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Introduction

The most natural question one can ask about PDEs is whether there exists

a solution of it. For ODEs we have satisfactory theorems about the existence

of solutions (at least locally). Malgrange and Ehrenpreis have proved that all

constant coefficient linear partial differential equations have local solutions,

and that, by Cauchy-Kovelevsky Theorem, all analytic partial differential

equation have local analytic solutions. Therefore, it came as a complete

surprise when in 1957 Hans Lewy discovered the first non-solvable operator,

L = Dx1 + iDx2 − 2i(x1 + ix2)Dx3 .

Note that L is the tangential Cauchy-Riemann operator on the boundary of

the strictly pseudoconvex domain

{(z, w) ∈ C2; |z|2 − Im(w) < 0}. (1)

In fact, consider Im(w) = |z|2 and the vector field α∂/∂z̄ + β∂/∂w̄,(
α
∂

∂z̄
+ β

∂

∂w̄

)(
|z|2︸︷︷︸
=zz̄

− Im(w)︸ ︷︷ ︸
=(w−w̄)/(2i)

)
= 0

gives β = −2izα. Now consider the map

Φ : (x, y, u) 7−→ (x, y, u, x2 + y2),

where z = x+ iy and w = u+ iv. We get :

Φ∗(∂x) = ∂x + 2x∂v, Φ∗(∂y) = ∂y + 2y∂v, Φ∗(∂u) = ∂u

i
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and

Φ∗(Dx + iDy − 2izDu) = Dx + iDy − 2iz(Du + iDv).

The discovery opened up a new research area, that of solvability of partial

differential operators, with the aim of understanding necessary and/or suffi-

cient conditions for solvability.

Solvable differential operators include operators with constant coefficients

and elliptic operators.

In fact by Malgrange-Ehrenpreis theorem [Chapter 3] every constant coeffi-

cient linear partial differential equation has a fundamental solution E, i.e.

there exists a distribution E s.t. P (D)E = δ and so there exists a solution

of the equation P (D)u = f with f ∈ E ′, u = E ∗ f is a solution of it (for the

general case one can see [21],[10] about P -convexity, but we are not going to

treat these topics).

For an elliptic operator there exists a parametrix and this gives solvability

[Chapter 4].

The simplest class of non-elliptic solvable operators is that of operator of real

principal type [8].

The conditions for solvability, as we will see, lie in the geometry of the

operator. Elaborating on the Lewy operator, Hörmander [8] found the first

general necessary condition for solvability, (H)[chapter 2]. One can see that

for the Lewy operator (H) is violated. This was a remarkable advance be-

cause it explained a phenomenon, that had appeared as an isolated example,

in terms of very general geometric properties of the principal symbol, an in-

variantly defined object.

In spite of this success, it turned out that condition (H) was not accurate

enough to discriminate the solvable operator from the non-solvable ones. In

fact, if one considers the Mizohata operator,

Mk =
∂

∂y
− iyk ∂

∂x
,

(H) is satisfied but Mk is locally solvable at the origin iff k is even.

Nirenberg and Treves [22] identified a property that turned out to be the
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right condition for local solvability of differential operator of principal type

(condition P), see [Chapter 2]. The sufficiency of condition (P) was proved

by Nirenberg and Treves [23] for analytic differential operators and by Beals

and Fefferman [4] for pseudodifferential operators of principal type.

A related and more general condition, condition (Ψ), also introduce by Niren-

berg and Treves [22], relevant for solvability of pseudodifferential operators,

was shown to be necessary in dimension 2 by Moyer (unpublished) and in

several dimensions by Hörmander [12]. The sufficiency of the condition was

next shown by Lerner [17] in 2 dimensions and finally in the general case by

Dencker [5].

Condition (Ψ) is more general then condition (P) for pseudodifferential op-

erators, whereas it coincides with (P) for differential operators.

This dissertation aims at being a rapid introduction (although, far to

be complete) to solvability of PDEs. In this work, I have followed sev-

eral papers quoted in the Bibliography and some notes by G.Mendoza and

A.Parmeggiani. It is divided into six chapters:

• The first chapter is a review [6] of notions of symplectic geometry that

will be used throughout.

• The second chapter introduce the conditions for solvability, with ex-

amples.

• The third chapter gives two proofs of the Malgrange-Ehrenpreis theo-

rem about the existence of the fundamental solution of PDEs with con-

stant coefficients. In this chapter one can find two different way to prove

the theorem: the first one is the description of Atiyah’s proof about

the division of distributions, the second one is Hörmander’s proof.

In this case, as is well known, the solvability of P (D)u = f ∈ E ′(Rn)

is solved. In the last part of the chapter we give an elementary proof

due to D. Jerison [14], of the L2 local solvability, in which use is made

of the SAK principle by C. Fefferman and D. H. Phong (see [7]).
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• In the fourth chapter we describe the process of constructing a parametrix

for an elliptic differential operator.

• In the fifth chapter we describe the link between solvability and hy-

poellipticity.

• In the sixth chapter we give Hörmander’s proof of the invariance of

condition (Ψ) and an elementary proof of the sufficiency of condition

(Ψ) in two dimensions due to H. Smith [30]. (Originally existence in 2

dimensions due to N. Lerner [17]).

Introduzione in italiano

La domanda più naturale che uno potrebbe porsi riguardo alle PDEs è se

esista una soluzione. Per le ODEs abbiamo soddisfacenti teoremi riguardo

l’esistenza di soluzioni (almeno localmente). Malgrange ed Ehrenpreis hanno

provato che tutte le equazioni differenziali alle derivate parziali con coefficenti

costanti hanno soluzioni locali e, grazie al teorema di Cauchy-Kovelevsky,

tutte le equazioni differenziali alle derivate parziali analitiche hanno soluzioni

analitiche. Per questo fu una grande sorpresa quando nel 1957 Hans Lewy

scopr̀ı il primo operatore non risolubile,

L = Dx1 + iDx2 − 2i(x1 + ix2)Dx3 .

Notiamo che L è l’operatore di Cauchy-Riemann tangenziale sul bordo del

dominio strettamente pseudoconvesso

{(z, w) ∈ C2; |z|2 − Im(w) < 0}.

La scoperta apr̀ı una nuova area di ricerca riguardante la risolubilità di

equazioni differenziali alle derivate parziali, con lo scopo di capire neces-

sarie e/o sufficienti condizioni per la risolubilità.

Tra gli operatori differenziali alle derivate parziali risolubili troviamo quelli

a coefficenti costanti e gli operatori ellittici.
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Per i primi, infatti, grazie al teorema di Malgrange-Ehrenpreis [Chapter 3],

sappiamo esistere una soluzione fondamentale, cioè una distribuzione E per

cui P (D)E = δ, da cui poi possiamo trovare una soluzione di P (D)u = f

convolvendo E con f , questo a patto di prendere f ∈ E ′(Rn) (per il caso

generale si rimanda ai lavori [21],[10] riguardo la P -convessità, questi non

verranno trattati nella tesi).

Riguardo agli operatori ellittici sappiamo esistere una parametrice e questa

dà risolubilità [Chapter 4]. La classe più semplici di operatori non ellittici

risolubili è quella degli operatori di tipo principale [8].

Le condizioni per la risolubilità, come vedremo, riguardano la geometria

dell’operatore.

La prima condizione per la risolubilità è stata trovata da Hörmander [8], la

condizione (H) [Chapter 2]. Si vede che l’operatore L di Lewy non soddisfa

questa condizione. Questo fu un risultanto importante in quanto ci spiega

un fenomeno apparso come uno esempio isolato, in termini di proprietà geo-

metriche del simbolo principale.

Nonostante questo successo, la condizione (H) si scopr̀ı non abbastanza ac-

curata per discriminare gli operatori risolubili da quelli non risolubili, infatti

l’operatore di Mizohata

Mk =
∂

∂y
− iyk ∂

∂x
,

soddisfa (H) ma è localmente risolubile nell’origine se e solo se k è pari.

Nirenberg e Treves [22] identificarono una proprietà che si rivelò essere la

condizione sufficiente per la risolubilità di operatori differenziali di tipo prin-

cipale, la condizione (P) [Chapter 2].

La sufficienza di (P) fu dimostrata da Nirenberg e Treves [23] per operatori

differenziali analitici e da Beals e Fefferman [4] per operatori pseudodifferen-

ziali di tipo principale.

Una condizione più generale di (P), la condizione (Ψ), anch’essa introdotta

da Nirenberg e Treves [22], fu mostrata essere necessaria in due dimensioni

da Moyer (non pubblicata) e in più dimensioni da Hörmander [12]. La suf-

ficienza fu poi provata da Lerner [17] in due dimensioni e da Dencker [5] in
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generale per più dimensioni.

La condizione (Ψ) è più generale della condizione (P) per operatori pseu-

dodifferenziali, anche se esse coincidono per operatori differenziali.

Questa tesi vuole essere una rapida introduzione alla risolubilità di PDEs. In

questo lavoro ho fatto affidamento su vari articoli citati in Bibliografia e su

appunti di G. Mendoza e A. Parmeggiani. Per un piccolo riassunto riguardo

i temi svolti nei successivi capitoli si veda l’introduzione in inglese.
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Chapter 1

Local symplectic geometry

We recall briefly some notions such as: manifold, tangent and cotagent

vectors, differential form and vector bundle.

1.1 Tangent and cotangent vectors

Let X be a smooth manifold of dimension n.

Let x0 ∈ X.

If γ, γ̃ : (−1, 1) → X, we say that γ, γ̃ are equivalent if ‖γ(t) − γ̃(t)‖ =

o(t), t→ 0, (this is well defined through local coordinates).

A tangent vector is by definition an equivalence class. If γ is a curve as

above we denote by γ̇(0) or ( d
dt

)t=0γ(t) the corresponding tangent vector.

The set of tangent vectors at a point x0 ∈ X is denoted by Tx0X.

If f, f̃ : X → R are two C1-functions, we say that f and f̃ are equivalent

if
(
f(x)− f(x0)

)
−
(
f̃(x)− f̃(x0)

)
= o(‖x− x0‖), x→ x0.

We let df(x0) denote the equivalence class of f . It is called a differential

1-form at x0 or a cotangent vector at x0 ∈ X; also it is the differential of f

at x0.

The sets T ∗x0X and Tx0X are n-dimensional (real) vector spaces dual to each

other, the duality being given by

〈df(x0), γ̇(0)〉 =
( d
dt

)
t=0
f(γ(t)). (1.1)

1
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If x1, ..., xn are local coordinates, defined in a neighborhood of x0, then

dx1(x0), ..., dxn(x0) or (dx1, ...dxn for short) is a basis in T ∗x0X and the cor-

resdonding dual basis is (by definition) ∂
∂x1

(x0), ..., ∂
∂xn

(x0) (or ∂
∂x1
, ..., ∂

∂xn
for

short).

The sets TX =
⊔
x0∈X Tx0X (disjoint union) and T ∗X =

⊔
x0∈X T

∗
x0
X are vec-

tor bundles and in particular C∞-manifolds. If x1, ..., xn are local coordinates

on X then we get corresponding local coordinates (x, t) = (x1, ..., xn, t1, ..., tn)

on TX and (x, ξ) = (x1, ..., xn, ξ1, ..., ξn) on T ∗X by representing ν ∈ TX

and ρ ∈ T ∗X by their base point x so that ν ∈ TxX, ρ ∈ T ∗xX and then writ-

ing ν =
∑
tj

∂
∂xj

(x), ρ =
∑
ξjdxj. The local coordinates (x1, ..., xn, ξ1, ..., ξn)

are called canonical (local) coordinates on T ∗X. If y1, ..., yn is a second sys-

tems of local coordinates, then in the intersection of the two open sets in

X parametrized by the two systems of coordinates we have the relations

t = ∂x
∂y
s, η = t

(
∂x
∂y

)
ξ for the corresponding local coordinates (x, t), (y, η) on

T ∗X. Here ∂x
∂y

=
(∂xj
∂yk

)
is the standard Jacobian matrix.

If ρ ∈ T ∗X, we let π(ρ) ∈ X be the corresponding base point. A section

in T ∗X is a map ω : X → T ∗X with π ◦ ω(x) = x, ∀x ∈ X. (The same

definition can be given for TX or for any given vector bundle). Sections

in T ∗X are called differential 1-form, and sections in TX are called vector

fields. A vector field can be written in local coordinates as ν =
∑n

1 tj(x) ∂
∂xj

and a differential 1-form as ω =
∑n

1 ξj(x)dxj.

If Y is a second manifold and f : Y → X is a map of class C1, y0 ∈ Y ,

x0 = f(y0) ∈ X, then we have a natural map f∗ = df : Ty0Y → Tx0X which

in local coordinates is given by the ordinary Jacobian matrix. The adjoint

is f ∗ : T ∗x0X → T ∗y0Y and we notice that d(u ◦ f)(y0) = f ∗(du(x0)) if u is a

C1 function on X. If Z is a third manifold, g : Z → Y in C1 and z0 ∈ Z,

g(z0) = y0, then (f ◦ g)∗ = f∗ ◦ g∗, (f ◦ g)∗ = g∗ ◦ f ∗. When passing to

sections we see that if ω is a 1-form on Y then f ∗ω is a well defined 1-form

on Y (this the pull-back of ω by means of f). Notice that the corresponding

push-forward f∗ν of a vector field ν on Y can be defined if f is a C1 diffeo-
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morphism but not in general.

If γ : (a, b) → Y is a C1 curve and t0 ∈ (a, b) we defined its tangent at

γ(t0) as γ∗
(
∂
∂t

)
:= ∂γ

∂t
(t0) = γ̇(t0). (This definition coincides with the earlier

one.) If ν is a C∞ vector field on X then for every x0 ∈ X we can find

T+(x0), T−(x0) ∈ (0,∞] such that we have a unique smooth curve

(−T−(x0), T+(x0)) 3 t 7−→ γ(t) = exp(tν)(x0) ∈ X (1.2)

with γ(0) = x0, γ̇(t) = ν(γ(t)).

Choosing T+(x0), T−(x0) maximal, we get a smooth map

Φ : {(t, x) ∈ R×X;−T−(x) < t < T+(x)} → X

Φ(t, x) = exp(tν)(x), (1.3)

where Φ(0, x) = x, ∂Φ(t, x)/∂t = ν(Φ(t, x)) and T+(x), T−(x) are lower semi-

continuous. We have

exp(tν) ◦ exp(sν)(x) = exp((t+ s)ν)(x), (1.4)

for t,s such that both sides are defined. For details see [6], [26]

1.2 The canonical 1- and 2- forms

Let π : T ∗X → X be the natural projection. For ρ ∈ T ∗X we consider

π∗ : T ∗π(ρ)X → T ∗ρ (T ∗X) and since ρ ∈ T ∗X we can define the canonical

1-form ωρ ∈ T ∗ρ (T ∗X) by ωρ = π∗(ρ). Varying ρ we get a smooth 1-form on

T ∗X. In canonical coordinates we get ω =
∑n

1 ξjdxj.

We next recall a few facts about forms of higher degree. If L is a finite-

dimensional real vector space and L∗ is the dual space, then we have a natural

duality between the k-fold exterior product spaces
∧k L and

∧k L∗, given by

〈u1 ∧ ... ∧ uk, v1 ∧ ... ∧ vk〉 = det(〈uj, vk〉), uj ∈ L, vk ∈ L∗. (1.5)

If M is a C∞ manifold of dimension m then a differential k-form is a section

v of the vector bundle
∧k T ∗M . In local coordinates x1, ..., xm ,

v =
∑
|I|=k

vI(x)dxI , (1.6)
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where in general I = (i1, ..., il) ∈ {1, ...,m}l, |I| = l, dxI = dxi1 ∧ ... ∧ dxil .
(The representation (1.6) becomes unique if we restrict to those I’s with

i1 < i2 < ... < ik.) If v is a k-form of class C1 locally given by (1.6), we

define the (k + 1)-form

dv =
∑
|I|=k

dvI ∧ dxI (the exterior differential of v). (1.7)

This definition does not depend on the choice of local coordinates or on how

we choose the representation (1.6). We have the following facts:

(i) Twice the exterior differential is 0, that is

d2 = 0. (1.8)

(ii) If ω is a C∞ (k+ 1)-form which is closed in the sense that dω = 0, then

in every open set in M diffeomorphic to a ball, we can find a smooth

k-form v such that dv = ω. (Poincaré’s lemma)

(iii) If f : Y → X is a smooth map between two smooth manifolds then

there is a unique way of extending the pull-back f ∗ of 1-forms to k-

forms by multilinearity. Moreover if v is a smooth k-form on X, then

d(f ∗v) = f ∗(dv).

We now return to the canonical 1-form ω on T ∗X and define the canonical

2-form on T ∗X as σ = dω. In canonical coordinates,

σ =
n∑
1

dξj ∧ dxj. (1.9)

This 2-form is also called the canonical symplectic form.

For ρ ∈ T ∗X, σρ can be viewed as a linear form on
∧2 Tρ(T

∗X) or equivalently

as an skewsymmetric bilinear form on Tρ(T
∗X)× Tρ(T ∗X) given by

σρ(t, s) = 〈σρ, t ∧ s〉, t, s ∈ Tρ(T ∗X). (1.10)

In canonical coordinates we write t = (tx, tξ)
(
where t =

∑
txj

∂
∂xj

+ tξj
∂
∂ξj

)
,

s = (sx, sξ) and get

σρ(t, s) = 〈tξ, sx〉 − 〈sξ, tx〉 =
∑(

tξjsxj − sξj txj
)
. (1.11)
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From this it is clear that σρ is a non-degenerate bilinear form and we therefore

have a bijection H : T ∗ρ (T ∗X)→ Tρ(T
∗X) defined by

σ(s,Hu) = 〈s, u〉, s ∈ Tρ(T ∗X), u ∈ T ∗ρ (T ∗X). (1.12)

In canonical coordinates, if u = uxdx + uξdξ =
∑

(uxjdxj + uξjdξj) we get

Hu = uξ
∂
∂x
− ux ∂

∂ξ
.

If f(x, ξ) is of class C1 on (some open set in) T ∗X, we define its Hamilton

(vector) field by Hf = H(df). In canonical coordinates,

Hf =
n∑
1

( ∂f
∂ξj

∂

∂xi
− ∂f

∂xj

∂

∂ξj

)
. (1.13)

In a more sophisticated way, let M be a manifold, ρ ∈M , t ∈ TρM and define

ty :
∧k T ∗ρM →

∧k−1 T ∗ρM as the adjoint of the left exterior multiplication

t∧ :
∧k−1 TρM →

∧k TρM . Then with M = T ∗X, the Hamilton field is

defined by the pointwise relation

Hfyσ = −df. (1.14)

Eqivalently, σ(v,Hf ) = df(v) ∀v ∈ TρT
∗X. If f, g are two C1 functions

defined on the same open set in T ∗X, we define their Poisson bracket as the

continuous function on T ∗X given by

{f, g} = Hf (g) = 〈Hf , dg〉 = σ(Hf , Hg), (1.15)

where in the second expression we view Hf as a first-order differential oper-

ator. In canonical coordinates,

{f, g} =
∑( ∂f

∂ξj

∂g

∂xj
− ∂f

∂xj

∂g

∂ξj

)
. (1.16)

Notice that {f, g} = −{g, f} and, in particular, {f, f} = 0.

1.3 Lie derivatives

Let v be a C∞ vector field on a manifold M and let ω be a C∞k-form on

M . Then the Lie derivative of ω along v is poitwise defined by

Lvω =
( d
dt

)
t=0

((exp tv)∗ω). (1.17)
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If ω is a second smooth vector field on M we also define

Lvu =
( d
dt

)
t=0

((exp−tv)∗u). (1.18)

In the latter definition we observe that in this case the push-forward of a

vector field is made through a local diffeomorphism. We have the following

identities :

(i) When ω is a 0-form and hence a function, then Lvω = v(ω)

(ii) Lvu = [v, u] = vu− uv, where u, v are viewed as first-order differential

operators in the last two expressions.

