
Alma Mater Studiorum Università di Bologna

Seconda Facoltà di Ingegneria con sede a Cesena

CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

BDI agents for Real Time Strategy games

Tesi di Laurea in Sistemi Multi-Agente

Presentata da:
Andrea Dallatana

Relatore:
Chiar.mo Prof. Andrea Omicini

Correlatore:
Ing. Danilo Pianini

Sessione II
Anno Accademico 2011/2012

Abstract

While the use of distributed intelligence has been incrementally spreading in the
design of a great number of intelligent systems, the �eld of Arti�cial Intelligence in
Real Time Strategy games has remained mostly a centralized environment. Despite
turn-based games have attained AIs of world-class level, the fast paced nature of RTS
games has proven to be a signi�cant obstacle to the quality of its AIs.

Chapter 1 introduces RTS games describing their characteristics, mechanics and
elements.

Chapter 2 introduces Multi-Agent Systems and the use of the Beliefs-Desires-Intentions
abstraction, analysing the possibilities given by self-computing properties.

In Chapter 3 the current state of AI development in RTS games is analyzed high-
lighting the struggles of the gaming industry to produce valuable. The focus on improv-
ing multiplayer experience has impacted gravely on the quality of the AIs thus leaving
them with serious �aws that impair their ability to challenge and entertain players.

Chapter 4 explores di�erent aspects of AI development for RTS, evaluating the
potential strengths and weaknesses of an agent-based approach and analysing which
aspects can bene�t the most against centralized AIs.

Chapter 5 describes a generic agent-based framework for RTS games where every
game entity becomes an agent, each of which having its own knowledge and set of
goals. Di�erent aspects of the game, like economy, exploration and warfare are also
analysed, and some agent-based solutions are outlined. The possible exploitation of
self-computing properties to e�ciently organize the agents activity is then inspected.

Chapter 6 presents the design and implementation of an AI for an existing Open
Source game in beta development stage: 0 a.d., an historical RTS game on ancient
warfare which features a modern graphical engine and evolved mechanics.

The entities in the conceptual framework are implemented in a new agent-based
platform seamlessly nested inside the existing game engine, called ABot, widely de-
scribed in Chapters 7, 8 and 9.

Chapter 10 and 11 include the design and realization of a new agent based language
useful for de�ning behavioural modules for the agents in ABot, paving the way for a
wider spectrum of contributors.

Chapter 12 concludes the work analysing the outcome of tests meant to evaluate
strategies, realism and pure performance, �nally drawing conclusions and future works
in Chapter 13.

1

Contents

I Introduction 6

1 Real Time Strategy games 7

1.1 Elements and Mechanics . 7
1.2 Warfare . 8
1.3 Economy . 8
1.4 Common Strategies . 8
1.5 Playing modes . 8

2 Multi-Agent Systems 10

2.1 Belief-Desire-Intention Agents . 10
2.2 Self-Computing . 10

II Arti�cial Intelligence in Real Time Strategy games 12

3 RTS games and AI 13

3.1 Current state of arti�cial opponents in commercial games 13
3.2 Omniscience and Cheating . 14
3.3 Realism . 14

4 Towards and agent-based AI for RTS 15

4.1 Distributed or Centralized . 15
4.2 Omniscience or Locality . 15
4.3 Optimal or Human-like . 15
4.4 Multi-Agent Systems as AIs . 16
4.5 Objectives of an agent-based approach . 16

4.5.1 Decentralization of the decision making process 16
4.5.2 Realization of realistic behaviours . 16
4.5.3 Modularity . 17
4.5.4 Self-Organization properties . 17
4.5.5 Better performances . 17
4.5.6 Possible disadvantages . 17

5 A framework for an agent-based AI 18

5.1 Every game entity as an agent . 18
5.2 Game world perception . 18

5.2.1 Locality of perceptions . 18
5.2.2 Distribution of knowledge . 19

5.3 Existing MAS platforms and RTS . 19
5.4 A new �ad hoc� MAS framework . 20

5.4.1 Reasoning Cycle . 20
5.4.2 Beliefs . 20
5.4.3 Perceptions . 21
5.4.4 Plans . 21
5.4.5 Messages . 21

2

CONTENTS 3

5.4.6 Modules . 22
5.5 Managing the Economy . 22

5.5.1 Workers and Jobs . 23
5.5.2 Creating a Virtual Market . 23
5.5.3 Wealth and Choice . 23
5.5.4 The Stimulus-Response model . 24
5.5.5 Self-Con�guration and Job Creation . 24
5.5.6 Self-Optimization and Balancing . 24
5.5.7 Self-Healing and Hazards . 25

5.6 Exploration . 25
5.6.1 Scouts and Game Map . 25
5.6.2 Self-Con�guration and Dynamic Exploration Routes 25

5.7 Military Mechanics and Warfare . 26
5.7.1 Military Hierarchy and The Top-Down approach of managing military units 26
5.7.2 Military-Economy interaction . 27
5.7.3 Tactical Awareness and Dynamic generation of Strategies 27
5.7.4 Self-Protective reactions . 27

5.8 Creating unpredictability . 28
5.8.1 Introducing Random elements . 28
5.8.2 Courage and Morale . 28

III A practical application 29

6 0 a.d. : an Open Source Historical RTS game 30

6.1 Game elements and goals . 30
6.1.1 Civilizations . 30
6.1.2 Units and Buildings . 30
6.1.3 Resources and Economy . 31
6.1.4 Warfare . 32

6.2 Technical characteristics . 32
6.2.1 Pyrogenesys and Spidermonkey . 32
6.2.2 Game Logic . 32
6.2.3 Current AI Bots . 33

7 A Multi-Agent AI in 0 a.d. 34

7.1 Game Entities as BDI Agents . 34
7.2 Agents coordination . 34
7.3 Workers and Trainers in a virtual Job Market . 35
7.4 Game map and Exploration . 35

8 Design of ABot 37

8.1 The AI central module and the MAS Framework 37
8.2 Behaviours as Modules . 39
8.3 Optimizations and coordination agents . 40
8.4 The Job Market . 40

8.4.1 Agents and Elements . 41
8.4.2 Job Templates . 41
8.4.3 Self-Con�guration . 43
8.4.4 Value, Wealth and Choice . 43
8.4.5 Job Spots . 43
8.4.6 Resource dependent Jobs . 44
8.4.7 Training Jobs . 44
8.4.8 Build Jobs . 44
8.4.9 Stimulus-Response System mechanics . 45
8.4.10 Self-Optimization in Job Market Economics 46

CONTENTS 4

8.4.11 Self-Healing . 46
8.5 Exploration . 47

8.5.1 Exploration Grid . 47
8.5.2 Scouts . 47
8.5.3 Self-Con�guration and Routes Generation 47
8.5.4 Map interaction and Self-Healing . 48

8.6 Military . 48
8.6.1 The Military Grid and Battle Tactics . 48
8.6.2 Self-Protection and Base Defense . 49

9 Implementation 50

9.1 Base Framework Modules . 50
9.1.1 Optimizations . 52
9.1.2 Unit Agent . 53
9.1.3 Building Agent . 54

9.2 Job Market . 54
9.2.1 Job Market Agent . 56
9.2.2 Worker-JobMarketAgent interaction . 57
9.2.3 Cost Jobs . 58
9.2.4 Stimuli . 59

9.3 Exploration . 59
9.3.1 Exploration Registry Agent . 59
9.3.2 Exploration Grid generation and properties 60
9.3.3 Scouts and Reports . 60

9.4 Military . 61
9.4.1 Captain and Squad creation . 63
9.4.2 Commander and Platoon creation . 64
9.4.3 Generals . 65

IV Botalk: an agent-oriented Language for ABot 66

10 Design of Botalk 67

10.1 Introduction and motivations . 67
10.2 The language Botalk . 67

10.2.1 General Design considerations . 67
10.2.2 Use of + and $. 68
10.2.3 Init Sections . 68
10.2.4 Beliefs . 68
10.2.5 Perceptions . 69
10.2.6 Plans . 69
10.2.7 Variables . 69
10.2.8 IF . 70
10.2.9 FOR . 70
10.2.10Commands . 70
10.2.11Assignment . 71
10.2.12Removing Beliefs, Plans and Perceptions . 72

10.3 Grammar and Parsing . 72
10.4 Checking . 74

10.4.1 Variable declaration . 74
10.4.2 Perceptions Perceive clauses . 74
10.4.3 For cycle correctness . 74
10.4.4 Commands . 74

10.5 Translation . 74

CONTENTS 5

11 Translator Architecture 76

11.0.1 JavaCC parser and tokenizer . 77
11.0.2 Prolog and Java integration . 78
11.0.3 Tree Display . 78
11.0.4 Checking . 78

11.0.4.1 CheckPerceiveExp . 79
11.0.4.2 CheckVar . 79
11.0.4.3 CheckFor . 79
11.0.4.4 CheckCommands . 79

11.0.5 Translation . 80
11.1 Final considerations on Botalk . 80

V Results, Conclusions and Future Work 82

12 Tests 83

12.1 Performance metrics . 83
12.1.1 Strategy . 83
12.1.2 Realism . 84
12.1.3 Performances . 84

12.2 Test Results . 84
12.2.1 Strategy . 84
12.2.2 Realism . 87
12.2.3 Performances . 91

13 Conclusions and Future Work 94

Bibliography 95

Part I

Introduction

6

Chapter 1

Real Time Strategy games

A Real Time Strategy (RTS) game is a military strategy game in which the primary mode of play
is in a real-time setting [3]. Two or more players control units and structures inside a game map
to secure locations or destroy their opponent's assets. It is possible to create additional units and
structures during the course of a match, but this is generally limited by the necessary expenditure
of accumulated resources, which are gathered controlling special points on the map or using certain
types of units and structures devoted to this purpose[11, 3].

The �rst use of the term was coined with Dune II and the games that followed it between 1992
and 1998, like Blizzard's Warcraft and Westwood Studios' Command & Conquer, helped de�ne
this genre's core concepts and mechanics, clearly setting them apart from the other strategy games
that were mainly turn based [11].

1.1 Elements and Mechanics

In a typical RTS game, the screen is divided into a map area displaying the game world and
terrain, units, an interface overlay containing command and production controls. Units that are
issued orders start completing their assigned task and continue to do so on their own accord,
allowing the player to divert its focus in another direction[11].

The gameplay is fast-paced and requires quick thinking and re�exes; to be e�ective the player
needs to manage the forces under its command in various sections of the map and be ready to
respond to multiple events at once. While in turn-based games it is possible to formulate complex
plans, in real-time the decisions need to be made in a fraction of the time and usually the type of
response is tactical more than strategic.

Gameplay generally consists of the player being positioned somewhere in the map with a few
units or a building; from there the usual focus of the game is to start gathering resources and
increase the number of owned forces. Resource gathering spots are usually �nite and force the
player to explore the map to �nd more, often competing for them with the opponent.

Game maps are usually diverse in size based on the number of players and feature di�erent
types of terrains. Being able to see only areas of the map in the vicinity of owned entities, while the
rest remains obscured in a �Fog of War�, is another mechanic usually found in RTS games. There
are two kinds of fog: the areas never visited are pitch black and make it impossible to know what
resides under it; while areas visited in the past, but where there aren't any own units or buildings,
are only covered in a lighter gray that permits to see the terrain features of the map and its key
elements. Since the player starts surrounded by the fog it's important to send units exploring to
discover other extraction points and the position of the enemy base and units.

Every game features its own unique settings and elements, varying from the design and art of
the scenarios to the di�erent implementation of units, buildings and mechanics. Some focus on
managing military units and warfare, while others introduce a more complex economic infrastruc-
ture; although mechanics can vary greatly from product to product, the military aspect must be
present to call it an RTS game [11].

7

CHAPTER 1. REAL TIME STRATEGY GAMES 8

1.2 Warfare

The main goal of RTS games is often the destruction of the opponent's base or the complete
annihilation of its units and buildings and means to produce them, then amassing a considerable
force and moving it to destroy enemy buildings is key to achieve victory. Defending owned location
is also equally important since the loss of extraction and production hubs can hinder the player's
ability to �eld more units to aid in the attack and replace fallen ones, but also in preventing the
enemy player in winning the game by destroying the base. Units independently battle enemy
ones once engaged, leaving the players free to focus on di�erent areas of the map simultaneously
to achieve di�erent objectives. There is usually a variety of unit types with di�erent strengths
and weaknesses and the usual approach is a �rock-paper-scissor� system where certain types are
stronger versus one type while being weaker against another in a circular pattern.

1.3 Economy

In RTS games the production of units and structures is possible with the expenditure of accumu-
lated resources, usually of various types. Resource gathering spots are located inside the game
map and are harvestable from specialized units or buildings [11]. The more extraction points the
player control the higher it is its production output, consequently their capture and secure are key
to winning the game. Buildings are the main source of units and are usually associated with a
production queue. Various buildings allow the production of di�erent types of units where higher
cost ones unlock more powerful units. The rate at which the player can create units is proportional
to the number of training buildings in its control. Since a stronger economy means a higher output
and quality of military units it is an important element to consider, while keeping it balanced with
the military aspect of the game as resources are usually �nite.

1.4 Common Strategies

Although every match has di�erent conditions and players try to adapt to and counter speci�c
tactics, there are some strategies that fall under common patterns. Some of the most common and
simplest are �rushing� and �turtling�. A rush consists in training a few units as fast as possible
and sending them towards the enemy trying a surprise attack aimed at crippling its production
capabilities overwhelming it and thus ending the match. �Turtling� is the opposite to rushing and
consists in taking a completely defensive stance trying to fend of enemy attacks while amassing
units to muster a vast army and attack the opponent in one big attack.

Other strategies include raiding the adversary's forces in small groups trying to lure its forces
and then attack in a vulnerability in its defences, or try to keep the enemy under constant pressure
by building military structures near its base.

1.5 Playing modes

There are normally three di�erent modes of playing RTS games: a campaign mode, a single player
skirmish mode and a multiplayer mode.

In the campaign mode the player must complete a number of levels that progresses a story,
each level built around a series of tasks to be performed and completed in order to proceed; this
is typically a single player experience where the scenario is pre-built with speci�c conditions and
the opponent usually consists of predetermined responses to triggered events.

In the single player skirmish mode instead, the human player and the AI controlled opponent
play under the same starting conditions. The game map is often designed to avoid giving some
player any initial advantage. It is possible to play against more than one AI opponent in a �free-
for-all� setting or in a team-based con�ict.

The multiplayer mode is like a skirmish mode but where the opponents are other human players;
it's usually possible to participate in matches with both human and AI adversaries. Friendly
matches, tournaments and leagues have become so popular that the multiplayer component is

CHAPTER 1. REAL TIME STRATEGY GAMES 9

usually considered the most important part in an RTS game by most players and then consequently
by developers.

Although multiplayer is now considered the predominant way to play RTS games the single
player modes still remain important for di�erent purposes: it isn't always possible to �nd human
opponents to play with or of the same level of skill to provide a fair match. The AI adversaries are
then devised in di�erent orders of challenge trying to satisfy the widest possible range of players
and providing a valuable training tool.

Chapter 2

Multi-Agent Systems

A Multi-Agent System (MAS) is a system composed of multiple autonomous and interacting soft-
ware parts located within an environment [20].

The agents in a multi-agent system have several important characteristics:

� Autonomy: the agents are at least partially autonomous;

� Locality: no agent has a full global view of the system, or the system is too complex for an
agent to make practical use of such knowledge;

� Decentralization: there is no centralized control for the agent..

2.1 Belief-Desire-Intention Agents

A BDI agent is an agent having certain mental attitudes of Belief, Desire and Intention, represent-
ing, respectively, the information, motivational, and deliberative states of the agent. These mental
attitudes determine the system's behaviour and are critical for achieving adequate or optimal
performance when deliberation is subject to resource bounds [16, 6].

� Beliefs: they represent the knowledge of the agent, they can derive from internal reasoning
or from the observation of the world;

� Desires: they represent the motivational state of the agent, objectives or situations that the
agent would like to accomplish;

� Intentions: they represent the deliberative state of the agent, what it has chosen to do, they
are desires which the agent has committed.

2.2 Self-Computing

Self-Computing refers to the self-managing characteristics of distributed computing resources,
adapting to unpredictable changes while hiding intrinsic complexity to operators and users. In
a self-managing autonomic system, the human operator plays on a new role: instead of controlling
the system directly, she de�nes general policies and rules that guide the self-management process.

There are four functional areas that can be referred as Self-* properties [18]:

� Self-con�guration: Automatic con�guration of components;

� Self-healing: Automatic discovery, and correction of faults;

� Self-optimization: Automatic monitoring and control of resources to ensure the optimal
functioning with respect to the de�ned requirements;

� Self-protection: Proactive identi�cation and protection from arbitrary attacks.

10

CHAPTER 2. MULTI-AGENT SYSTEMS 11

Even though self-managing characteristics can be coded in any distributed system, they have
assumed growing signi�cance in Multi-Agent Systems.

Software agents naturally play the role of autonomous entities subject to self-organise them-
selves. Usually agents are used for simulating self-organising systems, in order to better understand
or establish models. The tendency is now to shift the role of agents from simulation to the de-
velopment of distributed systems where components are software agents that once deployed in a
given environment self-organise and work in a decentralised manner towards the realisation of a
given global and possibly emergent functionality [9].

