution of the problem

making it also modular and extensible thanks to the BDI nature. Later,

by exploiting the requirements and constraints description the robot has to

abide by, we implement its controller using both with a structured paradigm
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(like C programming language, commonly used in the robotics field) and an

agent oriented language like Jason -plus CArtAgO.

As far as both implementation are concerned, we must say that a part is

implemented aside from the specific example, so as to provide some guidelines

about how sensor information can be mapped. On the other side, however,

a part is implemented regarding the particular case study we are going to

tackle.

Introduction

We believe it is worthwhile discussing about the interaction between the set

of sensors (robot actual environment) and robot platform (the functional

layer). Basically this happens by ”polling” -through low-level APIs, provided

by Webots- the sensors, in order to obtain their value continuously. Polling

is employed when it is not possible to be notified by means of events about

changes of a certain sensor -event-driven interaction. In this sort of interac-

tion the concept of interruption is unknown, since we do not know when

the sensor value changes.

Therefore the best pattern to obtain would have a basic layer -that is

interfaced with the physical components- which allow us to handle even the

above aspect. However, in Webots simulator the overall set of sensors is not

designed to send notifications but just to provide its values, after an explicit

request. So, we decided to adopt a classical polling approach, where robot’s

perceptions are mapped into agent beliefs. That is perceptions remain inside

the knowledge of this agent, as the internal high-level representation of the

external world.

This kind of approach, affects the design of the set of plans whose make

up the agent ”mind”. In addition, some concerns have cropped up from the

interaction with actuators and sensors, using a BDI-based agent control.

Let’s suppose we have the action ”move forward for two meters”. How do

we know whether the robot has moved actually for that distance, since it

provides only commands that enforce simple actions (e.g ”go ahead for one

step”?). To infer that the actions issued are performed effectively, we should

check the perceptions about the world. This is a complex aspect of robotics

field. An acknowledge from actuators would be useful for this purpose, but
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unfortunately in our case, it is not possible to guarantee the effectiveness of

all actions. Therefore two ways can be undertaken:

1. the agent loops continuously, requiring sensors value until a desired

outcome is reached;

2. the agent delegate at the lower levels that cycling task, so that to be

notified when a relevant condition of the world occurs.

We found the latter way more suitable according to thesis’ aims. Thus we

have opted to enrich the artifact -which we are going to call Middleware

Artifact from now on- or rather, the executive layer, so as it carries out

all the cyclic activities or those that entail a low-level data processing (e.g

analyze the bitmap of a camera image). The artifact in turn, has to define

what information model as observable properties -and then, the agent will

be notified by means the changes of these- and what situation convey to the

agent through signals -maybe warn the agent about critical scenarios.

Summing up, we are going to enforce the layered approach already dis-

cussed in the previous chapter. A layered architecture where some tasks will

be delegated to the perceptive level (the middleware) letting the cognitive

level to execute and exploit high-level activities and data. This is a funda-

mental aspect we must take into account for designing overall system.

Start the Simulation

Taking into account the software working environment presented in Chap-

ter3, it is worth showing the set of steps to perform, in order to start the

simulation using our software facilities.

Once we defined the agent in Jason and the Webots ”world”1 we are ready

to start the whole system. First we have to open Eclipse application, go to

our Jason project and then select the projectName.mas2j file, then click on

Run Jason Application: this will start the agent environment (see fig.4.1).

Afterwards, we must open the name.world file inside Webots siumlator

and just press the ”play” button that get off the simulation. During the

simulation we can stop it and get it up to thirty-times faster.

1This word is used in Webots, to express the environment in which the robot will run.

In terms of lights, floor, robots, walls, physics parameters and so on.
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Figure 4.1: First step: starting the MAS.
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Figure 4.2: Second step: start the 3D simulation rendering.

1 Obstacle Avoidance

The robot used (see fig.4.3) has to move randomly within a bounded unknown

environment, trying to avoid to bump against the cubic obstacles spread

all over the floor and walls that form the boundary of such environment,

exploiting the set of information from its distance sensors. Obstacles can be

moved to different locations or even deleted from the environment, moreover

is possible to add new ones.

1.1 Strategy

To move randomly, the robot must select from time to time, one of the three

basic movements whose constitute the whole motion: go forward, turn

left, turn right. Once it selects one of these, executes such movement for

a casual period of time. While it is moving, if the difference between the

distance sensor values exceeds a given limit, or in case at least one of those

values is greater than the warning threshold, then an obstacle is detected.

Therefore the robot has to stop random navigation and change the speed of

both its wheels according to the maximum velocity allowed and the closeness

of the obstacle. So that it will turn right/left -accordingly the obstacle is next
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Figure 4.3: A simple differential wheels robot, endowed with two infrared

distance sensors.

to its left/right side- until the obstacle is not detected anymore or, to be more

precise, when distance sensors are back to safe levels. Then, it can restart

the random motion.

1.2 Implementation

In this section -and in the following ones named in the same way- we will

present briefly both the approaches used to implement the resolving strategy

showed before.

Jason

In this case study, the robot is only interested about the detection of an

obstacle, so as to undertake the ”avoiding task”. Since we want to delegate

the activity which encompasses the constant request of distance sensor values,

to the middleware, we have modelled the presence -and the absence- of the

obstacle, as a observable property: obstacle(true/false). With regard to the

change of such belief, that agent will trigger or stop the avoiding task.

The agent reacts to this belief updates, by triggering the plan hereunder

when the perception of the world about the presence of an obstacle changes
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This, starts the avoiding task, that send the ”turn” command to the robot

actuators (the differential wheels in such case), and mantains it until the

obstacle is not detected anymore. In order to express that an obstacle is

not present anymore, we have decided to exploit the wait operation, that

suspend the plan execution until the specified event occurs: no obstacle, or

rather obstacle(false) belief update event.

It is worth taking a deeper look into avoiding belief. We have already re-

marked that an important goal of this thesis is to get a modular solution,

thus we think that using a belief-based suspending behaviour between sub-

task, would be an effective way to extend the agent’s mind with slight changes

when it increase its skills. In this case study, such belief represent whether

the avoiding task is running or not, and -as we see below- if so, the moving

task will be suspended until the avoiding activity is terminated successfully.

The termination of an activity is meant to be modelled through its belief

removal. In this way, we can also define a sort of priority between the set of

subtasks. Indeed, we can convey that the avoiding task is more important

than the moving activity by means of this plan:

Therefore, the robot suspend the random navigation if the avoiding task

has been triggered, and restarts moving when this belief is remove -the task

is terminated.

After seeing how to map the strategy mentioned previously, into a Jason

agent, now we can show the implementation of such strategy according to

the artifatc aspects. To define the observable property that will be updated

when a obstacle is detected, we wrote in the MiddlewareArtifact:
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defineObsProperty(”obstacle”,false);

then, we have defined an internal action that loops until a boolean guard

(stopAcquire) is switched to false. This internal action analyzes each infor-

mation from the robot platform, and according to their values, updates the

agent beliefs; below we show a snippet of middleware code:

The internal action is started by the agent, through the CArtAgO opera-

tion acquireData defined inside the artifact with:

As showed in the avoiding plans: turnAround, backward and setSpeed, are

three high-level robot commands -pretty explicit- whose are provided by the

MiddlewareArtifact in order to be issued to the real robot through the
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TCP socket. These operations are defined as (we give just one of them as an

example):

C

Using the C programming language, we do not have the notion of event, so

we must use a set of if statement in every critical point of the program, so

as to have an updated perception of the world before any other operation.

