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                                                                  ABSTRACT

Ocean acidification is an effect of the rise in atmospheric CO2, which causes a 

reduction in the pH of the ocean and generates a number of changes in seawater 

chemistry and consequently potentially impacts seawater life.

The effect of ocean acidification on metabolic processes (such as net community 

production and community respiration and on particulate organic carbon (POC) 

concentrations was investigated in summer 2012 at Cap de la Revellata in Corsica 

(Calvi, France). Coastal surface water was enclosed in 9 mesocosms and subjected 

to 6 pCO2 levels (3 replicated controls and 6 perturbations) for approximately one 

month.  No  trend  was  found  in  response  to  increasing  pCO2 in  any  of  the 

biological and particulate analyses.  Community respiration was relatively stable 

throughout the experiment in all mesocosms, and net community production was 

most of the time close to zero. Similarly, POC concentrations were not affected by 

acidification during the whole experimental period. Such as the global ocean, the 

Mediterranean Sea has an oligotrophic nature. Based on present results, it seems 

likely  that  seawater  acidification  will  not  have  significant  effects  on 

photosynthetic rates, microbial metabolism and carbon transport.
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                                                    1. INTRODUCTION

The ocean is a significant sink for anthropogenic carbon dioxide (CO2) and has 

an important role in regulation of the CO2 atmospheric concentration by physical, 

chemical and biological processes. The concentration of CO2 in the atmosphere 

has  increased  from 172-300  parts  per  million  by  volume  (ppmv)  in  the  pre-

industrial era (Luthi et al., 2008), to 387 ppmv in 2009. The rate of increase was 

1.0% yr-1 in the 1990s and reached 3.4% yr-1 between 2000 and 2008 (Le Quéré et 

al.,  2009).  Future  levels  of  atmospheric  CO2 may  reach  1020  ppmv  in  2100 

(IPCC, 2007). 

The atmospheric  CO2 is  dissolved in seawater,  reacts  and changes its 

chemical proprieties (Zeebe & Wolf-Gladrow, 2001). It is convolved in a complex 

reaction  of  balance  between  dissolved  CO2,  bicarbonate  and  carbonate  ions. 

Ocean acidification refers to a reduction in the pH of the ocean over an extended 

period, caused mainly by the uptake of anthropogenic CO2 from the atmosphere. 

Mean surface  ocean  pH expressed  on  the  total  hydrogen  ion  scale  (pHT)  has 

decreased from approximately 8.2 to 8.1 between pre-industrial  period and the 

1990s and may decrease by 0.3 – 0.4 unit (Caldeira & Wickett, 2003), reaching 

7.8 in 2100 (Gattuso & Lavigne, 2009).

These  changes  in  marine  chemistry  could  lead  to  changes  in  carbon 

production  and  consumption  (Riebesell  &  Tortell,  2011),  and,  therefore,  to 

changes  in  oxygen  production  and  consumption.  Net  community  production 

(NCP) is  defined as the balance between gross primary production (GPP) and 

community  respiration  (CR).  NCP  thus  describes  the  net  metabolism  of  the 

ecosystem. A positive NCP indicates that more organic carbon is produced than 

respired, so-called net autotrophy, while negative NCP indicates that respiration 

exceeds primary production, conducting to net heterotrophy.

The balance between photosynthetic carbon production and consumption 

of  organic  carbon in  the  ocean’s  surface  layer  is  important  to  understand the 

ocean’s role in the global cycle, so-called “microbial loop” (Azam  et al., 1983; 

Cho & Azam,  1988;  Azam & Malfatti,  2007).  Marine phytoplankton plays  an 

important role in the carbon cycle, being responsible for about half of the global 

primary  production  (Field  et  al., 1998).  A  large  portion  of  organic  carbon 

produced by photosynthesis is remineralized by respiration (del Giorgio & Duarte, 

2002). Heterotrophic prokaryotes (hereafter “bacteria”) can consume a significant 
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fraction of primary production in pelagic systems (Cole et al., 1988; Ducklow & 

Carlson, 1992). Mineral nutrients (e.g. N, P) can be a limiting factor of growth or 

organic carbon production by phytoplankton and bacteria.

Primary production is based on CO2 as the main substrate, and since the 

CO2-binding enzyme RuBisCO has a low affinity for its substrate (Badger et al., 

1998), an increase in seawater pCO2 was hypothesized to stimulate phytoplankton 

PP (Riebesell et al., 2000; Schippers et al., 2004; Rost et al., 2008). The effect of 

seawater carbonate chemistry on photosynthesis thereby depends strongly on the 

presence and characteristics of cellular  CO2-concentrating mechanisms (CCMs; 

Rost  et al., 2003; Giordano  et al., 2005). Phytoplankton species that are able to 

enhance their CO2 supply by CCMs may exhibit no or minimal sensitivity to CO2 

enrichment (Raven & Johnston, 1991; Rost  et al., 2003; Giordano  et al., 2005, 

Reinfelder, 2011).

