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Appendix A 105

Appendix B 109

Bibliografia 115



Introduzione in italiano

La Meccanica Statistica applica la Teoria delle Probabilità allo studio di

sistemi composti da un grande numero di particelle, occupandosi di calcolare

le grandezze macroscopiche come medie di grandezze microscopiche rispetto

ad un’opportuna misura.

L’analisi delle grandezze medie nel limite termodinamico, cioè quando la

taglia del sistema N tende all’infinito, è quindi di fondamentale importanza.

I risultati più interessanti in questi studi, nonché le maggiori difficoltà, si

devono solitamente all’interazione reciproca tra le particelle. In sistemi privi

di interazione, infatti, ogni particella è indipendente dalle altre (la misura di

probabilità si fattorizza) e dunque può essere analizzata singolarmente.

In generale si considera un sistema che può trovarsi in un numero finito di

microstati s distinti. Ciascuno di questi si realizza con probabilità µ(s) ed è

caratterizzato da un’energia H(s) . Nella Meccanica Statistica dell’equilibrio

la distribuzione di probabilità dei microstati è strettamente legata ai loro

livelli di energia. Precisamente, considerando l’Hamiltoniana H del sistema e

fissando una temperatura inversa β ≥ 0 , la misura di Boltzmann sull’insieme

dei microstati è definita come

µBoltz(s) =
1

Z(β)
exp

(− β H(s)
) ∀ smicrostato

dove Z(β) è determinata dalla condizione
∑

s µ(s) = 1 .

La scelta della misura di Boltzmann per descrivere il comportamento micro-

scopico del sistema all’equilibrio è legata al secondo principio della termo-

dinamica. L’entropia di una misura µ è S(µ) = −∑
s µ(s) log µ(s) , mentre

l’energia interna del sistema è U(µ,H) =
∑

s H(s) µ(s) . Quando la tem-
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peratura inversa β è fissata, queste grandezze possono essere combinate per

definire l’energia libera:

F (µ,H, β) = U − 1

β
S .

Il secondo principio della termodinamica afferma che all’equilibrio l’energia

libera del sistema è minima. D’altro canto si può provare che la misura di

Boltzmann µBoltz è la sola che minimizza F (µ,H, β) tra tutte le misure di

probabilità µ.

E’ anche possibile considerare una Hamiltoniana H aleatoria, ad esempio

quando le particelle interagiscono su un grafo aleatorio. In questo caso la

misura di Boltzmann è una misura aleatoria e dal punto di vista fisico è

interessante studiare le grandezze ”quenched” del sistema, ossia ottenute

prima mediando su tutti i possibili microstati rispetto alla misura di Boltz-

mann (aleatoria) e successivamente mediando sulle possibili realizzazioni

dell’Hamiltoniana H .

In questa tesi sono trattate due famiglie di modelli meccanico statistici su

vari grafi:

• i modelli di spin ferromagnetici, anche detti modelli di Ising;

• i modelli di monomero-dimero.

I modelli di spin ferromagnetici descrivono il comportamento di un grande

numero di particelle che ammettono due possibili orientazioni (±1), sotto

l’influenza di un campo esterno e di un’interazione imitativa reciproca.

La formulazione di questi modelli in termini matematici risale agli anni ’20 e

tutt’oggi essi costituiscono un ricco campo di ricerca a cui molti matematici

e fisici si dedicano.

Di recente si è iniziato a studiare il modello di Ising su grafi aleatori. In

particolare nel 2010 Dembo e Montanari sono riusciti a calcolare il limite

termodinamico per l’energia libera sul grafo diluito alla Erdös-Rényi.
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Il primo capitolo della tesi è dedicato principalmente allo studio del loro la-

voro, con alcune generalizzazioni dovute a Dommers, Giardinà e Van Der

Hofstad. Nonostante certi passaggi siano piuttosto tecnici, l’idea centrale è

di sfruttare il fatto che i grafi di Erdös-Rényi diluiti tendono localmente ad

essere privi di cicli. In quest’ottica è opportuno studiare l’energia interna

del sistema che, grazie alla disuguaglianza di Griffiths-Kelly-Sherman, è ben

approssimata da grandezze di tipo locale.

Nel secondo capitolo sono trattati i modelli di monomero-dimero, che de-

scrivono la presenza di legami monogami in un ampio gruppo di particelle

sotto l’influenza di una spinta a rimanere da soli e di varie tendenze opposte

a formare una coppia.

L’origine di questi modelli si può far risalire agli anni ’30, mentre negli anni

’70 fu pubblicato un importante articolo di Heilmann e Lieb. Più di recente

l’attenzione si è concentrata soprattutto sui reticoli 2-dimensionali.

Questa tesi ha l’obiettivo di dare un contributo nuovo alla teoria dei modelli

di monomero-dimero, partendo dallo studio del lavoro di Heilmann e Lieb e

dalle conoscenze sui più noti modelli di spin.

Dopo la definizione del modello, i principali argomenti trattati sono

• alcune disuguaglianze di correlazione che consentono di dimostrare in

modo elegante la (già nota) esistenza del limite termodinamico per

l’energia libera sui reticoli finito-dimensionali;

• l’espressione esplicita dell’energia libera su grafi ad albero con un nu-

mero uniforme di figli e sul grafo completo;

• la concentrazione dell’energia libera (aleatoria) intorno al proprio valor

medio nel limite termodinamico sul grafo diluito di Erdös-Rényi.

Sugli alberi e sul grafo completo sono studiate le soluzioni esatte di Heilmann

e Lieb per sistemi di taglia finita N : attraverso relazioni di ricorrenza esse

coinvolgono rispettivamente i polinomi di Chebyshev e di Hermite. In seguito

viene calcolato il limite per N →∞ .
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Sui grafi diluiti di Erdös-Rényi si utilizzano le martingale per dimostrare il

risultato di concentrazione.

La tesi contiene anche un tentativo di applicare la tecnica dell’interpolazione

di Guerra al modello di monomero-dimero sul grafo completo. Sarebbe in-

teressante proseguire questi tentativi ed estenderli al grafo diluito con lo

scopo di dimostrare l’esistenza del limite termodinamico per l’energia libera

(quenched).

Un ulteriore obiettivo potrebbe essere il calcolo di tale limite, magari adat-

tando al modello di monomero-dimero l’idea che Dembo e Montanari hanno

avuto per il modello di Ising.



Introduction

Statistical Mechanics applies Probability Theory to study the behaviour of

systems composed by a large number of particles, computing macroscopic

quantities as averages of microscopic quantities with respect to an oppor-

tune measure.

Therefore it is important to investigate the average quantities in the thermo-

dynamic limit, that is as the size of the system N →∞ .

The most interesting results in this field (and the main difficulties) are usually

due to the mutual interaction between particles. Indeed in non-interacting

systems each particle is independent from the others (the probability mea-

sure factorizes) and so it can be studied individually.

In general one considers a system that may assume a finite number of dif-

ferent microstates s. Each of these is fulfilled with probability µ(s) and is

characterized by an energy H(s) . In Equilibrium Statistical Mechanics the

probability distribution of the microstates is strictly related to their energy

levels. Precisely considering the Hamiltonian H of the system and fixing an

inverse temperature β ≥ 0 , the Boltzmann measure on the microstates space

is defined by

µBoltz(s) =
1

Z(β)
exp

(− β H(s)
) ∀ smicrostate

where Z(β) is determined by the condition
∑

s µ(s) = 1 .

The choice of the Boltzmann measure to describe the microscopic behaviour

of the system at equilibrium is related to the second law of thermodynam-

ics. The entropy of a measure µ is S(µ) = −∑
s µ(s) log µ(s) , while the

internal energy of the system is U(µ,H) =
∑

s H(s) µ(s) . When the inverse

9
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temperature β is fixed, these quantities can be combined to define the free

energy:

F (µ,H, β) = U − 1

β
S .

The second law of thermodynamic states that at the equilibrium the free

energy of the system attains its minimum. And on the other hand the Boltz-

mann measure µBoltz is proven to be the only one that minimizes F (µ,H, β)

over all probability measures µ.

It is also possible to consider a random Hamiltonian H, for example when the

particles interact on a random graph. In this case the Boltzmann measure

is a random measure and physically it is interesting to study the quenched

quantities of the system, namely first take the average over all possible mi-

crostates w.r.t. the (random) Boltzmann measure and later take the average

over all possible realisations of the hamiltonian H .

In this thesis two different families of statistical mechanical models are stud-

ied on several graphs:

• ferromagnetic spin models, also called Ising models;

• monomer-dimer models.

Ferromagnetic spin models describe the behaviour of a large number of par-

ticles which admit two different orientations (±1), under the influence of an

external field and an imitative interaction with one another.

A mathematical formulation of these models dates back to the 20’s and they

still constitute a reach area of research to which many physicists and math-

ematicians dedicate themselves.

Recently the Ising model has been studied on random graphs. In particu-

lar in 2010 Dembo and Montanari managed to compute the thermodynamic

limit for the free energy on a diluted Erdös-Rényi graph.

The first chapter of this thesis is principally dedicated to the study of their

work, with some generalisations due to Dommers, Giardinà and Van Der Hof-

stad. Although some steps are quite technical, the main idea is to use the
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fact that diluted Erdös-Rényi graphs are locally tree-like. With this aim one

investigates the internal energy that, thank to the Griffiths-Kelly-Sherman

inequality, is well approximated by local quantities.

The second chapter treats the monomer-dimer models, which describe the

presence of monogamous ties in a large group of particles under the influence

of a boost to stay alone and several opposite boots to form a couple.

The origin of these model dates back to the 30’s and an important paper

was published in the 70’s by Heilmann and Lieb. More recently the most

attention has been focused on the two dimensional lattices.

This thesis has the purpose to make an original contribution to the theory

of monomer-dimer models, starting from the study of the work by Heilmann

and Lieb and from the proprieties of the better known spin models.

After the definition of the model, the main arguments treated are

• some correlation inequalities that allow to prove in an elegant way

the (already known) existence of the thermodynamic limit for the free

energy on finite dimensional lattices;

• the explicit expression of the free energy on the trees with a uniform

offspring size and on the complete graph;

• the concentration of the (random) free energy around its expected value

in the thermodynamic limit on a diluted Erdös-Rényi graph.

On the trees and on the complete graph the exact solutions by Heilmann and

Lieb for systems of finite size N are studied: through a recurrence relation

they involves respectively the Chebyshev and the Hermite polynomials. Fur-

ther the limit as N →∞ is computed.

On the diluted Erdös-Rényi graph a martingale technique, described in the

Appendix, is used to prove the concentration result.

The thesis also contains an attempt to apply the Guerra’s interpolation tech-

nique to the monomer-dimer model on the complete graph. It would be inte-

resting to continue these studies and extend them to the diluted Erdös-Rényi
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graph with the aim of proving the existence of the thermodynamic limit for

the (quenched) free energy.

A further purpose is to compute this quantity, maybe adapting to the monomer-

dimer model the idea used by Dembo and Montanari for the Ising model.



Chapter 1

Ferromagnetic spin models

Let G = (V,E) be a finite simple graph. Denote N = |V |.
Fix two kind of parameters: the inverse temperature β ≥ 0 and the external

magnetic field B = (Bi)i∈V ∈ RV acting on each vertex.

Definition 1. A spin configuration on the graph G is a vector σ = (σi)i∈V

such that

σi ∈ {+1,−1} ∀ i ∈ V .

We’ll say that each vertex i of the graph is occupied by the spin variable

σi, which may assume positive orientation (σi = +1) or negative orientation

(σi = −1).

Figure 1.1: Representation of a spin configuration on a graph G .
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We define the following probability measure on the set of all possible spin

configuration on the graph G :

µ(σ) : =
1

Z(β, B)

∏
ij∈E

eβ σiσj

∏
i∈V

eBi σi

=
1

Z(β, B)
exp

(
β

∑
ij∈E

σiσj +
∑
i∈V

Bi σi

) ∀σ ∈ {±1}V

(1.1)

where the normalizing factor is

Z(β, B) :=
∑

σ∈{±1}V

exp
(
β

∑
ij∈E

σiσj +
∑
i∈V

Bi σi

)
.

This is called a ferromagnetic spin model or an Ising model on the graph G.

Intuitively in this model a spin configuration σ has an high probability to

verify if:

i. neighbour spins have the same orientation (i.e. σi = σj for ij ∈ E),

ii. each spin is oriented as the external field acting on it (i.e. σi = sign Bi),

where the first condition assumes more importance if β is large, the second

one if |Bi| is large.

The expected value with respect to the measure µ will be denoted 〈 · 〉, that

is for any function f of the spin configuration we set

〈f〉 :=
∑

σ∈{±1}V

f(σ) µ(σ) .

The function Z(β, B) defined above is called the partition function of the

model. Its natural logarithm P (β,B) := log Z(β,B) is called pressure or

free energy.

1.1 Correlation inequalities

Interesting quantities of the Ising model are the magnetisation of each spin

〈σi〉 and the internal energy of the system
∑

ij∈E〈σiσj〉 . We’ll see that these
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quantities can be computed as derivatives of the pressure, namely

∂P

∂β
=

∑
ij∈E

〈σiσj〉 ,
∂P

∂Bi

= 〈σi〉 .

But it’s useful to work with a slightly more general model. In this section

we’ll consider a spin model with all possible interactions:

µ(σ) :=
1

Z(J)
exp

( ∑
X⊆V

JX

∏
i∈X

σi

)
∀ s ∈ {±1}V ,

where J = (JX)X⊆V is a family of real parameters.

Notice that the Ising model defined by (1.1) is obtained taking for each vertex

i ∈ V Ji = Bi , for each couple of vertices ij ∈ P(V, 2)

Jij =

{
β if ij ∈ E

0 if ij /∈ E
,

and all the other coefficients JX equal to zero.

Proposition 1. Let X, Y ⊆ V be two sets of vertices. The correlation

between the spin variables of X and the centred correlation between the spin

variables of X and those of Y are respectively:

〈∏
i∈X σi

〉
=

∂P

∂JX

,

〈∏
i∈X σi

∏
j∈Y σj

〉 − 〈∏
i∈X σi

〉 〈∏
j∈X σj

〉
=

∂2P

∂JX ∂JY

.

Proof. Directly compute the derivatives:

∂P

∂JX

=
1

Z

∂Z

∂JX

=
1

Z

∑
σ

( ∏
i∈X σi

)
exp

( ∑
A⊂V JA

∏
k∈A σk

)
=

〈∏
i∈X σi

〉
,

∂2P

∂JY ∂JX

=
∂

∂JY

∑
σ

( ∏
i∈X σi

)
exp

( ∑
A⊂V JA

∏
k∈A σk

)

Z

=
〈∏

i∈X σi

∏
j∈Y σj

〉 − 〈∏
i∈X σi

〉 〈∏
j∈Y σj

〉
.

In case that all the coefficients JX are non-negative, spin models are charac-

terized by two fundamental inequalities.
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Theorem 2 (Griffiths-Kelly-Sherman inequalities).

Suppose JA ≥ 0 for all A ⊆ V .