(iii) Lv(dω) = d(Lvω)

(iv) Lv(ω1 ∧ ω2) = (Lvω1) ∧ ω2 + ω1 ∧ (Lvω2)

(v) Lv(uyω) = (Lvu)yω + uy(Lvω)

(vi) Lvω = vydω + d(vyω)

(vii) Lv1+v2 = Lv1 + Lv2

Lemma 1.3.1. If f is a C∞ function on some open set in T ∗X, then LHfσ =

0

Proof. One computes

LHfσ = Hfydσ + d(Hfyσ) = Hfyd
2ω − d2f = 0. (1.19)

The maps T ∗X 3 ρ 7→ Φt(ρ) = exp(tHf )(ρ) is a local diffeomorphism

when |t| is sufficiently small. They are also local symplectimorphisms, that

is Φ∗tσ = σ . This immediately follows from

d

dt
Φ∗tσ =

( d
ds

)
s=0

Φ∗tΦ
∗
sσ = Φ∗tLHfσ = 0 (1.20)
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1.4 Lagrangian manifolds

A submanifold Λ ⊂ T ∗X is called a Lagrangian manifold if dim Λ =

dimX and σ|Λ = 0. In general we define the restriction of a differential

k-form to a submanifold as the pull-back of this form through the natural

inclusion map. Viewing (σ|Λ)ρ, ρ ∈ Λ, as a bilinear form on TρΛ × TρΛ

we simply have (σ|Λ)ρ(t, s) = σρ(t, s), t, s ∈ TρΛ, where TρΛ is identified

with a subspace of TρT
∗X (namely the image of TρΛ by the differential of

the natural inclusion map). If TρΛ
σ denotes the orthogonal space of TρΛ in

TρT
∗X with respect to the bilinear form σρ, then we see that a submanifold

Λ ⊂ T ∗X is Lagrangian if and only if TρΛ
σ = TρΛ for every ρ ∈ Λ.

Theorem 1.4.1. Let Λ ⊂ T ∗X be a submanifold with dim Λ = dimX and

such that π|Λ : Λ → X is a local diffeomorphism (in the sense that ev-

ery point ρ ∈ Λ has a neighborhood in Λ which is mapped diffeomorphically

by π|Λ onto a neighborhood of π(ρ)). Then Λ is Lagrangian iff for each

point ρ of Λ we can find a (real) C∞ function ϕ(x) defined near the projec-

tion of ρ, such that Λ coincides near ρ with the manifold
{

(x, dϕ(x));x ∈
some neighborhood of π(ρ)

}
.

Proof. If ω is the canonical 1-form, we notice that d(ω|Λ) = σ|Λ . Therefore

the following three statements are equivalent:

(i) Λ is Lagrangian;

(ii) ω|Λ is closed (i.e. d(ω|Λ) = 0);

(iii) locally on Λ we can find a smooth function ϕ with ω|Λ = dϕ.

That (iii)⇒(i) is clear. We show (ii)⇒(iii). If x1, ..., xn are local coordinates

on X, we can also view them (or rather their compositions with π) as local

coordinates on Λ, and represent Λ by ξ = ξ(x) in the corresponding canonical

coordinates. Then (iii) is equivalent to ξj(x) = ∂ϕ(x)/∂xj i.e.
∑
ξj(x)dxj =

dϕ
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1.5 Hamilton-Jacobi equations

Hamilton-Jacobi equations are equations of the form p(x, ϕ
′
x) = 0, where

p is a real-valued C∞ function defined on some open subset of T ∗X. Here we

shall also assume that dp 6= 0 when p = 0. The basic idea is to construct a

Lagrangian manifold Λ associated with ϕ, and to construct it inside the hy-

persurface Σ = p−1(0). If ρ ∈ Λ, we shall then have TρΛ ⊂ TρΣ (considering

these tangent spaces as subspaces of TρT
∗X), and hence TρΣ

σ ⊂ TρΛ (since

TρΛ
σ = TρΛ). Now TρΣ

σ = RHp so we must have Hp ∈ TρΛ at every point

ρ ∈ Λ, or in other words, that Hp must be tangent to Λ at every point of Λ.

Proposition 1.5.1. Let Λ′ ⊂ Σ be an isotropic submanifold (in the sense

that σ|Λ′ = 0) of dimension n − 1 passing through some given point ρ0 ∈ Σ

and such that Hp(ρ0) /∈ Tρ0Λ′. Then in a neighborhood of ρ0, we can find a

Lagrangian manifold Λ such that Λ′ ⊂ Λ ⊂ Σ (in that neighborhood).

Proof. According to the observation above it is natural to consider

Λ =
{

exp(tHp)(ρ); |t| < ε, ρ ∈ Λ′, |ρ− ρ0| < ε
}

(1.21)

for some sufficiently small ε > 0. (Here |ρ − ρ0| is well defined if we choose

some local canonical coordinates.) Then Λ′ ⊂ Λ (near ρ0) and since Hp is

tangent to Σ (by the relation Hpp = 0) we also have Λ ⊂ Σ. From the

assumption Hp(ρ0) /∈ Tρ0Λ′ and the implicit function theorem, it also follows

that Λ is a smooth manifold of dimension n. In order to verify that Λ is

Lagrangian, we first take ρ ∈ Λ′ (with |ρ − ρ0| < ε) and consider TρΛ =

TρΛ ⊕ RHp. Then σρ|TρΛ×TρΛ = 0 since σρ|TρΛ′×TρΛ′ = 0, σρ(Hp, Hp) = 0,

σρ(t,Hp) = 0, t ∈ TρΛ
′ (this follows from σρ(t,Hp) = 〈t, dp〉 = 0, for all

t ∈ TρH). More generally, at the point ρt := exp(tHp)(ρ), ρ ∈ Λ′, we have

TρtΛ = exp(tHp)∗(TρΛ) and for u, v ∈ TρΛ we get (using exp(tHp)
∗σρt = σρ)

σρt(exp(tHp)∗u, exp(tHp)∗v) = σρ(u, v) = 0. (1.22)

This concludes the proof in view of Thm. 1.4.1
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In what follows we write x = (x′, xn) ∈ Rn, x′ = (x1, ..., xn−1) ∈ Rn−1.

The following thm. gives a more local solution to the HJ eqt. once an initial

value is fixed.

Theorem 1.5.2. Let p(x, ξ) be a real-valued C∞ function, defined in a neigh-

borhood of some point (0, ξ0) ∈ T ∗Rn, such that p(0, ξ0) = 0, ∂p
∂ξn

(0, ξ0) 6= 0.

Let ψ(x′) be a real-valued C∞ function defined near 0 in Rn−1 such that
∂ψ
∂x′

(0) = ξ′0. Then there exists a real-valued smooth function ϕ(x), defined in

a neighborhood of 0 ∈ Rn, such that in that neighborhood

p(x, ϕ′x(x)) = 0, ϕ(x′, 0) = ψ(x′), ϕ′x(0) = ξ0. (1.23)

If ϕ̃(x) is a second function with the same properties, then ϕ(x) = ϕ̃(x) in

some neighborhood of 0.

Proof. In a suitable neighborhood of (0, ξ0) ∈ Rn−1×Rn we have p(x′, 0, ξ′0) =

0 if and only if ξn = λ(x′, ξ′), where λ is a real-valued C∞ function, with

λ(0, ξ′0) = (ξ0)n. Let

Λ′ =
{

(x, ξ);xn = 0, ξ′ =
∂ψ

∂x′
(x′), ξn = λ(x′, ξ′), x′ ∈ neigh(0)

}
(1.24)

(where “x′ ∈ neigh(0)” means that x′ belongs to some sufficiently small

neighborhood of 0). Then Λ ⊂ p−1(0) is isotropic of dimension n− 1 and Hp

is nowhere tangent to Λ′ since Hp has a component ∂p
∂ξn

∂
∂xn

with ∂p
∂ξn
6= 0. Let

Λ ⊂ p−1(0) be a Lagrangian manifold as in Proposition 1.5.1. The differential

of π|Λ : Λ → Rn is bijective at (0, ξ0) so if we restrict our attention to a

sufficiently small neighborhood of (0, ξ0), Λ becomes of the form ξ = ϕ′(x),

x ∈ neigh(0). Hence p(x, ϕ′x(x)) = 0, ϕ′x(0) = ξ0. Since Λ′ ⊂ Λ we get
∂ψ
∂x′

(x′) = ∂ϕ
∂x′

(x′, 0), and modifying ϕ by a constant gives ϕ(x′, 0) = ψ(x′).

For the uniqueness see [6, 26].

We can view Λ as a union of integral curves of Hp passing through Λ′.

The projection of such an integral curve is an integral curve of the field ν =∑n
1
∂p
∂ξj

(x, ϕ′x)
∂
∂xj

(which, via π|Λ, can be identified with Hp|Λ). If q(x, ξ) =
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∑n
1
∂p
∂ξj

(x, ξ)ξj, we have

( n∑
1

∂p

∂ξj
(x, ϕ′x)

∂

∂xj

)
ϕ = q(x, ϕ′x). (1.25)

Hence, if x = x(t) is an integral curve of ν with xn(0) = 0, then we get

ϕ(x(t)) = ψ(x′(0)) +
∫ t

0
q(x(s), ξ(s))ds, where ξ(s) = ϕ′(x(s)), so that s 7→

(x(s), ξ(s)) is the integral curve ofHp, with xn(0) = 0, ξ′(0) = ∂ψ
∂x′

(x′(0)), ξn(0) =

λ(x′(0), ξ′(0)). In particular, if p is positively homogeneous of degree m > 0,

then by the Euler homogeneity relations, q(x, ξ) = mp(x, ξ) = 0 on Λ and

we obtain ϕ(x(t)) = ψ(x′(0)).

If ϕ = ϕα depends smoothly on some parameter α ∈ R, then ϕ = ϕ(x, α) will

be a smooth function of (x, α), and differentiating the equation p(x, ϕ′x) = 0

with respect to α we get ∑ ∂p

∂ξj
(x, ϕ′x)

∂

∂xj

∂ϕ

∂α
= 0 (1.26)

so that ∂ϕ
∂α

is constant along the bichacteristic curves (without any homo-

geneity assumption).

Recall that a characteristic curve is the x-space projection of a bicharac-

teristic curve, the latter being by definition an integral curve of Hp.



Chapter 2

Introduction to Solvability

2.1 The problem

This is an exposition of various results concerning the existence of so-

lutions of pseudodifferential operators. In its most elementary form, the

problem is the following. Let U be an open subset of Rn, and let

P (x,Dx) =
∑
|α|<m

aα(x)Dα
x , x ∈ U, (2.1)

0 6=
∑
|α|=m

|aα(x)|2 ∀x ∈ U (2.2)

Local solvability of P at x0 ∈ U is stated as follows.

Definition 2.1.1. For every f ∈ C∞0 there exists a distribution u defined in

U such that Pu = f near x0.

equazioni differenziali alle derivate parziali The distribution u is not re-

quired to be smooth. The validity of the assertion is referred to as the

(local) solvability of P at x0, and P is said to be (locally) solvable at x0 if

that holds. Solvable differential operators include operators with constant

coefficients (by the Malgrange-Ehrenpreis Theorem [Chapter 3]) and elliptic

operators [Chapter 4], that is, operators such as P in (2.1) for which the

11
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principal symbol, i.e. the function

pm(x, ξ) =
∑
|α|=m

aα(x)ξα, (x, ξ) ∈ U × Rn, (2.3)

has the property that pm(x, ξ) 6= 0 if ξ 6= 0.

The simplest class of non-elliptic solvable operators is the class of opera-

tors of real principal type (Hörmander [8]).

Principal type means that the differential forms∑
ξjdxj and

∑(∂pm
∂xj

dxj +
∂pm
∂ξj

dξj

)
(2.4)

are linearly independent (over C) at every point of

p−1(0) = Char(P )={(x, ξ) ∈ U × Rn : ξ 6= 0, pm(x, ξ) = 0 }, (2.5)

and real principal type means that, in addition, pm(x, ξ) is real-valued.

The first non-solvable operator,

L = Dx1 +Dx2 − 2i(x1 + ix2)Dx3 (x1, x2, x3) ∈ R3 (2.6)

in R3, was discovered by Hans Lewy [20] in 1957. Elaborating on this example

Hörmander [8] (see also [9]) found the first general necessary condition for

solvability. Investigating further, Nirenberg and Treves [22] gave a weaker

necessary condition for solvability of an operator of real principal type at

every point of an open set. In this paper we find for the first time condition

(P) stated explicitly. The condition was shown to be sufficient for analytic

differential operators by Nirenberg and Treves [23] and in full generality for

pseudodifferential operators of principal type, by Beals and Fefferman [4].

A related condition, Condition (Ψ), also introduced by Nirenberg and Treves

in [22], relevant for solvability of pseudodifferential operators, was shown to

be necessary in dimension 2 by Moyer (unpublished) and in any dimension by

Hörmander [12]. The sufficiency of the condition for solvability was proved

by Lerner [17] in dimension 2, and by Dencker [5] in general case.
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In order to state Hörmander’s condition in [8] as well as conditions (P)

and (Ψ) we introduce some notation.

Suppose p is a smooth complex-valued function defined in an open subset of

Rn × Rn. The Hamiltonian vector field of p is (recall)

Hp =
n∑
j=1

( ∂p
∂ξj

∂

∂xj
− ∂p

∂xj

∂

∂ξj

)
. (2.7)

If q is another such function, then the Poisson bracket of p and q is (recall)

{p, q} = Hpq. (2.8)

Suppose p : U×(Rn\0)→ C is smooth and positively homogeneous of degree

m > 0 in ξ. Recall that the latter means that p(x, λξ) = λmp(x, ξ) for every

(x, ξ) ∈ U × (Rn\0) and λ > 0. Let

p−1(0) = Char(P )={(x, ξ) ∈ U × Rn : ξ 6= 0, p(x, ξ) = 0 }, (2.9)

Recall that p is elliptic if it vanishes nowhere. If p is real-valued, then the

integral curves of its Hamiltonian vector field, the curves

R ⊃ I 3 t 7→ χ(t;x, ξ) ∈ U × Rn

χ̇(t;x, ξ) = Hp(χ(t;x, ξ)), χ(0;x, ξ) = (x, ξ) (2.10)

are well-defined and have the property that p(χ(t;x, ξ)) = p(x, ξ) (because

Hpp = 0). An integral curve with a point in Char(P ) (hence entirely con-

tained in Char(P )) is a null-bicharacteristic of p.

Let p be an arbitrary smooth complex-valued positively homogeneous func-

tion such that dp 6= 0 on Char(P ). Hörmander’s condition [8] is

(H) The Poisson bracket {p, p̄} vanishes at every point of Char(P )

while Conditions (Ψ) and (P) are, respectively,

(Ψ) For every elliptic homogeneous function q, the function

Im(qp) does not change sign from - to + along any given ori-

ented maximal integral curve of HRe(qp) in U×Rn passing through

Char(P ).
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and

(P) For every elliptic homogeneous function q, the function

Im(qp) does not change sign along any given maximal integral

curve of HRe(qp) in U × Rn passing through Char(P ).

Condition (Ψ) allows for Im(qp) to change sign from + to -. It also allows

for Im(qp) to be negative at some point of a null-bicharateristic of Re(qp),

then zero in an interval, and then again negative, as well as zero infinitely

many times. Condition (P) does not allow changes of sign at all. Returning

to Lewy’s example (2.6), for which the principal symbol is

p = ξ1 + iξ2 − 2i(x1 + ix2)ξ3,

we have

Hp =
∂

∂x1

+ i
∂

∂x2

− 2i(x1 + ix2)
∂

∂x3

+ 2iξ3

( ∂

∂ξ1

+ i
∂

∂ξ2

)
,

so

{p, p̄} =
∂p̄

∂x1

+ i
∂p̄

∂x2

− 2i(x1 + ix2)
∂p̄

∂x3

+ 2iξ3

( ∂p̄
∂ξ1

+ i
∂p̄

∂ξ2

)
= 8iξ3.

This vanishes if ξ3 = 0. However,

Char(P ) = {(x1, x2, x3; ξ1, ξ2, ξ3) ∈ R3 × (R3\{0}) : ξ1 = −2x2ξ3, ξ2 = 2x1ξ3}

= {(x1, x2, x3;−2x2ξ3, 2x1ξ3, ξ3) : ξ3 6= 0},

so {p, p̄} does not vanish on Char(P ). Thus Hörmander’s condition is vio-

lated.

Continuing with Lewy’s example, the Hamiltonian of Re p = ξ1 + 2x2ξ3 (we

are taking q = 1 here) is

HRe p =
∂

∂x1

+ 2x2
∂

∂x3

− 2ξ3
∂

∂ξ2

.

Its integral curves are

χ(t;x0, ξ0) = (t+ x0
1, x

0
2, 2x

0
2t+ x0

3; ξ0
1 ,−2ξ0

3t+ ξ0
2 , ξ

0
3),
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and if (x0, ξ0) ∈ Char(P ) then

χ(t;x0, ξ0) = (t+ x0
1, x

0
2, 2x

0
2t+ x0

3;−2x0
2ξ

0
3 , 2(x0

1 − t)ξ0
3 , ξ

0
3).

Write γ(t) for this curve. Evaluating Im p = ξ2 − 2x1ξ3 at γ(t) we get

2(−t+ x0
1)ξ0

3 − 2(t+ x0
1)ξ0

3 = −4ξ0
3t.

So if ξ3 < 0 then Im p changes sign from - to +, as t grows, at t = 0 along

γ(t). Thus Lewy’s operator does not satisfy (Ψ) and neither does it satisfy

(P).

Note that

{p, p̄} = −2i{Rep, Imp},

so the three conditions are related.

EXAMPLE 2.11. A simpler example of a non solvable operator is the Mizo-

hata operator,

M1 = Dx1 + ix1Dx2 ,

in R2. One may verify that (P) is not satisfied. More generally,

Mk = Dx1 + ixk1Dx2 ,

does not satisfy the condition if k is odd.

2.2 An example of a proof of necessity

Generally speaking, it easier to find necessary conditions for solvability

than sufficient conditions. The scheme for proving that a certain condition is

necessary is to contradict an estimate, frequently referred to as Hörmander’s

estimate, which is equivalent to solvability. We will state and prove the

estimate as a consequence of solvability, and then apply it to show, by way

of contradiction that the Mizohata and Lewy operators are not solvable.

Lemma 2.2.1 ([11]). Suppose P is differential operator defined in an open

set U in Rn with the property that for every f ∈ C∞0 (U) there is u ∈ D′(U)
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such that Pu = f . Then, for any given V ⊂⊂ U there are constants C,M

and N such that∣∣∣ ∫
U

fvdx
∣∣∣ ≤ C sup

|α|6M,x∈U
|Dα

xf | sup
|β|6N,x∈U

|Dβ
x
tPv| for all f, v ∈ C∞0 (V ).

Proof. Let X = C∞0 (V̄ ) with its standard topology and let Y = C∞0 (V ) with

the topology determined by the seminorms

v 7→ sup
|β|6N,x∈U

|Dβ
x
tPv|, (2.11)

for each N . The estimate is then seen to be equivalent to the continuity of

the bilinear form

B : C∞0 (V̄ )× C∞0 (V )→ C

B(f, v) =

∫
U

fvdx.

Note that for each N (2.11) is actually a norm, so Y is a metric space. To

verify this, the only thing we need to check is that tPv = 0 implies v = 0.

So suppose tPv = 0. Let f ∈ C∞0 (U) be arbitrary. Since Pu = f for some

u ∈ D′(U), ∫
fvdx = 〈Pu, v〉 = 〈u, tPv〉 = 0.

So v = 0. We now show that B is separately continuous. Fix v ∈ C∞0 (V ).