Part II

Arti�cial Intelligence in Real Time

Strategy games

12

Chapter 3

RTS games and AI

The concept of Arti�cial Intelligence in RTS games can be divided in di�erent areas, but two main
categories emerge:

� creation of arti�cial opponents

� automatic responses and behaviours

The second includes all those mechanics that are present in both human and arti�cial gameplay,
whose main purpose is to aid in simple and repetitive actions: �nding the best path to a location,
moving all units into formation, etc. [19]. This is currently the main focus area of AI research
in this genre of games, its aim is to remove various hassles that hinder the player's fun, and
it is considered a top priority. Path�nding algorithms, reactive responses to attacks, automatic
accomplishment of simple tasks, all these topics have seen evident improvements over the years,
being often considered as key feature in the comparison between di�erent products.

While RTS games have become a lot smarter in aiding the player the same cannot be stated
for their ability to produce a valid opponent, since they have remained roughly the same over the
years with minimal improvements. Also the majority of the observations can only be done by
examining the results, since game companies are very reluctant to release any of their AI research
and there is no any evidence of inter-company collaboration in this �eld.

3.1 Current state of arti�cial opponents in commercial games

Strong and e�cient AIs mostly exist for turn-based strategy games in which the majority of
moves have global consequences and human planning abilities therefore can be outsmarted by
mere enumeration. RTS games instead feature hundreds, if not thousands, interacting objects,
often in an imperfect information scenario. With frequent micro-actions, where it is not possible
to evaluate every possible decision in a weighted system; this sets the development of AIs for this
type of games on a very di�erent path from established techniques.

Video games companies create titles under severe time constraints and have not resources and
incentives to seriously research in this direction; more importantly developing a good AI is not a
priority in a market where the multi-player component is considered predominant [7].

Customers rate current arti�cial opponents very poorly and then show very low interest in this
type of feature; this is both cause and e�ect of the current state of advancement in this �eld, since
low attention means lower development resources and thus worse AIs.

Unappealing characteristics of current AIs are also predictability and a lack of realistic re-
sponses. The di�culty of raising the level of challenge often leads developers to take shortcuts and
plainly change the game conditions in favour of their AIs making them harder to confront but also
less rewarding for the player.

13

CHAPTER 3. RTS GAMES AND AI 14

Figure 3.1.1: State of AI interest and reasons

3.2 Omniscience and Cheating

A simple way to increase the di�culty level of an arti�cial opponent, without increasing cost of
development or complexity, is to make it change the rules of the game in its favour, in other words
to cheat.

Quicker production of units, higher starting resource reserves, stronger units, higher di�culty
levels of the AI often coincide with the adoption of one or more of these changes; usually the player
can't see them because they are all hidden parameters, but an experienced one can often feel that
something has been altered.

Exploration involves a certain level of complexity that developers avoid to integrate in their
AIs, granting them full knowledge of the game world and thus factoring all entities in their decision
algorithms. An omniscient AI ignores the fog of war system and already knows where the enemy
units and buildings are and in which numbers, not allowing the player to implement misdirection
tactics that would have worked with an human opponent.

3.3 Realism

Current AIs have a �nite number of strategies and tactics that they implement with speci�c
triggering conditions, their responses are always the same in a given scenario thus making them
predictable. After a few matches a human player can usually predict and counter most of the AI's
moves and not because the opponent is playing badly but because of its limitations. Customers
then usually consider arti�cial opponents as poor substitutes for their human counterparts and
consequently software houses rank their development as low priority. An AI that realistically
emulates a player would contribute to provide a better entertainment factor and thus increase
customer's interest [7].

Chapter 4

Towards and agent-based AI for RTS

It is now clear that currently used techniques for AI development in computer controlled opponents
lack under various points of view. It is then possible to dissect the problem in di�erent areas and
try to approach a solution.

4.1 Distributed or Centralized

Computing systems are gradually abandoning consolidated centralized approaches to adopt dis-
tributed solutions; Arti�cial Intelligence research has shifted in a similar way with the introduction
of Multi-Agent systems [15].

Despite a centralized AI can reach high levels of complexity and e�ciency in turn-based strat-
egy games, in RTS the decisions have to be made quickly because the AI processing is done
concurrently with graphics, animations, user interface; in a real time setting where knowledge is
non-deterministic they struggle to attain an high level of quality without sacri�cing signi�cant
resources.

Distributed systems instead aim to solve complex problems by dividing them into smaller
and lighter tasks, thus allowing more �exibility in the use of resources, also allowing for better
adaptability.

4.2 Omniscience or Locality

A characteristic common to most available AIs is the knowledge of all elements composing the game
simulation, including their details, their position and their status. An AI devised in this manner
doesn't need to explore the map and can always consider every entity in its decision process. Even
advanced AIs, that only consider elements inside their entities �eld of view, still enumerate and
evaluate them with a global perspective.

Another way of addressing the perception of the game elements would be to use the locality
principle, where each entity only knows what it can percept in a near portion of the space; this
method distributes the knowledge of the system into a collection of smaller knowledge-bases. This
grants the possibility to consider only a selected portion of information pertinent to the solution
of a speci�c problem, although forcing the need for a mechanism to retrieve and coalesce the data
from all di�erent sources.

4.3 Optimal or Human-like

Algorithms are, by de�nition, a series of steps designed to solve a particular problem, possibly with
an optimal solution. Even in AI design all choices are made aiming for the best possible result with
the knowledge available. Two identical scenarios will always trigger the same response; given that
AIs are normally limited to a �nite number of actions, similar conditions will result in an equal
e�ect.

15

CHAPTER 4. TOWARDS AND AGENT-BASED AI FOR RTS 16

The human decision making process can be analytical in the same way, although with various
degrees of success, but in the time-constrained scenario of RTS games inevitably the selection of
the proper action varies.

In the research for a human-like response to increase realism and to try to make the player
forget that it is against an AI, the introduction of �choice� for automated systems can bring an
element of unpredictability and variation in an optimal-oriented setting [12].

4.4 Multi-Agent Systems as AIs

The objective of this thesis is to demonstrate how multi-agent systems could be used to substitute
standard AIs.

This approach consists in:

� mapping each controlled entity to a single agent

� providing the agents with the means to perceive the game world in their proximity

� creating a communication support to enable agents interaction

� de�ning a set of behaviours

� assigning each agent a subset of those behaviours

� designing the agent's plans in a way to promote cooperation and steer them towards a
collective goal

4.5 Objectives of an agent-based approach

4.5.1 Decentralization of the decision making process

Each agent has its own sets of objectives and decides autonomously which to pursue. Choices
are made individually based only on the knowledge possessed by the agent and not on the whole
collection of available information.

There is not only one course of action being considered at the same time, but a group of
disparate reasoning possibilities each with a di�erent scope. The resulting global behaviour of the
AI then is the emergent direction taken by all agents combined.

Each agent then needs to be able to:

� consider external conditions like perceptions or messages from other agents

� access its knowledge base

� discern which actions to perform based on available information

4.5.2 Realization of realistic behaviours

There are di�erent characteristics that would make an arti�cial opponent more realistic in the
eyes of the human player, most of them emulate what an actual player would do in a range of
circumstances.

Sending explorers to scout the map is an action that identi�es a player with imperfect knowledge
of the world map and with limited �eld of vision. Human players can't see past the fog of war so
they need to lift it to see the rest of the map, common AIs instead know right away the position of
all enemy units causing their armies to walk straight to the enemy base without any kind of prior
sign.

Another behaviour that is frequent in human players, but very rare in AIs, is to retreat units
from hopeless battles to save them and regroup to safer positions.

Simply attacking with di�erent tactics and not following the usual ones is another way to
dissimulate arti�ciality, since even though players would often lead typical attacks they wouldn't
do so in such repetitive patterns.

CHAPTER 4. TOWARDS AND AGENT-BASED AI FOR RTS 17

4.5.3 Modularity

With this approach it is possible to separate development in di�erent modules speci�c to a certain
task or aspect. Each agent is then the sum of a di�erent set of behaviours.

A module could represent the typical actions of a given unit or a response common to all the
units sharing some characteristic.

4.5.4 Self-Organization properties

In MASs the operation is focused on the interaction of independent entities, this leads to the
attempt to �nd a way to autonomously organize the agents.

A RTS game can comprise of di�erent sets of units and structures, subsequently the multi-agent
system would need to be initialized appropriately each time; it is important then to design it in a
way that it automatically detects the various types of entities and self-con�gures itself accordingly.

The agent-based AI must be able to recover from the loss of one or more agents and compensate,
either by replacing them or by directing others to reorganize in order to obviate the loss.

The system must be able to detect threats and possible dangerous conditions and adapt in order
to respond to them. The loss of an agent must lead towards its replacement without provoking
any persistent malfunction in the system.

4.5.5 Better performances

There are two main aspects that may allow a distributed system to perform better than a centralized
one: threading and distribution of workload.

A centralized AI is composed mainly of a complex calculation cycle, usually executed in a
single thread. Diversely distributing the decision making process to di�erent entities allows for the
creation of a proper thread for each agent, thus increasing performances in parallel systems.

Centralized AIs' complex algorithms can be taxing and they are usually not cycled each instant
of the game to avoid a too heavy load; instead they run once every �xed interval of time, creating
an uneven distribution of the workload, in a way that can be represented in a series of calculation
�spikes�, which impact the �smoothness� of the game.

In a distributed approach instead, consisting of a collection of lighter reasoning cycles, calcu-
lations are divided into di�erent instants, spreading their computational costs evenly throughout
the game.

4.5.6 Possible disadvantages

Where a centralized AI is easily directed towards a de�ned set of goals, it is harder to steer a society
of agents toward working on the same objectives. It is necessary to calibrate properly the initial
settings in a way that the system will maintain its balance over the course of the simulation. This
makes the e�ciency of the system deeply binded to the quality of the design of its self-organization
properties.

Distributed AIs take particular advantage in multi-threading, thus in case of centralized engines
without multi-thread support the bene�ts to use such systems drop greatly.

Another possible disadvantage is that MASs' initial parameters impact greatly in their organi-
zation performances and it is not so easy to de�ne what a good con�guration could be like without
extensive testing.

Chapter 5

A framework for an agent-based AI

In this chapter is depicted a possible framework for an agent based AI for RTS.

5.1 Every game entity as an agent

The game elements that can be controlled directly and are appropriate to be de�ned as agents are
units and buildings, each instance of them has be associated to a corresponding agent.

Following the Beliefs-Desires-Intentions model and adapting it to the considered setting each
agent should have:

� a set of beliefs that ensemble those given at its creation, those acquired through its perception
of the world, those that other agents sent and those which are result of own reasoning;

� a set of perceptions that act as sensors;

� a set of desires given by the nature of the agent,plus those sent by other agents;

� intentions, namely desires, that after their conditions are veri�ed, get executed by the agents;

� game interaction functions that work like e�ectors for the intentions and actuate commands
to the engine.

5.2 Game world perception

All game entities have a speci�c position inside the game map described as a set of coordinates.
Knowing the position of these entities constitutes an important knowledge for the agents, which
need a context to evaluate which actions to undertake.

it is possible to retrieve this type of information by accessing the simulation data, but this is
usually un�ltered and contains all the possible entities, disregarding the position they occupy.

5.2.1 Locality of perceptions

Each unit or building has an assigned range of perception that is used to determine how far it can
�see� around. The distance between the position of each game element and the agent is calculated,
then only the entities that are inside the range are considered and inserted into the knowledge
base. This way they only know what is around them and can decide what to do based on their
surroundings. This also means that the AI as a whole doesn't know what is outside of the range
of vision of its agents, but it needs to explore to know more.

18

CHAPTER 5. A FRAMEWORK FOR AN AGENT-BASED AI 19

Figure 5.2.1: Range of Vision and Perceptions

To know the position of something outside its view an agent must ask the other agents using
messages, which can be designed not to depend on range. The existence of a communication
range impacts on the ability of the agents to propagate knowledge, because it means that recently
acquired beliefs need the agent that perceived them to move closer to the rest of the society to
see them be integrated in the society. This kind of limitation can lead to relevant data being
transmitted well after it was perceived, when it could already be obsolete and to be discarded. A
scout needing to return to the base to alert of an impeding attack or a worker that wants to signal
the expiration of a resource spot, both are situations where a limited communication range would
hinder the e�ciency of the system.

5.2.2 Distribution of knowledge

The whole sum of the AI's knowledge is divided in all its agents. Since there can be hundreds
of them it is important that each agent only has the portion of knowledge it needs. Having all
the agents know everything would mean steep memory costs, but it would also require signi�cant
resources just to keep them all synchronized, ultimately with data that they don't really require.

Too much information, maybe even outdated, can severely impair the agent's operation not
only in terms of performances but also by tampering with its decision making. It is important
then to instruct the agents to retrieve only the information they need from the other agents and
keep discarding outdated knowledge.

Another mechanism that promotes communication of knowledge but without any actual mes-
sages between the agents is stigmergy. This is a form of self-organization that sees the agents
leaving a trace in the environment around them in a way that a�ects its own behaviour or the
one of other agents[13]. The use of stigmergy can then lead to the emergence of the desired global
behaviour [9].

5.3 Existing MAS platforms and RTS

There are various MAS frameworks available which have arisen to implement common standards,
like the one de�ned by FIPA [1], or to de�ne new ones; they have been created to provide developers
with an already tested and established structure for agent-based development and also aid in its
standardization. Some of these are: Jade [4], Jason [5], CArtAgO [17], TuCSoN [14].

Integrating one of them in the game engine would provide numerous advantages: like the
access to established protocols for de�ning agents, a wide range of languages and tools to aid

CHAPTER 5. A FRAMEWORK FOR AN AGENT-BASED AI 20

in the development and also, given their tested status, a clear improvement in e�ciency. The
downside, however, would be that it is not always feasible to integrate such platforms inside an
already designed engine and their embedding could lead to unforeseen problems or a deterioration
in performances caused by the bridging of di�erent systems, thus diminishing their advantages.

Another option would be to create a new �ad hoc� framework. The e�ciency of the resulting
solution would however depend on how early in the engine's development cycle the MAS framework
is designed and integrated. A tailored system could lead to a greater �exibility in the adaptation
to the engine's mechanics and also provide with a reasoning cycle that follows more closely the
needed behaviours. The downside of a custom framework would be the greater development time
needed to de�ne and test a complete and functional system.

5.4 A new �ad hoc� MAS framework

The proposed solution is to create a new framework customized to the necessities of RTS games
and easily embeddable into game engines, even ones in an advanced stage of development. The
new platform's design is inspired by Jason [5], from which it instantiates its reasoning cycle to the
speci�c needs of the target system. In this section then some possible abstractions are proposed
to manage the di�erent cornerstones needed to agent-based solutions.

5.4.1 Reasoning Cycle

The reasoning cycle is composed by the succession of a series of steps that de�ne how the agent
acquires information, considers it and then acts on it based on its own agenda. The proposed
solution involves four processes in order:

1. The agent perceives the game environment around it, recognizing the desired elements and
adding them to its knowledge-base;

2. The agent open the received messages and evaluates their content;

3. The agent selects from the available desires the ones it wants to pursue;

4. The agent pursues its intentions by acting on them.

Figure 5.4.1: Reasoning Cycle

5.4.2 Beliefs

Beliefs represent the knowledge the agent has at its disposal. There can be a set of beliefs al-
ready present at the initialization of the agent, then the others are acquired with perceptions and
messages.

A possible representation for a belief is:

� Name

� Key

� Data

Every combination of Name and Key represents the identi�cation for a Belief. Data is structured
containing all the desired information.

CHAPTER 5. A FRAMEWORK FOR AN AGENT-BASED AI 21

5.4.3 Perceptions

Each agent has a collection of sensors that let it perceive the state of the game around it. Per-
ceptions constitute a direct access to game data from which new Beliefs are extrapolated and then
added to the belief-base.

Every agent has a series of perceptions at its disposal, but only the active ones are destined to
enter the reasoning cycle. It is important to access only a speci�c type of information with each
perception, doing so it is possible to reduce the amount of useless data being registered.

A perception can be set to be run only once after activation or to be continuously running until
deactivation.

5.4.4 Plans

The �desires� of the agents are represented by constructs named �Plans�, inspired by the ones used
in AgentSpeak [5], which constitute all the possible actions they can consider to undertake.

A plan can be in three di�erent states:

� dormant;

� triggered;

� active.

When a plan is triggered the desire becomes an intention, then, if certain conditions are veri�ed,
an action is scheduled to be executed.

Each triggered plan's conditions will be veri�ed in every reasoning cycle until they are met or
the plan is detriggered. Once a plan is active it will carry out its activity and then return to a
dormant state.

Figure 5.4.2: Plan cycle

5.4.5 Messages

Agents can communicate with others using Messages: these, once created and sent, will be de-
posited in the inbox of the respective receivers.

