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Summary:
The  framework  of  this  thesis  is  the  study of  the  atmosphere  thanks  to  the  MIPAS 

instrument  (Michelson  Interferometer  for  Passive  Atmospheric  Sounding)  on  board  of 
ENVISAT (Environmental satellite). MIPAS is a spectrometer designed by the European 
Space Agency to measure broad-band spectra of the atmosphere from space in the mid-
infrared  range.  However,  small  spectral  intervals  are  used  to  retrieve  the  altitude 
distribution (profile) of several targets (level 2 product). These spectral intervals, called 
Micro-Windows (MWs), are selected in order to maximize the information content and 
minimize the total error of the level 2 products at all the retrieval altitudes.

The first objective of this thesis was to compare the performance of two sets of MWs; 
one  provided  by  the  University  of  Bologna  (8  MWs)  and  the  other  by  the  Oxford 
University (10 MWs) for the simultaneous retrieval of Temperature, Pressure, Water and 
Ozone. For this purpose I retrieved altitude profiles on simulated observation from the two 
sets of MWs for the above geophysical targets and for the other main targets (Nitric Acid, 
Methane,  Nitrous Oxide and Nitrogen Dioxide) that are  determined downstream in the 
retrieval  chain  making use  of  the  previously retrieved profiles.  The retrieval  has  been 
performed with the analysis code, called GMTR, that is based on the Geo-fit approach 
(tomographic  retrieval)  along  with  the  Multi-Target  Retrieval  (MTR)  functionality 
(interfering species retrieved simultaneously).

The strategy of simulated retrievals permits to know the reference atmosphere so that it  
becomes possible to compare the retrieved profiles with the reference profiles. Thanks to 
specific  quantifiers,  that  I  defined  for  the  purpose,  I  plotted  and  compared  easily  the 
performance of the two sets of MWs. The result was that the Oxford set of MWs has a 
better overall performance.

The two sets of MWs were then compared using a recently developed diagnostic tool 
called Information Load (IL). I computed and compared the IL values of the two sets of  
MWs  for  the  four  main  targets  (Temperature,  Pressure,  Ozone  and  Water).  The  IL 
distributions miss a full  coverage of the atmosphere for both sets of MWs; therefore I 
decided to merge the best elements of each set with the aim of obtaining a more uniform IL 
coverage. In order to select an optimal set I computed the IL values for each individual 
MW. A combined set of MWs was then created trying to cover all the atmosphere with the 
highest  possible  amount  of  IL.  After  several  attempts  I  selected  a  set  of  10  MWs 
(combined  set).  The  IL distributions  of  the  combined  set  are  better  than  those  of  the 
original sets for all targets excepted for Pressure around 50 km of altitude.

I tested the performance of the combined set of MWs with the strategy of retrievals on 
simulated observations: by comparing the performance of the profiles obtained using the 
combined  set  with  the  performance  of  the  corresponding  profiles  obtained  from  the 
Bologna and Oxford sets, I verified an overall better efficiency of the combined set with 
respect to both the other two at low altitudes and equal or worst efficiency at high altitudes.

I compared the performance of the three sets of MWs by retrieving the eight MIPAS 
main  targets  from a  statistically  meaningful  set  of  real  observations.  In  this  case  the 
estimated  standard  deviation  (ESD) of  the retrieved values  (calculated by the  retrieval 
algorithm) provides the comparison criterion: I found lower ESDs for the combined set of 
MWs excepted for Pressure above 40 km.

Finally I considered the systematic error components (that are provided for each set of 
MWs by the selection algorithm) and I calculated an estimate of the total error for the three 
sets: the combined set of MWs has slightly lower total error at low altitudes and generally 
higher error at high altitudes.
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A further meaningful element to be kept in consideration is the computing time: the 
Oxford set of MWs (that was a generally better efficiency than the Bologna set) requires 
between 13 and 15 hours of CPU time to analyse on orbit of MIPAS measurements, the 
Bologna set requires between 3 and 5 hours while the CPU time for the combined set is 
between 9 and 11 hours.
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Introduction:
The framework of this thesis is the study of the atmosphere. In this scope spectroscopic 

instrument placed on board of artificial satellites are recording spectra of the atmosphere. 
These  spectra  are  mainly  used  to  retrieve  altitude  distribution  of  several  targets 
(Temperature, Pressure and the main chemical components of the atmosphere). To avoid 
the redundancy of information and to save computer time, the retrieval process extracts 
narrow spectral intervals from the spectra. The retrieval process is currently using a set of 
spectral intervals selected by the University of Bologna. A new set of spectral intervals has 
been provided by Oxford University. The objectives of this thesis are the assessment of 
benefits and drawbacks of these two sets of spectral intervals and the merging of these two 
sets  to  create  a  “combined”  set  which  should  combine  the  benefits  and  discards  the 
drawbacks.

Outline:
In  Chapter  1,  I  describe  the  Environment  Satellite  and  the  inboard  spectroscopic 

instrument,  the  Michelson  Interferometer  for  Passive  Atmospheric  Sounding.  This 
Spectroscopic instrument has the main assignment to extend our knowledge of atmospheric 
chemistry.

In Chapter 2, I introduce the so called Inverse Problem that is the problem of finding the 
best representation of the required parameters from measurements that are a complicated 
function of the parameters.

In Chapter 3, I briefly describe the retrieval process which retrieves from the MIPAS 
recorded spectra,  the altitude profiles of Temperature,  Pressure, and the main chemical 
components of the atmosphere.

In Chapter 4, I describe the diagnostics tools which are needed and will be used in the 
subsequent chapters to complete the analysis of the spectral intervals of the two provided 
sets, i.e. the retrieving of altitude profiles on simulated observations, the Information Load 
and the Systematic and Random errors.

In Chapter 5, I describe and use the quantifiers which are employed to compare the 
retrievals on simulated observations for Temperature, Pressure, Ozone, Water, Nitric Acid, 
Methane, Nitrous Oxide and Nitrogen Dioxide of the two sets of spectral intervals.

In Chapter 6, I compare the Information Load values retrieved thanks to the two sets of 
spectral intervals. Then I retrieve the Information Load for each individual spectral interval 
to select the most efficient and so create a more efficient, combined set of MWs.

In  Chapter  7,  I  compare  the  combined set  of  spectral  intervals  in  front  of  the  two 
primary  sets  using  retrievals  on  simulated  and  real  observations.  Then  I  finish  the 
comparison looking at the systematic and total errors.
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1 The MIPAS experiment

1.1 ENVISAT
The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) is on board 

of  the  ENVIronmental  SATellite  (ENVISAT),  it  is  an  advanced  polar-orbiting  Earth 
observation  satellite  developed  by  the  European  Space  Agency  (ESA)  that  was 
successfully launched on a nearly polar orbit on 1 March 2002. The ENVISAT payload 
consists of a set of ten instruments (whose MIPAS) that operate over a wide range of the  
electromagnetic spectrum, from centimetre waves to the ultraviolet. This satellite provides 
measurements  of  atmosphere,  oceans,  lands,  and  ice  and  contributes  significantly  to 
extend our knowledge of climate and morphology of our planet. [1]

1.2 The MIPAS instrument
The MIPAS instrument is based on a Fourier Transform spectrometer that performs limb 

sounding  observations  of  atmospheric  emission  in  the  middle  and  upper  atmosphere. 
MIPAS observes the Earth's  horizon measuring a wide spectral  interval in the infrared 
region  where  many  of  the  atmospheric  trace-gases  have  important  emission  features. 
MIPAS  observations  are  independent  from  sun  position,  then  allowing  continuous 
measurements,  also  during  night  or  polar  winter.  The  combination  of  high  spectral 
resolution, full coverage of the mid-infrared region, high sensitivity, and full global and 
seasonal  coverage,  provide  unprecedented  insights  into  chemistry and dynamics  of  the 
atmosphere. [2], [3]

1.2.1 The characteristic of the MIPAS instrument

The MIPAS instrument is similar to an ordinary Michelson Interferometer, except some 
modifications that were made to adapt it to operate on board of a satellite with a high 
sensibility. Some of these modifications are:

• The use of two movables  mirrors,  instead of one,  to reduce the dimension of the 
instrument.

• These mirrors are moving in opposite direction in two parallel pathway, rather than 
perpendicular,  to not confer to the orbital  station a rotational moment when occurs the 
reversal of movement of the two reflective elements (see Figure 1.1).

• The use of a laser beam to obtain a high precision in the displacements of the moving 
elements

• Maintain all  the optical elements at  a temperature of 200 Kelvins, to reduce their 
thermal emission

• The use of a series of eight detectors Hg:Cd:Te, cooled at 70 Kelvins.

• The use of the radiation emission by a black body to a known temperature, for the 
radiometric calibration.
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1.2.2 Measurement description

The main purpose of MIPAS is the measurement of the distribution in altitude (profile) 
of Temperature and Pressure, as well as the volume mixing ratio (VMR)1 of numerous 
species like water, ozone, nitric acid, methane, nitrous oxide, and nitrogen dioxide.

To obtain  these  results,  MIPAS measures  the  emission  of  the atmosphere  using the 
technique  of  “limb  scanning”,  which  consist  in  repeated  measurement  with  different 
geometry of  observation  which  not  encounter  the  Earth's  surface.  Figure  1.2  shows  a 
scheme describing  the  technique  of  limb scanning for  a  satellite.  In  this  example,  the 
orbital  station  flies  at  a  altitude  Hf,  and  performs  with  different  angle  ϑi,  various 
measurements,  which  of  them is  characterise  by the  tangent  altitude  Hi,  which  is  the 
minimum altitude reached by the line of sight.

1 The VMR (volume mixing ratio) is define as the ratio between the number of molecules of  
a tested species and the total number of molecules present in the same volume.

8

Figure 1.1: Schema of the two moving mirrors of the instrument MIPAS



A, B, C Line of sight
Hf = Flight Altitude
Hi =  Tangent Altitude
Li = Stratification of the atmosphere
ϑi = Zenith Angle

1.2.3 The characteristic of the original MIPAS experiment

MIPAS provides series of spectra at different tangent altitude, the system operating the 
instrument MIPAS allows to scan between the altitude 5 to 150 km. Normally, a sequence 
of limb-scanning provides 16 spectra, takes 75 seconds (corresponding to a movement of 
the satellite of about 530 km), varying the tangent altitude from 6 to 68 km, where the 
studied species have the most important abundance.

Depending on the scientific objective, the “special” observation modes may differ from 
the “nominal” mode (see table 1.1) as these parameters: the adopted spectral resolution, the 
altitude coverage, the vertical/horizontal sampling steps, or the azimuth direction of the 
line of sight.

For one scan, the field of view is only of 3 km in altitude, to obtain a good vertical 
resolution, and is large of 30 km, to receive enough energy.

The usual  measurements  are  in  the  opposite  direction  of  the  satellite  movement.  In 
special cases, it is possible to carry out the measurements in the perpendicular direction of 
the satellite flight, in the opposite direction of the sun. This mode is very useful to observe 
particular phenomena, as volcanic eruption, control of the pollution on the major air routes, 
or support eventual campaign of regional measurements.

The distance between the instrument and the tangent altitude is of about 3300 km. To 
obtain measurements on the desired line of view is necessary to effectuate an accurate 
calibration of the pointing system, which will takes the stars position as reference. The 
spectral interval of this instrument covers the mid-infrared: from 685 cm-1 to 2430 cm-1. 
One complete spectrum is obtained in 4.5 seconds, with a resolution of 0.035 cm-1. Of 
course, it is also possible to effectuate measurements with a reduce spectral resolution, in a 
reduce time of acquisition. In Figure 1.3 are reported the mains parameters of the MIPAS 
observation.
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Observation 
Mode Scientific Objective Pointing 

Direction Coverage
Altitude 
Range 
(km)

Height 
Resolution 

(km)

Horizontal 
Spacing 

(km)

Nominal
Stratospheric 
chemistry and 

dynamics
rear Global 6-68 3-5-8 530

Polar Winter 
Chemistry

Polar Chemistry and 
Dynamics rear Global 7-55 2-10 420

Tropospheric 
Stratospheric 

Exchange

Exchange between 
Stratosphere and 

Troposphere, 
Troposphere 
Chemistry

rear Global 5-40 1.5-10 420

Impact of 
Aircraft 

Emission

Study of major air 
traffic corridor side

Primarily 
North of 

25° 
latitude

6-40 1.5-10 330

Stratospheric 
Dynamics

Small scale 
structures in the 

middle Atmosphere
rear Global 8-53 3 390

Diurnal 
Changes

Diurnal changes 
near the terminator side Near the 

terminator 15-60 3 480

UTLS
Upper 

Troposphere / 
Lower Stratosphere

rear Global 6-35 2-7 120

Upper 
Atmosphere Upper atmosphere rear Global 20-160 3-8 800

Table 1.1: MIPAS nominal and special observation modes (before March 24, 2004)
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1.2.4 Data Processing

MIPAS  Interferometric  measurements  are  transformed  into  calibrated  spectra  of 
atmospheric  radiance.  The  spectra  are  fed  to  an  inversion  model  to  compute  vertical 
profiles of atmospheric geo-physical parameters. From the most raw interferograms to the 
final atmospheric profiles, there is series of necessary processing steps. The processing 
chain is separated in two major parts: a “space segment” and a “ground segment”. The 
flowchart in Figure 1.4 illustrates the flow of MIPAS processing.

