
Alma Mater Studiorum · Università di Bologna

FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI
Corso di Laurea Triennale in Informatica

Design and Implementation of the
µMPS2 Educational Emulator

Tesi di Laurea in Progetto di Sistemi Virtuali

Relatore:
Prof. Renzo Davoli

Presentata da:
Tomislav Jonjic

Sessione II
Anno Accademico 2011-2012

Design and Implementation of the
µMPS2 Educational Emulator

Tomislav Jonjic

Abstract

An arguably critical part of any computer science curriculum consists of experi-
ence in designing non-trivial software systems. A first course in operating systems
provides adequate ground for this endeavor, as any reasonably featured operating
system is an intrinsically complex program. An operating system builds layers of ab-
straction upon the bare machine interface; understanding—or better yet devising—
such a system encourages one to acquire a solid command of software engineering
principles and heuristics. Modern machine architectures, it is argued in this the-
sis, are prohibitively complex and thus unsuitable as foundations for educational or
experimental proof-of-concept operating systems. A preferable alternative, then, is
provided by emulators of reasonably realistic but at the same time pedagogically
sound hardware platforms. This thesis builds upon one such system, namely µMPS
[1]—a tool primarily devised as an aid in operating systems and beginner-level com-
puter architecture university courses. µMPS features an accessible architecture, cen-
tered around a MIPS R3000 processor, that includes a rich set of easily programmable
devices.

The first major revision of µMPS is the result of the present thesis. Among
the prominent features of this new version, dubbed µMPS2 [2], are multiprocessor
support and a more sophisticated and easier to use user interface. The primary goal
of the architecture revision was to make the system reflect reasonably well modern
commodity hardware platforms, for which the clear trend over the past several years
has been a shift towards multi-core designs.

After an overview of the machine architecture and the emulator environment,
a relatively thorough exposition of the emulator internals is given. Considerable
care was taken to ensure that the code base is accessible enough to foster further
experimentation, for which possible directions are given in the last chapter.

Progettazione e implementazione
dell’emulatore didattico µMPS2

Tomislav Jonjic

Sommario

Una componente importante di qualsiasi curriculum universitario di informatica è
indubbiamente l’esperienza nella progettazione di sistemi software di non banale
completessità. Un corso introduttivo di sistemi operativi rappresenta un contesto
opportuno per questo scopo, visto che un sistema operativo è in generale un pro-
gramma intrinsecamente complesso. Un sistema operativo va visto come una se-
rie di livelli di astrazione, a partire da quello basato sull’interfaccia esposta dalla
macchina stessa. La comprensione, ed a maggior ragione la progettazione, di un tale
sistema non può prescindere da un’adeguata acquisizione di conoscenze dall’ambito
dell’ingengeria del software. Le piattaforme hardware moderne, si sostiene in questa
tesi, sono eccessivamente complesse, e di conseguenza non adatte come basi per sis-
temi operativi didattici oppure quelli altamente sperimentali. Un’alternativa migliore
consiste nell’impiego di emulatori di piattaforme hardware ragionevolmente realis-
tiche ma allo stesso tempo di concezione espressamente didattica. Questa tesi è
basata su un tale sistema, chiamato µMPS [1]—uno strumento ideato principalmente
per l’impiego sia nei corsi universitari di sistemi operativi che quelli introduttivi di
architettura degli elaboratori. µMPS vanta di un’archiettura pedagogicamente acces-
sibile, in base alla quale si trova un processore MIPS R3000 e che include un’ampia
serie di dispositivi facilmente programmabili.

Il primo considerevole aggiornamento di µMPS è il risultato della presente tesi.
Tra le caratteristiche notevoli della nuova versione, denominata µMPS2 [2], trovi-
amo il supporto multiprocessore e un’interfaccia utente più usabile e sofisticata della
precedente. L’obbiettivo principale della revisione dell’architettura è stato quello di
rispecchiare meglio con µMPS2 le comuni piattaforme hardware moderne, per le
quali si è vista una chiara e crescente tendenza verso le architetture multi-core.

Dopo una panoramica dell’architettura di µMPS2 e dell’interfaccia utente, segue
un’esposizione relativamente approfondita dell’implementazione dell’emulatore. Du-
rante lo sviluppo di questo si è posta particolare attenzione alla mantenibilità e sem-
plicità del codice, con lo scopo di incoraggiare futuri sviluppi; alcune direzioni pos-
sibili per questi sono date nell’ultimo capitolo.

Contents

1 Introduction 1
1.1 Background . 1
1.2 The µMPS Project . 2
1.3 Applications of µMPS . 3
1.4 Contributions of This Work . 4
1.5 Organization of this Document . 4

2 An Overview of the µMPS2 Architecture 7
2.1 Introduction . 7
2.2 Overall System Structure . 7
2.3 Processor Architecture . 8

2.3.1 µMPS2-Specific ISA Features . 8
2.4 Devices and Interrupt Management . 10

2.4.1 Interrupts in µMPS2 . 10
2.4.2 Interrupt Line Assignment and Source Resolution 11
2.4.3 Interrupt Management in Multiprocessor Systems 11

2.5 Higher Level Abstractions Through Firmware 11
2.5.1 Higher-Level Exception-Handling Interface 12
2.5.2 Higher-Level Virtual Memory Interface 12

2.6 Further References . 13

3 The µMPS2 Emulator: A User’s View 15
3.1 Introduction . 15
3.2 User Interface Organization . 15
3.3 Machine Configurations . 16

3.3.1 Installed Devices and Device Files 18
3.3.2 Byte Order in µMPS . 18

3.4 Machine Control and Monitoring . 19
3.4.1 Startup and Shutdown . 19
3.4.2 Execution Control . 19
3.4.3 Breakpoints and Suspects . 21
3.4.4 Examining Processor State . 22
3.4.5 Memory View . 23
3.4.6 Device Monitoring . 24

i

ii Contents

3.4.7 Terminals . 24
3.5 Programming for µMPS2 . 25

3.5.1 ROM Images . 25
3.5.2 The Toolchain . 26
3.5.3 Object File Formats . 27
3.5.4 Operating System Bootstrap . 27

3.6 Further References . 27

4 µMPS2 Emulator Internals 29
4.1 Design Principles and Overall Structure 29

4.1.1 Signals, Slots, and the Observer Pattern 30
4.1.2 Portability and the Choice of Implementation Language 30
4.1.3 Source Tree Structure . 31

4.2 The Emulation Core . 32
4.2.1 Machine Configurations and Machine Instances 33
4.2.2 Processor Emulation . 34
4.2.3 Device Emulation . 37
4.2.4 Virtual Time, Machine Cycles, and Event Management 38
4.2.5 Debugging Support . 39
4.2.6 High-Level View of the Emulation API 39

4.3 The User Interface Implementation . 40
4.3.1 The Qt Framework . 40
4.3.2 Models and Views . 40
4.3.3 Machine Execution . 41
4.3.4 Class and Module Overview . 44

4.4 µMPS2 Object File Support Tools . 46
4.4.1 ELF to .aout Conversion . 46

5 Conclusions 51
5.1 Suggestions for Further Experiments . 51

5.1.1 Detailed Simulation . 51
5.1.2 Emulator Scalability . 52
5.1.3 An Operating System for µMPS2 53

A µMPS2 Architecture Revision 55
A.1 Machine Control Registers . 55

A.1.1 Processor Power States . 56
A.1.2 Processor Initialization . 56
A.1.3 Powering Off the Machine . 57

A.2 New and Revised CP0 Registers . 57
A.2.1 PRID Register . 57
A.2.2 The On-CPU Interval Timer . 58
A.2.3 Status Register . 59
A.2.4 Backward Compatibility Notes 59

Contents iii

A.3 Multiprocessor Interrupt Control . 59
A.3.1 Interrupt Distribution . 59
A.3.2 CPU Interface Registers . 60
A.3.3 Inter-processor Interrupts (IPIs) 61

A.4 New Instructions . 63
A.4.1 Compare and Swap (CAS) . 63
A.4.2 Wait for Event (WAIT) . 64

A.5 BIOS Services . 64
A.6 Device Register Memory Map . 65

B Machine Configuration Format 67

List of Figures

3.1 The main window . 16
3.2 General machine configuration parameters 17
3.3 Device settings . 18
3.4 The main window’s processor tab pane 21
3.5 The breakpoint insertion dialog . 22
3.6 The processor window . 23
3.7 The main window’s memory tab . 24
3.8 Device status view . 25
3.9 The terminal window . 26

4.1 The MIPS five-stage pipeline and delayed branches 36
4.2 The model-view architecture of the µMPS2 emulator 42

A.1 Processor power states . 56
A.2 The Status CP0 register . 59
A.3 IRT entry format . 60
A.4 IRT register address map . 61
A.5 The TPR register . 61
A.6 The Outbox register . 62
A.7 The Inbox register . 62
A.8 Device register memory map . 65

v

List of Tables

A.1 Machine control registers address map 55
A.2 CP0 registers . 57
A.3 Interrupt line assignment in µMPS2 . 58
A.4 Interrupt controller processor interface register map 61

vii

Listings

4.1 A sample machine configuration. 33
4.2 A linker script for .aout executables. 48
B.1 A JSON Schema for the µMPS2 machine configuration format. 67

ix

Notational Conventions

Several notational and typographical conventions are employed throughout the text:

• A bold typewriter-like typeface is used for machine registers (including pro-
cessor registers and device registers) and register fields, as in Status;

• R.F denotes the field F of register R;

• Processor exception mnemonics are typeset in italic, as in AdES;

• A typewriter-like typeface is used for instructions, file names, identifiers, and
code fragments, as in jalr.

xi

Chapter 1

Introduction

1.1 Background

We begin this exposition with a brief account of the motivations behind the original
work we build upon in this thesis. Rather than for its own interest or value, we
choose to do so mainly because it will help elucidate many design choices described
later on in this document.

Most computer science curricula have for a long time included a course in op-
erating systems [3, 4]. This is rather fortunate, since many other areas of computer
science find application in operating systems and, conversely, many notions stud-
ied within operating systems research are likely to be useful in other subfields of
computer science. Operating system kernels of even moderate sophistication will
undoubtedly make use of a variety of well known algorithms and data structures.
An undergraduate course in operating systems also represents a very natural setting
for a first introduction to concurrency. Finally, the course offers an outstanding op-
portunity for the student to review the engineering aspects of computer science. An
operating system is an inherently complex computer program, whose design and im-
plementation ultimately depends on the student’s ability to apply sound techniques
of abstraction to manage an otherwise overwhelming complexity. By participating
in the design and implementation process, the student can acquire experience in
structuring large software systems in general.

For reasons we have outlined above, a course in operating systems should, rather
than adopting a purely descriptive approach, ideally include in its program the study
and possibly an implementation of a complete operating system. Such an approach
to teaching operating systems is by no means new, as evidenced by several influential
textbooks devised, at least in part, to support it. As notable examples, we mention
Lions’ book on the 6th edition UNIX system [5], Bach’s book on the internals of
UNIX System V Release 2 [6], and Tanenbaum’s book on MINIX [7]. Beside having
had considerable influence on future operating systems course curriculums, it is not
unreasonable to argue that the aforementioned works had an impact on the industry
as well. All of the mentioned books describe existing, complete, operating systems.
At the other extreme, the instructor may choose to assign the task of designing and

1

2 Chapter 1. Introduction

implementing the operating system to students (with proper guidance, of course).
While both approaches unquestionably have their own merits, the latter arguably
results in educationally more rewarding experiences [8, 9].

An instructor that chooses to assign the task of developing an operating system to
students is unavoidably posed with a problem: which machine architecture should
the course target? One obvious answer would be to simply use any variant of mod-
ern architectures currently in use—after all, shouldn’t one focus on technologies that
are relevant today and thus likely to remain so for the foreseeable future? Unfor-
tunately, modern hardware is overwhelmingly complex—coming to terms with the
quirks and complexities of today’s hardware would simply take a disproportionate
amount of time for a typical one-semester course. µMPS is an educational computer
system architecture and emulator that was designed specifically to be pedagogically
sound: it provides a streamlined version of most features typically found on mod-
ern computer systems. We argue in this thesis that µMPS is an ideal fit for the
above-mentioned use case.

1.2 The µMPS Project

The goal of the µMPS project, as was already noted, has been to develop a computer
system architecture and supporting software— that is, the “courseware”, of which
the machine emulator constitutes the most important part—especially tailored to
computer science education. This reflects in two often contrasting requirements: on
one hand, the architecture should be representative of real ones (that is, reasonably
realistic), and on the other hand it should be considerably simpler than those.

The original version of the architecture and accompanying courseware, called
MPS [10], were authored at the University of Bologna by Mauro Morsiani, under
the supervision of Renzo Davoli. The system was centered around a single MIPS
R3000 processor, a member of the MIPS architecture line, which was at the time al-
ready becoming well established in computer science education as a prime example
of an elegant, clean, instruction set architecture. The system specification also de-
tailed a rich set of peripheral devices and a system bus along with their supporting
controllers. Later revisions of the architecture and courseware, including the latest
µMPS2, remained identical in spirit to the original version. (We present a brief intro-
duction to the architecture in Chapter 2; for a detailed and authoritative description
we refer the reader to [11].)

µMPS [1] was a slight evolution of MPS, motivated by the experience and feed-
back from using MPS in undergraduate operating systems courses taught by Renzo
Davoli at the University of Bologna and Michael Goldweber at Xavier University. On
a hardware level, this version introduced a streamlined and more orthodox virtual
memory subsystem. Interestingly, the new virtual memory subsystem was imple-
mented almost entirely using ROM level abstractions and required only minor mod-
ifications to the processor architecture. On the emulator level, µMPS featured a more
novice-friendly graphical user interface.

1.3. Applications of µMPS 3

The µMPS architecture is, as of writing, in its second major revision, labeled
µMPS2, and implemented by the 2.x series of the emulator. Multiprocessor support
is the single most important feature of µMPS2. With this addition, µMPS remains
comparable in feature with the current generation of consumer-class computer sys-
tems.

1.3 Applications of µMPS

The original inspiration for the µMPS project, and perhaps still the driving motiva-
tion and most important use case, is the one we have already given above: to provide
a didactically sound hardware platform for use by educational—whether academic
or hobby—operating system projects. We see µMPS as ideally suited for this use case
because it represents an acceptable compromise between realism and simplicity. In-
deed, the current revision of the architecture does not deviate appreciably from that
of a contemporary workstation or small server class system. At the same time, the
various hardware subsystems in µMPS exclude the gratuitous complexity present
in virtually all real-world hardware that would unnecessarily hinder the learning
process.

µMPS can also be a valuable aid in a first introduction to MIPS assembly lan-
guage programming. This topic is often selected as a small but important part of
an introductory course in computer architecture, since it can help explicate many
aspects of the hardware/software interface. An assembly level MIPS simulator such
as SPIM [12] or MARS [13] is typically used to execute programs written in MIPS
assembly. Unlike µMPS or other emulators, these programs do not interpret actual
machine code; instead, they interpret MIPS assembly language programs directly.
Consequently, using µMPS requires slightly more effort compared to an assembly
simulator, since a development toolchain (an assembler and linker at minimum) is
needed to prepare programs for the machine. The features provided by µMPS, such
as its support for many peripheral devices or the emulator’s debugging features may
well be worth the additional effort.