The effects of increasing pCO2 on production and respiration of pelagic 

plankton have been studied on single-species in laboratory cultures and on semi-

natural  communities  in  field mesocosms.  Primary production measured  by  14C 

fixation or production of particulate organic carbon (POC) at elevated  pCO2 is 

enhanced (Hein & Sand-Jensen, 1997; Riebesell  et al., 2000; Zondervan  et al., 

2001;  Schippers  et  al.,  2004;  Leonardos  & Geider,  2005;  Egge  et  al., 2009; 

Borchard et al., 2011, Engel, 2002, Engel et al., 2012), decreased (Sciandra et al., 

2003), or shows no significant difference compared to the control (Tortell  et al., 

2002;  Delille  et  al., 2005;  Langer  et  al., 2006).   Measurement  of  primary 

production based on 14C fixation or POC production are relatively numerous but 

few studies have examined the metabolic  balance (i.e. NCP, CR, and GPP) of 

planktonic  communities  based  on  changes  of  dissolved  oxygen  (DO) 

concentration at different pCO2 levels. The oxygen-based NCP measurement has 

shown a significant decrease in NCP of Emiliania huxleyi at elevated  pCO2 in a 

N-limited chemostat culture (Sciandra  et al., 2003), and insignificant changes in 

NCP of semi-natural plankton community at different  pCO2 levels in mesocosm 

experiments (Delille et al., 2005; Egge et al., 2009, Tanaka et al., 2012). 

The objective of the present study was to investigate the effect of ocean 

acidification  on  the  balance  between  GPP  and  CR  (i.e.  NCP)  and  on  the 

particulate  organic  carbon  production  of  a  plankton  community  in  the 

Mediterranean  Sea.  In  summer  2012,  a  multidisciplinary  experiment  was 

conducted for about one month using free-floating mesocosms deployed at Cap de 
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la Revellata in Corsica (Calvi, France), as part of the MedSeA (Mediterranean Sea 

Acidification  in  a  changing  climate)  project.  A  series  of  chemical, 

biogeochemical, biological, and physiological parameters were measured during 

this  experiment.  We  have  analyzed  NCP,  CR,  and  GPP  based  on  changing 

concentrations of dissolved oxygen in incubation bottles, and POC concentrations 

together with other related chemical and biological parameters.
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                           2. MATERIALS  AND  METHODS

2.1. EXPERIMENTAL SETUP AND SAMPLING

Nine mesocosms (52 m3, 15 m deep) were deployed and moored in the bay on 

June 20th (Figure 1). Three mesocosms served as controls (pCO2 ~ 450 µatm), and 

in the six others various volumes of CO2-saturated seawater were added in order 

to reach and the following levels:   550, 650, 750, 850, 1000, 1250 µatm. The 

addition of CO2-saturated water has been performed gradually over 4 days.

Figure 1. The bay of Calvi, mesoscosms and depth-integrated water sampler.

During the experimental period (June 24th – July 15th), depth-integrated 

water  sampling  and  CTD  profiles  (0  -  10  m)  were  performed  daily  in  each 

mesocosm  using,  respectively,  three  Hydrobios  integrated  water  samplers 

(volume:  5  L)  and  a  Sea  Bird  Electronics  (SBE)  19plusV2  technology  with 

additional  sensors  for  fluorimetry,  pH and dissolved  oxygen.  Samples  for  the 

measurement of community metabolism were collected before sunrise (4:00am - 

5:30am)  every  second  day,  whereas  those  dedicated  to  carbonate  chemistry, 

nutrients  and  particulate  matter  measurements  were  collected  in  the  morning 

(8:30am – 10:30am) on a daily basis. In total, 10 samplings have been performed 

for community metabolism (June 24th – July 14th), while 21 samplings have been 

performed for carbonate chemistry, particulate matter and nutrients that ended on 

July 16th.

2.2. CARBONATE CHEMISTRY

2.2.1. DISSOLVED INORGANIC CARBON (DIC, CT) MEASUREMENTS

CT was  measured  daily  by  S.  Alliouane  and  F.  Gazeau  (Laboratoire 

d’Océanographie  de  Villefranche,  INSU-CNRS,  Villefranche  Sur  Mer  Cedex, 
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France) on the AIRICA (Automated Infra Red Inorganic Carbon Analyser) and 

were performed, at 25°C, on 1200  μL samples directly poisoned after sampling 

with HgCl2. For calibration, 1100, 1200 and 1300  μL samples of the batch 117 

(Certified Reference Material from A. Dickson. S = 33.503,  CT = 2009.99 μmol 

kg-1, Total alkalinity (AT) = 2239.18 μmol kg-1) were measured.

2.2.2. TOTAL ALKALINITY (AT) MEASUREMENTS

AT was measured in the experimental samples using a Metrohm Titrando titrator 

following  the  procedure  described  in  Dickson  et  al.,  2007  (SOP  3b).  This 

parameter was measured daily from 24th June to 27th June and every second day 

from 27th June to 16th July because of its low variability.  AT measurements were 

performed on triplicate 50 mL samples at 25°C. Samples have been filtered onto 

GF/F and poisoned directly after filtration with HgCl2.  The electrode from the 

Metrohm Titrando titrator was calibrated every second day on the total scale using 

TRIS buffer solutions with a salinity of 35.0 (provided by A. Dickson).