Data acquired in orbit by the instrument are transmitted to ESA ground stations where 
undergo further stages of processing, resulting in higher level data products. The ground 
processing is divided into two major processing phases: Level 1B and Level 2 processing. 
The  goal  of  the  Level  1B processing  is  to  decode  the  instrument  source  packets  and 
transform  the  interferograms  into  calibrated  spectra  of  atmospheric  radiance,  with 
correction of the Doppler effect due to the movement of the orbital station . This process 
has also for purpose to obtain the tangent altitude and the geolocation of the data. In the 
subsequent  Level  2  processing  phase,  the  calibrated  spectra  are  processed  by ESA to 
retrieve atmospheric pressure at tangent altitudes and vertical distribution of temperature 
and  VMR  of  relevant  atmospheric  constituents.  All  the  resulting  data  products  are 
delivered in a format specific for the ENVISAT Ground Segment (Payload Data Segment – 
PDS) and are identified by labels indicating the step in the processing chain.
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MIPAS  Level  0 data  correspond  to  the  data  stream  received  directly  from  the 
instrument without any further processing.

MIPAS  Level  1A data  are  intermediary  data,  not  archived  or  distributed,  used  as 
starting point for the subsequent processing stage.

MIPAS Level 1B data consist of formatted, geolocated, radiometrically and spectrally 
calibrated radiance spectra, also annotated with quality indicators.

MIPAS Level 2 data comprise retrieved profiles of Pressure, Temperature and VMR of 
H2O, O3, HNO3, CH4, N2O and NO2.

1.2.5 Current status of the MIPAS instrument

MIPAS  started  working  successfully  since  April  2002.  The  measurement  campaign 
proceeded with only few interruptions due to various types of anomalies experienced by 
the interferometer unit. All these anomalies pointed to a degradation of the interferometer 
subsystem, but MIPAS scientific return was not affected: the generated products were still 
meeting the engineering and scientific requirements.

On March 26th, 2004 MIPAS regular operations were suspended for a serious anomaly 
related to an unexpected behavior of the interferometric mirror slides. An exhaustive series 
of  tests  was  carried  out  in  order  to  identify  the  cause.  The  analyses  highlighted  a 
combination of different effects, the most important being a mechanical degradation of the 
interferometer slides. This anomaly did not allow to operate the instrument in its original 
configuration.

During the unavailability period, MIPAS was tested in different operational modes in 
order to assess the safer one with respect to the instrument health and to continue in the 
production of data with the best quality, i.e. “2RR” double-slide moving mirrors with a 
reduced  resolution  of  0.0625  cm-1,  and  the  “1RR”  single-slide  moving  mirror  with  a 
resolution of 0.05 cm-1. Amongst the possible configurations, the MIPAS Science Team 
decided to operate the instrument for the future in the more stable double-slide mode in 
which the spectral resolution is to be kept at 0.0625 cm-1, that is 41% of the full spectral 
resolution  used  in  the  original  nominal  configuration.  The  instrument  was  operated  in 
discontinuous way and the data quality was marginally affected. In Table 1.2, is described 
the new parameters associated to the observation mode, modified to match the reduced 
resolution.

Although it was evident that the anomaly was caused by a mechanical problem, the 
precise  cause  is  still  not  fully  understood.  An  empirical  understanding  is  that  the 
interferometer performance improves after a long period of interruption.

From January 2005 to December 2007, MIPAS was back in operation working with the 
measurement scenario of 3 days-on and 4 days-off. This scenario allows a global coverage 
to  be  obtained  in  the  three  days  of  operations,  while  the  four  days  switch-off  of  the 
instrument is request for relaxing the interferometer slides system.

Between January 2005 and December 2007, the instrument operated on a 35% duty 
cycle  but  since  December  2007  has  been  operating  full-time  with  a  standard  10  day 
sequence of 8 days nominal mode, 1 day MA, 1 day UA. [4], [5]

12



Observation 
Mode Acronym Description Coverage

Altitude 
Range 
(km)

Scans 
Numbers

Horizontal 
Spacing 

(km)

Nominal NOM
Stratospheric 
chemistry and 

dynamics
Global 5-77 27 410

Upper 
Troposphere / 

Lower 
Stratosphere

UTLS-1 Primary UTLS 
mode Global 5.5-55 19 290

Upper 
Troposphere / 

Lower 
Stratosphere

UTLS-2 Test mode for 2-
D retrieval

Global
(limited 

numbers of 
orbits)

12-42 11 180

Middle 
Atmosphere MA

Exchange 
between Upper 

Atmosphere and 
stratosphere

Global 18-102 29 430

Middle/Upper 
atmosphere in 

summer
NLC

Detection of 
Noctilucent 
clouds in the 

Polar Summer

North and 
South pole 

during polar 
summer

39-102 25 375

Upper 
Atmosphere UA

Measurement 
high altitude NO 
and temperature

Global 42-172 35 515

Aircraft 
Emission AE

Study of major 
air traffic 
corridor

Primarily 
North of 25° 

latitude
7-38 12 n.a.

Table 1.2: MIPAS nominal and special observation modes (after December 1, 2007)

The 8 April 2012, the contact with ENVISAT has been lost and all attempt to re-establish 
the communication has been unsuccessful. The ENVISAT satellite has already doubled its 
expected operations lifetime.
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2 The Retrieval Problem
As I explained in chapter 1, the main objective of the MIPAS experiment is to obtain the 

altitude profiles of several targets relevant to the study of the atmosphere. The problem of 
retrieving the altitude profiles from the measured spectra is known as the Inverse Problem 
 [3]. There exists a large amount of literature on this subject, both from the mathematical 
point of view and applied to specific scientific problems. A very good textbook for Remote 
Sensing retrievals is [6]. The notation and concepts introduced in this chapter are inspired 
to those described there.

2.1 The problem
In accordance with convention, the collection of values to be retrieved is referred to as 

the state of the atmosphere that we usually denote with  x. The  forward problem  is the 
mapping from the state of the atmosphere to the quantities that we are able to measure. The 
details  of  the  forward  problem  is  in  our  case  given  by  the  physical  theory  of  the 
atmosphere.  The forward mapping may be linear or non-linear and is denoted by  F. In 
practice we are never  able  to  make exact  measurements and the data  that  we actually 
measure are a corrupted version of the error-free data obtained through the forward process 
from the state of the atmosphere. The difference between error-free data and the measured 
data, denoted by y, is called the measurement noise and is denoted by ε. Thus the mapping 
from the state of the atmosphere to actual data is given by the relation: “y = F(x) + ε”. The 
inverse problem is then the problem of finding the original state (or the quantities to be 
retrieved) x of the atmosphere given the measured data y and the knowledge of the forward 
problem F.

2.1.1 Ill-posed problems

There are several classifications of the forward problem depending on whether the state 
of the atmosphere and measured data are functions of a continuous or discrete variable, i.e. 
have infinite-dimensions or finite-dimensions. In most inverse problems the quantities to 
be retrieved are often functions of continuous variables such as time or (physical) space, so 
that the dimension of the state space is infinite. On the other hand, only a limited number 
of  data  can be measured,  so that  data  space  has  finite  dimensions.  Thus most  inverse 
problems are formally “ill-posed”. The inverse problem of solving F(x) = y for x given y is 
called ill-posed if it meets one or more of the following three conditions:

i. the inverse of the forward operator F does not exist;

ii. the inverse is not unique;

iii. an arbitrary small change in the measured data can cause an arbitrary large change 
in the retrieved quantities.

In the case of a well-posed problem, relative error propagation from the measured data 
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to the solution is controlled by the “conditional number”:

where Δy is the variation of the measurements y and Δx the corresponding variation of 
the  parameters  x.  Since  the  fraction  error  in  the  retrieved  parameters  depends  on  the 
conditional number multiplied by the fractional error in the measurements, small values of 
the conditional number are desirable. If “cond(F)” is not too much greater than unity, the 
problem is said to be “well-conditioned”  and the solution is stable with respect to small 
variations of the measurements. Otherwise the problem is said to be “ill-conditioned”. The 
separation between well-conditioned and ill-conditioned problems is not very sharp and the 
concept of “well-conditioned” problem is more vague than the concept of “well-posed”.

2.2 Inverse problems
As discussed previously, there are problems in which the dimension of the state space is 

infinite and in this case the parameters can not be determined by the measurements because 
there exists an infinite number of solutions which satisfy the measurements. At this point, it 
is convenient to express the continuous function with a representation in terms of a finite 
number of parameters. Thus the mapping from the state vector x (with n elements) to the 
“measurement vector” y (with m elements) may be written as:

y = F(x) + ε,                                                     (2.1)

where we indicate with bold characters the vector quantities. After discretisation, the 
problem may either be over-constrained (m > n) or under-constrained (m < n). It is usually 
important to appreciate the degree of linearity of any given inverse problem (as discussed 
in  Section  2.2.2).  The  near  linear  nature  of  any  inverse  problems  has  allowed  the 
development of appropriate inverse methods based on linear theory. 

If the non linearities are significant, a liberalization of the forward model about some 
reference  state  x0 is  often  an  adequate  approximation,  and  we  obtain  the  following 
expression:

which defines the m×n “weighting function matrix” K, not necessarily square, in which 
each element is the partial derivative of a forward model element with respect to a state 
vector  element,  i.e.  Kij =  ∂Fi(x)/∂xj.  The  term “weighting  function”  is  peculiar  to  the 
atmospheric  remote sounding literature,  but  it  may also be called the Jacobian (it  is  a 
matrix of derivatives) or the kernel (hence K).
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2.2.1 Linear inverse problems

Let us consider first a linear problem in the absence of measurement errors. In this case 
the problem reduces itself to the solution of linear simultaneous equations:

y = K x

and can  have  no solutions,  one  solution  or  an  infinite  number  of  solutions.  The m 
weighting function vectors  Kj will span some subspace of state space which will be of 
dimension  not  greater  than  m  and may be  less  than  m  if  the  vectors  are  not  linearly 
independent. The dimension of this subspace is known as the rank of the matrix K, denoted 
by p, and is equal to the number of linearly independent rows (or columns). If m < n the 
problem is under-constrained (and ill-posed) because the number of unknowns exceeds the 
number of  simultaneous equations  and the parameters  can not  be determined from the 
measurements.  We can make the  problem well  determined by reducing the number of 
unknowns. If m = n = p, then K is square and in this case a unique solution can be found 
and is called the exact solution:

xe = K−1 y,                                                        (2.2)

However, in the presence of noise, if the problem is “ill-conditioned” this solution may 
be unsatisfactory.

If m > n the problem is described as over-constrained. In this case, the rank of K can be 
equal  to  or  less  than  the  number  of  unknowns,  n.  If  p  <  n,  this  means  that  the 
measurements are “blind” to certain aspects of the unknowns: those components of x along 
the first p orthogonal base vectors of the state space are determined by the measured data, 
while the data tell nothing about all the components of  x  along the remaining  n-p  base 
vectors. This under-determined part of state space is called “null space” of K.

For m > p = n there is not a solution that can fit all the measurements and we have to 
use some criterion, such as least squares, to select one acceptable solution. In the least 
square  method  we  look  for  a  solution  that  minimizes  the  sum of  the  squares  of  the 
differences between the measurements and the forward model calculations made using the 
solution; these differences are called residuals, the sum of the squares is called the residual 
norm or χ2. That is, we minimize:

(2.3)

Equating to zero the derivative with respect to x:

These are known as the “normal equations” of the least squares problem. Since KTK is 
an n × n matrix, it is invertible if p = n. If the matrix is invertible, then we obtain a unique 
solution and find the best fit parameters x? :
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(2.4)

The matrix (KTK )−1KTŷ is also known as the Moore-Penrose inverse of K. If the rank p 
of  K is less than  n, there are an infinite number of solutions, all of which minimize the 
square of the residual norm.

All real measurements are subject to experimental error or noise, so that any practical 
retrieval  must  allow for  this.  For  a  proper  treatment  of  experimental  error  we need a 
formalism in which to express uncertainty in measurements and the resulting uncertainty in 
retrievals,  and  with  which  to  ensure  that  the  latter  is  as  small  as  possible.  A good 
approximation for experimental error is to describe our knowledge of the true value of the 
measured  parameter  by a  Gaussian  or  “normal”  distribution  P(y)  with  a  mean  ӯ  and 
variance σ2. When the measured quantity is a vector, as in our case, different elements of 
the vector may be correlated, in the sense that:

where Sij is called covariance of yi and yj, and ε is the expected value operator. These 
covariances can be assembled in a matrix, which we will denote by Sy for the covariance 
matrix of  y. Its  diagonal elements are the variances of the individual elements of  y.  A 
covariance matrix is symmetric and non-negative definite. The Gaussian distribution for a 
vector is of the form:

(2.5)

where Sy must be non singular.
In presence of Gaussian distributed noise with zero mean and covariance matrix Sε , the 

weighted least squares are used and the quantity to be minimized is, instead of expression 
(2.3):

(2.6)

and equating to 0 the derivative of (2.6) with respect to x? , gives:

The expectation value of the expression (2.6) is  m − n. Therefore a quantity called  χ2 

-test, or simply χ-test, can be defined as:

(2.7)

and has an expectation value of 1. Therefore the deviation of χ-test from unity provides 
a good estimate of the agreement between the model and the observations.

Since ill-conditioned nature of the inverse problems, the mathematical solution often 
gives  results  that  are  unacceptable  in  the  sense  that  they  do  not  agree  with  our 
understanding and preliminary knowledge of the measured quantity.  If this  is  the case, 
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rather  than  looking  for  a  measurement  of  the  true  state  we  must  look  instead  for  an 
estimate  of  the  true  state  which  is  acceptably  accurate  or  the  best  estimate  in  some 
statistical sense. In literature there are many statistical methods or probability techniques 
that tell how to combine the measurements with other information in order to select from 
the all possible solutions the best one.