Then

|B(f, v)| 6 C sup |v| sup |f |, (2.12)

so X 3 f → B(f, v) ∈ C is continuous.

Next, fix f ∈ C∞0 (V̄ ). There is u ∈ D′(U) such that Pu = f . Then

|B(f, v)| = |〈Pu, v〉| = |〈u, tPv〉| 6 C sup
|β|6M,x∈U

|Dβ
x
tPv|, (2.13)

so by Theorem A.2.2 in Appendix A the map Y 3 v 7→ B(f, v) is continuous.
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Let M be the Mizohata operator M1. Suppose M is solvable near 0. Fix

a neighborhood V of 0 and let N and M be the numbers in Hörmander’s

estimate. The general scheme is to find fτ and vτ ∈ C∞0 (V ) with τ large

such that ∣∣ ∫ fτvτdx
∣∣

is bounded from below by a positive number as τ →∞ but

sup
|α|6N,x∈U

|Dα
xfτ | sup

|β|6N,x∈U
|Dβ

x
tMvτ | → 0 as τ →∞.

In general, one does not have much control on

sup
|α|6N,x∈U

|Dα
xfτ |, (2.14)

except that it is polynomially bounded. The function fτ basically serves only

as a localizer. The burden falls on finding vτ , such that

sup
|β|6N,x∈U

|Dβ
x
tMvτ |

decreases fast enough so as to compensate for the increase of the other factor.

In general the family vτ is of the form vτ = eiτφ
∑k

j=0 vjτ
−j with φ and

vj ∈ C∞0 (V ), j = 0, 1, ..., k. (For the Mizohata operator and later the Lewy

operator we will only need v0). This will be achieved by first arranging for φ

to have the property that Imφ is strictly positive in a punctured neighborhood

of 0. In finding φ we will take advantage of the fact that M has analytic

coefficients. Note that tM is just −M . Below we write M rather than tM

for this reason.

To find an equation for φ we apply M to vτ = eiτφ
∑N

j=0 vjτ
−j and organize

by powers of τ :

M(eiτφ
k∑
j=0

vjτ
−j) = eiτφ(iτMφ

k∑
j=0

vjτ
−j +

k∑
j=0

Mvjτ
−j)

= eiτφ(iτv0Mφ+
k−1∑
j=0

(ivj+1Mφ+Mvj)τ
−j +Mvkτ

−k).
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In order for this to be at the very least bounded as τ → ∞ for arbitrary

choices of vj we need Mφ = 0. We focus on this equation for a while. We

will find a solution of

Mφ = 0, φ|x1=0 = ηx2 + ix2
2.

This will ensure good bounds for the absolute value of eiτφ at {x1 = 0} by

the failure of condition (P) once we make a choice for the real constant η.

We will make a specific choice later on. To solve this Cauchy problem we

use the complex version of the Hamilton-Jacobi method. We will go in some

details through the various steps in the construction of the solution. The

graph of the gradient of the initial condition is

γ0 = {y; η + 2iy},

The initial strip is the subset of Char(P ) = {ξ1 + ix1ξ2 = 0} consisting of

points (0, x2; ξ1, ξ2) such that (x2, ξ2) ∈ γ0, that is,

Γ0 = {(0, x2; 0, η + 2ix2)}.

The Hamiltonian vector field of p = ξ1 + ix1ξ2 is

Hp =
∂

∂x1

+ ix1
∂

∂x2

− iξ2
∂

∂ξ1

.

The integral curves are the solutions of

ẋ1 = 1, ẋ2 = ix1, ξ̇1 − iξ2, ξ̇2 = 0.

The integral curve starting at the point (0, y; 0, η+2iy) is χ(t, y) = (X(t, y); Ξ(t, y))

with

X(t, x) = (t, y + it2/2), Ξ(t, x) = (−i(η + 2iy)t, η + 2iy).

The equation X(t, y) = (x1, x2) gives (t, y) in terms of (x1, x2), as expected:

t = x1, y = x2 − ix2
1/2.
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From this we get the gradient of φ at (x1, x2) by using in Ξ(t, y):

∂φ

∂x1

(x1, x2) = −i(η + 2i(x2 − ix2
1/2))x1

∂φ

∂x2

(x1, x2) = η + 2i(x2 − ix2
1/2)

that is,

∂φ

∂x1

(x1, x2) = −iηx1 + 2x1x2 − ix3
1

∂φ

∂x2

(x1, x2) = η + 2ix2 + x2
1.

From this we get

φ(x) = x2
1x2 + ηx2 + i(−ηx2

1/2− x4
1 + x2

2), and Mφ = 0.

Choosing η < 0 we get that

Imφ ≥ c(x2
1 + x2

2),

with some c > 0 in a disc D in V centered at 0 (of radius depending on η).

Let v0 ∈ C∞0 (D) , v0(x) = 1 if |x| ≤ r. Then

M(eiτφv0) = eiτφMv0, |x| < r.

Since v0(x) = 1 if |x| ≤ r,

|eiτφMv0| = e−Imτφ|Mv0| ≥ sup |Mv0|e−crτ ,

which gives (recall that tM = −M) ||tM(eiτφv0)|| ≤Area(D)1/2 sup |Mv0|e−crτ .
Let f ∈ C∞0 (V ) have Fourier transform f̂ such that f̂(0,−η) 6= 0. Define

fτ (x) = τ 2f(τx). For a large τ we have fτ ∈ C∞0 (V ), so∣∣ ∫
U

fτ (x)vτ (x)dx
∣∣ ≤ C sup

x∈V,|α|≤N
|Dα

xfτ (x)|||vτ ||. (2.15)

But∫
U

fτ (x)vτ (x)dx =

∫
U

f(x)v0(x/τ)ei(x
2
1x2/τ

2+ηx2+i(−ηx21/2τ−x41τ3+x22/τ))dx.
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Whose limits τ → +∞ is∫
U

f(x)v0(0)eiηx2dx = f̂(0,−η),

which is not 0 by our choice of f . So the left hand side of (2.15) is uniformly

bounded from below by a positive constant for all large τ . On the other

hand,

Dα
xfτ (x) = τ |α|+2(Dα

xf)(τx).

Therefore the right-hand side of (2.15) is bounded by

CArea(D) sup |Mv0| sup
x∈V,|α|≤N

|(Dα
xf(x)|τN+2e−crτ ,

which tends to 0 as τ tends to infinity. Thus M cannot be solvable. In the

analysis just completed we chose η < 0 and f̂(0,−η) 6= 0. The Hamiltonian

vector field of Re p = ξ1 is ∂/∂x1 (in R2
x × R2

ξ). The integral curve of this

vector field passing through (0, 0; 0,−η), a point in Char(M), at time 0 is

t→ γ(t) = (t, 0; 0,−η), whence

Im p(γ(t)) = −tη.

Thus Im p changes sign from − to + along γ at t = 0.

We will now use the same scheme to prove that the Lewy operator L is

not solvable. We will assume that L is solvable near 0 (it is in fact non-

solvable at any point, see below) and contradict Hörmander’s inequality. We

will again take advantage of the fact that L has analytic coefficients and look

first for a function φ such that

tLφ = 0, φ|x1=0 = ηx3 + i(x2
2 + x2

3).

We find a solution using once more the holomorphic version of the Hamilton-

Jacobi method. The principal symbol of tL is

p = −ξ1 − iξ2 + 2i(x1 + 2x2)ξ3.
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The graph of the gradient of the initial condition is

{(y2, y3; 2iy2, η + 2iy3)},

so the initial strip is the subset

{(0, y2, y3; ξ1, 2iy2, η + 2iy3) : ξ1 = 2y2(1− η − 2iy3)},

of Char(P ). We already saw that

Hp =
∂

∂x1

+ i
∂

∂x2

− 2i(x1 + ix2)
∂

∂x3

+ 2iξ3

( ∂

∂ξ1

+ i
∂

∂ξ2

)
.

The integral curves of the Hamiltonian vector field of p are the solutions of

ẋ1 = 1 ξ̇1 = 2iξ3

ẋ2 = i ξ̇2 = −2ξ3

ẋ3 = −2i(x1 + ix2) ξ̇3 = 0.

The integral curve (X(t, y2, y3),Ξ(t, y2, y3)) passing through

(0, y2, y3; 2y2(1− η − 2iy3), 2iy2, η + 2iy3)

at time 0 is given by

x1 = t ξ1 = 2i(η + 2iy3)t+ 2y2(1− η − 2iy3)

x2 = it+ y2 ξ2 = −2(η + 2iy3)t+ 2iy2

x3 = 2y2t+ y3 ξ3 = η + 2iy3.

The condition X(t, y2, y3) = (x1, x2, x3) gives

t = x1, y2 = i(x1 + ix2), y3 = 2ix1(x1 + ix2) + x3.
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Replacing this in Ξ(t, y2, y3) we get the value of the gradient of φ at (x1, x2, x3):

∂φ

∂x1

= 4ix1η − 16ix3
1 + 24x2

1 − 8x1x3 − 2ix1 + 2x2 − 2ηx2 + 8ix1x
2
2 − 4ix3x2

∂φ

∂x2

= −2x1η + 8x3
1 + 8ix2

1x2 − 4ix1x3 + 2x1 + 2ix2

∂φ

∂x3

= η − 4x2
1 − 4ix1x2 + 2ix3.

After some computations one arrives at

φ = η(−2x1x2 + x3)−4x3x
2
1 + 8x3

1x2 + 2x1x2+

i((2η − 1)x2
1 + x2

2 + x2
3 − 4x3x1x2 − 4x4

1 + 4x1x
2
2),

and sees that if η > 1/2 then

Imφ ≥ c(x2
1 + x2

2 + x2
3)

for some c > 0 in a neighborhood of 0. Repeating the rest of the argument

used for the Mizohata operator we get that L is not solvable near 0.

The Lewy operator is in fact non-solvable at any point of R3. To see this,

define first, for arbitrary y ∈ R3 ,

`y : R3 → R3, `y(x) = (y1 + x1, y2 + x2, y3 + x3 + 2(y2x1 − y1x2)).

If x0 = (x0
1, x

0
2, x

0
3) is given and u is any function defined near x0, then

u(`x0(x)) is defined near 0 and

L(u(`x0(x))) = (Lu)(`x0(x)).

Whence it follows that the non-solvability of L near 0 yelds the non-solvability

of L near x0.

2.3 The necessity of (H)

Theorem 2.3.1. Let P be a differential operator of principal type defined in

a neighborhood U of 0 in Rn and let p be its principal symbol. Suppose that
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P is solvable on U , that is, for every f ∈ C∞0 there is u ∈ D′(U) such that

Pu = f . Then HRe pIm p = 0 on Char(P ).

Since p(x, ξ) = (−1)mp(x,−ξ) (m is the order of P ), ν ∈ Char(P ) ⇐⇒
−ν ∈ Char(P ). Also, HRe pIm p is a polinomial in ξ of order 2m − 1, so if

HRe pIm p has one sign at ν0 ∈ Char(P ), then it has the opposite sign at −ν0.

Thus if the quantity HRe pIm p is not identically zero on Char(P ) then we can

assume that it is positive at some point of Char(P ). The proof consists of

assuming that P is solvable but HRe pIm p 6= 0 at some ν0 ∈ Char(P ) and

reaching a contradiction to the estimate in Lemma 2.2.1. We continue to

write U for a neighborhood of 0 in Rn. In the following lemma, f takes the

place of Im p or Re p. It is stated in a way that at the same time emphasizes

its local nature, and the invariant context in which it will be used.

Lemma 2.3.2. Let ν0 ∈ T ∗U\0 with π(ν0) = 0. Let f be a smooth real-

valued function defined near ν0 in T ∗U such that π∗Hf (ν0) 6= 0. Then there

are coordinates x1, ..., xn centered at 0 such that, in the induced canonical

coordinates on T ∗U near ν0,

Hf (ν0) =
∂

∂x1

∣∣∣
ν0
.

Proof. Since π∗Hf (ν0) 6= 0, there are coordinates y1, ..., yn centered at 0 such

that

π∗Hf (ν0) =
∂

∂y1

∣∣∣
y=0

.

Since, in the canonical coordinates yi, ηj,

Hf =
∑
j

( ∂f
∂ηj

∂

∂yj
− ∂f

∂yj

∂

∂ηj

)
,

this means that

∂f

∂η1

(ν0) = 1,
∂f

∂ηj
(ν0) = 0 for j = 2, ..., n.
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The task is to find coordinates x1, ..., xn with respect to which the above

formulas still hold but in addition all derivatives ∂f
∂yj

vanish at 0. The latter

condition is achieved by using a change of variables of the form

xj = yj +
1

2

∑
k,l

bjklykyl +O(|y|3). (2.16)

Here we have the symmetry condition bjkl = bjlk. The inverse of this change

of coordinates is of the form

yk = xk −
1

2

∑
i,j

bkijxixj +O(|x|3).

We have ∑
k

ηkdyk =
∑
i,j

ηj(δij −
∑
k

bikjxk)dxj +O(|x|2)

=
∑
i,j

ηj(δij −
∑
k

bikjyk)dxj +O(|y|2),

so

ξj =
∑
i,

ηi(δij −
∑
k

bikjyk) +O(|y|2).

Thus
∂

∂yi
=

∂

∂xi
−
∑
j,k

ηkb
k
ij

∂

∂ξj
+O(|x|),

and
∂

∂ηi
=

∂

∂ξj
+O(|x|).

Thus, modulo terms of order O(|x|),

Hf =
∂f

∂η1

∂

∂y1

−
∑
i

∂f

∂yi

∂

∂ηi

=
∂f

∂η1

( ∂

∂x1

−
∑
j,k

ηkb
k
1j

∂

∂ξj

)
−
∑
i

∂f

∂yi

∂

∂ξi

=
∂f

∂η1

∂

∂x1

−
∑
i

( ∂f
∂yi

+
∂f

∂η1

∑
k

ηkb
k
1i

) ∂

∂ξi
.
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We seek the vanishing of the coefficients of ∂
∂ξi

at ν0:

∂f

∂yi
+
∂f

∂η1

∑
k

ηkb
k
1i = 0 for all i.

Thus we take

bk1i = − ηk
|η|2

∂f/∂yi

∂f/∂η1

+ γki ,

with γki such that
∑

k γ
k
i ηk = 0 for all i but otherwise arbitrary. Thus,

recalling that ∂f/∂η1 = 1 at ν0 we get

Hf (ν0) =
∂

∂x1

∣∣∣
ν0
.

In the following theorem we view T ∗U as a subset of the complexification

C⊗ T ∗U . The latter just means that we allow the coefficients ξj in
∑
ξjdxj

to be complex.

Theorem 2.3.3. Let p be a smooth complex valued function defined in a

complex neighborhood of ν0 ∈ T ∗U\0. Suppose p(ν0) = 0, π∗HRe p(ν0) 6= 0,

and HRe pIm p > 0 at ν0. Let tp(ν) = p(−ν). Then there is, for any given

positive integer N , a smooth function φ defined in a neighborhood of x0 =

π(ν0) such that

dφ(0) = −ν0 and tp ◦ dφ = O(|x− x0|N+1) as x→ x0. (2.17)

Furthermore, there is c > 0 such that

Imφ(x) ≥ c|x− x0|2 in a neighborhood of x0. (2.18)

Proof. Using a translation we may assume that x0 = 0. We first prove the

claim when N = 1. The proof splits along two possibilities: either π∗HRe p(ν0)

and π∗HIm p(ν0) are linearly dependent, or they are not. These are coordinate-

independent properties. The Mizohata operator illustrates the first case while

the Lewy operator is an example of the second case.
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We deal with the linearly dependent case first. Since π∗HRe p(ν0) 6= 0, there

is µ ∈ R such that π∗HIm p(ν0) = µπ∗HRe p(ν0). Thus

π∗Hp/(1+iµ)(ν0) =
1

1 + iµ
(π∗HRe p(ν0) + iπ∗HIm p(ν0)) = π∗HRe p(ν0)

is a real vector. Replacing p by p/(1+ iµ) we may thus assume that π∗Hp(ν0)

is itself real. This implies that, using Lemma 2.3.2 with f = Re p we can find

coordinates x1, ..., xn such that in the induced canonical coordinates

HRe p(ν0) =
∂

∂x1

.

Thus

∂p

∂ξ1

(ν0) = 1,
∂p

∂ξj
(ν0) = 0 if j ≥ 2,

∂Re p

∂xj
(ν0) = 0, j = 1, ..., n. (2.19)

With respect to the coordinates xj, ξk, the covector ν0 is (0, ξ0). Let

ψ = −x · ξ0 +
1

2

n∑
i,j=1

αijxixj, αij = αji, all i, j, (2.20)

and write α(x) for the vector with components αi(x) =
∑

j αijxj. So dψ(x) =

(x,−ξ0 + α(x)) and

tp ◦ dψ(x) =t p(x,−ξ0 + α(x)) = p(x,−ξ0 + α(x)).

Recalling that p(ν0) = 0 we have

p(x,−ξ0 + α(x)) =
∑
j

( ∂p
∂xj

(0, ξ0)−
∑
k

∂p

∂ξk
(0, ξ0)αkj

)
xj +O(|x|2),

so we will be done if

∂p

∂xj
(0, ξ0)−

∑
k

∂p

∂ξk
(0, ξ0)αkj = 0 for all j. (2.21)

Using (2.19) these conditions reduce to

i
∂Im p

∂xj
(0, ξ0)− α1,j = 0, (2.22)
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for all j. Thus also the αj1 are determined, but we are free to choose the αkj

for k, j ≥ 2. We set αkj = iµδkj for these indices, with µ to be determined

later. The hypothesis that HRe pIm p > 0 at ν0 gives ∂Im p
∂x1

> 0 at ν0, so

Imα11 > 0.

Thus

Imψ =
1

2
Imα11(x1)2 +

n∑
j=2

∂Im p

∂xj
(0, ξ0)x1xj +

1

2
µ

n∑
j=2

(xj)
2,

and choosing µ large enough we get that Imψ > c|x|2 for some c > 0. This

completes the proof of the case N = 1 when π∗HRe p(ν0) and π∗HIm p(ν0)

are linearly dependent. Suppose now that π∗HRe p(ν0) and π∗HIm p(ν0) are

linearly independent. We choose coordinates y1, ..., yn such that

π∗HRe p(ν0) =
∂

∂y1

, π∗HIm p(ν0) =
∂

∂y2

, (2.23)

and use the proof of Lemma 2.3.2 to get new coordinates (2.16) such that

the conclusion of the lemma holds for HRe p. With the same kind of change

of coordinates we can simultaneously ask that in the expression of HIm p in

the new coordinates,

HIm p =
∂Im p

∂η2

∂

∂y2

−
∑
i

∂Im p

∂yi

∂

∂ηi

=
∂Im p

∂η2

( ∂

∂x2

−
∑
j,k

ηkb
k
2j

∂

∂ξj

)
−
∑
i

∂Im p

∂yi

∂

∂ξi

=
∂Im p

∂η2

∂

∂x2

−
∑
i

(∂Im p

∂yi
+
∂Im p

∂η2

∑
k

ηkb
k
2i

) ∂

∂ξi
,

(see the proof of Lemma 2.3.2), the coefficients of ∂
∂ξi

vanish at ν0 when i ≥ 2.

So in the new coordinates,

HRe p =
∂

∂x1

, HIm p =
∂

∂x2

− ∂Imp

∂x1

∂

∂ξ1

.
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Writing Hp at ν0 using these formulas gives

∂p

∂ξ1

= 1
∂p

∂ξ2

= i,
∂p

∂ξj
= 0 for j > 2,

∂Re p

∂x1

= 0,
∂p

∂xj
= 0 for j > 1

at (0, ξ0). We proceed as before with ψ given by (2.20). The condition that

the linear terms vanish (see (2.21)) gives

∂p

∂xj
(0, ξ0)− (α1j + iα2j) = 0 for all j,

so α1j + iα2j is determined (but not yet the individual coefficients) while

the αjk with k, j ≥ 3 can be chosen arbitrarily. We take advantage of the

latter fact by choosing, for these indices, αjk = iµδkj with positive µ. Since

∂p/∂xj(ν0) = 0 if j ≥ 2 we may further take αjk = 0 for j = 1, 2 and k ≥ 3.