Let X, Y ⊆ V be two sets of vertices. Then:

• 〈∏
i∈X σi

〉 ≥ 0

• 〈∏
i∈X σi

∏
j∈Y σj

〉− 〈∏
i∈X σi

〉 〈∏
j∈Y σj

〉 ≥ 0

Proof. 1) Observe that Z > 0 and

Z
〈∏

i∈X σi

〉
=

∑

σ∈{±1}V

( ∏
i∈X σi

)
exp

( ∑
A⊆V

JA

∏
j∈A σj

)
,

so that it suffices to investigate the right-hand term to determine the sign of〈∏
i∈X σi

〉
. Start expanding the exponential with its Taylor series and use

the fact that σ2
i = 1 :

exp
( ∑

A⊆V

JA

∏
j∈A σj

)
=

∞∑

k=0

1

k!

( ∑
A⊆V

JA

∏
j∈A σj

)k

=
∞∑

k=0

1

k!

∑
A1,...,Ak⊆V

JA1 · · · JAk

( ∏
j1∈A1

σj1

) · · · ( ∏
jk∈Ak

σjk

)

=
∞∑

k=0

1

k!

∑
A1,...,Ak⊆V

JA1 · · · JAk

( ∏
j∈A1∆...∆Ak

σj

)

where A1∆ . . . ∆Ak = {i ∈ A1∪· · ·∪Ak | i belongs to an odd number of As’s}
is the symmetric difference of the indicated sets.

Now observe that for any Y ⊆ V

∑

σ∈{±1}V

( ∏
i∈Y σi

)
=

{
2|V | if Y = ∅
0 if Y 6= ∅

indeed σ 7→ −σ is a bijection of {±1}V , hence if Y 6= ∅
∑

σ

( ∏
i∈Y σi

)
=∑

σ

( ∏
i∈Y −σi

)
= −∑

σ

( ∏
i∈Y σi

)
.
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Therefore one obtains

Z
〈∏

i∈X σi

〉
=

∑

σ∈{±1}V

( ∏
i∈X σi

)
exp

( ∑
A⊆V

JA

∏
j∈A σj

)

=
∞∑

k=0

1

k!

∑
A1,...,Ak⊆V

JA1 · · · JAk

∑

σ∈{±1}V

( ∏
i∈X σi

) ( ∏
j∈A1∆...∆Ak

σj

)

=
∞∑

k=0

1

k!

∑
A1,...,Ak⊆V

JA1 · · · JAk
2|V | 1(X =A1∆ . . . ∆Ak) ≥ 0 .

2) For shortness denote σX :=
∏

i∈X σi . To prove the second inequality

observe that

〈σX σY 〉 − 〈σX〉 〈σY 〉 = 〈σX∆Y 〉 − 〈sX〉 〈σY 〉

=

∑
σ σX∆Y exp(

∑
A JA σA)

Z

∑
τ exp(

∑
A JA τA)

Z
+

−
∑

σ σX exp(
∑

A JA σA)

Z

∑
τ τY exp(

∑
A JA τA)

Z

=
1

Z 2

∑

σ,τ∈{±1}V
(σX∆Y − σX τY ) exp

( ∑
A⊆V

JA (σA + τA)
)

Now, using the fact that σ2
i = 1, rewrite the quantities

σX∆Y − σX τY = σX∆Y (1− σX∆Y σXτY ) = σX∆Y (1− σY τY ) ,

σA + τA = σA(1 + σAτA) ,

and observe that (σ, τ) 7→ (σ, σ τ) =: (σ, ζ) is a bijection of {±1}V ×{±1}V ,

indeed σ ζ = σ2 τ = τ .

Therefore, setting J̃A(ζ) := JA(1 + ζA) ≥ 0 , one finds
∑

σ,τ∈{±1}V

(σX∆Y − σX τY ) exp
( ∑

A⊆V

JA (σA + τA)
)

=

∑

ζ∈{±1}V

(1− ζY )︸ ︷︷ ︸
≥ 0

∑

σ∈{±1}V

σX∆Y exp
( ∑

A⊆V

J̃A(ζ) σA
)

︸ ︷︷ ︸
≥0

≥ 0

where the last step is due the first inequality of Griffiths-Kelly-Sherman we

proved in 1). This concludes the proof.
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Remark 1. The proposition 1 allows to give an intuitive and very useful

interpretation of the second G.K.S. inequality. Indeed observe

∂

∂JY

〈∏
i∈X σi

〉
=

∂

∂JY

∂P

∂JX

=
〈∏

i∈X σi

∏
j∈Y σj

〉− 〈∏
i∈X σi

〉 〈∏
j∈Y σj

〉

Hence the second G.K.S. exactly states that if J ≥ 0, then for any X, Y ⊆ V

JY 7→
〈∏

i∈X σi

〉
is an increasing function.

That is if all the interaction coefficients are non-negative and one of them

increases, then all the correlations between the spins increase.

Coming back to our Ising model defined by (1.1), the Griffiths-Kelly-Sherman

inequalities can be restated as follows.

Corollary 3. Let µ be the Ising measure on the graph G = (V, E) with

inverse temperature β ≥ 0 and external field Bi ≥ 0 ∀ i ∈ V .

Let µ′ be the Ising measure on the subgraph G′ = (V,E ′), E ′ ⊆ E, with

inverse temperature 0 ≤ β′ ≤ β and external field 0 ≤ B′
i ≤ Bi ∀ i ∈ V .

Then for all X ⊆ V

0 ≤ 〈∏
i∈X σi

〉
µ ′ ≤

〈∏
i∈X σi

〉
µ

.

So in particular in the Ising model the magnetisation 〈σi〉 and the internal

energy 〈σiσj〉 increase with the inverse temperature, the magnetic field and

the connection of the graph.

Another useful fact is that the magnetisation is a convex function of the

magnetic field. We state this result without proving it.

Theorem 4 (Griffiths-Hurst-Sherman inequality).

Consider the Ising model on the graph G with inverse temperature β ≥ 0 and

external field Bi ≥ 0 ∀ i ∈ V . For any i, j, k ∈ V

∂2

∂Bj ∂Bk

〈σi〉 ≤ 0 .
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1.2 Ising model and number of cycles

This sections presents a nice expression for the partition function of an Ising

model at zero magnetic field in term of the number of cycles of the graph

(also called high temperature expansion).

Proposition 5. Consider the Ising model on the graph G = (V,E) with

inverse temperature β and external field B ≡ 0. The partition function is

Z(β, 0) = 2|V | (cosh β)|E|
|E|∑

k=0

|Ck| (tanh β)k

where

Ck =
{{i1j1, . . . , ikjk} ∈ P(E, k)

∣∣ {i1, j1}∆ . . . ∆{ik, jk} = ∅
}

.

Notice that |Ck| is the number of cycles and unions of edge-disjoint cycles of

total length k in the graph G .

Proof. Note that since σiσj = ±1 , exp(β σiσj) = cosh β + σiσj sinh β .

Therefore

Z(β, 0) =
∑

σ

exp
(
β

∑
ij∈E

σiσj

)
=

∑
σ

∏
ij∈E

(cosh β + σiσj sinh β)

= (cosh β)|E|
∑

σ

∏
ij∈E

(1 + σiσj tanh β)

= (cosh β)|E|
∑

σ

∑
A⊂E

∏
ij∈A

(σiσj tanh β)

= (cosh β)|E|
|E|∑

k=0

(tanh β)k
∑

{i1j1,...,ikjk}
∈P(E,k)

∑
σ

σi1σj1 · · · σikσjk

Now observe that, as in the proof of theorem 2,

∑

σ∈{±1}V

σi1σj1 · · · σikσjk
=

{
2|V | if {i1, j1}∆ . . . ∆ {ik, jk} = ∅
0 if {i1, j1}∆ . . . ∆ {ik, jk} 6= ∅

Hence one obtains

Z(β, 0) = 2|V | (cosh β)|E|
|E|∑

k=0

(tanh β)k |Ck| .
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Finally remember that given a family of k distinct edges i1j1, . . . , ikjk , their

symmetric difference is empty if and only if each vertex is touched by an even

number of those edges. This means that a reordering of edges i1j1, . . . , ikjk

forms a cycle or a union of edge-disjoint cycles.

Corollary 6. Consider the Ising model on the graph G = (V, E) with inverse

temperature β ≥ 0 and uniform external field B ∈ R. The pressure per

particle is bounded by

1

|V | P (β, B) ≥ −|B|+ log 2 +
|E|
|V | log cosh β ,

1

|V | P (β, B) ≤ |B|+ log 2 +
|E|
|V | log cosh β +

|E|
|V | log(1 + tanh β) .

Proof. First assume B = 0. Since each Ck is a subset of P(E, k) clearly

0 ≤ |Ck| ≤
(|E|

k

)
, in addition |C0| = 1 .

Therefore by the previous proposition,

2|V | (cosh β)|E| ≤ Z(β, 0) ≤ 2|V | (cosh β)|E|
|E|∑

k=0

(|E|
k

)
(tanh β)k

Using the Newton’s binomial formula on the right-hand side and taking the

logarithms, one obtains the desired bounds for P (β, 0) .

Now for a general B , it suffices to observe that

Z(β,B) =
∑

σ

exp
(
β

∑
ij∈E

σiσj + B
∑
i∈V

σi

)
{
≤ Z(β, 0) e|B| |V |

≥ Z(β, 0) e−|B| |V |
.

1.3 The thermodynamic limit of Ising models:

an overview

Consider a sequence of graphs (GN)N∈N such that GN = (VN , EN) with

|VN | = N . Fix a uniform magnetic field B and an inverse temperature β,

renormalized to β/N if needed.
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At size N we consider the Ising model on the graph GN with the introduced

parameters, and we denote ZN its partition function, PN its pressure and

pN = 1
N

PN the pressure per particle.

Statistical Mechanics is naturally interested in the behaviour of a system

with a huge number of particles, approximated by the thermodynamic limit

N →∞ . As we have seen the pressure is a fundamental quantity, from which

it’s possible to deduce much information about the system, so it’s important

to know its behaviour in the thermodynamic limit.

Physically the free energy is an extensive quantity, namely it is of the or-

der of the number of particles. Therefore a natural question is: there exists

limN→∞ 1
N

PN ? And if so what is its value?

The first trivial case to study is a non-interactive system.

Suppose that all the vertices of the graph are isolated (i.e. EN = ∅), or

equivalently that the inverse temperature is β = 0 . Then it’ easy to compute

ZN =
∑

σ∈{±1}VN

exp
(
B

∑
i∈VN

σi

)
=

∑
σ1=±1

· · ·
∑

σN=±1

eB σ1 · · · eB σN

=
( ∑

σ1=±1

eB σ1
)N

= (eB + e−B)N = 2N (cosh B)N .

Therefore for any N ∈ N (and for N →∞ too)

pN =
1

N
log ZN = log 2 + log cosh B .

The simplest systems with interactions are certainly the trees.

Suppose that each GN is a tree, namely a connected graph with no cycles.

For simplicity assume that the external field is B = 0. Therefore, as a tree

has no cycles and |EN | = N− 1, by proposition 5 we find immediately

ZN = 2N (cosh β)N−1

hence

pN =
1

N
log ZN −−−→

N→∞
log 2 + log cosh β .
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On the finite dimensional lattices Zd, with d ≥ 2 the computation of the

thermodynamic limit is really hard and the only known exact solution is due

to Onsager for d = 2 .

Anyway using the G.K.S. inequality and the bounds for the pressure given

by corollary 6, it’s not difficult to prove that limN→∞ pN exists when each

GN is a hyper-cubic lattice of side d
√

N . Instead of proving it here we refer

the reader to the second chapter of this thesis, where an analogous result is

proven for the monomer-dimer model.

An important case is when each graph GN is complete, namely EN = P(VN , 2).

Here the Ising model is also called Curie-Weiss model.

To keep the pressure of order N we need to normalize the inverse tempera-

ture, taking β/(2N). The thermodynamic limit is proved to be

pN −−−→
N→∞

log 2− β

2
(m∗)2 + log cosh(β m∗ + B)

where m∗ = m∗(β,B) is the solution of the following fixed point equation

m∗ = tanh(β m∗ + B) (1.2)

with the same sign of B. This m∗ represents the magnetisation per particle.

If B = 0, the fixed point equation (1.2) admits a unique solution m∗ = 0 for

0 ≤ β ≤ 1, while it has two distinct symmetric solutions m∗, −m∗ for β > 1 .

This fact entails that the system in the thermodynamic limit has a phase

transition at β = βc = 1, namely the magnetisation per particle is not diffe-

rentiable w.r.t. β at βc .

On the complete graph Guerra developed an important technique, called

”interpolation”, which allows to prove the monotone existence of the ther-

modynamic without computing it.

His idea is to break the complete graph GN into two disjoint complete sub-

graphs GN1 , GN2 with N1 +N2 and to interpolate between the two situations

(taking into account the normalisation of the parameters) with the aim of

proving that the pressure PN is super-additive (or sub-additive).
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Finally the Ising model has been recently studied on random graphs.

For example let GN be a diluted Erdös-Rényi graph, namely each pair of

vertices i, j ∈ VN has probability p = (2 c)/(N − 1) to be linked by an

edge and probability 1 − p not to be, independently of the others. Notice

the background randomness of the graph structure is added to the specific

randomness of the Ising model.

In 2010 Dembo and Montanari computed the thermodynamic limit for the

Ising model on such a random graph. Their solution is quite technical but it

is based on the fact that the graph GN asymptotically has a locally tree-like

structure. The rest of this chapter is dedicated to the study of their work.

In 2011 Contucci, Dommers, Giardinà and Starr applying an interpolation

technique managed to prove that the anti-ferromagnetic spin model (i.e. β <

0) on the diluted Erdös-Rényi graph admits a monotone thermodynamic

limit.

1.4 Ferromagnetic spin model on locally tree-

like graphs

Now we’ll study the Ising model on a random graph which locally tends

to have no cycles. The whole section is based on the work of Dembo and

Montanari and on its generalisations due to Dommers, Giardinà and Van

Der Hofstad.

1.4.1 Definitions concerning the graph structure

Let GN = (VN , EN) , N ∈ N be a sequence of finite random graphs. We

suppose that the vertex set is VN = {1, . . . , N} , while the edge set is random.

That is in general

EN = {ij ∈ P(VN , 2) | εN
ij = 1}

where ε := (εN
ij )ij, N is a family of random variables taking values 0 or 1 .

We’ll denote P , E[ · ] respectively the probability measure and the expected
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value with respect to the randomness of the graph sequence.

As usual on the graph GN the distance between i, j ∈ VN is defined

dN(i, j) = inf{ l ∈ N | ∃ v0, . . . , vl ∈ VN s.t. v0 = i, vl =j, vsvs+1∈ EN} .

For any t ∈ N, denote BN(i, t) the sub-graph of GN induced by the vertices

{j ∈ VN | dN(j, i) ≤ t} .

For any vertex i ∈ VN denote ∂N i the sets of its neighbours in the graph GN

and denote its degree by

degN(i) = |∂N i| = Card {j ∈ VN | ij ∈ EN} .