With this approach, we are going to model the avoid activity by means of a

proper function that is triggered in case sensor values exceed certain limits,

as we mentioned early. The avoiding function is so defined:

static void avoid(double value){

if(value < 0){

wb_differential_wheels_set_speed(-MAX_SPEED/2, MAX_SPEED/2);

}else{

wb_differential_wheels_set_speed(MAX_SPEED/2, -MAX_SPEED/2);

}

while(obstacleDetected){

leftSensor = wb_distance_sensor_get_value(dsL);

rightSensor = wb_distance_sensor_get_value(dsR);

centralSensor = wb_distance_sensor_get_value(dsC);

if((leftSensor < 350) & (rightSensor < 350) & (centralSensor < 350)){

obstacleDetected = false;

}

wb_robot_step(TIME_STEP);

}

wb_differential_wheels_set_speed(50, 50);

}
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Figure 4.4: Technical representation of khepera robot, and its sensors.

2 Object Picking

In this example, the environment is the same seen above, with a red cylinder

more that can be also moved within the floor. Besides the random move,

the obstacles/walls avoidance, it exploits the distance information from the

central distance sensor: if the robot detect an obstacle thanks to the central

sensor starts to analyze the images from camera (in particular, the central

section of them), in case it detects a red cylinder2, then it takes and lifts

the cylinder with its gripper and keeps on the random motion through the

obstacles, otherwise avoids the obstacle detected.

Additional Requirements

While the robot is trying to pick up the cylinder undersired situations may

occur. For instance, the cylinder is moved after its detection or the mechanical

arm could not be able to raise after he grabbed the cylinder. Moreover, once

the robot has retrieved the cylinder, it must be warned if the cylinder fall from

the grips: in such case, it terminates both the running and pending actions

and trasmits the problem through a message. These situations could happen

because of the dynamic nature of the environment and all its elements: so

the robot has to face such failures, in order to ensure a good level of safeness.

Additionally, in case the robot identifies an obstacle with lateral sensors,

then it checks wheter the red is the predominant colour. If so, we assume

2Actually we are not able to tell whether the solid is exactly a cylinder, but in this

example we thought that this point was not considerable for thesis’ purposes.
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Figure 4.5: A Webots view of the khpera robot -equipped with a gripper-

used in the next experiments.

that object is a red cylinder, so the robot stops and tries to turn so that it

can pick the cylinder up.

The mechanical systems used in this experiment is the Khepera robot

(see fig.4.5) a commercial robot, broadly distributed in university research

centers.

2.1 Strategy

When the robot detect an obstacle (the strategy adopted to avoid the en-

countered obstacles is the same mentioned in 1.1) with the central distance

sensor, it analyzes camera images comparing the pixel red levels with the

green and blue ones. If there are not a ruling colour component, then the

robot has met an obstacle -whatever- and simply avoids it. Whereas, if the

red component results at least three times as much as the others, then it

has detected a red cylinder. So, it suspends the random navigation, opens

and brings down the gripper, finally it closes the gripper at a given values,

expressed in centimeters.

If the grip does not reach a certain value -that indicates in terms of pres-

sure, whether the cylinder is grasped- by a safety lapse of time, then the
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cylinder is assumed moved to another position or fallen: thus the robot opens

the gripper again, turns around itself and resumes the random navigation.

If the cylinder is correctly grabbed, the robot rises its mechanical arm

and waits its arm reaches a desired position within a certain period of time:

when the cylinder is actually picked up, the robot can resume the previous

navigation inside the enrvironment.

Even in the case the robot detect an object next to its left/right, before

performing the obstacle avoidance task, starts to analyze the red levels of

the lateral sections of camera images. If red is the predominant colour, that

means it is close to a cylinder, so it stops and turns according to cylinder

position, until such cylinder is detected by the central distance sensor so that

it is possibe to enforce the procedure for retrieving, just described. Once the

red cylinder is picked up, if the grip pressure become too low, then the robot

assumes the cylinder is fallen from the gripper and stops the navigation and

comunicates the problem.

2.2 Implementation

In this experiment, the robot must carry out two more significant task. Each

of them is concerns the activity of picking up the red cylinder, with regard

to the position of such cylinder, either lateral or in front of the robot.

Jason

We need now to define suitable plans to fulfill the activities described in 2.

To do that, decided to model the notification of the closeness of a red

cylinder by means of a signal, cylinderDetected, to which the agent reacts so

as to perform the picking operations.

Furthermore since the robot has got the ability to reach a lateral cylinder,

we have modelled such aspect similarly as just seen, through signal from the

perceptive layer (the artifact).
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The catching artifact operation, is meant to represent the picking operation

by means of the mechanical arm, while block achieve goal, starts all those

plans that check the reliability of each single operation, according to time

constraints.

As before, we need those that we call coordination beliefs , in order to

coordinate the running subtasks and get a well-engineered system. Thanks

to picking and reachCylinder(true/false) the agent knows whether one of these

activities has been triggered. To give them a higher priority than the navi-

gation one, we apply a simple plan that suspend the random wandering:

The MiddlewareArtifact checks constantly the value of the gripper pres-

sure on the cylinder, and in case this is too low, the agent is warned by a

proper signal. The agent in turn enforce the following plan

which is annoted as an atomic plan, so that any other activities will not be

triggered until that plan is not completely carried out. Therefore this should

bring a right level of safety, since we believe that this controller is well-suited

for a real robot too.

Finally, because of while the robot is picking up the cylinder, the mechan-

ical arm is detected as an obstacle and undesired behaviours could come out,

we have to apply a tiny modification to the plan that reacts to the obstacle

detection, so as to avoid these behaviours.
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In this way whatever is near to the robot, is not considered as an obstacle,

as long as the robot is picking up a cylinder or is turning slowly fot gettin

closer to it.

Here, the observable properties that the artifact defines, and the agent will

use are:

defineObsProperty(”picked”,false)

and

defineObsProperty(”caught”,false)

Exploiting the JaCa nature, we delegate the heavy operation concerning

the image processing to the lower layer, which notify the agent, if the obstacle

met is a red cylinder or a ordinary obstacle to avoid. Such activity, has been

implemented like the snippet below shows:
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C

For developing the same behaviour with C we have implemented in the con-

troller class, new operations and functionalities, like image processing and

cylinder picking. These task are defined as C funtions and we show hereun-

der the pick up function, focussing on how it deals with time constraints

****

while( !(force > -500 && force < -5) & (timeout > 0)){

wb_robot_step(TIME_STEP);

force = wb_servo_get_motor_force_feedback(left_grip);

timeout = timeout - 50;

}

if(timeout == 0){

printf("Object not found");

wb_servo_set_position(servo, -1.4);

wb_robot_step(TIME_STEP*20);

/* turn around and go ahead */

wb_differential_wheels_set_speed(-50, 50);

wb_robot_step(TIME_STEP*40);

wb_differential_wheels_set_speed(50, 50);

return 1;