The matrix α is thus a block matrix whose top left 2×2 block we now specify.

The conditions for j = 1, 2 are, respectively

i
∂Im p

∂x1

(0, ξ0)− (α11 + iα21) = 0 and α12 + iα22 = 0.

The first of these equations gives

Imα11 =
∂Im p

∂x1

(0, ξ0)− Reα21,

and the second,

Imα22 = Reα12.

Note that Imα12 is irrelevant, so we choose it to be zero. We pick α22 so that

0 < Imα22 <
∂Im p

∂x1

(0, ξ0),

and α11 purely imaginary, with

Imα11 <
(∂Im p

∂x1

(0, ξ0)− Imα22

)
.

Thus

αij =


iImα11 Imα22 0

Imα22 iImα22 0

0 0 iµI
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has positive definite imaginary part. This concludes the proof of the theorem

when N = 1.

We now show that the proof for general N ≥ 1 can be reduced to the case

where p is analytic. We use the coordinates x1, ..., xn centered at 0 obtained

in either of the two cases discussed above and let, as before, xj, ξk denote

the canonical coordinates near ν0 = (0, ξ0). Let pN be the Taylor polynomial

of p of degree N ≥ 1 based at ν0 in these coordinates:

pN(x, ξ) =
∑

|α|+|β|≤N

1

α!β!

∂|α|+|β|p

∂xα∂ξβ
(0, ξ0)xα(ξ − ξ0)β.

For the error, p̃N+1 = p− pN , we naturally have

p̃N+1(z, ζ) =
∑

|α|+|β|=N+1

pN+1,α,β(x, ξ)xα(ξ − ξ0)β,

for some functions pN+1,α,β. If φ is a function defined near 0 in U with

dφ(0) = ν0 and tpN ◦dφ = O(|x|N+1) then also tp◦dφ = O(|x|N+1). Indeed, in

the coordinates xj, ξk we have dφ(x) = (x,Oφ(x)), Oφ(0) = −ξ0, so Oφ(x) =

−ξ0 + α(x) where α(x) = O(|x|), whence

p̃N+1(x,Oφ(x)) =
∑

|α|+|β|=N+1

pN+1,α,β(x,Oφ(x))xα(−α(x))β = O(|x|N+1).

Note that since N ≥ 1, HRe pIm p(ν0) = HRe pN Im pN(ν0). Thus we may work

with pN instead of p and add to the hypotheses of the theorem that p is

real-analytic. Consider the Cauchy problem

tpN(x,Oφ(x)) = 0 φ
∣∣∣
x1=0

= ψ
∣∣∣
x1=0

,

where ψ is the function (2.20) previously obtained. Write x′ for (x2, ..., xn)

and let Ξ1(x′) be defined near x′ = 0 and satisfy

p(0, x′,Ξ1(x′),O′ψ(0, x′)) = 0, Ξ1(0) = −ξ0
1 . (2.24)

Since O′ψ(0, 0) = (−ξ0
2 , ...,−ξ0

n) and p(0, ξ0) = 0, and furthermore ∂p/∂ξ1(ν0) =

1 6= 0, the holomorphic version of the Implicit Function Theorem gives the
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existence, uniqueness, and analyticity of the function Ξ1 in a neighborhood

of 0. Using the holomorphic version of the Hamilton-Jacobi method as before

we get a solution φ of the Cauchy problem stated above. By construction,

Oφ(0) = −ξ0. We now verify, making full use of the special coordinates we

chose, that the Hessian of φ at 0 is the matrix α. This will imply (2.18) and

conclude the proof of the theorem. Note in the first place that the initial

condition already gives

∂2φ

∂xi∂xj
(0) = αij, i, j > 1.

To obtain these formulas for j = 1 we use the fact that

0 = tp(x,Oφ) =
∑
j

( ∂p
∂xj

(0, ξ0)−
n∑
k=1

∂p

∂ξk
(0, ξ0)

∂2φ

∂xk∂xj
(0)
)
xj +O(|x|2),

to conclude first that

∂p

∂xj
(0, ξ0)−

n∑
k=1

∂p

∂ξk
(0, ξ0)

∂2φ

∂xk∂xj

for each j. The argument now splits as before. In the first case we discussed

(where π∗HIm p(ν0) = 0) this gives, exactly as in (2.22) and with the same

consequence, that

∂2φ

∂xk∂xj
= i

∂p

∂xj
(0, ξ0) = α1j for all j.

In the second case (where π∗HIm p(ν0) and π∗HRe p(ν0) are linearly indepen-

dent) we get

∂p

∂x1

(0, ξ0)−
( ∂2φ

∂x1∂x1

(0) + i
∂2φ

∂x1∂x2

(0)
)

= 0

∂2φ

∂x1∂xj
(0) + i

∂2φ

∂x2∂xj
(0) = 0 for j > 1,

which give
∂2φ

∂x1∂xj
(0) = −i ∂2φ

∂x2∂xj
(0) = α2j for j > 1,
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and, as a consequence

∂2φ

∂x1∂x1

(0) =
∂p

∂x1

(0, ξ0)− i ∂2φ

∂x1∂x2

(0) =
∂p

∂x1

(0, ξ0)− iα12 = α11. (2.25)

This completes the proof of the theorem.

Suppose P is a differential operator of order m and principal symbol p

and φ and v0 are smooth. Then

tP (x,Dx)(e
iτφv0) = eiτφ

m∑
j=0

τm−j tP (m−j)(x,Dx)v0, (2.26)

where tP(m−j)(x,Dx) is of order j, tP0(x,Dx) = tP (x,Dx),
tPm(x,Dx) is a

multiplication by p(x,Oφ(x)), and

Pm−1 = − ∂p
∂ξj

(x,−Oφ(x))Dxj + c, (2.27)

where c is a function. If φ satisfies (2.17)-(2.18), then

|τmeiτφ tPm(x,Dx)v0| ≤ Cτm−(N+1)/2,

near x0 so with N such that m − (N + 1)/2 = −r with r a positive inte-

ger we get that this term decreases to 0 as τ → ∞. We wish to get the

same kind of behavior for all terms τm−jeiτφ tPm−j(x,Dx)v0 . We can get

τm−1eiτφ tPm−1(x,Dx)v0 to have the right behavior if we can arrange that

tPm−1(x,Dx)v0 = O(|x− x0|2(m+r−1)),

but in general v0 needs to be replaced by a polynomial in τ−1 (with smooth

coefficients) in order to achieve estimates with τ−r. We have in fact the

following lemma.

Lemma 2.3.4. Let P be a differential operator of principal type, of order

m and principal symbol p. Suppose the hypotheses of Theorem 2.3.3 hold for

p, and let φ satisfy (2.17)-(2.18), in a neighborhood V of x0. Let N be a

positive integer. There are v0, ..., vk ∈ C∞0 such that

sup
x∈V
|e−iτφtP (x,Dx)

(
eiτφ

K∑
k=0

τ−kvk
)
| ≤ τ−r

for some C > 0.



32 2. Introduction to Solvability

Proof. Without loss of generality we assume x0 = 0. Using (2.26) we get

e−iτφtP (x,Dx)
(
eiτφ

∑̀
k=0

τ−kvk
)

=
m+K∑
`=0

τm−l
∑
k+j=`

tP (m−j)(x,Dx)vk,

where for simplify the formulas we have defined tP = 0 if j > m and vk = 0

if k > K. We will specify φ and find the vk so that∑
k+j=`

tPm−j(x,Dx)vk = O(|x|2(m+r−`)) as x→ 0, (2.28)

without concern about their support. From this it will follow that

|τm−`eiτφ
∑
k+j=`

tPm−j(x,Dx)vk| ≤ Cτ−r,

uniformly in a neighborhood of 0. We then replace each vk by χvk where

χ ∈ C∞0 (V ) and χ(x) = 1 near 0 to arrange for the condition of the support

of the vk in the statement of the lemma. When ` = 0, the left-hand side of

(2.28) reduces to p(x,−Oφ(x))v0, so we pick N = 2(m + r)− 1 in Theorem

2.3.3 to obtain (2.28). Next, with ` = 1 we get∑
k+j=`

tPm−j(x,Dx)vk = tPm−1(x,Dx)v0 + tPm(x,Dx)v1.

The second term on the right is p(x,−Oφ(x))v1 = O(|x|2(m+r−`)) which is

better than needed, so we dismiss it and focus on finding v0 such that

tPm−1(x,Dx)v0 = O(|x|2(m+r−`)).

We work in the coordinates of the proof of Theorem 2.3.3. Since dφ(0) = ν0

and ∂p/∂x1 6= 0 at ν0, tPm−1(x,Dx) is noncharacteristic for x1 = 0. We find

a solution of our problem by first replacing the coefficients of tP (m−1)(x,Dx)

by their Taylor polynomials of order N0 = 2(m−r)−3 to reduce the problem

to the analytic situation, as in the proof of Theorem 2.3.3; the reminders will

then be O(|x|2(m+r−`)) which is all that is needed. Letting tPm−1,N0(x,Dx)

be the resulting operator, we then solve

tPm−1,N0(x,Dx)v0 = 0, v0

∣∣∣
x1=0

= 1,
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in a neighborhood of 0 taking advantage of the analiticity of the coefficients.

We now proceed by induction. Suppose that k0 ≥ 1 and that v0, ..., vk0−1

have been found so that (2.28) holds for ` ≤ k0. With ` = k0 + 1 the left

hand side of (2.28) is

k0+1∑
k=0

tPm−(k0+1−k)(x,Dx)vk.

The term with k = k0 + 1 is p(x,−Oφ(x))vk0+1 which is already of order

O(|x|2(m+r)), so after dismissing it the problem becomes to ensure that

k0+1∑
k=0

tPm−(k0+1−k)(x,Dx)vk = O(|x|2(m+r−k0−1)).

Here only vk0 is not yet known. We replace
∑k0+1

k=0
tPm−(k0+1−k)(x,Dx)vk by

its Taylor polynomial of sufficiently high order, call it fk0−1, and then solve

tP (m−1,N0)(x,Dx)v0 = −fk0 , vk0

∣∣∣
x1=0

= 1.

This concludes the proof.

2.4 On the change of sign from + to −

The condition HRe pIm p > 0 at some point ν0 ∈ Char(P ) implies that

Im p changes sign form − to + along the oriented integral curve γ(t) of HRe p

through ν0. We have seen how this change of sign enters in the proof of

non-solvability. We may ask, on the other hand, what can happen when the

opposite change of sign occurs, or if there is no change of sign at all. In this

section we explore these possibilities through examples.

Consider P = Dx1 + ixk1Dx2 , first with k odd. The principal symbol is

p = ξ1 + ixk1ξ2 with characteristic set

Char(P ) = {(0, x2; 0, ξ2) : ξ2 6= 0},

and HRe pIm p < 0 on ξ2 < 0. We show that the equation

Pu = f,
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with arbitrary f ∈ C∞0 (R2) has a solution “on ξ2 < 0” in the sense that there

is a Schwartz distribution u ∈ S ′(R2) such that the partial Fourier transform

P̂ u(x1, ξ2) is equal to f̂(x1, ξ2) on ξ2 < 0. Indeed, with f as specified, consider

the equation

(Dx1 + ixk1ξ2)û(x1, ξ2) = f̂(x1, ξ2).

The method of variation of the coefficients gives

û(x1, ξ2) = i

∫ x1

0

e(xk+1
1 −yk+1

1 )ξ2/(k+1)f̂(y1, ξ2)dy1.

Evidently the quantity (xk+1
1 − yk+1

1 )ξ2 is nonpositive in ξ2 < 0 when yk+1
1 <

xk+1
1 , which is the case if 0 ≤ y1 ≤ x1 or x1 ≤ y1 ≤ 0 because k + 1 is even.

But this is the case in the integral above.

Define

v(x1, x2) =
i

2π

∫ +∞

−∞
eix2ξ2

∫ x1

0

e(xk+1
1 −yk+1

1 )ξ2/(k+1)f̂(y1, ξ2)dy1dξ2.

Then v is a Schwartz distribution such that

P̂ v(x1, ξ2)− f̂(x1, ξ2) = 0 on ξ2 < 0,

as required. We say that Pv = f microlocally on ξ2 < 0.

Consider now P as above but with k even. Then Im p does not change sign

along any of the integral curves of HRe p so we should expect P to be solvable.

This is indeed the case: the equation Pu = f with f ∈ C∞0 (R2) has a solution,

namely

u(x) =
i

2π

∫ ∫
eiφ(x1,y1,ξ2)K(x1, y1, ξ2)f̂(y1, ξ2)dy1dξ2,

where

φ(x1, y1, ξ2) = x2ξ2 − i(xk+1
1 − yk+1

1 )ξ2/(k + 1),

K(x1, y1, ξ2) = H(−ξ2)H(x1 − y1)−H(ξ2)H(y1 − x1),

and H being the Heaviside function.
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2.5 Estimates and solvability

The estimate in Lemma 2.2.1 is in terms of C∞ seminorms. For some

purposes it is better to use Sobolev norms and in particular it is convenient

to remove the function f from the statement. We restate the lemma as

follows.

Define for each k ∈ Z+, ||f ||k =
∑
|α|≤k||Dαf ||

Proposition 2.5.1. Suppose P is a differential operator defined in an open

set U in Rn with the property that for every f ∈ C∞0 (U) and open W b U

with supp f ⊂ W there is u ∈ D′(U) such that Pu = f in W . Then, for any

V b U there are C and N such that

∀v ∈ C∞0 (V ) : ||v||−N ≤ C|| tPv||N . (2.29)

Proof. The proof is essentially the same as for Lemma 2.2.1. Let Y = C∞0 (V )

with the topology determined by the seminorms

v 7→
∑
|β|≤N

||Dβ tPv||, (2.30)

for each N . Here the norm is the L2 norm. These seminorms are actually

norms because v → tPv is injective on C∞0 (V ). Let X = C∞0 (V̄ ) with its

standard topology. This topology is the same as that defined by the family

of norms

f → ||f ||N =
∑
|α|≤N

||Dα
xf ||.

As in the proof of Lemma 2.2.1, the bilinear form

B : C∞0 (V̄ )× C∞0 (V )→ C, B(f, v) =

∫
fvdx,

is separately continuous. Indeed, on the one hand the Cauchy-Schwarz in-

equality,

|B(f, v)| ≤ ||f ||||v||,

gives the continuity in the first variable. On the other, if f ∈ C∞0 (V ) and

Pu = f (u ∈ D′(U) with W b U open containing V̄ ), then

B(f, v) = 〈Pu, v〉 = 〈u, tPv〉. (2.31)
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But the restriction of u to a neighborhood W b U of V̄ belongs to some

Sobolev space H−N(W ), therefore

|B(f, v)| ≤ ||u||−N || tPv||N .

Since X is a Fréchet space, B is continuous: there are C, N , and M such

that

|
∫
fvdx| ≤ C||f ||M ||tPv||N ∀f ∈ C∞0 (V̄ ), v ∈ C∞0 (V ). (2.32)

Thus

||v||−N = sup
f∈HM (V̄ ),||f ||M=1

|
∫
fvdx| ≤ C||tPv||N .

Replacing M and N by max(M,N) we get the estimate in the form (2.29).

The estimate (2.29) is in fact equivalent to solvability:

Proposition 2.5.2. Let P be a differential operator defined on an open set

U ⊂ Rn. Suppose that for any V b U there are C and N such that (2.29)

holds. Then P is solvable on U .

Proof. Let f ∈ C∞0 (U) be arbitrary and let V b U be a neighborhood of

supp f . Using (2.29) we obtain

|〈f, v〉| ≤ ||f ||N ||v||−N ≤ C||f ||N ||tPv||N ∀v ∈ C∞0 (V ),

which shows that the linear form

tPC∞0 (V ) 3 tPv 7→ 〈f, v〉 ∈ C

is continuous (recall that tP is injective) in the topology of HN
0 (V ).

By the Hahn-Banach Theorem this functional has an extension to a contin-

uous linear functional u : HN
0 (V ) → C, that is, there is u ∈ H−N(V ) such

that

〈u, tPv〉 = 〈f, v〉 v ∈ C∞0 (V ).

Thus Pu = f in V



Chapter 3

Constant-coefficient PDEs

In this chapter we present two different proofs of the Malgrange-Ehrenpreis

theorem about the solvability of PDE with constant coefficients. Malgrange-

Ehrenpreis theorem says that every constant coefficient linear partial differen-

tial equations have a fundamental solution E, i.e. there exists a distribution

E s.t. P (D)E = δ and so there exists a solution of the equation P (D)u = f

with f ∈ E ′, u = E ∗ f is a solution of it.

In the last part of the chapter we give an elementary proof due to D. Jerison

[14], of the L2 local solvability, in which use is made of the SAK principle by

C. Fefferman and D. H. Phong (see [7]).

3.1 Atiyah’s proof of the Malgrange-Ehrenpreis

theorem

In this proof, Atiyah uses the Hironaka theorem on the resolution of

singularities in order to prove the Hörmander-Lojasiewicz theorem on the

division of distributions and hence the existence of temperate fundamental

solutions for constant-coefficient differential operators.

Theorem 3.1.1. Let X be a real analytic manifold (paracompact and con-

nected) and let f, g1, g2, ..., gp be real analytic functions on X with f nonneg-

ative and not identically 0. Let Γ denote the characteristic function of the

37



38 3. Constant-coefficient PDEs

set

G = {x ∈ X|gi(x) ≥ 0 for all i}

Then the function f sΓ, which is locally integrable for Res > 0, extends as an

analytic function to a distribution on X which is a meromorphic function of

s in the whole complex plane. Any given relatively compact open set U in X

the poles of f sΓ occur at points of the form −r/N, r = 1, 2, ..., where N is

a fixed integer (depending on f and U) and the order of every pole does not

exceed the dimension of X. For s = 0 we have f 0Γ = Γ.

Before Proving the theorem let us first deduce the corollaries on the di-

vision of distributions.

Corollary 3.1.2. Let X be a real analytic manifold, f : X → C be an

analytic function (f 6≡ 0). Then there exists a distribution T on X such that

fT = 1.

Proof. It is enough to prove the corollary for f ≥ 0 because, if S is an inverse

of |f |2 = f̄f , then T = f̄S is an inverse of f . Applying the theorem we can

expand f s ,over U , around s = −1 in the form

f s =
∞∑
−n

ak(s+ 1)k, n = dimX, (3.1)

where each ak is a distribution. But f · f s = f s+1 cannot have a pole at

s = −1 (since f 0 = 1) and so we must have

fak = 0 for k < 0

fa0 = f 0 = 1.

Thus, over U , T = a0 is the required inverse of f . If V ⊃ U is another open

set, the expansions of f s for U and V are necessarily compatible, though the

region of convergence (around s = −1) may be smaller for V than for U .

The distribution T = a0 therefore exists on the whole of X.
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Corollary 3.1.3. Let f be a polynomial on Rn with complex coefficients

(f 6≡ 0). Then there exists a temperate distribution T on Rn such that

fT = 1.

Proof. Let m = deg f ; then the function g, defined by

g(x1, ..., xn) =
f(x1, ..., xn)(
1 +

∑n
1 x

2
i

)m ,
extends to an analytic function on the n-sphere Sn = Rn∪{∞} (it is enough

to compose g with the stereographic projection). By Corollary 3.1.2, there

is a distribution Q on Sn such that gQ = 1. The restriction of Q to Rn ⊂ Sn

is then a temperate distribution. Now put

T =
Q(

1 +
∑n

1 x
2
i

)m on Rn.