The carbonate chemistry was calculated with the R package “seacarb”, 

using  CT and  AT as well as temperature and salinity (based on integrated CTD 

profiles performed daily). In order to take into account the standard deviation of 

the  measured  parameters  during  the  calculation  of  the  carbonate  chemistry 

parameters, a Monte-Carlo procedure was applied.

2.3. NUTRIENTS

The nutrients  were  measured  daily by  L.  Michel  (Stareso  Research  Station, 

Calvi,  France) and S.  Gobert  (Laboratory of Oceanology,  University of Liège, 

Liège, Belgium). Samples were directly frozen at -28 °C (for nitrites + nitrates, 

ammonium and  phosphates)  or  kept  at  4  °C  (for  silicates).  No  filtration  was 

performed.  Nutrient  concentrations  were  determined  spectrophotometrically, 

using a SKALAR continuous flow automated analyzer, following the methods of 

Strickland & Parson (1972) and Grasshoff et al. (1999), modified for oligotrophic 

seawater.  Calibrations  were performed before each analysis  session.  Analytical 

accuracy of data, checked using MOOS-2 certified reference material and internal 

blanks of nutrient exhausted seawater is typically between 0.02 and 0.05 μM.
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2.4. CARBON AND NITROGEN PARTICULATE ANALYSIS

Two subsamples of about 2 L each were filtered on 25 mm glass fiber filters 

(Whatman GF/F) precombusted at 450 °C for 4 h. The filters were stored at -20 

°C. The filters were folded and inserted in a tin capsula and analysed in CHNS-O. 

The filter for particulate organic carbon (POC) analysis was previously treated 

with the addition of HCl 1 N to remove the carbonate and then dried at 60 °C for 

about 1 h (Lorrain et al., 2003).

The  chemical  elements  were  measured  using  an  elemental  analyser 

CHNO-S Costech mod. ECS 4010 by a high temperature oxidation at 980 °C, 

according  to  the  method  developed  by Pella  and  Colombo  (1973)  and  Sharp 

(1974). The sample and the capsule react with oxygen reaching temperatures of 

1700-1800 °C. The combustion products pass through an oxidation column filled 

with Cr2O3 and a reduction column filled with copper wires in order to transform 

the carbon into CO2, the hydrogen into H2O and the nitrogen into molecular N2. 

The water is absorbed on an anhydrous magnesium perchlorate trap.

The  carrier  gas,  helium  (He),  brings  the  CO2 and  N2 to  a  gas 

chromatographic separation column and to a TCD detector (Thermal Conductivity 

Detector). The TCD generates a signal, which is proportional to the amount of 

element in the sample. Known amounts of standard acetanilide (C8H9NO – Carlo 

Erba; Assay ≥ 99.5 %) were used to calibrate the instrument. The C and N sample 

concentrations are in µg C L-1 and µg N L-1 (ratio between the C or N amount 

resulting from the analysis and the filtered sea water volume after substracting the 

filter blanks).

2.5.  NET  COMMUNITY  PRODUCTION,  COMMUNITY 

RESPIRATION AND GROSS COMMUNITY PRODUCTION

After collection, water samples from each mesocosm were brought back to the 

shore and distributed into 15 biological oxygen demand (BOD) bottles (60 mL) by 

overflowing by 2-3 times the bottle volume. Five bottles were immediately fixed 

(T0)  with  Winkler  reagents,  as  described by  Knap et  al.  (1996).  The other  10 

bottles were dedicated to the determination of net community production (NCP) 

and to community respiration (CR). Prior to filling, BOD bottles were washed 

with 5% HCl and rinsed thoroughly with Milli-Q water. 
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For each mesocosm, BOD bottles (x5) for NCP were incubated in situ at 

5 m depth for 24 h at a mooring site located close to the mesocosms.  BOD bottles 

used for the determination of CR (x5 for each mesocosm) were incubated in a 

laboratory incubator for 30 h,  in which temperature was adjusted to the mean 

water temperature in the top 10 m on the day prior to sampling (21 - 24°C). Upon 

completion of the incubation,  the bottles were immediately fixed with Winkler 

reagents.

DO concentrations were determined with an automated Winkler titration 

method  using  a  potentiometric  end-point  detection  (Titrando888,  Metrohm). 

Reagents  and standardizations  were  similar  to  those  described by Knap  et  al. 

(1996). Rates of NCP and CR were determined by linear regression of DO against 

time (slope ± standard error: µmol O2 L-1  d-1). Gross primary production (GPP) 

was calculated as the difference between NCP and CR. The combined uncertainty 

of GPP (SEGPP) was calculated using the standard error of NCP (SENCP) and CR 

(SECR).

€  

SEGPP = (SENCP )2 + (SECR )2

The cumulative values of NCP, GPP and CR were calculated from the sum of 

every second day rates, in all mesocosms, during the whole experimental period. Every 

single values was multiplied by two, because of every second day sampling, but only the 

last values (14th July) was multiplied by four, because  of a no-sampling day (12th July).