}else{

/*..keeping on with picking operations...*/

****

Even though there is no so many features to add to the robot, we must

add to the main loop of the controller, a handful of if statement in order to

not miss any relevant sensors situation. Considering that the most critical

scenario that can occur is the one when the picked cylinder falls from the

gripper, the program flow needs to check first of all if the pressure value is

enough

if(picked){

if( !(force > -500 && force < -5) ){

picked = false;

/* stop the robot */

wb_differential_wheels_set_speed(0, 0);

printf("Cylinder has fallen. Anybody retrive it.");
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break;

}

}

then, when it detects an close object, starts the image processing so as to
determine whether perform either the picking task or the avoiding one

***

if(centralSensor > 480){

image = wb_camera_get_image(camera);

/*isRed represents the image processing

function*/

if(isRed(image)){

/*if red is the predominant color, pick up..*/

printf("Cylinder found");

wb_differential_wheels_set_speed(0, 0);

int res = pickUp();

if(res < 0){

printf("error encountered");

break;

}else printf("Picking ok");

}else{

/*..otherwise is an obstacle, avoid it!*/

obstacleDetected = true;

avoid(delta);

}

}

***

3 Navigation

This robot perform the same set of tasks mentioned in the previous examples,

furthermore after the cylinder is retrieved, the robot brings it to a well known

point to which the robot wish to move, by means of the GPS sensor and

compass onboard without an environment’s map, just trying to follow the

straight path between the current position and that point (we suppose this

is the shortest path without considering the obstacles), keeping on avoiding
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obstacles. After that it starts to move randomly again, in order to find and

deliver another red cylinder.

Additional Requirements

Once the cylinder is delivered to the target point, the robot must leave the

area next to that point before undertake the random navigation again, and

it cannot come back there unless it is bringing another cylinder.

3.1 Strategy

In this exploration the strategies to avoid obstacles and pick up cylinders,

are the same seen above. Moreover when the cylinder is actually retrieved, in

order to move towards the well-known gathering place, the robot must align

itself. To do that it gets its orientation -representing the current direction

compared to the North- thanks to the digital compass onboard and computes

the desired direction it must obtain so as to try to reach the destination

moving along a straight direction3.

This is possible by exploiting the well-know location of the target point

and the current robot position, by means of a GPS sensor -whose the robot

is equipped with. The difference between current and desired orientation is

the gap to nullify. If this gap is included between 0 and -180 degrees or it is

greater than 180 degrees, then the robot has to turn right, otherwise to turn

left, until the compass reach the desired value (or, at least in the range of

that) and the gap is close to zero, so that the robot can start moving straight.

If the robot encounter an obstacle, enforce the usual avoiding task then, once

this is avoided, calculates the gap again and repeats previous operations to

align itself correctly.

In figure4.6 we show a rough representation of the likely heading of the

robot, comparing x-axis which that points the North. From that we obtain

the current robot heading α and the desired heading β, whose difference

define the gap to fill in degrees δ. We can calculate it as:

δ = tan−1(∆Y/∆X) = tan−1((Yg - Yr)/(Xg - Xr))

3Since we do not know nothing about the environment, the simpliest way to get to a

certain point, is to move in a straight line towards it.
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Figure 4.6: Xg/Xr and Yg/Yr indicate the global position of the location the

robot wishes to head for and the position of the robot respectively.

When it is nearby the gathering point, stops the navigation, brings down

its mechanical arm, opens the gripper to release the cylinder, rises the arm

and finally turns around and moves foward so as to exit from the gathering

area. It will be able to restart the random navigation when it will be out

of the gathering area, comparing its position (obtained from GPS) with the

circular area.

3.2 Implementation

It is worth remarking that the robot navigation within a dynamic environ-

ment is anything but an easy problem to solve. This task is even much more

complex considering that the robot does not have any map of the environ-

ment and knowledge about the position and the shape of them. Therefore

our implementation has not explored all the possible investigation concern-

ing the related problematics like accuracy of gathered data from sensors, and

their precision. Even though we are not going to face every issues of robot

navigation, we have defined a clear method tailored for our purposes, in order

to head the robot for the target point.
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Jason

The gathering point is the only thing that the robot knows a priori, thus a

clear way to model this awareness is to map that point as a belief already

present in the agent belief base.

targetPoint(x,y).

where x and x represent the position in the global (world) coordinate system.

When the picking operation is successfully completed, the robot aligns

itself in order to heads towards the target point. To do this, first computes the

gap (computeGap) from the right alignment, getting the desired orientation

in degrees and then starts the plans (balance) whose according to the current

and the desired orientation, issues right turning commands to the robot until

desired orientation is reached -around a certain range.

Where delivering and ~delivered are the coordination belief whose say

that the delivering task is currently running and the cylinder is not delivered

yet. Aftwards, when the robot is heading towards the right direction it has

not to ignore other cylinders, nevertheless the avoiding obstacles task is still

alive. This is a feasible operation to enforce by exploiting the coordination

belief so as to indicate the priority among several plans.
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In such way, when the robot encounters an object -either a cylinder or

not- the avoiding plans are triggered, to avoid that object, thereafter that

plan restarts those plans whose fill the orientation gap, in order to align the

robot to the destination. When the destination is reached, then the agent

starts the task which involves to put down the cylinder it is carrying on and

to turn around and go forward so as to get out the target area.

There are two observable properties that the artifact defines, that turn out

fundamental for the execution of the agent: the former indicates the global

position of the robot obtained thanks to the GPS onboard, the latter provides

the current orientation -expresses in degrees- of the robot according to the

North.

Finally, when the artifact detects that the robot has reached the target

point, notifies the agent through a proper signal to which it reacts applying

all the necessary operations to put down the cylinder and terminates the

delivering activity. We have reported below the snippet of artifact -within

the internal action loop- which checks whether the robot has reached the

destination and the resulting agent reactive plan.
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C

The operations introduced in this experiment, like put down the cylinder,

calculate the gap between current and desired orientation and balancing the

fill this gap, are modelled as functions. We are going now to show the bal-

ancing function, in order to make later a comparison with the agent-based

approach.

static void balance(double D,double C){

if( ((C-D >= -180) & (C-D < 0)) | (C-D >=180) ){

wb_differential_wheels_set_speed(15, -5);

}else if( ((C-D < 180) & (C-D > 0)) | (C-D < -180) ){

wb_differential_wheels_set_speed(-5, 15);

}

}

static void balanceFunction(double D, double C){

balance(D,C);

const double *orientation = wb_compass_get_values(compass);

compassX = orientation[0];

compassZ = orientation[2];

double currentAngle = convertBearing(orientation[0],orientation[2]);

while(!(currentAngle > D - 0.6) & (currentAngle < D + 0.6)){

wb_robot_step(TIME_STEP);

currentAngle = convertBearing(orientation[0],orientation[2]);

}

}
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Where convertBearing is the function to get the orientation in degrees.
In the main control loop, once the cylinder is actually picked up, the bal-

ancing and the consequent delivering activities start. This will be expressed
through the switching of two boolean values: fixingAngle and delivering.

if(fixingAngle){

if( (currentAngle > desiredAngle - 0.6) & (currentAngle < desiredAngle + 0.6) ){

printf("Desired angle reached, go!\n");

fixingAngle = false;

delivering = true;

wb_differential_wheels_set_speed(30, 30);

wb_robot_step(TIME_STEP);