As we are interested in the asymptotic behaviour of GN , we give the following

Definition 2. Let P = (Pk)k≥0 be a probability distribution over the non-

negative integers. We say that the graph sequence (GN)N∈N has asymptotic

degree distribution P if

1

N

∑
i∈VN

1(degN(i) = k) −−−→
N→∞

Pk a.s. ∀ k ∈ N .

Now we define an important infinite random graph, the rooted random tree

with independent offspring.

Definition 3. Let P, ρ be two probability distributions over N.

The random independent tree T (P, ρ,∞) rooted at ∅ is the random tree

graph defined recursively as follows.

Let L be a random variable with distribution P and let (Kt,i)t≥1, i≥1 be i.i.d.

random variables with distribution ρ. Let L and (Kt,i)t≥1, i≥1 be independent.

1) Connect the root ∅ to L offspring, which form the 1st generation

2) Connect each node (t, i) in the tth generation to Kt,i offspring; all to-

gether these nodes form the (t + 1)th generation
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Repeat recursively the step 2) for all t ≥ 1.

We denote T (P, ρ, t) the sub-tree of T (P, ρ,∞) induced by the first t gene-

rations. Notice T (P, ρ,∞) is locally finite, that is each T (P, ρ, t) is finite.

If the distribution P equals ρ, then we’ll denote T (ρ,∞).

And now come to the definition which characterizes the graphs we will study.

Definition 4. We say the random graph sequence (GN)N∈N converges locally

to the random tree T (P, ρ,∞) if for any t ∈ N and for any T rooted tree with

t generations

1

N

∑
i∈VN

1
(
BN(i, t) ∼= T

) −−−→
N→∞

P
(T (P, ρ, t) ∼= T

)
a.s.

This definition is slightly different from that given by Dembo and Montanari,

we adopt it because some proofs become simpler.

Remark 2. The following statements are equivalent:

i. for any T rooted tree with t generations

1

N

∑
i∈VN

1
(
BN(i, t) ∼= T

) −−−→
N→∞

P
(T (P, ρ, t) ∼= T

)
a.s.

ii. for any B realisation of the random graph BN(i, t)

1

N

∑
i∈VN

1
(
BN(i, t) ∼= B

) −−−→
N→∞

P
(T (P, ρ, t) ∼= B

)
a.s.

iii. for any F invariant by isomorphisms bounded function of a graph

1

N

∑
i∈VN

F
(
BN(i, t)

) −−−→
N→∞

E
[
F

(T (P, ρ, t)
)]

a.s.

Proof. iii ⇒ i is obvious.

To prove that ii ⇒ iii, observe that the possible realisations of the random

graph GN are only a finite number (since |VN | = N). Therefore we can write

F
(
BN(i, t)

)
=

∑
B

F (B) 1
(
BN(i, t) ∼= B

)
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where the sum is over all the possible realisations B of BN(i, t) identified by

isomorphisms. Hence by hypothesis ii

1

N

∑
i∈VN

F
(
BN(i, t)

)
=

∑
B

F (B)
1

N

∑
i∈VN

1
(
BN(i, t) ∼= B

) a.s.−−−→
N→∞

∑
B

F (B)P
(T (P, ρ, t) ∼= B

)
= E

[
F

(T (P, ρ, t)
)]

.

In the end to prove that i ⇒ ii, notice that

∑
T

P
(T (P, ρ, t) ∼= T

)
= 1

where the sum is over all the T rooted tree with t generations, up to isomor-

phisms. Hence for any B realisation of BN(i, t) which is not a tree (rooted

with t generations) we have P
(T (P, ρ, t) ∼= B

)
= 0, and on the other side

using hypothesis i

1

N

∑
i∈VN

1
(
BN(i, t) ∼= B

) ≤ 1−
∑

T

1

N

∑
i∈VN

1
(
BN(i, t) ∼= T

) a.s.−−−→
N→∞

1−
∑

T

P
(T (P, ρ, t) ∼= T

)
= 0 .

Remark 3. If (GN)N∈N converges locally to T (P, ρ,∞), then its asymptotic

degree distribution is P . Indeed for all k ∈ N
1

N

∑
i∈VN

1
(
degN(i) = k

)
=

1

N

∑
i∈VN

1
(
BN(i, 1) 3 k vertices

) −−−→
N→∞

P
(
T (P, ρ, 1) 3 k vertices

)
= Pk .

Consequently the number of edges |EN | is asymptotically equivalent to NP/2 :

|EN |
N

=
1

2N

∑
i∈VN

degN(i) =
1

2N

∑
i∈VN

∞∑

k=0

k 1
(
degN(i) = k

)

−−−→
N→∞

1

2

∞∑

k=0

k Pk =
P

2
.

To end with definitions we specify the proprieties of the distributions P , ρ

which will characterize the random tree T (P, ρ,∞) in the following results.
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Let P = (Pk)k≥0 be a probability distribution over the non-negative integers

such that P :=
∑∞

k=0 k Pk < ∞.

Definition 5. We define the size-biased law of P as the probability distri-

bution over non-negative integers ρ = (ρk)k≥0 with

ρk =
(k + 1) Pk+1

P
.

Notice that
∑∞

k=0 ρk = 1/P
∑∞

k=1 k Pk = 1/P
∑∞

k=0 k Pk = 1 .

Definition 6. Let ε > 0. We say that P has ε-strongly finite mean if:

∞∑

k=n

Pk = O(n−(1+ε)) as n →∞ .

Notice this condition is satisfied if Pk = O(k−(2+ε)) as k →∞.

1.4.2 Definitions concerning the Ising model

From now on fix an inverse temperature β ≥ 0 and a magnetic field B .

On a graph G = (V,E) we remind that the Ising model is defined by the

following probability measure over all spin configurations σ=(σi)i∈V ∈{±1}V

µ(σ) =
exp

(
β

∑
ij∈E σi σj +

∑
i∈V Bi σi

)

Z(β,B)
.

When more clarity is needed, we denote µG this probability measure and

〈 · 〉G the associated expectation.

Notation. When the sequence of graphs (GN)N∈N is considered, we’ll denote

ZN(β,B), PN(β,B) respectively the partition function and the pressure of

the Ising model on GN . Further we set pN := 1
N

PN .

It is useful to consider a subgraph U of G. Given a spin configuration σ ∈
{±1}V on the graph G, we denote its restriction to U by σU = (σi | i ∈ U) .

Furthermore we denote µG→U the marginal on U of the measure µG, that is

µG→U(σU) =
∑
σG−U

µG(σU , σG−U) .
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On the other hand µU will simply indicate the measure associated to the

Ising model on the graph U .

We introduce the Ising model on U with positive boundary conditions. That

is we define the measure

µ+
U(σ) =

1

Z+
U (β, B)

exp
(
β

∑
ij∈U

σiσj +
∑

i∈U−∂U

Biσi

)
1(σi =1 ∀ i∈∂U)

for all σ spin configuration on U .

As we are going to show, this model is equivalent to the Ising model on U

without boundary conditions in the limit of positive infinite magnetic field

on ∂U .

Proposition 7. Let U be a subgraph of the graph G. Then in the limit

Bi ≡ B →∞ for all i ∈ ∂U we have

i. µU(σ) −→ µ+
U(σ) for all σ spin configuration on U ;

ii. µG(σ) −→ µ+
U(σU) · µ̃G−U(σG−U) for all σ spin configuration on G ,

where µ̃G−U is the measure associated to the Ising model on G−U with mag-

netic field increased on ∂(G−U), precisely

B̃i =

{
Bi + β if i ∈ ∂(G−U)

Bi if i ∈ (G−U)− ∂(G−U)

Proof. i. Fix a spin configuration σ on the graph U .

Suppose that ∂U) contains n vertices, on which there are p ≥ 0 spin variables

σi with value −1 and n− p with value 1.

Write the probability of σ in the Ising model on U with no boundary condi-

tions, isolating the effect of the external field on the boundary:

µU(σ) =
exp

(
β

∑
ij∈U σiσj +

∑
i∈U Biσi

)
∑

τ exp
(
β

∑
ij∈U τiτj +

∑
i∈U Biτi

) =

=
exp

(
β

∑
ij∈U σiσj +

∑
i∈U−∂U Biσi

)
e−pB e(n−p)B

∑n
q=0

∑
τ∈Cq

exp
(
β

∑
ij∈U σiσj +

∑
i∈U−∂U Bi σi

)
e−qB e(n−q)B
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where Cq is the set of spin configurations τ on U such that on ∂U there are

q spin variables τi taking value −1 and n− q taking value 1.

Observe that e−pB e(n−p)B

e−qB e(n−q)B = 1
e2(p−q)B and

e2(p−q)B −−−→
B→∞





0 if q > p

1 if q = p

∞ if q < p

.

Therefore if p = 0

µU(σ) −−−→
B→∞

exp
(
β

∑
ij∈U σiσj +

∑
i∈U−∂U Biσi

)
∑

τ∈C0
exp

(
β

∑
ij∈U σiσj +

∑
i∈U−∂U Biσi

) ,

whereas if p ≥ 1

µU(σ) −−−→
B→∞

0 .

Hence in both cases it is limB→∞ µU(σ) = µ+
U(σ) .

ii. Now let σ be a spin configuration on the graph G. Observe that by

definition of ∂U , one can divide the following disjoint cases:

ij ∈ G ⇔ (ij ∈ U) xor (ij ∈ G−U) xor (ij ∈ G, i ∈ ∂U, j ∈ ∂(G−U)) ;

i ∈ G ⇔ (i ∈ U) xor (i ∈ G− U) .

Therefore the probability of σ can be split in

µG(σ) = C exp
(
β

∑
ij∈U

σiσj +
∑
i∈U

Bi σi

)·

· exp
(
β

∑
ij∈G−U

σiσj +
∑

i∈G−U

Bi σi

) · exp
(
β

∑
ij∈G

i∈∂U, j∈∂(G−U)

σiσj

)

The first term up to a constant equals µU(σU), therefore as proven in i. it

converges to µ+
U(σU) as B →∞.

Since µ+
U(σU) contains 1(σ∂U ≡ 1), as B →∞ the third term can be substi-

tuted by exp
( ∑

j∈∂(G−U) β σj

)
.

The second term multiplied by this new term equals µ̃G−U(σG−U) with mag-

netic field increased of β on ∂(G−U).

Thus it’s proved that µG(σ) −→ µU(σU) · µ̃G−U(σG−U) as B →∞.
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1.4.3 Results on the trees: the root magnetisation

In this subsection we’ll see some preliminary results about the Ising model

on a tree (deterministic or random). These results concern in particular the

magnetisation of the root. Indeed this will turn out to be the fundamental

quantity to study in order to compute the thermodynamic limit on a sequence

of graphs locally convergent to a tree.

Let start with a simple but important lemma which permits to restrict the

Ising model on a tree to any sub-tree without difficulties.

Lemma 8. Let T be a finite tree. Let U be a sub-tree of T .

For every i ∈ ∂U , let Ti be the maximal sub-tree of T − U + i rooted at i.

The marginal on U of the measure associated to the Ising model on T is the

measure associated to an Ising model on U , with magnetic field increased on

the boundary. Precisely:

µT→U = µ̃U with B̃i =

{
atanh〈σi〉Ti

≥ Bi if i ∈ ∂U

Bi if i ∈ U − ∂U
.

Figure 1.2: The tree T and its sub-tree U . Each vertex i ∈ ∂U is the root of a

maximal sub-tree Ti of T− U + i.

Proof. Denote W := T − U , the complementary forest of U in T .

Notice that the union of the trees Ti, i ∈ ∂U is equal to W + ∂U , since the

Ti’s are maximal. Furthermore observe that for any i, j ∈ ∂U, i 6= j the trees

Ti and Tj are disjoints, because U is connected and T admits no cycles.
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Now for any σU spin configuration on U

µT→U(σU)
def
=

∑
σW

µT (σU , σW ) =
1

ZT

∑
σW

exp
(
β

∑
ij∈T

σiσj +
∑
i∈T

Bi σi

)

=
1

ZT

exp
(
β

∑
ij∈U

σiσj +
∑

i∈U−∂U

Bi σi

) ∑
σW

exp
(
β

∑

ij∈W+∂U

σiσj +
∑

i∈W+∂U

Bi σi

)
,

but since W is the disjoint union of the Ti − i ’s with i ∈ ∂U
∑
σW

exp
(
β

∑

ij∈W+∂U

σiσj +
∑

i∈W+∂U

Bi σi

)
=

∏

i∈∂U

∑
σTi−i

exp
(
β

∑

hk∈Ti

σhσk +
∑

h∈Ti

Bhσh

)

=
∏

i∈∂U

∑
σTi−i

ZTi
µTi

(σTi
) =

∏

i∈∂U

ZTi
µTi→i(σi) ,

hence it follows

µT→U(σU) = C exp
(
β

∑
ij∈U

σiσj +
∑

i∈U−∂U

Bi σi

) ∏

i∈∂U

µTi→i(σi) .

Compute µTi→i(σi). For any random variable X taking values ±1 it’s easy

to check that

P[X = ±1] =
1± E[X]

2
,

further observe that for any −1 ≤ α ≤ 1

1± α

(1− α2)1/2
=

( 1 + α

1− α

)±1/2
= exp(± atanh α) ,

therefore in our case:

µTi→i(σi) =
1 + σi 〈σi〉Ti

2
=

(1− 〈σi〉2Ti
)1/2

2
exp

(
σi atanh〈σi〉Ti

)
.

Substitute in the previous expression of µT→U(σU) and find

µT→U(σU) = C exp
(
β

∑
ij∈U

σiσj +
∑

i∈U−∂U

Bi σi +
∑

i∈∂U

B̃i σi

)
,

with B̃i = atanh〈σi〉Ti
for any i ∈ ∂U .

To conclude the proof it remains only to check that atanh〈σi〉Ti
≥ Bi for any

i ∈ ∂U . To do it use the G.K.S. inequality:

〈σi〉Ti
≥ 〈σi〉{i} =

∑
σi=±1 σi e

Biσi

∑
σi=±1 eBiσi

=
eBi − e−Bi

eBi + e−Bi
= tanh Bi .
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Notation. Given a rooted tree T (t) of t generations we denote Bd T (t) the

set of vertices composing its tth generation.

Lemma 9. Let T (1) be a finite tree rooted at ∅ and with only one generation.

The magnetisation of the root in the Ising model on T (1) is:

〈σ∅〉T (1) = tanh
[
B∅ +

∑

i son of ∅
atanh(tanh β tanh Bi)

]
.

Proof. For brevity denote T = T (1).

As T is a rooted tree with only one generation, T = ∅+ Bd T and the only

edges are those which link ∅ to its offspring.