A Message has four elements:

� Sender, containing the ID of the agent sending the Message;

� Receiver, containing the ID of the agent to which the Message will be sent, there can be
multiple receivers;

CHAPTER 5. A FRAMEWORK FOR AN AGENT-BASED AI 22

� Type of message

� Content

Table 5.1: Types of messages inspired by AgentSpeak [5]
Type Description Content

Achieve Triggers a Plan in the receivers
planbase

Name of the Plan
to trigger

Abandon
(unachieve)

Detriggers a Plan in the receiver's
triggered plans list

Name of the Plan
to detrigger

Tell How Sends a new Plan to be added to the
receivers plan-base

Plan

Forget How Makes the receiver delete a Plan inside
its planbase

Name of the Plan
to be removed

Tell Adds a Belief to the receivers'
belief-base or updates an existing one

Belief

Forget Removes a Belief from the the
receivers's belief-base

Name and key of
the Belief to be

removed
Ask Forces the receiver to send a Tell

message to the sender, containing the
asked Belief

Name and Key of
the Belief to
retrieve

5.4.6 Modules

As said in the premise, devising the agents in a way that each of them is the composition of
di�erent modules is a good way to grant interoperability of di�erent behaviours and creating
custom responses to speci�c situations.

A baseline Agent module is shared by all agents and grants common perceptions, like looking
for nearby entities, or common plans, like the initial presentation to other agents.

A module needed could be the one shared by all Units that enables basic movement plans,
refreshes the agent's position, monitor its current status; another one that could be shared by all
Buildings that initialize repair warning plans or garrison information.

Then each speci�c operation has its own module: for example a unit that is both a worker and
a soldier is initialized with both modules.

5.5 Managing the Economy

A strong economy management is fundamental for the success of any AI in the �eld of RTS games,
since a higher rate of resource gathering and an e�ciently balanced construction plan mean higher
units production rates and a stronger army.

There are di�erent actors that participate the economic aspect of an RTS game match:

� Gatherer units or structures

� Builders

� Training structures

Gatherers represent the income in resources and since there are usually more than one type of
resource, they often come in di�erent forms. More gatherers bring more resources, but it is often
important to discern which ones to build in a particular instant of the match.

Building and training is e�ectively how the accumulated resources are spent. Usually each
structure that can be built accounts for a di�erent advantage, like the possibility to gather faster,

CHAPTER 5. A FRAMEWORK FOR AN AGENT-BASED AI 23

train stronger units, defend an area; while training units is necessary to both increasing the number
of gatherers/builders and the number of soldiers available for military operations.

In centralized AIs it is easier to implement an economic strategy since everything is managed
by a single process and it is simply a case of weighting di�erent factors and sending commands
to the actors. Problems arise if the complexity of the strategy gets too high since it has to be
executed in a very limited time frame, then the choice algorithm is usually dumbed down trying
to �nd a balance between e�ciency and quality.

In an agent-based AI every actor decides what to do and how to proceed, so it is necessary to
devise an e�ective way to organize the agents.

5.5.1 Workers and Jobs

The �rst step is to associate the agents the actions they can accomplish. Together they create a
job. Then it is important to de�ne the conditions that are necessary for undertaking each job and
the e�ects it has on the economy.

Jobs can then be classi�ed based on their connection with resources in:

� jobs that consume resources;

� jobs that increase resources;

� jobs that neither consume nor increase resources.

Under the �rst category we'll place building and training jobs, while on the second all gathering
jobs. The third category is for activities, like repairing for example, that aren't linked to the
income/outcome aspect but still are to be considered in the time management of the agents.

5.5.2 Creating a Virtual Market

If every worker agent can do any job it wants without any consideration of the global e�ects of
its actions we would have an uncontrollable economic system that acts randomly and without any
coalesced purpose. Instead if we create a central system that tells every agent what to do we could
fall back to the centralized solution, losing all advantages of an agent-based approach.

A possible way to in�uence agents, without imposing on them strict commands, is to attribute
a value to each job they can undertake. The higher the value of a job, the higher the incentive for
the agent to choose it. Also the value of the job must vary depending on its usefulness and the
number of other workers already doing it.

The solution proposed then is to create a virtual market for jobs, in a way that each agent
can see the values of the available jobs and chose the desired one. Values then can be stored in a
shared system or continually exchanged between agents in a decentralized market [10].

5.5.3 Wealth and Choice

Here another concept mentioned earlier returns: should agents pick the best choice ?
Allowing workers to always pick the highest rated activity creates a system which, without

external in�uences, could reproduce the same pattern each match, with no variation and no un-
predictability. Even the best RTS players never follow the same identical plan each time they play;
they can memorize an optimal initial pattern but eventually they begin to chose trying to guess
the optimal solution[12].

A proposed mechanic, inspired by a real economic combination, that can be used to add a
randomness factor to job selection is pay and wealth.

Classic RTSs do not usually include an option for single units to buy anything for themselves,
in the proposed system higher wealth means higher choice. Every time a job is �nished its value
is added to the worker's wealth. Every time a worker is choosing a new job it considers not only
the best valued but also the second, the third and so on depending on its wealth. The choice is
made randomly and if the optimal job is not selected the di�erence in value with the chosen one
is subtracted from the agent's wealth.

This way at the start of the match, when it is important to chose e�ciently, the workers start
with no wealth and have to chose the best jobs, with time their options pool increases.

CHAPTER 5. A FRAMEWORK FOR AN AGENT-BASED AI 24

5.5.4 The Stimulus-Response model

The values of the jobs need to vary to respond to both internal and external conditions. If a type
of resource is getting low or missing entirely, its related gathering jobs need to be ranked higher;
in the same way if the current army is poor in numbers, solder training values must be raised
accordingly.

It is also important to link the job market system with the rest of the agent society, not only
with workers, this way a scout spotting an enemy army can directly in�uence the production of
more military units or defensive structures.

A system devised to in�uence the economy is then created following the Stimulus-Response
model[8]:

E(Y) = f(x)

The objective of the Stimulus-Response model is to establish a mathematical function that
describes the relation f between the stimulus x and the expected value of the response Y.

This model proved to be e�ective in various �elds of application to relate various types of events
with their e�ects on a given system.

In the current context each presented stimulus has a response value represented by the variation
of the corresponding job's value. A stimulus that manifests the lack of a particular resource raises
the value of the related gathering job by a speci�c value. This mechanic represents a stigmergic
way of collaboration between the agents, since they don't communicate directly; the act of sending
a stimulus a�ects the environment, in this case the job market, thus altering the conditions upon
which the other agents select their next job [13, 9].

5.5.5 Self-Con�guration and Job Creation

Every job is about the interaction between the worker and a game element without which it
wouldn't even exist. A gathering job exists only if there is a known resource to be harvested; in
the same way a construction or training job only exists if the worker has the possibility to do such
activity. Then it can be said that without any worker the job market would contain no jobs.

It is necessary to design a self-con�guring system that autonomously adds and removes jobs
depending on their availability. It must consider the workers and the o�erers, which register their
request triggering the creation of a job.

Some cases of autonomous job creation and removal may be:

� a scout reports the �nding of a gathering spot � creation of a gathering job of the corre-
sponding resource.

� a gathering spot is depleted � gathering job removal.

� a new builder enters the system � creation of a building job for each buildable structure.

� a structure needs repairs � creation of a repair job, that is removed once the structure has
been fully repaired.

5.5.6 Self-Optimization and Balancing

To create a market that suitably �uctuates responding to di�erent events, but which also maintains
a plausible general direction, it is important to set correctly the initial parameters; it also has to
be designed with self-optimization characteristics that maintain it balanced during the match.
Changing the response function of a particular stimulus can deeply alter how the AI economy
fares.

This way it is also possible to give a certain �personality� to the AI economy. For example
setting high response values to military production can lead to a stronger army but with weaker
support infrastructure; setting low decrement values for a gathering jobs can lead to less structures
and a surplus of resources.

Once the parameters are set the system then needs to auto-regulate during the match: high
value jobs get chosen and decrease in value letting the neglected ones surface. The lack of a

CHAPTER 5. A FRAMEWORK FOR AN AGENT-BASED AI 25

particular unit can raise the value of its training job then the jobs needed to gather the resources
required and so on.

5.5.7 Self-Healing and Hazards

The system needs to be self-aware of any anomalous occurrence, the most common are:

� a job value that raises uncontrollably high;

� a job value that sinks too deep;

� a cyclic reaction that causes certain job values to raise as a group above the rest and out of
control

To solve the �rst two problems it is su�cient to introduce maximum and minimum values; then
the random component in the choice of the jobs normally solves situations where all the jobs are
�attened on the �oor value or at the top.

To avoid the third kind of hazard it is important to always create an �escape route� in cyclic
job responses, allowing one of the involved jobs to break the chain.

5.6 Exploration

Autonomous exploration is an important part of a multi-agent AI that uses localized knowledge.
Without sending units to explore the map it would be impossible to discover new resource gathering
spots or the location of the enemy bases or units, incontrovertibly negating any chance to win the
match.

The agent society then needs to elect its explorers and send them away from the starting
location to know what lays beyond, but also requires a method to determine the various routes to
be taken, to spread the search in all possible directions and reach every location.

5.6.1 Scouts and Game Map

Scouting behaviours should be assigned to the fastest units to be e�ective; and the vision range is
also an important factor.

An e�ective way to coordinate exploration between agents is to divide the map in a grid, with
each cell sized slightly less than the vision range of the scouts, so that sending each scouting agent
to the center of one would reveal all its contents.

If all the explorers start to visit di�erent cells, communicating with each other the data of the
ones already visited, the map's contents are gradually registered in their knowledge base. Then it
is only a matter of sending the �ndings to the interested agents and visiting again outdated cells.

5.6.2 Self-Con�guration and Dynamic Exploration Routes

Each map is usually sized di�erently; it is critical then to employ self-con�guration mechanics to
autonomously create the grid, considering the vision range of the available scouts for each match.

The starting position changes too in di�erent scenarios and can be near the center of the map
or in a corner in order to direct the exploration towards likely enemy locations, but also in order
to deter scouts to retrace the others' steps, a possibility is to use a circular direction matrix.

Each explorer is then assigned a di�erent preferred direction starting with the one directly
opposite to the starting position; it then tries to explore in that direction until it �nds the end of
the map and then chose another. This way every route is generated dynamically and it prevents
non linear itineraries.

CHAPTER 5. A FRAMEWORK FOR AN AGENT-BASED AI 26

Figure 5.6.1: Direction matrix

5.7 Military Mechanics and Warfare

The organization of military units and buildings is fundamental in pursuing victory conditions.
Even though a basic strategy simply involves selecting a large enough force and sending it towards
the enemy, an e�ective approach involves the use of a diverse array of tactics both defensive and
o�ensive. In an agent-based AI each military unit is an agent with its own mind, but this cannot
mean units attacking on their own in a chaotic pattern since it would mean certain defeat. On the
other hand a strictly centralized command would mean to abandon the �exibility and adaptability
of the agent system.

5.7.1 Military Hierarchy and The Top-Down approach of managing mil-
itary units

An e�cient way to manage military agents is to divide them using a hierarchy, attributing each
agent a rank that de�nes its set of possible military actions and its grade of independence on the
battle�eld[2]. Each rank implies di�erent objective and capabilities.

The required basic roles can be:

� Soldier

� Captain

� Commander

� General

Another concept that comes with the hierarchical system is the division of the units in di�erent
types of combat groups:

� Squads: composed of soldiers;

� Platoons: combination of two or more squads;

� Army: covering all military units under the AI control.

Every combat unit is also a soldier. They are the core that composes each squad and they have no
combat initiative other than to return to base in case they are dispersed in the map alone or in case
of a general alarm. Their main purpose is to follow the orders of their superiors and accomplish
their given objectives.

CHAPTER 5. A FRAMEWORK FOR AN AGENT-BASED AI 27

The captain is the o�cer that forms and gives orders to squads. Once a captain is ordered to
form a squad it tries to �nd among the unassigned soldiers the ones that �t the squad type and
sends them formup orders. Captains have only basic missions like moving to a location, attacking a
target, defending a position; they also have the responsibility to decide the current squad formation
based on the situation they are in.

The commander is the �rst to actually have some form of independent combat initiative. In the
absence of a general the commander responds autonomously to threat detection and form basic
attack plans to cripple enemy bases. The force under its command is a platoon, composed of two
or more squads, usually of di�erent types based on the mission purpose. The commander tries
to �nd an eligible captain for every squad it needs and instructs it to form a squad and get into
position. The formed platoon can then be moved as a whole or divided, but the smallest group is
always a squad.

The general is the only type of agent that maintains a complete strategic view. Its purpose is
to evaluate global conditions and then generate combat plans to be conveyed to the commanders.

5.7.2 Military-Economy interaction

Since sometimes happens in certain RTS games that units can be both workers and soldiers, it is
important to create a system that allows them to switch their current status. It is then a matter
of considering actual necessities and trigger the conversion of soldiers in workers and vice versa.

Another important interaction between the military system and the economy is the dispatch of
stimuli based on the lack of the necessary force. A captain that can't form a squad of the desired
type will send a stimulus asking for more units of that kind. For example a general preparing
an attack on the enemy base will then send a stimulus for the production of all military units or
frequent attacks at the AI's base will send a stimulus for the construction of defensive units or
structures.

5.7.3 Tactical Awareness and Dynamic generation of Strategies

The general needs a way to analyze the battle�eld and plan movements and positioning, doing
so requires a way to organize its knowledge of owned forces and bind it to their position on the
map. Like with the exploration system it is possible to divide the map in a grid and then maintain
recorded all information needed for military evaluations, each cell with information of ally and
enemy forces, buildings, rendezvous points.

This is a way for the general to be aware of possible incoming attacks or weaknesses in the
enemy lines, but it also makes it possible to utilize known strategies and contextualize them in
the game map. A strategic pattern, like for example a two pronged attack, can then dynamically
generate the practical strategy instantiated with current conditions and parameters.

5.7.4 Self-Protective reactions

Another crucial aspect to consider is defense and responsiveness to enemy threats.
The automatic positioning of certain units halfway between bases can constitute an early warn-

ing mechanism for incoming attacks. This also needs to activate certain alarm conditions that put
the agents on alert. A base under attack can send a call to arms to defensive positions, contacting
all available agents to join up.

Even during battles it is possible to devise self-protection behaviours to protect the units
involved from disadvantaged situations. A concept that is rarely seen in common RTS AIs is
strategic retreat: if the battle is going badly or the enemy numbers are overwhelming it serves no
purpose to simply let the soldiers die, instead a simple order, from a captain or a commander, to
retreat to a safe position, can change the course of the skirmish. This implicitly allows trap tactics,
like when a small group escapes from an enemy contingent only to regroup with bigger forces and
reverse the conditions.

CHAPTER 5. A FRAMEWORK FOR AN AGENT-BASED AI 28

5.8 Creating unpredictability

5.8.1 Introducing Random elements

As said before a way to create non-repetitive behaviours is to give agents the power of choice.
But this isn't simply applying a random factor to selection algorithms, but also creating situations
where multiple options arise and it isn't clear how to compare them [12]. A way to do this is to
introduce discordant intentions that negate each other randomly or introducing a random condition
inside certain plans to avoid or accelerate their activation.

5.8.2 Courage and Morale

A simple mechanic that allows to experiment with unpredictability is the introduction of the
courage factor. Each combat unit is assigned a random courage value at birth, then every time it
�nds itself in a harmful situation, like during a battle, it checks its status against its courage and
decides to �ee or to remain on the battle�eld.

If the decision is made considering the di�erence in forces between allies and enemies, the �ight
of a single fearful unit can have a chain e�ect causing all the party to �ee.

Part III

A practical application

29

Chapter 6

0 a.d. : an Open Source Historical

RTS game

6.1 Game elements and goals

0 A.D. is a free, open-source, cross-platform real-time strategy (RTS) game of ancient warfare.
In short, it is a historically-based war/economy game that allows players to relive or rewrite the
history of Western civilizations, focusing on the years between 500 B.C. and 500 A.D. The project
involves state-of-the-art 3D graphics, detailed artwork, sound, and a �exible and powerful custom-
built game engine.

The game has been in development by Wild�re Games (WFG), a group of volunteer, hobbyist
game developers, since 2001.

6.1.1 Civilizations

The game allow the player to control any of six ancient civilizations from the pre-common era:

� The Roman Republic

� The Carthaginian Empire

� The Celtic Tribes

� The Hellenic States

� The Iberian Tribes

� The Persian Empire

Each civilisation has a unique set of buildings and units, and has notable strengths and weaknesses
that must be learned and exploited by the player to be used e�ectively.

6.1.2 Units and Buildings

Each civilization has its own set of units and buildings but the main categories remain the same.
The units are divided in:

� Infantry: worker-soldier units that move by foot and have low combat abilities; they can be
both melee and ranged.

� Cavalry: fast mounted units; they can be both melee and ranged.

� Champions: these constitute the �professional� soldiers, incapable of gathering or building,
they are elite foot soldiers; they can be both melee and ranged and need a special building
to be trained.

30

CHAPTER 6. 0 A.D. : AN OPEN SOURCE HISTORICAL RTS GAME 31

� Heroes: these unique units represent historic �gures and are the best units available, they
project an aura around them that bene�t nearby units; they can be mounted and both melee
and ranged.

� Support units: special units that perform speci�c tasks; female units gather and build, healers
can restore other units hitpoints.

� Mechanical units: these are the siege machines, rams, ballistas, trebuchets, they are used to
bring down buildings faster or to kill a great number of units from distance.

Buildings vary greatly from one civilization to the other; especially training buildings for advanced
units like heroes, champions and siege machines, come with di�erent names and purposes.

The structures common to all civilizations are:

� Civil centers: these represent the player's base, they are a resource dropsite and the starting
building with which each player starts the game.

� Houses: each house built grants an increase of the population pool.

� Mills and Farmsteads: these are resource dropsites, the �rst for Metal, Wood and Stone, the
second for Food.