2.6. STATISTICAL ANALYSIS

In order to identify, for the various parameters, differences between the  pCO2 

treatments, absolute deviations (AD(xi)) were calculated by subtracting from each 

observation (i.e. each mesocosm, Xi) the arithmetic mean of all observations ( ) 

at a specific time-point (t).

                 

Mean deviations (MD) were calculated for each mesocosm according to:

                                

With N being the number of observations and expressed as a relative 

value  (%),  according  to  Engel  et  al. (2012).  Significance  of  the  relationships 

between the mean deviations and average pCO2 levels were tested using a Student 

t-test. Differences in data were considered significant for p < 0.05.
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                                                                 3. RESULTS

3.1. CARBONATE CHEMISTRY

All the parameters of the carbonate chemistry are presented in Table 1 (average 

± SD during the course of the experiment) and in Figure 2. 

Table  1.  Parameters  of  carbonate  chemistry,  temperature  and  salinity.  Average  and 

standard deviation (between brackets is reported).

Mesocosm Targeted 
pCO2

Observed 
pCO2

T S pHT AT CT Ωa Ωc

μatm μatm °C µmol kg-1 µmol kg-1

OUT 450 434 (2.65) 23.56 38.06 8.04 (0.002) 2537 (2.28) 2223 (1.02) 3.43 (0.02) 5.24 (0.02)
C1 450 429 (2.05) 23.63 38.04 8.05 (0.002) 2543 (1.56) 2225 (1.12) 3.47 (0.01) 5.30 (0.02)
C2 450 427 (1.98) 23.61 38.06 8.05 (0.002) 2545 (1.52) 2225 (0.99) 3.49 (0.01) 5.33 (0.02)
C3 450 429 (1.68) 23.63 38.03 8.05 (0.001) 2541 (1.09) 2223 (1.02) 3.47 (0.01) 5.30 (0.01)
P1 550 510 (2.24) 23.62 38.06 7.99 (0.002) 2544 (1.28) 2263 (1.11) 3.10 (0.01) 4.74 (0.02)
P2 650 589 (2.34) 23.63 38.07 7.94 (0.002) 2545 (0.83) 2294 (1.15) 2.81 (0.01) 4.30 (0.01)
P3 750 664 (3.12) 23.62 38.05 7.89 (0.002) 2542 (1.04) 2316 (1.20) 2.58 (0.01) 3.94 (0.01)
P4 850 751 (3.78) 23.63 38.06 7.84 (0.002) 2544 (1.15) 2341 (1.13) 2.37 (0.01) 3.61 (0.01)
P5 1000 837 (4.39) 23.63 38.04 7.81 (0.002) 2543 (1.23) 2359 (1.07) 2.20 (0.01) 3.36 (0.02)
P6 1250 1008 (6.39) 23.63 38.06 7.74 (0.003) 2544 (1.47) 2393 (1.09) 1.91 (0.01) 2.92 (0.02)

The starting  pCO2 values of perturbation mesoscosms (data not shown) 

were very close to the targeted values (see 2.1 section). pH and pCO2 conditions 

in  the  control  mesocosms  were  similar  to  those  of  the  outside  environment, 

following the same variations, throughout the whole experimental period (Figure 

1).  AT was lower in the outside environment  from July 4th to July 12th due to 

atmospheric events that mixed the water column.  AT increased gradually in all 

mesocoms, during the experimental period as a consequence of the water body 

isolation and subsequent evaporation. 

Reached  the  targeted  values,  the  pCO2 decreased  gradually  in  all 

“perturbed” mesocosms but more importantly in the high-CO2 mesocosms (P4, 

P5 and P6), during the experimental period as a consequence of CO2 exchange 

between the water column and the atmosphere.  Similarly,  pHT levels increased 

gradually in all “perturbed” mesocosms during the experimental period. CTD-pH 

profiles in the water column (data not shown) revealed that this parameter was 

perfectly vertically homogeneous during the whole experimental period. 
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Figure 2. Trends of integrated pHT,  total alkalinity and  pCO2 values in all mesocosms (3 

controls and 6 “low-pH” levels) as well as in the bay of Calvi (OUT) during the experimental  

period.
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3.2. TEMPERATURE AND SALINITY

Mean temperature and salinity (± SD) are presented in Table 1. The variations 

in temperature were mainly related to weather conditions. Cyclical atmospheric 

events both enhanced mixing and convection processes, that homogenize the 

hydrological properties, and promoted calm and smooth conditions enhancing 

stratification  (data  not  shown).  Shifts  between  these  two  states  were 

experienced, with three mixing events (June 22nd – 26th, July 3rd – 4th; July 11th 

– 16th) resetting stratified conditions. Water column integrated values showed 

that the heat content continuously increased until the last mixing event for all 

mesocosms and closely followed the outside dynamics  (Figure 3.a). 

Figure 3. Water column integrated temperature (a) and salinity (b) evolutions during the 

course of the experiment in all nine mesocosms and in the bay of Calvi.