With these remarks write 〈σ∅〉T developing the sums over σ∅ = ±1:

〈σ∅〉T =
∑

σ∈{±1}T

σ∅ µT (σ∅) =

∑

σ∈{±1}Bd T

[
exp

( ∑

i∈Bd T

β σi +
∑

i∈Bd T

Biσi + B∅
)− exp

(−
∑

i∈Bd T

β σi +
∑

i∈Bd T

Biσi −B∅
)]

∑

σ∈{±1}Bd T

[
exp

( ∑

i∈Bd T

β σi +
∑

i∈Bd T

Biσi + B∅
)

+ exp
(−

∑

i∈Bd T

β σi +
∑

i∈Bd T

Biσi −B∅
)]

Now that all interactions are made explicit, it’s simple to rewrite each term:

∑

σ∈{±1}Bd T

exp
(±

∑

i∈Bd T

β σi +
∑

i∈Bd T

Biσi ±B∅
)

= e±B∅
∑

σ∈{±1}Bd T

∏

i∈Bd T

e(±β+Bi) σi

= e±B∅
∏

i∈Bd T

∑
σi=±1

e(±β+Bi) σi = e±B∅
∏

i∈Bd T

(
e±β+Bi + e−(±β+Bi)

)

hence, substituting in the previous equality,

〈σ∅〉T =
eB∅

∏
i∈Bd T

(
eβ+Bi + e−β−Bi

)− e−B∅
∏

i∈Bd T

(
e−β+Bi + eβ−Bi

)

eB∅
∏

i∈Bd T

(
eβ+Bi + e−β−Bi

)
+ e−B∅

∏
i∈Bd T

(
e−β+Bi + eβ−Bi

) .

To conclude it’s only matter of rewriting more compactly this equation. Start

from here and use two times the fact that α = x−y
x+y

⇔ 1+α
1−α

= x
y

to compute:

1 + 〈σ∅〉T
1− 〈σ∅〉T

= e2B∅
∏

i∈Bd T

eβ+Bi + e−β−Bi

e−β+Bi + eβ−Bi
= e2B∅

∏

i∈Bd T

1 + tanh β tanh Bi

1− tanh β tanh Bi



1.4 Ferromagnetic spin model on locally tree-like graphs 33

Therefore:

atanh〈σ∅〉T =
1

2
log

1 + 〈σ∅〉T
1− 〈σ∅〉T

= B∅ +
∑

i∈Bd T

1

2
log

1 + tanh β tanh Bi

1− tanh β tanh Bi

=

= B∅ +
∑

i∈Bd T

atanh(tanh β tanh Bi) .

Notation. Consider the Ising model on a finite rooted tree T (t) composed of

t generations, with magnetic field on its nodes B = (Bi)i∈T (t) and the inverse

temperature β. As usual the expected value w.r.t. the spin variables in this

model is denoted

〈 · 〉T (t)

Now consider the Ising model with magnetic filed increased only on Bd T (t)

by a vector H = (Hi)i∈Bd T (t). We denote the expected value w.r.t. the spin

variables in this new model by

〈 · 〉T (t), +H

The following lemma is a direct consequence of lemmas 8 and 9. This state-

ment will be used often, so it’s opportune to write it explicitly.

Lemma 10. Let T (t +1) be a finite tree rooted in ∅ and composed of t +1

generations. Let T (t) be its sub-tree induced by the first t generations.

The magnetisation of the root in the Ising model on T (t +1) equals the mag-

netisation of the root in the Ising model on T (t) with increased magnetic field

on Bd T (t). Precisely:

〈σ∅〉T (t+1) = 〈σ∅〉T (t), +H with Hi =
∑

j son of i

ξβ(Bj) ∀ i∈Bd T (t)

where we set ξβ(x) := atanh(tanh β tanh x) .

Proof. Apply lemma 8 choosing T = T (t +1) and U = T (t) 3 ∅:

〈σ∅〉T (t+1) = 〈σ∅〉T (t) |Bi → B̃i ∀ i∈∂T (t)
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where for any i ∈ ∂ T (t) B̃i = atanh〈σi〉Ti(1) and Ti(1) is the maximal sub-

tree rooted in i and contained in T (t +1)− T (t) + i.

Notice Ti(1) is the sub-tree induced by i and its offspring.

Therefore by lemma 9, compute for any i ∈ ∂ T (t)

B̃i = atanh〈σi〉Ti
= Bi +

∑

j son of i

ξβ(Bj) .

To conclude observe that

Bd T (t) = ∂ T (t) t {i ∈ tth generation of T (t) | i has no sons}
hence there is no problem to write

〈σ∅〉T (t+1) = 〈σ∅〉T (t) |Bi → Bi +
∑

j son of i

ξβ(Bj) ∀ i∈Bd T (t) .

Now we are ready to write a recursive formula for the root magnetisation, a

central result for the next investigations on random graphs.

Proposition 11. Let T (t) be a finite tree with root in ∅ and composed of t

generations.

The atanh of the magnetisation of the root in the Ising model on T (t) is:

atanh〈σ∅〉T (t) = B∅+
∑

i1 son of ∅
ξβ

(
Bi1+

∑

i2 son of i1

ξβ

(
. . . Bit−1+

∑

it son of it−1

ξβ(Bit)
))

where the function ξβ is defined by

ξβ(x) := atanh(tanh β tanh x) .



1.4 Ferromagnetic spin model on locally tree-like graphs 35

Proof. Proceed by induction on the number t ∈ N of generations of the tree.

For t = 0 it’s simply T (0) = {∅} , then

〈σ∅〉T (0) =

∑
σ∅=±1 σ∅ eB∅ σ∅

∑
σ∅=±1 eB∅ σ∅

=
eB∅ − e−B∅

eB∅ + e−B∅
= tanh B∅ .

Now assume the result is true for a t ≥ 0 and prove it for t + 1.

Consider T (t), the sub-tree of T (t +1) composed by the first t generations.

By lemma 10

〈σ∅〉T (t+1) = 〈σ∅〉T (t), +H

where for all it ∈ Bd T (t) Hit =
∑

it+1 son of it
ξβ(Bit+1) .

On the other hand by inductive hypothesis

atanh 〈σ∅〉T (t), +H =

B∅ +
∑

i1 son of ∅
ξβ

(
Bi1 +

∑

i2 son of i1

ξβ

(
. . . Bit−1 +

∑

it son of it−1

ξβ(Bit + Hit)
))

Substitute in this expression the expression of Hit and the thesis is proved

for t + 1.

The form of proposition 11 simplifies if we consider uniform magnetic field

B and a random tree T (ρ, t) defined as in subsection 1.4.1.

Corollary 12. Let (Kt, i)t≥0, i≥1 be i.i.d. integer r.v. with distribution ρ such

that a.s. 0 ≤ Kt, i < ∞ .

Let T (ρ,∞) be a random tree rooted in ∅ and such that the offspring size of

the ith vertex of the tth generation (root included) is Kt, i .

Suppose the inverse temperature is 0 ≤ β < ∞ and the external field is

uniformly Bi ≡ B ∈ R . And set for any t ∈ N
h(t) := atanh〈σ∅〉T (ρ, t)

The probability distribution of the magnetisation of the root ∅ in the Ising

model on the tree T (ρ, t) is such that

{
h(t+1) d

= B +
∑K

i=1 ξβ(h
(t)
i ) ∀ t ∈ N

h(0) = B
(1.3)
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where:

• ξβ(x) = atanh(tanh β tanh x)

• (h
(t)
i )i≥1 are i.i.d. r.v. with the distribution of h(t)

• K is a r.v. of distribution ρ, independent of (h
(t)
i )i≥1, t≥0 .

Proof. Remind the definition h(t) := atanh〈σ∅〉T (ρ, t), apply the proposition

11 and use the independence of the numbers of offspring:

h(0) = B ,

h(1) = B +

K0∑
i1=1

ξβ(B)
d
= B +

K∑
i=1

ξβ(h(0)) ,

h(2) = B +

K0∑
i1=1

ξβ

(
B +

K1, i1∑
i2=1

ξβ(B)

︸ ︷︷ ︸
d
= h(1)

) d
= B +

K∑
i=1

ξβ(h(1)) ,

h(3) = B +

K0∑
i1=1

ξβ

(
B +

K1, i1∑
i2=1

ξβ

(
B +

K2, i2∑
i3=1

ξβ(B)

︸ ︷︷ ︸
d
= h(2)

)) d
= B +

K∑
i=1

ξβ(h(2)) ,

. . . etcetera.

The previous corollary gives a distributional recurrence for the the root mag-

netisation of a random tree T (ρ, t) . We are interested its behaviour when

t →∞ and we expect to obtain a fixed point of the recurrence.

Using the Ising model with positive boundary conditions, we will be able to

prove that there exists a unique positive fixed point.

Notation. Given a rooted tree T (t) of t generations denote 〈 · 〉+T (t) the ex-

pected value w.r.t. the Ising model on T (t) with positive conditions on

Bd T (t) .
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Proposition 13. Let T (t) be a finite tree rooted in ∅ and composed of t

generations. Suppose the external field is B = (Bi)i, Bi ≥ Bmin > 0 and the

inverse temperature is 0 ≤ β ≤ βmax < ∞.

The effect of positive boundary conditions on the magnetisation of the root

in the Ising model on T (t) vanishes when t grows. Precisely:

0 ≤ 〈σ∅〉+T (t) − 〈σ∅〉T (t) ≤
M

t
,

with M = M(Bmin, βmax) = sup0<x≤βmax
x/

(
atanh(tanh x tanh Bmin)

)
< ∞ .

Proof. For any s ≤ t denote T (s) the sub-tree of T (t) induced by the first s

generations. Then, given an additional magnetic field H on Bd T (s), denote

〈·〉T (s), +H the expectation w.r.t. the Ising model on the tree T (s) with the

magnetic field B increased by H only on Bd T (s).

The first inequality is a direct consequence of G.K.S.:

〈σ∅〉T (t)+ = 〈σ∅〉T (t), +∞ ≥ 〈σ∅〉T (t) .

To deal with the second inequality begin observing that the case β = 0 is

trivial, since the root does not interact with the boundary. Formally:

〈σ∅〉T (t) =

∑
σ σ∅ exp

( ∑
i∈T (t) Bi σi

)
∑

σ exp
( ∑

i∈T (t) Bi σi

) =

∑
σ∅

σ∅ eB∅ σ∅
∑

σ′ exp
( ∑

i6=∅Bi σi

)
∑

σ∅
eB∅ σ∅

∑
σ′ exp

( ∑
i6=∅Bi σi

) =

=
eB∅ − e−B∅

eB∅ + e−B∅
= tanh B∅ ,

where here σ′ denotes the vector σ minus its component σ∅; and similarly

one finds that also 〈σ∅〉+T (t) = tanh B∅ .

Now assume β > 0 and fix s = 1, . . . , t .

I) Start studying the positive boundary conditions case. Use the lemma 10 :

〈σ∅〉+T (s) = 〈σ∅〉T (s), +∞ = 〈σ∅〉T (s−1),+ H

where for every i ∈ Bd T (s−1)

Hi =
∑

j son of i

atanh(tanh β tanh∞) = β ∆i
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and ∆i denotes the number of sons of the node i. Hence, setting ∆ = (∆i)i ,

〈σ∅〉+T (s) = 〈σ∅〉T (s−1), +β ∆ (1.4)

And by G.K.S. it follows that s 7→ 〈σ∅〉+T (s) is monotonically decreasing :

〈σ∅〉+T (s) = 〈σ∅〉T (s−1), +β ∆ ≤ 〈σ∅〉T (s−1), +∞ = 〈σ∅〉+T (s−1) .

II) Now study the free boundary conditions case. Use the G.K.S. inequality

and the lemma 10 :

〈σ∅〉T (s) ≥ 〈σ∅〉T (s), +Bmin−B = 〈σ∅〉T (s−1), +H′

where for all i ∈ Bd T (s−1)

H ′
i =

∑

j son of i

atanh(tanh β tanh Bmin) = ξβ(Bmin) ∆i

Hence, setting ξ0
β := ξβ(Bmin) > 0 ,

〈σ∅〉T (s) ≥ 〈σ∅〉T (s−1), +ξ0
β ∆ (1.5)

And by G.K.S. it follows that s 7→ 〈σ∅〉T (s) is monotonically increasing :

〈σ∅〉T (s) ≥ 〈σ∅〉T (s−1), +ξ0
β ∆ ≥ 〈σ∅〉T (s−1) .

III) By the G.H.S. inequality, the function h 7→ 〈σ∅〉T (s−1), +h ∆ =: f(h) is

concave. Hence, since ξ0
β = atanh(tanh β tanh Bmin) < β, it follows that

f(β)− f(0)

β − 0
≤ f(ξ0

β)− f(0)

ξ0
β − 0

Rewriting this condition one obtains

〈σ∅〉T (s−1), +β ∆ − 〈σ∅〉T (s−1) ≤ M
(〈σ∅〉T (s−1), +ξ0

β ∆ − 〈σ∅〉T (s−1)

)
(1.6)

with M := sup{x/ atanh(tanh x tanh Bmin) | 0 < x ≤ βmax}, which is finite

because the function to maximize is increasing.
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Now bound the effect of positive boundary conditions on the root magneti-

sation in the model on T (s), using equations (1.4), (1.5), (1.6)

〈σ∅〉+T (s) − 〈σ∅〉T (s) ≤ 〈σ∅〉T (s−1), +β ∆ − 〈σ∅〉T (s−1)

≤ M
(〈σ∅〉T (s−1), +ξ0

β ∆ − 〈σ∅〉T (s−1)

)

≤ M
(〈σ∅〉T (s) − 〈σ∅〉T (s−1)

)
.

Then use the different monotonicity of s 7→ 〈σ∅〉+T (s) and s 7→ 〈σ∅〉T (s) to

conclude:

t
(〈σ∅〉+T (t) − 〈σ∅〉T (t)

) ≤
t∑

s=1

(〈σ∅〉+T (s) − 〈σ∅〉T (s)

) ≤ M

t∑
s=1

(〈σ∅〉T (s) − 〈σ∅〉T (s−1)

)

= M
(〈σ∅〉T (t) − 〈σ∅〉T (0)

) ≤ M .

Using corollary 12 and proposition 13 we can prove the following probability

result, which characterizes the root magnetisation on the random tree T (ρ, t)

as t →∞.

Proposition 14. Let B > 0 , 0 ≤ β < ∞ and let ρ be a probability distribu-

tion over N.

Consider a sequence (h(t))t∈N of r.v.’s whose distributions are defined by the

recursive relation (1.3), that is

{
h(t+1) d

= B +
∑K

i=1 ξβ(h
(t)
i ) ∀ t ∈ N

h(0) = B

where

• ξβ(x) = atanh(tanh β tanh x)

• (h
(t)
i )i≥1 are i.i.d. r.v. with the same distribution of h(t)

• K is a r.v. of distribution ρ, independent of (h
(t)
i )i≥1, t≥0 .

Then:
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i. (h(t))t∈N is stochastically monotone (that is it admits a coupling which

is monotone a.s.)

ii. there exists a r.v. h∗ such that h(t) d−−−→
t→∞

h∗

iii. h∗ is the only (in distribution) r.v. supported on [0,∞[ such that

h∗ d
= B +

K∑
i=1

ξβ(h∗i ) (1.7)

with (h∗i )i≥1 i.i.d., distributed as h∗, independent of K.