� Towers: defensive buildings that shoot incoming enemies from a distance.

� Fields: these are buildable Food resource spots.

� Temples: for training healers and healing garrisoned units.

� Stables: these allow the training of cavalry units.

� Barracks: these allow the training of infantry units.

� Fortresses: defensive buildings that also allow the training of champion units.

6.1.3 Resources and Economy

There are four types of resources in the game:

� Food: collected by hunting animals, plowing �elds or picking wild berries.

� Wood: collected cutting down trees.

� Stone: collected from stone mines.

� Metal: collected from metal mines.

Each of these resources needs to be gathered from the appropriate point and then returned to a
dropsite.

The maximum number of units permitted at any given time is binded to the population resource,
there are certain buildings, like houses, that once built raise this cap allowing the production of
more.

All infantry soldiers and a female support units can gather each resource with varying degrees of
speed. they constitute the bulk of the player's units and are also capable of constructing buildings.
It is important to have a good amount of these worker units since they are the key for increasing
resource supplies and expanding the player's base.

CHAPTER 6. 0 A.D. : AN OPEN SOURCE HISTORICAL RTS GAME 32

6.1.4 Warfare

Units constitutes the forces that the player can �eld to attack the enemy. Once selected one or
more units can be commanded to move to any accessible position on the map or to attack a visible
enemy unit or building.

There are di�erent formations for armies that let them move in determined patterns, like Single
line, Testudo, Column, Wedge.

Each military unit is combat e�ciency not only depends from its category, like infantry or
champion, but also by the type of the attacked enemy. There is a �rock-paper-scissors� system
in place that grants weaknesses and strengths against the other types in a circular pattern. It
varies with particular units but the general idea is: Cavalry tramps Melee Infantry, Melee Infantry
tramps Ranged, Ranged tramps Cavalry.

Units have di�erent available combat �stances� that determine how it should respond to the
presence/attack of enemy units. The possible stances are:

� Violent: will attack any enemy unit that wanders into vision range. Will relentlessly pursue
retreating enemy units into the Fog of War for a short distance running depending upon
stamina. Units in this stance tend to not hold their formation.

� Aggressive: will attack any enemy unit that wanders into vision range. Will not pursue
enemy units out of vision range.

� Defensive: "Default" stance. Will attack enemy units who come within half vision range
distance. Will pursue the enemy until they leave that range. If no more enemies are within
range they will return to their original positions.

� Stand Ground: Will not move unless tasked to move or attack. Soldiers will not pursue
enemy units and will only �ght back when attacked or when their comrade next to them in
formation is being attacked.

� Passive: Default (and only) stance for support units. Will not attack. Runs away from enemy
soldiers in the direction of the nearest Civic Centre or Fortress. A unit with this stance, if
tasked to move, will attempt to avoid contact with enemy units.

6.2 Technical characteristics

6.2.1 Pyrogenesys and Spidermonkey

The game engine, written in C++, provides the underlying structure for the whole game, managing
graphics, sound and user inputs.

All gameplay mechanics are instead written in javascript and interpreted by the engine using
Mozillas Spidermonkey. Unit basic behaviors like stances, moving into formation, path�nding are
all part of the game logic. It's also provided a set of objects containing the current state of the
game with the conditions of all entities and all relevant data used by the game logic.

The game state is updated every 150ms, actually dividing the game into turns; it's the engine
that gives visual continuity to these turns by displaying the correct movement animations, allowing
the graphics to appear �uid.

6.2.2 Game Logic

The game logic provides the underlying structure to support a set of higher commands by the
player: it establishes a set of possible commands and then gives them a determined result into the
game. For example the Walk command is executed by analyzing the map and possible obstacles
for the unit that wants to move and then a path�nding algorithm calculates the best course.

All possible commands are provided directly with an engine call or by using the appropriate
APIs.

Game logic is common between all players, humans and AIs, the di�erence stands in the fact
that these commands are executed by the game interface in case of a human player or by the AI
scripts in case of a computer controlled player.

CHAPTER 6. 0 A.D. : AN OPEN SOURCE HISTORICAL RTS GAME 33

A common AI API gives the basic functions to interact with the game entities, but a Gamestate
object is also created containing all entity arrays and relevant data, with also a way to quickly
access them.

6.2.3 Current AI Bots

All the current AIs are centralized algorithms that evaluate the current game state and then try to
actuate a set of plans adapting to it. They are omniscient, meaning they know enemy and resource
positions everywhere on the map, even through the fog of war or outside vision range.

The main AI, QBot, works by doing a cyclical analysis of the game conditions and acting on a
set of plans; it also adapts to enemy movements and strengths by trying to improve its army. It
builds a strong economy able to support a constant �ux of soldiers and provides a strong challenge,
although having a unmatchable knowledge of all that is on the map. All units and structures usually
receive orders in batches matching a selected plan of action.

Chapter 7

A Multi-Agent AI in 0 a.d.

A new AI bot for 0 a.d. was created as a practical application of the mentioned mechanics and
techniques.

The choice of this particular game was made for di�erent reasons:

� Open Source license, making it possible to see and change any part of the code from the AI
APIs to the game engine;

� beta development stage, it isn't still complete but all its base mechanics are present and
functioning correctly, it isn't a prototype but a working game;

� the development of AIs is well supported and doesn't require changing any of the base code.

The new AI called ABot is then developed using javascript and the provided common APIs.

7.1 Game Entities as BDI Agents

The only controllable entities are units and buildings, then as soon as one of them is created by the
engine and inserted into the simulation a corresponding agent is created, which directs its actions.
The API gives access to the entity's logic and current state, which is used by the other AIs, but it
was necessary to add another layer to manage the agent's behaviour.

Then each entity exists as:

� a model inside the game engine, used for its graphical representation;

� a logic entity inside the gamestate;

� an agent inside the MAS framework.

The MAS framework was then created embedded into the normal AI infrastructure, without the
need to change any logic interaction function.

Each agent is then de�ned by the beliefs, perceptions and plans given at its creation.

7.2 Agents coordination

Agents and entities interact on separate levels and information can only go one way from the entity
to the agent that requires it. There aren't any actions that an entity can pursue that can directly
a�ect an agent. In the same way if two entities communicate with each other at the game logic
level this won't translate directly on the agent level but its e�ects can be retrieved, though only
by the agent request.

Information from the game logic level can be retrieved only with the agent's perceptions. On
the other hand every action from the agent that doesn't translate into an action on the game level
is completely invisible from that level.

34

CHAPTER 7. A MULTI-AGENT AI IN 0 A.D. 35

Since the simulation's data is only retrieved by request it is important to access key information
every game turn. Like when an entity dies it is necessary to detect it immediately and begin the
corresponding agent's termination routine.

Figure 7.2.1: Model-Entity-Agent interaction

Inside the MAS framework it's possible for the agents to communicate with each other using
messages exchanging knowledge or plans. This is done using a �mailbox� system where an agent
sends its messages in one particular turn that the receiver opens on the next, with its other
messages.

Each agent is then identi�ed by an Id that is its name in the agent society and it's derived from
the entity's Id.

7.3 Workers and Trainers in a virtual Job Market

In 0 a.d. there are two types of worker units:

� citizen-soldiers,

� females.

It is necessary then to assign citizen-soldiers both the roles of workers and soldiers, also introducing
a mechanic that would allow them to switch between the two during the match in order to respond
to emerging necessities. On the contrary females are only assigned the role of workers.

Structures aren't designed as workers but are considered as training agents or trainers; meaning
that they don't partecipate directly in the selection of working jobs but are assigned training orders
on necessity.

The AI economy is then managed creating a virtual job market as seen in Chapter 6, where
gathering, repairing and building jobs can be assigned to workers, while training jobs to trainers.

7.4 Game map and Exploration

Game maps in 0 a.d. are two dimensional planes where each entity's position is represented
by two coordinates: x and z. They come in di�erent sizes and feature di�erent morphological
characteristics.

In the game map there are not only the players' units and buildings, but a serie of neutral
elements, owned by a �ctional player named �gaia�, like trees, animals, bushes, ruins, treasures.
Some of these are resource spots, others are merely props.

CHAPTER 7. A MULTI-AGENT AI IN 0 A.D. 36

The agents then, using their perceptions, can see and record the position of the elements they
are interested in. Creating a perception for every group of similar entities it's possible to select
what to see and what to ignore.

Chapter 8

Design of ABot

8.1 The AI central module and the MAS Framework

The AI's main entity is ABot, extending the Base AI interface. It's responsible for the infrastructure
that interfaces the agent system with the game logic and it also provides the MAS framework.

The common API provides a Gamestate object that contains all the entities currently present
in the game, with their details, their state, their current orders. Using this the AI's central module
can then access all the information it needs to populate and keep updated the agents society.

The game simulation is divided into turns, in the same way the ABot module reitarates every
turn to refresh the agent-base and to trigger the various steps of the agents' reasoning cycle, which
is divided into:

� Agents array update: searches into the entity array for owned entities, then creates new
agents; if they are missing from the current list its removes them triggering their dying
method; each new agent is created with an unique Id that is the same as the one its associated
entity has inside the game logic.

� Perceptions: every perception for each agent is executed.

� Mail delivery: collects all messages from the agents' outboxes, then using the recipients' ids
it delivers them in the corresponding inboxes.

� Mail check: every agent checks its inbox and actuates the content of the message.

� Thinking: all triggered plans are checked to see if their conditions are met and in that case
they are activated as intentions.

� Acting: all intentions are executed.

Each step is executed for each agent in the system before proceeding to the next. Even though
actions are executed with the order of the agents this doesn't impact the results since all game
commands are all activated at the same time at the end of the game turn. The only precaution
needed creating plans is to avoid con�icting orders activated in the same reasoning cycle.

37

CHAPTER 8. DESIGN OF ABOT 38

Figure 8.1.1: Reasoning cycle

The Agent base module contains all the methods needed by the framework all common beliefs,
perceptions and plans.

Each agent has its own knowledge bases:

� Belief Collection

� Plan-base

� Perception-base

� Message inbox

� Message outbox

Once a new entity enters the system the ABot central module analyzes its template and determines
automatically its roles, activating the necessary modules. All agents inherit the agent module, then
units the Unit Agent module and buildings the Building Agent module.

CHAPTER 8. DESIGN OF ABOT 39

Figure 8.1.2: Framework elements and modules

8.2 Behaviours as Modules

Dividing behaviours into di�erent modules is a way to promote reuse and standardize common
actions and reactions. Analyzing an entity object it's possible to extrapolate all its characteristics
and classify it into di�erent roles, then an initialization module is loaded for each.

The system's modules are:

� Agent: behaviours common to all agents;

� Unit: behaviours common to all units;

� Building: behaviours common to all buildings;

� Worker: behaviours for worker units;

� Soldier: behaviours common for all combat units;

� Captain, Commander, General: rank speci�c behaviours for combat units;

� Training Building: behaviours for buildings that can train units;

� Scout: behaviours for units that can become explorers;

CHAPTER 8. DESIGN OF ABOT 40

� Building speci�c modules: some special buildings often have their own dedicated module,
like civil centers, �elds, depots.

8.3 Optimizations and coordination agents

All the AI's code is embedded into the game logic and therefore written in javascript and inter-
preted, moreover the game engine still doesn't support multithreading. These conditions aren't
ideal for optimal exploitation of MAS's performance bonuses, but still the biggest bottleneck is
accessing the entity array in the gamestate. Every time an agent perceives something it has to
iterate an array containing all the entities of the game, draining a consistent amount of resources
if done every turn by tens or hundreds of agents.

A way to optimize this aspect is to divide the global entity array into speci�c categories already
in the ABot module, allowing then the agents' perceptions to only cycle through smaller arrays.
Another signi�cant solution is to fractionize as much as possible perceptions and keep the ones
that aren't needed inactive.

Another cause of concern is the amount of communication between agents while distributing
knowledge. Keeping all agents updated on the position of all objects found in the map during explo-
ration or seeding all job values every time one change, these are all situations where the messaging
system, that isn't in an optimal infrastructure, can seriously impact system performances.

Coordination agents are a solution to this problem: immaterial agents that haven't a game
entity counterpart but that function as knowledge keepers or service coordinators for di�erent
mechanics.

The agents created for this reason are:

� the Job Market Agent that coordinates the interaction with the job market and servers as a
broker for jobs;

� the Exploration Registry Agent that keeps a record of all entities seen while exploring and
directs the scouts around the map;

� the Build Planner Agent that is responsible for �nding locations to place buildings;

8.4 The Job Market

The Job Market is where workers chose what to do, if gathering wood or food, if repairing a
building or constructing a new one. The citizen units are independent in their choices but they
are directed towards the jobs which are most needed.

The aim of this mechanic is to be:

� responsive to dynamic conditions

� �exible

� e�cient

� realistic

� adaptive

� self-con�guring

� self-healing

� self-optimized

Every agent in the system can in�uence the market manifesting needs that will in�uence the market
but the main elements managed are:

� workers

CHAPTER 8. DESIGN OF ABOT 41

� training buildings

� resource gathering

� constructions

� repairs

8.4.1 Agents and Elements

The main agents and elements in this systems are:

� the worker units that work on jobs like gathering, building, repairing;

� the training buildings that produce units of various types;

� the Job Market a central resource where all jobs are registered with their values;

� the Job Market Agent (JMA) that is an immaterial agent that works as a broker in the job
market responding to requests and interacting with the other agents.

All possible jobs and their values, all registered workers and their abilities, all current available
and reserved resource are contained inside the Job Market object, all actions taken in�uence this
simulation element. The only agent that can interact with the Job Market is the Job Market
Agent, all the others need to pass through its mediation to access the market.

Job Templates and Jobs are the main elements of this system: the templates describe the
various jobs and are unique, while the jobs represent the actual action to take and are speci�c to
the context. A worker cannot take a job template directly, there needs to be an actual job created
under the template.

Figure 8.4.1: Job Market actors and relations

8.4.2 Job Templates

If a working action is not represented by a Job Template it can't generate jobs and then it can't
be assigned. The Job Template also de�nes what a job could be about and its initial parameters,
some can be changed once the job is initialized but they will always start with the baseline de�ned
in the template.

CHAPTER 8. DESIGN OF ABOT 42

Figure 8.4.2: Job Templates and Jobs

The possible Job Template types are:

� Building

� Training

� Repair

� Gathering Wood Resources

� Gathering Food Resources

� Gathering Stone Resources

� Gathering Metal Resources

� Gathering Wood Treasures

� Gathering Food Treasures

� Gathering Stone Treasures

� Gathering Metal Treasures

Under Building and Training types there are a multitude of Job Templates, one for each possible
structure or unit templates that are buildable or trainable. Since some parameters cannot change
from job to job inside the same Job Templates, these are shared in their related template:

� the Related Template which registers the template name of the desired production in case of
building or training jobs

� the default Start Values, Maximum Values, Decrement Values, that will be used initializing
the jobs;

� whether the jobs are location dependent and how big it is the penalty for distance

� whether the jobs cost resources and how many

� how the jobs' values should respond to Stimuli

� which worker is preferred to do a certain job

� the number of trips for gathering jobs

� how many spots the jobs should have

CHAPTER 8. DESIGN OF ABOT 43

8.4.3 Self-Con�guration

The system con�gures itself automatically; each worker that enters the system registers with the
Job Market Agent and its inherent Job Templates are generated. Once a unit or building type
is registered new ones of the same type will not trigger another template extraction, keeping the
resources needed for self-con�guration very low. This mechanic also permits to gradually integrate
more complex jobs (mainly training Jobs) into the system.

Gathering jobs are auto-generated using reports from the Exploration Registry Agent: each
new report is sent to the Job Market Agent and a new Job of the corresponding template is created,
with the location and id of the gathering element. Workers will also automatically check whether
a resource gathering spot, associated with a job, has been depleted and then inform the JMA, who
will take charge in removing the job from the pool.

Fields are buildings that provide a steady Food gathering spot; once they are constructed they
register and an appropriate job is created with a greater number of job spots.

Repair jobs are also automatically created from requests by damaged buildings or foundations:
when a structure's hitpoints lower under a certain threshold a repair need will be sent to the JMA
and an appropriate job will be added with a number of spots proportional to the damage. This also
works for building foundations; since they start with 0 hitpoints they will trigger a job creation
and attract workers.

8.4.4 Value, Wealth and Choice

Every Job is associated with a value that determines how important it is and how likely it will be
chosen by a worker. Each worker unit also has a certain Wealth value that represent how much
work it has done in the past and how well paid were its jobs.

Once a worker unit is free to start a new job it will make a request to the JMA, which in turn
will determine to which jobs the worker is allowed and pick a handful of the best valued ones.
To follow the concept stated earlier, that some randomness is better than always chosing the best
optimal solution, the highest value job won't be picked straightforwardly, but the choice will be
done between a certain number of jobs. The highest valued job will be selected, then its value
multiplied by a �xed Wealth Factor thus creating a threshold. All jobs that rank higher that the
threshold are selected and a Wealth Cost is associated to them based on how distant they are from
the best job. Then the worker unit's wealth will be checked against the best jobs list and removed
the ones that it cannot a�ord and �nally it will chose randomly between the remaining ones.