Finally, we believe that µMPS provides a good basis for experimentation in com-
puter system emulation, especially in the area of educational applications. The pri-
mary reason for this is the relative simplicity of the µMPS system and emulator,
compared to prominent full system emulators, such as QEMU [14]. Since these em-
ulators are expected to efficiently execute real-world operating systems and realistic
workloads, they put first and foremost an emphasis on performance, at the cost of
code complexity. As such, these highly optimized systems are inevitably both less
suited for experimentation and less amenable to extensions. We give some possible
directions for future extensions in Chapter 5.

4 Chapter 1. Introduction

1.4 Contributions of This Work

Only several years ago, consumer desktop systems were virtually without exception
uniprocessor systems. Multiprocessor architectures were economically viable only
for server systems and, to a lesser extent, specialized high-performance worksta-
tions. In the meantime, however, the industry has has shifted focus to multiproces-
sor designs for high-end and commodity systems alike. This was primarily a result
of ever more diminishing returns from instruction-level parallelism and of power is-
sues. Multi-core machines are now ubiquitous on desktop or even mobile hardware
and this trend is most certainly going to continue. As a result, general purpose op-
erating systems designs—whether educational or not—that target only uniprocessor
systems are at the very least considered obsolete. The single processor design of
µMPS was in this regard a serious limitation.

This thesis resulted from the attempt to bring µMPS to the era of thread-level par-
allelism. µMPS2 includes relatively sophisticated multiprocessor support, modeled
after existing hardware but appreciably streamlined in comparison.

Extending the µMPS emulator to support the µMPS2 architecture created an op-
portunity to reconsider various design choices behind the emulator. An important
aspect—certainly the most visible to end users—in which the µMPS2 emulator dif-
fers from its predecessors is the user interface, which has been redesigned to better
fit modern user interface standards and the expectations of today’s users.

1.5 Organization of this Document

This chapter introduced µMPS, its scope, and its use. In the remainder of this work,
we present an overview of the µMPS2 architecture and emulator (referring the reader
to the official documentation for full details) as well as information on the emulator
internals.

Chapter 2 outlines the µMPS2 architecture. Although finer details of the archi-
tecture are not given (such as device controller programming information or details
on machine registers), it contains enough background material to allow the reader
unfamiliar with the architecture to follow later chapters. In addition, Appendix A
describes in detail the changes in the µMPS2 revision of the architecture.

Chapter 3 gives a user’s perspective of the µMPS2 emulator. It describes the most
important parts of the user interface and the means by which emulated machines can
be created and executed.

Chapter 4 dwells on the internals of the µMPS2 emulator. The material will
especially be of interest to the reader who is required to understand the emulator
code (that is, the prospective maintainer or contributor). Both the emulation back-
end and the front-end (user interface) components are described in fair detail.

Finally, in Chapter 5 we attempt to give an objective view on the overall success
of the µMPS project thus far. We also list possible directions for future work. In
particular, an ongoing experimental project is described that aims to mitigate the

1.5. Organization of this Document 5

multiplicative slowdown due to emulation of multiprocessor machines, by exploiting
thread-level parallelism at the host level (at the expense of deterministic execution).

Chapter 2

An Overview of the µMPS2
Architecture

2.1 Introduction

The µMPS hardware platform is, by design, considerably easier to program than
ones typically found in actual computer systems today. This design goal is reflected
both in the choice of the base instruction set architecture and (especially) the device
controller interfaces that comprise the system. In this chapter, we briefly describe
these design choices and give a short overview of the µMPS2 architecture, with
the intent to present just enough details to allow one to comfortably follow the
remainder of this work.

2.2 Overall System Structure

µMPS2 includes features commonly found in a modern server or workstation class
multiprocessor machine, albeit in simplified form. In a nutshell, the µMPS2 com-
puter system is composed of:

• Up to sixteen MIPS R3000-style processors (µMPS2-specific parts of the instruc-
tion set architecture are described in Section 2.3).

• Device controllers for five device types (terminals, disks, tape readers, printers,
and network adapters).

• Various support hardware, including a programmable multiprocessor interrupt
controller.

• A system bus connecting the above units. The bus controller integrates a sys-
tem clock and an interval timer. These devices are interfaced through a mem-
ory mapped register interface, which also includes registers that provide criti-
cal system information.

7

8 Chapter 2. An Overview of the µMPS2 Architecture

2.3 Processor Architecture

The µMPS2 processor architecture is based on the one implemented by MIPS Com-
puter System’s R2000 and R3000 models, the earliest members of the MIPS line of
processors. This architecture, labeled MIPS-I, grew out of the research project of the
same name at Stanford University, led by John L. Hennessy [15]. The key insight be-
hind the project was that an instruction set composed of relatively simple operations
was amenable to an efficient implementation using the technique of pipelining, the
first of many micro-architectural techniques that were used by subsequent designs
to exploit instruction level parallelism. The MIPS design was commercialized in 1986
by MIPS Computer Systems Inc., in the form of the R2000 processor.

The choice of instruction set architecture (ISA) was motivated by the MIPS archi-
tecture’s virtue of being both didactically sound and well supported by existing com-
pilers and tools. The MIPS-I instruction set is arguably the most elegant 32-bit ISA
among those server and workstation-class architectures that have seen widespread
adoption in the industry. The best evidence of this is its use in computer science
education; as just one concrete example, we mention Hennessy and Patterson’s in-
fluential introductory textbook on computer architecture [12].

2.3.1 µMPS2-Specific ISA Features

The instruction set implemented by the µMPS2 CPU is, from a user-level program-
ming perspective, a strict superset1 of the MIPS-I ISA, as implemented by the R2000
and R3000 processors. This is of fundamental importance for the µMPS project,
since this level of (backward) compatibility means that µMPS can be automatically
supported by existing MIPS compilers.

It is in the system control coprocessor (known as CP0 across MIPS architecture
revisions) inteface—relevant from a system programming perspective—that µMPS2
slightly departs from the R3000 processor. Such incompatibilities are irrelevant
for compiled code and most (if not all) higher-level software in general, since the
CPU control interfaces are never targeted by compiled code. Indeed, prior to the
MIPS32/64 revision of the MIPS architecture, the system control coprocessor’s in-
terface was implementation dependent; in this sense, the µMPS2 CPU is a strictly
conforming implementation of the MIPS-I ISA.

Memory Management Support

Like the R3000 family of processors, the µMPS2 processor integrates support for
a paged memory management scheme; the key hardware unit behind this sup-
port is the on-chip translation lookaside buffer (TLB), which in µMPS2 is of user-
configurable size. On all MIPS architectures, the TLB is entirely software-managed;

1µMPS2 does not include floating-point support, an optional part of the MIPS-I ISA defined in the
coprocessor 1 encoding space.

2.3. Processor Architecture 9

the notion of page table in particular is not defined by the hardware architecture at
all.

Program (or “virtual”) addresses in the R3000 and any later MIPS CPU are always
subject to a form of translation—a program address is never equal to the effective
physical address output by the CPU. µMPS2 introduces two modes of operation for
the processor’s memory management subsystem:

• a physical memory mode for which address translation via the TLB is not em-
ployed and program addresses correspond to physical ones in a straightfor-
ward manner;

• a virtual memory mode, in which address translation is used for all addresses
apart from those in the range reserved for memory mapped I/O and ROM
code.

As described in Section 2.5.2, the standard firmware supplied with µMPS2, build-
ing on the low-level virtual memory support, introduces a hybrid segmented-paged
scheme which is for most purposes more convenient from an operating system’s
programmer perspective.

Cache Control

Most architectural components of the R3000 used specifically for cache management
are not included in µMPS2. This is for instance the case with all the fields in the
R3000 CP0 Status registers that are used for cache control and diagnostics. From
a practical point of view, each µMPS2 processor can be thought of as fully cache-
coherent.

Integrated Interval Timer

Like recent MIPS processors, each µMPS2 processor includes an on-processor pro-
grammable interval timer. Readers familiar with the MIPS32/64 architecture revi-
sions should be wary that, while the timer performs the same function as the one
provided by the MIPS32/64 Count and Compare registers, it exposes a different
programming interface.

Instruction Set Extensions

In addition to features added via the implementation-specific CP0 registers, µMPS2
augments the core MIPS-I instruction set with some new instructions:

• The wait instruction, borrowed from newer MIPS ISA revisions, is used to
pause the CPU until an external event occurs. This instruction is analogous to
the HLT instruction in the x86 architecture, for example.

10 Chapter 2. An Overview of the µMPS2 Architecture

• The cas instruction is a version of the well known compare-and-set (or compare-
and-swap) atomic instruction, adopted by several contemporary architectures,
among which are SPARC v9 and x86-64.2

2.4 Devices and Interrupt Management

µMPS2 supports device controllers for five different types of peripheral devices:

• Disk devices
µMPS2 disk devices are classic DMA-capable hard disk drives of configurable
geometry.

• Tape devices
Tape drives in µMPS2 are read-only devices. Like disks, tape devices support
DMA.

• Network devices
µMPS2 supports DMA-capable Ethernet adapters.

• Printer devices
Printers in µMPS2 are text-only output peripherals, attached on a 8-bit parallel
interface.

• Terminal devices
These devices, used for text input and display, are a simplified version of the
classic serial text terminal. Terminal devices are physically divided into two
devices: a transmitter and a receiver.

Up to eight instances of each device type can be included in any µMPS2 machine,
each one supported by the corresponding device controller. Device controllers are
programmed via memory mapped hardware registers. The register-level interface is
to a large extent uniform across device types.

2.4.1 Interrupts in µMPS2

All device controllers in µMPS2 support an interrupt-driven programming model: a
device operation is requested by setting appropriate hardware registers; upon com-
pletion, an interrupt is generated and device registers are updated accordingly; the

2MIPS architectures levels starting from MIPS-II include a pair of instructions called load-linked and
store-conditional (LL/SC) instead of CAS for the purpose of building synchronization primitives. Em-
ulating LL/SC efficiently proves to be considerably more difficult, however. Since compatibility with
MIPS-II and later instruction sets was not a requirement for µMPS2, this was an important consid-
eration in the selection of an atomic read-modify-write primitive for µMPS2. As shown in [16], the
expressive power of compare-and-set matches that of LL/SC. Furthermore, CAS and LL/SC are uni-
versal primitives, which means, in simple terms, that they can be used to implement a non-blocking
implementation of any other atomic read-modify-write sequence. The same is not true of some other
well known atomic read-modify-write primitives, such as test-and-set or fetch-and-add.

2.5. Higher Level Abstractions Through Firmware 11

interrupt is acknowledged by issuing a new command to the device or by an explicit
acknowledge command. The hardware does not provide any support for interrupt
prioritization, but such schemes can be easily implemented in software.

2.4.2 Interrupt Line Assignment and Source Resolution

The various interrupt sources in µMPS2 are statically assigned to CPU interrupt lines
(the lines represented by the IP field of the Cause register). All interrupts originat-
ing from disk controllers, for example, are assigned to interrupt line 3. While slightly
inflexible, the advantage of this scheme is that it does not require configuration at
the hardware level nor complex probing mechanisms from the operating system.
Devices of the same class (i.e. devices sharing an interrupt line) are distinguished by
a device number.

Because multiple interrupt sources can in general be assigned to the same line, a
discovery mechanism is needed to determine which (if any) interrupts are pending
at any given moment. The interrupt controller’s memory mapped register interface
includes a data structure, called the interrupting devices bitmap, which at any time
indicates the interrupt state of all active sources. An analogous structure, called the
installed devices bitmap, indicates which of the interrupt sources assigned to devices
are active.

2.4.3 Interrupt Management in Multiprocessor Systems

The hardware parallelism of a multiprocessor system can be exploited by the operat-
ing system to improve interrupt servicing. Using multiple CPUs to service interrupts
can potentially lead both to reduced interrupt latency (the elapsed time between the
generation of the interrupt and the invocation of the respective handler routine) and
increased throughput.

µMPS2 allows for fine-grained control over the distribution of interrupts to avail-
able processors. The operating system can specify the manner in which interrupts
from individual sources are distributed to target CPUs by appropriately initializing
a structure called the interrupt routing table (IRT). This structure consists of a set of
memory mapped registers, each of which specifies interrupt routing parameters for
a single interrupt source (e.g. the second disk device).

2.5 Higher Level Abstractions Through Firmware

In order to function properly, a µMPS2 machine needs to be supplied with some
basic ROM code. In particular, two architecturally-defined exception entry points
(one for TLB related exceptions and another for all other exceptions) lie in the ROM
code region. The standard µMPS2 ROM code provides some exception processing
and TLB-handling services that are likely to be more convenient to use for most OS
authors than the plain hardware facilities.

12 Chapter 2. An Overview of the µMPS2 Architecture

The interfaces described in this section, unlike those covered earlier, are not
strictly part of the µMPS2 “architecture”; instead, they are higher level abstractions
devised to make µMPS2 more approachable by beginners. These interfaces are im-
plemented via the standard ROM code (i.e. the µMPS2 “firmware”) and their use is
entirely optional; indeed, it is reasonable to expect that some OS authors will want
to supply their own ROM code.

2.5.1 Higher-Level Exception-Handling Interface

The MIPS architecture provides minimal support for exception handling. After an
exception is triggered, only information that is strictly necessary to discover its cause
is placed in control coprocessor registers. In particular, the processor does not save
any registers to memory on an exception. Similarly, control is transferred to one of
the two predefined exception vectors, despite the variety of exception types defined
by the architecture (interrupts, TLB-related exceptions, system calls, program errors,
etc.).

The above is in stark contrast to the elaborate exception-handling support pro-
vided by architectures such as the x86. The µMPS2 ROM code in effect emulates
some of the exception-processing support offered by CISC-like architectures. Most
importantly, the ROM exception handler supports automatic saving and restoring
of whole processor states: on any exception, the CPU state is saved in a previously
agreed upon location for the type of exception in question; similarly, control is trans-
ferred to the OS by loading a CPU state from an OS-initialized location. (In the
µMPS2 documentation, these locations are referred to as the new and old processor
state areas.)

2.5.2 Higher-Level Virtual Memory Interface

The basic hardware support for virtual memory in the MIPS architecture is very
rudimentary. The hardware has no notion of a page table, and consequently the
burden of managing the TLB (and in particular that of TLB refill3) falls entirely to the
OS. This is very much different from the x86-like paging model, typically described
in textbooks on operating systems. Support for a rather traditional segmented-paged
scheme has been thus added to µMPS, and it consists of:

• definitions of page table and segment table formats;

• extended page table-related exception types.

Like the extended exception handling support described above, this abstraction is
supported by the standard execution ROM code. On (architecturally defined) TLB

3Once again, the delegation of the TLB refill mechanism to software is typical of RISC architectures,
and MIPS in particular. Since TLB refill exceptions are relatively frequent in a system running an
operating system that supports virtual memory, the hardware does offer some support in this case,
however. In all MIPS CPUs, TLB refill exceptions are for performance reasons given a separate entry
point, to avoid the cost of a dispatch to an exception handler subroutine.

2.6. Further References 13

refill exceptions, the ROM TLB exception handler is invoked. The task of this handler
is that of inserting (if possible at all) the missing translation entry in the TLB or, if
the entry cannot be found in the page table, “pass up” the exception to the OS.

2.6 Further References

The µMPS2 machine architecture that was outlined in this chapter is defined in [11].
The reader familiar with µMPS will find in Appendix A a description of all the
changes from the earlier version of the architecture.

The MIPS I instruction set architecture—on which µMPS and µMPS2 are based—
is detailed in [17], among other places.