Proof. I) Consider the random rooted tree T (ρ,∞) and the Ising model on

it with inverse temperature β and magnetic field B.

By corollary 12 a coupling of (h(t))t∈N is given by

h(t) := atanh〈σ∅〉T (ρ, t) ∀ t ∈ N .

As seen in the proof of proposition 13 (or simply by G.K.S. inequality), the

sequence t 7→ 〈σ∅〉T (ρ, t) is monotonically increasing. Hence also t 7→ h(t) is

monotonically increasing. Therefore there exists h∗ ≥ B such that

h(t) −−−→
t→∞

h∗ a.s.

and so also in distribution. Then, by definition, for any φ : R+ → R conti-

nuous and bounded

E[φ(h∗)] = lim
t→∞

E[φ(h(t))] = lim
t→∞

E
[
φ
(
B +

K∑
i=1

ξβ(h
(t−1)
i )

)]

Now since h
(t−1)
i

d−−→ h∗i as t →∞ and
(
(h

(t−1)
i )i, K

)
are independent as well

as
(
(h∗i )i, K

)
, it is also true that

(
(h

(t−1)
i )i, K

) d−−→ (
(h∗i )i, K

)
as t → ∞

(this can be easily proven via the characteristic functions). Therefore by

dominated convergence

lim
t→∞

E
[
φ
(
B +

K∑
i=1

ξβ(h
(t−1)
i )

)]
= E

[
φ
(
B +

K∑
i=1

ξβ(h∗i )
)]

.
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Hence E[φ(h∗)] = E
[
φ
(
B +

∑K
i=1 ξβ(h∗i )

)]
, and by arbitrariness of φ conti-

nuous and bounded conclude that

h∗ d
= B +

K∑
i=1

ξβ(h∗i ) .

II) It remains to prove that h∗ < ∞ and that any other r.v. supported on

[0,∞[ and satisfying the same fixed point distributional equation is neces-

sarily equal in distribution to h∗. Define

h(t), + := atanh〈σ∅〉+T (ρ, t) ∀ t ∈ N .

Since the model with positive boundary conditions is equivalent to that one

with no boundary conditions when the magnetic field on Bd T (ρ, t) goes to

infinity, {
h(t+1), + d

= B +
∑K

i=1 ξβ(h
(t),+
i ) ∀ t ∈ N

h(0), + = ∞
(1.8)

where (h
(t), +
i )i are i.i.d. copies of h(t), + and they’re independent of K.

As seen in the proof of proposition 13, the sequence t 7→ 〈σ∅〉+T (ρ, t) is mono-

tonically decreasing. Hence also t 7→ h(t), + is monotonically decreasing and

so there exists h∗, + < ∞ (notice h(1), + < ∞) such that

h(t), + −−−→
t→∞

h∗, + a.s.

Proceeding as before one proves that

h∗, + d
= B +

K∑
i=1

ξβ(h∗, +i )

with (h∗, +i )i i.i.d. copies of h∗, +, independent of K.

Now let h∗∗ be a r.v. supported on [0,∞] and verifying the same fixed point

distributional equation 1.7. Without loss of generality assume it is defined

on the same probability space as T (ρ,∞).

Notice that, since ξβ ≥ 0 on [0,∞], necessarily h∗∗ ≥ B. Therefore

h(0) = B ≤ h∗∗ ≤ ∞ = h(0), + .
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Now take i.i.d. copies of each of these three r.v.’s, independent of K and

coupled so they still verify the previous order relation. Then apply the func-

tion B +
∑K

i=1 ξβ(·) and, since it is a monotonically increasing function w.r.t.

each variable, one gets h(1) ≤ h∗∗ ≤ h(1), +.

Repeat this procedure t times and then let t →∞ :

h(t) ≤ h∗∗ ≤ h(t), + ∀ t ∈ N ⇒ h∗ ≤ h∗∗ ≤ h∗, + a.s.

But on the other hand by proposition 13

| tanh(h(t), +)− tanh(h(t))| = |〈σ∅〉+T (ρ, t) − 〈σ∅〉T (ρ, t)| ≤
M

t
−−−→
t→∞

0

therefore tanh h∗, + = tanh h∗ ⇒ h∗, + = h∗ . Thus conclude

h∗ = h∗∗ = h∗, + ∈ [B,∞[ a.s.

and so also in distribution.

We conclude this subsection about trees proving that the root magnetisation

is Lipschitz continuous w.r.t. β uniformly in number of generations t, so that

the Lipschitz continuity is preserved in the limit t →∞ .

Notation. Consider the Ising model on a finite rooted tree T (t) composed

of t generations, with magnetic field B and inverse temperature β .

To make explicit the parameters, we’ll use the following notation for the

magnetisation of the root ∅:

mt(β,B) := 〈σ∅〉T (t) .

Proposition 15. Let T (t) be a finite rooted tree rooted with t generations.

Suppose the external field is fixed B = (Bi)i, Bi ≥ Bmin > 0, while the

inverse temperature can be 0 < βmin ≤ β1 ≤ β2 < ∞.

The magnetisation of the root in the Ising model is Lipschitz continuous w.r.t.

β, uniformly in t. Precisely:

0 ≤ mt(β2, B)−mt(β1, B) ≤ C (β2 − β1) ,

with C = C(βmin, Bmin) = supβmin≤x<∞ 1/
(
atanh(tanh x tanh(Bmin)

)
< ∞ .
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Before the proof we need the following lemma.

Lemma 16. Let T be a finite tree rooted in ∅.

Let ij be and edge of T and assume that node j is a son of node i.

Then for any Ising model on T there exists γ ∈ [0, 1] s.t.

〈σ∅ σiσj〉T − 〈σ∅〉T 〈σiσj〉T = γ
(〈σ∅ σi〉T − 〈σ∅〉T 〈σi〉T

)
.

Proof. I) Denote Tj the sub-tree of T (t) induced by j and all its descendants.

Thanks to the property of absence of cycles which characterizes trees, ij is

the unique path connecting Tj with T (t) − Tj. It follows that σTj
, σT (t)−Tj

are conditionally independent given σi. Indeed

∑

hk∈T

σhσk =
∑

hk∈T

σhσk +
∑

hk∈T−Tj

σhσk + σiσj

so that for any σ spin configuration on T and for a fixed ε = ±1

µ(σ|σi = ε) = C exp
(
β

∑

hk∈T

σhσk +
∑

h∈T

Bh σh

)
1(σi = ε)

= C exp
(
β

∑

hk∈Tj

σhσk +
∑

h∈Tj

Bhσh

)
eβ ε σj exp

(
β

∑

hk∈T−Tj

σhσk +
∑

h∈T−Tj

Bhσh

)
1(σi =ε)

= µ(σTj
| σi = ε) eβ ε σj µ(σT−Tj

|σi = ε) ,

where for brevity the marginal measures are still denoted µ.

In particular σ∅, σj are conditionally independent given σi.

II) Now apply the total probability formula to 〈σ∅ σiσj〉 to condition on σi

and then use the conditional independence just proven:

〈σ∅ σiσj〉 =

〈σ∅ σi|σi =1〉 〈σj| σi =1〉µi(1) + 〈σ∅ σiσj|σi =−1〉 〈σj|σi =−1〉µi(−1) ,

where µi denotes the marginal on ith spin variable of measure µ .

Then notice the last quantity can be rewritten in two different ways;

firstly grouping together 〈σj|σi = 1〉 artificially to obtain

〈σ∅ σi〉 〈σj| σi =1〉 + 〈σ∅| σi =−1〉µi(−1)
(〈σj|σi =1〉 − 〈σj| σi =−1〉) =: A
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secondly grouping together 〈σj| σi− = 1〉 artificially to obtain

〈σ∅ σi〉 〈σj|σi =−1〉 + 〈σ∅| σi =1〉µi(1)
(〈σj|σi =1〉 − 〈σj|σi =−1〉) =: B .

Now since 〈σ∅ σiσj〉 = A as well as 〈σ∅ σiσj〉 = B, one can write

〈σ∅ σiσj〉 =
A + B

2
= 〈σ∅ σi〉 γ + 〈σ∅〉 δ ?

where γ =
〈σj |σi=1〉+ 〈σj |σi=−1〉

2
and δ =

〈σj |σi=1〉− 〈σj |σi=−1〉
2

.

On the other hand notice that 〈σi〉 = 2 µi(1) − 1 = 1 − 2 µi(−1) , since σi

takes values ±1 . Use this fact and the definitions of γ, δ to compute

γ 〈σi〉 = 〈σj|σi =1〉 2 µi(1)− 1

2
+ 〈σj|σi =−1〉 1− 2 µi(1)

2

= 〈σiσj|σi =1〉 2 µi(1)− 1

2
− 〈σiσj|σi =−1〉 1− 2 µi(1)

2
= 〈σiσj〉 − δ .

Conclude using equality ? together with this last equality:

〈σ∅ σiσj〉 − 〈σ∅〉 〈σiσj〉 = γ 〈σ∅ σi〉+ δ 〈σ∅〉 − 〈σ∅〉
(
γ 〈σi〉+ δ

)

= γ
(〈σ∅ σi〉 − 〈σ∅〉 〈σi〉

)

and observing that |γ| ≤ 1 but by G.K.S. both the left-hand difference and

the right-hand difference are ≥ 0 .

Proof of proposition 15. For any s ≤ t T (s) will denote the sub-tree of T (t)

induced by the first s generations.

The first inequality is simply due to the G.K.S. inequality. Prove the second

one. By Lagrange mean value theorem

mt(β2, B)−mt(β1, B) =
∂ mt

∂β
(β,B) (β2 − β1)

for some β ∈ [β1, β2] ⊆ [βmin,∞[ .

From now on reason in the Ising model on T (t) with magnetic field B and

inverse temperature β. To begin it’s easy to compute

∂ mt

∂β
(β, B) ≡ ∂

∂β
〈σ∅〉T (t) =

∑

ij∈T (t)

( 〈σ∅ σiσj〉T (t) − 〈σ∅〉T (t) 〈σiσj〉T (t)

)
.
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For any edge ij ∈ T (t) one may assume that j is a son of i and apply the

previous lemma:

〈σ∅ σiσj〉T (t) − 〈σ∅〉T (t) 〈σiσj〉T (t) ≤ 〈σ∅ σi〉T (t) − 〈σ∅〉T (t) 〈σi〉T (t) .

It’s an easy computation to check that

〈σ∅ σi〉T (t) − 〈σ∅〉T (t) 〈σi〉T (t) =
∂

∂Bi

〈σ∅〉T (t)

Therefore putting the things together

∂

∂β
〈σ∅〉T (t) ≤

t−1∑
s=0

∑

i∈Bd T (s)

∆i
∂

∂Bi

〈σ∅〉T (t) (1.9)

where ∆i denotes the number of sons of node i .

Now observe that s 7→ ∂
∂Bi
〈σ∅〉T (s) is a decreasing sequence. Indeed using

lemma 10 and the G.H.S. inequality:

∂

∂Bi

〈σ∅〉T (s) =
∂

∂Bi

〈σ∅〉T (s−1), +H ≤ ∂

∂Bi

〈σ∅〉T (s−1)

where Hs−1 = (Hi)i∈Bd T (s−1), Hi :=
∑

j son of i ξβ(Bj) ≥ 0 .

Hence one is allowed to substitute T (t) with T (s +1) into inequality (1.9) :

∂

∂β
〈σ∅〉T (t) ≤

t−1∑
s=0

∑

i∈Bd T (s)

∆i
∂

∂Bi

〈σ∅〉T (s+1) (1.10)

Now using again lemma 10 and the G.H.S. inequality observe

∂

∂Bi

〈σ∅〉T (s+1) =
∂

∂Bi

〈σ∅〉T (s), +Hs ≤ ∂

∂Bi

〈σ∅〉T (s), +ξ0
β ∆s

where ∆s = (∆i)i∈Bd T (s) and ξ0
β := ξβ(Bmin) ≤ ξβ(Bi) .

Hence inequality (1.10) becomes

∂

∂β
〈σ∅〉T (t) ≤

t−1∑
s=0

∑

i∈Bd T (s)

∆i
∂

∂Bi

〈σ∅〉T (s), +ξ0
β ∆s

=
t−1∑
s=0

∂

∂h

(〈σ∅〉T (s), +h ∆s

)
|h=ξ0

β

(1.11)
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Now by G.H.S. inequality h 7→ 〈σ∅〉T (s), +h ∆s =: f(h) is concave, hence

f ′(ξ0
β) ≤ f(ξ0

β)− f(0)

ξ0
β − 0

,

rewriting this relation, using the G.K.S. inequality and lemma 10, one finds

∂

∂h

(〈σ∅〉T (s), +h ∆s

)
|h=ξ0

β

≤
〈σ∅〉T (s), +ξ0

β ∆s − 〈σ∅〉T (s)

ξ0
β

≤ 〈σ∅〉T (s), +Hs − 〈σ∅〉T (s)

ξ0
β

=
〈σ∅〉T (s+1) − 〈σ∅〉T (s)

ξ0
β

.

Substitute into inequality (1.11) and obtain

∂

∂β
〈σ∅〉T (t) ≤

t−1∑
s=0

〈σ∅〉T (s+1) − 〈σ∅〉T (s)

ξ0
β

=
〈σ∅〉T (t) − 〈σ∅〉T (0)

ξ0
β

≤ 1

ξ0
β

,

to conclude notice that 1
ξ0
β
≤ supβmin≤x<∞[atanh(tanh x tanh(Bmin)]

−1, which

is finite as the function to maximize is decreasing.

Corollary 17. Let B ≥ Bmin > 0 and β1, β2 ≥ βmin > 0.

Let h∗(β1, B) and h∗(β2, B) be the non-negative solutions of fixed point dis-

tributional equation (1.7) for (β1, B) and (β2, B) respectively.

Then there exists a coupling of h∗(β1, B), h∗(β2, B) s.t.

0 ≤ tanh h∗(β2, B)− tanh h∗(β1, B) ≤ C (β2 − β1)

where C = C(βmin, Bmin) < ∞ .

Proof. Consider the random rooted tree T (ρ,∞) and the two Ising models

on it with magnetic field B and inverse temperature respectively β1, β2.

As seen in the proof of proposition 14 a coupling of h∗(β1, B), h∗(β2, B) is

given by

h∗(βi, B) = lim
t→∞

atanh mt(βi, B) a.s. ∀ i = 1, 2 .

Now by proposition 15

0 ≤ mt(β2, B)−mt(β1, B) ≤ C (β2 − β1) ∀ t ∈ N .

Let t →∞ and since C does not depend on t obtain

0 ≤ tanh h∗(β2, B)− tanh h∗(β1, B) ≤ C (β2 − β1) ∀ t ∈ N .
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1.4.4 From trees to random graphs

In this subsection we’ll manage to compute the thermodynamic limit for

the pressure per particle pN on a sequence of random graphs which locally

converges to T (P, ρ,∞) .

Actually we would be already equipped to prove that the internal energy

per particle ∂pN/∂β converges. But in order to come back to pN we need a

technical result.