This system allows a certain �exibility and randomness to the job selection process that will
vary how each match will be played. The worker choosing a job with a wealth cost will see its
pay diminished by the same cost even lowering it below zero. Since the number of possible jobs
usually increase during the match, the increasing workers' wealth grants a comparable rise in
choice �exibility. Once a job is picked by a worker its value immediately decreases based on its
own Decrement Value.

8.4.5 Job Spots

Each job has a certain number of Spots, meaning how many workers can do the same activity
at the same time. The number of spots varies based on the type of action performed and how
necessary it is to impede �crowding�.

For example, since trees have small wood resource value and their collision sphere around them
in the engine is small, they will always have only one worker at maximum; while a stone quarry
that contains thousands of resources can allow six workers at the same moment.

Repair jobs con�gure their spots automatically based on the quantity of repairs needed.
Once the worker has selected its job the JMA will be alerted and its spot reserved. If the worker

stops for whatever reason like �nishing the job, wanting to change, picking up arms or even dying,
it will communicate with the JMA that will restore the spots or remove the job entirely.

CHAPTER 8. DESIGN OF ABOT 44

Figure 8.4.3: Job Spots

8.4.6 Resource dependent Jobs

Jobs are divided in two categories based on their having or not a resource cost. Since the pools
of resources are shared between all agents an arbitration system was devised to protect against
concurrent use.

Every Job Template that has an associated cost is considered a resource dependent job and
inserted into a list that is entirely separated with the non-resource dependent jobs.

In the list of resource dependent jobs there are all possible Training and Building templates
and to each it is assigned a value that determines its importance.

Once every reasoning cycle all these jobs are sorted by their value and the highest one is picked.
If its resource cost is a�ordable:

� the job is activated

� its resources are reserved from the available pools

� its value is decreased by its decrement value

� the list is resorted

� a new job is picked

This continues until a job with an una�ordable cost is found; then the whole process stops: the
picked job's value is decreased a little to avoid stagnation and a Stimulus is generated for every
missing resource.

8.4.7 Training Jobs

Training Jobs approved in the previous mechanic are directed to the buildings that can start them,
choosing by the shortest training queue. If there aren't any trainers free to complete the job then
its value is decreased by half the amount it would have been lowered if it was completed; also since
no resources were spent the job selection cycle continues.

The lack of trainers is manifested with a Stimulus to the market.

8.4.8 Build Jobs

Build jobs are also resource dependent jobs, but they have to be initiated by worker units and
therefore inserted in the non-resource dependent jobs' market; so if one of them is approved for
construction it creates a new Job with the same value it had in the parallel job market waiting to
be picked like other jobs.

CHAPTER 8. DESIGN OF ABOT 45

Since it is important to check where to build structures, a complete map analysis is needed
to �nd the best possible coordinates that are free of any obstruction. For this purpose a Build
PlannerAgent (BPA) is used, its purpose is to interact with the game map's related functions and
�nd a suitable location.

While a worker is picking up a construction job the JMA contacts the Build Planner Agent and
informs it of the type of building and its preferred location; then the worker waits for a message by
the BPA with the permission to proceed and the exact location where to build. If by any reason
a suitable position can't be found the job is scrapped, if the reason was lack of space a Territory
Stimulus is generated.

8.4.9 Stimulus-Response System mechanics

To adapt the game economy to the necessities that arise during the match and to respond to
manifested needs from the agents a Stimulus-Response mechanic was developed.

There are di�erent kinds of Stimuli, each with its own purpose and e�ect; here they are listed
by name and description:

� Food, Wood, Metal, Stone, Population: are all Stimuli sent when a certain resource is lacking
and they cause the appropriate gathering jobs' values to rise or the template of population
buildings in case a Population need is manifested.

� Gatherer: if the gathering jobs are a lot more than the workers available a Stimulus will be
directed at the training templates of worker units.

� Build: if there are many build jobs in the market that needs to be completed but there aren't
enough workers.

� Training: a lack of training buildings will trigger a Stimulus to build Job Templates that are
related to them.

� Territory: if the BuildPlanner Agent can't �nd enough space to build, this Stimulus will raise
the value for the construction of Civil Centres that enlarge the territory limits.

� Scout: a lower than necessary number of scouts will increase the value of their training.

� Military: this is a general call to arms stimulus that will direct production towards more
military active units

� Defence: the increase of the number of buildings near the base or the increasing military
threat raise the value of defensive buildings.

� Attack: an O�cer (see later) planning an attack on a base but lacking the desired units
will send this kind of stimulus directed at the various o�ensive units' Job Templates, whose
values will rise based on their e�ciency in an attack plan.

� Cavalry, Ranged, Melee, Mechanical: are all Stimuli sent by O�cers that re�ect speci�c
needs in their military formations.

� Heal: Stimuli for the construction of healing buildings and units.

Each Stimulus arrives to the JMA where it is applied causing a Response. A Response consists
in the raising all the values of the Job Templates that are �agged for the corresponding Stimulus.
Each Job Template has a list of values, one for each Stimulus it is programmed to respond, this
will be added to the current value in the market. Each Job Template can respond di�erently to
the same Stimulus. For example, if a Military Stimulus is received the value of training infantry
units will raise by 1, while the one of cavalry units will raise by 4.

CHAPTER 8. DESIGN OF ABOT 46

Figure 8.4.4: Stimuli

8.4.10 Self-Optimization in Job Market Economics

Choosing the correct combination of Start, Decrement and Response values is vital for the correct
balancing of the game economy. Di�erent combinations of these amounts can drastically change the
behavior of the AI and provide with a way to implement di�erent �personalities� for the computer
player.

Once the match is started the job values will begin to oscillate in response to the game conditions
and the general direction of the market will re�ect every need with an appropriate change. The
most needed jobs tend to surface to the top, while decreasing when picked.

8.4.11 Self-Healing

By putting a ceiling to the various Job Templates' values, depending on the type, it is possible to
prevent them to raise too high and out of control. If a job receives constant stimuli during the
match it could very well raise to values �ve or ten times the others and it would be very di�cult
to keep it down even with high decrement values.

The system also self-heal against starvation in the choice of Cost Jobs: a structure that require
an high amount of resources, much more than it is available, could block the process for quite
some time. Instead if a Cost Job raises to the top and it is impossible to ful�ll, it will eventually
decrease over time.

CHAPTER 8. DESIGN OF ABOT 47

8.5 Exploration

Agents in ABot have limited knowledge of their surroundings based on their visual range and
what they are looking for, while the bot only knows what its agent see or have seen. Since the
agent society as a whole needs to know and keep track of where the various game elements are and
distributed knowledge would hinder considerably the AI performances as said earlier, an immaterial
agent, the ExplorationRegistry Agent (ERA), is responsible to coordinate exploration.

This agent has di�erent purposes:

� keeping track of the elements seen on the map

� notifying the other agents of the information they need on request

� directing the scout units to explore the map

8.5.1 Exploration Grid

The ERA has direct access to the map features like height and width and it can also control if a
certain destination is accessible. The area of the map is divided into a grid where a square is two
thirds of the average vision range of scout units.

Every square is associated with an object that record its properties:

� if it is accessible

� its center position

� if the center has been reached

� if the square has been reached

� the date of the last report sent about its contents

� the type of terrain

Given a location on the x and z axis then there are functions that determine in which square
it resides or if it is in the center. The center of a square in the grid isn't limited to the exact
coordinates but it's a square with half the dimension centered around it. If this area can be
reached then the whole square is considered accessible.

8.5.2 Scouts

A certain number of units, usually cavalry because of their speed and range of vision, is contacted
by the ERA and instructed how to explore the map by giving it sequential locations to reach inside
the exploration grid. Every destination given to the scout is always chosen from the accessible
squares directly contiguous with the one it is in. The choice for the target location is also made
by avoiding squares already explored recently by any explorer. This way each explorer will go its
own way trying to discover as much as possible of the map.

If there are more than one possible undiscovered destination then it is chosen one that goes
in the opposite direction of the starting position, but another scout will instead chose another
direction entirely based on a round choice system.

Once every number of reasoning cycles the scout sends a report of what it sees to the ERA
allowing it to compile a registry of all encountered entities.

8.5.3 Self-Con�guration and Routes Generation

The number of scouts varies autonomously with the need to explore and the progression of the
game; a lack of units eligible for the position will also trigger a Scout Stimulus to the Market. Every
time that the ERA �nds a new resource or treasure inside the exploration reports, it contacts the
Job Market Agent allowing an automatic generation of gathering jobs. The exploration paths vary
from map to map depending on the starting location and on the terrain features of the map.

CHAPTER 8. DESIGN OF ABOT 48

8.5.4 Map interaction and Self-Healing

Since it can happen that a destination is unreachable, even if the path�nding algorithm said it was,
every time an explorer gets stuck, if center area isn't reached, the square is marked as unreachable
and neither that explorer nor any other will ever try to reach it again. This way over time the scout
units compile a map of the reachable terrain far more precise that the one given in the common
libraries.

8.6 Military

The mechanics to manage the military aspect of the AI consist, as described in Chapter 6, in
dividing the military units in di�erent ranks, each with its own objectives and characteristics.

Since citizen-soldiers are very important during the course of the game, being the back-bone of
the economy system, they also represent the majority of the controlled units. For this reason they
are also the main force behind any player's controlled army.

While basic cavalry units are already trainable from the start, more advanced units like champi-
ons, heroes and siege engines are only available after the construction of expensive buildings along
the course of the match. It's important then to assign military ranks in a way that is balanced
and allows the coverage of all roles.

Not all types of units are always present during the match and the existing ones may die, it's
necessary then to allow each type to be able to pick more than one role and assign a priority in
their selection. Priorities are then described here as a number starting from 0 and raising with the
decrease of the priority.

Table 8.1: Unit - Rank correspondence and priority
XXXXXXXXXXRank

Unit Type
Soldier Captain Commander General

Infantry 0 3 - -
Cavalry 0 2 2 -

Champions 0 1 1 1
Siege 0 - - -
Heroes 0 0 0 0
Healers 0 - - -

For example: if there are an infantry unit, a calvary unit and a champion unit and we need to
�ll the role of a commander and of a captain, the commander role goes to the champion and the
captain role to the cavalry unit.

8.6.1 The Military Grid and Battle Tactics

The Military Grid is where the position of each squad and platoon is recorded and updated, it is
a tool used by Generals to have a quick and easy way to evaluate the strategic situation and also
to provide a serie of key location points where to regroup forces.

Commanders can use the Military Grid to keep track of the position of the squads under their
control and to attain formup positions to transmit to the captains under their command.

The grid designed is a 3x3 matrix with a verbal de�nition of each cell representing its portion
of the map:

Table 8.2: Military Grid
EnemyLeft EnemyBase EnemyRight
CenterLeft CenterBase CenterRight
BackLeft BackBase BackRight

CHAPTER 8. DESIGN OF ABOT 49

The grid is self-con�gured at the start of the game using the starting position and speculating
on the position on the enemy base; then the �rst explorer that reaches the enemy base triggers an
update of the EnemyBase cell position and all the Enemy cells.

Generals once created start scanning the available units for the required military forces to
enact the battle tactics that they have in their knowledge base; once a battle tactic activates the
necessary orders are given to the commanders to form the needed platoons, whom in turn start
selecting captains for the squads.

ABot is limited in the de�nition of only 3 battle tactics, but it provides the tools to easily
design new ones by more experienced players. The tactics provided are:

� The Frontal Assault: this tactic simply creates a large enough army and sends it toward the
enemy base.

� The Two Sided O�ensive: this tactic creates two platoons and sends them to Enemy/Left
and Enemy/Right positions, then triggers an attack on the enemy base at the same time,
forcing the enemy to defend in two places of its base.

� The Siege Sneak: this tactic forms two platoons, one formed with cavalry units for their speed
and another with foot soldiers and siege rams; while the �rst position itself just outside the
enemy base gaining its attention, the second enters it from the opposite side and attacks the
Civil Center with the rams hopefully without encountering heavy resistance.

8.6.2 Self-Protection and Base Defense

The main base maintains constant awarness of its surrounding terrain to spot any enemy incursion.
If an army considered as a threat is spotted near the base a General Alarm is sound calling all the
units and triggering responses based on their role:

� Non combatant workers are ordered to continue working but �ee if attacked.

� Combatant workers are ordered to stop doing their jobs and return to base immediately in
aggressive stance.

� Unassigned Soldiers are ordered to return to base.

� Squad assigned Soldiers are issued no orders since they are under their captains' command.

� Captains, Commanders and Generals are noti�ed of the threat and respond in di�erent ways
evaluating the circumstances.

If a General is present it redirects orces towards the base evaluating the current threat; otherwise
if there are no Generals then the Commanders and the Captains all return to base with their squad
if the threat is consistent.

Once the base is secure Combatant workers are issued the order to return being workers and
select new jobs.

Chapter 9

Implementation

9.1 Base Framework Modules

The base module is ABot, the one that interfaces with the common AI API and constitues the
infrastructure from which all agents are created and their reasoning cycles are called.

Every game turn the ABot onUpdate() function is called, within this method the following
processes occur:

� if the turn is the initial one all service agents and the environment objects are created;

� the gamestate is accessed to extrapolate a list of all entities, then they are divided per type
and stored as lists (the early split is due to the optimizations designed in Chapter 9);

� the current resources are updated;

� updateAgentsArray() is called: creating new agents and removing dead ones;

� lookAround(gamestate) is called cycling through all agents' active perceptions;

� mailman() retrieves all agents' messages and then deposites them in the corrisponding re-
ceivers' inboxes;

� agentsCheckMail() instructs all agents to open their messages and apply the content to their
knowledge base;

� think() instructs all agents to check all their triggered plans for their verifyConditions;

� act() executes all the active plans of all the agents;

Each agent is created using the Agent class, which gives it access to all its resources like:

� Beliefs archived in a BeliefsCollection for every agent;

� Perceptions;

� Plans;

� Messages.

50

CHAPTER 9. IMPLEMENTATION 51

Figure 9.1.1: Agent Class with its interacting objects

Every agents created also shares a set of common Beliefs, Perceptions and Plans related to their
interaction with the agent society and basic world interaction and perception.

Since all units and buildings are described by a template name that is a long string di�cult to
interact with, the new attribute eName is created. eName is an array containing all the information
derived from the template name but divided in di�erent words:

� eName[0] can be �foundation�, �structures�, �units�.

� eName[1] is the entity's civilization

� eName[2] is the entity's main type, like �infantry�, �champion�, �fortress�, �house�, etc..

� eName[3], eName[4], eName[5] are the subtypes and if not used they equal 0.

CHAPTER 9. IMPLEMENTATION 52

It is possible to convert from templateName to eName and back with the use of the given functions.
Here are listed all Beliefs, Perceptions or Plans shared by all agents, the ones marked with a

�*� in the �gures are created after the agent's creation.

Figure 9.1.2: Agents common Beliefs, Perceptions and Plans

9.1.1 Optimizations

The heaviest computational costs of the AI derive from the continual cycle of perceptions that
access the Gamestate object, thus cycling through a global array of entities. As said before this
has been partially solved by dividing the entities into di�erent groups in the ABot central module,
thus allowing perceptions to access only the one they are interested in.

Another change done in order to boost performances was to bypass the perception framework
for the most used attributes and update them in the ABot module. These attributes then are
accessed directly without the need to retrieve the corresponding belief.

These frequently used attributes are:

CHAPTER 9. IMPLEMENTATION 53

� entity

� id

� eName

� templateName

� idle

� hitpoints

9.1.2 Unit Agent

This module is shared between all unit agents, it provides some basic Beliefs and Perceptions and
all their game interaction methods:

� walkTo(x,z)

� exitBuilding(garrisonId)

� attack(target)

� formation(name, entities)

� build(type, x, z, angle)

� repair(id)

� gather(id)

� garrison(id)

� changeStance(stance)

For walkTo, exitBuilding and attack there are also Group versions, that are used by squad captains
to order groups of units at the same time.

Each of these commands is executed immediately overwriting any other order currently active,
to put the order on queue there are Queued versions. For example walkToGroup will move all
entities given in the �eld to the destined location.

Figure 9.1.3: Unit Agent knowledge base

CHAPTER 9. IMPLEMENTATION 54

9.1.3 Building Agent

This module is shared between all building agents, it provides some basic Beliefs and Perceptions
and all their game interaction methods:

� train(type, count)

� unload(id)

� unloadAll()

Figure 9.1.4: Building Agent knowledge base

9.2 Job Market

The Job Market is the entity that contains:

� all the available Jobs divided by their JobTemplates

� all the information related to the current worker templates

� a record of the current resources

There are two functions, one for buildables and the other for trainables, that once a new worker
enters the system are tasked to extrapolate its possible jobs using its templateName. The Job
Market then generate the new jobs and keeps recorded the worker template that generated them
in order to do not trigger the process again when a new worker of the same template enters the
system.