Then T is also temperate and

fT =
fQ(

1 +
∑n

1 x
2
i

)m = gQ = 1

Taking the Fourier transform in Corollary 3.1.3 we obtain in the well-

known way that

Corollary 3.1.4. Every constant-coefficient partial differential operator which

is not identically 0 has a temperate fundamental solution.

Having explained these corollaries we now return to the main theorem,

and make a number of preliminary remarks.

(i) The theorem is of a local character so that it is sufficient to prove it for

small neighborhoods of the origin in Rn.

(ii) The theorem is classical when X = R, f(x) = x2 and G = R or R+:

the poles occur at points −r/2.
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(iii) For X = R, f(x) = xN , N even, and G = R or R+ the theorem follows

from Remark (ii) by re-indexing (f(x) = (xN/2)2).

(iv) Taking products, the theorem now follows for X = Rn, f(x) = ΠxNii ,

Ni even, and G =
∏
Gi, where each Gi = R or R+.

We also need for the proof of the thm. the following version of Hironaka’s

theorem.

Theorem 3.1.5. Let F be a real analytic function (F 6≡ 0), defined in a

neighborhood of 0 ∈ Rn. Then there exists an open set U 3 0, a real analytic

manifold Ũ and a proper analytic map φ : Ũ −→ U such that

(a) φ : Ũ\Ã −→ U\A is an isomorphism, where A = F−1(0) and Ã =

φ−1(A) = (F ◦ φ)−1(0),

(b) for each P ∈ Ũ there are local analytic coordinates (y1, ..., yn) centered

at P so that, locally near P , we have

F ◦ φ = ε ·
n∏
i=1

ykii ,

where ε is an invertible analytic function and ki ≥ 0.

The basic idea, for the proof of our theorem, is to use the Hironaka the-

orem to reduce the problem to the simple cases described earlier in Remark

(iv). Before proceding further, however, we must make a few general remarks

about distributions on a manifold.

For any given n-dimensional C∞ manifold X let Ω(X) be the space of

C∞ exterior differential n-forms with compact support and D(X) the space

of C∞ densities with compact support. In local coordinates, ω ∈ Ω(X) and

µ ∈ D(X) can be respectively written as

ω = f(x)dx, µ = g(x)|dx|,

where f, g are C∞ functions, dx = dx1 ∧ dx2 ∧ ... ∧ dxn and |dx| denotes

the Lebesgue measure on Rn. If α is a local choice of orientation, then µ
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determines locally an n-form which we write as αµ. If X is itself orientable,

then a global orientation enables us to identify Ω(X) and D(X).

The space D ′(X) of distributions is defined as the dual of D(X). Since a

locally integrable function f defines a linear form on D(X), by µ 7→
∫
fµ, we

have f ∈ D ′(X). The space Ω′(X), dual of Ω(X), may be called the space

of ”twisted” distributions. If φ : X → Y is a proper C∞ map of manifolds,

it induces a map φ∗ : Ω(Y ) → Ω(X) and hence by duality a direct image

homomorphism φ∗ : Ω′(X)→ Ω′(Y ).

In order to prove the theorem it is sufficient to consider the local situation,

so we can take X to be a neighborhood of 0 ∈ Rn. Put F = f
∏n

1 gi and take

U, Ũ , φ as given by the Hironaka theorem. Let f̃ = f ◦ φ, g̃i = gi ◦ φ be the

induced functions on Ũ . For any given point P ∈ Ũ the local factorization

F̃ = f̃

p∏
1

gi = ε
n∏
1

y
kj
i ,

implies a corresponding local factorization of f̃ and each g̃i. Moreover, since

f̃ ≥ 0 the exponents for f̃ are necessarly even. Now let α denote the standard

orientation of U (inherited from Rn), α̃ the corresponding orientation of Ũ\Ã.

Then, for Res > 0,

f̃ sΓ̃α̃ ∈ Ω(Ũ\Ã),

extends to a locally integrable n-form on Ũ (here Γ̃ = Γ◦φ is the characteristic

function of the set defined by g̃i ≥ 0 for all i). In the neighborhood of P ∈ Ũ
the orientation α̃ must be of the form

α̃ =
(∏
j∈S

sgn yi

)
β, (3.2)

where β is the orientation given by the local coordinates (y1, ..., yn) and S is

a subset of (1, ..., n) defined as follows: j ∈ S if α̃ changes as we cross the

hyperplane yi = 0. Since sgn yi = 2Γj − 1 (where Γj is the characteristic

function of yi ≥ 0), it follows that f̃ sΓ̃α̃ is locally a sum of expressions of the

form

ε ·
∏

y2sMi
i ·

∏
Γj · β,
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where ε is an invertible analytic function and j runs over some subset of

(1, .., n). By Remark (iv) this implies that f̃ sΓ̃α̃ extends analytically in a

neighborhood of P , and has poles as specified in the theorem. Since this holds

for any P ∈ Ũ , we get on the whole Ũ a twisted distribution f̃ sΓ̃α̃ depending

meromorphically on s. Applying the direct immage φ∗ : Ω′(Ũ) → Ω′(U) we

obtain a twisted distribution φ∗(f̃
sΓ̃α̃) on U , depending meromorphically on

s and with poles as in the theorem. Since we have an orientation α on U

which induces an isomorphism Ω′(U) ∼= D ′(U), we get

φ∗(f̃
sΓ̃α̃) = T (s)α,

where T (s) ∈ D ′(U). To complete the proof of the theorem it remains to

check that, for Re s > 0, T (s) = f sΓ. As we have already observed, for

Re s > 0, f̃ sΓ̃α̃ is a locally integrable n-form on Ũ , which is determined by

its restriction to Ũ\Ã. Similarly, f sΓ is locally integrable and determined

by its restriction to U\A. Since φ induces an isomorphism Ũ\Ã → U\A, it

follows that

φ∗(f̃
sΓ̃α̃) = f sΓα, Res > 0,

and the proof is complete.

3.2 Hörmander’s version of the Malgrange-

Ehrenpreis theorem

3.2.1 Temperate weight functions

Definition 3.2.1. A positive function k defined in Rn will be called a tem-

perate weight function if there exist positive constants C and N such that

k(ξ + η) ≤ (1 + C|ξ|)Nk(η) ξ, η ∈ Rn. (3.3)

The set of all such functions k will be denoted by K .

From the inequality (3.3) it follows that

(1 + C|ξ|)−N ≤ k(ξ + η)/k(η) ≤ (1 + C|ξ|)N . (3.4)
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If we let ξ → 0 in (3.4) it follows that k is continuous, and when η = 0 we

obtain the estimates

k(0)(1 + C|ξ|)−N ≤ k(ξ) ≤ k(0)(1 + C|ξ|)N . (3.5)

If k ∈ K we shall write

Mk(ξ) = sup
η
k(ξ + η)/k(η). (3.6)

This means that Mk is the smallest function such that

k(ξ + η) ≤Mk(ξ)k(η). (3.7)

It also follows immediately that Mk is submultiplicative,

Mk(ξ + η) ≤Mk(ξ)Mk(η), (3.8)

and since Mk(ξ) ≤ (1 + C|ξ|)N this implies that Mk ∈ K .

Example 3.2.1. The example of a function in K which occurs frequently

is

ks(ξ) = (1 + |ξ|2)s/2, s ∈ R.

To prove that ks ∈ K it is sufficient to prove that k2 ∈ K . In fact if k ∈ K

then ks ∈ K for every real s, and this follows from the estimates

1 + |ξ + η|2 ≤ 1 + |ξ|2 + 2|ξ||η|+ |η|2 ≤ (1 + |ξ|2)2(1 + |η|)2.

Example 3.2.2. The basic example of a function in K , which is the reason

for the definition of this class, is the function P̃ defined by

P̃ (ξ)2 =
∑
|α|≥0

|P (α)(ξ)|2, Pα = ∂αξ P, (3.9)

where P is a polinomial, which yields that the sum is finite. It follows

immediately from Taylor’s formula that

P̃ (ξ + η) ≤ (1 + C|ξ|)mP̃ (η), (3.10)

where m is the degree of P and C a constant depending only on m and the

dimension n.



44 3. Constant-coefficient PDEs

3.2.2 The space Bp,k

Definition 3.2.2. If k ∈ K and 1 ≤ p ≤ ∞, we denote by Bp,k the set of

all temperate distribution u ∈ S ′ such that û is a function and

||u||p,k = ((2π)−n
∫
|k(ξ)û(ξ)|pdξ)1/p <∞. (3.11)

Theorem 3.2.3. Let P (D) be a differential operator. If u ∈ Bp,k it follows

that P (D)u ∈ Bp,k/P̃ .

Proof. Since the Fourier transform of P (D)u is P (ξ)û(ξ) and since |P (ξ)û(ξ)| ≤
|P̃ (ξ)û(ξ)|, the statement is trivial.

Theorem 3.2.4. If u ∈ Bp,k and φ ∈ S , it follows that φu ∈ Bp,k and that

||φu||p,k ≤ ||φ||1,Mk
||u||p,k. (3.12)

Proof. We know that the Fourier transform of v = φu is the convolution

v̂(ξ) = (2π)−n
∫
φ̂(ξ − η)û(η)dη, (3.13)

when φ̂ ∈ C∞0 . Multiplying (3.13) by k(ξ) and noting that k(ξ) ≤ Mk(ξ −
η)k(η), we obtain |kv̂| ≤ (2π)−n|Mkφ̂| ∗ |kû|. Hence Minkowski’s inequality

in integral form gives ||kv̂||p ≤ (2π)−n||Mkφ̂||1 ∗ ||kû||p, which is equivalent to

the estimate (3.12). Since C∞0 is dense in S , the result immediately extends

to an arbitrary φ ∈ S .

3.2.3 The space Bloc
p,k

Definition 3.2.5. Let Ω be an open subset of Rn. A linear subspace F of

D ′(Ω) is called semi-local if φu ∈ F when u ∈ F and φ ∈ C∞0 (Ω).

It is called local if, in addition, F contains every distribution u such that

φu ∈ F for every φ ∈ C∞0 (Ω).

Example 3.2.3. D ′(Ω), Ck(Ω), Lploc(Ω) are local space, whereas D ′F (Ω) (dis-

tributions with finite order), E ′(Ω), Lp(Ω) are semi-local but not local.
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Example 3.2.4. It follows from Theorem 3.2.4 that the set of restrictions

to Ω of distributions in Bp,k is semi-local.

Theorem 3.2.6. If F is semi-local, the smallest local space containing F

is the space

F loc = {u;u ∈ D ′(Ω), φu ∈ F for every φ ∈ C∞0 (Ω)}.

Proof. Since F is semi-local, we have F ⊂ F loc. It is also clear that F loc

is semi-local. To prove that F loc is local, we take a distribution u such that

φu ∈ F loc for every φ ∈ C∞0 (Ω). Choose ψ ∈ C∞0 (Ω) so that ψ = 1 in the

support of φ. Then it follows that φu = ψ(φu) ∈ F , in view of the definition

of F loc. Hence u ∈ F loc, so that F loc is a local space. It is obvious that it

is the smallest local space containing F .

Theorem 3.2.7. If u ∈ Bloc
p,k(Ω) we have P (D)u ∈ Bloc

p,k/P̃
(Ω).

Proof. For any given φ ∈ C∞0 (Ω) we can choose ψ ∈ C∞0 (Ω) so that ψ = 1

in a neighborhood of the support of φ. Since ψu ∈ Bp,k it then follows from

Theorems 3.2.3 and 3.2.4 that, using ψφ = φ

φP (D)u = φP (D)(ψu) ∈ Bp,k/P̃ , (3.14)

which proves the theorem.

3.2.4 Existence of fundamental solutions

Definition 3.2.8. A distribution E ∈ D ′(Rn) is called a fundamental solution

for the differential operator P (D) with constant coefficients if

P (D)E = δ (3.15)

where δ is the Dirac measure at 0.

Theorem 3.2.9. To every differential operator P (D) there exists a funda-

mental solution E ∈ Bloc
∞,P̃ (Rn). More precisely, to every ε > 0 there exists a
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fundamental solution E such that E/ cosh(ε|x|) ∈ B∞,P̃ and ||E/ cosh(ε|x|)||∞,P̃
is bounded by a constant depending only on ε, the dimension n and the degree

m of P .

Proof. The main step in the proof is the estimate given by the following

lemma.

Lemma 3.2.10. For every ε > 0 there exists a constant C depending only

on ε, n and m such that

|u(0)| ≤ C|| cosh(ε|x|)P (D)u||1,1/P̃ , u ∈ C∞0 (Rn). (3.16)

We shall first prove that Theorem 3.2.9 follows from Lemma 3.2.10. Note

that Definition 3.2.8 says that the distribution E is a fundamental solution

if the linear form Ĕ(v) = E ∗ v(0) on C∞0 (Rn) satisfies the identity

u(0) = Ĕ(P (D)u), ∀u ∈ C∞0 (Rn). (3.17)

In fact

〈δ|u〉 = u(0) = 〈δ|E ∗ Pu〉 = 〈δ|PE ∗ u〉 = 〈(PE )̌ ∗ δ|u〉 =

〈PE ∗ δ̌|u〉 = 〈PE|u〉, ∀u ∈ C∞0 (Rn),

where v̌(x) = v(−x), (for a review of the inequalities that we have used

above one can see [33]).

In other words E is a fundamental solution if Ĕ is an extension of the linear

form P (D)u 7→ u(0), u ∈ C∞0 (Rn). In view of the Hahn-Banach theorem and

(3.16), a linear form Ĕ on C∞0 (Rn) satisfying (3.17) can thus be constructed

so that

|Ĕ(v)| ≤ C||(cosh ε|x|)v)||1,1/P̃ , v ∈ C∞0 (Rn). (3.18)

If we write Eε = E/ cosh ε|x|, this means that

|Ĕ(v)| ≤ C||v||1,1/P̃ , v ∈ C∞0 (Rn). (3.19)

Hence Eε ∈ B∞,P̃ (since B′
1,1/P̃

= B∞,P̃ ), which proves Theorem 3.2.9.
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The proof of Lemma 3.2.10 will be obtained as a result of a few lemmas

concerning analytic functions.

Lemma 3.2.11. If f is an analytic function of a complex variable t when

|t| ≤ 1, and p is a polinomial in which the coefficient of the highest order

term is A we have the inequality

|Af(0)| ≤ (2π)−1

∫ 2π

0

|f(eiθ)p(eiθ)|dθ. (3.20)

Proof. Let m be the degree of p and let q be the polynomial q(t) = tmp̄(1/t)

where p̄ is obtain by taking complex conjugates of the coefficients of p. Then

we have q(0) = Ā and |q(eiθ)| = |p(eiθ)| so that 3.20 reduces to the familiar

inequality

|f(0)q(0)| ≤ (2π)−1

∫ 2π

0

|f(eiθ)q(eiθ)|dθ.

Lemma 3.2.12. With the notation of Lemma 3.2.11 we have, if the degree

of p is ≤ m and Cm,k = m!/(m− k)!,

|f(0)p(k)(0)| ≤ Cm,k(2π)−1

∫ 2π

0

|f(eiθ)p(eiθ)|dθ. (3.21)

Proof. We may assume that the degree of p is equal to m and write

p(t) =
m∏
1

(t− tj). (3.22)

Applying the previous lemma to the polynomial
∏m

1 (t− tj) and the analytic

function f(t)
∏m

1 (t− tj), we obtain∣∣∣f(0)
m∏
1

tj

∣∣∣ ≤ (2π)−1

∫ 2π

0

|f(eiθ)p(eiθ)|dθ. (3.23)

A similar inequality holds for any (m− k)-fold product of the numbers tj

on the left-hand side, and since p(k)(0) is the sum of Cm,k terms, the inequality

(3.21) follows.

Note that (3.21) reduces to (3.20) when k = m and is trivial when k =

0.
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Before extending Lemma 3.2.12 in several variables we shall give it a

slightly more general form. Suppose that f is entire and apply (3.21) to the

function f(rt) and the polynomial p(rt) where r > 0. This gives

|f(0)p(k)(0)|2πrk ≤ Cm,k

∫ 2π

0

|f(reiθ)p(reiθ)|dθ.

Let ψ(r) be a nonnegative integrable function with compact support. Mul-

tiplying by rψ(r) and integrating w.r.t. r, we obtain

|f(0)p(k)(0)|
∫
C
|tk||ψ(|t|)|L(dt) ≤ Cm,k

∫
C
|f(t)p(t)|ψ(|t|)L(dt), (3.24)

where L(dt) stands for the Lebesgue measure rdrdθ and the integrals are ex-

tended over the whole complex plane. The following generalization to several

variables follows immediately by applying (3.24) to the variables ξ1, ..., ξn.

Lemma 3.2.13. Let F (ξ) be an entire function and P (ξ) a polynomial of

degree ≤ m in ξ = (ξ1, ..., ξn) ∈ Cn. Let Ψ(ξ) be a nonnegative integrable

function with compact support, depending only on |ξ1|, ..., |ξn|. Then

|F (0)P (α)(0)|
∫
Cn
|ξα|Ψ(ξ)L(dξ) ≤ Cm,|α|

∫
Cn
|F (ξ)P (ξ)|Ψ(ξ)L(dξ), (3.25)

where L(dξ) is the Lebesgue measure in Cn.

Proof of Lemma 3.2.10. Let u ∈ C∞0 (Rn) and write P (D)u = v. We then

have P (ξ)û(ξ) = v̂(ξ). With fixed ζ we apply Lemma 3.2.13 to F (ξ) =

û(ξ + ζ) and to the polynomial P (ξ + ζ), taking Ψ(ξ) = 1 if |ξ| < ε/2 and

Ψ(ξ) = 0 otherwise. Adding over α and noting that P̃ (ζ) ≤
∑
|P (α)(ζ)|, we

obtain with a constant C1 depending only on ε, n and m

|û(ζ)|P̃ (ζ) ≤C1

∫
Cn
|û(ζ + ξ)P (ζ + ξ)|Ψ(ξ)L(dξ)

=C1

∫
Cn
|v̂(ζ + ξ)|Ψ(ξ)L(dξ).
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Integration of this estimate w.r.t. ζ after division by P̃ (ζ) now gives

|u(0)| =
∣∣∣(2π)−n

∫
û(ζ)L(dζ)

∣∣∣ ≤
≤(2π)−nC1

∫ ∫
|v̂((ξ + ζ)|/P̃ (ζ)L(dζ)Ψ(ξ)L(dξ)

=C1

∫
||e−i〈·,ξ〉v||1,1/P̃Ψ(ξ)L(dξ) ≤

≤
∫
C1Ψ(ξ)L(dξ) sup

|ξ|<ε/2
||e−i〈·,ξ〉v||1,1/P̃ .

Using Theorem 3.2.2 we obtain the estimate (3.16) with

C = C1

∫
Ψ(ξ)dξ sup

|ξ|<ε/2
||e−i〈·,ξ〉/ cosh ε| · |||1,M1/P̃

. (3.26)

The right-hand side is finite since the set formed by the function x 7→
e−i〈x,ξ〉/ cosh ε|x| with ξ ∈ Cn and |ξ| < ε/2 is bounded in S . This com-

plete the proof of the Lemma 3.2.10.

3.3 An elementary approach to local solvabil-

ity in L2(Ω) (Jerison [14])

Let Ω be a bounded, open subset of Rn. The Hilbert space L2(Ω) with

inner product 〈f, g〉 =
∫

Ω
f(x) ¯g(x)dx and norm ||f || =

√
〈f, f〉 is the space

in which we will find a solution to P (D)u = f i.e L2 solvability

Theorem 3.3.1. Let P (D) be a constant-coefficient partial differential op-

erator (but not the zero operator). For any given φ ∈ L2(Ω) there exists

u ∈ L2(Ω) such that P (D)u = φ in the sense of distributions.