Chapter 3

The µMPS2 Emulator: A User’s
View

3.1 Introduction

Using a hardware emulator, as opposed to a physical machine, for the task of de-
veloping a program for an unhosted environment (e.g. an operating system) comes
with enormous advantages. As an example, the tedious task of rebooting a physical
machine in order to reload a modified operating system reduces to a simple recom-
pilation of the program followed by a suitable “reload” command to the emulator.
Likewise, an emulator is usually a far more convenient debugging environment than
a physical machine. Debugging capabilities can either be supported by the emulator
itself, or by way of an interface to an external debugger.

This chapter describes the µMPS2 user interface environment and the means
which the µMPS2 emulator puts at programmers disposal for debugging guest code.
We also include basic information on the host side of the development environment—
that is, the process of preparing programs for execution under the emulator.

3.2 User Interface Organization

The machine monitoring and debugging features present in µMPS2 result in a large
amount of information at the presentation level. To avoid excessive clutter, the
µMPS2 user interface (UI) is arranged into several top-level windows:

• The main window, shown in figure 3.1, is the central application window in
µMPS2 and the only one visible by default. In its four tabbed sections, it dis-
plays machine status information and contains most of the UI elements related
to machine execution control, including debugger-related variables. We de-
scribe each tabbed section in more detail at appropriate points below.

• Information about each processor is shown in the aptly named processor win-
dow. Displayed data includes processor registers, translation lookahead buffer

15

16 Chapter 3. The µMPS2 Emulator: A User’s View

(TLB) entries, and a disassembly of the currently executed section of the pro-
gram.

• For each terminal device in µMPS2, there is a top-level terminal window that
acts as its front-end.

Figure 3.1: The main window. The central content is divided into four tabbed sec-
tions: overview, processors, memory, and device status.

Aside from the top-level windows, several transient windows (i.e. dialogs) are
used for such tasks as editing machine configurations and breakpoint insertion.

The µMPS2 user interface is fairly flexible and configurable. For instance, win-
dow layout (placement and dimension) is persisted across sessions (at least for desk-
top environments that support this feature). Likewise, within single windows several
elements—such as the presence and size of various sub-panes—can be customized.

3.3 Machine Configurations

In order to accomplish anything useful, the emulator must be provided with a ma-
chine configuration. A machine configuration consists of parameters which define
all modifiable aspects of the emulated hardware environment. We can group the
configuration parameters into the following categories:

• Basic hardware characteristics. These include the number of processors, their
respective characteristics, and the amount of installed RAM.

3.3. Machine Configurations 17

• Device information. These parameters allow the user to specify the set of in-
stalled peripheral devices.

• ROM images. Two ROM image files must be provided: the bootstrap ROM and
the execution ROM.

• Debugging parameters. These include, most importantly, the symbol table file.

• Bootstrap settings. Parameters pertaining the bootstrap process are specified
here.

Machine configuration files in µMPS2 use a JSON-based [18] syntax. The user is not
required to learn this syntax, however, since all configuration parameters can be set
using the graphical user interface. Figure 3.2 shows part of the machine configuration
dialog.

Figure 3.2: General machine configuration parameters.

At any given time, only a single machine may be loaded in an instance of the
emulator. This is, however, not a significant limitation, since multiple application
instances may naturally be launched, with each emulator instance running its own
virtual machine.

18 Chapter 3. The µMPS2 Emulator: A User’s View

3.3.1 Installed Devices and Device Files

Associated with every installed device in a µMPS2 machine is a regular file on the
host’s file system, called a device file. The precise role of the file depends on the type
of device it is associated with; for simple peripherals, such as terminals and printers,
it simply acts as log of the device’s input and output. For non-volatile memory—
that is, disks and tapes—device files act as a persistent backing store, thus allowing
devices to retain data even when not powered. Like basic machine parameters,
device settings can be edited using the machine configuration dialog (see figure 3.3).

Figure 3.3: Device settings.

3.3.2 Byte Order in µMPS

Various computer architectures differ, among other things, in the adopted byte order
scheme for native types (also commonly referred to as “endianness”). Endianness
can have, in particular, important performance implications for computer emulation.
If the host and emulated target endianness do not match, data needs to be converted
back and forth between the two formats. To avoid this overhead, the µMPS processor
always adopts the endianness of the host system.

Beside the emulator, endianness considerations are also of importance for the
µMPS object file tools. In this case, the effective endianness is determined on the

3.4. Machine Control and Monitoring 19

basis of the input file. Thus, for example, the output file produced by the ELF to
µMPS .aout conversion utility will use the same byte order as the (ELF) input object
file.

3.4 Machine Control and Monitoring

In many respects, the µMPS2 emulator, together with its user interface, is an en-
vironment that bears similarity to that of a typical user mode program debugger.
Mainstream debuggers provide an environment which grants the user fine-grained
control over the execution of a program, such as the ability to temporarily suspend
the execution in response to certain events (e.g. breakpoints, signals). A debugger
also allows easy inspection of the program’s state. In very much the same manner,
the µMPS2 emulator offers a similar level of control over the execution of a virtual
machine and allows inspection of the machine’s state. In the rest of this section, we
describe these mechanisms in fair detail.

3.4.1 Startup and Shutdown

Whenever the emulator is provided with a machine configuration, the corresponding
machine may or may not be in an initialized state (that is, “powered on”). When a
user command is issued to start the machine, µMPS2 validates the active machine
configuration and, if possible, starts machine emulation proper. By contrast, the
machine may be powered off either as a result of a user action, or as a result of an
action initiated by the guest code.1

3.4.2 Execution Control

In the µMPS2 emulator, as in any useful debugging environment, methods are pro-
vided to request the execution of the machine to temporarily stop at specific points
in the program or as a result of particular verified conditions. Once the machine has
been paused, it can be inspected and debugging related variables can be modified.
Execution can be resumed either by stepping through single machine instructions at
a time, or by allowing the emulator to continue normal execution indefinitely—that
is, until the next event of interest is verified.

The emulator can temporarily suspend execution of the guest when conditions
of certain kind are verified; we will refer to those as stop conditions. The following
stop conditions are supported by µMPS2:

• User Requested Stops. At any point during execution, the user can issue a stop
command.

• Breakpoints and Suspects. These are programmer-specified stop conditions whose
semantics match their direct equivalents in conventional debuggers.

1The emulator intercepts the hardware shutdown signal and halts the emulation loop.

20 Chapter 3. The µMPS2 Emulator: A User’s View

• CPU Exceptions. The emulator can also be instructed to stop on hardware ex-
ceptions from any emulated processor.

The various types of stop conditions can be globally enabled or disabled by the user,
either via a pull-down menu or via a convenient “stop mask” pane located within
the main window (refer to figure 3.1). In addition, breakpoints and suspects can be
toggled on an entry-by-entry basis.

Execution Model

We have thus far informally described the debugging features of the µMPS2 emu-
lator. To avoid possible confusion, we now proceed to describe in some detail the
underlying execution model. For the most part, this amounts to giving precise se-
mantics of the various execution states that can be associated with virtual processors
and the machine as a whole.

An active (i.e., powered on) machine can at any time be in one of two execution
states: running and stopped. A machine can be stopped either as a result of a user-
initiated action, or because an event is triggered (by the guest code) that verifies one
or more stop conditions.

A processor’s execution status denotes its operational condition, and its possible
values form a refinement of the processor’s power states (see Section A.1.1):

• Halted. This state directly corresponds to the homonymous CPU power state;
the execution state reads as halted if and only when the power state does.

• Running. The processor is shown to be in a running state when it is in the power
state of the same name and the machine’s execution has not been paused.

• Stopped. The status implies the machine’s execution has been suspended, and
the processor was previously in a running state (conversely, a stopped machine
implies that a processor status cannot read running). If the machine is paused
as a result of a stop condition that was triggered by executing an instruction on
the CPU in question, the relevant information pertaining the cause is included
in the status. Thus, a possible status entry may display, for instance

Stopped: Breakpoint(B3)

to indicate that the machine has been paused because a breakpoint (identified
by B3) had been reached.

• Idle. Like halted, this state also corresponds directly to the power state of the
same name.

The execution status for all processors is displayed in the processor list pane (see
figure 3.4), located in the upper half of the main window’s processors tab.

On any stop condition, the emulator suspends execution for the machine as a
whole; in other words, the stopped machine execution state implies that none of the

3.4. Machine Control and Monitoring 21

Figure 3.4: The main window’s processor tab pane.

processors are in the running state.2 As already noted above, multiple events may
simultaneously cause the emulator to pause the execution of the machine.

3.4.3 Breakpoints and Suspects

As noted above, µMPS2 allows the user to define stopping points within a guest
program. Readers will in all likelihood already be familiar with these notions from
previous experience with traditional debuggers. Because of possible terminological
friction, however, we nevertheless define the concepts precisely.

A breakpoint is a single, either physical or virtual, word-aligned address; the em-
ulator is able to suspend machine execution when an instruction is fetched from the
location pointed to by the address. Emulation is paused precisely before the instruc-
tion in question is executed.

Breakpoints can be set via the breakpoint insertion dialog (see figure 3.5) or the
code view (see Section 3.4.4). Each breakpoint can at any time be enabled or disabled,
a task performed via the breakpoint list pane. Additionally, inserted breakpoints can
be collectively disabled, using either a menu command or the convenient stop mask
pane.

A suspect, which is specified by a range of consecutive word-aligned addresses,

2 Some user-mode debuggers support execution modes in which a subset of threads comprising
a multithreaded program are allowed to execute while other threads are stopped. µMPS2 does not
support an analogous execution mode that would allow only a strict subset of CPUs to proceed with
execution. While this feature is arguably useful for debugging multithreaded user-mode programs, it
was dismissed as being overly unrealistic (and confusing) in our context.

22 Chapter 3. The µMPS2 Emulator: A User’s View

Figure 3.5: The breakpoint insertion dialog.

causes machine execution to be suspended on a read or write access to a memory
location in the suspect’s range. There are three types of suspects: read, write, and
read/write; each of these types has expected and obvious semantics (a read-only sus-
pect, for example, will cause the emulator to stop execution only on loads—but not
on stores—from the memory location in question). Like breakpoints, suspects can
be toggled collectively or on an entry-by-entry basis.

Suspects and breakpoints can be associated with an address space identifier
(ASID). This allows (simultaneous) debugging of code running with address trans-
lation disabled (i.e. the kernel) and code running with address translation enabled
(i.e. user mode processes).

3.4.4 Examining Processor State

The µMPS2 architecture supports machines with up to sixteen processors. It is often
desirable during the debugging process to examine the current state of one or more
processors. By “state”, of course, we intend all the architecturally visible state. Without
proper organization at the user interface level, the abundance of information could
easily become overwhelming. The solution adopted by µMPS2 is a multi-window
interface; each installed processor has an associated processor window, which can be
shown or hidden at the user’s preference. An example is shown in figure 3.6.

In addition to the standard menu and toolbar, the CPU window comprises several
elements, some of which are optional:

• The code view displays a code disassembly of the currently executing function.
For convenience, the user can add and remove breakpoints on the shown loca-
tions directly using the code view.

• The register view displays the value of general purpose registers, CP0 registers,
along with some non-architectural register-like data (such as the “program
counter”). The user is able to switch between hexadecimal, signed decimal,

3.4. Machine Control and Monitoring 23

Figure 3.6: The processor window. The code view—which forms the core and always-
visible part of the window—is shown in the upper half. Breakpoints are repre-
sented by suitable markers along the relative memory addresses; in the shown
example, a breakpoint is set at the procedure’s entry point. In the lower part, a
dockable CPU register view is present. The TLB display, another optional dockable
pane, is not present.

unsigned decimal, and binary representations of these values. Register values
can be modified by the user, and input is supported in each of the aforemen-
tioned representations.

• The TLB view displays the contents of the translation lookaside buffer (TLB).
As with CPU registers, TLB entries can be modified by the user.

3.4.5 Memory View

It is often desirable during a debugging session to inspect arbitrary memory con-
tents. µMPS2 allows the user to define multiple address intervals, called traced re-
gions, which can later be easily accessed in order to display the respective memory
contents. The user interface elements of this facility are located in the memory tab of
the application’s main window, as shown in figure 3.7. The memory tab also hosts
the list of memory suspect ranges.

µMPS2 currently supports two different display modes for traced data: a non-

24 Chapter 3. The µMPS2 Emulator: A User’s View

Figure 3.7: The main window’s memory tab. The tab hosts the list of memory suspect
ranges in the upper half, and the list and rendering of defined traced regions. A
hexadecimal dump of the selected memory region is shown.

editable ASCII mode and an interactive “hex dump” mode that supports in-place
editing of the memory contents. The former would typically be used for textual
data, and the latter in any other case.

3.4.6 Device Monitoring

The last tab pane in the main window displays device status information, as shown
in figure 3.8. Device information is organized into a tree, in which the top-level
branches represent device types, and the leaves the respective devices. Since the
various device types in µMPS2 provide a rather uniform memory-mapped register
interface, a common display format was possible for all devices.

3.4.7 Terminals

µMPS2 features a single human interface device—the terminal. The terminal window,
shown in figure 3.9, is the UI counterpart to terminal devices; in a sense, it is akin to
terminal emulator packages common on modern desktop systems (parenthetically
though, µMPS2 terminals do not share the complexity nor the feature set of real-
world text terminals, such as VT100).

3.5. Programming for µMPS2 25

Figure 3.8: Device status view. Devices are grouped by type (or, equivalently, by
interrupt line assignment) and each group can be expanded or collapsed according
to preferences.

3.5 Programming for µMPS2

As has been already stressed, the inherent suitability of µMPS as a target platform
for educational or experimental operating systems is a direct result of its streamlined
machine architecture. Furthermore, because of its choice of instruction set architec-
ture, it is readily supported by existing cross compilers. Thus, it can be claimed that
development for µMPS is not substantially different from that of any other (bare-
machine) platform, if only easier. There are a number of ways, however, in which
µMPS further simplifies this process for the beginner. In a nutshell, it achieves that by
including support for a simplified object file format, providing useful pre-built ROM
images with code that implements a beginner-friendly exception handling scheme,
and by supporting a much simplified boot process. This section is only meant to
give a brief overview of the development process; the documentation mentioned at
the end of the chapter covers the topic in detail.

3.5.1 ROM Images

The µMPS2 emulator requires the user to provide images for the bootstrap and exe-
cution ROM, which are expected to supply vital low-level code. The bootstrap and
execution ROM images are mapped to locations that coincide with the bootstrap
and exception vectors, respectively. At machine reset time, processor 0 begins its
instruction-cycle starting at location 0x1FC0.0000, which is contained in the ad-

26 Chapter 3. The µMPS2 Emulator: A User’s View

Figure 3.9: The terminal window. For convenience, optional device status informa-
tion can be shown at the bottom.

dress range on which the bootstrap ROM is mapped to. Likewise, whenever a hard-
ware exception is raised during normal system operation, control is transferred to
location 0x0000.0080. At this address, located in the execution ROM range, ex-
ception handling code is expected to be found.

Useful ROM images are included in the µMPS2 distribution that should suffice
for most uses. The execution ROM, in particular, implements the two-phase excep-
tion handling mechanism mentioned in chapter 2 and described in detail in [11].
Advanced users can, of course, fairly easily provide alternative implementations if
the need arises.

3.5.2 The Toolchain

It is hardly worth pointing out that users are expected to program for µMPS2 in
a high-level language. At this time, the most viable implementation language for
targeting µMPS2 is certainly C, with C++ perhaps being another plausible option.3

Being a conforming implementation of the MIPS-I ISA, µMPS2 is supported by un-
modified MIPS cross-development toolchains—that is, compilers along with the as-
sociated set of object file utilities. The toolchain that has been so far used by the
project maintainers exclusively, and has been subject to extensive testing, is the GNU
toolchain—formed by the GNU Compiler Collection and the GNU Binutils suite.