A very powerful tool in probability theory is the Bayesian approach [7] in which we 
may have some prior understanding or expectation about some quantity and we want to 
update the understanding in the light of the new information.

2.2.2 Non-linear inverse problems

A non-linear problem may be thought simply as a problem in which the forward model 
is non-linear, but there may be non-quadratic terms due to  a priori  constraint that would 
lead to a non-linear problem even if the forward model were linear. Any non-Gaussian 
probability density function PDF as a priori information will lead to a non-linear problem. 
We can make a qualitative classification of the linearity of inverse problems as follows:

• Linear: when the forward model can be put in the form y = Kx and any a priori is 
Gaussian; very few practical problems are truly linear.

• Nearly linear: problems which are non-linear, but for which a linearisation about 
some a priori state is adequate to find a solution.

• Moderately non-linear:  problems  where  linearisation  is  adequate  for  the  error 
analysis, but not for finding a solution. Many problems are of this kind.

• Grossly  non-linear:  problem which are non-linear  even within the range of  the 
errors.

Much  of  what  has  been  described  so  far  for  linear  problems  applies  directly  to 
moderately  non-linear  problems  when  they  are  appropriately  linearised.  The  main 
difference  is  that  there  is  no  general  explicit  expression  for  optimal  solutions  in  the 
moderately non-linear case, as there is from linear and nearly linear problems, so that it 
must be found numerically or iteratively.

The forward model is now a non-linear mapping from the state space into measurement 
space. The inverse mapping from measurement space into state space will map the PDF of 
the  measurement  error  into  a  PDF in  state  space.  If  the  problem  is  not  worse  than 
moderately non-linear, and the measurement error is Gaussian, then the retrieval error will 
be Gaussian. In the non-linear case it may no longer be possible to write down an explicit 
solution that must be found numerically or iteratively.  For non-linear problems we can 
consider either the maximum a posteriori approach or the equivalent least squares method. 
The Bayesian solution for the linear problem [7], with or without the a priori information 
respectively,  can be modified for an inverse problem in which the forward model is  a 
general function of the state and the measurement error is Gaussian:

(2.8)
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2.3 Newton and Gauss-Newton methods
The  degree  of  difficulty  in  solving  a  non-linear  problem depends  on  the  degree  of 

linearity of the forward model  F(x).  Newtonian iteration is a straightforward numerical 
method for finding the zero of the gradient of a given cost function, such as Eq. (2.8). For 
the general vector equation g(x) = y − F(x) = 0, the Newton’s iteration can be written:

(2.9)

where xi is the initial guess of x and the inverse is the inverse of the matrix:

(2.10)

The function ∇x g is the second derivative of the cost function, Eq. (2.8), known as the 
Hessian. The Hessian involves both the Jacobian  K,  the first  derivative of the forward 
model,  and  ∇xKT  ,  the  second  derivative  of  the  forward  model.  The  latter  term  is  a 
complicated  object  and  problems for  which  this  term can be  ignored  are  called  small 
residual  in the numerical methods literature. Ignoring this term, one obtains the Gauss-
Newton method:

(2.11)

where  Ki =  K(x)|xi and  Eq.  (2.11)  represents  the  iterative  solution  in  a  non-linear 
problem with and without the a priori information.

2.3.1 Levenberg-Marquardt method

Both Newton’s method and Gauss-Newton will find the minimum in one step for a cost 
function  that  is  exactly  quadratic  in  x (linear  problem)  and  will  get  close  if  the  cost 
function is nearly quadratic. However, these methods can give bad results far from the true 
minimum if the true solution is sufficiently far from the currently assumed solution. In 
these cases, the residual may even increase rather than decrease. For the non-linear least 
squares problem, Levenberg [8] proposed the iteration:

(2.12)

where γi is chosen at each step as the value that minimises the cost function. Marquardt 
 [9] simplified the choice of γi, by not searching for the best γi at each iteration, but by 
starting a new iteration step as soon as a value is found for which the cost function is 
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reduced. An initially arbitrary value of γ is updated at each iteration. A simplified version 
of Marquardt’s method is given by Press and al. [10]:

• if χ2  increases as a result of a step, increase γ, do not update xi and try again,

• if χ2  decreases as a result of a step, update xi  and decrease γ for the next step.

The factor by which γ is increased or decreased is usually empirically determined.
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3 MIPAS Retrieval Algorithm

3.1 Retrieval Scheme
The problem of retrieving the vertical distribution of a physical or chemical quantity 

from a limb scanning observation is a typical inverse non-linear problem (see Chapter 2).  
Figure 3.1 illustrates the MIPAS retrieval algorithm scheme. Starting from some first-guess 
values  of  the  unknown  parameters  and  using  data  on  observation  geometry  and 
instrumental characteristics, the forward model program computes the simulated spectra 
which are compared with the measured spectra provided by the MIPAS Level 1b processor. 
The MIPAS Level  1b processor  converts  the scene interferograms into fully calibrated 
radiance spectra, using pre-processed radiometric offset, gain calibration data and spectral 
axis  correction  parameters.  The  quadratic  summation  of  the  differences  between  the 
simulated  and  measured  spectra  provides  the  value  of  the  chi-square  that  has  to  be 
minimized. A new profile is generated by modifying the first-guess with the correction 
provided  by  Eq.  (2.12).  Convergence  criteria  are  applied  in  order  to  establish  if  the 
minimum of  the  chi-square  function  has  been reached.  If  the  convergence  criteria  are 
fulfilled the procedure stops. If the convergence is not reached the improved profile is used 
as a new guess for generating simulated spectra that are again compared with the measured 
ones [3].
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3.1.1 Main Components of the Retrieval System

● Initial guess atmosphere

The initial guess of the target profiles and the profiles of the non-target species are taken 
from a climatological database specifically developed for MIPAS data analysis. However, 
if  atmospheric  fields  retrieved  by  the  ESA ground  processor  are  available,  it  can  be 
preferable to use them to define the initial guess atmosphere because they represent an 
atmospheric status that is closer to the reality than the one provided by the climatological 
database. Alternatively,  the user can choose to start from a different set of atmospheric 
profiles (e.g.,  those retrieved from an adjacent orbit)  by addressing the software to the 
specific location where it can be read. Retrievals are sensitive to the tangent altitudes that 
define the line of sight of the observations; good knowledge of these quantities is therefore 
crucial. Engineering estimates of the tangent altitudes are reported in the Level-1b data. 
However,  if  the  tangent  altitude  estimates  derived  by  the  ESA Level-2  processor  are 
available, these can be used in place of the Level-1b engineering estimates [11].

● The Forward Model

The Forward model simulates the spectra measured by the instrument in the case of 
known  atmospheric  composition.  The  forward  model  is  capable  of  both  simulating 
observations along a full  orbit  and accounting for the horizontal  inhomogeneity of the 
atmosphere. This model, when it is calculating the signal that reaches the spectrometer, 
must be able to evaluate all  the physical and chemical conditions that  are encountered 
along the line of sight of a given observation. The signal measured by the spectrometer is 
equal  to  the  atmospheric  radiance  which  reaches  the  spectrometer  modified  by  the 
instrumental effects, due to the finite spectral resolution and the finite field of view of the 
instrument.  These  instrumental  effects  are  taken  into  account  by  convolving  the 
atmospheric limb radiance with respectively the Apodized Instrument Line Shape (AILS) 
and the MIPAS Field Of View (FOV) function [3].

● Jacobian Calculation

Another important part of the retrieval code is the fast determination of the derivatives 
of the radiance with respect to the retrieval parameters. In most cases the computation of 
the forward model and its derivatives will take far longer than the linear algebra. In most 
circumstances it is preferable to evaluate the algebraic derivative of the forward model 
code  rather  than  perturb  the  forward  model  for  each  element  of  the  state  vector  and 
recompute the forward model several times. In the retrieval process, whenever possible 
(this  is  the case of  tangent  pressure,  volume mixing ratio,  atmospheric  continuum and 
instrumental  offset),  derivatives  are  computed  analytically  in  the  sense  that  analytical 
formulae  of  the  derivatives  are  implemented  in  the  program.  When the  calculation  of 
sufficiently precise analytical derivatives requires computations as time consuming as the 
calculation of spectra (this is the case of temperature), an optimised numerical procedure is 
implemented. The temperature derivatives are determined in a “fast numerical” way, i.e. 
the derivatives are computed in parallel with the spectra in order to exploit the common 
calculations [3].
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● Convergence Criteria

Convergence  criteria  are  needed  to  establish  when  the  minimum of  the  chi-square 
function  has  been  reached.  The  convergence  criteria  adopted  in  the  software  are  a 
compromise between the required accuracy of the parameters and the computing speed of 
the algorithm. The adopted convergence criteria are based on the conditions:

• Condition on  attained accuracy: the relative correction that has to be applied to the 
parameters for the subsequent iteration is below a fixed threshold. Different thresholds are 
used  for  the  different  types  of  parameters  depending  on  their  required  accuracy. 
Furthermore, whenever an absolute accuracy requirement is present for a parameter, the 
absolute variation of the parameter is checked instead of the relative variation. The non-
target parameters of the retrieval, such as continuum and instrumental offset parameters are 
not included in this check.

• Condition on computing time: the maximum number of iterations must be less than a 
given threshold.

The convergence is reached if one of the conditions is satisfied. If only the condition on 
computing time is satisfied, the retrieval is considered unsuccessful [3].

3.2 Retrieval Characteristics

3.2.1 Use of Micro-Windows (MWs)

The redundancy of information coming from MIPAS measurements makes it possible 
to select a set of narrow (less  than 3 cm-1 wide) spectral intervals containing the  best 
information on the target quantities,  while the spectral  regions containing little or no 
information  can  be  ignored [13].  The  use  of  narrow spectral  intervals,  called  "micro-
windows" (MWs), allows one to limit the  number of analysed spectral elements and to 
avoid  the analysis of spectral regions that are characterized  by uncertain spectroscopic 
data, interference by non-target species, or are influenced by unmodeled effects, such as 
non-local thermodynamic equilibrium (NLTE) or line mixing. The use of MWs instead of  
broad spectral intervals also allows one to keep the inversion problem within acceptable 
dimensions from the computational point of view.

The MWs selected for a given retrieval target can be used at all the measured limb 
views within a scan or only at a subset of them. The optimal set of MWs is arranged in  
the so-called Occupation Matrix (OM), which is a logical matrix with as many rows as 
the limb views of the analysed observations and as many columns as the MWs used in the  
inversion. The entry (i, j) of the OM defines whether the MW j at altitude i is used in the 
retrieval.

The algorithm used for the MW selection is described in [13]; it operates the selection 
of the spectral elements with the aim of maximizing the information content [14] of the 
used measurements with respect to the target parameters [11].
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3.2.2 The Geofit Multi-Target Retrieval

The Geofit Multi-Target Retrieval (GMTR) is a new retrieval model implements the 
geo-fit  two-dimensional  inversion  for  the  simultaneous  retrieval  of  several  targets 
including a set of atmospheric constituents that are not considered by the ground processor 
of the MIPAS experiment. The detailed descriptions of the GMTR can be found in [16,17]. 
This retrieval model is implemented in an optimized computer code that is distributed by 
the European Space Agency as “open source” in a  package that includes a  full  set  of 
auxiliary data for the retrieval of 28 atmospheric targets. The GMTR have the following 
characteristics [11]:

● Multi-target Retrieval

In  the  task  of  determining  the  altitude  distribution  of  atmospheric  constituents,  the  
knowledge of pressure and temperature distributions is necessary for the  determination 
of all VMRs. In the data-analysis process, the usual approach is the preliminary retrieval  
of pressure and temperature (exploiting the assumption of known CO2 VMR) followed 
by the sequential retrieval of the target VMRs. A drawback of this approach is that the 
retrieval  errors  affecting  pressure  and  temperature  profiles  do  propagate  into  the 
retrieved VMR values.  Moreover,  molecular  species  with a  "rich"  spectrum (such as  
water  and  ozone)  may  also  propagate  their  measurement  error  in  the  other  products 
because their spectral features often "contaminate" the frequency intervals analysed for 
the  retrieval of other species. The error propagation process can be minimized with a  
careful  choice [13] of  both the  analysed  spectral  intervals  and  the  sequence  of  the 
retrievals.  Nevertheless,  the  error  propagation  cannot  be  completely  avoided  and  its 
assessment  requires  some  post-processing  operations.  A strategy  that  minimizes  this 
source  of  systematic  errors  is  represented  by  the  simultaneous  retrieval  of  all  the 
quantities whose correlation in the observed spectra is the cause of the error propagation.  
This strategy is referred to as multi-target retrieval (MTR). The main advan tages of MTR 
are the following:

i. No systematic error propagation due to "interfering" species.

ii. The  error  due  to  the  cross-talk  between  different  target  quantities  is  properly 
represented in the covariance matrix of the retrieved parameters.

iii. The selection of the spectral  intervals to be  analysed is  no longer driven by the 
necessity to reduce the interferences among the target species.

iv. The information on pressure and temperature can be gathered from the spectral 
features of all target species and not only from CO2 lines [11].