}else{

//still turning

balance(desiredAngle,currentAngle);

}

}

In case, the delivering task is currently running, the first condition to
check, is whether the robot is close to the gathering point. This may be
implemented as follows

***

if(delivering){

if((position[0] > storagePointX - THRESHOLD) & (position[0] < storagePointX + THRESHOLD)

& (position[2] > storagePointZ - THRESHOLD) & (position[2] < storagePointZ + THRESHOLD)){

printf("Storage point reached - Current pos %f %f\n",position[0],position[2]);

wb_differential_wheels_set_speed(0, 0);

/* turn around and go ahead */

putDown();

fixingAngle = false;

wb_differential_wheels_set_speed(-MAX_SPEED/2, -MAX_SPEED/2);

wb_robot_step(TIME_STEP*4);

balanceFunction(currentAngle+180,currentAngle);

wb_differential_wheels_set_speed(MAX_SPEED/2, MAX_SPEED/2);

delivering = false;

goingOut = true;

printf("Cylinder delivered! \n");

}

else{

****

}
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/*check whether there is an obstacle nearby*/

Since we do not want that the robot pick up cylinder while it is delivering
the picked one, it is fundamental to specify inside some existing if statement
whether the delivering task is already started. For instance:

***

if(centralSensor > 480){

image = wb_camera_get_image(camera);

if(isRed(image,CENTRAL_PART) & !delivering){

***

4 Task suspend/resume

This example is similar to the last seen showed, the only change concerns

when the robot’s battery level decrease beneath a safe threshold, the running

activity is suspended so that the robot can steer towards the charger. Like

the delivering task, the robot has to avoid the obstacles that could meet

along such path. When it gets to the charger, it stays there for a while in

order to recharge its battery and then comes back to that point where the

running activity has been suspended, afterwards it resumes it.

4.1 Implementation

Jason

The charging point is already present inside the agent belief base likewise the

gathering point

charger(x,y).

As we seen so far regarding Jason implementations, the charging task is

identified as a belief, so as to get the highest priority.

This belief is added to the context of every relevant plan so that their

execution become suspended and wait for the chargin belief to be deleted, for

instance:
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the last one suggests that in case the robot is moving to recharge its

battery, ignores all the cylinders whose could be encountered.

The middleware check continuously the battery level and when this become

too low,

sends agent a proper signal which means that the robot is likely to run

out the energy soon. The agent reacts accordingly to what explained in the

resolving strategy:

Where the agent reuses the same procedure to reach a certain desti-

nation, used to head for the gathering point. This is possible as long as

we modify temporarily the arguments of the targetPoint belief. That’s why

the -+targetPoint(Cx,Cz) action: previous target point is updated with

charger point coordinates in the belief base and afterwards inside the arti-

fact, with setUpTargetPoint operation. So, the agent waits that the charger
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is reached so as to try to move towards the point where the signal cropped

up exactly as before. In addition, with the achieve goal !restoreOrientation(O)

the robot try to assume the orientation it had before the task suspension.

Once the charging task is terminated, we need to check whether the deliv-

ering task was running since it is th very neaxt activity to perform -according

to the priority. For this purpose, we can implement a plan where the trigger-

ing event is the charging belief deletion

In AppendixB it is possible to see the complete Jason implementation of

the robot controller, which includes all the task modules discussed so far.

Behaviour-based approach

Due to the lack of time, we are not going to implement actually the behaviour-

based strategy for this last experiment, however we are going to present a

hypothetical architecture of the system, pointing out the most significant

aspects that such approach encompasses. The first operation is the one con-

cerning the individuation of the different behaviour modules whose compose

the overall robot behaviour.

Behaviour modules are:

- Obstacle Avoid

- Random Motion

- Cylinder Picking which entail reaching lateral cylinders.

- Reach Point

- Charge
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Each module entails several actions to be execute so as to fulfill its activi-

ties, following somehow a strategy. This strategy could encompass a fragment

of the whole resolving strategy defined at the beginning of every experiment

section. With regard to the Reach Point module, the behaviour program-

mer, seeing the resolving strategy already explained, could get an high-level

strategy like:

Behaviour ReachLocation

/*obtain the robot location*/

robot_loc = getGPS_xy()

/*calculate the distance between the points (dest_loc) is the well-known destination*/

gap = dest_loc - robot_loc

/*calculate the desired heading*/

theta = arctan(gap)

/*get the current heading*/

heading = get_compass_heading()

if(gap /= 0){

/*destination not reached*/

rotation = computeDirection(heading - theta)

enforce(rotation)

}

end behaviour

Below, a behaviour diagram (fig.4.7) can help us to figure out the type of

sensors data, the modules need to use in order to perform their activities,

and which behaviours can potentially conflict. Considering that, the role

of arbiter is fundamental in this kind of systems -and in the robotics field-

because it/they has/have to resolve the issue concerning which command the

robot should obey. Of course, in non-trivial applications, there is the need to

employ more than one arbiter.

The arbiter has to be well-engineered, so as to get the desired behaviour

and be coherent with the early strategy definition as well as the additional

requirements/constraints. In particular, it has to coordinate correctly the

different behaviours, so that the most critical one, for example the charg-

ing behaviour, will suspend which are the currently running, in order to be

executed immediately. After that, the arbiter will resume the behaviour sus-

pended, trying to avoid any types of conflicts.
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Figure 4.7: This behaviour diagram represents a possible behaviour-based

approach to face the last experiment.
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In this paradigm, rather than having a planning capability or an explicit

goal-oriented behaviour, a robot’s behaviour is emerged as the result of the

behaviour of its own reactive componentes[23]. Although behaviour-based

robotics has shown to be successful in many applications, it has been argued

that such an approach is incapable of scaling up to human-like intelligent

behaviour and performance.

5 Common Aspects

Throughout the experiments, few aspects are shared among the different

agents implemented regardless the specific case study. One of these, is the

procedure to create the artifact and put the focus on it, enabling this to

accept socket connection requests, we can call it, the initial phase.

It is worth poiting out that connected(true) is an artifact-defined observ-

able property which suggests the socket connection status, and accept is the

artifact operation which open the server socket on the local host, waiting for

connection requests. There are not C implementation of this phase because

the whole robot controller runs on the Webots platform, so there is no need

to connect to another framework.

Another common functionality concerns the random navigation, and below

we show Jason and C implementation fragments of code: the second approach

enforces this task as a function.

Jason
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C

static void move(){

/* choose a random move */

double m = frand();

if( m <= 0.5 ){

/* forward */

wb_differential_wheels_set_speed(50, 50);

}else if ( (m > 0.5) & (m <= 0.7)){

/* turn left */

printf("turn left \n");

wb_differential_wheels_set_speed(20, 50);

}else{

/* turn right */

printf("turn right \n");

wb_differential_wheels_set_speed(50, 20);

}

}





Chapter 5

Considerations

Starting from the work accomplished so far, in this chapter we are going

to gather and discuss benefits, drawbacks and considerations in general, by

making a comparison between the utilization of a BDI approach to robot

programming and a classic C-based approach. In particular an evaluation

between the outcomes will be reported, in order to show clearly which aspects

concerning robot programming, are positive and which, turn out to be not

so good.