The variations in salinity in the mesocosms were less clearly related to 

outside  conditions  as  the  water  masses  were  isolated  from the  surrounding 

environment.  Salinity  remained  homogeneous  in  the  water  column  in  all 
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mesocosms (data not shown) and water-column integrated values are shown in 

Figure  3.b.  While  the  variations  in  salinity  outside  the  mesocosms  were 

depending on circulation changes in the bay of Calvi (OUT), salinity increased 

during the course of the experiment in all mesocosms, with an accentuation at 

the end of the experiment. This can be explained by the presence of the cover 

topping mesocosms that artificially reduce sensible heat fluxes variations by 

decreasing temperature gradient and wind stress at air-sea interface. It has to be 

stressed that the dispersion in between mesocosms significantly increased at 

the end of the experiment. This can be due to external effects of dilution with 

respect to the wind burst of the last week. 

3.3.  FLUORESCENCE  OF  Chl  a,  NUTRIENTS  AND 

OXYGEN CONCENTRATION

The water column integrated fluorescence signals in all nine mesocosms are 

shown in Figure 4.a. 

Figure 4. Integrated fluorescence Chl  a (a) and oxygen saturation (b) evolutions during 

the course of the experiment in all nine mesocosms and in the bay of Calvi.
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Very low chlorophyll a concentrations were observed with a decrease 

from 0.1 to 0.05 μg L-1 at the beginning of the experiment, and a peak up to 0.1 

μg L-1 during the second mixing event  (July 3rd – 4th)  that  followed a long 

stratification period. The deviations of chlorophyll  a concentrations from the 

mean showed a not statistically significant relationship with pCO2 (F-test, P > 

0.05). These low values of fluorescence Chla can be explained by the presence 

of very low concentrations of nutrients, usually below the detection limits, at 

the exception of Silicates (NO3 ≤ 0.1 µmol L-1; NH4
+ < 0.5 µmol L-1; PO4 < 

0.07 µmol L-1; Si < 2 µmol L-1). Silicate concentrations showed a decline in all 

mesocosms from the beginning to the end of the experiment (Figure 5). The 

deviations  from the  mean  showed a  not  statistically  significant  relationship 

with pCO2 effect (F-test, P > 0.05).

Figure 5. Integrated silicate concentrations during the course of the experiment in all nine 

mesocosms and in the bay of Calvi.

The oxygen saturation (expressed as percentage of saturation) is shown 

in Figure 3.b. It was relatively stable in the first half of the experiment (until 30th 

June) in all mesocosms with values below to 105 % of saturation. From the 1st 

July the oxygen saturation decreased gradually reaching values below to 100 % of 

saturation  in  all  mesocosms.  Similar  conditions  were  observed  to  the  outside 

environment.  CTD-oxygen  saturation  profiles  in  the  water  column  (data  not 

shown) revealed that this parameter was perfectly vertically homogeneous during 

the whole experimental period. 
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3.4. PARTICULATE ORGANIC CARBON

POC values did not show a clear trend, ranging between ~3.5 µmol L-1 and ~4.5 

µmol L-1 (Figure 6), with lower values at the beginning of the experiment and 

higher values on June 29th and 30th. POC concentrations outside the mesocosms 

(OUT) were  generally  higher  than inside  the mesocosms,  ranging between ~5 

µmol L-1 and ~8 µmol L-1. The deviations of POC concentrations from the mean 

showed a not statistically significant relationship with pCO2 (F-test, P > 0.05).

Figure 6. Integrated particulate organic carbon (POC) concentrations during the course of 

the experiment in all nine mesocosms and in the bay of Calvi.
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3.5. COMMUNITY METABOLISM

3.5.1. NCP, CR AND GPP RATES

NCP rates in all nine mesocosms are shown on Figure 7 and were all the time 

relatively close to 0, ranging between -2.7 ± 0.3 µmol O2 L-1 d-1 and 2.9 ± 0.4 

µmol O2 L-1 d-1. 

Figure  7.  Metabolic  rates  during  the  whole  experiment:  (a)  net  community  production 

(NCP), (b) community respiration (CR), and (c) gross primary production (GPP).  All rates 

are expressed in µmol O2 L-1 d-1 (± SE).
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At  the  start  of  the  experiment,  the  water  column  was  heterotrophic 

(NCP < 0) in all mesocosms. NCP rates generally increased until July 4 th when 

almost all mesocosms were net autotrophic at the exception of P4 and C3, and 

then  oscillated  around the  metabolic  equilibrium (NCP = 0),  showing no real 

trend. CR rates varied between -3.6 ± 0.2 µmol O2 L-1 d-1 and +0.2 ± 0.4 µmol O2 

L-1 d-1. On several occasions, CR rates were not significantly different from 0. CR 

was quite variable during the experiment with a first phase showing very low rates 

(~ 0 to ~ -1 µmol O2 L-1 d-1), a peak for all mesocosms on July 4th and variations at 

intermediate levels until the end of the experiment, except for P1 and P2 which 

exhibited very low CR rates on the last incubation day. GPP varied between -0.7 ± 

1.1 µmol O2 L-1 d-1  and 5.5 ± 0.5 µmol O2 L-1 d-1. On seven occasions, negative 

rates have been calculated, however these rates were not significantly different 

from 0. GPP globally increased during the first half of the experiment to reach a 

peak in all mesocosms, except for P4 and C3. GPP oscillated thereafter between 1 

and 3 µmol O2 L-1 d-1 until the end of the experiment.