The Job Template object contains all the information common to its related jobs:

� id: this identi�es the Job Template;

� type: this describes the type of job, like Build, Training, GatheringFoodResource, etc.;

� relatedTemplate: this attribute is only used by Building and Training jobs and records the
templateName associated with the element created by the job;

� startValue: this value is the one given to each of job under this template at its creation;

� maxValue: this describes the ceiling for the value of the job, it is used to prevent the job to
reach too high values;

� decrementValue: this is the amount that is subtracted from the the job value once a worker
picks this job;

� startSpots: this de�nes how many workers can engage in this activity at the same time;

� trips: this is only used in gathering jobs and de�nes how many trips a worker needs to
complete in order to complete this job: a trip is considered as the gathering of the resource
and the return to the depot to drop it;

CHAPTER 9. IMPLEMENTATION 55

� locationDependant: this attributes informs if the job has a precise location to be enacted
and if this in�uences the decision to pick the job;

� locationPenalty: this is the modi�er to the job value that lowers it based on the job distance;

� locationPenaltyMinDistance: this value determines the minimum distance of the job to trig-
ger a location penalty;

� preferredTemplates: this array records the template names of the agents that have a preferred
for this job according them a bonus in value;

� responses: this list de�nes all the responses associated to this job template and how much
each of them a�ects the value of the jobs;

� hasResourceCost and reesourceCost: these are used to determine if the job has a cost in
resources and how much of each resource it needs.

Each job then is created with the following attributes:

� id: this uniquely identi�es the job;

� jobTemplate: this is a reference to the associated Job Template;

� location: if the job is location dependant then this records its associated position;

� value: this is the current value of the job and it is initialized with the Job Template's
startValue;

� maxSpots: this is the maximum number of agents that can work on this job;

� curSpots: this keeps track of how many available spots still remain on this job.

CHAPTER 9. IMPLEMENTATION 56

Figure 9.2.1: Job Market object methods

9.2.1 Job Market Agent

The Job Market agent is the only agent that can interact with the Job Market object and it is the
broker that manages the various activities:

� it receives the worker presentations;

� it creates new build and train jobs based on the worker templates;

� it creates new gathering jobs based on the informations received from the Exploration Reg-
istry Agent;

� it creates new repair jobs from the requests of the buildings;

� it receives and process the various Stimuli applying them to the market;

� it manages all job management activities like restoring job spots, clearing exhausted jobs,
removing clutter left by dead workers;

� it in�uences incrementally the market towards military production.

CHAPTER 9. IMPLEMENTATION 57

Figure 9.2.2: Job Market Agent knowledge base

9.2.2 Worker-JobMarketAgent interaction

There are two types of agents that can take on jobs: units and buildings. Units can be employed
in various activities in di�erent locations of the map like gathering, building and repairing, while
buildings can only train new units.

From this moment on we'll call working units generally as Workers, while buildings as Training
Workers.

When a worker is idle and wants to start a new job it starts by asking the Job Market Agent
for the available jobs providing its wealth and its position, the JMA then extracts the possible jobs
and extrapolate a BestJobs list based on the evaluation done considering location penalties and
wealth modi�ers.

CHAPTER 9. IMPLEMENTATION 58

Figure 9.2.3: Worker - Job Market Agent interaction sequence for Job selection

Build jobs are di�erent from the other jobs since they involve the necessity to attain a valid
position to place the foundation of the new building; a new service agent is then contacted to
evaluate the best positions, the BuildPlanner Agent.

This agent mantains a representation of the game map and its elements and attempts to �nd
a position for buildings considering their obstruction radius and the one of the other entities.

The sequence to enact a Build Job is then di�erent from the ones of other jobs:

Figure 9.2.4: Build Job assignment sequence

9.2.3 Cost Jobs

The resource dependant jobs, from now called CostJobs, follow a di�erent itinerary before being
assigned. They are �rst inserted into a job list containing only CostJobs, then periodically the
JMA orders the list by job value and veri�es if the resource cost associated with the CostJob can
be a�orded.

CHAPTER 9. IMPLEMENTATION 59

An a�ordable Training Cost Job is then dispatched to an appropriate training building, selecting
the one with the shortest queue. A�ordable Build Cost Jobs instead are transformed into normal
jobs and inserted in the job list with other non resource dependant jobs.

While selecting an a�ordable Cost Job triggers another job selection cycle, if the job is not
a�ordable then its value is decremented by 1 and a Stimulus is generated related to the missing
resources and also stops the cycle.

The JMA is also responsible of reserving the resources needed for the approved Cost Jobs and
keeping track of their e�ective use by receiving CostJob completion messages by the workers and
training workers.

9.2.4 Stimuli

All Stimuli are directed towards the Job Market Agent, which evaluates them and then select all
the jobs that are marked to respond. Each of these jobs is then incremented in value based on the
value of the assigned response.

9.3 Exploration

Exploration is managed by the interaction between the Exploration Registry Agent (ERA) and
the Scout units.

There is a �xed number of callable scouts determined at initialization, then the ERA tries to
contact eligible units to begin the exploration. Once contacted the ERA provides destinations for
the scouts and records they reports as they are sent.

9.3.1 Exploration Registry Agent

The Exploration Registry Agent has 2 tasks:

� Recording and providing information about the existence and position of all entities seen.

� Instructing the Scouts on which locations to visit based on the data available in the Explo-
ration Grid.

Figure 9.3.1: Exploration Registry Agent knowledge base

CHAPTER 9. IMPLEMENTATION 60

9.3.2 Exploration Grid generation and properties

The Exploration Grid is a matrix that represent the game map divided into cells; each cell is sized
by 2/3 the VisionRange of the basic cavalry unit. This is done to grant an adequate coverage of
the area by the explorer reaching the center of the cell.

Each element of the matrix has the following properties:

� Accessible: is used to record if the cell is reachable;

� ExplorationCenter: this is the center of the cell or if that is unreachable then it becomes one
of the auxiliary centers;

� CenterReached: true if the central area of the cell has been reached;

� Reached: true if any point of the cell has been reached;

� ReportDate: it records the turn of the last report received for this cell;

� Terrain: Land or Water, supports the recordo of terrain types.

If a destination is unreachable then the ERA tries to determine if the last position reached is inside
the center area of the cell, that is a square of half the size of the main one and centered on its
center; if the position is outside then the cell is marked as inaccessible and will never be selected
again as a destination. Otherwise one of the auxiliary centers is selected from the 4 angles of the
inner square.

Figure 9.3.2: Exploration Grid Cell

9.3.3 Scouts and Reports

All cavalry units are marked as scout units because of their extended Vision Range and their
speed. A scout once called starts to accept destinations and moves around the map. When the
scout starts exploring it also starts to count turns; once every a ReportRate number of turns it
sends and exploration report back to the ERA containing all the entities seen until that time.

CHAPTER 9. IMPLEMENTATION 61

Figure 9.3.3: Scout knowledge base

Figure 9.3.4: Exploration Registry Agent - Scout interaction sequence

9.4 Military

The implementation of the military mechanics is done by creating sets of behaviours centered
around the formation of di�erent battle groups and their movements on the map in the response
to the enactment of di�erent Battle Tactics.

CHAPTER 9. IMPLEMENTATION 62

Every combat unit is a Soldier, being able to assume higher ranking positions, like Captain,
Commander and General, incrementally extends its knowledge base with the related behaviours.
Each combat agent is then identi�ed with 3 di�erent beliefs present in each agent belief-base:

� UnassignedSoldier: if a combat unit is marked as unassigned then it not in any squads and
it is not in charge of any batle group;

� Type: this belief changes its name depending on the main category of the unit, like infantry,
cavalry, etc..

� TypeAttack: this belief is named with the combination of the category of the unit and its
attack types; an infantry unit that engages in melee is then known with the belief named
infantryMelee, multiple attack types involve the creation of di�erent beliefs, like a champion
that can engage both in melee and ranged is identi�ed with championMelee and champi-
onRanged;

Figure 9.4.1: Soldier knowledge base

Ranked agents are also identi�ed by the beliefs CaptainAble, CommanderAble or GeneralAble
depending of their main category.

Soldiers, captains and commanders can't decide on their own accord to move to di�erent loca-
tions to engage the enemy but they have a set of responses to di�erent situations:

� Unassigned soldiers can respond to squad formups;

� Unassigned CaptainAble units respond to squad formup requests;

� Unassigned CommanderAble units respond to platoon formup requests;

� Unassigned soldiers respond to base general alarms;

CHAPTER 9. IMPLEMENTATION 63

� Unassigned soldiers if engaged in combat �ee if met by superior forces;

� Squad members monitor constantly their hitpoints and �ee if they reach critical levels;

9.4.1 Captain and Squad creation

A captain is elected by a commander to form a squad and then direct its movements around the
map as a uni�ed group. All its behaviours are then limited to squad formation and movement.

Figure 9.4.2: Captain knowledge base

The squad formation sequence sees the captain calling all necessary soldiers and then reporting
to it with a SquadReady message once all soldiers reach the position of the captain.

Figure 9.4.3: Squad formation sequence

CHAPTER 9. IMPLEMENTATION 64

9.4.2 Commander and Platoon creation

Commanders are elected by generals and are responsible for platoon creation and movements.

Figure 9.4.4: Commander knowledge base

Platoon formation consists in the selection of the necessary captains and their instruction on
how to form their squads, with informations like SquadType and RequiredMembers; once all the
squads are created and in position the respective captains communicate it to the commander,
which in turn reports to the general who ordered the platoon formation.

Figure 9.4.5: Platoon formation sequence

Commanders can also act on basic tactics as instructed by a general, these consists in movements

CHAPTER 9. IMPLEMENTATION 65

where the squads forming the platoon are directed towards di�erent locations on the military grid.
An example would be the Bait tactics which is initialized by giving a regroup location and a bait
location, then a squad part of the platoon moves to the bait location and retreat once engaged
with the enemy to lure them near the other units.

9.4.3 Generals

Generals are elected by the agent representing the base and once initialized continually scan the
present forces to enact di�erent Battle Tactics; once a Battle Tactic is selected the general starts
to form the necessary platoons and provides them with the locations where to move.

Figure 9.4.6: General knowledge base

Every time a platoon is in position or it encounters the enemy the general responds by giving
new destinations or instructing the commander to enact any of their available basic tactics.

Each Battle Tactic is then composed of a series of steps and possible reaction to di�erent combat
events, it also contains the appropriate stances and formations to use.

Part IV

Botalk: an agent-oriented Language

for ABot

66

Chapter 10

Design of Botalk

10.1 Introduction and motivations

This section explains the creation of a new agent-oriented programming language which main
purpose is to quicken and simplify the development of agents for ABot

ABot is written in Javascript to adhere to 0AD AI's mechanics and presents various repetitive
constructs to access and work with the framework, so the aim of Botalk is to streamline the course
of agents development and also shorten as much as possible the learning process.

Since 0AD is an open source project with a multitude of developers it is important to provide
a way to quicken comprehension and to improve readability.

It is also provided a tool, developed in Java and Prolog, that converts an agent written with
the new grammar into a Javascript �le ready to be included into the AI.

This section then consists of:

� Conception and Design of a new Language

� De�nition of its EBNF Grammar

� Development of a Tokenizer, Parser and Prolog AST tree generator using JavaCC

� Checking and Translation developed using Prolog encapsulated inside a Java application.

10.2 The language Botalk

As the MAS framework submitted in 4 was inspired by Jason, this new agent-based language follows
some of the conventions introduced by AgentSpeak[5], although proposing a solution tailored to
the system's necessities.

10.2.1 General Design considerations

A �le written in this language is meant to describe a single module that will then be integrated
with the others and selected to be started by the AI's central agent loader. The common use of a
module would be to de�ne the actions of a particular agent or common behaviors that a group of
them would share.
Every script then is divided into 3 sections:

67

CHAPTER 10. DESIGN OF BOTALK 68

� InitBeliefs

� InitPerceptions

� InitPlans

These sections provide the knowledge base with which the agent is started and each one has very
speci�c elements inside them; it needs to be clear in which section we are and the basic blocks,
Beliefs, Plans and Perceptions, are required to be both clear to de�ne and quick to complete.
New operators have been outlined to aid in the creation and use of the most frequently used
components.
Where a new de�nition would take multiple lines, Botalk aims to reduce it to a single line or very
small and simple sections.
Information retrieval has been the most important �eld for curbing and simpli�cation; �For� cycles
and �If� conditions have also been slightly modi�ed to that end.

10.2.2 Use of + and $

Normally the use of + has been designed for the creation and addition to the knowledge base of
Beliefs, Perceptions, Plans and Variables, but with Beliefs and Plans we don't always want to add
them.
Since Beliefs and Plans can be created to be sent through messages to other agents it is not
automatic that a new one needs to be added to the knowledge base.
$Belief, for example, only creates the belief and it can be used as a variable and sent, while +Belief
does the same thing but also adds another line in the translation issuing a addBelief(belief).

10.2.3 Init Sections

Inside InitBeliefs there can only be belief creation statements and these are always added to the
belief-base, since there cannot be any messages sent from this section only +Belief declarations
are allowed.
InitPerceptions is where new perceptions are created and added, but since not all perceptions need
to be activated from the start, a command in that regard must be issued; that permits the use of
an �ActivatePerception� command within this section.
The same consideration can be done for the InitPlans section where plans are created, added and
then optionally triggered.

10.2.4 Beliefs

A belief is created as mentioned before with either + or $ followed by the keyword Belief and then
Name, Key, BelieveTrue and Data clause, separated by a

∣∣ .
While Name and Key need to be inline with the declaration, there are two possible ways to describe
the other clauses: an extended form and a compact form.

Compact form:

+Be l i e f : BeliefName | Be l i e fKey | Bel ieveTrue |
{ ' DataEntry1 ' : va lue1 ; ' DataEntry2 ' : va lue2 ; } ;

Extended form:

+Be l i e f : KnownPosition |Me{
*Bel ieveTrue : t rue
*Data : {

' DataEntry1 ' : va lue1 ;
' DataEntry2 ' : va lue2 ;

}
}

CHAPTER 10. DESIGN OF BOTALK 69

The choice between the two is non in�uential and it is only a cosmetic di�erence.
BeliefName can only be a literal.
BeliefKey could contain a value or a variable.
BelieveTrue can only be true or false, it's optional (default to true) and it allows for strong
negation.
The Data clauses are always de�ned by a `Label': and then their value.
The Extended form clauses are always preceded by a * and this will be common with Perceptions
and Plans that only have an Extended form.
To use a belief as a return value this syntax must be used:

B e l i e f : BeliefName |Key | Data ;

where Key and Data could be missing in case the desired value comprehend the whole set of beliefs
with the same name or Name

∣∣Key tuple.

10.2.5 Perceptions

Perceptions are the means with which an agent perceive the world around it, within 0AD AIs all
knowledge of map and relevant data about entities are retrievable by the �Gamestate� object.
In ABot a perception retrieves information from the Gamestate and stores it as a belief.
Since ABot implement locality knowledge and also the process of retrieving information from the
game world is costly in terms of processing, Perceptions need to be well aimed and also easy to
activate and deactivate as necessary.
Perceptions are created using this form:

+Percept ion : PerceptionName {
*Continuous : t rue / f a l s e
*Perce ive : Percept ion Code

}

The Continuous clause de�nes the behavior of the perception to continue to run every game cycle
or only one cycle after activation; it's optional and it defaults to true.
The code inside the Perceive consists of the retrieval of data from the gamestate using Commands
and the creation and addition of beliefs; it also allows for other constructs like variable instantiation,
for cycles, if statements.
Ultimately, since Perceptions are only meant to enrich the belief base, inside the Perceive clause
there cannot be plans or perception declarations.

10.2.6 Plans

Plans are the actions that agents perform and could consist of a multitude of di�erent commands,
cycles, information retrieval and conditions. A triggered plan that meets the Verify Conditions
enters the execution cycle and its Execute clause runs; the OnTrigger clause's code instead gets
evaluated just as a Plan is triggered. Execute and OnTrigger clauses contain all the possible
expressions including the creation of new plans and perceptions. The VerifyConditions clause
enclose the conditions necessary for a triggered plan to be executed and are de�ned in the same
way as group of IF conditions.

+Plan : PlanName {
*Execute : Code exp r e s s i on s
*OnTrigger : Code exp r e s s i on s
*Ver i fyCond i t i ons : Condit ions

}

10.2.7 Variables

A new variable is created using +Var:VarName = and it is followed by the value or other variable
that will de�ne it.

CHAPTER 10. DESIGN OF BOTALK 70

To retrieve the value of a variable it is su�cient to use its name.
Like their Javascript counterpart variables are typeless, they can store any string or number or
array or object without further declaration.
If the variable is an object the way to access its attributes is by using

∣∣ , while if it is an array [
Index] will access its contents at Index position.

Where in Javascript we may write: variableName.attribute.array[index]
In Botalk: variableName|attribute|array[index]
The �.� is instead used to access array properties like length in this way: variableName|attribute|array.length

this will return the length of the array.
This way to retrieve data can also be used with beliefs, keeping in mind that the �rst 2 �elds

are always Name and Key.

B e l i e f :Name |Key | Data | a t t r i bu t e | array [index]

10.2.8 IF

The IF statement is similar to the one in other languages with a couple of important variations.
The operators for term comparison are > , >= , < , <= , = .
The operators to evaluate multiple conditions are �AND� and �OR� .
The parenthesis to regroup conditions are �{� and �}�.
Ex.

i f ({ Term1 > Term2 AND Term3 < Term4 } AND Term5 = Term6)

10.2.9 FOR

The For cycle has the following syntax:

For (CountStartValue IncrementOperator
CounterName

ComparisonOperator CountEndValue)

Where IncrementOperator can be >> if counting forward and << if counting backwards. While the
ComparisonOperator can be the usual > , >= , < , <= .

Ex.

f o r (0 counter < 10)

Can be translated in Javascript as:

f o r (var counter = 0 ; counter < 10 ; counter++)

10.2.10 Commands

Commands are the way agents interact with each other and the world, the actual agent's actions; accessing
the Gamestate for information also follows the same syntax.