Proof. We begin the proof by showing that it suffices to prove

||f || ≤ C||P̄ (D)f ||, ∀f ∈ C∞0 (Ω). (3.27)
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Indeed, given φ ∈ L2(Ω), define a linear functional u0 on the subspace

V = {P̄ (D)f ; f ∈ C∞0 (Ω)} by u0(P̄ (D)f) = 〈f, φ〉. Note that u0 is well-

defined because P̄ (D) is injective (and P̄ (D) = P (D)∗). Moreover the linear

functional is bounded beacuse (3.27) implies

|u0(P̄ (D)f)| = |〈f, φ〉| ≤ ||f ||||φ|| ≤ C||P̄ (D)f ||||φ||.

By the Hahn-Banach theorem, there is an extension of u0 to a linear func-

tional on L2(Ω). We can identify this functional with an element u of L2(Ω).

Thus 〈f, φ〉 = 〈P̄ (D)f, u〉 for all f ∈ C∞0 , as desired.

Plancherel’s formula now implies that (3.27) is equivalent to∫
Rn
|f̂(y)|2dy ≤ C2

∫
Rn
|P (y)|2|f̂(y)|2dy, (3.28)

for all f ∈ C∞0 (Ω).

We will suppose for convenience that Ω ⊂ B1, where B1 is the ball of

radius 1 centered at the origin. Here is the version of the uncertainty principle

that we need.

Theorem 3.3.2. Let F1 be the family of unit cubes of Rn with integer lattice

point corners. Let P be a polynomial of degree m and denote

P ∗1 (y) =
∑
Q∈F1

max
Q
|P |χQ(y),

where χQ is the characteristic function of Q.

(i) There is a constant σ(P ) > 0 such that P ∗1 (y) ≥ σ(P ).

(ii) There is a constant C = C(n,m) such that for every f ∈ C∞0 (B1),∫
Rn
|f̂(y)|2dy ≤ C2

∫
Rn

|P (y)|2

P ∗1 (y)2
|f̂(y)|2dy.

In particular, ∫
Rn
|f̂(y)|2dy ≤ C

σ(P )2

∫
Rn
|P (y)|2|f̂(y)|2dy.
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Remark 1. The role played by tiling F1 is somewhat arbitrary. One can,

for instance, rotate and traslate F1 without changing the result. In fact,

if Q1 and Q2 are unit cubes whose distance apart is at most 1, then there

is a constant c = c(n,m) > 0 such that c ≤ maxQ1 |P |/maxQ2 |P | ≤ c−1.

This follows from the fact that all norms on the finite dimensional space of

polynomials of degree ≤ m are equivalent. Moreover, a similar argument

shows that there is a constant c = c(n,m, r) > 0 such that

c ≤ P ∗r (y)/P ∗1 (y) ≤ c−1, ∀y ∈ Rn, (3.29)

where P ∗r (y) =
∑
Q∈Fr

max
Q
|P |χQ(y) and Fr = {rQ;Q ∈ F1, r > 0}.

Proof. Let Q be a unit cube. Equivalence of norm implies there is a constant

C = C(n,m) such that

max
Q
|(∂α/∂yα)P (y)| ≤ C max

Q
|P |.

Therefore, |(∂α/∂yα)P (y)| ≤ CP ∗1 (y). Choose a non-zero coefficient of P ,

aα, of highest order |α| = m. Then |(∂α/∂yα)P (y)| = α!|aα| is a constant

independent of y, and we have the positive lower bound of part (i).

For part (ii) we observe that by Plancherel’s theorem, for all f ∈ C∞0 (B1),

||Of̂ ||2 = (2π)n|||x|f ||2 ≤ (2π)n||f ||2 = ||f̂ ||2 (it is here that we use the restric-

tion on the support of f).

Lemma 3.3.3 (Fefferman, SAK [7] p.146). Assume that V (y) is a nonneg-

ative polynomial of degree ≤ d on a cube Q of side-length r in Rn. Suppose

that maxQ V ≥ r−2. There is a constant c1 = c1(n, d) such that for all

u ∈ C∞(Q), ∫
Q

(|Ou(y)|2 + V (y)|u(y)|2)dy ≥ c1r
−2

∫
Q

|u(y)|2dy

Proof. First of all, a change of variables x → rx shows that it suffices to

consider the case r = 1. Thus we take the unit cube Q = {y ∈ Rn : 0 ≤ yi ≤
1} and V a polynomial of degree ≤ d such that maxQ V ≥ 1.
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The family of functions φα(y) =
∏n

j=1 cos(παjyj) indexed by α ∈ Zn+
forms an orhogonal basis for L2(Q). If we write the series for u ∈ C∞(Q) in

this basis, it is easy to check that∫
Q

|Ou(y)|2dy ≥ π2

∫
Q

|u(y)− u0|2dy, (3.30)

with u0 =
∫
Q
u(y)dy, the average of u on Q. Therefore, we need only bound

|u0|2 from above. To do this we will first show that V (y) ≥ 1/2 on an wide

portion of Q.

By equivalence of norms, there is a constant C = C(d, n) such that

maxQ |OV | ≤ C maxQ |V | = C maxQ V . Then V (y) ≥ 1
2

maxQ V ≥ 1
2

for

all y ∈ B ∩Q, where B is a ball of radius 1/2C centered at a point of Q at

which V takes on its maximum.

Next,∫
Q

(|Ou(y)|2 + V (y)|u(y)|2)dy

≥
∫
Q

(π2|u(y)− u0|2 + V (y)|u(y)|2)dy

≥
∫
Q

min(V (y), π2)(|u(y)− u0|2 + |u(y)|2)dy

≥ 1

2

∫
Q

min(V (y), π2)|u0|2dy ≥
1

4

∫
B∩Q
|u0|2dy = c0|u0|2,

where c0 = Vol(B ∩ Q)/4 depends only on n and d. Combining this with

(3.30), we have∫
Q

(|Ou(y)|2 + V (y)|u(y)|2)dy

= (
1

2
+

1

2
)

∫
Q

(|Ou(y)|2 + V (y)|u(y)|2)dy

≥ π2

2

∫
Q

|u(y)− u0|2dy +
c0

2
|u0|2

≥ c0

2

∫
Q

(|u(y)− u0|2 + |u0|2)dy =
c0

2

∫
Q

|u(y)|2dy.
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We will apply the lemma with d = 2m. Choose r so that c1r
−2 = 2. Fix

Q ∈ Fr, and let V (y) = |P (y)|2/r2 maxQ |P |2. Then maxy∈Q V (y) = r−2,

and the lemma implies∫
Q

(|Of̂(y)|2 + V (y)|f̂(y)|2)dy ≥ 2

∫
Q

|f̂(y)|2dy.

Summing over Q ∈ Fr,∫
Rn

(
|Of̂(y)|2 +

|P (y)|2

r2P ∗r (y)2
|f̂(y)|2

)
dy ≥ 2

∫
Rn
|f̂(y)|2)dy.

But ||Of̂ ||2 ≤ ||f̂ ||2, so that∫
Rn

|P (y)|2

r2P ∗r (y)2
|f̂(y)|2dy ≥

∫
Rn
|f̂(y)|2)dy.

Finally, since r depends only on n and m, (3.29) implies

P ∗1 (y)2

r2P ∗r (y)2
≤ C = C(n,m),

and hence (ii).



54 3. Constant-coefficient PDEs



Chapter 4

Construction of a parametrix

for elliptic operators

4.1 The process of “inverting” an elliptic dif-

ferential operator

A differential operator is called elliptic if its principal symbol does not

vanish when ξ 6= 0. We will now describe the process of “inverting” an elliptic

differential operator.

Let us assume first that P has constant coefficients. Since pm(ξ) 6= 0 on

the unit sphere Sn−1 = {ξ; |ξ| = 1}, there is a constant C1 > 0 such that

pm(ξ) ≥ C1 on Sn−1 and, by homogeneity, |pm(ξ)| ≥ C1|ξ|m on Rn. On the

other hand, there is another constant, C2, such that |p(ξ)−pm(ξ)| ≤ C2|ξ|m−1

if |ξ| is large enough, since p(ξ)−pm(ξ) is a polynomial of degree m−1. Then

|p(ξ)| ≥|pm(ξ)| − |p(ξ)− pm(ξ)|

≥C1|ξ|m − C2|ξ|m−1

=|ξ|m(C1 −
C2

|ξ|
),

so |p(ξ)| > 0 if |ξ| is large enough. Let then φ ∈ C∞0 (Rn) be a function

which is equal to 1 in a neighborhood of the zeros of p(ξ) and define q(ξ) =

55
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(1 − φ)/p. Then q is a smooth, tempered function with the property that

pq = 1 − φ,which is a function equal to 1 in the complement of a compact

set. Define the operator Q by

Qu(x) = (2π)−n
∫∫

R2n

ei(x−y)·ξq(ξ)u(y)dydξ, u ∈ S (Rn).

It is then immediate that Q : S (Rn) −→ S (Rn) continuously. Moreover,

PQu(x) = (2π)−n
∫∫

R2n

ei(x−y)·ξp(ξ)q(ξ)u(y)dydξ

= 2π)−n
∫∫

R2n

ei(x−y)·ξ(1− φ(ξ))u(y)dydξ

= u(x)−Ru(x),

with Ru(x) = (2π)−n
∫∫

R2n e
i(x−y)·ξφ(ξ)u(y)dydξ. Since φ ∈ C∞0 (Rn), the

operator R maps S ′(Rn) into S (Rn) and it is continuous. We call such

an operator a smoothing operator. Thus P is invertible modulo smoothing

operators.

Let us now consider the case where P does not have constant coefficients.

Let us assume that the coefficients are defined on all of Rn and that they are

bounded along with and all their derivatives by all orders. Let us also assume

P is elliptic, i.e. ∃C > 0 such that |pm(x, ξ)| > C|ξ|m for all (x, ξ) with ξ 6= 0.

By our assumptions, one sees that the zeros of p(x, ξ) are contained in a set

Rn × Ω where Ω is a bounded neighborhood of 0. Choose φ ∈ C∞0 (Rn) with

φ = 1 near Ω and define q−m(x, ξ) = (1 − φ)/p(x, ξ). The operator Q−m

defined by

Q−mu(x) = (2π)−n
∫∫

R2n

ei(x−y)·ξq−m(x, ξ)u(y)dydξ,

(integrate first in y, then in ξ) is a continuous operator from S (Rn) to

C∞(Rn). But now we do not have PQ−m = I + R with R smoothing.
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Rather,

PQ−mu(x) = (2π)−n
∫∫

R2n

ei(x−y)·ξp(x, ξ)q−m(x, ξ)u(y)dydξ

(4.1)

+(2π)−n
∫∫

R2n

ei(x−y)·ξ
( ∑
|α|≤m

aα(x)
∑
β<α

(
α

β

)
Dα−β
x q−m(x, ξ)ξβ

)
u(y)dydξ,

using the Leibnitz rule. Since pq−m = 1 + φ, the first expression on the right

equals u+Ru, where R is an error like the one obtained earlier in the constant

coefficient case. But the second term (absent in the constant coefficient case)

is not of that form. Call it R−1u(x), and let r−1(x, ξ) be the expression in

bracket in that integral, so that

R−1u(x) = (2π)−n
∫∫

R2n

ei(x−y)·ξr−1(x, ξ)u(y)dydξ.

Note that for large |ξ|,the term q−m(x, ξ) and its x-derivatives are controlled

by |ξ|−m, so that r−1(x, ξ) is controlled by |ξ|−1. We also note that (4.1) is

true regardless qm. So, if we set q−m−1 = −r−1q−m and define

Q−m−1u(x) = (2π)−n
∫∫

R2n

ei(x−y)·ξq−m−1(x, ξ)u(y)dydξ,

we have

PQ−m−1u(x) = (2π)−n
∫∫

R2n

ei(x−y)·ξp(x, ξ)q−m−1(x, ξ)u(y)dydξ

+(2π)−n
∫∫

R2n

ei(x−y)·ξ
( ∑
|α|≤m

aα(x)
∑
β<α

(
α

β

)
Dα−β
x q−m−1(x, ξ)ξβ

)
u(y)dydξ.

The first expression equals −R−1 plus a smoothing operator, and the second

one can be written as

R−2u(x) = (2π)−n
∫∫

R2n

ei(x−y)·ξr−2(x, ξ)u(y)dydξ,

so that P (Q−m + Q−m−1) = I + R−2+smoothing. The symbol r−2(x, ξ) is

controlled by |ξ|−2 and q−m−1 by |ξ|−m−1. We repeat the process, with the
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purpose of getting rid of R−2, defining q−m−2 = −r−2q−m and the corre-

sponding operator. In this way we get sequences of operators Q−m−j, R−1−j,

respectively defined by symbols of order m− j and 1− j, with the property

that

P (Q−m +Q−m−1 + ...+Q−m−N) = I +R−N−1 + smoothing.

The regularity of the Schwartz kernel of R−N increases with N , so if you

could add all the Q−m−j, so as to be able to define Q =
∑

j Q−m−j in

such a way that the operators
∑

j>N Q−m−j have kernels with increasing

regularity, we would have PQ − I = P (
∑

j≤N Q−m−j +
∑

j>N Q−m−j) =

R−N−1 +P (
∑

j>N Q−m−j), which is an operator whose kernel has arbitrarily

high regularity, that is, is smoothing.

All of the above can actually be done in a suitable way. One cannot

directly add the Q−m−j but there is a perfectly good substitute for that.

4.2 Parametrix for elliptic operators

Definition 4.2.1. Let X ⊂ Rn be an open set, if a ∈ Sm
′
(X × Rn), b ∈

Sm
′′
(X × Rn), we can define a]b ∈ Sm

′+m′′
(X × Rn) uniquely up to some

element of S−∞(X × Rn) by

(a]b)(x, ξ) ∼
∑ 1

α!
∂αξ a(x, ξ)Dα

x b(x, ξ),

where ∼ means the asymptotic sum.

This gives a biliner map

Sm
′
/S−∞ × Sm′′

/S−∞ 3 (a, b) 7→ a]b ∈ Sm′+m′′
/S−∞, (4.2)

and the “product” ] is associative.

Theorem 4.2.2. If P ∈ Lm(X) is elliptic, then there exists Q ∈ L−m(X),

properly supported, such that P ◦ Q ≡ Q ◦ P ≡ I mod L−∞(X). Moreover

Q is unique modulo L−∞(X).
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Proof. Using a partition of unity we can first find a function q0 ∈ C∞(X×Rn)

such that for every compact K ⊂ X, there is a constant CK > 0 such that

q0(x, ξ) =
1

p(x, ξ)
for x ∈ K, |ξ| ≥ CK .

Lemma 4.2.3. q0(x, ξ) ∈ S−m(X × Rn).

We have p]q0 = 1− r, q0]p = 1− t with r, t ∈ S−1/S−∞. Define

qr = q0](1 + r + r]r + r]r]r + ...) ∈ Sm/S−∞

ql = (1 + t+ t]t+ t]t]t+ ...)]q0 ∈ Sm/S−∞.

Then p]qr = 1, ql]p = 1 (in S0/S−∞), and, furthermore ql](p]qr) = (ql]p)]qr =

qr.

Let Q ∈ Lm(X) be properly supported with symbol ql = qr mod S−∞.

Then P ◦Q ≡ Q◦P ≡ I mod L−∞(X). If Q′ ∈ Lm(X) is a second operator

with the same properties, we get P ◦ (Q−Q′) ≡ 0 and composing with Q to

the left gives Q−Q′ ≡ 0.

The operator Q is called a parametrix.

Corollary 4.2.4. Let A be an elliptic differential operator with smooth co-

efficients on an open set X ⊂ Rn and let x0 ∈ X. Then there exists an open

neighborhood V ⊂ X of x0 such that for every v ∈ D ′(V ) and every open

W b V , there exists u ∈ D ′(V ) such that Au = v in W .

Proof. For every compact K ⊂ X,and every s ∈ R, there exists C = CK,s > 0

such that

||u||s+m ≤ C(||A∗u||s + ||u||s), ∀u ∈ E ′(K) ∩Hs+m(Rn).

In fact, let B ∈ L−m(X) be a properly supported parametrix of A∗. Then

u = BA∗u + Ru where R ∈ L−∞(X) is properly supported and both B and

R are continuous Hs
comp(X) −→ Hs+m

comp(X).
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We assume m ≥ 1 (the case m = 0 is trivial). By Poincaré’s lemma we

know that for every ε > 0 we have ||u||0 ≤ ||u||m for all u ∈ E ′(K) ∩Hm(Rn),

provided the diameter of the support of u is sufficiently small depending on

ε and m only. Hence, if V is a sufficiently small open neighborhood of x0, we

have in addition to the previous estimate with s = 0, that C||u||0 ≤ 1
2
||u||m

and hence

||u||m ≤ 2C||A∗u||0, ∀u ∈ E ′(K) ∩Hm(Rn).

If v ∈ D ′(V ), we first put ũ = B̃v, where B̃ ∈ L−m(V ) is a properly supported

parametrix of A. Then Aũ = v + ṽ where ṽ ∈ C∞(V ), and the problem of

local solvability is reduced to the case when v ∈ C∞(V ). For such a v, we

let W b V be open and consider the linear form

` : Hm(Rn) ∩ E ′(W ) 3 φ 7→ 〈φ|v〉 ∈ C.

Then |`(φ)| ≤ C(v,W )||φ||m ≤ C̃(v,W )||A∗φ||0. Hence `(φ) = k(A∗φ), where

k is a bounded linear form on L = {A∗φ ∈ L2∩E ′(W );φ ∈ Hm(Rn)∩E ′(W )}.
By the Hahn-Banach theorem, k has a bounded extension to L2(Rn),

whence there exists u ∈ L2(Rn) such that

k(A∗φ) = 〈A∗φ, u〉, ∀φ ∈ L2 ∩ E ′(W ),

and therefore Au = v in W .



Chapter 5

Hypoelliptic operators

5.1 Hypoellipticity and local solvability

Let P be a properly supported pseudodifferential operator of order m, and

let X ⊂ Rn be open.

Definition 5.1.1. The operator P is hypoelliptic if

sing supp u = sing supp Pu, ∀u ∈ D ′(X).

Equivalently: ∀Y ⊂ X, Y open,

u ∈ D ′(X), Pu ∈ C∞(Y ) =⇒ u ∈ C∞(Y ). (5.1)

Set now

Hs(K) := Hs(Rn) ∩ E ′(K),

K ⊂ X a compact. Then

Hs(K) is closed in Hs(Rn).

Theorem 5.1.2. Suppose that P is a differential operator, such that

u ∈ E ′(K), Pu ∈ C∞ =⇒ u ∈ C∞0 (K). (5.2)

Then P ∗ is locally solvable at any x0 ∈ int(K).
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Proof. Define, for a given s ∈ R,

F := {u ∈ Hs(K);Pu ∈ C∞},

endowed with the family of seminorms

||u||Fr := ||u||s + ||Pu||r, r ∈ Z+.

We claim that F is a Fréchet space. In fact, suppose ||uk − uk||Fr → 0 as

k, k′ → +∞ for all r ∈ Z+. Then ||uk−uk′ ||s → 0, whence uk → u in Hs(K).

But then Puk → Pu in E ′(K) as k → ∞, and since ||Puk − Puk′ ||r → 0 as

k, k′ → +∞ for all r ∈ Z+, for each r ∈ Z+ there exists vr ∈ Hr(K) such

that ||Puk − vr||r → 0 as k →∞. Hence also Puk → vr in E ′(K) as k →∞,

so that Pu ∈ Hr(K) for all r ∈ Z+, which proves the claim.

Now, the inclusion j : C∞0 (K) −→ F is continuous (C∞0 (K) endowed with

the family of Hs-norms), injective and onto by virtue of the hypothesis (5.1).

Hence, by the open mapping theorem the inverse is continuous, whence: For

any given s, k ∈ R there exists r ∈ Z+ and a constant C = C(K, s, k) > 0,

such that

||u||k ≤ C(||Pu||r + ||u||s), ∀u ∈ C∞0 (K).