1 Evaluation of both the approaches

In this section we are going to make a comparison between the BDI-based ap-

proaches and the implementation of robot program through Turing-complete

languages (like C in our case), which do not have any notion of event. Their

model of perceptions is mainly based upon a polling-based interaction, in the

sense there is exclusively the possibility to read the current state of sensors

ed act accordingly. This causes a huge addition of if statements concerning

the likely values of active sensors. It is easy to notice the differences between

the explorations in Chapter4 where C implementation requires besides new

functions to accomplish new goals, a lot of tests positioned in a large number

of lines throughout the code.

Another relevant concern stems from this issue: once we have identified the

sort of tests we have to introduce, we wonder→ where must we locate them?

This choice turn out fondamental for reaching a well-engineered outcome,
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because the lack of events means that there is the possibility to miss some

relevant changes and so, to not handle all the likely situations -in the worst

case, the hazardous ones. Thereby, another question grows out: have they

been put suitably within the code?.

This is a tricky problem, and here’s why choosing a right level of abstrac-

tion for engineering robot application, does not mean dying overwhelmed by

complexity.

if(picked){

if( !(force > -500 && force < -5) ){

picked = false;

/* stop the robot */

wb_differential_wheels_set_speed(0, 0);

printf("Cylinder has fallen. Anybody retrive it.");

break;

}

}

The snippet reported above is the one that checks whether the cylinder

retrieved is fallen. This test -along with that which controls the battery level-

is necessary in order to detect the occurrence of a critical situation, and must

be placed in every relevant point of the program. The point is the meaning of

the word ”relevant”. Let’s suppose that each piece of code representing the

fulfillment of a specific activity, takes xi milliseconds to execute its operations,

while sensor values are updated every y milliseconds. In order to not miss any

significant condition of the whole world, we need to locate the above code in

the right points inside the program, so that the controller is able to verify

whether such condition is satified or not. Thus, that if statement should be

performed hypothetically by z milliseconds, where

z ≤ y ≤
∑

i x i

#define TIME_STEP 40

****

static void pickUp(){

checkForce();

/*do something*/

/*=====*/

return;
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}

int main(){

while (wb_robot_step(TIME_STEP)!=1) {

checkForce();

/*do something*/

/*=====*/

if(obstacleDetected){

pickUp();

}

checkForce();

/*do something*/

/*=====*/

wb_robot_step(TIME_STEP);

}

}

As we can see, a growing complexity for implementing the controller pro-

gram, has arisen from the addition of the ability to determine when the

cylinder picked up is fallen. Thereby, this approach surely does not encour-

age programmers to enhance the robot behaviour with more complex skills

and, moreover, does not promote the reuse of such code upon another hard-

ware system.

”When X happens, do Y” is a basic statement for programming control

agents. That when indicates a specific situation of the world that should

have been detected whenever, inside the robot’s behaviour. However, with

standard languages this is not possible, therefore adding a set of tests to

locate in right places of the source code, turns out necessary. But, in case

there are a lot of events to handle, the growing addition of if statement

becomes a sort of pollution of the agent’s logic. This pollution complicates

both the main activity and the different subtasks, and brings to affect the

whole robot’s behaviour as well.

The utilization of a JaCa -based approach overcomes this problem, since

the agent has got plans which react in order to manage those events. Indeed,

to execute all the operations before explained, in Jason agents it is necessary

to insert only this plan
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which is triggered immediately, when the perceptive layer notify it by

means of a signal.

2 Modularity and Compositionality

Considering Chapter4 and what discussed so far, we got that programming

robot by means of agent plans, allow to obtain a modular solution, so that its

behaviour (agent-based controller) can be extended somehow, without totally

changing any other part of the agent source code. That is, we can introduce

in such way, a new expertise or skill by introducing slight modifications to

robot behaviour, like adding new plans and / or beliefs. Hence, the robot

behaviour is augmented without the need of a strategy that entails to write

the robot control program from the scratch.

In our explorations indeed, we have a robot that earlier can avoid the

encountered obstacles, but when we said ”if you see a red cylinder, pick it

up with your gripper!” what we have to add in order to make up a brand

new robot which can retrieve red cylinders while avoids the environment

obstacles?

As we saw in the Jason implementation we can define new subtasks -whose

can be subdivided themselves- taking into account and managing the depen-

dencies among them. In fact, looking throughout the implemented agents,

several piece of code ar totally the same, like those plans an agent perform

so as to avoid an obstacle

or those ones that define the basic random motion
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When the robot’s abilities are growing, we had to act some changes or

add similar plan -for the same triggering event- just because of the need to

reach a certain level of coordination among the (sub)tasks. Whereas, using

the C programming language, the addition of new features and skills involves

sometimes several changes in different points of the agent source code.

These are the same for all the agents and even considering that the first we

use to put our agents into practice, was different from the second (the former

is defined by Webots owners, the latter is an actual commercial robot), the

above plans are likewise used inside all the experiments. So we assume that,

such modularity is useful even with regard to hardware aspects: in fact, we

used agents with (some) identical plans for controlling different robot and this

is one of the aim of this thesis, we mentioned in the introduction. Therefore

with this approach we are able to make up autonomous system controllers

whose can likely run upon several, different hardware -at least, with some

slight changes in the middle layer.

This is one of the most significant features that an agent-based robot pro-

gramming -especially BDI-based one- bring to programmers who are involved

in robotics. Indeed, it turns out to be extremely useful having a bunch of well-

known plans and beliefs whose aim to fulfill certain activities and accomplish

some goals, and that a programmer can use for more than one specific robot

application, and this is not possible -or at least it would be tough- by using

classical programming languages.

However, the more skills and abilities the robot acquires, the more a Jason

programmer has to cope with the coordination among the tasks whose aim

to accomplish certain goals. This coordination encompasses: the deployment

of beliefs whose deletion and addition will help to sort out the different activ-

ities, their straightforward positioning inside the plans already implemented

and the definition of new suitable plans. In fact, looking at Chapter4 and
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more in detalis in AppendixB, turns out clear that a good part of defined

beliefs are useful to manage the overlapping among the activities (eg. avoid-

ing, ~delivered and so on). Jason programmers besides, in order to provide a

well-engineered outcome, must provide some features that are not so easy to

ensure, such as find a mechanism for avoiding name clashes between goals

and belief from separate modules1 or control whether certain beliefs can be

used by all the other tasks or not.

3 Performance Analysis

Even though issues concerning the performance that characterize BDI-based

robotic control systems are not so relevant for the objectives of this thesis,

we believe it is significant to discuss at least few aspects involved. So, in this

section we want to give a brief consideration which turns out meaningful with

regard to possible future refinements and enhancements -whose will present

in the next chapter.

Enforcing a layered architecture to model a robotic control system, we

ought to take into account the latency that such kind of architecture is likely

to introduce, if we want to put into practice -onto a real robot- our work in

the future. That is, according to these values we can understand whether put

our agent program into a cognitive agent to control a real robot is feasible

or not. The values we mentiones are simply some timestamps that help to

calculate roughly the time elapsed between:

- when a given situation is detected by the sensors and the agent trigger

the suitable plan (reactive time);

- when a particular action is executed by an agent and the time at which

this action is actually applied from actuators (response time).