A command follows the following syntax:

! CommandName : Options [Arguments]

Options identify di�erent command with the same root CommandName and can be stacked one after
the other separated by

∣∣ .
Arguments are separated by a �,� and are always `ArgumentName': Argument .
Available Commands:

� !Log[Message]

� !Speak[Message]

� !Trigger[PlanName]

� !DeTrigger[PlanName]

CHAPTER 10. DESIGN OF BOTALK 71

� !IsAlreadyTriggered[PlanName]

� !ClearMind

� !Activate[PerceptionName]

� !Deactivate[PerceptionName]

� !IsActive[PerceptionName]

� !WalkTo[X,Z]

� !Construct[Type,X,Z,Angle]

� !Repair[Id]

� !Gather[Id]

� !Garrison[Id]

� !Train[Type,Count]

� !Unload[Id]

� !UnloadAll

� !Attack[Id]

Messages and Gamestate retrieval follow a slightly di�erent grammar:

! SendMessage : Type | Rece iver [Message]

Types of messages followed by their arguments are:

� Tell[Belief]

� Forget[Belief]

� Ask[Belief]

� Achieve[PlanName]

� Abandon[PlanName]

� TellHow[Plan]

� ForgetHow[PlanName]

Receiver can either be a variable containing the Id of the receiver or the word Broadcast to send the
message to all the agents.

Ex.

! SendMessage : Te l l | Fr iendlyAgentId
[' Be l i e f ' : B e l i e f : EnemyPosition | Id | Pos i t i on]

Will send the friendly agent a belief containing the position of an enemy that will be added to its knowl-
edgebase.

Gamestate commands are similar to accessing variables:

! Gamestate : In format ion | Att r ibute | Array [Index]

10.2.11 Assignment

Assigning a value to a variable or belief is straightforward.

Var : VariableName = Value

CHAPTER 10. DESIGN OF BOTALK 72

10.2.12 Removing Beliefs, Plans and Perceptions

With the operator �-� it is possible to remove Beliefs, Plans and Perceptions from the knowledgebase of
the agent using the syntax:

−Be l i e f : BeliefName

It is the same for Plans and Perceptions.

10.3 Grammar and Parsing

The JavaCC parser was developed following a type2 LL(2) grammar written in EBNF:

Agent : := "Agent" " :" AgentName
[I n i t B e l i e f s] [I n i tP e r c ep t i on s] [I n i tP l an s]

AgentName : := <LITERAL>

I n i t B e l i e f s : := " I n i t B e l i e f s " " : " "{" {NewBelief } "}"
NewBelief : := ("+"|"$ ") " B e l i e f " " :" BeliefName " |"

Be l i e fKey (" | " Bel ieveTrue " |" "{" {DataClauseEntry} "}"
| "{" {NewBeliefBodyClause} "}")

RemoveBelief : := "−" " B e l i e f " " : " BeliefName [Be l i e fKey]
BeliefName : := <LITERAL>
Bel ie fKey : := <LITERAL> | "(" RetValue ")"
Bel ieveTrue : := <BOOLEAN>
NewBeliefBodyClause : := "*" (Bel ieveTrueClause | DataClause)
Bel ieveTrueClause : := "Bel ieveTrue " " :" Bel ieveTrue
DataClause : := "Data" " :" "{" {DataClauseEntry} "}"
DataClauseEntry : := " '" DataClauseEntryName " '" " :" RetValue " ;"
DataClauseEntryName : := <LITERAL>

In i tPe r c ep t i on s : := " In i tPe r c ep t i on s " " :"
"{" {NewPerception | Command} "}"

NewPerception : := "+" "Percept ion " " :" PerceptionName
"{" {NewPerceptionBodyClause} "}"

RemovePerception : := "−" "Percept ion " " :" PerceptionName
PerceptionName : := <LITERAL>
Continuous : := <BOOLEAN>
NewPerceptionBodyClause : := "*" (ContinuousClause

| Perce iveClause)
ContinuousClause : := "Continuous" " :" Continuous
Perce iveClause : := "Perce ive " " :" "{" {Exp} "}"

In i tP l an s : := " In i tP l an s " " :" "{" {NewPlan | Command} "}"
NewPlan : := ("+"|"$ ") "Plan" " :" PlanName

"{" {NewPlanBodyClause} "}"
RemovePlan : := "−" "Plan" " :" PlanName
PlanName : := <LITERAL>
NewPlanBodyClause : := "*" (ExecuteClause

| OnTriggerClause
| Ver i fyCond i t ionsClause)

ExecuteClause : := "Execute" " :" "{" {Exp} "}"
OnTriggerClause : := "OnTrigger" " :" "{" {Exp} "}"
Ver i fyCond i t ionsClause : := "Ver i fyCond i t i ons " " :"

"{" I fCond i t i on s "}"

Exp : := I fCons t ruc t | ForConstruct | Command " ;"

CHAPTER 10. DESIGN OF BOTALK 73

| NewVar " ;" | NewBelief " ; "
| NewPlan | NewPerception
| Assignment " ;"

SingleLineExp : := Command " ; " | NewVar " ;"
| NewBelief " ; " | NewPlan
| NewPerception | Assignment " ;"

I fCons t ruc t : := " i f " "(" I fCond i t i on s ")"
(SingleLineExp | "{" {Exp} "}") {

(" e l s e i f " "(" I fCond i t i on s ")" | " e l s e ")
(SingleLineExp | "{" {Exp} "}")}

I fCond i t i on s : := I fCond i t i on { (and | or) I fCond i t i on s }
| "{" I fCond i t i on s "}"

{ (and | or) I fCond i t i on s }
I fCond i t i on : := RetValue (">" | ">=" | "<" | "<=" | "=")

RetValue

ForConstruct : := " f o r " "(" RetValue ("<<"|">>")
ForCounterName (">"|">="|"<"|"<=")

RetValue ")"
"{" {Exp} "}"

ForCounterName : := <LITERAL>

NewVar : := "+" "Var" " :" VarName "=" RetValue
VarName : := <LITERAL>

RetValue : := ValueExp | { ("+" | "−" | "/" | "*") ValueExp }
ValueExp : := ((VarAssign | Be l i e fA s s i gn | Command)

[" . " ArrayProp] | Value) | "(" RetValue ")"
Value : := ["−"] <NUMBER> | " '" <LITERAL> " '"
ArrayProp : := " length "

Assignment : := (VarAssign | Be l i e fA s s i gn) "=" RetValue
Be l i e fA s s i gn : := " B e l i e f " " : " BeliefName

" |" [Be l i e fKey [" | " DataClauseEntryName
[" [" RetValue "] "]]]

VarAssign : := VarName [" [" RetValue "] "] { " |" FieldName
[" [" RetValue "] "] }

Command : := " !" CommandName
(" : " CommandOption {" |" CommandOption})
[" [" [" '" CommandArgName " '" " :" CommandArg

{" ," CommandArgName " :" CommandArg}] "] "]
CommandName : := <LITERAL>
SubCommandName : := <LITERAL>
CommandOption : := <LITERAL>
CommandArgName : := <LITERAL>
CommandArg : := RetValue

The parser was devised to produce an OO Prolog AST tree; every node is a Prolog Term and the whole
output is ready to be integrated into a Prolog query.
The application that envelopes all the di�erent steps of the process is developed in Java and uses JavaCC
for tokenizing, parsing and tree generation, then imports the Java-Prolog interaction libraries of tuProlog
and embeds prolog theories for checking and translating.
A prolog AST tree displayer was also developed to facilitate debugging and comprehension.

CHAPTER 10. DESIGN OF BOTALK 74

10.4 Checking

Before being handed to the translator, the parsing output is analyzed for semantic correctness; this consists
of 4 checks divided into di�erent modules where the following are evaluated:

10.4.1 Variable declaration

This check inspects all new variable statements and compares the name of the new variable with the al-
ready declared ones and report an error in case a double is found.
Since the Counter inside a for cycle is also a variable it is inspected like the rest.

10.4.2 Perceptions Perceive clauses

Since the code inside a Perceive clause of a Perception is very similar to the one inside Plans' Execute
and OnTrigger, with the only di�erence that no new Plans or Perceptions can be created inside a Perceive
clause, the most e�cient course of action was to allow them in the grammar and relegate their detection
into the semantic analysis.
This check then reports an error for every NewPlan and NewPerception statements inside a Perceive clause.

10.4.3 For cycle correctness

This check investigate all for cycles to determine if there are any strings used as CountStartValue or
CountEndValue.

10.4.4 Commands

This is where all commands are checked to see if they are in the correct form and also if their arguments
are in the correct order.
This is where possible new commands need to be added to become valid.

10.5 Translation

If all checks pass successfully the translation process begins and an output �le in Javascript is created.
Looking at the examples included as attachments it is possible to see the di�erences between the two
languages.
The output comes already formatted using a 5 space tab margin however it is possible to adjust the setting
by modifying the value in the Prolog Translation Theory.

In the following extract we can see the same belief creation �rst in Botalk and then in Javascript:

+Be l i e f : EngagedBattle | (B e l i e f : KnownAgents |Me| Id) | t rue |
{ ' Target ' : B e l i e f : Vi s ib leEnemies |Me| Id [EnemiesCounter] ;
} ;

var engagedBat t l eBe l i e f =
new Be l i e f (" EngagedBattle " ,
agent . g e tB e l i e f ("KnownAgents " ,"Me") . Id ,
{ "Target " :
agent . g e tB e l i e f (" Vis ib leEnemies " ,"Me") . Id [enemiesCounter] }

, t rue) ;
agent . addBe l i e f (engagedBat t l eBe l i e f) ;

The �rst one takes only 1 line with 110 characters, while the second 2 lines for 200 characters.

For statements are also shorter:

f o r (0 EnemiesCounter
<= Be l i e f : Vi s ib leEnemies |Me| Distance . l enght)

{ . . . }

CHAPTER 10. DESIGN OF BOTALK 75

f o r (var enemiesCounter = 0 ;
EnemiesCounter <
agent . g e tB e l i e f (" Vis ib leEnemies " ,"Me") . Distance . l enght ;
EnemiesCounter++)

{ . . . }

Chapter 11

Translator Architecture

The software application is organized as follows:

Figure 11.0.1: Botalk Translator Architecture

The MainWindow manages the graphics and also calls sequentially the other modules step by step
along the process; every module will only run if the previous one �nished without errors.

76

CHAPTER 11. TRANSLATOR ARCHITECTURE 77

Figure 11.0.2: Botalk processing iterations

The main is also the process that manages input and output streams, operates the various optional
sections and displays the output text of all the other submodules.

11.0.1 JavaCC parser and tokenizer

The main body of the parser starts by the list of all possible Tokens and then it's a composition of the
EBNF grammar enveloped within Java code.

Since the parser was devised to produce a prolog OO AST tree every production rule returns a Term
object using the following constructor method:

new Struct (Functor , arg1 , arg2 , . . . , argn) ;

The functor needs to be a String, while the arguments Terms.

To include a Token as an argument it is necessary to convert it to a string using the .image attribute and

then into a Term.

new Struct(token.image) is a Term object.

Ex.

new Struct (" agent " ,
new Struct (agentName . image) ,
new Struct (" i n i t B e l i e f s " , i n i t B e l i e f s) ,
new Struct (" i n i tP e r c e p t i o n s " , i n i tP e r c e p t i o n s) ,
new Struct (" i n i tP l an s " , i n i tP l an s)) ;

Where agentName is a Token and initBeliefs, initPlans, initPerceptions are Terms; the resulting Term will
be:

agent (" agentNameString " ,
i n i t B e l i e f s (i n i tBe l i e f sTe rm) ,
i n i tP e r c e p t i o n s (in i tPercept ionsTerm) ,
i n i tP l an s (initPlansTerm))

When the return Term is instead a list of Terms it is necessary to create a LinkedList and then to combine

them with:

f o r (each Term in the LinkedLis t)
l i s tTerm = Struct (LinkedListElement , l i s tTerm)

This will generate a list of Terms [elem1, elem2, . . . , elemn] .
JavaCC then generates autonomously all the necessary java �les necessary for analysis, tokenization,

parsing, tree generation and error management.

CHAPTER 11. TRANSLATOR ARCHITECTURE 78

11.0.2 Prolog and Java integration

The modules for TreeDisplay, Checking and Translating are developed using Prolog and integrating it
within Java using the alice.tuprolog libraries.
Each module does the following:

� incorporates the Tree Term resulted from parsing into another Term that will form the Prolog Goal

� creates a Prolog Engine

� loads the Prolog theory from a .pl �le into a Theory object

� assigns the Theory to the Engine

� assigns an output Listener to the Engine

� instructs the Prolog Engine to Solve the assigned Goal

� returns the outcome result and the output String to the Main Application

It was chosen to use the solution of the query only as a reference to the successful result of the process
while using the produced string as output.
This implies that all Prolog queries only return yes or no, while the output is the result of a series of print()
calls.

11.0.3 Tree Display

This module was developed to help with the analysis of the AST Tree, since the parser output is only one
line of uninterrupted terms and it's hard to read and understand.
Tree Display essentially �ows along all terms and prints them interleaved with tab and new line markers,
trying to point out nested terms: functor(arg1 arg2(arg21 arg22))

The goal is tree(Tree) and a new counter is immediately initialized with

tree(AST, 0) , this counter will be used to accumulate spaces for indentation; in fact every type a structure

is found 4 spaces are added for the nested terms.

To run through the various structures a set of rules of this form is used:

t r e e (X, I):− X =.. [ROOT,ARG1,ARG2] ,
Indent i s I+4, tab (I) , p r i n t (ROOT) , p r i n t (' (') , nl ,
t r e e (ARG1, Indent) , t r e e (ARG2, Indent) ,
tab (I) , p r i n t (') ') , n l , ! .

There is one every possible combination of functors and arguments.
Lists are simply �attened and atoms are printed; the only exceptions are numbers and string that are
labeled with a Number: or String: tag before them.

11.0.4 Checking

It was possible to check for all semantic errors with only one set of prolog rules; however during design it

was chosen to separate checking into 4 distinct albeit similar modules to maintain a fair amount of clarity

and modularity, allowing quicker �xes, simpler debugging and easier changes or additions.

All 4 checks have a similar structure: every node is analyzed, if the functor matches the ones related to

the check its contents are inspected, otherwise they are ignored and the process �ows through every node.

It's important to note that correctness control is done by matching possible errors and printing them as

output, instead of giving a No result to the solution; checks both with or without errors give the same

Yes solution, the di�erence between them is that a correct semantic outputs no error messages while the

presence of a since error statement is a signal for the main application that the check failed.

Using this approach an error doesn't stop evaluation which continues along the tree to inspect all the

nodes.

Every check has a set of ��ow� rules aimed at opening all possible leafs of a node:

check (X,V):− f unc to r (X,F , 2) , arg (1 ,X, Arg1) ,
check (Arg1 ,V) , arg (2 ,X, Arg2) , check (Arg2 ,V) , ! .

There is one of these rules for every possible number of arguments, the V stands for any possible variable
that could be needed in the process.

CHAPTER 11. TRANSLATOR ARCHITECTURE 79

11.0.4.1 CheckPerceiveExp

Since the purpose of this program is to check for invalid statements inside a Perceive clause every time we

encounter a perceiveClause node we set a �ag to 1.

check (pe r ce iveC lause (Clauses) ,_):− check (Clauses , 1) , ! .

This way if we encounter any forbidden node an error statement is printed.

Ex.

check (addNewPlan (_,_) , Cont) :− Cont == 1 ,
p r i n t (' Error :

Add New Plan i s not a l lowed in to Perce ive Clause ')
, nl , ! .

11.0.4.2 CheckVar

Within this module variables' declaration and use is evaluated to avoid instantiating multiple variables

with the same name or using variables without creating them �rst.

The initial rule initialize an empty list:

CheckVar (Input) :− check (Input , [])

This list will be used to store newly declared variables, so every time we encounter newVar(VarName,RetValue)
the VarName is stored in the list.

Since counters in FOR cycles are variables they also get added to the list.

All variables names are added using the rule addVar:

addVar (Var , L i s t , L i s t):−
member(Var , L i s t) , ! . addVar (Var , L i s t , [Var | L i s t]) .

It's important to note that nodes of the tree on the same level (when they are members of a list of nodes)

need to be considered sequentially; so if we encounter a newVar following another when we consider the

second one the var list must contain the �rst.

This is done using the following rule:

check ([H|T] , VarList):− f unc to r (H, newVar , 2) ,
arg (1 ,H,VarName) , arg (2 ,H, RetValue) ,
check (RetValue , VarList) ,
addVar (VarName , VarList , NVarList) ,
check (T, NVarList) , ! .

After compiling the var list it is su�cient to use a member(VarName,VarList) to see if a newVar node
triggers an error.

11.0.4.3 CheckFor

This is a simple check that �ags CounterStart and CounterEnd values in a For cycle statement to see if

they contain strings instead of numbers.

Since atoms containing strings are always inside a string(Str) Term, it is trivial to check for this kind of

error with:

check (retValue (s t r i n g (Str ,_) ,_) ,1) :− . . .

Where 1 is the �ag that let us know we are inside a For statement.

11.0.4.4 CheckCommands

This is where the correct use of every command is evaluated; each one has a CommandName and then a

set of possible Options and Arguments whose order is rigorous.