3.5.2. CUMULATIVE RATES

Cumulative rates for all mesocosms are shown in Figure 8. The cumulative NCP 

was negative for C2 (- 8.0 µmol O2 L-1), C3 (- 9.6 µmol O2 L-1) and P3 (- 8.25 

µmol O2   L-1). The highest cumulative NCP was measured for P5 (15.42 µmol O2 

L-1). Cumulative CR ranged between -40.3 µmol O2 L-1and -21 µmol O2 L-1. The 

highest cumulative GPP was measured in P5 (42 µmol O2 L-1) and the lowest in 

P3 (20.9 µmol O2 L-1). For all these processes, no significant relationship could be 

observed with pCO2 (F-test, P > 0.05).
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Figure 8. Cumulative values of all metabolic process during the experimentak period: (a) net  

community  production  (NCP),  (b)  community  respiration  (CR),  and  (c)  gross  primary 

production (GPP). 
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                                                         4. DISCUSSIONS

Dissolved CO2,  rather  than  the  much  more  abundant  bicarbonate  ion,  is  the 

substrate  used  during  the  “carbon  fixation”  step  of  photosynthesis,  perfomed 

through  the  enzymatic  activity  of  the  RubisCO  (ribulose-1,  5-bisphosphate 

carboxylase oxygenase). This enzyme has low affinity for CO2, though is higher 

than O2, achieving half saturation of carbon fixation at CO2 concentrations above 

those  present  in  seawater  (Badger  et  al., 1998).  Because  CO2 diffuses  readily 

through biological  membranes  and leaks  out  of  the  cell  it  is  expected  that  an 

increase in the CO2 concentration of surface seawater will reduce CO2 leakage, 

lowering  the  cost  of  concentrating  CO2 (normally  against  a  concentration 

gradient).  This  can facilitate  photosynthesis,  leading to  an increase  in  primary 

production.  Stimulating  effects  of  elevated  CO2 on  photosynthesis  and carbon 

fixation have indeed been observed in a variety of phytoplankton taxa, such as 

diatoms (Burkhardt  et al.,  1999; Gervais & Riebesell,  2001; Wu  et al.,  2010), 

coccolithophores (Barcelos e Ramos et al., 2010; De Bodt et al., 2010; Muller et  

al., 2010; Rickaby  et al., 2010), cyanobacteria (Levitan  et al., 2007; Fu  et al., 

2008; Kranz et al., 2009) and dinoflagellates (Burkhardt et al., 2009; Rost et al., 

2006).

The  extent  to  which  phytoplankton  may  respond  to  increased  CO2 / 

decreased pH depends also on the physiological mechanisms of inorganic carbon 

uptake  and  intracellular  assimilation,  such  as  cellular  CO2-concentrating 

mechanisms  (CCMs;  Rost  et  al., 2003;  Giordano  et  al., 2005).  Species  with 

effective CCMs are less sensitive to increased CO2 levels than those with less 

efficient CCMs (Burkhardt  et al., 2001; Rost  et al., 2003). Because of energetic 

costs of CCMs, light and nutrients may affect how CO2 regulates photosynthesis 

in marine phytoplankton and, as a result,  the species composition,  timing,  and 

duration of phytoplankton blooms. The interactions of CO2, nutrients, and light 

may also affect the geochemical cycles of elements in the sea because the C, N, 

and P contents and PIC:POC ratios of biogenic particles are modulated by CO2-

driven  changes  in  cell  physiology  and  phytoplankton  species  composition 

(Reinfelder, 2011).

Ocean acidification has direct or indirect effects both on autotrophic and 

heterotrophic organisms, influencing their processes, such as respectively primary 
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and secondary production. Changes in pCO2 can lead to significant changes in the 

community  structure of  free-living  bacteria,  which  were  tightly  correlated  to 

phytoplankton  dynamics (Allgaier  et al., 2008).  During the Bergen mesocosm 

experiments (PeECE project), the apparent increase in DOC production did not 

stimulate bacterial secondary production due to N and P limitation as reported by 

Tanaka  et  al. (2008).  As  a  matter  of  fact,  TEP  (transparent  exopolymeric 

particles) production, DOC exudation and ensuing enhanced sedimentation must 

be  high  to  stimulate  secondary  production.   The  steady  increase  in  dissolved 

organic  material  (DOC,  DON,  DOP)  was  not  significantly  different  between 

mesocosms with different pCO2 values (Schulz et al., 2008). The free-living and 

attached  bacteria  activities  were negatively  correlated.  This  condition  explains 

that increasing concentrations of DOC throughout the bloom do not necessarily 

stimulate  bacteria  secondary  production.  As  indicated  by  Tanaka  and 

collaborators, after the peak of the phytoplankton bloom the released labile DOC 

may have been rich in carbon such as glucose whereas P and N were depleted.  