In many robotic applications, a robot needs to guarantee real-time prop-

erties only for a small subset of its tasks which are critical for safety reasons

or the robot functionality, therefore the above delays should assume a value

1We could name the set of plans and beliefs related to a specific task to perform, a

module.
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as low as possible. Making few elementary tests2 we can get these significant

delays. Such values have been obtained by means of a notebook which works

on a 2.13 GHz Intel®Centrino Core 2 Duo�processor, using Windows 7©64

bit operating system. The reactive time of the implemented system is around

2 milliseconds whereas the response time is around 40 milliseconds.

The second time is greater than the first just because of the set of previous

operation that were carrying out by the robot, such as ”stop the wheels” or

”close the gripper”.

However, such values does not tell us that the system implemented so

far is well-suited also for real-time applications. There are too many aspects

that must be considered, such as the type of hardware used -as mentioned

before- or the simulator’s characteristics. Though, the values measured are

low enough to suggest us that the way paved is pretty correct. Of course a

deeper analysis of the architecture should be attempted so as to bring our

work onto actual autonomous systems whose have to take into account real-

time aspects. So, we have not the certainty that our work will turn into a

proper approach to develop real-time robotics applications, however we have

been moving towards the right direction.

Summing up, on the one hand the BDI-based approach provide an high-

level, modular method to program robotic control system and promote the

reuse of a part of plans for developing new ones. On the other hand C pro-

gramming language ensures more performance compared with Jason which

is a Java-based language, so runs upon a JVM and it is well-known that Java

is slower than C (up to 10 times slower in some benchmarks). Considering

that, for hard real time applications, a JaCa implementation might not be

suitable.

Generally speaking, because of the wide range of components that may be

involved in a robot application, it is actually unfeasible to build a program

where a reaction to each event is explicitly modelled. In fact, the number of

parameters to take into account would be extremelly huge, and the develop-

ment of that, in particular with C, would become very slow.

2Through basic timestamps we can verify when a low battery value is detected by the

robot plaform and when the related plan is activated; and when a certain command is sent

by the agent and then actually issued by the robot platform.
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Conclusions and future work

It is now time to summarize the work presented in the course of this thesis,

pointing out the goals achieved, the contribution brought and its shortcom-

ings, as well as the feasible future work.

The main goal of this thesis, was to think, model and then implement

a purposeful and simple architecture to exploit an agent-oriented approach,

like the BDI one, for robot programming.

The course of this thesis started presenting the basics of robotics, from

the definition of robot to the adoptable architectures whose could control it

and the existing programming platforms to implement these architectures.

Afterwards, the agent oriented programming was presented, focussing on

the BDI language Jason, that has been employed, along with CArtAgO, as

the programming framework for the resulting system. The next step was

concerning how to set up the actual software architecture derived from the

JaCa framework nature and how to connect it with the Webots simulator

in order to put into practice what explained previously.

Once the software simulation system was defined, a chapter dedicated to

some experimentations was necessary so as to verify concretely the outcomes.

These experiments encompass a good set of relevant problems for robot pro-

gramming. The main objective was to analyse how the modularity and read-

ability of robot programs could be improved by adopting an agent-oriented

BDI-based programming model.

As we can see in the last chapter indeed, fragments of code which have
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been created, refined and reused with the purpose to reduce the workload

for the agent programmer when aims to extend the robot’s skills. This has

been achieved thanks to the JaCa nature which, unlike standard program-

ming languages, allows to avoid that we called the if pollution of the agent’s

program.

That is, the contribution coming from this thesis is a useful method to

exploit deeply, fruitfully and in a modular way the JaCa framework, for

the first time, to program a robotic control system, so that it can be reused

further in different applications and with different sort of robots.

Of course, we have not exhausted the space of all possible issues regarding

all the possible aspects of robotics that we ought to take into account during

the experimentations as well as the features required to achieve a perfect

modularity. Thus, a good number of feasible extensions could be investigated

in future projects, first of all additional requirements may be satisfied to

improve agent-based robot programming:

� improving modularity and encapsulating of plans, in particular for in-

tegrating proactive and reactive agent behaviour;

� allowing for private beliefs, to plans / intentions, i.e beliefs used only

in the context of those plans / intentions.

Another way that would be compelling to pursue will be devoted to extend

the explorations towards multi-agents experimentations. Since our investiga-

tions entail a one-to-one mapping between a robot and an agent, it could be

interesting to explore the single robot programming with more agents which

control it. Such approach is useful in case the set of tasks the robot has to

accomplish, are extremelly heavy. Furthermore, it is worth studying the as-

pects concerning the multi-robots systems, such as the communication, the

coordination and the interaction among them -along with the problematics

that will come up.

Besides, as we roughed out in Chapter 5 there is the need to pave the

way towards a system that should guarantee bounded reaction and response

time to events, since Jason does not give any certainty about the lapse of

time that a given action takes to be completely carried out. As far as the

future extensions are concerned, this is likely the first requirement that has
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better to be accomplished. Indeed, in robotics and embedded systems, the

real-time requirements satisfaction is maybe the most important factor, in

order to set up a well-engineered robotic control application. But if we want

to achieve this outcome, thinking again about the architecture is sensible.

So, by looking up throughout the literature relevant works can be found

according to possible extensions of the BDI architecture, for facing properly

the real-time requirements. For instance, allowing for defining priorities of

plans -with the same triggering event- which promotes non-determinism in

choosing a plan to perform.

As remarked in the beginning of the thesis we aimed at thinking in per-

spective, even when a pre-programmed approach is not satisfactory anymore.

For some type of tasks, it could be not feasible to design a priori the overall

set of plans useful to achieve them. We may exploit the planning and learning

techniques inside Jason libraries, so that plans can be added dynamically to

the agent. So, the agent programming would be moving towards a situation in

which there are different ”holes” inside the robot’s behaviour and knowledge,

where it becomes necessary to have a non-completely defined strategy

as if some robot’s methodologies and abilities can be added or modified in a

dynamic way, according to new expertise and experiences gained over time.

That is, the journey we have started, encompassing the programming lan-

guages studied, will connect to the Artificial Intelligence domain, integrating

techniques such as genetic algorithms or neural networks, to improve robots

autonomy.





Bibliography

[1] D. Dennett

Intentional systems. Journal of Philosophy 68, 87–106, 1971

[2] M. Bratman

Intention, plans, and Pratical Reasoning. Harvard University Press, 1987

[3] R.H. Bordini, J.F. Hubner, M. Woodridge

Programming multi-agent systems in AgentSpeak using Jason. Wiley Se-

ries in Agent Technology, 2007

[4] A. Omicini

Multi Agent Systems course, Agents as Intentional Systems, 18-51, 2012.

[5] A. Omicini

Multi Agent Systems course, Agents & Artifacts: Definitions & Contep-

tual Models, 40-42, 2012.

[6] R.S. Amant, A.B. Wood

Tool use for autonomous agents. AAAI/IAAI 2005 Conference, 9-13.

Pittsburgh, 2005

[7] Maja J. Matric

The Robotics Primer, 2007

[8] B. Gates

A robot in every home. Scientific American, 2007

[9] D. Norman

Cognitive artifacts. Designing interaction: Psychology at the hu-



118 Bibliography

man–computer interface. Cambridge University Press, 17–38. New York,

1991

[10] G. Biggs, B. MacDonald

A survey of Robot Programming Systems. Proceedings of the Australasian

Conference on Robotics and Automation. Brisbane, Australia 2003

[11] Oxford Dictionaries.