● Geofit Rationale

In the analysis of data from a limb-scanning experiment, the assumption of horizontal  
homogeneity of the atmosphere can be avoided if each limb observation contributes to 
determining  the  unknown  quantity  at  a  number  of  different  "locations"  among  those 
spanned by its line of sight. However, the attempts to  derive, from a single limb scan, 
atmospheric  parameters  at  different  locations  along  the  lines  of  sight,  usually  fail 
because  of  an  ill-conditioned  problem,  see  chapter  2,  (the  retrieval  of  a  horizontal 
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gradient can be attempted in these cases). In the MIPAS experiment a solution to  the 
problem regarding the analysis of observations taken along the orbit track can be found 
by exploiting the fact that limb-scanning measurements are continuously repeated along 
the plane of the orbit. Indeed, this repetition makes it possible to gather information about 
a given location of the atmosphere  from all  the lines of sight  that  cross that  location 
regardless of which sequence they belong to. Since the loop of cross-talk between nearby 
sequences closes when the starting sequence is reached again at the end of the orbit, in a 
retrieval  analysis  the  full  gathering  of  information  can  be  obtained  by merging  in  a 
simultaneous fit  the  observations  of  a  complete  orbit.  One of the Earth's  poles  is  the 
optimal choice as a starting and ending point of the analysed orbit  because, in this case, 
the cross-talk loop is closed  when the same air mass is observed. The use of any other 
latitude as a starting and ending point would face the problem that, because of the Earth's 
motion,  a different longitude is observed at  the beginning and  at  the end of the orbit. 
Since MIPAS Level-1b files correspond to orbits that do not originate at the North Pole, a 
geo-fit analysis requires the preliminary construction of a full orbit of measurements by  
combining the measurements stored in two Level-1b files. 

An important feature of the geo-fit is that the retrieval grid is independent from the 
measurement  grid, [15] which  is  the  grid  identified  by  the  tangent  altitudes  of  the 
measurements.  Therefore  the  atmospheric  profiles  can  be  retrieved  with  horizontal 
separations different from those of the measured limb scans [11].

● Sequence of Retrievals: Cascade Mode

The  execution  of  the  retrieval  can  be  reiterated  on  different  target  species  within  a 
sequence controlled  by an external shell script. This functionality (denoted as "cascade 
mode") permits one to operate retrievals by using the results of the previous analyses. For 
this purpose the analysis program stores the atmospheric field of the retrieved target(s)  
(that  is,  the  value  that  the  quantity  assumes  at  all  the  nodes  of  the  atmospheric 
discretization)  in  temporary  files.  When  a  step  of  the  retrieval  sequence  is  run  in 
"cascade mode," the program checks for the existence of these files and (if any) it reads 
and  uses  the  previously  retrieved  atmospheric  fields.  Any combination  of  MTR and 
sequential  retrievals  can  be  implemented;  however,  in  the  typical  retrieval  sequence 
considered in my work, the MTR of pressure, temperature, water, and ozone is followed 
by one  or  more  "cascade"  retrievals  of  "minor"  atmospheric  species.  In  the  retrieval 
chain each step may have its own retrieval grid, independent of the previous steps [11].

3.3 Computing Details
The new analysis system is organized into two separated modules: a preprocessor and 

a  retrieval  module.  The preprocessor  sets  up  a  suitable  environment  for  the  retrieval 
module; its main functionalities consist of:

i. Combining (if available) two Level-1b files to compose a full pole-to-pole orbit and  
extracting the subset of spectral data points to be analysed.

ii. Mapping the geometrical coordinates from the  three-dimensional reference frame 
into the two-dimensional reference frame in the orbit plane.

iii. Selecting the auxiliary information from the targets database.

iv. Building the initial atmospheric model.
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The  characteristics  of  the  input  data  and  the  evolution  of  the  retrieval  analysis  is 
controlled  through  a  “settings file”  (common to  the  two modules)  whose  entries  are 
defined by the user. In the “settings file” each entry follows a key-word that is associated  
to that entry. This strategy makes irrelevant the order in which the entries appear within  
the file so that the user can organize the file at his convenience.

Since the retrieval module is independent from the preprocessing module, the user is 
allowed to run the retrieval with different settings on a fixed set of input files generated 
by a run of the preprocessor module.

Theses different modules consists of many blocks which are written mainly in standard 
FORTRAN 77. The only exceptions are some functions required to read Level 1b and 
Level 2 products that are written in C and called by FORTRAN routines [11,18].
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4 Diagnostics Tools
In this chapter, I describe the diagnostics tools used in the experimental part to perform the 
analysis of the two sets of MWs.

4.1 Simulation of data

The GMTR software can be used to generate simulated retrievals (retrieval analyses 
operated on simulated observations). This option may be useful to test and select the most 
efficient initial parameters, e.g. the selection of an optimised set of MWs.  The steps to 
generate the simulated retrievals are:

1. The creation of synthetic spectra for the whole orbit using the 2-D forward model 
which  uses  a  set  of  reference  profiles  that  describe  the  horizontal  structures  of  the 
atmosphere. A special option is used to run only the forward model and then directly stop 
the GMTR software.

2. Random perturbations are introduced into the synthetic spectra, in order to start from 
an  initial  guess  atmosphere  different  from the  reference  atmosphere  and  so  avoid  the 
convergence in only one iteration.

3. The software is operated normally using the spectra created by the forward model as 
if they were recorded by the MIPAS experiment.

This strategy provides the reference profiles which correspond to the initial atmosphere. 
The initial  atmosphere corresponds to  the atmosphere that  the  retrieval  process  should 
retrieve if the retrieval process were perfect. The comparison of the retrievals of the two 
sets of MWs is considerably facilitated since we can compare the results of each of them 
with the reference profiles. Indeed, the use of simulated retrievals is suitable to assess the 
real errors that are introduced when, for example, using different sets of MWs [11].

4.2 Information Load
For the analysis of limb-scanning observations with the 2-D approach the atmosphere is 

partitioned on both the vertical and the horizontal domains [19], [16]. This discretization 
leads to a web-like picture in which consecutive altitude levels and vertical radii define 
plane figures denoted as “cloves” (see Fig. 4.1). If the simultaneous analysis of several 
observation geometries is considered, we can assign to each clove the Information Load 
(IL) scalar quantifier (Ω) defined as  [20]:

(Eq. 4.1)

Ω (q,h) = IL of clove h with respect to atmospheric parameter q.
Sijk = spectral signal of observation geometry i at frequency j of the analysed MW k.
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l = number of observation geometries that go through clove h,
m = number of MWs in observation geometry i,
n = number of spectral points in MW j.

Eq. (4.1) can be written as:

(Eq. 4.2)

where k is a vector containing the derivatives of all the observations that depend on the 
value of q in clove h. If the observations are affected by different noise levels (e.g. occur in 
different spectral bands) it is suitable to use the weighted IL (WΩ) defined as:

(Eq. 4.3)

where S is the variance-covariance matrix of the observations relative to all the spectral 
points that contribute to the information load in clove h.

The uncertainty on the value of the target quantity  q in clove  h is connected with the 
quantity 1/WΩ (see [20]).

A map  of  the  WΩ  quantifier,  calculated  for  each  clove  of  the  2-D  atmospheric 
discretization permits to evaluate the distribution of the information load with respect to 
the geophysical parameter q. In these maps:

● The  values  of  WΩ  measure  the  amount  of  information  contained  in  the 
corresponding cloves.

● The spatial distribution of WΩ  indicates the regions of the atmosphere where the 
information is gathered from when operating a retrieval analysis.

The IL analysis provides a tool to compare the performance of different observation 
strategies and/or of different sets  of spectral  intervals.  The WΩ maps also indicate the 
optimal strategy to select the geo-location of the retrieval grid.

In the 2-D context  the observation geometries  that look at  clove  h  may come from 
different  limb-scans  while  in  the  1-D  context  they  are  a  subset  of  the  observation 
geometries of the analysed limb-scan.

The IL will be computed thanks to the software called “GMTR_INFO”, derived from 
the GMTR software (Chap. 3)
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Figure 4.1: 2D discretization of the atmosphere and ray-tracing of the limb-view. A sample 
"clove" is high-lighted in green



4.3 Systematic and Random errors
The measurement are affected by errors that can be divided into two types of errors, 

indeed the total error is the square summation of the random and systematic errors. The 
random error is due to the propagation of instrument noise through the retrieval. Random 
errors are inconsistent with the repetition of measurement, they are scattered about the true 
value and tend to lack arithmetic meaning. Random errors are caused by unpredictable 
fluctuations due to interference of the environment with the measurement process.

The MW selection algorithm provide an estimate of the systematic error, which is the 
root sum square of individual systematic error sources:

• Non Local  Thermodynamic  Equilibrium (NLTE)  error  is  due  to  assumption  of  local 
thermodynamic equilibrium when modelling emission in the MIPAS forward model. Based 
on  calculations  using  vibrational  temperatures  supplied  by  M.Lopez-Puertas,  IAA, 
Granada.

• Spectroscopic Database Errors (SPECDB formerly referred to as  HITRAN) is due to 
uncertainties  in  the  strength,  position  and  width  of  infrared  emission  lines.  Based  on 
estimates supplied for each molecule/band by J.M.Flaud, LPM, Paris.

• Radiometric Gain Uncertainty (GAIN) is due mostly to non-linearity correction in bands 
of the recorded spectra.

• The SPREAD is the uncertainty in width of apodised instrument line shape (AILS). A 
value of 0.2% has been assumed based on likely variations in apodised instrument line 
shape from modelled.

• The SHIFT is  the uncertainty in  the spectral  calibration.  The design specification of 
±0.001cm-1 has  been used,  and is  consistent  with  the  1st  derivatives  signatures  in  the 
residual spectra.

• CO2 line-mixing (CO2MIX) is  due  to  neglecting  line-mixing effects  in  the retrieval 
forward model (only affects strong CO2 Q branches in the MIPAS spectral bands).

• The CTMERR is the uncertainty in gaseous continua. Assumes an uncertainty of ±25% 
in the modelling of continuum features of H2O (mostly), CO2, O2 and N2.

• Horizontal gradient effects (GRA) is due to the assumption in the retrieval process of a 
horizontally homogeneous atmosphere for each profile. Error is calculated assuming a ± 
1K/100km horizontal temperature gradient.

• Uncertainty in high-altitude column (HIALT) is due to the assumption in the Retrieval 
process of a fixed-shape of atmospheric  profile  above the top retrieval  level.  Effect  is 
calculated assuming `true' profile can deviate by climatological variability.

• The  propagation  of  Pressure  and  Temperature  (PT)  random  covariance  into  VMR 
retrieval.
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• The uncertainties in assumed profiles (profiles supplied by J.Remedios, U.Leicester) of 
contaminant species (i.e. CH4, H2O, HNO3, N2O, NO2, O3) [species]. For most species 
this is the climatological 1-σ variability.

The definition of 'systematic error' here includes everything which is not propagation of 
the  random instrument  noise  through  the  retrieval.  However,  to  use  these  errors  in  a 
statistically  correct  manner  for  comparisons  with  other  measurements  is  not 
straightforward. Each systematic error has its own length/time scale: on shorter scales it  
contributes to the Bias and on longer scales contributes to the Standard Deviation (SD) of 
the comparison.

Fortunately,  two  of  the  larger  systematic  errors  (PT and  SPECDB)  can  be  treated 
properly:

• The propagation error (PT) is uncorrelated between any two MIPAS profiles (since it is 
just the propagation of the random component of the PT retrieval error through the VMR 
retrieval) so contributes to the SD of any profile comparison.

• Spectroscopic  database  errors  (SPECDB) are  constant  but  of  unknown sign,  so  will 
always contribute to the Bias of any comparison, but note that the magnitude of these 
errors is very uncertain.

Of the other significant errors, the calibration-related errors (GAIN, SHIFT, SPREAD) 
should, in principle, be uncorrelated between calibration cycles however analysis of the 
residuals suggests that these errors are almost constant so could be included in the Bias.

The high altitude column (HIALT) and contaminant gas errors ([species]) are likely to 
be correlated over small areas (1000km) or times (weeks), hence contribute to the Bias for 
localised  comparisons,  but  as  the  comparison  datasets  are  extended  these  errors  will 
contribute more to the SD. 

Line mixing errors (CO2MIX) are also contribute towards the Bias but in principle the 
sign of these errors is known (unlike spectroscopic errors) so this bias could be removed.  
NLTE  errors  should  also,  in  principle,  contribute  a  known  Bias  but  these  are  highly 
variable (especially diurnally)  so care has to  be taken to make sure that  representative 
conditions for the comparison are used. [21]
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5 Comparison of  the two sets  of  Micro-Windows 
using retrievals on simulated observations

The MIPAS instrument is recording spectra which are then used to retrieve the altitude 
distribution  of  different  targets  (Chap  1).  This  duty is  achieved  thanks  to  the  GMTR 
software (Geofit Multi-Target Retrieval), described in Chap. 3. To avoid the redundancy of 
information and the interference between species the GMTR software extracts, from the 
spectra,  narrow spectral  intervals,  called Micro-Windows (MWs) (see Sub-Sect.  3.2.1). 
The Oxford  University  and the  University  of  Bologna  have  provided  different  sets  of 
MWs. The aim of this chapter is to compare the efficiency of these two sets of MWs. I am 
comparing the two sets  of MWs using retrieval on simulated observations,  in  order to 
compare the retrieved profiles w.r.t. the reference profiles (Sect. 4.1).

The orbits 31277 and 31278 of February, 23th 2008 are used to calculate the simulated 
observations in chapters 5 and 7 and to compute the IL values in chapter 6.

5.1 Comparison of the simulated retrievals
As described in Sub-Sect. 3.3.3 the GMTR software can be use to generate simulated 

retrievals. In order to compare the retrieved profiles from Oxford University (OX) and 
Bologna University (BO) sets of MWs, I used the MAPPA tool to convert the profiles over 
the full orbit into maps. MAPPA is a graphical  software written in IDL language which 
plots all the retrieved profiles corresponding to one species into a single map, as a function 
of altitude and Orbital Coordinate (OC), that is the angular coordinate θ originating at the 
North pole and spanning the orbit plane over its 360° extension.