For completeness, we should also mention that it is conceivable that one may
wish to use a standard C library for µMPS development, either for the kernel it-
self or (more likely) for programs hosted under it. There are several lightweight C
standard library implementations that one could with some effort adopt for µMPS
development. One particularly popular choice on embedded systems in general is
Newlib [19], which only requires a relatively small amount of platform-specific code.

3Depending on personal preferences, some features of C++, such as syntactic support for single-
dispatch polymorphism and generic programming, may be tempting enough for some programmers
to select C++ as an implementation language for an operating systems kernel. On the downside, certain
features of the language require the programmer to provide special run-time support when used in an
unhosted environment. It is far from clear, then, whether the extra effort is offset by the benefits for
simple projects.

3.6. Further References 27

3.5.3 Object File Formats

Virtually all fairly recent versions of GNU cross-development toolchains for MIPS
systems use the ELF object file4 format natively. This format, while having many
virtues, requires in general somewhat complex run-time support (i.e. loaders). For
this reason, µMPS includes support for a greatly simplified format that comes in
two variants, called .aout and .core, based on the much older UNIX a.out format.
This format, while not as flexible as ELF, requires much simpler run-time support
and should suffice for most uses. On the other hand, the ELF format may well
be preferred for more ambitious projects due to its versatility (such as its ability to
embed arbitrary metadata in a structured manner). The use of ELF (or any other
format) is of course entirely possible, since the emulator is in no way linked to any
notion of object file format. Ready to use boot loading code that is included with
µMPS2 only supports the .core variant of the .aout format, however.

3.5.4 Operating System Bootstrap

In many cases, it is advisable to enable users to start experimenting with the µMPS2
system by writing simple programs without requiring them to dwell into object file
format details and boot loading code. There are two ways to achieve this in µMPS2.
One option is to use the pre-built bootstrap ROM module tapeboot.rom.umps,
which contains a simple boot loader; the program (e.g. operating system) is in this
case expected to be located on the first tape device.

Another extremely convenient bootstrap option is to take advantage of the emu-
lator’s ability to pre-load the executable into memory before machine startup. The
coreboot.rom.umps ROM module should be used in this case. In both cases the
program is expected to be in the .core format.

3.6 Further References

The official µMPS2 reference [11] contains a full description of the standard ROM
services, the specification of the µMPS object file formats, and programming tips. A
rather in-depth guide on some MIPS-specific aspects of the GNU toolchain, aimed
specifically at µMPS2 users, is [20].

4By the term object file, we refer in general to relocatable object files, executables, and shared
libraries.

Chapter 4

µMPS2 Emulator Internals

In this chapter we describe in reasonable detail the inner workings of the µMPS2
emulator. In most cases, the discussion is limited to key design choices and the
general structure of the software; the source itself remains the authoritative reference
for any finer detail.

4.1 Design Principles and Overall Structure

Before dwelling into any details about the emulator’s internals, we mention several
core design goals that had a pervasive impact on its code base. First and foremost,
the µMPS code base strives to be a convenient ground for experimentation and fur-
ther extensions or improvements. Simplicity, elegance, and ease of maintenance of
the resulting code, for instance, have often taken precedence over other qualities in
the selection of solution alternatives for a given problem. In particular, the primary
focus of the µMPS2 emulator is not uncompromising performance, as it is for emu-
lators such as QEMU—aimed at running real-world operating systems and realistic
workloads.

An important feature of the emulator is the complete independence of the core
emulation code (the back-end) from user interface (front-end) code; the communication
between the two takes place through a well-defined API. Thus, in spite of the fact that
the sole user interface supported at the time of writing is a fully-fledged graphical
one, it is entirely feasible that a command-line based interface may be supported in
the future, for example.

In light of what was said above, we can group the modules comprising the
µMPS2 system into several categories. First, the emulation engine consists of pro-
cessor emulation code, various device models, as well as machine management and
debugging support. A user interface is then provided via a series of modules that em-
ploy the API exposed by the emulation engine; it consists of a multitude of classes
which display machine state, as well as user interface counterparts to debugging-
related facilities. Last, we find modules belonging to auxiliary standalone programs,
such as the block device creation utility, or the µMPS .aout object file creation and

29

30 Chapter 4. µMPS2 Emulator Internals

inspection tools.

4.1.1 Signals, Slots, and the Observer Pattern

In the implementation of software systems of non-trivial complexity, there often
arises a need for certain entities comprising the program (the observers) to be notified
about particular events of interest related to another entity (the observable). What we
vaguely refer to as “entities” are typically class instances, and the “events of interest”
are changes in the object’s visible state; that, however, is certainly not a technical
requirement. Moreover, this dependency between components should preferably
be established without imposing a tight coupling between them. The archetypal
example of this is to be found in user interface toolkit libraries, where changes in
user interface elements are usually required to trigger an appropriate reaction from
parts of the program expressing some domain-specific logic.

What is desirable, then, is to have a consistent and idiomatic way of expressing
the propagation of change in a program.1 Since considerable infrastructure is needed
to implement this pattern in a satisfactory manner, it is preferable to employ one of
the many available libraries. While the terminology and metaphors vary across im-
plementations, all the different APIs are centered around the basic abstract notions of
signals and slots. Signals are representations of events that can be programmatically
emitted. Each signal can be bound to multiple slots—specially designated functions
or function-like objects that intercept the signal whenever it is emitted. Virtually all
library implementations provide two main benefits over hand-maintained code:

• Boilerplate code is reduced to a minimum; for example, the infrastructure
needed to maintain the list of observers for each given signal is provided by
the library.

• Automatic tracking of object lifetime is provided by the library, thus avoiding
the tedious task of manually unbinding signals from deallocated observers.

In µMPS2 two such implementations are used. The emulation back-end employs the
highly portable and lightweight libsigc++ [22] library. Within the front-end code,
the Qt framework’s own signal/slot facility is leveraged, for better integration with
other components of the framework.

4.1.2 Portability and the Choice of Implementation Language

The current µMPS2 project inherited its code base from µMPS, which in turn was—
implementation-wise—an incremental evolution of the original MPS system. For
MPS, C++ [23] had been chosen as the implementation language. It is arguable that
C++, especially at the time, offered a very sound compromise between performance
and high-level language features; since both of these requirements were (and still
are) of uttermost importance for a program such as a computer system emulator,

1This idea is at the core of a programming paradigm known as reactive programming [21].

4.1. Design Principles and Overall Structure 31

C++ was at the very least a justifiable choice. The µMPS2 project has retained C++
as the implementation language, and has gradually shifted from a pre-standard di-
alect to the C++03 standard and a slightly more liberal use of language facilities and
the standard library.2 The current versions of all widely used C++ compilers fully
support this standard. The core emulator code depends on a small number of ex-
ternal libraries—most notably, the Boost library—all of which are portable across all
major platforms.

In addition to the dependencies inherited from the emulation back-end, the re-
sulting application further depends on the Qt libraries, on which the user interface
in µMPS2 is built upon.3

Finally, we include a note on build automation, as it can be seen as a portability
consideration. For any project of considerable size or dependency requirements,
the use of a robust build automation system is likely to be vastly superior to more
primitive solutions, such as hand-written Makefiles and ad-hoc shell scripts. µMPS2
currently uses the GNU build system, most notably GNU Automake and Autoconf.
Despite some of its shortcomings—such as being almost inherently tied to Unix-like
systems—the GNU build system (commonly referred to as the “Autotools”) has so
far met the project’s requirements.

4.1.3 Source Tree Structure

In the rest of this chapter, various subsystems of the emulator are discussed. For
ease of reference, a description of the source tree layout is given below:

build-aux
Auxiliary files pertaining to the build system.

examples
Self-contained example programs for µMPS2.

m4
GNU M4 macros, another part of the build system infrastructure.

src/base
Library of common utility classes and functions.

src/frontends/qmps
GUI emulator frontend.

2The experience with the project has been, however, a first hand confirmation of the daunting
complexity of the C++ language. This is both due to single language components in isolation (such
as its complicated but nevertheless inflexible type system) and to their interoperability. The last is in
many situations likely to lead to corner cases that are poorly understood by programmers or cause
portability issues because of inconsistent support across different compilers. The programmer is thus
often forced to adopt an austere discipline in the selection of language constructs and library facilities.

3The µMPS 1.x series of the emulator used the Xforms user interface toolkit.

32 Chapter 4. µMPS2 Emulator Internals

src/frontends/qmps/data
Installed architecture-independent data files belonging to the front-end.

src/include
Installed µMPS2 headers.

src/support/bios
Assembly sources for the execution and bootstrap ROM images. For distribu-
tion packages, this directory also contains pre-built images.

src/support/crt
Start-up modules for .aout and .core executables.

src/support/ldscripts
Linker scripts for .aout and .core executables.

src/support/legacy
Various support files maintained for backward compatibility with older ver-
sions.

src/support/libumps
The libumps library.

src/umps
The emulator core.

As mentioned above, the GNU build system is currently being used to assist in
configuration, build, and packaging. The source tree follows the classic recursive
Automake setup for multi directory projects: in general, each directory in the project
tree contains an Automake input file named ‘Makefile.am’.

4.2 The Emulation Core

The µMPS2 emulator is a so called full system emulator: it emulates a complete
computer system, including processors, memory, devices, and controllers of vari-
ous types. We wish to describe here the emulator internals by grouping the code
base function-wise into components. What are, then, the main tasks associated with
executing a virtual machine? Very concisely, emulating a µMPS2 machine (the guest)
consists of:

1. Executing guest code on emulated processors;

2. Emulating various devices along with their controllers;

3. Various bookkeeping tasks, such as those performed by the event handling
subsystem.

4.2. The Emulation Core 33

The emulator’s object oriented design largely reflects the organization of the hard-
ware itself. Indeed, in most cases there is an immediate correspondence between a
system component and the relative class that models its operation:

• The Processor class models the µMPS2 variant of a MIPS-I (R2000/R3000)
processor.

• The SystemBus class implements the address decoding logic (i.e. mapping of
addresses to memory-mapped I/O registers and physical memory locations)
and the DMA support, in addition to maintaining a number of system registers.

• Each µMPS2 device type (along with its controller) is modeled by a correspond-
ing specialization of the abstract Device class.

• The programmable multiprocessor interrupt controller is implemented by the
InterruptController class.

Before we discuss any of the above in more detail, though, we look at how machine
configurations and running machine instances are represented within the emulator.

4.2.1 Machine Configurations and Machine Instances

The µMPS2 emulator allows the user to manage multiple virtual machines by asso-
ciating each machine with a so called machine configuration, which contain all user-
settable machine parameters (see section 3.3). Machine configurations in µMPS2 are
backed by files and use a JSON-based syntax. A sample machine configuration is
shown in Listing 4.1. The syntax was designed to be as self-documenting as pos-
sible; it is easy to see at first glance, for instance, that lines 2-4 specify processor
characteristics. For completeness, however, a full syntax is given in Appendix B.

Listing 4.1: A sample machine configuration.

1 {
2 "num-processors": 4,
3 "clock-rate": 1,
4 "tlb-size": 16,
5 "num-ram-frames": 256,
6 "bootstrap-rom": "/usr/local/share/umps2/coreboot.rom.umps",
7 "execution-rom": "/usr/local/share/umps2/exec.rom.umps",
8 "devices": {
9 "terminal0": {

10 "enabled": true,
11 "file": "term0.umps"
12 }
13 },
14 "symbol-table": {
15 "asid": 64,
16 "file": "kernel.stab.umps"
17 },

34 Chapter 4. µMPS2 Emulator Internals

18 "boot": {
19 "core-file": "kernel.core.umps",
20 "load-core-file": true
21 }
22 }

The emulator currently uses a custom JSON parsing and serializing module.4 Its
API consists of a parsing component (JsonParser) and a JSON type hierarchy, the
root being the class JsonNode.

Internally, machine configurations are not manipulated directly by operating on
the JSON structure; rather, an abstraction is provided by the MachineConfig class
and every other module of the emulator core and the user interface operates exclu-
sively on instances of this class. Besides providing a more natural C++ API, the
abstraction offers a more practical advantage: the implementation caches all fre-
quently accessed configuration fields—most importantly, those that are accessed on
a typical machine cycle—thus avoiding the need to retrieve them by navigating the
JSON hierarchy.

Once a valid machine configuration object is available, one may finally initialize
all the emulator-related structures. The top-level representation of an active µMPS2
virtual machine is an instance of the Machine class. For front-end code, this class
provides the emulation back-end’s primary interface; in particular, through its pub-
lic interface the front-end may request the execution of one or more machine cycles,
manage debugger-related variables, and access public virtual machine-related struc-
tures.

4.2.2 Processor Emulation

Processor emulation is undeniably the most critical part of any computer system
emulator. There are in general two contrasting approaches to processor emulation.
The first, considerably simpler approach, follows an interpreter model: the program
residing on the emulated machine is executed directly (usually without any form
of prior translation to an intermediate representation), by interpreting each instruc-
tion separately as it is encountered in the natural program flow. The obvious virtue
of this approach is implementational simplicity: conceptually, a processor emulator
of this type consists of a collection of instruction handlers and a top-level dispatch
mechanism, acting on the instruction’s opcode. It is, of course, unreasonable to ex-
pect that such a simple strategy would yield implementations fast enough to emulate
a processor of the same class as the host’s one with comparable speed. Nevertheless,
for certain applications, these emulators can perform more than adequately if imple-
mented properly. Popular emulators of older computer and video game console sys-
tems, for instance, use this kind of CPU emulation. A radically different approach to
processor emulation—as anticipated by the choice of terminology—involves dynamic
recompilation (also often referred to as dynamic binary translation) of the machine code

4base/json.{h,cc}

4.2. The Emulation Core 35

from the emulated architecture to the host’s instruction set. A form of this tech-
nique is used by QEMU [14], to name one popular example. While necessary in
many cases to achieve acceptable performance, this approach is considerably more
ambitious and complex implementation-wise.

It is important to note that, while being a conforming software implementation
of the MIPS-I instruction set, processor emulation in µMPS2 in no way mimics any
of its hardware implementations. In other words, unlike system simulators, µMPS2
does not incorporate any realistic cycle-accurate timing model. In particular, it does
not include a CPU pipeline, coherent cache, and similar models.

Each processor in µMPS2 is represented by an instance of the Processor class.
This class naturally encapsulates all of the processor architectural state, along with
some auxiliary information needed to properly support some of the MIPS archi-
tecture’s idiosyncrasies, on which we elaborate in some detail below. Instruction
emulation is performed in the “interpreter” style described above (see execInstr
and the auxiliary methods: execRegInstr, execBranchInstr, and similar).

Apart from single instruction handlers, the bulk of the remainder processor em-
ulation code concerns virtual address translation (that is, memory management unit
emulation), the CPU exception mechanism, and various other auxiliary operations.
Finally, the Processor class implements a number of public methods, which may
be roughly grouped as follows:

• Execution control: Included here are methods used to execute a processor cycle,
obtain the number of “idle” cycles (for a processor in the idle power state), and
skip a number of cycles.

• State querying and modification: All of the processor’s architectural state can be
inspected, including TLB entries. In addition, some related non-architectural
variables can be queried—notably, the “program counter”.5

Most of these quantities can also be modified via suitable mutator methods.
Explicit modification of processor state is supported only because its practical
utility to front-ends (or, rather, its users).