This suggests that there is a slight but rather indirect effect of changes in 

pCO2 on bacterial  activities  and community structure  that  is  mainly related  to 

phytoplankton carbon consumption,  DOC exudation, as well as TEP formation 

and subsequent sedimentation. During the Svalbard experiment (EPOCA project), 

DOC production was significantly higher in CO2 enriched mesocosms suggesting 

that CO2 had a direct influence on DOC production. DOC concentrations inside 

the  mesocosms  increased  more  in  high-CO2 mesocosms  (Engel  et  al.,  2012), 

stimulating the activities of heterotrophic microorganism.

In contrast,  in another mesocosm experiment,  no significant effects of 

ocean  acidification  were  found  on  the  concentrations  of  chromophoric  DOM 

(cDOM) and DOC (Engel et al., 2004; Grossart et al., 2006; Schulz et al., 2008). 

In on-board experiments under increased pCO2, the production of TEP increased 

as  a  function  of  CO2 uptake  (Engel,  2002).  In  a  mesocosm experiment,  TEP 

production was significantly higher in the high pCO2 levels (~710 μatm) than in 

lower pCO2 treatments (Engel et al., 2004). This indicates a possible direct effect 

of  pCO2 on  polysaccharide  exudation.  The  increasing  DIC  levels  should  not 

increase  the  particulate  organic  carbon  (POC)  concentrations,  because  of  an 

increased TEP production, which stimulated particle aggregation and accelerated 

sedimentation as previously observed by Logan et al. (1995) and Engel (2000). 

An  increased  TEP  aggregation  often  results  in  higher  abundances  of 
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bacterial production by attracting these cells to the microbial hot spots (Simon et  

al., 2002). Therefore, increased TEP aggregation could result in higher bacterial 

abundance and production (Weinbauer et al., 2011).

It has  been  recognized  that  heterotrophic  bacteria  can  be  strong 

competitors  of  phytoplankton  for  inorganic  nutrients  (Thingstad  & 

Rassoulzadegan,  1995),  and  bacterial  processes  appear  to  be P-limited  in  the 

oligotrophic  waters  of  the  Mediterranean  Sea. Highly  significant  positive 

relationships have been shown between primary and bacterial productions in both 

western  and  eastern  basins  of  Mediterranean  Sea, indicating  that  primary 

production is a source of DOC for bacterial production in both areas, although the 

nature of the relationships is significantly different between the two basins.

Almost  all  published  scientific  papers  were  elaborated  on  single 

organisms  and  less  than  5%  of  the  studies  have  been  performed  on  real 

communities or ecosystems (Gattuso & Hansson, 2011). Extrapolating knowledge 

from individual species studies and associating it to ecosystem is difficult because 

of  the  absence  of  competition  or  trophic  interactions  during  most  of  the 

experiments.  Several  experiments  have  been  conducted  on  benthic  systems  in 

natural  high  CO2 environments  (Hall-Spencer  et  al. 2008)  or  through 

oceanographic  transects  along  CO2 gradients  (Charalampopoulou  et  al., 2011) 

although  these  types  of  studies  are  limited  by  the  numerous  co-varying 

environmental factors with  pCO2 (Riebesell  et al., 2012). Mesocosms appear as 

the only scientific tool that allow maintaining a natural community under almost 

natural and self-sustaining conditions and testing the effects of a perturbation on 

its dynamics and functionning. 

In the past few years, several mesocosm studies focusing on the effects of ocean 

acidification have been conducted. Three have been performed in the frame of the 

PeECE project  (Bergen,  Norway,  Pelagic  Ecosystem CO2 Enrichment  studies, 

2001 - 2005). Most of the results have been published in a special issue of the 

Biogeosciences  journal  (http://www.biogeosciences.net/special_issue38.html). 

The  results  obtained  during  the  European  Project  on  Ocean  Acidification 

(EPOCA)  project  in  Svalbard  (Kongsfjorden,  Norway)  in  2010  are  currently 

under  revision  in  a  special  issue  of  the  Biogeosciences  journal 

(http://www.biogeosciences-discuss.net/special_issue94.html). 

In Bergen and in Svalbard, respectively Egge et al. (2009) and Engel et  

al. (2012)  showed  an  increased  carbon  fixation  (using  the  14C  incorporation 
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technique) at high  pCO2 levels.  During the Bergen experiment, Riebesell  et al. 

(2007)  showed an  evident  enhanced  DIC drawdown at  high  pCO2 due  to  the 

increased  production  of  organic  matter. During  the  Svalbard  experiment, 

Silyakova et al. (2012) showed net autotrophy in the mesocosms under high CO2 

treatment,  while  mesocosms  with  intermediate  and  low  CO2 levels  were  net 

heterotrophic. In Bergen, using the same technique than in the present experiment 

(i.e. O2 dynamics),  Delille  et al. (2005) showed no changes in NCP related to 

pCO2  conditions. In a subsequent Bergen experiment, Egge et al. (2009) showed 

that NCP, CR and GPP were not dependant on pCO2 levels. Recently, in Svalbard, 

and in  contrast  to  the results  of  Silyakova  et  al. (2012),  Tanaka  et  al. (2012) 

showed insignificant responses of NCP with increasing  pCO2 during the whole 

experimental period. 