The values plotted on the maps are calculated using three equations:

  (5.1)

  (5.2)

  (5.3)

where “ret” corresponds to the profiles retrieved from the OX and the Bo sets of MWs, 
“ref”  corresponds to  the  reference  profiles  and “esd” corresponds to  the  values  of  the 
Estimated  Standard  Deviation  (ESD),  as  provided  by  GMTR.  The  purpose  of  these 
quantifiers will be described in Sect. 5.2.1. In Figs. 5.1 and 5.2 are plotted DIFF values 
for Temperature as a function of altitude and OC for  OX and Bo sets  of MWs 
respectively. In Figs. 5.1 and 5.2 I can localise very precisely where the divergence 
occurs between the retrievals from BO and OX sets of MWs. But to compare the 
performance of the two sets of MWs it is preferable to have an overall picture of the 
divergence between the retrievals. In Sect. 5.2, I describe the employed strategy.
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Figure 5.1: DIFF values for Temperature as a function of altitude and OC for the OX set of MWs

Figure 5.2: DIFF values for Temperature as a function of altitude and OC for the BO set of MWs



5.2  Comparison  of  the  simulated  retrievals  using 
Quantifiers

To facilitate  the  comparison  of  the  retrievals,  I  will  introduce  in  sub-section  5.2.1, 
several  quantifiers  which  refer  to  a  single  profile  obtained  with  a  full  coverage  orbit 
average.

5.2.1 Quantifiers Descriptions

a) AVE[DIFF] is the average value over the full orbit, at each altitude, of the absolute 
difference between retrieved and reference profile :

  (Eq. 5.4)

where N represents the number of values over the full orbit at one given altitude.

AVE[DIFF]  represents  the  average  difference  (without  sign)  between  the  retrieved 
values and the reference values. As explained in Sub-Sect.  3.3.3, the reference profiles 
represent what would be the retrieved profiles in the case of a perfect retrieval process, so 
AVE[DIFF] represents the “real”  error  of the retrieval  process.  On the other hand, the 
performance of the retrieval process is linked to the selection of the MWs, i.e. a better  
choice  of  MWs  will  lead  to  a  better  efficiency  of  the  retrieval  process.  Therefore 
comparing the AVE[DIFF] values arising from the two sets of MWs, I can state which of 
the two sets of MWs is the most efficient.

For each target, the AVE[DIFF] values of the OX and BO sets of MWs will be plotted 
as a function of altitude, in black and in blue respectively. To abridge the description of 
these graphs, a divergence between the two curves will be directly connected to a better or 
a worse retrieval process which is caused by one of the two sets of MWs.

b) AVE[Ratioref] is the percentage of AVE[DIFF] w.r.t. the retrieved profile:

  (Eq. 5.5)

AVE[Ratioref] indicates the magnitude of the average difference w.r.t. the magnitude of 
the reference profiles (e.g.  if  the average difference is high w.r.t.  the magnitude of the 
reference values, the result of this equation will be significantly high). Plotted values on 
the  AVE[DIFF]  graphs  will  be  respectively  revealed  or  hidden  depending  on  their 
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relevance.
For each target, the AVE[Ratioref] values of the OX and BO sets of MWs will be plotted 

as a function of altitude, in black and in blue respectively. This quantifier will help us to 
judge the improvement or worsening magnitude (slight, intermediate or large).

c) AVE[Ratioesd] is the average of DIFF divided by the values of the ESD:

  (Eq. 5.6)

AVE[Ratioesd] indicates the magnitude of the average difference w.r.t. the magnitude of 
the ESD. The ESD represents the estimated random error of the retrieved values. If this 
ratio is lower than three, i.e. the average difference is not three times greater than the ESD, 
then ESD and AVE[DIFF] are considered consistent. Moreover, the difference represent the 
real error therefore the closer the average value of the oscillations of this quantifier is to 
one, the better the ESD is reliable.

For each target, the AVE[Ratioesd] values of the OX and BO sets of MWs will be plotted 
as a function of altitude, in black and in blue respectively. To abridge the description of 
these graphs, I will directly link an average value of the AVE[Ratioesd] oscillations nearer to 
one to a better consistency between the real and estimated error of one of the two sets of 
MWs.

d) AVE[ESD] is the average of ESD:

AVE [ESD ]=
∑
i=1

N

esd i

N
                                  (Eq. 5.7)

AVE[ESD] indicates the estimation of the software on the value of the error.
For each target, the  AVE[ESD] values of the OX and BO sets of MWs will be 

plotted as a function of altitude, in black and in blue respectively.

As described in Sub-Sects. 3.3.1 and 3.2.2, I used the “cascade” mode to retrieve first 
the four mains targets simultaneously: Temperature, Pressure, Ozone and Water and then 
Nitric Acid, Methane, Nitrous Oxide and Nitrogen Dioxide. The magnitude of the peaks on 
the recorded spectrum will depend of the excitation of the molecules, therefore the results 
of the four last targets is dependant of the result of the mains targets (mainly temperature). 
Although the tested MWs only concern the retrieval of the four mains targets, I will also 
report the plotted quantifiers of the four others species in order to identify some eventual 
side-effects.

In order to compare the efficiency of the two sets of MWs, I present from Sub-Sects  
5.2.2 to 5.2.9 the plotted quantifiers of the set of MW provided by Oxford University (OX) 
and the set of MWs provided by the University of Bologna (BO) as a function of altitude 
on the same Figure.
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5.2.2 Temperature

In Figs. 5.3 and 5.4 the Ratioref values are plotted as a function of altitude and OC for 
OX and BO sets of MWs respectively. In Figs. 5.5 and 5.6 the Ratioesd values are plotted as 
a function of altitude and OC for OX and BO sets of MWs respectively. In Figs. 5.1, 5.2 
(from Sect. 5.1), 5.3 and 5.4 it seems that the red part at high altitudes is larger for DIFF 
and Ratioref retrieved with the OX than with the BO set of MWs, which indicates a worse 
retrieval at high altitude caused by the OX set of MWs. In contrary, it seems that the red 
part at low altitudes is smaller for  DIFF and Ratioref retrieved with the OX set of MWs 
rather than with the BO set of MWs, which indicates a better  retrieval at  low altitude 
thanks to the OX set of MWs. In Figs. 5.5 and 5.6 I observe larger and more red spots for 
Ratioesd from profiles retrieved with the OX set of MWs.
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Figure 5.3: Ratioref values for Temperature as a function 
of altitude and OC for the OX set of MWs

Figure 5.4: Ratioref values for Temperature as a function 
of altitude and OC for the BO set of MWs

Figure 5.5: Ratioesd values for Temperature as a function 
of altitude and OC for the OX set of MWs

Figure 5.6: Ratioesd values for Temperature as a function 
of altitude and OC for the BO set of MWs



Figs. 5.7, 5.8, 5.9 and 5.10 report respectively AVE[DIFF], AVE[Ratioref], AVE[Ratioesd] 
and AVE[ESD] values for Temperature as a function of altitude.  In Fig. 5.7 and 5.8, I  
observe for the OX set of MWs a better performance at low altitudes (15 to 36 km) and a 
worse  performance  at  higher  altitudes  (39  to  60  km).  Fig.  5.9  shows  the  consistency 
between ESD and AVE[DIFF] for the two sets of MWs, I also note the average values of 
the curves oscillations for BO (0.7) and OX (0.85) sets of MWs which indicates a better 
consistency between the real and estimated error for the OX set of MWs. In Fig. 5.10 I 
observe for the OX set of MWs significantly lower AVE[ESD] values, from 18 to 33 km, 
and slightly higher AVE[ESD] values, from 33 to 50 km.

I remark that it is more suitable and easier to comment and compare on Figs. 5.7 to 5.10 
the efficiency of the two sets of MWs, than on Figs. 5.1 to 5.6. Therefore for the other 
targets the maps will not be introduced except if they can be used to localise precisely the 
improvement or the worsening of one of the quantifier.
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Figure 5.7: AVE[DIFF] values for Temperature as a 
function of altitude for the two sets of MWs

Figure 5.9: AVE[Ratioesd] values for Temperature as a 
function of altitude for the two sets of MWs

Figure 5.8: AVE[Ratioref] values for Temperature as a 
function of altitude for the two sets of MWs

Figure 5.10: AVE[ESD] values for Temperature as a 
function of altitude for the two sets of MWs



5.2.3 Pressure

Figs.  5.11,  5.12,  5.13  and  5.14  report  respectively  ln(AVE[DIFF]),  AVE[Ratioref], 
AVE[Ratioesd] and ln(AVE[ESD]) values for Pressure as a function of altitude. In the case 
of Pressure and Water, I used a logarithmic scale for AVE[DIFF] and AVE[ESD] since 
these targets have a exponential decay w.r.t. altitude. In Fig. 5.11 and 5.12, I observe for 
the OX set of MWs better performance from 9 to 33 km and worse performance from 40 to 
47 km. Fig. 5.13 shows the consistency between ESD and AVE[DIFF] for the two sets of 
MWs, I also note the average values of the curves oscillations for BO (0.75) and OX (0.9) 
sets of MWs which indicates a better consistency between the real and estimated error for 
the  OX  set  of  MWs.  In  Fig.  5.14  I  observe  for  the  OX  set  of  MWs  slightly  lower 
AVE[ESD] values from 6 to 55 km and slightly higher AVE[ESD] values from 55 to 68 
km.
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Figure 5.12: AVE[Ratioref] values for Pressure as a 
function of altitude for the two sets of MWs

Figure 5.13: AVE[Ratioesd] values for Pressure as a 
function of altitude for the two sets of MWs

Figure 5.14: AVE[ESD] values for Pressure as a function 
of altitude for the two sets of MWs

Figure 5.11: AVE[DIFF] values for Pressure as a function 
of altitude for the two sets of MWs



5.2.4 Water

Figs.  5.15,  5.16,  5.17  and  5.18  report  respectively  ln(AVE[DIFF]),  AVE[Ratioref], 
AVE[Ratioesd] and ln(AVE[ESD]) values for Water as a function of altitude. In Fig. 5.15 
and 5.16, I observe for the OX set of MWs better performance around 21 km, from 37 to  
45 km and from 50 to 55 km and worse performance from 15 to 18 km, from 24 to 36 km 
and from 55 to 68 km. Fig. 5.17 shows the consistency between ESD and AVE[DIFF] for 
the two sets of MWs, I also note the average values of the curves oscillations for BO (0.75) 
and OX (0.8) sets of MWs which indicates a slightly better consistency between the real 
and estimated error for the OX set of MWs. In Fig. 5.18 I observe for the OX set of MWs 
lower AVE[ESD] values from 21 to 24 km and from 40 to 55 km and higher AVE[ESD] 
values from 25 to 39 km and from 55 to 68 km.
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Figure 5.16: AVE[Ratioref] values for Water as a function 
of altitude for the two sets of MWs

Figure 5.15: AVE[DIFF] values for Water as a function of 
altitude for the two sets of MWs

Figure 5.18: AVE[ESD] values for Water as a function of 
altitude for the two sets of MWs

Figure 5.17: AVE[Ratioesd] values for Water as a function 
of altitude for the two sets of MWs



5.2.5 Ozone

Figs.  5.19,  5.20,  5.21  and  5.22  report  respectively  AVE[DIFF],  AVE[Ratioref] 
AVE[Ratioesd] and AVE[ESD] values for Ozone as a function of altitude. In Fig. 5.19 and 
5.20, I observe for the OX set of MWs better performance from 15 to 35 km and from 40 
to 55 km and worse performance from 9 to 12 km, from 35 to 40 km and from 55 to 68 
km. Fig. 5.21 shows the consistency between ESD and AVE[DIFF] for the two sets of 
MWs, I also note the average values of the curves oscillations for BO (0.8) and OX (0.8) 
sets of MWs which indicates that the consistency between the real and estimated error is 
almost the same for the two sets of MWs. In Fig. 5.22 I observe for the OX set of MWs 
significantly lower AVE[ESD] values from 12 to 35 km.
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Figure 5.19: AVE[DIFF] values for Ozone as a function of 
altitude for the two sets of MWs

Figure 5.21: AVE[Ratioesd] values for Ozone as a function 
of altitude for the two sets of MWs

Figure 5.20: AVE[Ratioref] values for Ozone as a function 
of altitude for the two sets of MWs

Figure 5.22: AVE[ESD] values for Ozone as a function of 
altitude for the two sets of MWs



5.2.6 Nitric Acid

Figs.  5.23,  5.24,  5.25  and  5.26  report  respectively  AVE[DIFF],  AVE[Ratioref] 
AVE[Ratioesd] and AVE[ESD] values for Nitric Acid as a function of altitude. In Fig. 5.23 
and 5.24, I observe for the OX set of MWs slightly worse performance from 35 to 40 km. 
Fig. 5.25 shows the consistency between ESD and AVE[DIFF] for the two sets of MWs, I 
also note the average values of the curves oscillations for BO (0.8) and OX (0.8) sets of 
MWs which indicates that the consistency between the real and estimated error is almost 
the same for the two sets of MWs. In Fig. 5.26 I observe that both sets of MWs have 
almost the same AVE[ESD] values.
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Figure 5.23: AVE[DIFF] values for Nitric Acid as a 
function of altitude for the two sets of MWs

Figure 5.24: AVE[Ratioref] values for Nitric Acid as a 
function of altitude for the two sets of MWs

Figure 5.26: AVE[ESD] values for Nitric Acid as a 
function of altitude for the two sets of MWs

Figure 5.25: AVE[Ratioesd] values for Nitric Acid as a 
function of altitude for the two sets of MWs