• Signal control: These methods provide a means for other system components to
signal a pending interrupt or some other form of exception to the processor.

Architecturally visible pipeline effects

In spite of the relative simplicity of both the MIPS-I architecture and the emulation
techniques employed in µMPS2, we find a number of subtle and non-intuitive aspects
of the resulting emulation code. These are due to implementation-induced artifacts

5The MIPS architecture does not define any means by which a value corresponding to the intuitive
notion of a program counter could be obtained. As with the case of delayed branches, this is due to
microarchitectural restrictions. Indeed, given the pipelined nature of most (if not all) MIPS implemen-
tations, it would be far from obvious how to assign a useful and precise semantics to such a value.

36 Chapter 4. µMPS2 Emulator Internals

in the architecture, the most famous cases being known in MIPS parlance as delayed
branches and load delays.

Figure 4.1 illustrates the classic R3000-style processor pipeline, with pipeline
stages being displayed for three different instructions; these are, in program order: a
branch instruction; the instruction at the location immediately following the branch
instruction; the instruction at the branch target. It is immediate to see from the dia-
gram that the branch target location, by being only computed during the pipeline’s
ALU stage, cannot possibly be made available to the fetch stage (IF) immediately af-
ter the branch instruction itself. (Indeed, the branch target address is made available
to the IF stage after a single cycle delay only because the datapath provides special
handling in this case via branch-target forwarding.) Moreover, by the time the target
does become available, the instruction immediately following the branch in mem-
ory will already have completed the early pipeline stages. The MIPS architecture
mandates that the instruction immediately following the branch be always executed
before the branch target instruction, thus freeing implementations from the need to
resort to pipeline stalls in this case. The location immediately following the branch
is known as the branch delay slot. To emulate this behavior properly, a three-element
“stack” of program counters must be maintained instead of a single one.6

IF RF ALU MEM WB

IF RF ALU MEM WB

IF RF ALU MEM WB

branch

branch delay

branch target

Figure 4.1: The MIPS five-stage pipeline and delayed branches. The classic R2000 style
five-stage pipeline is shown (IF: instruction fetch; RF: register file access; ALU:
arithmetic or logical operation; MEM: memory access; WB: register write back).
The dashed arrow represents branch target forwarding.

An entirely analogous situation occurs with load instructions. In this case, the
fetched memory value is not available to the instruction immediately following the
load—called the load delay slot. Again, rather than forcing implementations to resort
to appropriate interlocks, the architecture specification states that an attempt to use
the fetched value in the load delay slot results in undefined behavior.

6One rather delicate case occurs in the context of exception handling. When an exception is trig-
gered on a delay slot, the EPC register must contain the address of the branch instruction preceding it,
in order for it to retain its usual semantics—that is, the register containing the proper restart address. If
the program was instead restarted from the delay slot, the branch itself would never take place after
an exception in the delay slot.

4.2. The Emulation Core 37

4.2.3 Device Emulation

Each device in a µMPS2 machine has an associated device model—that is, an instance
of a suitable class which simulates the device’s architecture-specified behavior. Nat-
urally, one such class exists for every supported device type; for convenience, we
will refer to any of these classes as a device class.

Every (concrete) device class is a specialization of the abstract class Device. Its
(public) interface exposes means to read from and write to device registers, query a
device status and set its operational state. Subclasses do not add to this any public
interfaces of their own; hence Device represents the protocol devices models expose
to other subsystems. Device specific emulation code is, owing to the relative sim-
plicity of the hardware itself, rather straightforward and as such should not require
further comment here.

All device controllers in µMPS2 use exclusively memory-mapped registers. Given
the simplicity of the µMPS2 memory-mapped I/O space and the rather uniform for-
mat (e.g., equal size) of device registers, the mapping is performed entirely by the
address decoding logic within SystemBus. (Had the need for greater flexibility
arisen, a reasonable alternative design would be to support assignment of memory
addresses to a particular device’s registers at device initialization time.)

Interrupt Management

The sophisticated multiprocessor interrupt control mechanisms of µMPS2 (see Ap-
pendix A or [11]) are implemented by the InterruptController class. The im-
plementation handles all memory accesses to and from locations assigned to the
interrupt controller register space. The latter, we recall, consists of the interrupt rout-
ing table (IRT) and a set of processor-specific registers for each installed processor—
notably, the interrupting devices bitmap. Reads and writes to the controller’s registers
are handled, naturally enough, by the read and write methods, respectively.

To support the multiprocessor interrupt distribution scheme, distribution (rout-
ing) parameters are maintained for each interrupt source (e.g., a specific device), and
the totality of this parameters forms the IRT. These architecturally-exposed param-
eters alone are not sufficient for a correct implementation of interrupt distribution,
however—for a rather subtle reason. When an interrupt is delivered to a target pro-
cessor, the relative interrupt line is asserted, along with the respective entry in the in-
terrupting devices bitmap. The interrupt then remains pending until acknowledged.
The µMPS2 architecture, however, does not prohibit an interrupt to be acknowledged
(implicitly or explicitly) via a command initiated by another processor. Moreover, the
routing parameters for the interrupt source in question may legitimately be changed
in the interim period. It is therefore necessary to maintain information about the
target (if any) the last interrupt from the source was delivered to.

Along with interrupt routing, InterruptController contains the necessary
support for the controller’s processor interface registers. In particular, inter-processor
interrupts are managed entirely within this class.

38 Chapter 4. µMPS2 Emulator Internals

A complete interrupt life cycle, from the emulator’s point of view, consist of the
following steps:

1. Upon completion of an I/O operation, a device model issues an interrupt re-
quest by calling the interrupt controller’s startIRQ method.

2. A target processor is determined by the interrupt controller, on the basis of the
active routing policy and destination parameters. The relative interrupt line and
element of the interrupting devices bitmap are asserted.

3. Upon interrupt acknowledgment, the device model ends the interrupt cycle
by calling the interrupt controller’s endIRQ method. The relative bit in the
interrupting devices bitmap is deasserted and, provided there are no other
pending interrupts on the line in question, so is the interrupt line. We remark
again that the processor issuing the acknowledgment may be different from
the interrupt’s target processor.

4.2.4 Virtual Time, Machine Cycles, and Event Management

After an overview of the main hardware emulation subsystems, we shall now look
at what may be considered part of the virtual machine’s “execution dynamics”—that
is, the way in which a machine as a whole and its various components operate with
respect to “time”.

Machine emulation in µMPS2 progresses in discrete time steps, corresponding to
single machine cycles—or, equivalently, clock ticks. This clock is maintained by the
emulator itself, and is independent of the host’s time, the emulator process’s wall
clock time, or any other external notion of time. The operation of the machine may
then be seen as a sequence of events; for our purposes, an event may be defined as an
observable change of machine state occurring at a particular instant in time. Thus,
the execution of a single instruction is (rather trivially) an event. An example of a
generally more sporadic event is the completion of an I/O operation. This clock only
advances when all processing scheduled for execution on the current instant (i.e., a
particular machine cycle) has been completed.

Thus far, events have been mentioned without stating explicitly where those orig-
inate from, or how events are represented and managed. Clearly, we have “events”
that are processed on every cycle: instruction execution for each active processor and
updates of all hardware timers. The other type is constituted by asynchronous events,
which always represent the completion of a device operation. These asynchronous
events are scheduled by device models using the SystemBus::scheduleEvent
method, which accepts an event expiration time and a callback to be invoked at
event occurrence time. Internally, scheduled events are kept in a priority queue (see
event.cc).

A pleasing consequence of the above execution model is completely determinis-
tic execution: given identical conditions, an emulator session is repeatable. In other
words, given the same machine configuration and device input, two emulation ses-
sions will result in the same sequence of events.

4.2. The Emulation Core 39

Idle Cycles

During an emulation session, there may be intervals of inactivity; that is, intervals
of idle machine cycles, during which all processors are either halted or in a low-
power state (waiting for an external event to occur), and no asynchronous events
are programmed for said interval. Rather than requiring front-ends to step through
this idle cycles, the emulator allows front-ends to skip this potentially long inter-
vals. At any point, the number of remaining idle cycles may be obtained via the
Machine::idleCycles method. The machine may then be advanced by a speci-
fied number of cycles by invoking the Machine::skip method.

4.2.5 Debugging Support

Aside from the hardware emulation logic itself, the core emulator module also in-
cludes debugging support.

A breakpoint, suspect, or a “tracepoint” (i.e., traced region) is represented by
the Stoppoint class. An instance of this class, which we refer to as a stoppoint, is
essentially defined by a unique identifier and either a single memory address or a
range of addresses. A collection of stoppoints is, in turn, managed by an instance
of the StoppointSet class. Stoppoint sets support basic insertion and removal
operations, lookup based on address or an address range, and index-based access
with respect to insertion order.

The front-end is responsible of instantiating stoppoint sets to be associated with a
machine and of supplying them to the emulator at machine initialization time. These
objects are not immutable, of course, since the debugger variables they represent in
general need to be modified during an emulation session.

4.2.6 High-Level View of the Emulation API

Anticipating the next section on the µMPS2 user interface implementation, it is worth
to outline the public emulation API and its typical usage pattern by front-end code.

Interaction between any (hypothetical) front-end, whether GUI or command line
interface-based, and the emulator core will in general involve the following steps:

1. Creating an instance of Machine (see machine.h) from a valid machine con-
figuration object. Objects that manage the breakpoint, suspect, and tracepoint
collections also need to be supplied to the class constructor.

2. Executing machine cycles; essentially, this simply consists of invoking the
Machine::step method. Since machine execution is an inherently compute
bound task, however, its integration with the remainder of the application’s
processing (user input processing, for instance) is a considerable challenge.

3. Issuing control and debugging commands: managing the “stop mask” (see
Machine::setStopMask and Machine::getStopMask, examining the ori-

40 Chapter 4. µMPS2 Emulator Internals

gins behind a debugger caused pause, managing breakpoints and other debug-
ger variables, and similar.

4. Inspecting machine state: the Machine class exports methods for reading and
writing memory, and retrieving processor and device model instances.

4.3 The User Interface Implementation

In the following sections, the implementation of µMPS2 user interface (UI) is de-
scribed. Our discussion will consists of three parts that focus on rather different
aspects. First, the basic architectural style—in part dictated by the Qt framework—is
described. Next, we look at the manner in which virtual machine execution is inte-
grated with other tasks (e.g., the application’s main event loop). Finally, a dissection
of the UI components into classes and modules is given.

4.3.1 The Qt Framework

The µMPS2 user interface is built using Qt, a cross-platform graphical user interface
toolkit and, more generally, a fully-fledged C++ application framework. Along with
GTK+, it is currently one of the few inherently cross-platform widget toolkits for
modern desktop systems. In addition to the GUI library, it contains modules in a
wide variety of categories—from simple abstractions of common platform facilities
(e.g. thread support) to database access and network programming.

A feature of Qt 4 that is leveraged to a great extent within µMPS2 is its model-
view-controller architecture [24, Chapter 5] (referred to as Interview in Qt jargon)
for item views—i.e., lists, tables, and (multi-column) trees. More details on this are
given in the following sections.

Needless to say, an introduction to Qt would not be within the scope of this work;
the interested reader is advised to consult one of the many introductory books and
references available. In particular, [25] covers in great detail the more advanced
aspects of Qt 4.x, such as its model-view architecture.

4.3.2 Models and Views

Much of the user interface code in µMPS2 is structured around the model-view-
controller (or more simply, model-view) paradigm [24, 26]. This is in part because
this architectural pattern has proven to be a sound choice (especially for applications
featuring a GUI), and in part because it is a style that is encouraged by (and to a
degree dictated by) the Qt framework. The essence of this architectural style is char-
acterized by a form of separation of concerns: models serve as content providers and
encapsulate the relative data-processing rules; views are visual representations of the
content; controller code serves as a mediator between user input, the model, and the
view.

4.3. The User Interface Implementation 41

There are many ways in which the model-view architecture fits the interaction
between user interface and emulator back-end components, as shown schematically
in figure 4.2:

• The machine-level abstractions provided as part of the core emulator API
(Machine, Processor, and similar) would themselves be considered mod-
els, of course. Moreover, virtually all other models are built on top of these.

• Qt defines numerous standard abstract model interfaces in its Interview frame-
work. Each of these interfaces defines a set of APIs a particular data source
must provide for interoperability with one or more types of views. For in-
stance, the QAbstractTableModel class defines an abstract model interface
implemented by classes that (conceptually) represent a rectangular array of
data elements of a particular kind (numbers, strings, icons, etc.).

There are several such implementations of the Qt Interview model interfaces in
µMPS2. For example, processor registers in the dockable pane of the processor
window are rendered by a QTreeView object, one of the framework’s many
view classes; the model is, of course, not a stock Qt model class but a custom
implementation of the generic tree model interface, its elements being register
mnemonics and register values (see RegisterSetSnapshot). The values are
in turn obtained from the Processor instance itself. We may call such classes
model adapters.

Another notable example of a model adapter class is StoppointListModel,
a Qt table model adapter used to represent breakpoint, suspect, and tracepoint
collections.

• View classes include both standard Qt classes and custom ones. Stock Qt view
classes are typically used in conjunction with the model adapter classes dis-
cussed above, whereas custom view classes interact with core emulator models
and with various auxiliary models.

4.3.3 Machine Execution

Modern graphical user interface toolkits impose on the program an event-driven
programming model. In most cases, this model is supported by providing a form
of event loop abstraction7, which manages all low-level aspects associated with event
sources of interest to the application. In a typical program flow, suitable event han-
dlers are registered for particular events, and control is handed over to the event loop.
The event loop blocks until one or more of the specified events are detected—for ex-
ample, those originating from the underlying window system—and then dispatches

7Slight exceptions are the Swing and AWT toolkits; rather than defining an explicit event loop
construct, these toolkits dedicate a special thread to event polling and dispatching. The “event loop”
is still present, of course, but it is completely opaque to the programmer.

42 Chapter 4. µMPS2 Emulator Internals

User Interface (Views)

Qt Model Adapter

Machine Processor

Processor

Device

Device

Processor APIMachine APIDevice API

Figure 4.2: The model-view architecture of the µMPS2 emulator.

these to applicable handlers. After all handlers have been invoked, control is re-
turned to the event loop and another iteration of the cycle is started.

Due to difficulties in ensuring thread safety of their respective APIs, GUI toolkits
have traditionally been inherently single-threaded, with Qt not being an exception
to this.8 More precisely, all user interface related processing is confined to a single
thread of execution; the thread, that is, in which the UI event loop is run. All of
this places an important policy constraint on event handlers: to ensure proper re-
sponsiveness of the UI, a handler is not expected to perform any long-running task
(e.g., long-running computations or certain kind of I/O) directly. It is immediate
to see that virtual machine execution in µMPS2 is, in fact, an example of such a
compute-bound task. An often-used solution for this problem consists of offloading
the computation to a separate thread or process. For the reasons stated above, this
technique is most-appropriate for cases in which the task is not required to perform a
significant amount of manipulations on the UI itself. Another popular approach con-
sists of splitting the computation into smaller parts, and schedule them for execution
via the event loop as low priority tasks; the event loop will process the tasks, one by
one, whenever there are no higher priority events pending (notably, window system
events). This latter approach is currently used in µMPS2, as the risk of concurrency-
related issues was considered to significantly outweigh the slight increase of control
flow complexity.

All aspects of machine execution are handled by the DebugSession class. In
particular, it provides emulation speed control. The effective emulation speed (that

8The difficulties, in short, stem from the inherently asynchronous nature of GUI applications. The
interested reader is referred to [27] for a discussion on this topic.