Retrieved 4 November 2012.

[12] J.L. Jones, D. Roth

Robot Programming. A pratical guide to Behaviour-Based Robotics.

McGraw-Hill, 2004

[13] RobotC official web site: http://www.robotc.net/

[14] Microsoft Robotics Development Studio web site: http://www.

microsoft.com/robotics

[15] O. Michel

Webots: Professional Mobile Robot Simulation. Journal of Advanced

Robotics Systems, 39-42, 2004

[16] UrbiForge: http://www.urbiforge.org/

[17] http://en.wikipedia.org/wiki/Workcell

[18] R. Bordini, L. Braubach, M. Dastani, A. El Fallah Seghrouchni, J.

Gomez-Sanz, J. Leite, G. O’Hare, A. Pokahr, A. Ricci

A survey of programming languages and platforms for multi-agent sys-

tems. Informatica 30, 33-44, 2006

[19] A. Ricci, A. Santi

CArtAgO by examples, Version 2.0.1. http: // cartago. sourceforge.

net/ ?page_ id= 47

[20] A. Santi, M. Guidi, A. Ricci JaCa-Android: An Agent-based Platform for

Building Smart Mobile Applications. Proceedings of Languages, method-

ologies and Development tools for multi-agent systems (LADS), 2010.

http://www.robotc.net/
http://www.microsoft.com/robotics
http://www.microsoft.com/robotics
http://www.urbiforge.org/
http://en.wikipedia.org/wiki/Workcell
http://cartago.sourceforge.net/?page_id=47
http://cartago.sourceforge.net/?page_id=47


Bibliography 119

[21] AS. Rao

AgentSpeak(L): BDI agents speak out in a logical computable language.

Proceedings of the Seventh Workshop on Modelling Autonomous Agents

in a Multi-Agent World, 22-25. Eindovhen, January 1996

[22] N. Madden, B. Logan

Modularity and compositionality in Jason. In Proceedings of Int. Work-

shop Programming Multi-Agent Systems. ProMAS 2009.

[23] P. Ziafati, M. Dastani, J.J Meyer, L van der Torre

Agent Programming Languages Requirements for Programming Cognitive

Robots. Promas 2012.

[24] M. Wooldridgw, NR. Jennings

Intelligent agents: theory and practice. The knowledge engineering review

10(2), 115-152, 1995

[25] C. Wei, K.V. Hindriks

An Agent-Based Cognitive Robot Architecture.

[26] A. Mordenti

Artefatti di coordinazione per agenti in Smart Environment. July 2010.

[27] A. Ricci

Environment programming in Multi-Agent Systems. WOA Mini-Scuola,

2011.

[28] A. Ricci, M. Viroli, A. Omicini

The A&A Programming Model and Technology for Developing Agent En-

vironments in MAS. Programming multi-agent systems, 4908, 91–109,

2007

[29] A. Ricci, M. Piunti, M. Viroli Environment programming in multi-agent

systems: an artifact-based perspective. Autonomous Agent Multi-Agent

Systems, 23, 158–192, 2011

[30] A. Omicini, E. Denti

From tuple spaces to tuple centres. Science of Computer Programming,

41(3),277–294, Nov. 2001





Ackwnoledgments

With this thesis I fulfill a fascinating, and also hard journey, which have

been engaging me along the last five years. There were not just easy and

lightweight periods, sometimes I felt melancholy, tired and unconfident. This

is the reason why the people who have been next to me so far, deserve their

own chapter in this paper.

A special thanks goes to my supervisor Alessandro Ricci, who gave me the

opportunity to study and work on a topic which has always attracted and

intrigued me. He has beared my frequently doubts, oversights and blunders

in a extremely stimulating way, prompting me to work with more and more

self-denial.

I am deeply greatful to my family, for all the fundamental suggestions and

the continuous support, allowing me to study without the burden of time

or money. They have encouraged me to undertake this long journey without

any doubts about my abilities and my will. Surely I would never been who I

am today without them.

Afterwards, a sincere thanks goes to all my friends who have been with

me during this years. The weekends, the jokes, the holidays, the talks, the

drunks, the hangover with them are simply unforgettable. Some of them were

simple schoolmates or teammates, then they have turned into something more

important for me. I am also truly greatful to my girlfriend who always make

me feel special and try to improve my self-esteem (much of work is left to

do). I did not want to point out who those people are, because the ones who

care about me, know that I am thanking them.

I would have liked to devote this people more than a mere black and



122 Acknowledgments

white page inside a dissertation, so I hope I will give them the same special

satisfaction and emotions they convey me. All my efforts are dedicated to

them, as well as my grandpa who is always close to me, (even though not

physically) supporting my day-to-day life, I miss you.



Appendix A

SensorInfo

public final class SensorInfo implements Serializable{

private int id;

private Double sensorValue = 0.0;

private int[] intValues = new int[]{};

private Double x = 0.0;

private Double y = 0.0 ;

private Double z = 0.0;

private Double[] doubleValues = new Double[]{};

public SensorInfo(int id, double value){

this.id = id;

sensorValue = value;

}

public SensorInfo(int id, int[] image){

this.id = id;

intValues = image;

}

public SensorInfo(int id, Double x,Double y,Double z){

this.id = id;

this.x = x;

this.y = y;

this.z = z;

}

public SensorInfo(int id, Double[] values){

this.doubleValues = values;

}
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public double[] getCoord(){

return new double[]{x,y,z};

}

public void setVal(Double value){

sensorValue = value;

}

public void setRGB(int[] components){

this.intValues = components;

}

public double getVal(){

return sensorValue;

}

public Double[] getDoubleValues(){

return this.doubleValues;

}

public int[] getIntValues(){

return this.intValues;

}

public int getId(){

return id;

}

}



Appendix B

Task Suspend/Resume Agent

/* Initial beliefs and rules */

maxSpeed(100).

storagePoint(0.41,-0.41).

charger(-0.38,0.38).

threshold(0.04).

reachCylinder(false).

/* Initial goals */

!start.

/* Plans */

+!start <- !init(Id); focus(Id); println("focus achieved"); accept; !waitConnection.

/*Plans whose take care of the inital phase of the agent system*/

+!init(Id) <- makeArtifact("middleware","artifacts.Middleware",[4444],Id);

println("Artifact created").

-!init(_) <- println("artifact creation error"); .stopMAS.

+!waitConnection: connected(true)

<- deltaBased(false); ?storagePoint(X,Z); +targetPoint(X,Z);

setUpTargetPoint(X,0,Z); +reachCylinder(false);

?threshold(T); setThreshold(T); acquireData; !moving.

+!waitConnection <- .wait(500); !waitConnection.

/*The above eight plans perform the operations which allow the

* robot to reach both a lateral and a central cylinder*/

+cylinderLeft: reachCylinder(false) & not insideArea & not charging

<- -+reachCylinder(true); stop;
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.print("Left Cylinder");

setSpeeds(0,10); !reach.

+cylinderRight: reachCylinder(false) & not insideArea & not charging

<- -+reachCylinder(true); stop;

.print("Right Cylinder");

setSpeeds(10,0); !reach.