Definition 7. Fix P a probability distribution over N with finite mean P .

Let h be a random variable supported on [0,∞[ . Given β ≥ 0, B ∈ R we

define the following operator

ϕh(β, B) :=
P

2
log cosh β − P

2
E

[
log

(
1 + tanh β tanh h1 tanh h2

)]
+

+ E
[
log

(
eB

L∏
i=1

(1 + tanh β tanh hi) + e−B

L∏
i=1

(1− tanh β tanh hi)
)]

(1.12)

where (hi)i≥1 are i.i.d. r.v.’s with the same distribution of h , while

L is an integer r.v. with distribution P and it is independent of (hi)i≥1.

Remark 4. Notice ϕh(β,B) is well-defined and finite. Indeed the quantities

under expectation are non-negative and furthermore, using Jensen inequality

they are bounded respectively by

logE
[
1 + tanh β tanh h1 tanh h2

] ≤ log(1 + tanh β) ,

logE
[
eB

∏L
i=1(1 + tanh β tanh hi) + e−B

∏L
i=1(1− tanh β tanh hi)

]

≤ log
(
eB P (1 + tanh β) + e−B P (1− tanh β)

)
.

Proposition 18. Let B, B′ > 0 and 0 ≤ β, β′ ≤ βmax .

Suppose P has ε-strongly finite mean for some ε > 0.

Let h∗ := h∗(β, B) and (h∗)′ := h∗(β′, B′) be the non-negative solutions of

fixed point distributional equations (1.7) for (β,B) and (β′, B′) respectively

and choosing ρ the size-biased law of P (or ρ = P ).
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Then there exists a constant λ = λ(βmax) < ∞ s.t.

∣∣ϕ(h∗)′(β, B)− ϕh∗(β, B)
∣∣ ≤ λ dMK

(
tanh(h∗)′ , tanh h∗

)1+η

where η = min{1, ε} and dMK denotes the Monge-Kantorovich-Wasserstein

distance between two r.v.’s X, Y , i.e. the infimum of E[|X̃ − Ỹ | ] over all

couplings (X̃, Ỹ ) of X, Y .

Proof. Assume 0 < ε < 1 without loss of generality.

If dMK

(
tanh(h∗)′ , tanh h∗

)
= 0, +∞ then the inequality is obviously true.

Thus assume 0 < dMK

(
tanh(h∗)′ , tanh h∗

)
< ∞.

Let γ > 1. By definition of dMK there exist X
d
= tanh h∗ , Y

d
= tanh(h∗)′

defined on the same space s.t.

E[|Y −X| ] ≤ γ dMK

(
tanh(h∗)′ , tanh h∗

)
.

Then let (Xi, Yi)i≥1 be i.i.d. copies of (X, Y ) and let L
d∼ P , K

d∼ ρ inde-

pendent of (Xi, Yi)i≥1.

Set u := tanh β . For l ≥ 2 and 0 ≤ x1, . . . , xl ≤ 1 define

Fl(x1, . . . , xl) :=
l

2
log cosh β − 1

l − 1

∑

1≤i<j≤l

log(1 + uxixj)

+ log
(
eB

l∏
i=1

(1 + uxi) + e−B

l∏
i=1

(1− uxi)
)

while let

F1(x1, x2) :=
1

2
log cosh β − 1

2
log(1 + ux1x2)

+
log

(
eB(1+ ux1) + e−B(1−ux1)

)

2
+

log
(
eB(1+ ux2) + e−B(1−ux2)

)

2
,

and F0 := − log 2 + log cosh B .

Notice that

ϕh∗(β,B) = E
[
FL(X1, . . . , XL)

]
, ϕ(h∗)′(β,B) = E

[
FL(Y1, . . . , YL)

]
(1.13)

For shortness it’s useful to set

Gl(x2, . . . , xl) := tanh
(
B +

l∑
j=2

atanh(uxj)
)
.
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Notice that by equation (1.7)

GK(X1, . . . , Xi−1, Xi+1, . . . , XK)
d
= X (1.14)

Now set f(x, y) := u y/(1 + uxy) and verify that for l ≥ 2, i = 1, . . . , l

∂ Fl

∂xi

(x1, . . . , xl) = − 1

l − 1

l∑
j=1
j 6=i

f(xi, xj) + f
(
xi , Gl(x1, . . . , x̂i, . . . , xl)

)
;

to do this computation one need to observe that, using the logarithmic ex-

pression of atanh and the exponential expression of tanh,

Gl(x2, . . . , xl) = tanh log

(
eB +

l∏
j=2

(1 + uxj

1− uxj

)1/2
)

=
eB

∏l
j=2(1 + uxj)− e−B

∏l
j=2(1− uxj)

eB
∏l

j=2(1 + uxj) + e−B
∏l

j=2(1− uxj)

and in consequence in a few steps one finds

f
(
x1, Gl(x2, . . . , xl)

)
= u

eB
∏l

j=2(1 + uxj)− e−B
∏l

j=2(1− uxj)

eB
∏l

j=1(1 + uxj) + e−B
∏l

j=1(1− uxj)
.

Therefore by the found expression of the first derivatives ∂ Fl

∂xi
(x1, . . . , xl),

it’easy to bound them:

sup
[0,1] l

∣∣∣∣
∂ Fl

∂xi

∣∣∣∣ ≤ 2 sup
[0,1]2

|f | = 2 u . (1.15)

Furthermore for j = 1, . . . , l, j 6= i compute

∂2Fl

∂xj ∂xi

(x1, . . . , xl) =− 1

l − 1

∂f

∂e2

(xi, xj)

+
∂f

∂e2

(
xi , Gl(x1, . . . , x̂i, . . . , xl)

) ∂Gl

∂xj

(x1, . . . , x̂i, . . . , xl)

Therefore it’s simple to bound it:

sup
[0,1] l

∣∣∣∣
∂2Fl

∂xj ∂xi

∣∣∣∣ ≤ sup
[0,1]2

∣∣∣∣
∂f

∂y

∣∣∣∣
(

1

l − 1
+ sup

[0,1] l−1

∣∣∣∣
∂Gl

∂xl

∣∣∣∣
)
≤ u

(
1+

1

1− u2

)
. (1.16)
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One can also check that for l = 1 and i = 1, 2

∂F1

∂xi

(x1, x2) = −f(x1, x2) + f(x1, G1) ,

and so the same bounds as before are valid.

Now let θ > 0 (to be chosen later on) and split the variation of ϕ in two

parts, depending on whether L is small or large:

I := E
[(

FL(Y1, . . . , YL)− FL(X1, . . . , XL)
)
1{L≥θ}

]
,

II := E
[(

FL(Y1, . . . , YL)− FL(X1, . . . , XL)
)
1{L<θ}

]
.

Start to study I using the multivariate mean value theorem and the bound

(1.15) for the first derivatives of Fl :

| I| ≤ E
[ |FL(Y1, . . . , YL)− FL(X1, . . . , XL)|1{L≥θ}

]

≤ E
[ L∑

i=1

sup
[0,1]L

∣∣∂FL

∂ei

∣∣ |Yi −Xi| 1{L≥θ}

]

≤ 2 u E[ L1{L≥θ} ] E[ |Y −X| ] ,

where the last step is possible also because each (Xi, Yi) is independent of L

and distributed as (X, Y ).

Observe that for any integer r.v. T ≥ 1 one can write
∑∞

k=1 1{T≥k} =∑T
k=1 1 = T , so that E[ T ] =

∑∞
k=1 P(T ≥ k) . Apply this fact to the r.v.

L1{L≥θ} and use the hypothesis that L has ε-strongly finite mean:

E[ L1{L≥θ} ] =
∞∑

l=1

P(L1{L≥θ}≥ l) =
θ∑

l=1

P(L1{L≥θ}≥ l) +
∞∑

l=θ+1

P(L1{L≥θ}≥ l)

= θ P(L ≥ θ) +
∞∑

l=θ+1

P(L ≥ l) ≤ θ
C

θ 1+ε
+

∞∑

l=θ+1

C

l 1+ε
≤ C

θ ε
,

where C is a real constant depending only on the distribution P .

Therefore, substituting this bound in the previous expression,

|I| ≤ C u θ−ε E[ |Y −X| ] (1.17)
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Now study II using a more refined estimate (proved in the remark after this

proof):

|II| ≤
∣∣∣∣E

[ L∑
i=1

(Yi −Xi)

∫ 1

0

∂FL

∂ei

(X1, . . . , tYi + (1−t)Xi, . . . , XL)) dt 1{L<θ}

]∣∣∣∣

+ E
[ L∑

i,j=1
i6=j

|Yi −Xi| |Yj −Xj| sup
[0,1]L

∣∣ ∂2FL

∂xi ∂xj

∣∣ 1{L<θ}

]
,

denote II1 the first addend and II2 the second one.

The term II2 can be studied using the bound (1.16) for the mixed second

derivatives of FL and the fact that for i 6= j (Xi, Yi), (Xj, Yj) are independent

of L, independent of one another and distributed as (X, Y ) :

II2 ≤ u
(
1 +

1

1−u2

)
E[ L(L−1)1{L<θ} ] E[ |Y −X| ] 2

Observe that for any integer r.v. T ≥ 0 one can write
∑∞

k=1(2k−1)1{T≥k} =∑T
k=1(2k − 1) = T 2 (by the formula for the sum of the first odd numbers),

hence E[ T 2] =
∑∞

k=1(2k−1)P(T ≥ k) . Apply this fact to the r.v. L2 1{L<θ}
and use the hypothesis that L has ε-strongly finite mean, ε<1 :

E[L2 1{L<θ}] =
∞∑

l=1

(2 l − 1)P(L1{L>θ} ≥ l) =
θ∑

l=1

(2 l − 1)P(L1{L>θ} ≥ l)

≤
θ∑

l=1

2 l P(L ≥ l) ≤
θ∑

l=1

2 l
C

l1+ε
= C θ1−ε .

Therefore, substituting this bound in the previous expression,

II2 ≤ C u
(
1 +

1

1−u2

)
θ1−ε E[ |Y −X| ] 2 (1.18)

Now to study II1 split it again in two parts, the first one which involves L

large and the other one which involves every value of L:

II1 ≤
∣∣∣∣E

[ L∑
i=1

(Yi −Xi)

∫ 1

0

∂FL

∂ei

(X1, . . . , tYi + (1−t)Xi, . . . , XL)) dt 1{L≥θ}

]∣∣∣∣

+

∣∣∣∣E
[ L∑

i=1

(Yi −Xi)

∫ 1

0

∂FL

∂ei

(X1, . . . , tYi + (1−t)Xi, . . . , XL)) dt

]∣∣∣∣ ,
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call them respectively II ′1 and II ′′1 .

Clearly II ′1 can be bounded in the same way used for I, so

|II ′1| ≤ C u θ−ε E[ |Y −X| ] (1.19)

On the other hand II ′′1 = 0. To prove this claim observe that if ρ is the size-

biased distribution of P , i.e. l Pl = P ρl−1 , then using also independence:

E
[
L f

(
t Y1 + (1−t) X1 , GL(X2, . . . , XL)

)]

=
∞∑

l=0

l E
[
f
(
t Y1 + (1−t) X1 , Gl(X2, . . . , Xl)

)]
Pl

=
∞∑

l=1

P E
[
f
(
t Y1 + (1−t) X1 , Gl(X2, . . . , Xl)

)]
ρl−1

= P E
[
f
(
t Y1 + (1−t) X1 , GK+1(X2, . . . , XK+1)

)]

= E
[
L f

(
t Y1 + (1−t) X1 , GK+1(X2, . . . , XK+1)

)]

on the other hand observe that if ρ = P it is trivially true that

E
[
L f

(
t Y1 + (1−t) X1 , GL(X2, . . . , XL)

)]

= E
[
L f

(
t Y1 + (1−t) X1 , GK(X2, . . . , XK)

)]

Now by the distributional equation (1.14) and by independence of (Xi)i≥2

from X1, both the previous equalities become

E
[
L f

(
t Y1 + (1−t) X1 , GL(X2, . . . , XL)

)]
= E

[
L f

(
t Y1 + (1−t) X1 , X2

)]

(1.20)

Reminding the formulas for the first derivatives of Fl, it follows that

E
[
L

∂FL

∂e1

(t Y1 + (1−t) X1, X2, . . . , XL)
]

= 0 .

The same can be similarly proven for if one multiply by (Y1−X1) inside the

expectation on both sides.

Therefore, using invariance of Fl under permutations, (Xi, Yi)i≥1 i.i.d. inde-

pendent of L, and applying Fubini theorem, one finds

II ′′1 = E
[
L (Y1 −X1)

∫ 1

0

∂FL

∂e1

(
t Y1 + (1−t) X1 , X2, . . . , XL

)
dt

]
= 0 .
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To conclude remember relations (1.13), use the bounds (1.17), (1.18), (1.19)

and the fact that II ′′1 = 0 and remember how X, Y were chosen:

|ϕh∗(β, B)− ϕ(h∗)′(β, B)| ≤ |I|+ |II ′1|+ |II ′′1 |+ |II2|

≤ C u θ−ε E[ |Y −X| ] + C u
(
1 +

1

1− u2
) θ1−ε E[ |Y −X| ]2

≤ C umax

[
θ−ε γ dMK(tanh h∗, tanh(h∗)′) + θ1−ε γ2 dMK(tanh h∗, tanh(h∗)′)2

]
,

then choose θ = dMK(tanh h∗, tanh(h∗)′)−1 and let γ → 1 :

|ϕh∗(β, B)− ϕ(h∗)′(β, B)| ≤ C umax dMK(tanh h∗, tanh(h∗)′)1+ε .

Remark 5. Here we’ll prove the two different multivariate mean value theo-

rems that we used in the previous proof to study respectively the large L

term and the small L term.

1) If it suffices to stop at the first order, then just observe that by funda-

mental theorem of calculus

F (y1, . . . , yl)− F (x1, . . . , xl) =

∫ 1

0

d

dt
F

(
t y1 + (1−t)x1, . . . , t yl + (1−t)xl

)
dt

=
l∑

i=1

(yi − xi)

∫ 1

0

∂F

∂xi

(
t y1 + (1−t)x1, . . . , t yl + (1−t)xl

)
dt

so that

|F (y1, . . . , yl)− F (x1, . . . , xl)| ≤
l∑

i=1

|yi − xi| sup

∣∣∣∣
∂F

∂xi

∣∣∣∣ .

2) For shortness here we denote σs(x, y) = sy + (1−s)x.