4.3. The User Interface Implementation 43

is, the rate at which machine cycles are executed) is determined by several variables
we describe below, each of which is derived from the user-controlled speed parame-
ter.

In continuous execution mode (as opposed to single-stepping mode), emulation
is performed in the fashion described above: the task is performed incrementally,
and in each iteration a number of machine cycles are executed; the exact number
of cycles per iteration is determined by the emulation speed setting. Idle machine
cycles are properly skipped, as allowed by the underlying emulation engine. For
perceived realism, the number of skipped cycles is accounted for by a suitable pause
in machine execution. As a result, an idle virtual machine is reflected in an idle
emulator process.

The maximum effective rate at which machine cycles can be run is further con-
trolled by the minimum delay between two successive machine cycle iterations. Again,
this value is derived from the user-controlled speed setting. Incidentally, the degree
to which the emulator will be a CPU-bound process is directly related to this vari-
able.

Finally, the DebugSession provides suitable notification—most importantly, to
UI components—of a number of related events:

• The machine is powered on, powered off, or reset. Some UI elements are either
created or initialized at machine power-on completion. Examples of such ele-
ments are the processor status list and device status view in the main window.
Likewise, after the machine has been powered down, these elements are dis-
sociated from the machine state they are representing, and thus need to be
destroyed or otherwise invalidated. Reset notification is provided since virtu-
ally all visible UI elements pertaining to machine state need to be updated on
that event.

• Machine execution is suspended or resumed. Certain UI elements, such as the code
view, are only sensitive to user input and exhibit meaningful semantics while
emulation is paused. (Indeed, in the case of the code view, a “live update” of
the widget while the machine is run would not only be distracting to the user,
but it would also incur a significant deterioration of performance.)

Similarly, actions such as breakpoint insertion and removal can only be per-
formed while emulation is paused. Thus, their associated user interface ele-
ments (menu bar entries, context menu entries, toolbar buttons, etc.) are ren-
dered sensitive (i.e., the elements are “enabled”) if and only if the machine is
stopped.

• An iteration of machine cycles is completed. Some machine state views update
their contents even while emulation is in progress. Since updates on each cycle
would be unfeasible, the refresh is instead triggered by this event. The number
of cycles between each update is thus dependent on the user’s emulation speed
setting.

44 Chapter 4. µMPS2 Emulator Internals

Elements that support this form of live updating include processor status en-
tries, processor register views, traced memory regions, and the device status
view. Of course, displayed machine state is guaranteed to be “consistent” (that
is, reflect actual state values) only while the machine is stopped.

Notification is provided using Qt’s signaling mechanism; for instance, the machine
reset event is represented by the MachineReset signal (see debug_session.h)
and is intercepted by any UI component that need to act on this event.

4.3.4 Class and Module Overview

After the above overview of architectural aspects of the µMPS2 front-end, what fol-
lows is a fairly complete outline of the UI code base. Rather than listing classes
or modules in some arbitrary order, we systematically group classes by their user
interface affinity, starting from top level windows:

• Main window. The main window is represented by the MonitorWindow class.9

While most sub-panes in this window are implemented by separate classes, the
class alone manages a fair number of different aspects: its tab based layout, the
QAction based menu and toolbar interface, auxiliary window visibility, and
many other ancillary tasks.

The greater part of the main window is occupied by its tabbed sections:

– Machine overview tab. This tab is implemented by MachineConfigView, a
simple composite widget that displays machine parameters in a table-like
layout.

– Processor tab. This tab is split into an upper half, which contains the pro-
cessor status list, and a lower one, which contains the breakpoint list. The
effective tab area allocated to the two child widgets is user controllable
and is managed by the QSplitter widget.
The underlying model class for the processor status list (or, more pre-
cisely, table) is ProcessorListModel; the latter is a direct subclass of
Qt’s QAbstractTableModel abstract class, which defines an interface
expected to be provided by all table model classes within the Interview
framework. The view itself is rendered by the stock QTableView class.
An entirely analogous separation of concerns—those of a model from
those of a view—applies for the breakpoint, suspect, and tracepoint lists.
In this case, the model is provided by the StoppointListModel class.

– Memory tab. The memory tab contains the suspect list and a traced re-
gion browser. The former is completely analogous to the breakpoint list
discussed above.

9As a general guideline, there is a direct correspondence between a class and a (single) translation
unit, with a slight difference in naming convention between the two. An example will suffice: the
class TerminalView is associated with the class implementation file terminal_view.cc and the
corresponding header file terminal_view.h.

4.3. The User Interface Implementation 45

As discussed in Section 3.4.5, multiple display types are supported for
traced memory regions. The associations between traced region and the
user’s preferred display type is managed by the TraceBrowser class.
Display-wise, TraceBrowser is a composite widget comprising the tra-
cepoint list, the display type drop-down list (frequently called a “combo
box”), and the memory view itself.
The ASCII rendition of the memory is rather simple (see the AsciiView
class in trace_brower.h) and should not require explanation. As ex-
pected, considerably more complex is the editable hex-dump view imple-
mentation, given by HexView. By subclassing QPlainTextEdit, Qt’s
plain text visualization and editing widget, it leverages the widget’s ex-
tensive text display and manipulation facilities (e.g., text highlighting and
scrolling support). At the same time, the hex view requires customized
key and mouse-based navigation within the grid-like display. Similarly,
since the memory itself acts as a “backing store” for its contents, editing
requires special handling. Support for these is implemented by overriding
certain QPlainTextEdit methods (see the HexView::keyPressEvent
method, for an example).

– Device status. Again, the same split between the view and underlying
model applies (as in the case of the processor list, for instance). In this
case, the implementation (DeviceTreeModel) is considerably more com-
plex, since the model’s data retrieval mechanisms must support a hierar-
chical structure, as specified by the QAbstractItemModel interface.

• Processor window. Top-level processor windows (ProcessorWindow) feature a
central content, consisting of the code view and processor status information,
and certain secondary panes. At the user’s preference, these secondary win-
dows can either be positioned inside the processor window around its central
content or made into top-level windows. Secondary windows are implemented
using Qt’s dock widgets (see QMainWindow and QDockWidget). Details about
the main elements follow:

– Code view. The code view (CodeView) is another subclass of Qt’s plain
text display and editing widget, QPlainTextEdit. The implementation
provides a custom margin widget (see CodeViewMargin) onto which
memory addresses, breakpoint markers, and the program counter marker
are rendered (see CodeView::paintMargin). Breakpoint insertion and
removal is supported by the margin by overriding mouse event handlers.

– Register view. The register view is one of the two “dockable” widgets
belonging to the processor window. The top-level widget itself, namely
RegisterSetWidget, manages the selection of register value represen-
tation format (e.g., binary, decimal, etc.).
Register items (that is, mnemonic and corresponding value pairs) them-
selves are rendered by the TreeView widget. The underlying data model

46 Chapter 4. µMPS2 Emulator Internals

is provided by RegisterSetSnapshot—yet another example of a Qt
Interview abstract item model realization.
Recall that the register view is one of the elements periodically updated
even while the machine is running. In order to support this reasonably
efficiently, RegisterSetSnapshot implements a form of “lazy” update
notifications. Register values fetched from the CPU are cached on each
refresh cycle, so that on the following cycle new values can be compared
with cached ones, and the view can as a result be only notified about
modified values.

– TLB view. This is essentially similar to the register view described above
(see the TLBModel class).

• Terminal window. Terminal windows are instances of TerminalWindow; the
actual widget implementing a text terminal is TerminalView—another sub-
class of QPlainTextEdit. Where needed, the TerminalView class overrides
its superclass method implementations to simulate the behavior of a real text
terminal (see TerminalView::keyPressEvent, for example).

4.4 µMPS2 Object File Support Tools

For reasons that have already been elaborated (see Section 3.5.3), µMPS2 includes
support for a greatly streamlined executable file format. Two object file-related
tools are currently available: umps2-elf2umps converts ELF relocatable objects
and executables to µMPS BIOS images and .aout/.core executables, respectively;
umps2-objdump is an analogue of the well known objdump utility, albeit less so-
phisticated. These tools are provided as stand-alone executables—rather than, say,
being integrated into the GUI environment—the reason being that they are typically
expected to be used as part of an automated build workflow.

Among executable file formats, .aout is exceptionally simple. For reasons of
space, its specification is not replicated here; the reader is referred to [11]. In the rest
of this section, however, the most important aspects of the ELF to .aout conversion
are addressed, including some rather subtle points.

4.4.1 ELF to .aout Conversion

The ELF to .aout conversion code (see elf2umps.cc) is fundamentally not very
complex. (Needless to say, a working understanding of the conversion process de-
mands at least basic familiarity with the ELF format, for which we refer the reader to
[28] or [29]). Essentially, ELF input sections10 are scanned, one by one, and data from

10There is some terminological inconsistency across object file formats regarding the interpretation
of “section” and “segment”. While these two words are often used interchangeably, in the context of
the ELF format they denote different concepts. For reasons mostly based on efficiency and flexibility,
ELF supports a dual view of an object file. First, a file may be treated as a collection of sections—that
is, units containing program data or metadata of a particular kind. Thus, code, data, read-only data,

4.4. µMPS2 Object File Support Tools 47

“loadable” sections is copied to the corresponding segment of the .aout executable
(see the elf2aout function). The simplicity stems from an important assumption
about the input ELF executable; namely, that its memory layout (the segment layout)
matches the desired memory layout of the corresponding .aout executable. This re-
quirement is satisfied by providing suitable directives to the linker (ld), in the form
of a linker script. In short, a linker script defines the manner in which sections from
one or more input object files are combined into sections of the output file. In doing
so, the script defines the memory layout of the output file.

We see that in effect, an .aout executable is obtained via a cooperation of the
linker—driven by a linker script—and the umps2-elf2umps utility itself. We wish
to elaborate somewhat on the former, since the linker script command language may
admittedly seem arcane to the uninitiated. (For a detailed description of the linker
command language accepted by the GNU linker, the reader is referred to its official
documentation. Barely enough syntax is introduced here to render the discussion
comprehensible.)

Listing 4.2 shows a linker script suitable for .aout executables. Any linker scripts
consists of a series of commands, each of which controls a particular aspect of the
linking process. An example is the ENTRY command on line 2, which defines the
program’s entry point.

The PHDRS command (lines 4-8) lists the program headers (segments) the output
executable should contain. Those will correspond to the .text and .data segments in
the final .aout executable.

The rest of the script is taken by the compound SECTIONS command. Of all
commands allowed inside SECTIONS, two types are encountered in the script below:

• Symbol assignments: Symbols may be defined and assigned arbitrary values
using linker scripts. These symbols will appear in the resulting object’s symbol
table, just like those generated by the assembler. For example, on line 34 the
symbol _gp is defined.

As a special case, the symbol name ‘.’, called the output location counter, denotes
the memory address the next portion of the output is normally associated with.

• Output section descriptions: These commands describe how input sections should
be merged to form output sections. The full syntax of an output section de-
scription command is rather complicated, and since most occurrences do not
need nor use most of the features, it suffices for our needs to examine the first
such command appearing in the script below (lines 14-18). The .text iden-
tifier outside of the curly braces is the output section name. Inside the curly
braces, the most important command that may appear is an input section de-
scription (line 17), which causes selected input sections from one or more input
files to be copied to the output section in question (in this case, .text).

relocation information, debugging information, etc. all belong to different sections of the file. The file
is endowed with this structure to support linking, in addition to tools such as debuggers. On the other
hand, an ELF executable file may be viewed as a set of segments that define its memory layout. This
second view exists to support the run-time system (loaders) efficiently.

48 Chapter 4. µMPS2 Emulator Internals

Each input section description includes an input file name followed by a list of
section names in parenthesis, both of which can use Bourne shell-like wildcard
patterns. The command from our example, namely *(.text .text.*), in-
structs the linker to merge into the current output section all sections matching
the names .text or .text.* from any input file.

After this brief demystification, it is now hopefully easy to see how the mentioned
linker script results in a memory layout that complies with the µMPS .aout format
requirements. The base address of the .aout .text area is 0x8000.0000; to accom-
modate the 90-byte .aout header, the sections comprising the text segment of the ELF
executable start at 0x8000.00B0 (line 13). The text segment contains all code and
read-only data sections. The data segment starts on the first page-aligned address
after the text (line 27); it contains the .data sections, the global offset table (GOT)
[28], the “small data sections”, and similar.

Listing 4.2: A linker script for .aout executables.

1 OUTPUT_ARCH(mips)
2 ENTRY(__start)
3
4 PHDRS
5 {
6 text PT_LOAD FILEHDR PHDRS;
7 data PT_LOAD;
8 }
9

10 SECTIONS
11 {
12 /* Text segment */
13 . = 0x800000B0;
14 .text :
15 {
16 _ftext = . ;
17 *(.text .text.*)
18 } :text =0
19 PROVIDE (_etext = .);
20
21 .rodata : { *(.rodata .rodata.*) } :text
22 .rodata1 : { *(.rodata1) } :text
23 .sdata2 : { *(.sdata2 .sdata2.*) } :text
24 .sbss2 : { *(.sbss2 .sbss2.*) } :text
25
26 /* Data segment */
27 . = ALIGN(0x1000);
28 .data :
29 {
30 _fdata = . ;
31 *(.data .data.*)
32 } :data

4.4. µMPS2 Object File Support Tools 49

33 .data1 : { *(.data1) } :data
34 _gp = ALIGN(16) + 0x7ff0;
35 .got : { *(.got.plt) *(.got) } :data
36 .sdata : { *(.sdata .sdata.*) } :data
37 .lit8 : { *(.lit8) } :data
38 .lit4 : { *(.lit4) } :data
39 _edata = .;
40
41 __bss_start = .;
42 _fbss = .;
43 .sbss :
44 {
45 PROVIDE (__sbss_start = .);
46 *(.sbss .sbss.*)
47 *(.scommon)
48 PROVIDE (__sbss_end = .);
49 } :data
50 .bss :
51 {
52 *(.bss .bss.*)
53 *(COMMON)
54 . = ALIGN(32 / 8);
55 } :data
56
57 . = ALIGN(32 / 8);
58 _end = .;
59 PROVIDE (end = .);
60
61 /DISCARD/ : { *(.reginfo) }
62 }

Chapter 5

Conclusions

The µMPS system, which formed the basis for the work that has been described in
this thesis, was designed to fulfill the need for an approachable and at the same time
reasonably realistic computer architecture and accompanying emulator, tailored for
use in computer science education.

The most important way µMPS2 improves upon its predecessor is through the
architecture update. By including multiprocessor support, µMPS2 renders the archi-
tecture considerably more relevant in an era in which multi-core designs are becom-
ing ever more prevalent. It is hoped that, by virtue of being exceptionally simple
implementation-wise, the system will be able to adapt equally promptly to future
hardware trends.

The other major overhaul in µMPS2 is in the emulator’s front-end, which (it is
hoped) has resulted in notable usability improvements. The µMPS2 user interface
environment is currently unique in its category in providing intrinsic multiprocessor
monitoring and debugging support.

5.1 Suggestions for Further Experiments

Some suggestions for possible extensions to µMPS are given below. Needless to
say, the list is not in any case exhaustive, nor are those necessarily the most viable
directions for the project. As many users are bound to discover, the current system
is surely open to many smaller, incremental, improvements.