Every time a command is found a c/3 predicate is used to compare its attributes to the knowledge base.

check (command(CommandName, Options , Args)):−
c (CommandName, Options , Args) , ! .

CHAPTER 11. TRANSLATOR ARCHITECTURE 80

The rest of the theory is composed of all the commands described in facts like:

c (' SendMessage ' , [' Forget ' , ' Broadcast '] ,
[commandArg (' Be l i e f ' ,)]) , ! .

This for example states that we can use the command

! SendMessage : Forget | Broadcast [' Be l i e f ' : b e l i e f]

If no command is found with the same form we get an error:

c (CommandName,_,_):− pr in t (' Error : format o f command ') ,
p r i n t (CommandName) , n l .

11.0.5 Translation

The translation module is where the AST Tree's leaves and nodes are sequentially picked and translated

to form the Javascript �le.

Every node has its own form and elements to display and also a precise indentation.

The main predicate is in fact tr/2 where the �rst argument is the subtree still to translate while the second

is a variable that store the current indentation.

The Tab value is stored in the rule

indentTab (I):− I i s 5 .

where the amount of spaces is changeable.
It is important to note that only expressions that start a line need to know the current tab value, so if
a node is internal and all its subnodes too then it will be called by a tr/1 predicate, without the indent
value. Since variable names in Javascript should start with a lowercase �rst letter, while in Botalk they
can start with either lower or upper, every time this situation occurs the lowerFirstLetter/2 predicate will
be called.

The translation is then a series of tr/2 or tr/1 predicates that explore the tree and where every term's
functor is recognized in a speci�c rule where its correspondent Javascript counterpart is printed as output.

Ex.

t r (newPlan (Name, Body) , I):−
tab (I) , p r i n t (' var ') ,
l owe rF i r s tL e t t e r (Name,NameL) , p r i n t (NameL) ,
p r i n t (' Plan = new Plan (') , p r i n t S t r i n g (Name) ,
p r i n t (') ; ') , nl , t r (Body , I ,Name) , ! .

This rule will start with the number of spaces contained in I, then if the plan name was Walk it would

print:

var walkPlan = new Plan ("Walk ") ;

then continue with the plan's body where its other clauses are.

Since Body is a list of clauses of the same plan and in Javascript are separate lines we need to carry

the plan's name to be able to write:

walkPlan . execute = func t i on (agent){ . . . } ;

Then for the translation of the body of Beliefs, Plans and Perceptions the predicate tr/3 will be used.
printString simply puts quotation marks around the string passed as argument. There are some cases
where the predicate tr isn't used, these happen when the structure of the tree is di�erent from its projected
translation or when we need to extract elements from a list; some context speci�c rules were developed for
this purpouse where the most generic is expressions/2 (or /1 without indent).

11.1 Final considerations on Botalk

In the tests that followed the development of Botalk it was clear that programming agents for ABot
became quicker and less confusing, without the need to worry about framework hooks and references.
Writing ABot agents in Botalk is 25-35% quicker than using Javascript; but these �gures are without
considering auto-completion.

CHAPTER 11. TRANSLATOR ARCHITECTURE 81

A development IDE or an auto-completion editor will be required to really take advantage of its features.
However the easy approach still remains an high point in favor of appending the language to the release
of the AI, to facilitate new developers interested in creating their own agents.

Part V

Results, Conclusions and Future

Work

82

Chapter 12

Tests

The �nal part of this theses consists in the testing of the proposed application and the evaluation
of the di�erent results upon which the �nal conclusions are drawn.

12.1 Performance metrics

The tests have been chosen to evaluate the proposed AI ABot in di�erent contexts to see how it
fares compared to the standard 0 a.d. AI, QBot.

All the tests are done using the same scenario, Oasis I, and the same playing mode, Conquest,
which ends with the destruction of the enemy base. Oasis I is a scenario that pits two players
against each other on di�erent sides of a oasis in a desert setting. Each player starts with 4 basic
infantry units and a Civil Centre as the base.

It is important to note that the con�guration parameters set for ABot are not optimal; a
deeper analysis of the initial values of the various jobs and their related stimuli would lead to
better gameplay performances.

Figure 12.1.1: Map of the scenario for the tests

12.1.1 Strategy

This test evaluates how fast an AI can produce units, buildings and subsequently how well it
confronts the enemy in battle. The parameters used are then contained in the snapshots of the
�nal screen which details:

83

CHAPTER 12. TESTS 84

� The number of units trained and lost;

� The number of enemy units killed and buildings destroyed;

� The number of buildings constructed and lost;

� The percentage of the map explored;

� The amount of resources gathered;

� The number of treasures collected.

The snapshots are taken after 5 and 30 minutes of game time.

12.1.2 Realism

This test evaluates how the AI resembles human playing patterns considering the following areas:

� economy management;

� exploration of the map;

� management of combat units

The test is done examining an experienced player's match and confronting it with how ABot plays
the same scenario. Analysing the di�erences in tactics and e�ectiveness.

The scenario chosen was Oasis X, very similar to Oasis I, and the recording of a played match
was gently provided by Michael Hafer, 0 a.d. developer.

12.1.3 Performances

This test is done to see how each AI impacts on the computational costs of the system. The
results are taken using the internal pro�ling tool of the engine which examines di�erent aspects
like memory usage and calculation time of each process.

The performance metric used is msec/frame, that is the time spent inside the examined section
every frame, averaged over the past 30 frames. A snapshot of the pro�ler is taken every second for
the �rst 10 seconds of playing and again another 10 seconds after 5 minutes of playing.

12.2 Test Results

12.2.1 Strategy

Here are shown the results recorded after 5 minutes of game time:

Figure 12.2.1: Screenshot of the Units/Buildings results screen after 5 minutes of game time

Figure 12.2.2: Screenshot of the Conquest results screen after 5 minutes of game time

CHAPTER 12. TESTS 85

Figure 12.2.3: Screenshot of the Resources results screen after 5 minutes of game time

After 5 minutes of game time the situation of the game is still balanced between the two AIs;
although it is clear that Food gathering parameters for ABot have been set too low, the production
of units and buildings is mostly on par. The two units lost by ABot are scouts that found the
enemy base and have been killed by enemy defences.

The Conquest results clearly underline the e�orts of ABot in the exploration the map, which
can be seen in the Map Exploration percentage and indirectly by observing, in the Resources
results, the 2 extra treasures taken by ABot's scouts.

As seen in the following screenshots, ABot has provided the same defensive countermeasures
of QBot in building early the two towers. The other buildings present are a manifestation of the
response to di�erent stimuli: the depots are the response to workers having to walk longer to reach
far resources and stables are an attempt to respond to an increasing number of military stimuli,
although evidently showing a too abundant construction of this type of building.

Figure 12.2.4: Screenshot of the ABot controlled player's base after 10 minutes of game time

CHAPTER 12. TESTS 86

Figure 12.2.5: Screenshot of the QBot controlled player's base after 10 minutes of game time

Figure 12.2.6: Screenshot of the Units/Buildings results screen after 30 minutes of game time

Figure 12.2.7: Screenshot of the Conquest results screen after 30 minutes of game time

Figure 12.2.8: Screenshot of the Resources results screen after 30 minutes of game time

After 25 minutes QBot launches an o�ensive with an army of 20, mostly foot soldiers; the
o�ensive is taken without any siege engine present and ends in the complete annihilation of the
attacking units, but also killing more than half of ABot's workers.

The 30 minutes results' screenshots show then that the unbalanced Food gathering's initial
parameters have determined a clear disadvantage for ABot, that struggled to rebuild its forces
after su�ering QBot's attack.

CHAPTER 12. TESTS 87

ABot focused mostly on a defensive posture, determined by its self-protection mechanism, that
incentives the construction of towers in response to enemy attacks; the fact that QBot attacked
�rst changed the way ABot managed its economy. The Enemy unit killed result points out that
the defensive response worked and all the enemy attacks were constantly repulsed.

12.2.2 Realism

The human test player starts the match by collecting the various treasures near the starting base,
exactly as ABot, as shown in the following screenshots. It is relevant to point out that QBot does
not start this way but collects the treasures only after the �rst minute.

Figure 12.2.9: Screenshot of the �rst seconds of the match by the human test player

Figure 12.2.10: Screenshot of the �rst seconds of the match by ABot

The game progresses with the human player gathering the needed resources and building only
the necessary buildings in key positions; the player is limited in only giving commands one at a
time. ABot, instead, has a stronger start dictated by the independence of the actions of its units

CHAPTER 12. TESTS 88

and buildings that decide on their own what to do. Although ABot clearly has an advantage here
dictated by its arti�cial nature, it still uses tactics that could be compared to human behaviour.
The disposition of ABot's buildings is dictated by the placement algorithm and resembles the
playing style of a chaotic player.

Figure 12.2.11: Screenshot of the human test player after 3 minutes of game time

Another aspect where ABot successfully emulates the human player is map exploration. Both
Michael and ABot order one of their cavalry units to head out and try to discover treasures and
the location of the enemy base, as shown in the following screenshots.

Figure 12.2.12: Screenshot of the human player's scout exploring the map and heading towards a
treasure

CHAPTER 12. TESTS 89

Figure 12.2.13: Screenshot of one of ABot's scouts exploring the map

Figure 12.2.14: Screenshot of one of ABot's scouts heading towards the discovered treasure to
collect it

The last considerations regard the tactics used to attack the enemy by both players. The human
player shows patterns in selecting the composition of its attacking forces similar to ABot, but its
attacks are more dynamic in selecting locations and targets. ABot uses self-con�gured positions to
move its units around the map and this can often emulate human behaviour but it is still necessary
to improve the resolution of the military grid to allow more �exible movements.

The human player is experienced and demonstrates it by never launching hopeless attacks. This
is similarly done by ABot that evaluates the enemy strength by using the reports of the explorers,
although sometime losing them.

The self-protective characteristic instilled in ABot's combat units by the various �eeing be-
haviours has proven to be e�ective in saving forces from hopeless attacks, as designed in sec-
tion 8.6.2.

CHAPTER 12. TESTS 90

Figure 12.2.15: ABot's units �eeing from superior forces

Figure 12.2.16: Screenshot of an attack group of the human player

CHAPTER 12. TESTS 91

Figure 12.2.17: Screenshot of an attack group of ABot

By looking at the screenshot of ABot's attack platoon it is possible to spot the commander,
the cavalry unit, and the two squads, one infantry melee and the other infantry ranged, captained
by the two infantry units in front of the formation.

12.2.3 Performances

Figure 12.2.18: Results taken in the �rst 10 seconds of the match

Total amount of time spent by each AI every frame averaged by 30 frames; each snapshot is taken
every second for the �rst 10 seconds of the match.

CHAPTER 12. TESTS 92

Figure 12.2.19: Results taken after 5 minutes from the start of the match

Total amount of time spent by each AI every frame averaged by 30 frames; each snapshot is taken
every second for 10 seconds after 5 minutes into the match.

The results clearly show the characteristics that di�erentiate centralized AIs with distributed ones
as stated in section 4.5.5.

The initial spike of QBot corresponds to its initial con�guration algorithm and it is visible during
play by an actual freeze of the game; although this kind of behaviour is common throughout the
match, signs of performance decrease are only observable by the player after a hour of game time.

ABot doesn't su�er from performance spikes but shows a slow increase in calculation time
proportional with the increase in the number of agents in play. While performances are reasonably
worse than the ones of QBot, as predicted in section 4.5.6, the degrade is less noticeable by the
user because of the lack of sudden spikes.

In fact if we look at the following graph, that shows the time allotted to ABot in comparison
with other elements of the engine, we can see that it still remains much lower compared to the
graphical component.

Figure 12.2.20: Calculation time taken by each section of the game engine

The following graph instead analyses how each section of the reasoning cycle a�ects the global
performances of the MAS. Despite the optimizations done in section 9.1.1, the portion of time
taken by interfacing with the gamestate, enacted by perceptions and entity array refresh, still
comprises over 30% of the total calculation time, allowing the notion that further optimizations in
that regard could greatly improve the system's performances.

CHAPTER 12. TESTS 93

Figure 12.2.21: Load division between di�erent sections of ABot

Chapter 13

Conclusions and Future Work

Examining the results of the tests presented in the last chapter, it is possible to conclude that using
Multi-Agent Systems in the creation of AIs for Real Time Strategy games is a valid alternative
to centralized systems. The agent-based approach provided a greater �exibility and adaptability
in numerous occasions, while still depending greatly on the quality of the initial con�guration
parameters. Once created the underlying agent infrastructure it was easier to create the behaviours
wanted and instill in the AI a sense of uniqueness and unpredictability. The agents displayed
interest in collaborating collectively towards the same goals while maintaining their independent
nature.

The MAS also performed as expected regarding computational costs, keeping a linear trend
over the course of the match; considering the lack of multi-threading in the engine and the use of
AI APIs not optimized for this type of activity, the rise in costs over QBot remained well within
anticipated parameters. Nonetheless the system stayed completely self-contained and in need of
minimal maintenance to remain in par with the evolution of the game's development.

The thesis also provided the tools to continue the development of the AI and extend its func-
tionalities by designing new agent behaviours and roles using the Botalk language.

It was clear from the tests that a better initial con�guration can and need to be devised; a
balanced organization is harder to reach in MASs compared to centralized systems and it will be
important to involve players more experienced with the game to evaluate the various parameters.

The military mechanics provided only cover the organizational aspect of managing combat
units; more complex and e�cient combat tactics have to be developed to see ABot reach its full
potential.

ABot represents only a �rst step in improving AIs for RTS games, nonetheless what was shown
proved that using MASs could lead to signi�cant advancements.

94

Bibliography

[1] Foundation for intelligent physical agents, 1997. http://http://www.�pa.org/.

[2] Ahmed Kaboudan Abdulla M. Mamdouh and Ibrahim F. Imam. Real-time, multi-agent simu-
lation of coordinated hierarchical movements for military vehicles with formation conservation.
2012.

[3] Dan Adams. The state of the rts. 2006. http://www.ign.com/articles/2006/04/08/the-state-
of-the-rts.

[4] Fabio Bellifemine, A Poggi, and Giovanni Rimassa. JADE - A FIPA-compliant agent frame-
work, pages 97�108. The Practical Application Company Ltd.

[5] Rafael H. Bordini, Michael Wooldridge, and Jomi Fred Hübner. Programming Multi-Agent
Systems in AgentSpeak using Jason (Wiley Series in Agent Technology). John Wiley & Sons,
2007.

[6] M. E. Bratman. Intention, plans, and practical reason. 1987.

[7] Michael Buro. Call for ai research in rts games. In In Proceedings of the AAAI Workshop on
AI in Games, pages 139�141. AAAI Press, 2004.

[8] G. Cashman. What Causes War?: An Introduction to Theories of International Con�ict.
Lexington Books, 2000.

[9] Giovanna Di, Marzo Serugendo, Marie pierre Gleizes, and Anthony Karageorgos. Self-
organisation and emergence in mas: An overview. In this volume, 30:45�54, 2006.

[10] Torsten Eymann. Markets without makers - a framework for decentralized economic coordina-
tion in multiagent systems. In Proceedings of the Second International Workshop on Electronic
Commerce, WELCOM '01, pages 63�74, London, UK, UK, 2001. Springer-Verlag.

[11] Bruce Geryk. A history of real-time strategy games. 2008.

[12] Dave Mark. Choices: Not just for players anymore, April 2009.
http://intrinsicalgorithm.com/IAonAI/2009/04/choices-not-just-for-players-anymore/.

[13] Leslie Marsh and Christian Onof. Stigmergic epistemology, stigmergic cognition. Cogn. Syst.
Res., 9(1-2):136�149, mar 2008.

[14] Andrea Omicini and Franco Zambonelli. TuCSoN: a coordination model for mobile information
agents. In David G. Schwartz, Monica Divitini, and Terje Brasethvik, editors, 1st International
Workshop on Innovative Internet Information Systems (IIIS'98), pages 177�187, Pisa, Italy,
8�9. IDI � NTNU, Trondheim (Norway).

[15] John S. Quarlerman and Smoot Carl-Mitchell. The computing paradigm shift. Journal of
Organizational Computing, 3(1):31�50, 1993.

[16] Anand S. Rao and Michael P. George�. Bdi agents: From theory to practice. In IN PROCEED-
INGS OF THE FIRST INTERNATIONAL CONFERENCE ON MULTI-AGENT SYSTEMS
(ICMAS-95, pages 312�319, 1995.

95

BIBLIOGRAPHY 96

[17] Alessandro Ricci, Mirko Viroli, and Andrea Omicini. CArtAgO: A framework for prototyping
artifact-based environments in MAS. In Danny Weyns, H. Van Dyke Parunak, and Fabien
Michel, editors, Environments for MultiAgent Systems III, volume 4389 of LNAI, pages 67�86.
Springer, may. may2006. Selected Revised and Invited Papers.

[18] Hartmut Schmeck, Christian Müller-Schloer, Emre Çakar, Moez Mnif, and Urban Richter.
Adaptivity and self-organization in organic computing systems. ACM Trans. Auton. Adapt.
Syst., 5(3):10:1�10:32, sep 2010.

[19] B. Schwab. AI Game Engine Programming. Course Technology, 2009.

[20] Michael Woolridge and Michael J. Wooldridge. Introduction to Multiagent Systems. John
Wiley & Sons, Inc., New York, NY, USA, 2001.