5.2.7 Methane

Figs.  5.27,  5.28,  5.29  and  5.30  report  respectively  AVE[DIFF],  AVE[Ratioref] 
AVE[Ratioesd] and AVE[ESD] values for Methane as a function of altitude. In Fig. 5.27 and 
5.28, I observe for the OX set of MWs better performance from 16 to 68 km and worse  
performance  from  6  to  16  km.  Fig.  5.29  shows  the  consistency  between  ESD  and 
AVE[DIFF]  for  the  two  sets  of  MWs,  I  also  note  the  average  values  of  the  curves 
oscillations for BO (0.85) and OX (1.0) sets of MWs which indicates a better consistency 
between the real and estimated error for the OX set of MWs. In Fig. 5.30 I observe for the 
OX set of MWs lower AVE[ESD].
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Figure 5.27: AVE[DIFF] values for Methane as a function 
of altitude for the two sets of MWs

Figure 5.28: AVE[Ratioref] values for Methane as a 
function of altitude for the two sets of MWs

Figure 5.29: AVE[Ratioesd] values for Methane as a 
function of altitude for the two sets of MWs

Figure 5.30: AVE[ESD] values for Methane as a function 
of altitude for the two sets of MWs



5.2.8 Nitrous Oxide

Figs.  5.31,  5.32,  5.33  and  5.34  report  respectively  AVE[DIFF],  AVE[Ratioref] 
AVE[Ratioesd] and AVE[ESD] values for Nitrous Oxide as a function of altitude. In Fig. 
5.31 and 5.32, I observe for the OX set of MWs slightly better performance from 9 to 15 
km,from 21 to 24 km and from 36 to 39 km. Fig. 5.33 shows the consistency between ESD 
and AVE[DIFF] for the two sets of MWs, I also note the average values of the curves 
oscillations for BO (0.9) and OX (0.9) sets of MWs which indicates that the consistency 
between the real and estimated error is almost the same for the two sets of MWs. In Fig. 
5.26 I observe that both sets of MWs have almost the same AVE[ESD] values.
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Figure 5.31: AVE[DIFF] values for Nitrous Oxide as a 
function of altitude for the two sets of MWs

Figure 5.32: AVE[Ratioref] values for Nitrous Oxide as a 
function of altitude for the two sets of MWs

Figure 5.34: AVE[ESD] values for Nitrous Oxide as a 
function of altitude for the two sets of MWs

Figure 5.33: AVE[Ratioesd] values for Nitrous Oxide as a 
function of altitude for the two sets of MWs



5.2.9 Nitrogen Dioxide

Figs.  5.35,  5.36,  5.37  and  5.38  report  respectively  AVE[DIFF],  AVE[Ratioref] 
AVE[Ratioesd] and AVE[ESD] values for Nitrogen Dioxide as a function of altitude. In Fig. 
5.35 and 5.36, I observe for the OX set of MWs slightly better performance from 27 to 30 
km and slightly worse performance from 33 to 48 km. Fig. 5.37 shows the consistency 
between ESD and AVE[DIFF] for the two sets of MWs, I also note the average values of 
the curves oscillations for BO (0.8) and OX (0.8) sets of MWs which indicates that the 
consistency between the real and estimated error is almost the same for the two sets of 
MWs. In Fig.  5.38 I  observe that both sets of MWs have almost the same AVE[ESD] 
values.
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Figure 5.35: AVE[DIFF] values for Nitrogen Dioxide as a 
function of altitude for the two sets of MWs

Figure 5.36: AVE[Ratioref] values for Nitrogen Dioxide as 
a function of altitude for the two sets of MWs

Figure 5.37: AVE[Ratioesd] values for Nitrogen Dioxide as 
a function of altitude for the two sets of MWs

Figure 5.38: AVE[ESD] values for Nitrogen Dioxide as a 
function of altitude for the two sets of MWs



5.2.10 Summary

In table 5.1 all the comments regarding the comparison of the two sets of MWs are 
summarised as a function of altitude. In table 5.1 I remark that generally the OX set of 
MWs has a better performance and lower ESD values at low altitudes and on the contrary a 
worse performance and higher ESD values at higher altitudes. I also remark that for all 
targets the ESD values and the “real error” have a good consistency which indicates that 
when I will test these two sets of MWs on real observation (Chap. 7), I could rely on the 
retrieved ESD values. However, I note that the BO set of MWs has a higher tendency to 
overestimate the ESD values than the OX set of MWs.

Targets
Retrievals Performance 
of the two sets of MWs 

(Altitude in km)

Average values of 
Ratioesd oscillations

Retrieved ESD values of 
the two sets of MWs 

(Altitude in km)BO OM OX OM

Temperature From 15 to 36 →  B
From 39 to 60 →  W 0.7 0.85 From 18 to 33 →  GL

From 33 to 50 →  SH

Pressure From 9 to 33 →  B
From 40 to 47 →  W 0.75 0.9 From 6 to 55 →  SL

From 55 to 68 →  SH

Water
Around 21 →  SB

From 37 to 45 →  B
From 24 to 36 →  W

0.75 0.8

From 21 to 24 →  SL
From 40 to 55 →  L
From 25 to 39 →  H
From 55 to 68   H

Ozone

From 15 to 35   GB
From 40 to 55   B
From 9 to 12   SW
From 35 to 40   SW
From 55 to 68   W

0.8 0.8 From 12 to 35   GL

Nitric Acid From 35 to 40   SW 0.8 0.8 X

Methane From 16 to 68   B
From 6 to 16   SW 0.85 1.0 From 6 to 68   L

Nitrous 
Oxide

From 9 to 15   SB
From 21 to 24   SB
From 36 to 39   SB

0.9 0.9 X

Nitrogen 
Dioxide X 0.8 0.8 X

Table 5.1 Results of the comparison of the two sets of MWs in function of the altitude

B   Better efficiency for the OX set of MWs
W   Worse efficiency for the OX set of MWs
L   Lower ESD values for the OX set of MWs
H   Higher ESD values for the OX set of MWs
S   Slightly
G   Greatly
X →  No relevant divergence between the two sets of MWs.
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6 Information Load analysis
The analysis of the Information Load (IL) (see Sect 4.2) will permit to compare the 

performance of the two sets of MWs and to evaluate the performance of each individual 
MW.

6.1 Comparison of the Information Load values for the 
two sets of MWs

I used the “GMTR_INFO” software (Sect. 2.4) to compute the weighted IL values (Eq. 
4.3) of the two sets of MWs for each clove of the atmosphere for the four targets. In fig. 
6.1 the obtained IL values for Temperature, Pressure, Ozone and Water are plotted as a 
function of altitudes and OC for the BO, OX and Comb (see section 6.2) set of MWs. For 
practical reasons I decided to introduce on the same page the maps concerning OX, BO 
and Combined (Comb) sets of MWs even if the discussion of the Comb set of MWs will 
take place in section 6.2. Thanks to these maps, I can observe the altitude coverage of the 
BO and OX sets of MWs. Thus I localise the differences in altitude coverage between the 
two sets of MWs. But in the case that both sets of MWs are covering the same altitude, it is 
difficult to argue which of them has the best efficiency.

I plotted the IL values as a function of OC at several samples altitudes (10, 20, 30, 40 
and 50 km). Because of the high number of these plots  I  only show three of them as 
examples ,  Figs.  6.2,  6.3 and 6.4,  which represent  the IL values for Temperature as  a 
function of OC at 20 km for BO, OX and Comb sets of MWs respectively. Based on these 
figures I can compare the IL intensity values between the two set of MWs. The set of MWs 
which has  the  higher  intensity is  the  most  efficient  of  the two set  of  MWs. On these 
figures, I can also compare the amplitude of the peak to peak oscillation between the two 
sets of MWs. Thanks to this I can compare the uniformity of the IL values over the full 
orbit between the two sets of MWs. The uniformity represent the homogeneity of the IL 
values  over  the full  orbit,  i.e.  the  higher  the  uniformity,  the  lower  the  position  of  the 
retrieved profiles over the full orbit is depending on the intensity of the IL values at these 
position. In absence of uniformity the retrieved profiles should be positioned where the 
intensity of the IL values are the highest.

In the next paragraphs I will show the maps and the plots described above to compare 
the efficiency of the two sets of MWs for Temperature, Pressure, Ozone and Water.

Temperature

In Fig. 6.1, I observe for the OX set of MWs a better coverage at low altitudes (below 
10 km) and for the BO set of MWs a better coverage at higher altitudes (above 30 km). 
Thanks to the plots of the IL values for Temperature described above, I can refine my 
previous observations.

I observe, in the OX set of MWs generally higher IL values below 30 km (especially a 
large improvement  around the  equator)  and lower IL values  at  higher  altitudes.  I  also 
observe that the intensity of the peak to peak for the OX set of MWs is higher at low 
altitudes (lower than 30 km) and lower at higher altitudes.

I conclude that the OX set of MWs has a better efficiency at lower altitudes (below 30 
km), and a worse efficiency at higher altitudes. I also note, in the OX set of MWs, a worse 
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uniformity at lower altitudes (below 30km) and a better uniformity at higher altitudes.

I will abridge the comparison of the other targets by describing directly the efficiency 
and the uniformity of the BO and OX sets of MWs. To proceed through this task, I decided 
not to use anymore the maps, since the comparison of the two sets of MWs is facilitated by 
the plots described above.

Pressure

The OX set of MWs is generally more efficient over all altitudes except around 30 km 
where it is a bit less. I note a large improvement around the equator for the OX set of MWs 
below 10 km. The uniformity is generally better for all altitudes for the BO set of MWs.

Ozone

The OX set of MWs is more efficient around 20, 30 and 50 km and less efficient around 
10 and 40 km. The uniformity in most cases is correlated to the intensity of the IL values, 
i.e. the higher the intensity of the IL values, the lower the uniformity over the full orbit is.

Water

Water  is  mainly concentrated  at  low altitudes  and around  50 km,  so  I  will  mainly 
describe the efficiency of the two sets of MWs at these altitudes. The OX set of MWs is 
more efficient at low altitudes (around 8 km) but less efficient in higher altitudes (around 
40 km). The uniformity is generally lower for the OX set of MWs.

Summary

OX and BO sets of MWs show advantages and drawbacks, generally the OX set of 
MWs  has  better  performance  in  low  altitudes  and  the  BO  set  of  MWs  has  better 
performance in higher altitudes.
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The white horizontal lines are set every 5 km from 5 to 55 km, in order to help to localise,
at a given altitude, an improvement or a worsening of the IL values
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Figure 6.4: IL values for Temperature 
as a function of OC for the Comb set 

of MWs at 20 km

Figure 6.3: IL values for Temperature 
as a function of OC for the OX set of 

MWs at 20 km

Figure 6.2: IL values for Temperature 
as a function of OC for the BO set of 

MWs at 20 km

Figure 6.1: IL values for Temperature, Pressure, Ozone and Water as a function of altitude and OC 
for BO, OX and Comb set of MWs
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6.2 Selections of Micro-Windows for the “Combined” set 
To improve the retrievals performance, I decided to merge these two sets of MWs. I will 

calculate  the  IL  values  and  then  describe  the  contributions  of  each  individual  MW. 
Thereafter, I will select the most efficient MW, to create a “Comb” set of MWs. The BO 
set and the OX set of MWs are composed of 8 (PTHO06..)  and 10 (PTHO03..)  MWs 
respectively. Table 6.1 gives their main characteristics.

Name Frequency Interval (cm-1) Altitudes Range 
of the MW (km)

Species present in the 
MW

PTHO0601 1036.313 / 1039.313 68 / 33 O3

PTHO0602 1682.688 / 1685.688 60 / 27 H2O
PTHO0603 790.625 / 793.625 47 / 27 CO2

PTHO0604 1071.875 / 1074.875 39 / 6 CO2 / O3

PTHO0605 689.750 / 692.750 52 / 30 CO2 / O3

PTHO0607 686.688 / 689.688 68 / 60 CO2 / H2O / O3

PTHO0609 731.188 / 734.188 36 / 6 CO2 / O3

PTHO0610 1651 / 1654 36 / 6 H2O
PTHO0301 1074.188 / 1077.188 60 / 6 CO2 / O3

PTHO0302 1575.125 / 1578.125 60 / 15 H2O
PTHO0303 719.375 / 722.375 68 / 21 CO2 / O3

PTHO0304 744.875 / 747.875 47 / 9 CO2 / O3

PTHO0305 825.125 / 828.125 18 / 6 CO2 / H2O / O3

PTHO0306 1032.938 / 1035.938 68 / 33 O3

PTHO0307 735 / 738 39 / 15 CO2 / O3

PTHO0308 1151.063 / 1154.063 18 / 6 H2O / O3

PTHO0309 740.875 / 743.875 68 / 15 CO2 / O3

PTHO0310 730 / 733 42 / 15 CO2 / O3

Table 6.1: MWs description (Frequency Interval, Altitudes Range and present Species)

I used the “GMTR_INFO” to compute the IL values of each individual MW. Then I 
mapped the obtained IL values as a function of altitude and OC. Since I had 18 MWs and 
four targets, I obtained 72 maps. I decided to show only as examples Figs. 6.5, 6.6 and 6.7 
which represent the IL values for Temperature as a function of altitude and OC for MWs 
PTHO0305,  PTHO0306  and  PTHO0302  respectively.  In  these  examples  I  observed 
intermediate IL values around 7.5 km on fig. 6.5, large IL values from 15 to 25 km around 
the South Pole (SP) on fig. 6.6 and very small IL values from 30 to 45 km on fig. 6.7. I 
noted that each of these MWs has a very specific contribution. In order to facilitate the 
MWs selection I reported the IL values intensity and the altitude of each individual MW in 
tables 6.2 and 6.3.
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Figure 6.7: IL values for Temperature plotted as a function of altitude and OC for PTHO0302