5.1.1 Detailed Simulation

A direction arguably worth pursuing with µMPS concerns more detailed and realis-
tic simulation models, particularly with regard to the memory system. Indeed, that
(centralized or distributed) shared memory architectures will have an ever more pro-
found impact on software design in the near future—both for operating systems and
end-user applications—is suggested by current trends, and is likely not a reckless
prediction.

51

52 Chapter 5. Conclusions

The simple CPU model in µMPS2 could be combined with realistic memory
system models, including MESI-based coherent caches, cache coherent NUMA, and
similar. Of course, it would be most desirable to continue to support the currently
used simpler emulation model, for cases where quick execution is a priority over
realism.1

5.1.2 Emulator Scalability

The emulator implementation described in Chapter 4 has multiple virtues, including
simplicity of implementation and a fully deterministic execution model. Unfortu-
nately, the implementation in its current form is inherently non scalable beyond a
small number of processors, as it uses a single thread of execution to emulate multi-
ple virtual processors in lockstep fashion. A currently investigated alternative design
consists of exploiting thread-level parallelism at the host level, the key idea behind
this design being that various components comprising a computer system are to a
great extent autonomous—that is, largely independent of each other.

In the proposed experimental implementation, a dedicated thread is assigned
to each emulated processor; a separate thread executes the emulator event loop,
which handles event scheduling (e.g., expiration of various hardware timers and I/O
completion) and dispatching to event handlers. Long-running blocking operations
may be delegated to special worker threads, allocated from a thread pool.

One consequence of introducing this form of thread-based concurrency into the
emulator is that the architecture’s intuitive, strictly ordered memory consistency
model (see [31] for a discussion of memory consistency models in general, and or-
dering semantics in particular) must in all likelihood be sacrificed. Indeed, to have
reasonable chance of gaining an advantage from the introduced parallelism, the em-
ulator cannot guarantee ordering semantics stricter than those of the underlying
host’s memory system. A consistency model must then be defined for the emulated
architecture whose semantics correspond to the weakest model among the supported
host architectures. Next, a set of memory barrier instructions must be provided,
whose implementation will naturally depend on the particular host architecture.

Finally, changes are required in virtual time management. In the single threaded
implementation virtual processors run in lockstep manner and single processors
cycles correspond to ticks of the centrally maintained “time-of-day” clock. This clock
is maintained by the emulator and has no bearing on host time. In a multithreaded
implementation where, at least to some extent, each virtual CPU runs independently
of the rest of the system this is not feasible anymore. Instead, it is desirable to base
virtual time bookkeeping on one of the high resolution clock sources provided by
the host system.

1For reference, a system that supports varying degrees of simulation speed and detail, from fast
execution modes based on dynamic translation techniques to detailed microarchitecture models, is
SimOS [30].

5.1. Suggestions for Further Experiments 53

5.1.3 An Operating System for µMPS2

All testing has so far relied on simple, mostly ad hoc “operating systems”. A rea-
sonably featured, SMP-capable operating systems would undoubtedly prove very
useful during emulator development (e.g. for tasks such as performance evaluations
or regression tests). One could either develop such an OS from scratch, or choose to
port one of the lightweight open source operating systems to µMPS2. Both options
promise an educationally rewarding experience.

Appendix A

µMPS2 Architecture Revision

This appendix presents the new hardware and firmware features of µMPS2. The
prominent new features center around multiprocessor support: initialization and
control of multiple processors, interrupt management in a multiprocessor environ-
ment, new processor instructions for concurrency support and ROM services. Wher-
ever possible, architectural additions were designed to be unobtrusive with regard
to legacy software and programmers not striving to support software features (such
as SMP support) that require them.

A.1 Machine Control Registers

µMPS2 provides the programmer with explicit control over the power states of CPUs
and the machine itself. This is accomplished through the Machine Control register set,
shown in Table A.1.

The NCPUs register stores the number of processors in the system; ResetCPU,
BootPC, BootSP, HaltCPU control the processors power state and start-up (state on
reset); finally, the Power register is used to power off the machine.

Table A.1: Machine control registers address map.

Address Register Type
0x1000.0500 NCPUs Read Only
0x1000.0504 ResetCPU Write Only
0x1000.0508 BootPC Read/Write
0x1000.050c BootSP Read/Write
0x1000.0510 HaltCPU Write Only
0x1000.0514 Power Write Only

55

56 Appendix A. µMPS2 Architecture Revision

A.1.1 Processor Power States

At each point in time a processor in µMPS2 can be in one of several power states,
which define whether it is currently executing instructions and its responsiveness to
external events (interrupt, reset and halt signals).

µMPS2 defines three power states:

• Halted: This state represents the lowest power state. A CPU in this state will
only respond to a reset signal, which transitions the CPU into the Running state,
causing it to start executing instructions.

A CPU transitions into this state when its halt signal is asserted, which is trig-
gered by writing the CPU ID into the HaltCPU register. The CPU does not
maintain any architecturally visible state (e.g. CPU registers) in this power
state.

• Running: This state represents the normal operating state of the CPU. A CPU in
this state responds to both interrupts and halt/reset signals. A CPU transitions
into this state as a result of external events.

• Idle: A CPU in this state operates in reduced-power mode. The CPU stops
executing instructions when it transitions into this state, but it stays responsive
to all external events. A CPU transitions into this state by executing the wait
instruction. The CPU maintains all architecturally visible state in this power
state. This state is also often referred to as standby.

Figure A.1 recaps the possible transitions between power states.

Running

Halted Idle

Rese
t

Halt
W

ait
Reset, Interrupt

Halt

Figure A.1: Processor power states.

A.1.2 Processor Initialization

After a machine reset, only processor 0 is automatically started (i.e. in the Running
power state). Explicit start-up (reset) commands must be issued to start the other pro-
cessors. A secondary processor starts executing when it receives a reset signal. This
is accomplished by writing the processor ID into the Reset register. The processor

A.2. New and Revised CP0 Registers 57

starts executing at the location specified by the BootPC register, with the processor’s
sp register set to the value provided by the BootSP register. All other aspects of the
processor state at reset time are as described in [11].

As described in Section A.5, the BIOS and libumps library provide a more con-
venient way to initialize a processor.

A.1.3 Powering Off the Machine

Machine power off is initiated by writing the magic value 0x0FF into the write-only
Power register. The power down completes after a non-negligible delay.

A.2 New and Revised CP0 Registers

Among the software-visible changes introduced with µMPS2 some are within the
system control coprocessor’s (CP0) register space. Table A.2 lists CP0 registers along
with compatibility notes. The following sections describe each change in detail and
motivate their introduction.

Table A.2: CP0 registers.

Mnemonic Number Compatibility Notes
Index 0 -
Random 1 -
EntryLo 2 -
BadVAddr 8 -
Timer 9 New in µMPS2
EntryHi 10 -
Status 12 A new read/writable TE field has been added

(see Figure A.2).
Cause 13 IP[0] and IP[1] are no longer writable.
EPC 14 -
PRID 15 This read-only register now stores the proces-

sor ID instead of CPU model information.

A.2.1 PRID Register

In µMPS2 the PRID register contains the processor identifier (CPUID), which is a
unique integer assigned to a processor at power up that does not change afterwards.

The read-only PRID register has been used in MIPS CPUs as a CPU model identi-
fier. In contemporary MIPS processors, it contains a field that identifies the instruc-

58 Appendix A. µMPS2 Architecture Revision

Table A.3: Interrupt line assignment in µMPS2.

Interrupt Line Assignment
0 IPI
1 Local Interval Timer
2 Bus (Interval Timer)
3 Disk Devices
4 Tape Devices
5 Network (Ethernet) Devices
6 Printer Devices
7 Terminal Devices

tion set architecture, along with manufacturer dependent fields. Since such infor-
mation is only plausibly useful to legacy MIPS software which interpret it (typically
as part of the hardware probing process) and µMPS implements a fixed variant of
the MIPS I ISA, the above redefinition of the PRID register is very unlikely to cause
compatibility problems.

A.2.2 The On-CPU Interval Timer

µMPS2 provides a per-CPU interval timer (referred to as the local timer in this section)
that runs at the processor’s clock rate and is in all respects similar to the external
interval timer device. Unlike the external interval timer, the local timer can be dis-
abled (default setting). Whether the local timer is enabled or not is determined by
the Status.TE (Timer Enable) bit. When Status.TE = 0, the local timer will not
generate interrupts. Note, however, that it is implementation dependent whether
the timer will continue to run when Status.TE = 0. If the local timer is enabled
(Status.TE = 1), it will continue to run and generate interrupts even when the
processor enters standby mode (see Section A.4.2).

Interrupts from he local timer are assigned to interrupt line 1 (see Table A.3). The
CP0 Timer register represents the programmer’s interface to the local interval timer.
Pending interrupts from the local timer are acknowledged by writing a new value
into the Timer register.

The local interval timer will most likely only be of use to operating systems with
multiprocessor support, where the local timer can be used for scheduling purposes.
Since interrupts from the external timer source can only be delivered to a single CPU
at a time, this can potentially avoid the overhead of interprocessor interrupts.

A.3. Multiprocessor Interrupt Control 59

A.2.3 Status Register

The Status register contains a single new field, TE, that enables/disables the on-
CPU timer.

01234581522242526272831

CU T
E

V
M

o
V

M
p

V
M

c

BE
V IM

K
U

o
IE

o
K

U
p

IE
p

K
U

c
IE

c

Figure A.2: The Status CP0 register.

A.2.4 Backward Compatibility Notes

Two of the described modifications of the CP0 register space potentially compro-
mise backward compatibility with existing software. As already noted above, the
redefinition of the PRID register is unlikely to cause compatibility problems.

Interrupt lines 0 and 1, previously reserved for software interrupts, are reas-
signed to inter-processor interrupts and the on-CPU timer, respectively. Programs
that relied on this older form of software generated interrupts will find inter-processor
interrupts (described in a separate section) to be a relatively straightforward replace-
ment.

A.3 Multiprocessor Interrupt Control

The new interrupt delivery subsystem in µMPS2 is designed to support SMP-capable
operating systems. It allows the creation of elaborate interrupt affinity and/or bal-
ancing schemes and provides a simple inter-processor interrupt (IPI) mechanism. Note
that the default settings of the registers described in this section provide for full
backward compatibility with uniprocessor systems. Thus, the register-level interface
described here will only be of concern to programmers willing to support multipro-
cessor systems.

Conceptually, the multiprocessor interrupt controller is comprised of the follow-
ing units:

• A centralized programmable unit called the Interrupt Router that distributes
interrupts from peripheral interrupt sources to selected processors.

• One or more CPU Interface units that receive interrupts from the Interrupt
Router and control the transmission and reception of IPI messages.

A.3.1 Interrupt Distribution

For systems under heavy I/O load, it is often desirable to distribute interrupts across
multiple processors. µMPS2 allows the programmer to specify interrupt routing

60 Appendix A. µMPS2 Architecture Revision

parameters per interrupt source. Routing parameters are stored in a set of pro-
grammable registers, called the Interrupt Routing Table (IRT). Each IRT entry controls
interrupt delivery for a single interrupt source.

Two distribution policies are supported:

• Static: The interrupt is delivered to a preselected processor.

• Dynamic: The interrupt is delivered to the processor executing the lowest pri-
ority task.

0152831

RP Destination

Figure A.3: IRT entry format.

Each IRT entry register (see Figure A.3) consists of the following fields:

• RP (bit 28): Specifies the routing policy. The field is interpreted as follows:

0 (Static) The interrupt is delivered to the processor specified in the
Destination field. The Destination field is interpreted
as a CPU ID.

1 (Dynamic) The Destination field is interpreted as a CPU mask, where
bit i of Destination[15:0] corresponds to CPU ID i. The
interrupt is delivered to the processor executing the lowest pri-
ority task among all contestants selected by the mask. In case
of a tie, an implementation-defined arbitration mechanism is
used to resolve it.
The above mechanism relies on the operating system to update
at appropriate times the execution priority of all selected pro-
cessors. This is accompished by programming the Task Priority
(TPR) register, located in the interrupt controller CPU interface
register bank (see section A.3.2).

• Destination (bits 0-15): Used to specify the interrupt target processor(s).
See the description of the RP field for details on how this field is interpreted.

As shown in figure A.4, the IRT has 48 entries. Interrupt routing information for
device device j, attached to interrupt line i, is recorded in entry (i − 2)× 8 + j.

A.3.2 CPU Interface Registers

The CPU Interface registers, shown in Table A.4, represent the per-processor com-
ponent of the multiprocessor interrupt controller register-level interface. Although
multiple banks (one per CPU) of these registers are provided, they all share the same
address map.

A.3. Multiprocessor Interrupt Control 61

0x1000.03BC Interrupt 7:7 Routing Entry

.

0x1000.0340 Interrupt 4:0 Routing Entry

0x1000.033C Interrupt 3:7 Routing Entry

.

0x1000.0324 Interrupt 3:1 Routing Entry

0x1000.0320 Interrupt 3:0 Routing Entry

Interrupt line 3

routing information

. . .

0x1000.0300 Interrupt 2:0 Routing Entry

Figure A.4: IRT register address map.

Table A.4: Interrupt controller processor interface register map.

Address Register Type
0x1000.0400 Inbox Read/Write
0x1000.0404 Outbox Write Only
0x1000.0408 TPR Read/Write
0x1000.040c BIOSReserved1 Read/Write
0x1000.0410 BIOSReserved2 Read/Write

The Inbox and Outbox registers are used for inter-processor interrupts and their
use is detailed in the next section.

The Taks Priority (TPR) register, shown in Figure A.5, is used by the Interrupt
Router in the priority based arbitration scheme. The TPR.Priority field allows
for 16 priority levels, with 0 and 15 representing the highest and lowest priorities
respectively.

0331

Priority

Figure A.5: The TPR register.

The two registers labelled as BIOS Reserved are provided for the convenience of
the ROM based exception handling code.

A.3.3 Inter-processor Interrupts (IPIs)

An inter-processor interrupt (IPI) represents a form of inter-processor signaling mech-
anism used by a processor to request the attention of another processor. IPIs are

62 Appendix A. µMPS2 Architecture Revision

commonly used by operating systems for issuing rescheduling requests, maintain-
ing TLB consistency, and any other task which requires one processor to request the
attention of another.

In µMPS2, multiple IPIs may be pending at the same time for a given processor;
there is, however, a limit of one pending IPI per originating processor. Only one pending
IPI may be acknowledged at a time. There is no built-in delivery status notification
mechanism.

An arbitrary 8-bit data field (message) can be carried with each IPI. This feature is
provided solely for software convenience and has no side effects on the IPI delivery
subsystem.

The system maintains IPI delivery order. IPI messages are always retrieved in the
order they were received by the CPU interface.

Issuing IPIs

An IPI is issued by writing a correctly formatted IPI command to the Outbox regis-
ter, shown in Figure A.6.

0782331

Recipients Message

Figure A.6: The Outbox register.

The fields in the Outbox register are defined as follows:

• Message (bits 0-7): The message to be delivered.

• Recipients (bits 8-23): Selects the recipients of the IPI. The field is inter-
preted as a CPU mask: the IPI is delivered to processor i if Recipients[i] is
on.

IPI Receipt and Acknowledgement

Information on the currently pending IPI is stored in the Inbox register (shown in
Figure A.7) which contains the following fields:

• Message (bits 0-7): The message to be delivered.

• Origin (bits 8-11): The processor ID of the originating processor.

0781131

Origin Message

Figure A.7: The Inbox register.

An IPI is acknowledged by writing to the Inbox register. The written value is
ignored.