If it is convenient to reach the second order, one can use the following formula:

|F (y1, . . . , yl)− F (x1, . . . , xl)| ≤
∣∣∣∣

l∑
i=1

(yi−xi)

∫ 1

0

∂F

∂ei

(
x1,..., σt(xi, yi),..., xl

)
dt

∣∣∣∣ +
∑

i6=j

|yi−xi| |yj−xj| sup

∣∣∣∣
∂2F

∂xi ∂xj

∣∣∣∣ .
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To prove it use twice the fundamental theorem of calculus computing

∑

i6=j

(yi − xi)(yj − xj)

∫ 1

0

∫ t

0

∂2F

∂ei ∂ej

(
σs(x1, y1), . . . , σt(xi, yi), . . . , σs(xl, yl)

)
ds dt

=
l∑

i=1

(yi − xi)

∫ 1

0

∫ t

0

d

ds

∂F

∂ei

(
σs(x1, y1), . . . , σt(xi, yi), . . . , σs(xl, yl)

)
ds dt

=
l∑

i=1

(yi − xi)

∫ 1

0

[
∂F

∂ei

(
σt(x1, y1), . . . , σt(xi, yi), . . . , σt(xl, yl)

)

− ∂F

∂ei

(
x1, . . . , σt(xi, yi), . . . , xl

)]
dt

=

∫ 1

0

d

dt
F

(
σt(x1, y1), . . . , σt(xi, yi), . . . , σt(xl, yl)

)
dt

−
l∑

i=1

(yi − xi)

∫ 1

0

∂F

∂ei

(
x1, . . . , σt(xi, yi), . . . , xl

)
dt

= F (y1, . . . , yl)− F (x1, . . . , xl)−
l∑

i=1

(yi−xi)

∫ 1

0

∂F

∂ei

(
x1, . . . , σt(xi, yi), . . . , xl

)
dt .

Now let GN = (VN , EN) be a random graph with |VN | = N and for any

ij ∈ EN denote BN(ij, t) = BN(i, t)+BN(j, t), the sub-graph of GN induced

by the vertices with distance ≤ t from i or j.

Let T (ρ,∞) be the random tree obtained linking by an extra edge the roots

∅′ ,∅′′ of two independent random trees T ′(ρ,∞) , T ′′(ρ,∞) . Further denote

T (ρ, t) the subgraph of T (ρ,∞) induced by the first t generations of T ′(ρ,∞)

and T ′′(ρ,∞) .

Lemma 19. Suppose the sequence of graphs (GN)N∈N locally converges to

the tree T (P, ρ,∞).

Suppose P has finite mean and ρ is the size-biased law of P .

Then for any t ∈ N and for any bounded function F of graphs, which is

invariant by isomorphism,

1

N

∑
ij∈EN

F
(
BN(ij, t)

) −−−→
N→∞

P

2
E[F

(T (ρ, t)
)
] a.s.
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Proof. Note that EN =
⋃

i∈VN
{ij | j is a neighbour of i in GN}, where in the

right-hand side each edge is counted twice.

Therefore one can use the hypothesis of local convergence:

1

N

∑
ij∈EN

F
(
BN(ij, t)

)
=

1

2N

∑
i∈VN

∑

j∈∂N i

F
(
BN(ij, t)

)
=

1

2N

∑
i∈VN

∑

j∈∂N i

F
(
BN(i, t)+BN(j, t)

) a.s.−−−→
N→∞

1

2
E

[ ∑

j∈∂T ∅
F

(T (P, ρ, t)+Tj(ρ, t)
)]

where Tj(ρ, t) denotes the sub-tree of T (P, ρ, t+1) induced by the son j of ∅
and its descendants.

Now consider the tree T (P, ρ,∞), let L
d∼ P be the offspring size of the root

∅ and let Kj
d∼ ρ be the offspring size of the son j of ∅ .

Then consider separately the trees T ′(ρ,∞), T ′′(ρ,∞) and let K ′, K ′′ d∼ ρ

be the offspring sizes of the roots ∅′, ∅′′ respectively.

Note that, thank to the independence of all offspring sizes, the conditional

distribution of T (P, ρ, t) + Tj(ρ, t) knowing (L = l ) equals up to isomor-

phisms the conditional distribution of T (ρ, t) = T ′(ρ, t) + T ′′(ρ, t) knowing

(K ′= l −1) .

Figure 1.3: Under the knowledge of (K ′ = L− 1), T (P, ρ, t) + Tj(ρ, t) and

T ′(ρ, t) + T ′′(ρ, t) have the same distribution, up to an isomorphism under which

∅, j correspond respectively to ∅′, ∅′′. Indeed all the corresponding nodes, except

∅ and ∅′, share the same offspring distribution ρ and independence does the rest.
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Therefore, using the total probability formula and the fact that l Pl = P ρl−1,

one finds

E
[ ∑

j∈∂T ∅
F

(T (P, ρ, t) + Tj(ρ, t)
)]

=
∞∑

l=0

l E
[
F

(T (P, ρ, t) + Tj(ρ, t)
)∣∣ L= l

]
Pl

=
∞∑

l=1

P E
[
F

(T (P, ρ, t) + Tj(ρ, t)
)∣∣ L= l

]
ρl−1

= P

∞∑

l=1

E
[
F

(T (ρ, t)
)∣∣ K ′= l−1

]
ρl−1

= P E
[
F

(T (ρ, t)
)]

We are now ready to prove the most important result of this chapter.

Theorem 20. Consider the random graphs sequence (GN)N∈N and suppose

i. (GN)N∈N locally converges to the random tree T (P, ρ,∞),

ii. the asymptotic degree distribution P has strongly finite mean,

iii. ρ is the size-biased distribution of P .

Then, for all 0 ≤ β < ∞ and B ∈ R, there exists

lim
N→∞

pN(β, B) = p(β, B) a.s.

Furthermore its value for B > 0 is

p(β,B) =
P

2
log cosh β − P

2
E

[
log

(
1 + tanh β tanh h∗1 tanh h∗2

)]
+

+ E
[
log

(
eB

L∏
i=1

(1 + tanh β tanh h∗i ) + e−B

L∏
i=1

(1− tanh β tanh h∗i )
)]

where

• (h∗i )i≥1 are i.i.d. r.v.’s with the same distribution of the positive solution

h∗ = h∗(β, B) > 0 of the fixed point distributional equation (1.7)
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• L is a random variable with distribution P , independent of (h∗i )i≥1 .

Finally for B ≤ 0 the value of the limit is

p(β, B) = p(β,−B) , p(β, 0) = lim
B→0

p(β, B) .

Proof. Assume the function p is defined by the formula (??) and prove that

pN = 1
N

log ZN −→ p as N →∞.

If β = 0, the system is non-interacting hence it’s easy to check that

pN(0, B) = log 2 + log cosh B = p(0, B) ∀N ∈N .

Henceforth assume β > 0 and B > 0 .

Note that ∂pN/∂β, i.e. the internal energy per particle, is a mean of micro-

scopic quantities. Indeed

∂pN

∂β
=

1

N

∑
ij∈EN

〈σiσj〉GN
.

By the fundamental theorem of calculus, for any N ∈ N

pN(β, B) = pN(0, B) +

∫ β

0

∂pN

∂β′
(β′, B) dβ′ = p(0, B) +

∫ β

0

1

N

∑
ij∈VN

〈σiσj〉GN
dβ′

p(β, B) = p(0, B) +

∫ β

0

∂p

∂β′
(β′, B) dβ′ .

The integrand in the first expression is a.s. bounded uniformly in N :

∣∣∣∣
1

N

∑
ij∈EN

〈σiσj〉GN

∣∣∣∣ ≤
|EN |
N

≤ C a.s.

since by remark 3 the sequence |EN |/N converges a.s. Therefore it suffices

to prove that
1

N

∑
ij∈EN

〈σiσj〉GN
−−−→
N→∞

∂p

∂β
a.s. (1.21)

to conclude that pN(β, B)
a.s.−−→ p(β, B) as N →∞ by dominated convergence.

We’ll break the proof of 1.21 in two parts. Consider the Ising model on a



58 1. Ferromagnetic spin models

single edge with inverse temperature β and random magnetic fields h∗1, h∗2
i.i.d. copies of h∗(β,B)

ν(σ1, σ2) =
1

Z(β, h∗1, h∗2)
exp(β σ1σ2 + h∗1 σ1 + h∗2 σ2) ∀σ1, σ2 = ±1 .

First we’ll prove that 1/N
∑

ij∈EN
〈σiσj〉GN

a.s.−−→ P/2 E[〈σ1σ2〉ν ] as N→∞.

Second we’ll show that ∂p/∂β = P/2 E[〈σ1σ2〉ν ] .

I) Let ij ∈ EN and t ≥ 1. The first step is to localize the quantities to work

with. On one side by the G.K.S. inequality

〈σiσj〉GN
≥ 〈σiσj〉BN (ij, t) (1.22)

on the other side by the G.K.S. inequality and the proposition 7

〈σiσj〉GN
≤ 〈σiσj〉+BN (ij, t) 〈σiσj〉∼GN−BN (ij, t)︸ ︷︷ ︸

≤ 1

≤ 〈σiσj〉+BN (ij, t) (1.23)

Now as (GN)N∈N locally converges to T (P, ρ,∞), by lemma 19

1

N

∑
ij∈EN

〈σiσj〉BN (ij, t)

a.s.−−−→
N→∞

P

2
E

[〈σ∅ ′ σ∅ ′′〉T (ρ,t)

]
(1.24)

By lemma 8 applied to T = T (ρ, t) and U the subgraph induced by the single

edge ∅ ′∅ ′′ , one obtains

〈σ∅ ′ σ∅ ′′〉T (ρ,t) = 〈σ∅ ′ σ∅ ′′〉∅ ′∅ ′′
B∅ ′ → h(t)′, B∅ ′′ → h(t)′′

where h(t)′ := atanh〈σ∅ ′〉T ′(ρ,t) and h(t)′′ := atanh〈σ∅ ′′〉T ′′(ρ,t) .

By the proof of proposition 14 and thank to the independence of h(t)′, h(t)′′

(h(t)′, h(t)′′)
d−−−→

t→∞
(h∗′, h∗′′)

where h∗′, h∗′′ are independent copies of the positive solution of fixed point

distributional equation (1.7). Therefore

〈σ∅ ′ σ∅ ′′〉T (ρ,t)

d−−−→
t→∞

〈σ1σ2〉ν (1.25)
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Starting from the lower bound (1.22) and using (1.24) and (1.25), one obtains

lim inf
N→∞

1

N

∑
ij∈EN

〈σiσj〉GN
≥ P

2
E[〈σ1σ2〉ν ] a.s.

Starting from the upper bound (1.23) and reasoning in a similar way, one

finds

lim sup
N→∞

1

N

∑
ij∈EN

〈σiσj〉GN
≤ P

2
E[〈σ1σ2〉ν ] a.s.

So a.s. there exists limN→∞ 1
N

∑
ij∈EN

〈σiσj〉GN
= P

2
E[〈σ1σ2〉ν ] .

II) Now prove that ∂p
∂β

exists and compute it.

Remind the definition 1.12 of the operator h 7→ ϕh(β, B) , observing that

p(β,B) = ϕh∗(β,B)(β, B) ,

where as usual h∗(β,B) is the positive solution of the fixed point distribu-

tional equation (1.7).

Since the distribution P has ε-strongly finite mean (w.l.o.g. assume 0<ε<1),

by corollary 17 and proposition 18

|ϕh∗(β ′,B)(β
′, B)− ϕh∗(β,B)(β

′, B)| ≤ λ dMK

(
tanh h∗(β′, B) , tanh h∗(β, B)

)1+ε

≤ λ |β′ − β|1+ε

where λ = λ(βmin, βmax, Bmin) < ∞ is a constant valid for any 0 < βmin ≤
β, β′ ≤ βmax < ∞ and B ≥ Bmin > 0.

This fact allows to derive p with no care about the dependence of h∗ on β.

Precisely

∣∣p(β′, B)− p(β, B)

β′ − β
− ϕh∗(β,B)(β

′, B)− ϕh∗(β,B)(β,B)

β′ − β

∣∣

≤ |p(β′, B)− ϕh∗(β,B)(β
′, B)|

|β′ − β|︸ ︷︷ ︸
≤λ |β′−β|ε

+
|p(β,B)− ϕh∗(β,B)(β,B)|

|β′ − β|︸ ︷︷ ︸
=0

≤ |β′ − β|ε −−−→
β′→β

0
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so that there exists

∂p

∂β
(β, B) =

∂ϕh

∂β
(β,B)h=h∗(β,B)

(1.26)

Thus it remains to compute ∂ϕh

∂β
. Let (Xi)i≥1 i.i.d. copies of tanh h∗(β,B),

let L
d∼ P and K

d∼ ρ independent of (Xi)i≥1.

Similarly to the proof of proposition 18, set u := tanh β , f̄(x, y) := y
1+u xy

,

Gl(x2, . . . , xl) := tanh(B +
l∑

j=2

atanh(uxj)) .

From equation (1.12)

∂ϕh

∂β
h=h∗

=
P

2
u − P

2
(1− u2) E

[
X1 X2

1 + uX1 X2

]
+

+ (1− u2) E
[ L∑

i=1

Xi

eB
∏

j 6=i(1 + uXj)− e−B
∏

j 6=i(1− uXj)

eB
∏L

j=1(1 + uXj) + e−B
∏L

j=1(1− uXj)

]

One can rewrite the last fraction as in the proof of proposition 18.

After that, together with independence, use l Pl = P ρl−1 and the fact that

X2
d
= GK+1(X2, . . . , XK+1) as h∗(β, B) solves equation (1.7) :

E
[ L∑

i=1

Xi

eB
∏

j 6=i(1 + uXj)− e−B
∏

j 6=i(1− uXj)

eB
∏L

j=1(1 + uXj) + e−B
∏L

j=1(1− uXj)

]

= E
[
LX1 f̄

(
X1, GL(X2, . . . , XL)

)]
= P E

[
X1 f̄

(
X1, GK+1(X2, . . . , XK+1)

)]

= P E
[
X1 f̄(X1, X2)

]

Substituting in the previous expression after one finds

∂ϕh

∂β
h=h∗

=
P

2
E

[ u + X1 X2

1 + uX1 X2

]
(1.27)

And now it’s easy to verify

u + X1 X2

1 + uX1 X2

d
=

tanh β + tanh h∗1 tanh h∗2
1 + tanh β tanh h∗1 tanh h∗2

=
eβ+h∗1+h∗2 − e−β+h∗1−h∗2 − e−β−h∗1+h∗2 + eβ−h∗1−h∗2

eβ+h∗1+h∗2 + e−β+h∗1−h∗2 + e−β−h∗1+h∗2 + eβ−h∗1−h∗2
= 〈σ1σ2〉ν
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Substituting into equality 1.27 and reminding relation 1.25, one finally finds

∂p

∂β
=

P

2
E[〈σ1σ2〉ν ] .

Steps I) and II) show that the relation 1.21 is true, so that the proof is

concluded in case B > 0 .

Note that the partition function ZN is invariant under the transformation

B 7→ −B, so pN is too. Therefore for B < 0

pN(β, B) = pN(β,−B)
a.s.−−−→

N→∞
p(β,−B) .

To study the case B = 0, observe that pN is Lipschitz continuous w.r.t. B

uniformly in N :

|pN(β,B2)− pN(β, B1)| ≤ |B2 −B1| sup
β×[B1,B2]

∣∣∂pN

∂B

∣∣ =

= |B2 −B1| sup
β×[B1,B2]

∣∣ 1

N

∑
i∈VN

〈σi〉GN

∣∣ ≤ |B2 −B1| .