Figure 6.6: IL values for Temperature plotted as a function of altitude and OC for PTHO0305

Figure 6.8: IL values for Temperature plotted as a function of altitude and OC for PTHO0306
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MWs\Species Temperature Pressure

PTHO0301 Around 7.5 km → S
From 10 to 50 km → VS From 5 to 50 km → VS

PTHO0302
From 15 to 30 km → L
From 30 to 45 km → S

From 45 to 55 km → VS

From 30 to 45 km (SP) → S
From 15 to 55 km → VS

PTHO0303 From 20 to 55 km → VS From 35 to 50 km (SP) → S
From 20 to 55 km → VS

PTHO0304
From 5 to 25 km → I

From 25 to 35 km → S
From 35 to 50 km → VS

From 5 to 20 km (SP) → I
From 20 to 50 km → VS

PTHO0305 Around 7.5 km  I Around 7.5 km → I
PTHO0306 From 30 to 55 km → VS From 30 to 55 km → VS

PTHO0307
From 10 to 30 km → I
From 30 to 45 km → S

From 45 to 60 km → VS
From 15 to 40 km (SP) → I

PTHO0308 Around 7.5 km → I
From 10 to 40 km → VS

Around 7.5 km → S
From 10 to 20 km → VS

PTHO0309 From 10 to 55 km → VS From 15 to 55 km → VS

PTHO0310 From 10 to 35 km → S
From 35 to 50 km → VS From 10 to 45 km → VS

PTHO0607 X Around 60 km → VS

PTHO0605 From 25 to 40 km → S
From 40 to 55 km → VS

From 25 to 45 km → S
From 45 to 55 km → VS

PTHO0609
From 5 to 20 km → I

From 20 to 35 km → S
From 35 to 50 km → VS

From 10 to 25 km → S
From 25 to 50 km → VS

PTHO0603 From 25 to 55 km → VS From 25 to 45 km → VS

PTHO0601 From 30 to 50 km → I
From 50 to 60 km → VS

From 30 to 45 km (SP) → I
From 30 to 50 km → VS

PTHO0604 Around 7.5 km  I
From 10 to 40 km  S

Around 7.5 km  I
From 10 to 45 km  VS

PTHO0610
From 15 to 25 km (SP)  VL

From 10 to 40 km  I
From 40 to 55 km  S

From 30 to 45 km (SP)  I
From 15 to 50 km  VS

PTHO0602 From 25 to 55 km  S From 25 to 50 km  VS

Table 6.2: Description of the MWs contribution for Temperature and Pressure
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MWs\Species Ozone Water

PTHO0301 From 15 to 50 km  VS
From 25 to 40 km (SP)  S Around 7.5 km  S

PTHO0302 X From 15 to 55 km → VS
From 20 to 45 km (SP) → S

PTHO0303 From 20 to 55 km  VS X
PTHO0304 From 15 to 45 km  VS X
PTHO0305 X Around 7.5 km → L

PTHO0306 From 30 to 50 km  I
From 50 to 55 km  S X

PTHO0307
From 20 to 35 km  I

From 15 to 20 km  VS
From 35 to 45 km  VS

X

PTHO0308 From 15 to 45 km  VS Around 7.5 km → S
PTHO0309 From 15 to 45 km  VS X
PTHO0310 From 15 to 45 km  VS X
PTHO0607 X X
PTHO0605 X X
PTHO0609 From 15 to 45 km → VS X
PTHO0603 From 20 to 45 km → VS X

PTHO0601 From 30 to 50 km → VL
From 50 to 60 km → VS X

PTHO0604 From 15 to 25 km (SP) → I
From 15 to 40 km → S Around 7.5 km → S

PTHO0610 X From 30 to 45 km (SP) → VL
From 20 to 50 km → S

PTHO0602 X From 25 to 55 km → VS

Table 6.3: Description of the MWs contribution for Ozone and Water

VL   Very Large IL values
L   Large IL values
I   Intermediate IL values
S   Small IL values
VS   Very Small IL values
SP   indicates that the IL values are localised around the South Pole
X   IL values are nil or insignificant

I marked in blue the MWs which have a good efficiency, i.e. the MWs which have 
Large or Very Large IL values or intermediate IL values but for at  least  two targets.  I 
marked in red the MWs which have the worse efficiency, i.e. the MWs which have only 
Small or Very Small IL values. Then finally I marked in green the MWs which have a 
intermediate efficiency, i.e. the MWs which have intermediate IL values but only for one 
target.
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Selection and test of an optimised Occupation Matrix (OM):

Looking at tables 6.2 and 6.3, I selected the MWs with the best efficiency, which are 
PTHO0302,  PTHO0304,  PTHO0305,  PTHO0307,  PTHO0308,  PTHO0601,  PTHO0604 
and PTHO0610. Then for the four targets, I checked that using this set of MWs the IL will 
not suffer from a lack of coverage at any altitude. Looking at the IL values resulting from 
this Comb set of MWs I decided to add also PTHO0306 and PTHO0609 (the intermediate 
efficiency  MWs)  which  are  efficient  for  Ozone  and  Temperature  respectively.  Thus  I 
composed the optimised OM of 10 MWs.

Fig. 6.1 show us the plotted maps of the IL values for the four targets as a function of  
altitude  and  OC for  the  BO,  OX  and  Comb  sets  of  MWs.  Looking  at  these  maps  I 
appreciate the better efficiency of the Comb sets of MWs by comparing the BO and OX 
sets of MWs. By looking at the IL values plotted as a function of OC for several sample 
altitudes (10, 20, 30, 40 and 50 km), as for Figs. 6.2, 6.3 and 6.4, I checked my previous 
observations. Indeed in most cases the intensity and the uniformity of the IL values are 
higher for the Comb set of MWs, except in the case of Pressure around 50 km, where IL 
values are slightly lower.

Since the retrieval of Pressure is of minor importance w.r.t. the retrieval of Temperature, 
I can state that the Comb set of MWs show much larger benefits than drawbacks. In the 
next chapter I test the Comb set of MWs on simulated and real retrievals (Chap. 7).
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7 Performance of the optimised Occupation Matrix

7.1 Comparison of the sets of MWs using retrievals on 
simulated observations

As for Chap. 5, I decided not to use the maps but instead the plots  of AVE[DIFF], 
AVE[Ratioref], AVE[Ratioesd] and AVE[ESD] as a function of altitudes. I added in green 
the quantifier values of the Comb set of MWs to the previous plots of BO and OX sets of  
MWs (from Sub-Sect. 5.2.2 to 5.2.9).

7.1.1 Temperature

Figs. 7.1, 7.2, 7.3 and 7.4 report respectively AVE[DIFF],  AVE[Ratioref] AVE[Ratioesd] 
and AVE[ESD] values for Temperature as a function of altitude.  In Figs. 7.1 and 7.2, I 
observe for the Comb set of MWs better performance from 6 to 15 km, from 18 to 30 km 
and from 33 to 50 km and worse performance above 50 km. Fig. 7.3 shows the consistency 
between ESD and AVE[DIFF] for the three sets of MWs, I also note the average values of 
the curves oscillations for the Comb (0.85) sets of MWs. In Fig.  7.4 I observe for the 
Comb set of MWs lower AVE[ESD] values from 15 to 55 km.
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Figure 7.1: AVE[DIFF] values for Temperature as a 
function of altitude for the three sets of MWs

Figure 7.2: AVE[Ratioref] values for Temperature as a 
function of altitude for the three sets of MWs

Figure 7.3: AVE[Ratioesd] values for Temperature as a 
function of altitude for the three sets of MWs

Figure 7.4: AVE[ESD] values for Temperature as a 
function of altitude for the three sets of MWs



7.1.2 Pressure

Figs. 7.5, 7.6, 7.7 and 7.8 report respectively AVE[DIFF],  AVE[Ratioref] AVE[Ratioesd] 
and AVE[ESD] values for Pressure as a function of altitude. In Figs. 7.5 and 7.6, I observe 
for the Comb set of MWs significantly worse performance from 30 to 68 km. Fig. 7.7 
shows the consistency between ESD and AVE[DIFF] for the three sets of MWs, I also note 
the average values of the curves oscillations for the Comb (0.9) sets of MWs. In Fig. 7.8 I 
observe for the Comb set of MWs higher AVE[ESD] values above 45 km.
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Figure 7.6: AVE[Ratioref] values for Pressure as a function 
of altitude for the three sets of MWs

Figure 7.5: AVE[DIFF] values for Pressure as a function 
of altitude for the three sets of MWs

Figure 7.8: AVE[ESD])values for Pressure as a function of 
altitude for the three sets of MWs

Figure 7.7: AVE[Ratioesd] values for Pressure as a function 
of altitude for the three sets of MWs



7.1.3 Water

Figs.  7.9,  7.10,  7.11  and  7.12  report  respectively  AVE[DIFF],  AVE[Ratioref] 
AVE[Ratioesd] and AVE[ESD] values for Ozone as a function of altitude.  In Figs. 7.9 and 
7.10, I observe for the Comb set of MWs better performance from 15 to 50 km and worse 
performance  from  50  to  55  km.  Fig.  7.11  shows  the  consistency  between  ESD  and 
AVE[DIFF]  for  the  three  sets  of  MWs,  I  also  note  the  average  values  of  the  curves 
oscillations for the Comb (0.8) sets of MWs. In Fig. 7.12 I observe for the Comb set of 
MWs lower AVE[ESD] values from 15 to 60 km.
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Figure 7.9: AVE[DIFF] values for Water as a function of 
altitude for the three sets of MWs

Figure 7.10: AVE[Ratioref] values for Water as a function 
of altitude for the three sets of MWs

Figure 7.11: AVE[Ratioesd] values for Water as a function 
of altitude for the three sets of MWs

Figure 7.12: AVE[esd] values for Water as a function of 
altitude for the three sets of MWs



7.1.4 Ozone

Figs.  7.13,  7.14,  7.15  and  7.16  report  respectively  AVE[DIFF],  AVE[Ratioref] 
AVE[Ratioesd] and AVE[ESD] values for Ozone as a function of altitude. In Figs. 7.13 and 
7.14, I observe for the Comb set of MWs better performance from 21 to 24 km, from 36 to 
39 km and above 60 km and worse performance from 25 to 33 km and  from 39 to 60 km.  
Fig. 7.15 shows the consistency between ESD and AVE[DIFF] for the three sets of MWs, I 
also note the average values of the curves oscillations for the Comb (0.9) sets of MWs. In 
Fig. 7.16 I observe for the Comb set of MWs lower AVE[ESD] values from 6 to 21 km and 
from 33 to 50 km and higher AVE[ESD] values from 24 to 33 km and above 50 km.
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Figure 7.13: AVE[DIFF] values for Ozone as a function of 
altitude for the three sets of MWs

Figure 7.15: AVE[Ratioesd] values for Ozone as a function 
of altitude for the three sets of MWs

Figure 7.14: AVE[Ratioref] values for Ozone as a function 
of altitude for the three sets of MWs

Figure 7.16: AVE[ESD] values for Ozone as a function of 
altitude for the three sets of MWs



7.1.5 Nitric Acid

Figs.  7.17,  7.18,  7.19  and  7.20  report  respectively  AVE[DIFF],  AVE[Ratioref] 
AVE[Ratioesd] and AVE[ESD] values for Nitric Acid as a function of altitude. In Fig. 7.17 
and 7.18, I observe for the Comb set of MWs slightly worse performance from 35 to 40 
km. Fig. 7.19 shows the consistency between ESD and AVE[DIFF] for the three sets of 
MWs, I also note the average values of the curves oscillations for the Comb (0.8) sets of 
MWs. In Fig. 7.20 I observe that the three sets of MWs have almost the same AVE[ESD] 
values.
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Figure 7.17: AVE[DIFF] values for Nitric Acid as a 
function of altitude for the three sets of MWs

Figure 7.19: AVE[Ratioesd] values for Nitric Acid as a 
function of altitude for the three sets of MWs

Figure 7.20: AVE[ESD] values for Nitric Acid as a 
function of altitude for the three sets of MWs

Figure 7.18: AVE[Ratioref] values for Nitric Acid as a 
function of altitude for the three sets of MWs



7.1.6 Methane

Figs.  7.21,  7.22,  7.23  and  7.24  report  respectively  AVE[DIFF],  AVE[Ratioref] 
AVE[Ratioesd] and AVE[ESD] values for Methane as a function of altitude.  In Figs. 7.21 
and 7.22, I observe for the Comb set of MWs better performance around 12 km and worse 
performance  from  18  to  68  km.  Fig.  7.23  shows  the  consistency  between  ESD  and 
AVE[DIFF]  for  the  three  sets  of  MWs,  I  also  note  the  average  values  of  the  curves 
oscillations for the Comb (0.8) sets of MWs. In Fig. 7.24 I observe for the Comb set of 
MWs higher AVE[ESD] values from 6 to 68 km.
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Figure 7.21: AVE[DIFF] values for Methane as a function 
of altitude for the three sets of MWs

Figure 7.23: AVE[Ratioesd] values for Methane as a 
function of altitude for the three sets of MWs

Figure 7.22:AVE[Ratioref] values for Methane as a 
function of altitude for the three sets of MWs

Figure 7.24: AVE[ESD] values for Methane as a function 
of altitude for the three sets of MWs