A.4. New Instructions 63

A.4 New Instructions

A.4.1 Compare and Swap (CAS)

056101115162021252631

0 rs rt rd 0 cas (001011b)

Format:
cas rd, rs, rt

Description:
The cas instruction performs an atomic read-modify-write operation on synchroniz-
able memory locations. The contents of the word at the memory location specified
by the GPR rs is compared with GPR rt. If the values are equal, the content of
GPR rd is stored at the memory location specified by rs and 1 is written into rd.
Otherwise, 0 is written into rd and no store occurs.

The above read-modify-write sequence is guaranteed to be atomic by ensuring
that no intervening operation on a conflicting memory location is performed by the
memory system. The following pseudocode illustrates the operation of the cas
instruction:

atomic {
if (MEM[rs] == GPR[rt]) {

MEM[rs] = GPR[rd];
GPR[rd] = 1;

} else {
GPR[rd] = 0;

}
}

The set of synchronizable memory locations in µMPS2 coincides with physical RAM
locations. For all other locations (e.g. the I/O address space) cas will uncondition-
ally fail.

Exceptions:
TLBS, Mod, DBE, AdES

libumps interface:
int CAS(uint32_t *atomic, uint32_t ov, uint32_t nv)

This function atomically sets the word pointed to by atomic to nv if the current
value of the word is ov. It returns 1 to indicate a successful update and 0 otherwise.

64 Appendix A. µMPS2 Architecture Revision

A.4.2 Wait for Event (WAIT)

05624252631

010000 C
O 0 wait (100000b)

Format:
wait

Description:
The wait instruction causes the processor to enter standby mode. The processor
resumes execution when an external event (reset or interrupt) is signaled to the
processor. Note that it is irrelevant whether the signaled interrupt is enabled or not.
If the processor resumes execution as a result of an enabled interrupt and Status.IEc
is on, the (interrupt) exception is considered to have occurred at the instruction
following the wait instruction.

Exceptions:
CpU

libumps interface:
void WAIT(void)

A.5 BIOS Services

The BIOS ROM code supplied with µMPS provides convenient low-level services an
OS can rely on or build upon. Most importantly, the general and TLB-refill exception
entry points lie in the ROM space. In µMPS2, the BIOS exception handling code
has been made reentrant with regard to multiple processors. To ensure reentrancy,
separate Old and New Processor State Areas must be provided for each processor.

A new BIOS service has been added to hide most of the complexities of processor
startup and initialization of BIOS-related processor data structures. It is exposed by
the libumps library function INITCPU:

void INITCPU(uint32_t cpuid, state_t *start_state, state_t *state_areas);

This function initiates a reset of the processor specified by cpuid, causing it to
start execution at a preselected startup entry point in the ROM. The startup rou-
tine initializes the BIOS data structures related to the processor (most importantly, it
records the address of the New/Old State areas, given in the state_areas parame-
ter). Finally, it loads the processor state from the supplied start_state parameter.

A.6. Device Register Memory Map 65

A.6 Device Register Memory Map

0x1000.0000

0x1000.0028

0x1000.003C

0x1000.0050

0x1000.0060

0x1000.00C0

0x1000.00D0

0x1000.02C0

0x1000.02D0

0x1000.02FC

0x1000.0300

0x1000.03C0

0x1000.0400

0x1000.0414

0x1000.0500

Bus Register Area

Installed Devices Bitmap

Interrupting Devices Bitmap

Interrupt Line 3, Device 0
Device Register

Interrupt Line 3, Device 1
Device Register

Interrupt Line 3, Device 7
Device Register

Interrupt Line 4, Device 0
Device Register

Interrupt Line 7, Device 7
Device Register

Reserved

Interrupt Routing Table

Reserved

CPU Interface Registers

Reserved

Machine Control Registers

Bus Error
0x1000.0518

Figure A.8: Device register memory map.

Appendix B

Machine Configuration Format

A complete description of the µMPS2 machine configuration format is given below,
in the form of a JSON Schema [32]. It is hoped that the schema is reasonably self-
documenting—at least to the extent a document of that type can be. Notes have been
added in the few places where further explanation was deemed necessary.

Listing B.1: A JSON Schema for the µMPS2 machine configuration format.

1 {
2 "type" : "object",
3 "properties" : {
4 "num-processors" : {
5 "type" : "number",
6 "description" : "Number of processors",
7 "required" : false,
8 "minimum" : 1,
9 "maximum" : 16,

10 "default" : 1
11 },
12 "clock-rate" : {
13 "type" : "number",
14 "description" : "Processor/bus clock rate",
15 "required" : false,
16 "minimum" : 1,
17 "maximum" : 99,
18 "default" : 1
19 },
20 "tlb-size" : {
21 "type" : "number",
22 "description" : "Translation lookaside buffer size",
23 "required" : false,
24 "minimum" : 4,
25 "maximum" : 64,
26 "default" : 16
27 },
28 "num-ram-frames" : {

67

68 Appendix B. Machine Configuration Format

29 "type" : "number",
30 "description" : "Number of RAM frames",
31 "required" : false,
32 "minimum" : 8,
33 "maximum" : 512,
34 "default" : 64
35 },
36 "bootstrap-rom" : {
37 "type" : "string",
38 "description" : "Bootstrap ROM image file name",
39 "required" : false,

40 "default" : default bootstrap ROM module 1

41 },
42 "execution-rom" : {
43 "type" : "string",
44 "description" : "Execution ROM image file name",
45 "required" : false,

46 "default" : default execution ROM module 2

47 },
48 "boot" : {
49 "type" : "object",
50 "properties" : {
51 "core-file" : {
52 "type" : "string",
53 "description" : "Core file name",
54 "required" : false,
55 "default" : "kernel.core.umps"
56 },
57 "load-core-file" : {
58 "type" : "boolean",
59 "description" : "Load core file on startup",
60 "required" : false,
61 "default" : true
62 }
63 }
64 },
65 "devices" : {
66 "type" : "object",
67 "description" : "Installed devices",
68 "patternProperties" : {

69 "(disk|tape|printer|terminal)[0-7]" : { 3

70 "type" : "object",
71 "properties" : {
72 "file" : {
73 "type" : "string",
74 "description" : "Device file",
75 "required" : true
76 },
77 "enabled" : {

69

78 "type" : "boolean",
79 "description" : "Enable this device",
80 "required" : true
81 }
82 }
83 },

84 "eth[0-7]" : { 3

85 "type" : "object",
86 "properties" : {
87 "file" : {
88 "type" : "string",
89 "description" : "Device file",
90 "required" : true
91 },
92 "enabled" : {
93 "type" : "boolean",
94 "description" : "Enable this device",
95 "required" : true
96 },
97 "address" : {
98 "type" : "string",
99 "description" : "MAC address",

100 "required" : false,
101 "pattern" :
102 "[A-Fa-f0-9][02468aAcCeE](:([A-Fa-f0-9]{2})){5}"
103 }
104 }
105 }
106 }
107 }
108 }
109 }

1 The default bootstrap ROM image is coreboot.rom.umps, included in the
distribution and installed under a configuration-dependent location (typically
/usr/share/umps2 or /usr/local/share/umps2).

2 The default bootstrap ROM image is exec.rom.umps, distributed with µMPS2
and installed under a configuration-dependent location.

3 For example, the object corresponding to the first terminal device is indexed by
the key terminal0 and the one corresponding to the second network device
is indexed by eth1. Note that all mappings are optional.

Bibliography

[1] M. Goldweber, R. Davoli, and M. Morsiani, “The Kaya OS project and the µMPS
hardware emulator,” SIGCSE Bull., vol. 37, pp. 49–53, June 2005.

[2] M. Goldweber, R. Davoli, and T. Jonjic, “Supporting operating systems projects
using the µMPS2 hardware simulator,” in Proceedings of the 17th ACM annual
conference on Innovation and technology in computer science education, ITiCSE 2012,
(New York, NY, USA), pp. 63–68, ACM, 2012.

[3] R. H. Austing, B. H. Barnes, D. T. Bonnette, G. L. Engel, and G. Stokes, “Cur-
riculum ’78: Recommendations for the Undergraduate Program in Computer
Science,” Commun. ACM, vol. 22, pp. 147–166, March 1979.

[4] L. Cassel, A. Clements, G. Davies, M. Guzdial, R. McCauley, A. McGettrick,
R. Sloan, L. Snyder, P. Tymann, and B. Weide, “Computer science curriculum
2008: An interim revision of cs 2001,” 2008.

[5] J. Lions, Lions’ commentary on UNIX 6th edition with source code. San Jose, CA,
USA: Peer-to-Peer Communications, Inc., 1996.

[6] M. J. Bach, The Design of the UNIX Operating System. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1986.

[7] A. S. Tanenbaum and A. S. Woodhull, Operating Systems Design and Implementa-
tion (3rd Edition). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 2005.

[8] J. Parker, R. Cupper, C. Kelemen, D. Molnar, and G. Scragg, “Laboratories in
the Computer Science Curriculum,” Computer Science Education, vol. 1, no. 3,
pp. 205–221, 1990.

[9] N. Titterton and M. Clancy, “Adding some lab time is good, adding more must
be better: the benefits and barriers to lab-centric courses,” in proceedings of the
2007 International Conference on Frontiers in Education: Computer Science and Com-
puter Engineering, Las Vegas, NV, 2007.

[10] M. Morsiani and R. Davoli, “Learning operating systems structure and imple-
mentation through the MPS computer system simulator,” in ACM SIGCSE Bul-
letin, vol. 31, pp. 63–67, ACM, 1999.

71

72 Bibliography

[11] M. Goldweber and R. Davoli, uMPS2 Principles of Operation. Lulu Books, 2011.

[12] D. A. Patterson and J. L. Hennessy, Computer Organization and Design: The Hard-
ware/Software Interface. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 4th ed., 2008.

[13] K. Vollmar and P. Sanderson, “MARS: an education-oriented MIPS assembly
language simulator,” in Proceedings of the 37th SIGCSE technical symposium on
Computer science education, SIGCSE ’06, (New York, NY, USA), pp. 239–243,
ACM, 2006.

[14] F. Bellard, “QEMU, a fast and portable dynamic translator,” in Proceedings of the
annual conference on USENIX Annual Technical Conference, ATEC ’05, (Berkeley,
CA, USA), pp. 41–41, USENIX Association, 2005.

[15] J. L. Hennessy, N. Jouppi, F. Baskett, and J. Gill, “MIPS: A VLSI Processor Ar-
chitecture,” tech. rep., Stanford, CA, USA, 1981.

[16] M. Herlihy and N. Shavit, The Art of Multiprocessor Programming. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2008.

[17] G. Kane, MIPS RISC Architecture. Upper Saddle River, NJ, USA: Prentice-Hall,
Inc., 1988.

[18] D. Crockford, “The application/json Media Type for Javascript Object Notation
(JSON),” http://www.ietf.org/rfc/rfc4627, 2006.

[19] “The Red Hat Newlib C Library.”
http://sourceware.org/newlib/libc.html.

[20] T. Jonjic, “µMPS2 Cross Toolchain Guide.”
http://mps.sourceforge.net/pdf/umps-cross-toolchain-guide.pdf.

[21] Z. Wan and P. Hudak, “Functional reactive programming from first principles,”
SIGPLAN Not., vol. 35, pp. 242–252, May 2000.

[22] “Libsigc++ Callback Framework for C++.”
http://libsigc.sourceforge.net/.

[23] B. Stroustrup, The C++ Programming Language. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 3rd ed., 1997.

[24] C. Liu, Smalltalk, Objects, and Design. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1996.

[25] M. Summerfield, Advanced Qt Programming. Upper Saddle River, NJ, USA: Pren-
tice Hall Press, 1st ed., 2010.

http://sourceware.org/newlib/libc.html
http://mps.sourceforge.net/pdf/umps-cross-toolchain-guide.pdf
http://libsigc.sourceforge.net/

Bibliography 73

[26] S. Goderis, On the Separation of User Interface Concerns: A Programmer’s Perspective
on the Modularisation of User Interface Code. PhD thesis, Vrije Universiteit Brussels,
2007-2008.

[27] D. F. Sutherland, A. Greenhouse, and W. L. Scherlis, “The code of many colors:
relating threads to code and shared state,” SIGSOFT Softw. Eng. Notes, vol. 28,
pp. 77–83, Nov. 2002.

[28] TIS Committee, “Tool Interface Standard (TIS) Executable and Linking Format
(ELF) Specification 1.2,” 1995.

[29] J. Levine, Linkers and Loaders. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 1999.

[30] M. Rosenblum, S. Herrod, E. Witchel, and A. Gupta, “Complete computer sys-
tem simulation: The SimOS approach,” Parallel & Distributed Technology: Systems
& Applications, IEEE, vol. 3, no. 4, pp. 34–43, 1995.

[31] J. Hennessy, D. Patterson, and D. Goldberg, Computer Architecture: A Quantita-
tive Approach. Morgan Kaufmann, 4th ed., 2006.

[32] K. Zyp et al., “A JSON media type for describing the structure and meaning of
JSON documents,” http://tools.ietf.org/html/draft-zyp-json-schema-03, 2010.

Acknowledgments

I am grateful to my advisor, Prof. Renzo Davoli, to Mauro Morsiani, and to Prof.
Michael Goldweber, for having provided both helpful advice and invaluable feed-
back during my work on this thesis.

	Introduction
	Background
	The MPS Project
	Applications of MPS
	Contributions of This Work
	Organization of this Document

	An Overview of the MPS2 Architecture
	Introduction
	Overall System Structure
	Processor Architecture
	MPS2-Specific ISA Features

	Devices and Interrupt Management
	Interrupts in MPS2
	Interrupt Line Assignment and Source Resolution
	Interrupt Management in Multiprocessor Systems

	Higher Level Abstractions Through Firmware
	Higher-Level Exception-Handling Interface
	Higher-Level Virtual Memory Interface

	Further References

	The MPS2 Emulator: A User's View
	Introduction
	User Interface Organization
	Machine Configurations
	Installed Devices and Device Files
	Byte Order in MPS

	Machine Control and Monitoring
	Startup and Shutdown
	Execution Control
	Breakpoints and Suspects
	Examining Processor State
	Memory View
	Device Monitoring
	Terminals

	Programming for MPS2
	ROM Images
	The Toolchain
	Object File Formats
	Operating System Bootstrap

	Further References

	MPS2 Emulator Internals
	Design Principles and Overall Structure
	Signals, Slots, and the Observer Pattern
	Portability and the Choice of Implementation Language
	Source Tree Structure

	The Emulation Core
	Machine Configurations and Machine Instances
	Processor Emulation
	Device Emulation
	Virtual Time, Machine Cycles, and Event Management
	Debugging Support
	High-Level View of the Emulation API

	The User Interface Implementation
	The Qt Framework
	Models and Views
	Machine Execution
	Class and Module Overview

	MPS2 Object File Support Tools
	ELF to .aout Conversion

	Conclusions
	Suggestions for Further Experiments
	Detailed Simulation
	Emulator Scalability
	An Operating System for MPS2

	MPS2 Architecture Revision
	Machine Control Registers
	Processor Power States
	Processor Initialization
	Powering Off the Machine

	New and Revised CP0 Registers
	PRID Register
	The On-CPU Interval Timer
	Status Register
	Backward Compatibility Notes

	Multiprocessor Interrupt Control
	Interrupt Distribution
	CPU Interface Registers
	Inter-processor Interrupts (IPIs)

	New Instructions
	Compare and Swap (CAS)
	Wait for Event (WAIT)

	BIOS Services
	Device Register Memory Map

	Machine Configuration Format