+cylinderBeyond: reachCylinder(true) & maxSpeed(M)

<- .print("cylinder beyond"); turnAround;

.wait(20000); setSpeeds(M/5,M/5); !reach.

+!reach: charging <- .wait({-charging}); .print("Resume cylinder reaching"); !reach.

+!reach: reachCylinder(true) <- .wait("+cylinderBeyond",5000).

+!reach: reachCylinder(false) <- .wait("+cylinderDetected",3000).

-!reach <- .print("Reach lateral cylinder failed."); -+reachCylinder(false).

+cylinderDetected: not picking & not delivering & not charging

<- +picking; -+reachCylinder(false); stop;

.print("Cylinder detected"); catching; !block.

/*Plans useful to avoid obstacles*/

+obstacle(true): (delivering | charging) & delta(D)

<- .drop_intention(balance); +avoiding;

stop; !avoid(D); forward; !computeGap;

!balance; forward.

+obstacle(true): delta(D) & not avoiding & not picking & not reachCylinder(true)

<- .print("Obstacle: ",D); +avoiding; stop; .wait(50); !avoid(D).

+lateralObstacle("left") <- println("high left"); !avoid(-1).

+lateralObstacle("right") <- println("high right"); !avoid(1).

/*The plan hereunder carries out all the necessary operations

* to enforce, when a well-known point is reached while the delivering

*task is running*/

+targetReached: delivering & not charging

<- .drop_desire(balance); .drop_desire(computeGap); .drop_desire(avoid);

stopAcquireDistance; -delivering; .wait(100);

.print("TARGET POINT REACHED"); stop; .wait(40);

putDown; -desired(_); ?orientation(O); D2=O+180; +desired(D2);

!balance; .print("balanced");

forward; waitExit; .wait("+~around"); -~delivered.

+!raiseRay: threshold(T) <- T2=T+0.03; setThreshold(T2).

/*These plans help to satisfy safety aspects concerning the

*cylinder delivering*/
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+outOfStorageArea <- println("Out of target area");

restartAcquireDistance;

!raiseRay; -insideArea; +~around.

@noAccess1[atomic]+noAccess: not delivering & ~around

<- +gettingOut;

.print("Too close to storage area!! Go away!");

stop; .wait(40); turnAround;

.wait(2000); forward; .wait(1500).

+noAccess: delivering & firstTime & not charging

<- -firstTime; +insideArea;

println("Almost reached"); stopAcquireDistance.

/*Standard plans to achieve the desired heading */

+!computeGap: location(X,Y,Z) & targetPoint(Tx,Tz)

<- computeAngle(X,Z,Tx,Tz,Desired);

-+desired(Desired).

+!balance: desired(D) & orientation(O) & O > D-0.6 & O < D+0.6

<- stop; -~around; +firstTime; forward.

+!balance: desired(D) & orientation(O) & ((O-D >= -180 & O-D < 0) | (O-D >= 180))

<- setSpeeds(25,-10); .wait(20); !balance.

+!balance: desired(D) & orientation(O) & (O-D < 180 & O-D > 0 | O-D < -180)

<- setSpeeds(-10,25); .wait(20); !balance.

+!balance <- .wait(20); !balance.

/*This bunch of plans perform the random navigation and are suspended

* when another more relevant task is triggered*/

+!moving <- while(true){

.random(R); !move(R);

}.

+!move(N): charging

<- .print("wait recharging");

.wait("-charging"); .print("after recharging");

!move(N).

+!move(N): delivering

<- .print("Wait delivering");

.wait("-~delivered"); .print("Delivered!");

!move(N).

+!move(N): avoiding

<- .print("Wait avoiding");

.wait("-avoiding"); !move(N).

+!move(N): reachCylinder(true)

<- .print("wait lateral cyl");

.wait("+reachCylinder(false)"); !move(N).

+!move(N): picking <- .print("wait picking"); .wait("-picking");
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.wait(50); !move(N).

+!move(N): N <=0.5

<- forward; .random(R); W = R*10000; .wait(W).

+!move(N): N <= 0.75 & N > 0.5

<- turnLeft; .random(R); W = R*10000/2;

.wait(W); forward; .wait(1000).

+!move(N): N < 1 & N > 0.75

<- turnRight; .random(R); W = R*10000/2;

.wait(W); forward; .wait(1000).

-!move(_) <- println("move failed").

/*These three blocks of plans concerning the whole

* cylinder picking operation*/

+!block: charging

<- .print("Blocking suspend, wait recharging.");

open_grip; arm_up; .wait({-charging});

.print("Blocking resumed"); !block.

+!block <- .wait("+caught(true)",5000); !pick.

-!block <- println("block failed"); !pick.

+!pick: charging

<- .print("Picking suspend, wait recharging.");

.wait({-charging}); .print("Picking resumed");

!pick.

+!pick: caught(true)

<- arm_up; .wait("+picked(true)",3500);

!go_ahead.

+!pick <- .print("Cylinder not found"); arm_up; turnAround;

.wait(2000); -picking.

-!pick <- .print("pick failed"); !go_ahead.

+!go_ahead: charging

<-.print("Delivering suspend, wait recharging.");

.wait({-charging}); .print("Delivering resumed");

!go_ahead.

+!go_ahead: picked(true)

<- println("Cylinder picked up"); -picking;

+~delivered; +delivering; !computeGap; !balance; forward.

+!go_ahead <- println("Cylinder picking failed"); stop.

/*Basic plans to avoid obstacles*/

+!avoid(0) <- backward; turnAround;

.wait("+obstacle(false)"); -avoiding.

+!avoid(D): D > 0 & maxSpeed(M)

<- backward; setSpeeds(M/2,-M/2);

.wait("+obstacle(false)"); -avoiding.

+!avoid(_): maxSpeed(M)

<- backward; setSpeeds(-M/2,M/2);

.wait("+obstacle(false)"); -avoiding.
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/*Atomic plan, that stop completely robot’s execution, since

* the picked cylinder has fallen*/

@fallCylinder[atomic] +fallen: picked(true)

<-.drop_all_desires;

.print("Cylinder has fallen. Anybody retrieve it");

stopAcquire; stop.

/*Plan which reacts to the (critical) situation, when the battery

* is getting exhausted */

+lowBattery: location(X,Y,Z) & charger(Cx,Cz) & not charging & orientation(O)

<- mark; +charging; ?battery(B); .print("Battery low! Level: ",B);

stop; -+targetPoint(Cx,Cz); setUpTargetPoint(Cx,0,Cz);

!computeGap; !!balance; .wait({+targetReached}); stop;

.wait(3000); .print("RECHARGED"); ?battery(B2);

.print("Current battery level: ",B2); -+targetPoint(X,Z);

setUpTargetPoint(X,Y,Z); !computeGap; !!balance;

.wait({+targetReached}); stop; .print("Previous pt reached");

?storagePoint(Tx,Tz); -+targetPoint(Tx,Tz);

setUpTargetPoint(Tx,0,Tz);

!restoreOrientation(O); -charging.

-charging: delivering <- .print("Restart delivering");

!computeGap; !balance.

@restore[atomic]+!restoreOrientation(D)

<- .print("Restoring"); -+desired(D); !balance; stop;

.drop_intention(balance); .print("Restored"); .wait(500).
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