7.1.7 Nitrous Oxide

Figs.  7.25,  7.26,  7.27  and  7.28  report  respectively  AVE[DIFF],  AVE[Ratioref] 
AVE[Ratioesd] and AVE[ESD] values for Nitrous Oxide as a function of altitude.  In Figs. 
7.25 and 7.26, I observe for the Comb set of MWs slightly better performance from 27 to 
35 km and worse performance from 9 to 15 km, around 24 km and from 35 to 40 km. Fig.  
7.27 shows the consistency between ESD and AVE[DIFF] for the three sets of MWs, I also 
note the average values of the curves oscillations for the Comb (0.9) sets of MWs. In Fig. 
7.28 I observe that the three sets of MWs have almost the same AVE[ESD] values.
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Figure 7.25: AVE[DIFF] values for Nitrous Oxide as a 
function of altitude for the three sets of MWs

Figure 7.26: AVE[Ratioref] values for Nitrous Oxide as a 
function of altitude for the three sets of MWs

Figure 7.27: AVE[Ratioesd] values for Nitrous Oxide as a 
function of altitude for the three sets of MWs

Figure 7.28: AVE[ESD] values for Nitrous Oxide as a 
function of altitude for the three sets of MWs



7.1.8 Nitrogen Dioxide

Figs.  7.29,  7.30,  7.31  and  7.32  report  respectively  AVE[DIFF],  AVE[Ratioref] 
AVE[Ratioesd] and AVE[ESD] values for Nitrogen Dioxide as a function of altitude.  In 
Figs. 7.29 and 7.30, I observe for the Comb set of MWs slightly better performance from 
27 to 30 km. Fig. 7.31 shows the consistency between ESD and AVE[DIFF] for the three 
sets of MWs, I also note the average values of the curves oscillations for the Comb (0.8) 
sets of MWs. In Fig. 7.32 I observe that the three sets of MWs have almost the same 
AVE[ESD] values.
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Figure 7.29: AVE[DIFF] values for Nitrogen Dioxide as a 
function of altitude for the three sets of MWs

Figure 7.30: AVE[Ratioref] values for Nitrogen Dioxide as 
a function of altitude for the three sets of MWs

Figure 7.31: AVE[Ratioesd] values for Nitrogen Dioxide as 
a function of altitude for the three sets sets of MWs

Figure 7.32: AVE[ESD] values for Nitrogen Dioxide as a 
function of altitude for the three sets of MWs



7.1.9 Summary

In table 7.1 all the comments regarding the comparison of the three sets of MWs are 
summarised as a function of altitude. In table 7.1 I observe that the efficiency and the ESD 
values of the Comb set of MWs are better for Temperature and Water, but worse at higher 
altitudes (Above 30 km) for Pressure. For the Ozone I note that the curves of OX and 
Comb sets of MWs oscillate around each other which indicates that the efficiency between 
the  two sets  is  more  or  less  equal,  except  from 45 to  55  km where  the  efficiency is 
definitely worse for the Comb set of MWs.

I  also  note  for  the  three  sets  of  MWs  that  the  ESD  values  are  overestimated  in 
comparison with the “real error” for all targets.

Targets
Retrievals Performance 
of the three sets of MWs 

(Altitude in km)

Average values of 
Ratioesd oscillations Retrieved ESD values of 

the three sets of MWs 
(Altitude in km)BO 

OM
OX 
OM

Comb 
OM

Temperature

From 6 to 15 →  B
From 18 to 30 →  SB
From 33 to 50 →  B
From 50 to 68 →  W

0.7 0.85 0.85 From 15 to 55 →  L

Pressure From 30 to 68 →  GW 0.75 0.9 0.9 From 45 to 68 →  GH

Water From 15 to 50 →  GB
From 50 to 55 →  W 0.75 0.8 0.8 From 15 to 60 →  L

Ozone

From 21 to 24 →  SB
From 36 to 39 →  SB
From 60 to 68 →  SB
From 25 to 33 →  W
From 39 to 60 →  W

0.8 0.8 0.9

From 6 to 21 →  SL
From 33 to 50 →  L

From 24 to 33 →  SH
From 50 to 68 →  SH

Nitric Acid From 35 to 40 →  SW 0.8 0.8 0.8 X

Methane Around 12 →  B
From 18 to 68 →  W 0.85 1.0 0.8 From 6 to 68 →  H

Nitrous 
Oxide

From 27 to 35 →  SB
From 9 to 15 →  SW
Around 24 →  SW

From 35 to 40 →  SW

0.9 0.9 0.9 X

Nitrogen 
Dioxide From 27 to 30 →  SB 0.8 0.8 0.8 X

Table 7.1 Results of the comparison of the three sets of MWs in function of the altitude

B →  Better efficiency for the Comb set of MWs                                      S →  Slightly
W →  worse efficiency for the Comb set of MWs                                     G →  Greatly
L →  Lower ESD values for the Comb set of MWs
H →  Higher ESD values for the Comb set of MWs
X →  No relevant divergence between the three sets of MWs.
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7.2 Comparison of the sets of MWs using retrievals on 
real observations

On real observation, the “real” atmosphere isn't known, therefore to compare the three 
sets of MWs I only can rely on the ESDs. To have a good coverage of the Earth and a  
reasonable amount of data I selected 15 orbits which represent all  spectra recorded by 
MIPAS during  the  20th of  June  2008.  Two  consecutive  orbits  are  merged  together  as 
explained in Sub-Sect. 3.3.2. Then I retrieved the profiles from these composed orbits with 
the BO, OX and Comb sets of MWs. The computing time of one orbit is for the BO set of 
MWs between 3 and 5 hours (3283 spectral points1),for the OX set of MWs between 13 
and 15 hours (5145 spectral points1) and for the Comb set of MWs between 9 and 11 hours 
(4655 spectral points1).

In Figs 7.33, 7.34, 7.35 and 7.36 I plotted the averaged ESD values of all the retrieved 
profiles for the three sets of MWs as a function of altitude for Temperature, Pressure, Water 
and Ozone respectively.

1 The spectral points represent the number of point in the spectra which are computed  
by the retrieval process, the computing time increases exponentially with the number of  
spectral points.
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Figure 7.34: ESD values Pressure as a function of altitude 
for the three sets sets of MWs

Figure 7.33: ESD values for Temperature as a function of 
altitude for the three sets sets of MWs

Figure 7.36: ESD values for Ozone as a function of 
altitude for the three sets sets of MWs

Figure 7.35: ESD values for Water scale as a function of 
altitude for the three sets sets of MWs



In Figs. 7.33 and 7.34 I observe for the Comb set of MWs slightly lower or equal ESD 
values than for the two other sets of MWs, except at higher altitudes from 60 to 68 km for 
Temperature and from 40 to 68 km for Pressure. In Fig. 7.35 I observe for the Comb set of  
MWs lower ESD values. In Fig. 7.36 I observe for the Comb set of MWs slightly lower or 
equal  ESD values,  except  from 25 to  33  km.  The  observation  in  Fig.  7.36  has  to  be 
nuanced since I observed in Fig. 7.15 (Sub-Sect. 7.1.4) that the ESD values were more 
overestimated for the BO and OX set of MWs than for the Comb set of MWs, especially 
from 40 to 60 km.

In Figs 7.37, 7.38, 7.39 and 7.40 I plotted the averaged ESD values of all retrieved 
profiles of one orbit (the one which seemed to have the lower ESD values for the Comb set 
of MWs) for the three sets of MWs as a function of altitude for Methane, Nitric Acid,  
Nitrous Oxide and Nitrogen Dioxide respectively. In Fig. 7.37 I observe for the Comb set 
of MWs slightly higher ESD values from 25 to 35 km and slightly lower ESD values from 
50 to 68 km. In fig. 7.38 I observe for the three sets of MWs almost the same ESD values.  
In Fig. 7.39 I observe for the Comb set of MWs slightly higher ESD values from 25 to35 
km and slightly lower ESD values from 40 to 52 km. In Fig. 7.40 I observe for the Comb 
set of MWs slightly higher ESD values from 25 to30 km and slightly lower ESD values 
from 45 to 60 km.
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Figure 7.38: ESD values for Nitric Acid as a function of 
altitude for the three sets sets of MWs

Figure 7.37: ESD values for Methane as a function of 
altitude for the three sets sets of MWs

Figure 7.40: ESD values for Nitrogen Dioxide as a 
function of altitude for the three sets sets of MWs

Figure 7.39: ESD values for Nitrous Oxide as a function 
of altitude for the three sets sets of MWs



7.2.1 Systematic and Total Error
In order to compare the systematic error of the three sets of MWs, in figs. 7.41, 7.42, 

7.43 and 7.44 are plotted the computed systematic error values for the three sets of MWs as 
a function of altitude for Temperature, Pressure, Water and Ozone respectively.

In Fig. 7.41 I observe for the Comb set of MWs slightly lower systematic error values 
from 6 to15 km, lower from 18 to 30 km and higher from 20 to 60 km. In Fig. 7.42 I 
observe for the Comb set of MWs slightly lower systematic error values from 6 to 30 km 
and higher from 20 to 60 km. In Fig. 7.43 I observe for the Comb set of MWs lower  
systematic error values from 23 to 30 km and from 57 to 68 km, slightly higher from 6 to 
23 km and higher from 30 to 57 km. In Fig. 7.44 I observe for the Comb set of MWs lower 
systematic error values from 12 to 15 km and from 27 to 30 km, slightly higher from 6 to 
12 km and from 22 to 27 km and higher from 30 to 65 km.
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Figure 7.42: Systematic error values for Pressure as a 
function of altitude for the three sets sets of MWs

Figure 7.41: Systematic error values for Temperature as a 
function of altitude for the three sets sets of MWs

Figure 7.44: Systematic error values for Ozone as a 
function of altitude for the three sets sets of MWs

Figure 7.43: Systematic error values for Water as a 
function of altitude for the three sets sets of MWs



During the retrieval process, an estimated value of the random error is calculated, i.e. 
the ESD. In order to  provide an example the total  error I  selected one profile  at  mid-
latitude (orbit 39969+39970, Sequence 13, latitude 43.98°, longitude 34.04° of the 20 June 
2008 at 7:53) and computed the root summation square between the systematic error and 
the ESD values of this profile.

In Figs 7.45, 7.46, 7.47 and 7.48 the computed total error values for the three sets of 
MWs are plotted as a function of altitude for Temperature,  Pressure, Water and Ozone 
respectively. In Fig 7.45 I observe for the Comb set of MWs at slightly lower total error  
values from 6 to12 km and lower from 18 to 30 km and slightly higher from 30 to 42 km 
and higher from 12 to 18 and from 42 to 68. In Fig 7.46 I observe for the Comb set of 
MWs ,slightly lower total error values from 6 to 18 km and from 22 to 30 km and slightly 
higher from 18 to 22 km and higher from 30 to 68. In Fig 7.47 I observe for the Comb set 
of MWs at slightly lower total error values from 6 to 30 km and from 57 to 68 km and 
higher from 30 to 57 km. In Fig 7.48 I observe for the Comb set of MWs slightly higher  
total error values from 6 to 30 km and higher from 30 to 68 km

In Both cases, i.e. the systematic error and total error, I observe generally lower values 
for the Comb set of MWs at low altitudes and higher values at high altitudes.
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Figure 7.46: Total error values for Pressure as a function 
of altitude for the three sets sets of MWs

Figure 7.45: Total error values for Temperature as a 
function of altitude for the three sets sets of MWs

Figure 7.48: Total error values for Ozone as a function of 
altitude for the three sets sets of MWs

Figure 7.47: Total error values for Water as a function of 
altitude for the three sets sets of MWs



Conclusion:

The first objective of this thesis was to compare the Bologna (BO) and Oxford (OX) 
sets of Micro-Windows (MWs). For this purpose I first compared the retrieved altitude 
profiles on simulated observations and then the Information Load (IL) of the two sets of 
MWs. The second objective was to combine the MWs of the two sets to create a more 
efficient set. Therefore I calculated the IL of each individual MW and I selected the MWs 
with the highest IL values. The third objective was to compare the combined set of MW 
w.r.t. the BO and OX sets. For this purpose I compared the retrieved altitude profiles of the 
three sets of MWs on simulated and real observations along with their systematic and total 
errors.

The  comparison of  the  BO and OX sets  of  MWs on simulated  retrieval  (Chap.  5) 
showed  for  the  studied  targets  (Temperature,  Pressure,  Water,  Ozone,  Nitric  Acid, 
Methane,  Nitrous  Oxide  and  Nitrogen  Dioxide)  that  the  OX  set  has  generally  better 
performance and lower ESD values at low altitudes and on the contrary that the BO set has 
generally better performance and lower ESD values at high altitudes.

Comparing the IL values of the two sets of MWs (Chap. 6), I observed that the OX set  
has higher IL values at low altitudes and lower IL values at high altitude. The IL values of 
the combined set are higher for all the targets at all altitudes, except for Pressure around 50 
km.

The comparison of the combined set w.r.t. the BO and OX sets of MWs on simulated 
retrieval (Sect. 7.1) show that the combined set has better performance and lower ESD 
values for Temperature and Water and similar performance and ESD values for Pressure 
and  Ozone,  except  for  Pressure  above  40  km  where  the  combined  set  has  worse 
performance and higher ESD values. I note for Temperature a gain in efficiency from 10 to 
45 km in the retrieval using the combined set. This is an important achievement since at 
these altitudes the Temperature values are quite low.

The retrieved ESD values on real observation are lower for the combined set of MWs, 
except for Ozone from 25 to 30 km and for Pressure above 40 km. The computed total  
errors for the Combined set are generally lower or equal at low altitudes and higher at high 
altitudes.

An important point to highlight is the computing time which is required for the retrieval 
of one full orbit with the BO, OX and combined sets: it  is around 4, 14 and 10 hours  
respectively, which correspond to 3285, 5145 and 4655 computed spectral points.
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