In the present experiment, no effect of increasing pCO2 was observed on 

any of  the  measured  metabolic  rates.  CR was relatively  stable  throughout  the 

experiment in all mesocosms, and NCP was most of the time close to zero. As a 

result,  the cumulative GPP did not vary with increasing  pCO2 level during the 

experiment. Furthermore, POC concentrations were not affected by acidification 

during  the  total  period  of  the  experiment.  Unfortunately,  DOC data  were  not 

available yet. These results suggest that elevated pCO2 does not influenced NCP 

and the amount of POC produced by the summer planktonic community in the 

Mediterranean Sea.

The absence of any effects of high pCO2 / low pH in our study could be 

explained  by  the  environmental  settings  (chemical  and  biological).  Indeed, 

chlorophyll and nutrients are necessary to sustain photosynthesis. Phytoplankton 

must  acquire,  from surface seawater,  inorganic carbon and nutrients,  including 

nitrogen, phosphorus and trace metals, such as iron for the formation of organic 

matter using energy from sunlight.  Nitrogen and phosphorus are used to make 

proteins,  nucleic  acids  and  other  fundamental  compounds.  Diatoms  need  also 

silicates in order to produce their tests. In certain circumstances, these nutrients 

can  be  limiting  factor  of  the  growth  and  production  of  organic  matter.  The 

consumption of silicates during the experiment suggests that phytoplankton was 

slowly growing, albeit with no accumulation of organic matter. The water used to 

fill  the mesocosms had very low concentrations of NO3,  PO4,  and chlorophyll, 

suggesting very oligotrophic conditions. This experiment was the first one to be 

conducted in these types of environment. The starting concentrations of nutrients 
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and Chla during the present experiment are summarized in Table 2 and compared 

to those during the previous mesocosm experiments. Note that in the PeECE and 

EPOCA studies,  the  mesocosms  were  even  further  enriched  with  nutrients  to 

produce artificial phytoplankton blooms. 

Table 2.  Summary of  nutrients  and Chl  a concentrations  at  the  starting  conditions in  3 

different mesocosm experiments (Riebesell  et al.,  2008, for PeECE; Schulz  et al., 2012, for 

EPOCA; present work, for MedSeA).  

Another explanation would be that phytoplanktonic species present in the 

mesocosms  had  very efficient  CCMs,  which  may have  limited  the  theoretical 

stimulating  effects  of  pCO2 on  photosynthesis.  Unfortunately,  at  the  time  of 

finalizing this thesis, results on the diversity of the planktonic community were 

not available. 

It has to be stressed that ocean acidification will not the only perturbation 

potentially impacting the ocean The Mediterranean Sea is a largely enclosed sea, 

with high temperature and salinity, showing consistent surface warming rates of 

0.026 - 0.033 °C year-1 driven by regional phenomena (Bensoussan et al., 2009). 

On  the  Catalan  coast  (Spain),  Coma  et  al.  (2009)  showed  enhanced 

stratification with a ca. 40% higher since 1974. This increase in temperature can 

lead to impacts on the Mediterranean Sea role in the global carbon cycle, through 

changes in solubility (CO2 solubility decreases with increasing temperature) and 

biological  carbon pumps.  Indeed, most of nutrient  supply to the surface ocean 

comes from the mixing and upwelling of cold, nutrient - rich water from below. 

Warming of surface waters increases stratification, inhibits mixing and reduces 

the upward nutrient supply and therefore decreases productivity (Doney, 2006).  

The  effect  of  global  change  on  photosynthesis  has  focused  on  the 

importance of thermal stratification for light supply and nutrient availability with 

any  effects  from  direct  temperature  influence.  Indeed,  temperature  increase 

provokes an acceleration of physiological rates and the organic matter production 
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Bergen 

(PeECE)

Svalbard 

(EPOCA)

Calvi 

(MedSeA)

Chla (µg L-1) 2 ~ 0.5 < 0.10

Si (µmol L-1) > 3 > 0.5 < 2

PO4 (µmol L-1) ~ 0.7 > 1 < 0.07

NO3 (µmol L-1) ~ 15 ~ 0 < 0.1

NH4
+ (µmol L-1) NA > 0.5 < 0.5



of light-limited phytoplankton appears to be less responsive to temperature than 

heterotrophic  processes.  This  parameter  is  suspected  to  affect  the  magnitude, 

timing  and composition  of  phytoplanktonic  blooms.  However,  considering  the 

oligotrophic nature of Mediterranean Sea, seawater warming, as we have seen for 

acidification, will most likely not have significant effects on photosynthetic rates, 

and  we  expect  that  the  increase  of  the  water  column  stratification  will  even 

increase these nutrient-limiting conditions and decrease primary production rates, 

as suggested by Behrenfeld  et al.  (2006) for the world ocean. Nevertheless,  it 

seems clear that seawater warming will induce a shift in dominant species toward 

small-sized  cells,  an  effect  that  has  been  observed  also  in  several  ocean 

acidification studies (Legendre & Rivkin, 2002; Riebesell et al., 2009). All in all, 

this will certainly have impacts on the capacity of the surface water ecosystems to 

provide organic matter for higher trophic levels and the deep-sea, as well as its 

capacity to pump atmospheric CO2, therefore minimizing the role of the ocean as 

a sink for anthropogenic CO2.
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