Now fix k = 1, s = 0. It follows that for some t > 0

||u||1 ≤ C(||Pu||t + ||u||0), ∀u ∈ C∞0 (K).

By the Poincaré inequality, for any given ε > 0 we may find a relatively

compact neighborhood V ⊂ K of x0 ∈ int(K) with diameter sufficiently

small, so as to have

||u||0 ≤ ε||Ou||0 ≤ ε(||u||20 + ||Ou||20)1/2 = ε||u||1, ∀u ∈ C∞0 (V ),

whence (for a new constant C > 0)

||u||1 ≤ C||Pu||t, ∀u ∈ C∞0 (V ).

If necessary, we increase t > 0 so that

||u||−t ≤ ||u||1 ≤ C||Pu||t, ∀u ∈ C∞0 (V ).
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Consider then

M := {Pϕ;ϕ ∈ C∞0 (V )}
Ht(Rn)

⊂ H t(Rn).

Given any f ∈ C∞(X), we consider f |V and extend it as a compactly sup-

ported smooth function (with support contained in some relatively compact

subset of X that contains the compact V ) so that we may suppose also that

f ∈ H t(Rn). So, consider the linear form

L : Pϕ 7−→ 〈f̄ |ϕ〉, ϕ ∈ C∞0 (V ).

Since

|L(Pϕ)| ≤ ||f ||t||ϕ||−t ≤ ||f ||t||Pϕ||t,

L can be extended as a continuous linear form L : M −→ C, and it can there-

fore be further extended to a continuous linear form to the whole H t(Rn),

whence the existence of u ∈ H−t(Rn) such that

〈f̄ |ϕ〉 = L(Pϕ) = 〈ū|Pϕ〉 = 〈P ∗u|ϕ〉, ∀ϕ ∈ C∞0 (V ), (5.3)

that is P ∗u = f (in the distribution sense) in V .

5.2 An example of an unsolvable hypoelliptic

operator

We have seen in Theorem 5.1.1. that the formal adjoint of an hypoel-

liptic differential operator is locally solvable. This does not imply that the

operator itself is locally solvable. In this section we will show an example of

a hypoelliptic second order differential operator in two variables for which

there exists a line such that the operator is not solvable at any point of this

line.

The differential operator is

A = D1 + ix1D
2
2, (5.4)

where Dj = 1
i
(∂/∂xj), j = 1, 2.
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5.2.1 Proof of the hypoellipticity of A

The nature of A becomes more trasparent if the coordinates x2
1/2 = t,

x2 = x are used. Then

A = −i
√

2t
( ∂
∂t

+
∂2

∂x2

)
, (5.5)

and it follows that on each of the half planes {x1 > 0} and {x1 < 0}, A is

equal to a C∞ function times the backward heat operator (on each half plane

separately). Thus, A is certainly hypoelliptic in the complement of the line

x1 = 0. So, let u be a solution of the equation

Au = f, (5.6)

where u ∈ D ′(Ω), f ∈ C∞(Ω) and Ω is an open subset of the plane. We hence

know that u ∈ C∞(Ω∩{(x1, x2);x1 6= 0}). Hence, we have only to show that

u is infinitely differentiable also in the neighborhood of the line x1 = 0. We

may assume, therefore, that Ω is an open disk whose center lies on the line

x1 = 0, and since A is invariant under translations in the direction of the

x2 variable we may assume that the center of Ω is at the origin. It suffices

to prove that u is infinitely differentiable in a neighborhood V of the origin,

where V ⊂ Ω. Let φ ∈ C∞0 (Ω) be identically equal to 1 in a neighborhood

V1 of V . Then

Aφu = φAu+ (D1φ+ ix1D
2
2φ)u+ 2ix1(D2φ)(D2u)

= g + (Aφ)u+ 2ix1(D2φ)(D2u),

(where g = φf). Let us first introduce new coordinates −(x2
1/2) = t, x2 = x

for the open half plane {(x1, x2);x1 > 0}. Then( ∂
∂t
− ∂2

∂x2

)
φu =

−ig√
−2t
− −i√
−2t

(Aφ)u+ 2(D2φ)(D2u). (5.7)

The function (φu)(
√
−2t, x) vanishes identically on the line t = −K if K is

sufficiently large and is bounded in the set {(t, x);−∞ < x < +∞,−K ≤
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t ≤ −ε} for every ε > 0. Hence, we may use the usual fundamental solution

of the heat equation (5.6) and conclude that

(φu)(
√
−2t, x) =

H(t)√
4πt

e−x
2/4t ∗

( ∂
∂t
− ∂2

∂x2

)
φu

=

∫ t

−∞

1√
4π(t− τ)

∫
e−(x−y)2/4(t−τ)

( ∂
∂t
− ∂2

∂x2

)
φu(
√
−2τ , y)dydτ,

for negative value of t. Using (5.6), we see that

(φu)(
√
−2t, x) = −i

∫ t

−∞

1√
4π(t− τ)

∫
e−(x−y)2/4(t−τ) g(

√
−2τ , y)√
−2τ

dydτ

+

∫ t

−∞

1√
4π(t− τ)

∫
e−(x−y)2/4(t−τ)

(−i((Aφ)u)(
√
−2τ , y)√

−2τ

+ 2(D2φ)(D2u)
)
dydτ.

Changing back to the original coordinates (x1, x2) (where x1 > 0) we find

that

(φu)(x1, x2) = v(x1, x2) + w(x1, x2), (5.8)

where

v(x1, x2) = −i
∫ ∞
x1

1√
2π(y2

1 − x2
1)

∫
e−(x2−y2)2/2(y21−x21)g(y1, y2)dy2dy1, (5.9)

and

w(x1, x2) =

∫ ∞
x1

1√
2π(y2

1 − x2
1)

∫
e−(x2−y2)2/2(y21−x21)× (5.10)

×(−i((Aφ)u)(y1, y2) + 2y1((D2φ)(D2u))(y1, y2))dy2dy1.

Taking the partial Fourier transform of v we get

v̂(x1, ξ) = −i
∫ ∞
x1

e−(y21−x21)ξ2/2ĝ(y1, ξ)dy1. (5.11)

Since g = φf has compact support, the integration is actually perfomed on a

finite interval (of length at most equal to
√

2K). Moreover, for every positive
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number N there exists a constant CN such that |ĝ(x1, ξ)| = |φ̂f(x1, ξ)| ≤
CN(1 + |ξ|)−N since φf ∈ C∞0 (Ω). Hence

|v̂(x1, ξ)| =
∫ ∞
x1

|ĝ(y1, ξ)|dy1 ≤
√

2KCN(1 + |ξ|)−N . (5.12)

It follows that v(x1, x2) is infinitely differentiable w.r.t. x2, and each of the

derivatives Dk
2v is uniformly bounded as x1 → 0+. Noting that (5.10) or

(5.8) imply that

D1v = g − ix1D
2
2v, (5.13)

we see that the function D1v along with each of its derivatives w.r.t. x2

are bounded as x1 → 0+. Differentiating (5.12) w.r.t. x1 we find that

D2
1v = D1g − ix1D

2
2v −D2

2v is uniformly bounded as x1 → 0+, and that the

same holds for each of its derivatives w.r.t. x2. Iteration of this procedure

leads us to the conclusion that each of the derivatives of v is uniformly

bounded as x1 → 0+ (and therefore v has in fact an infinitely differentiable

extension to the closed half plane {(x1, x2);x1 ≥ 0}).
Turning now our attention to w(x1, x2), we note in the first place that

dist(suppOφ, V ) > 0, since φ ≡ 1 on the set V1 which contains V in its

interior. Moreover, the functions Aφ and D2φ have compact support, and

the fundamental solution E(x, t) defined by the equations

E(x, t) =

{
1√
4πt
e−x

2/t t > 0

0 t ≤ 0 and x 6= 0

is infinitely differentiable except at the point x = t = 0. Hence, the functions

ψ(y1, y2) defined by

ψ(y1, y2, x1, x2) =

{
(Aφ)(y1, y2)E

(
x2 − y2,

y21−x21
2

)
y1 ≥ 0

0 y1 ≤ 0

are in fact test function in C∞0 (Ω) (of the variables y1, y2) and depend in

an infinitely differentiable manner (as vector valued functions of y1, y2 with

values in C∞0 (Ω)) on x1 and x2, where (x1, x2) ∈ V and x1 ≥ 0. Since u
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is a distribution and thus is continuous on C∞0 (Ω) it follows that the scalar

function

∫ ∞
x1

∫ ∞
−∞

1√
2π(y2

1 − x2
1)

∫
e−(x2−y2)2/2(y21−x21)((Aφ)(y1, y2)u(y1, y2))dy2dy1

= u(E(x2 − ·,
·2 − x2

1

2
)(Aφ)(·))

is infinitely differentiable w.r.t. x1 and to x2 in the intersection of V with the

closed half plane {(x1, x2);x1 ≥ 0}. Since D2u is also a distribution in D ′(Ω)

we may treat the second term in (5.9) in a similar way and conclude that

w(x1, x2) is infinitely differentiable in the closed half plane {(x1, x2);x1 ≥ 0}.
Using (5.9) we thus see that the function u(x1, x2) and every derivative of it

are uniformly bounded (in V ) as x1 → 0+.

In a similar fashion, let us define v(x1, x2) and w(x1, x2) for x1 < 0 by

v(x1, x2) = i

∫ x1

−∞

1√
2π(y2

1 − x2
1)

∫
e−(x2−y2)2/2(y21−x21)g(y1, y2)dy2dy1, (5.14)

and

w(x1, x2) =

∫ x1

∞

1√
2π(y2

1 − x2
1)

∫
e−(x2−y2)2/2(y21−x21)× (5.15)

×(i((Aφ)u)(y1, y2)− 2y1((D2φ)(D2u))(y1, y2))dy2dy1.

It follows once again that φu = v + w for x1 < 0 and that the function

u(x1, x2) as well as each of its derivatives are bounded as x1 → 0−.

We have proved that the function u(x1, x2) possesses C∞ boundary values

as x1 tends to zero from either the right or the left. In order to finish the

proof that u ∈ C∞(V ) one has to show that the boundary values of u and its

derivatives actually match up and that u has no singular part with support

on the line x1 = 0. For details look at [15].
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5.3 Proof that A is not locally solvable on the

line x1 = 0

We show that the operatorA does not satisfies the Hörmander’s condition:

p = 0 =⇒ {p, p̄} = 0.

We have

p = ξ1 + ix1ξ
2
2 p̄ = ξ1 − ix1ξ

2
2 .

Now the points (0, x2; 0, ξ2) ∈ Char(P ), but

{p, p̄} = −2iξ2
2

does not vanish at these points. Hence A is not solvable on {x1 = 0}.

5.4 Hypoelliptic operators with loss of deriva-

tives

Definition 5.4.1. The operator P properly supported of order m is said to

be hypoelliptic with a loss of r of derivatives, r ≥ 0, if

u ∈ D ′(X), Pu ∈ Hs
loc =⇒ u ∈ Hs+m−r

loc . (5.16)

Note that (5.16) measures the extent to which P fails to be elliptic, i.e.

hypoelliptic with loss of 0 derivatives. One can also see that (5.16) implies

(5.1).

When P is hypoelliptic with a certain loss of r ≥ 0 derivatives, the a

priori estimate is easier. In fact, one has the following lemma (Hörmander

[13] Lemma 22.4.2, Vol.III).

Lemma 5.4.2. Let P be properly supported and of order m. Suppose that

for some r ≥ 0, whatever s ∈ R,

u ∈ E ′(X), Pu ∈ Hs =⇒ u ∈ Hs+m−r.
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Then for every compact K ⊂ X and for every s ∈ R there exists CK,s > 0

such that

(HE) ||u||s+m−r ≤ CK,s(||Pu||s + ||u||s+m−r−1), ∀u ∈ C∞0 (K).

Proof. Set

F := {u ∈ Hs+m−r−1(K);Pu ∈ Hs},

with norm

||u||F := ||u||s+m−r−1 + ||Pu||s.

Then (F, || · ||F ) is a Banach space. By (HE) we have that F is embedded

into Hs+m−r(K) and the embedding is a closed operator. In fact, take a

sequence {uk}k ⊂ F such that uk −→ u in F and uk −→ v in Hs+m−r(K).

Then u = v, i.e. u ∈ Hs+m−r(K) and since {Puk}k is a Cauchy sequence in

Hs, we get Puk −→ v0 in Hs. Thus, since Puk −→ Pu in E ′(X), we also

get v0 = Pu ∈ Hs. Hence u ∈ F .

Finally, by the closed graph theorem, we obtain that the sought for in-

equality holds, and this conclude the proof.

It is worth noting that inequality (HE) with r ≥ 1 is not sufficient in

order to have hypoellipticity. Let us consider in fact, P = ∂2
t − 4x, the

wave-operator. We have the following lemma.

Lemma 5.4.3. For any given compact K ⊂ Rt × Rn
x and any given s ∈ R

there exists a constant C = C(K, s) > 0 such that (HE) holds for r = 1.

However, because of propagation of singularities, P is not hypoelliptic (not

even with a loss of 1 derivative).

Proof. Since the operators (1+ |Dt|2 + |Dx|2)s all commute with P , it suffices

to prove the inequality when s = 0. Let then K be a compact of Rn+1. We

may hence suppose that for T,R > 0 we have K ⊂ [−T, T ]×DR(0). Let for

u ∈ C∞0 (K)

E(t) :=
1

2

∫
Rn

(
|∂tu(t, x)|2 + |Oxu(t, x)|2

)
dx.
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We may suppose, P being real, that u is real-valued. Moreover, we have that

for |t| > T the energy E(t) = 0. One computes

d

dt
E(t) =

∫
Rn

(
∂2
t u(t, x)∂tu(t, x) + Ox∂tu(t, x) · Ox∂tu(t, x)

)
dx =

=

∫
Rn
∂tu(t, x)(Pu)(t, x)dx.

We thus have, for some λ ∈ R to be picked,

(eλt∂tu, Pu) =

∫ T

−T
eλt
dE

dt
(t)dt = −λ

∫ T

−T
eλtE(t)dt+ [eλtE(t)]t=Tt=−T =

= −λ
∫ T

−T
eλtE(t)dt.

Choose then λ = −1, whence∫ T

−T
e−tE(t)dt = (e−t∂tu, Pu).

Since E(t) ≥ 0 we have on the one hand∫ T

−T
e−tE(t)dt ≥ e−T

∫ T

−T
E(t)dt =

e−T

2

(
||∂tu||2 + ||Oxu||2

)
,

and on the other

|
∫ ∫

R1+n

e−t∂tu(t, x)(Pu)(t, x)dtdx| ≤ εeT

2
||∂tu||2 +

eT

2ε
||Pu||2,

where ε > 0 is to be picked. Therefore

1

2
(e−T − εeT )||∂tu||2 +

e−T

2
||Oxu||2 ≤

eT

2ε
||Pu||2.

We choose ε = e−2T/2. Hence

e−T

4
||∂tu||2 +

e−T

4
||Oxu||2 ≤

e−T

4
||∂tu||2 +

e−T

2
||Oxu||2 ≤ e3T ||Pu||2.

Thus

||u||21 ≤ 4e4T
(
||Pu||20 + ||u||20

)
, (5.17)

with space-time Sobolev norms.

For details about hypoellipticity with loss of derivatives one can see [29],

[13], [24] (and for a recent work on hypoellipticity with a big loss of derivatives

see [16], [25], [27]).



Chapter 6

Invariance of condition (Ψ) and

a proof of local solvability in

two dimension under condition

(Ψ)

6.1 Flow invariant sets and the invariance of

condition (Ψ)

(Ψ) For every elliptic homogeneous function q, the function

Im(qp) does not change sign from - to + along any given ori-

ented maximal integral curve of HRe(qp) in U×Rn passing through

Char(P ).

A surprising feature of condition (Ψ) is that it involves the bicharacteristics of

Re(qp) although they depend very much on q except where Hp is proportional

to a real vector. In spite of this it was shown by Nirenberg and Treves [23]

that the choice of q is not very important in condition (Ψ). The main point

in their proof is the application of results on flow invariant sets due to Bony

[2] and Brézis [3].
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6. Invariance of condition (Ψ) and a proof of local solvability in two

dimension under condition (Ψ)

Let X be a C2 manifold, F ⊂ X be a closed subset and ν be a Lips-

chitz continuous vector field in X. We want to describe the conditions on ν

required for integral curves starting in F to remain in F for all later times.

First note that if x0 ∈ F and f ∈ C1, f(x0) = 0 and f ≤ 0 in F , then we

must have νf(x0) ≤ 0. In fact, let γ be an integral curve of ν s.t. γ(0) = x0,

then d
dt

∣∣
t=0
f(γ(t)) = (νf)(x0), if νf(x0) ≥ 0 then f(γ(t)) > f(x0) = 0 on the

right of x0, a contradiction since f ≤ 0 on F .

Definition 6.1.1. We define N(F ) as the set of all (x, ξ) ∈ T ∗(X)\0 s.t.

one can find f ∈ C1 with f(x) = 0, df(x) = ξ and f ≤ 0 in a neighborhood

of x in F . Note that necessarily x ∈ ∂F .

Theorem 6.1.2 (Bony [2]). Let ν be a Lipschitz continuous vector field in

X. Then the following conditions are equivalent:

(i) Every integral curve x(t), 0 ≤ t ≤ T , of ν with x(0) ∈ F is contained

in F .

(ii) 〈ν(x), ξ〉 ≤ 0 for all (x, ξ) ∈ N(F ).

We have already proved that (i) =⇒ (ii). Since the statement is local, in

proving the converse we may assume that X = Rn. We need the following

lemma.

Lemma 6.1.3. Let F be a closed set in Rn and set

f(x) = min
z∈F
|x− z|2,

where | · | is the Euclidean norm. Then we have

f(x+ y) = f(x) + g(x, y) + o(|y|), where

g(x, y) = min{〈2y, x− z〉; z ∈ F, |x− z|2 = f(x)}.

Proof. We may assume in the proof that x = 0. Set, for ε > 0,

qε(y) = min{−2〈y, z〉; z ∈ F, |z| ≤
√
f(0) + ε}.
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Then qε is a homogeneous function of degree 1, and qε ↑ q0 as ε ↓ 0. The

limit is therefore uniform on the unit sphere (by Dini’s theorem on uniform

convergence), so that

|qε(y/|y|)− q0(y/|y|)| ≤ cε

gives

q0(y) ≥ qε(y) ≥ qo(y)− cε|y|, cε → 0, as ε→ 0.

Now |y − z|2 = |z|2 − 2〈y, z〉+ |y|2 whence

f(y) ≤ f(0) + q0(y) + |y|2.

On the other hand, when |y| ≤ ε the minimum in the definition of f(y) is

assumed for some z with |z| ≤
√
f(0) + ε, hence

f(y) ≥ f(0) + qε(y) + |y|2, |y| ≤ ε,

which proves the lemma.

Proof of Theorem 6.1.2. With the notation in (i) and Lemma 6.1.3 we have

if t < T

lim
s→t+

f(x(s))− f(x(t))

s− t
= g(x(t), ν(x(t))).

Since the result to be proved is local we may assume that for all x, y

|ν(x)− ν(y)| ≤ C|x− y|.

When z ∈ F and |x(t)− z|2 = f(x(t)) we have

2〈ν(x(t)), x(t)− z〉 = 2〈ν(z), x(t)− z〉 − 2〈ν(z)− ν(x(t)), x(t)− z〉.

The last term in absolute value is controlled by 2Cf(x(t)). Since f(x(t)) −
|x(t)− z̃|2 ≤ 0 for all z̃ ∈ F , we have (z, x(t)− z) ∈ N(F ) if x(t) 6= z, so the

first term on the right is ≤ 0 by condition (ii). Hence the right-derivative

of f(x(t)) is ≤ 2Cf(x(t)) so that f(x(t))e−2Ct ≤ 0. Hence f(x(t))e−2Ct is

decreasing in every interval where it is positive, and if f(x(0)) = 0 it then

follows that f(x(t)) = 0 for 0 ≤ t ≤ T .
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Corollary 6.1.4 (Brézis [3]). Let q ∈ C1(X) where X is a C2 manifold and

let ν be a Lipschitz continuous vector field in X such that for every integral

curve t 7−→ x(t) of ν we have

q(x(0)) < 0 =⇒ q(x(t)) ≤ 0 for t > 0. (6.1)

Let w be another C1 vector field such that

〈w,Oq〉 ≤ 0 when q = 0 (6.2)

w =ν when q = dq = 0. (6.3)

Then (6.1) remains valid if x(t) is replaced by any given integral curve of w.

Proof. Let F be the closure of the union of all forward orbits of ν starting

at points x with q(x) < 0. By (6.1) we have q ≤ 0 in F , and F contains

the closure of the set where q < 0. Therefore orbits of ν which start in

F must remain in F . If now (x, ξ) ∈ N(F ), then x is in the boundary of

F so q(x) = 0. If dq(x) 6= 0 then F is bounded by the surface q = 0 in a

neighborhood of x, and ξ is a positive multiple of dq(x), thus 〈w(x), ξ〉 ≤ 0 by

(6.2). If dq(x) = 0 we have 〈w(x), ξ〉 = 〈ν(x), ξ〉 ≤ 0 by (6.3) since ν satisfies

condition (ii) in Theorem 6.1.2. Hence w satisfies condition (ii) in Theorem

6.1.2 and therefore condition (i) also, which proves the corollary.

Lemma 6.1.5. Let I be a point or a compact interval on R, and let γ : I −→
M be an embedding of I in a sympletic manifold M as a one dimensional

bicharacteristic of p1+ip2 if I is not reduced to a point, and any characteristic

point otherwise. Let

fj =
2∑

k=1

ajkpk, j = 1, 2,

where det(ajk) > 0 on γ(I). Assume that Hp1 6= 0 and that Hf1 6= 0 on γ(I).

If γ(I) has a neighborhood U such that p2 does not change sign from − to +

along any bicharacteristic for p1 in U , then U can be so chosen that f2 has

no such sign change along the bicharacteristics of f1 in U .
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Proof. First note that if p1 = p2 = 0 at a point in U then

{p1, p2} = Hp1p2 ≤ 0,

Hence, at the same point,

{f1, f2} = {a11p1 + a12p2, a21p1 + a22p2} = (a11a22 − a12a21){p1, p2} ≤ 0.

The proof is now divided into two steps.

(i) Assume first that a12 = 0. Since a11a22 > 0 either a11 and a22 are both

positive or both negative. Thus the bicharacteristics of f1 = a11p1 are

equal to those of p1 with preserved and reserved orientation respectively,

and f2 = a22p2 when p1 = 0 so f2 has the same and opposite sign, as

p2, respectively. This proves the lemma in this case.

(ii) By a canonical change of variables we can make M = R2n, p1 = ξ1 and

Γ = γ(I) equal to an interval on the x1 axis (Darboux’s theorem). Let

T ∈ R2n be a vector with

〈T, dp1〉 = 1 and 〈T, df1〉 6= 0 on Γ.

Since dp1 and df1 do not vanish on Γ, the existence of T is obvious if

Γ consists of a single point. Otherwise dp2 is proportional to dp1 (since

this is the case for Hp2 and Hp1) on Γ so df1 is proportional to dp1.

Hence we just have to take T = (0, ..., 0︸ ︷︷ ︸
n

, 1, 0, ..., 0︸ ︷︷ ︸
n

).

Set

q2(x, ξ) = p2((x, ξ)− ξ1T ).

Then p2 = q2 when ξ1 = 0 (i.e. p1 = 0) and q2 is constant in the direction T .

Then there is a smooth function ϕ such that

q2 = ϕp1 + p2.

It therefore follows from step (i) that the hypotheses in the lemma are fulfilled

for p1 + iq2. We have

f1 = (a11 − a12ϕ)p1 + a12q2,
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hence

0 6= 〈T, df1〉 = (a11 − a12ϕ) on Γ.

In a neighborhood of Γ we can therefore divide f1 by a11 − a12ϕ and set

q1 = f1/(a11 − a12ϕ) = p1 + a12(a11 − a12ϕ)−1q2,

which implies

fj =
2∑

k=1

bjkqk, j = 1, 2,

where b11 = a11 − a12ϕ, b12 = 0 and det b = det a > 0. Thus it follows from

step (i) that it suffices to prove that (q1, q2) satisfies the hypothesis made

on (p1, p2) in the lemma. The difficulty here is that the surfaces p1 = 0 and

q1 = 0 are not the same. However, they may be identified by projecting in

the direction T.

Let U be a neighborhood of Γ where q2 does not change sign from −
to + on the bicharacteristics of p1. Since T is transversal to the surface

f1 = q1 = 0, we can choose U so small that Y = {(x, ξ) ∈ U ; q1(x, ξ) = 0}
is mapped diffeomorphically by the projection πT along the direction T to

X = {(x, ξ) ∈ U ; ξ1 = 0}. When q1 = q2 = 0, i.e. p1 = p2 = 0, we have

Hq1q2 = Hp1p2 ≤ 0, so (6.2) are fulfilled in Y by the restriction q of q2 to Y

and w = Hq1 . At a point in Y where q = 0 and dq vanishes on the tangent

space of Y , we have dq2 = 0 since 〈T, dq2〉 = 0. Hence w = Hq1 = Hp1 there

and thus πT∗w = Hp1 . If we apply Corollary 6.1.4 to q = π∗T q2 and the vector

fields ν = πT∗(Hp1) and w we conclude that q2 cannot change sign from − to

+ along a bichacteristic of q1 in Y . This completes the proof.
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6.2 Proof of local solvability in two dimension

under condition (Ψ)

In n dimensions, the principal symbol of P can be microlocally conjugated

to the form ([13] thm. 21.3.6.)

ξ1 + iq(x, ξ′),

where q(x, ξ′) is real, positively homogeneous of degree one, and ξ′ = (ξ2, ..., ξn).

Condition (Ψ), in this case, is equivalent to the following: For each x′, ξ′, the

real function q(x1, x
′, ξ′) nowhere changes sign from − to + as x1 increases.

The special feature of two dimensions is that the positively homogeneous

(of degree 1) function q(x, ξ2) can be written for ξ2 > 0 as b(x)ξ2, where

b(x) = q(x, 1) is a function of x only. Local solvability is then implied by

the following energy estimate (6.4), which is Theorem 1.2.3 of [17]. Note

that in the energy estimate (6.4) the symbol ξ1 + iq satisfies condition (ψ̄)

(i.e. q does not change from + to − as x1 increases). The estimate implies

a local solvability result for an operator with principal symbol ξ1 − iq, the

lower order terms being unimportant by virtue of of the large constant T−1.

Theorem 6.2.1. Suppose that b(t, x) ∈ C∞([−1, 1] × R) nowhere changes

sign from + to − as t increases. Then there exist C, T0 > 0 such that for all

T ≤ T0,

||(∂t − b(t, x)|Dx|)u||2 ≥ C−1T−1||u||2, (6.4)

for all Schwartz function u on R2 such that u(t, x) = 0 when |t| ≥ T .

Proof. Consider the vector field on R3,

L = ∂t + b(t, x)∂y,

and the smooth extension of u(t, x) from R2 to R2 × {y ≥ 0},

f(t, x, y) = e−y|Dx|u(t, x).

The sign-change condition on b is equivalent to saying that, for each (t, x),

the integral curve (t + s, x,
∫ t+s
t

b(r, x)dr) of L through (t, x, 0) remains in
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the region y ≥ 0 for either all s ≥ 0 or all s ≤ 0: the past of a point (t, x)

such b(t, x) ≤ 0 is made of points (t′ = t + s, x), s ≤ 0, with b(t′, x) ≤ 0,

analogously for the future with b(t, x) ≥ 0, this gives that the integral curves

remains in the region y ≥ 0. Since f(t, x, y) = 0 for |t| ≥ T , we can express

u(t, x) = f(t, x, 0) as the integral of Lf along the integral curve of L through

(t, x, 0), to either ±T , the choice depending on (t, x). This yields for all (t, x)

the inequality

|u(t, x)| ≤
∫ +T

−T
sup

0<y<M
|(Lf)(s, x, y)|ds,

where M depends on the bounds for b.

Now observe that Lf
∣∣
y=0

= (∂t − b(t, x)|Dx|)u and that 4x,y(Lf) =

[4x,y, Ll]f + L4x,yf︸ ︷︷ ︸
=0

, (due to f̂(t, ξ, y) = e−y|ξ|û(t, ξ) and −∂2
y f̂(t, ξ, y) =

|ξ|2f̂(t, ξ, y).) We thus write

Lf = e−y|Dx|(∂t − b(t, x)|Dx|)u+Gx,y[4x,y, l]f,

where Gx,y is the Green’s kernel in x, y. Since [4x,y, L] is of second order and

involves derivatives in x and y only, the second term depends continuously

on u in the L2 norm. If T is small enough, the integral of this term along L

will have a small L2 norm compared to u.

Directly from the definition of f we have

(Lf)(t, x, y) = e−y|Dx|(∂t − b(t, x)|Dx|)u(t, x)−
[
b(t, x), e−y|Dx|

]
|Dx|u(t, x)

(6.5)

and we seek to control the L2 norm of the supremum over y.

Now we want to recall some properties of the Poisson kernel (Pxn) and the

maximal function (M). (See, ref Stein Singular Integrals and Differentiability

Properties of Function). Let

u(x′, xn) = Pxn ∗ f(x′), x′ ∈ Rn−1, xn > 0, f ∈ Lp(Rn−1)

and

M(f)(x) = sup
r>0

1

m(B(x, r))

∫
B(x,r)

f(y)dy.
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We have

sup
xn>0
|u(x′, xn)| ≤M(f)(x′).

Furthermore, note that

M : Lp(Rn−1) −→ Lp(Rn−1), ∀p ∈ (1,∞], isboundend,

and that

Fx′→ξ(Pxn)(ξ) = e−xn|ξ|.

Then we obtain that the supremum over y of the first term in (6.5) is domi-

nated by the maximal function in x of (∂t − b(t, x)|Dx|)u(t, x) and thus has

an L2 norm bounded by ||(∂t − b(t, x)|Dx|)u(t, x)||2.

For the commutator term we fix a cutoff function ϕ ∈ C∞0 (R) such that

ϕ(ξ) =

{
1 |ξ| ≤ 1

0 |ξ| ≥ 2
, 0 ≤ ϕ ≤ 1.

Thus we can write the multiplier e−y|ξ| as a compactly supported term, plus

a term supported in |ξ| > 1. The compactly supported term, e−y|ξ|ϕ(ξ),

yelds R1u(t, x, y) such that both ||R1u(·, y)||L2(x,t) and ||∂yR1u(·, y)||L2()x,t are

bounded by ||u||2 uniformly in y. The supremum over 0 < y < M thus has

an L2 norm bounded by ||u||2.

The term a1(ξ) = e−y|ξ|(1− ϕ(ξ)) ∈ S0. In fact, to fix ideas, with no loss

of generality, consider ξ > 0. We have

∂ξa1(ξ) = −y(1− ϕ(ξ))e−y|ξ| − e−y|ξ|ϕ′(ξ),

the second term is supported in 1 ≤ ξ ≤ 2 and the first in ξ ≥ 1, so that

∂ξa1(ξ) =
−yξ(1− ϕ(ξ))e−y|ξ|

|ξ|
+ S−∞. (6.6)

Note that

|yξe−y|ξ|| ≤ C ∀y ≥ 0, (6.7)
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and

∂kξ e
−y|ξ|(1− ϕ(ξ)) = (−y)ke−y|ξ|(1− ϕ(ξ)) + S−∞ = (6.8)

(−y|ξ|)ke−y|ξ|

|ξ|k
(1− ϕ(ξ)) + S−∞, (6.9)

where the first term in (6.9) is ≤ C ′|ξ|−k.
Hence the Kohn − Nirenberg formula for pseudodifferential operator in x

applies to the commutator with the remainder estimates uniform over y and

t:

σ([b, a1]) ∼ 1

i
{b, a1}+ S−2, {b, a1} =i

∂b

∂x

∂a1

∂ξ
= (6.10)

= i
∂b

∂x

(
− yξ

|ξ|
)
(1− ϕ(ξ))e−y|ξ| + S−∞ = (6.11)

= −i ∂b
∂x
ye−y|ξ|

ξ

|ξ|
+ S−∞. (6.12)

The leading term combined with the |Dx| equals,

i
∂b

∂x
(−yξ)e−y|ξ| + (compactly supported) =

= i
∂b

∂x
(y
ξ

|ξ|
)
∂

∂y
e−y|ξ| + (compactly supported) =

= i
∂b

∂x
y sgn(ξ)

∂

∂y
e−y|ξ| + (compactly supported),

then, modulo a term compactly supported in ξ which behaves as R1 above,

we get

(∂xb)y

∫
sgn(ξ)∂ye

−y|ξ|eixξû(t, ξ)dξ

Noting that sgn(ξ)û(t, ξ) is the fourier transform of Hxu, we obtain

(∂xb)y∂ye
−y|Dx|Hxu(t, x)

where Hx is the Hilbert transform in x.

The maximal function for the kernel y∂ye
−y|Dx| is bounded on L2 by the same

argument as for the Poisson kernel since, as for the Poisson kernel, we have

y∂yPy(x/ε)
∣∣∣
y=1

= εy∂yPy(x)
∣∣∣
y=ε

∀ε > 0.
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The second-order remainder term R2(y, t, x, |Dx|) (that is, the term re-

lated to the S−2 in (6.10)) is a pseudodifferential operator in x of order −2,

with its bounds uniform in y and t. Furthermore ∂yR2(y, t, x, |Dx|) is the re-

mainder term for the commutator of b(t, x) and the cutoff of ∂ye
−y|Dx|; hence

it is uniformly of order −1. We thus have similar estimates for R2|Dx|u as

for R1u.

The first inequality now yelds

||u||2 ≤ C1T ||(∂t − b(t, x)|Dx|)u(t, x)||2 + C2T ||u||2,

for T sufficiently small.





Appendix A

Locally convex topological

vector spaces

A.1 Some topological vector spaces

A topological vector space is a vector space together with a Hausdorff

topology with respect to which the algebraic operations are continuous. We

collect here some definitions and results concerning such vector spaces.

A seminorm on a complex vector space X is a function ℘ : X → R
satisfying:

(1) ℘(x) ≥ 0 ∀x ∈ X,

(2) ℘(x) = 0 if x = 0,

(3) ℘(x+ y) ≤ ℘(x) + ℘(y) ∀x, y ∈ X,

(4) ℘(tx) = |t|℘(x) ∀x ∈ X, t ∈ C.

Example A.1.1. Relevant examples of seminorms are as follows. Let K b

Rn be a compact subset and N be a nonnegative integer. For f ∈ C∞(Rn)

let

℘N,K(f) = sup
x∈K,|α|≤N

|Dα
xf(x)| (A.1)

83
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A family P of seminorms on X defines a topology on X by way of declaring

a set U ⊂ X to be open if for every x0 ∈ U there are ℘1, ..., ℘k ∈ P and

positive numbers r1, ..., rk such that

{x ∈ X;℘j(x− x0) < rj, j = 1, ..., k} ⊂ U.

The family P is separating if for every x ∈ X, x 6= 0, there is ℘ ∈ P

such that ℘(x) 6= 0. If the family P is separating then X with the induced

topology is a Hausdorff topological vector space admitting a local base of

neighborhood at 0 consisting of convex open sets. Such a space is a locally

convex topological vector space.

Let N = {y ∈ X;℘(y) = 0 ∀℘ ∈ P}. Then N is a subspace of X and

the topology defined by P is Hausdorff if and only if N = 0. The space N

is in any case closed, and for any x ∈ X, ℘(x + y) = ℘(x) for every y ∈ N
. So the seminorms ℘ determine seminorms on the quotient X/N giving a

Hausdorff topology.

Example A.1.2. Recall that convergence of a sequence {fk}∞k=1 in C∞(Rn)

to a function f ∈ C∞ means that for any given α, Dα
xfk → Dα

xf uniformly

on compact subsets of Rn . This notion of convergence is precisely the con-

vergence in the topology defined by the seminorms ℘N,K .

The seminorms may in fact be norms and still produce an interesting

topology. Two examples are the following:

Example A.1.3. Let K b Rn be compact. Then C∞0 (K) is, by definition

the space

{f ∈ C∞(Rn); suppf ⊂ K},

is a closed subset of C∞(Rn). The seminorms ℘K,N of C∞(Rn) become norms

on C∞0 (K).

Example A.1.4. Recall that the Schwartz space S (Rn) is the subspace of

C∞(Rn) whose elements have the property that xβDα
xf is bounded for each

α, β. Define

℘α,β(f) = sup
x∈Rn
|xβDα

xf(x)|.
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Then ℘α,β is a norm on S (Rn). The collection of these seminorms for α, β ∈
Zn+ defines the standard topology of S (Rn).

A topological vector spaces is metrizable if its topology is determined

by a metric. If the topology of X is Hausdorff defined by countably many

seminorms then it is metrizable. For if {℘k}∞k=1 is an enumeration of the

seminorms, then

d(x, y) =
∞∑
k=1

1

2k
℘k(x− y)

1 + ℘k(x− y)

is a metric defining the same topology as the seminorms. Evidently this

metric is invariant under translations.

Example A.1.5. The topology of C∞(Rn) is metrizable. Indeed, the topol-

ogy C∞(Rn) is determined by the seminorms {℘B̄(0,N),N ;N ∈ N}, where

B̄(0, N) is the closed ball of radius N with center 0. Likewise, if K b Rn ,

then the topology of C∞0 (K) is metrizable, as is that of S (Rn).

A.2 Complete topological spaces

In order to define completeness of a topological vector space we need to

recall the notion of net. First, a directed set is a set D together with an order

relation ≤ such that

1. for all ν ∈ D, ν ≤ ν;

2. for all η, µ, ν ∈ D, η ≤ µ and µ ≤ ν implies η ≤ ν;

3. for all η, µ ∈ D there is ν ∈ D such that η ≤ ν and µ ≤ ν.

For example, the natural numbers with the usual order relation form a di-

rected set. A net in a set X is a family {xν}ν∈D indexed by a directed set.

If X is a topological vector space, then {xν}ν∈D is a Cauchy net if for every

neighborhood U of 0 there is ν0 ∈ D such that ν0 ≤ µ, ν implies xµ−xν ∈ U .

When D = N and the topology is defined by a norm this coincides with the

notion of Cauchy sequence.
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A topological vector space X is complete if every Cauchy net converges.

If X is metrizable, then completeness needs to be checked only for sequences.

A Fréchet space is a locally convex complete metrizable topological vector

space. Examples of such are Banach spaces, as well as the spaces C∞(Rn),

C∞0 (K) if K b Rn, and S (Rn).

Let X, Y be topological vector spaces and Γ be a family of continuous

linear maps X → Y . The orbit of x ∈ X by Γ is the set

Γ(x) = {γ(x) ∈ Y ; γ ∈ Γ}

Theorem A.2.1 (Banach-Steinhaus, [28]). Let X, Y be topological vector

spaces and Γ be a family of continuous linear maps X → Y . Let

B = {x; Γ(x) is bounded}.

If B is of second category (i.e. it isn’t a countable union of nowhere dense

sets), then B = X and Γ is equicontinuous.

This the basic ingredient for proving the following result

Theorem A.2.2. Suppose X is a Fréchet space,Y is a metrizable topological

vector space and Z is a topological vector spaces. If β : X × Y −→ Z is

separately continuous bilinear form, then it is continuous.

For details see [28], [32].
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