Therefore p is Lipschitz continuous too, hence there exists limB→0 p(β,B) .

Furthermore 1

|pN(β, 0)− p(β, B)| ≤ |pN(β, 0)− pN(β,B)|+ |pN(β,B)− p(β,B)|
⇒ lim sup

N→∞
|pN(β, 0)− p(β, B)| ≤ |B|

⇒ lim sup
N→∞

pN(β, 0)− p(β, B) ≤ |B| , lim inf
N→∞

pN(β, 0)− p(β, B) ≥ −|B|

so that there exists limN→∞ pN(β, 0) = limB→0 p(β, B) .

Remark 6. The core of this proof is certainly the part I), in which the inter-

nal energy per particle ∂pN/∂β = 1
N

∑
ij∈EN

〈σiσj〉GN
is proved to converge

a.s. in the thermodynamic limit to the quenched correlation of a two-vertex

Ising model with random magnetic fields.

Differently from the rest of the proof, this part does not require any techni-

calities. The idea is to localize the correlations 〈σiσj〉GN
thank to the G.K.S.

1lim sup | · | ≥ {lim sup(·) , − lim sup(·) = lim inf(−·)}
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inequality: this enable to use the hypothesis of local convergence to a tree.

Afterwards the study made about the root magnetisation of the random trees

T (P, ρ, t) allows to write the limit in term of the fixed point h∗ of the distri-

butional equation (1.7).

On the contrary the part II) makes use of many technical results, which are

basically needed to integrate the limit of ∂pN/∂β and come back to the limit

of pN .



Chapter 2

Monomer-dimer models

Let G = (V,E) be a finite simple graph. Denote N = |V | the number vertices.

Associate a positive weight to every vertex {xi}i∈V = x and to every edge

{wij}ij∈E = w. These will be called monomeric weights and dimeric weights

respectively.

Definition 8. A dimeric configuration on the graph G is a family of edges

D ⊆ E respecting the following bond of monogamy:

ij, hk ∈ D, ij 6= hk ⇒ i 6= h, i 6= k, j 6= h, j 6= k .

In words it means that two different edges belonging to D can’t have a vertex

in common.

63
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Figure 2.1: The bold edges form a dimeric configuration on the graph

Figure 2.2: The bold edges do not form a dimeric configuration.

Given a dimeric configuration D, it’s automatically determined the monomeric

configuration composed by the free vertices:

MD := {i ∈ V | ∀ j ∈ V ij /∈ V } .

We say that the edges in the dimeric configuration D are occupied by a

dimer, while the vertices in the monomeric configuration MD are occupied

by a monomer.

Let D denote de set of all possible dimeric configurations on the graph

G. We’ll define a probability measure on D , according to the dimeric and

monomeric weights of the graph:

µ(D) :=
1

Z(w, x)

∏
ij∈D

wij

∏

k∈MD

xk ∀D ∈ D ,

where the normalising factor is

Z(w, x) :=
∑

D∈D

∏
ij∈D

wij

∏

k∈MD

xk .
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This is called a monomer-dimer model on the graph G. From an intuitive

point of view in this model a dimeric configuration D has an high probability

to appear on the graph if it assigns a dimer to the edges with an high dimeric

weight wij and a monomer to the vertices with an high monomeric weight

xi .

The expected value with respect to the measure µ will be denoted by 〈 〉,
that is for any function f of the dimeric configuration put

〈f〉 :=
∑

D∈D

f(D) µ(D) .

The polynomial function Z(w, x) defined above is called the partition func-

tion of the model. Its natural logarithm P (w, x) := log Z(w, x) is called

pressure or free energy.

Remark 7. If we assume that the monomeric and dimeric weights are uni-

form, i.e. wij = w ∀ ij ∈ E and xi = x ∀ i ∈ V , then the expression of the

partition function becomes simpler.

Thank to the bond of monogamy that characterizes any dimeric configura-

tion D, notice that |MD| = N − 2|D|. Then it’s easy to check that in case of

uniform weights

Z(w, x) =

bN/2c∑

k=0

Λ(k) wk xN−2k ,

where Λ(k) := Card{D ∈ D s.t. |D| = k} is the number of possible dimeric

configurations containing k dimers.

Remark 8. Continue assuming uniform monomeric and dimeric weights. In

this case it’s possible to study the partition function Z(w, x) just fixing w = 1

and studying the dependence on x. Indeed using the formula of the previous

remark, it’s easy to verify that

Z(w, x) = wN/2 Z
(
1 ,

x√
w

)
.
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The consequent relation for the pressure is

P (w, x) =
N

2
log w + P

(
1 ,

x√
w

)
.

2.1 Correlation inequalities

An interesting quantity of the model is certainly the probability of having

a dimer on a given edge ij. This probability can be expressed as 〈1ij∈D〉,
where 1 denotes the indicator function of the event in subscript.

Another interesting quantity related to the previous one is the total number

of dimers one expects to see on the graph, that is 〈|D|〉.
We’ll see these quantities can be studied knowing the pressure of the model

and its derivatives.

Proposition 21. Given an edge ij ∈ E, the probability of having a dimer

on ij is

〈1ij∈D〉 = wij
∂P

∂wij

.

Whereas if the dimer and monomer weights are uniform, then the expected

number of dimers on the graph is

〈|D|〉 = w
∂P

∂w
= −x

2

∂P

∂x
+

N

2
.

Proof. Observing that 1ij∈D

∏
hk∈D whk can be written as wij

∂
∂wij

( ∏
hk∈D whk

)

one obtains

〈1ij∈D〉 =
1

Z

∑

D∈D

1ij∈D

∏

hk∈D

whk

∏

l∈MD

xl =
1

Z

∂Z

∂wij

wij =
∂P

∂wij

wij .

Now assume uniform weights wij ≡ w, xi ≡ x. Using the expression of Z

found in remark 7, compute

〈|D|〉 =
1

Z

∑

D∈D

|D|w|D|x|MD| =
1

Z

bN/2c∑

k=0

Λ(k) k wk xN−2k =





1

Z

∂Z

∂w
w

− 1

Z

∂Z

∂x

x

2
+

N

2

and conclude in both cases since ∂Z/Z = ∂P .
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Notice that, since the indicator function is non-negative, the previous propo-

sition implies
∂P

∂wij

≥ 0.

We would like to find some correlation inequalities analogous to the Griffiths-

Kelly-Sherman for ferromagnetic spin models.

We have just seen that an inequality like the G.K.S. 1 is easily satisfied by

monomer-dimer models. Now we ask about an inequality like the G.K.S. 2.

From an intuitive point of view, if we increase the dimeric weight of a given

edge ij, we expect that the probability of having a dimer on ij increases as

well. On the other side if we increase the dimeric weight of a different edge

hk, we are not sure of what will happen.

Proposition 22. Given two edges ij, hk ∈ E,

• if ij = hk then
∂

∂wij

〈1ij∈D〉 ≥ 0 ;

• if ij 6= hk then

∂

∂whk

〈1ij∈D〉 ≥ 0 ⇐⇒ Z(1)(v, x) Z(2)(v, x) ≥ Z(3)(v, x) Z(4)(v, x) .

Here v is the family of dimeric weights defined by vij = vhk = 1 and vlm =

wlm ∀ lm ∈ E, lm 6= ij, hk.

And Z(1), Z(2), Z(3), Z(4) are respectively the conditional partition function

w.r.t. ”there’s a dimer on ij but not on hk”, ”there’s a dimer on hk but not

on ij”, ”there’s a dimer on both ij and hk”, ”there are no dimers on ij and

hk”.

Proof. 1) Assume ij = hk. Write the partition function dividing the cases

”there’s a dimer on ij” and ”there’s not a dimer on ij”:

Z(w, x) =
∑

D∈D

∏

lm∈D

wlm

∏
p∈MD

xp = wij

∑
D∈D
ij∈D

∏
lm∈D
lm6=ij

wlm

∏
p∈MD

xp +
∑
D∈D
ij /∈D

∏

lm∈D

wlm

∏
p∈MD

xp

= wij

∑
D∈D
ij∈D

∏

lm∈D

vlm

∏
p∈MD

xp +
∑
D∈D
ij /∈D

∏

lm∈D

vlm

∏
p∈MD

xp = wij Z(3)(v, x) + Z(4)(v, x) .
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Hence, noticing v does not depend on the value of wij ,

∂P

∂wij

=
1

Z

∂Z

∂wij

=
Z(3)(v, x)

wij Z(3)(v, x) + Z(4)(v, x)
.

It follows that the function wij
∂P

∂wij
is increasing w.r.t. the variable wij .

Therefore
∂

∂wij

(
wij

∂P

∂wij

) ≥ 0 .

Conclude using the fact that 〈1ij∈D〉 = wij
∂P

∂wij
, by the previous proposition.

2) Now assume ij 6= hk. Dividing the four cases ”there’s a dimer on ij but

not on hk”, ”there’s a dimer on hk but not on ij”, ”there’s a dimer on both

ij and hk”, ”there are no dimers on ij and hk” and proceeding as before one

finds

Z(w, x) = wij Z(1)(v, x) + whk Z(2)(v, x) + wij whk Z(3)(v, x) + Z(4)(v, x) .

Notice v does not depend on the values of wij, whk and derive the pressure

two times w.r.t. the variables wij, whk:

∂2P

∂whk∂wij

=
1

Z

∂2Z

∂whk∂wij

− 1

Z2

∂Z

∂whk

∂Z

∂wij

=
Z(3)(v, x)Z(4)(v, x)− Z(1)(v, x)Z(2)(v, x)

Z(w, x)2

In order to conclude remember that 〈1ij∈D〉 = wij
∂P

∂wij
by the previous propo-

sition, so that
∂

∂whk

〈1ij∈D〉 = wij
∂2P

∂whk∂wij

.

Remark 9. On the contrary of the ferromagnetic spin models, in a monomer-

dimer model we can’t expect that increasing the dimeric weight of an edge hk

always brings an increase of the probability of having a dimer on another edge

ij. This is because of the bond of monogamy, which entails a competition

between two neighbour edges in order to gain the common vertex.

In fact the last proposition allows us to prove this intuitive result. Suppose

h = i and k 6= j, then
∂

∂wik

〈1ij∈D〉 ≤ 0 .
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Indeed there’s no dimeric configuration D containing both ij and ik, hence

Z(3) ≡ 0. Using the non-negativity of any partition function, the previous

proposition gives the result.

Now we’ll imagine to break the graph G = (V, E) into two disjoint subgraphs

G′ and G′′ and we’ll interpolate between the monomer-dimer models in the

two different situations. With a good choice of the interpolation method,

this technique brings a useful propriety of super-additivity for the pressure.

Let V ′, V ′′ be two disjoint subsets of the vertex set V .

Let E ′ = {ij ∈ E| i ∈ V ′, j ∈ V ′}, E ′′ = {ij ∈ E| i ∈ V ′′, j ∈ V ′′},
Eint = E r (E ′ ∪ E ′′), the induced edge sets. Let G′ = (V ′, E ′), G′′ =

(V ′′, E ′′), the two disjoint subgraphs of G. Denote D , D ′, D ′′ the sets of

dimeric configurations on the graphs G, G′, G′′ respectively. Denote ZG,

ZG′ , ZG′′ and PG, PG′ , PG′′ the partition functions and the pressures of the

monomer-dimer model on the weighted graphs G, G′, G′′ respectively.

Figure 2.3: Circled in blue the subgraphs G′, G′′, marked in red the edges of which

we interpolate the dimeric weight

Proposition 23. Let G′, G′′ be two vertex-disjoint subgraphs of G. Then:

PG(w, x) ≥ PG′(w, x) + PG′′(w, x) .

Goes without saying that the dependence of the pressures in the right-hand

side on w , x is only by the appropriate restriction of these families.
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Proof. Define the interpolating edge weights by

wij(t) :=

{
wij , if ij ∈ E ′ or ij ∈ E ′′

t wij , if ij ∈ Eint
∀t ∈ [0, 1]

The interpolating partition function is Zt := ZG(w(t), x). As usual the in-

terpolating pressure will be Pt := log Zt.

Observe that given a dimeric configuration D ∈ D we can always think it as a

disjoint union D = D′ ∪D′′ ∪Dint with D′ = D∩E ∈ D ′, D′′ = D∩E ′′ ∈ D ′′,

Dint = D∩Eint; whereas the associated monomeric configuration simply de-

composes in MD = M ′
D′ ∪M ′′

D′′ with M ′
D′ = {i ∈ V ′| ∀j ∈ V ′ ij /∈ D′} and

M ′′
D′′ = {i ∈ V ′′| ∀j ∈ V ′′ ij /∈ D′′}.

Moreover there’s a bijection between the dimeric configurations D ∈ D such

that Dint = ∅ and the disjoint unions of a dimeric configuration D′ ∈ D ′

and a dimeric configuration D′′ ∈ D ′′.

Now the interpolating partition function can be written

Zt =
∑

D∈D

∏
ij∈D

wij(t)
∏

k∈MD

xk =
∑

D∈D

t|D
int| ∏

ij∈D

wij

∏

k∈MD

xk ,

therefore the two extreme cases are

Z0 =
∑
D∈D

Dint=∅

∏
ij∈D

wij

∏

k∈MD

xk =
∑

D′∈D ′

∑

D′′∈D ′′

∏

ij∈D′
wij

∏

ij∈D′′
wij

∏

k∈M ′
D′

xk

∏

k∈M ′′
D′′

xk

= ZG′(w, x) ZG′′(w, x) ;

Z1 =
∑

D∈D

∏
ij∈D

wij

∏

k∈MD

xk = ZG(w, x) .

Multiplicative relations for the partition functions become additive relations

for the pressures. Therefore, using also the fundamental theorem of calculus,

PG(w, x)− [
PG′(w, x) + PG′′(w, x)

]
= P1 − P0 =

∫ 1

0

dPt

dt
dt .

On the other hand observe

dPt

dt
=

1

Zt

dZt

dt
=

∑
D∈D |Dint| t|Dint|−1

∏
ij∈D wij

∏
k∈MD

xk

Zt

= t−1〈|Dint|〉t ≥ 0 .
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Remark 10. We can think this proposition as an improvement of the propo-

sition 21. Indeed the parameter t increasing brings the rise of some dimeric

weights and therefore, since we already knew that ∂P
∂wij

≥ 0, it’s natural that

the pressure increases.

Remark 11. If the dimeric and monomeric weights are taken uniform on

the graph, there’s another nice way to prove the statement of proposition 23.

Assume wij = w ∀ ij ∈ E, xi = x∀ i ∈ V , so that by remark 7 the partition

functions can be written

ZG(w, x) =

bN/2c∑

k=0

Λ(k) wk xN−2k ,

ZG′(w, x) =

bN1/2c∑

k1=0

Λ′(k1) wk1 xN1−2k1 ,

ZG′′(w, x) =

bN2/2c∑

k2=0

Λ′′(k2) wk2 xN2−2k2 ,

where N1 = |V ′|, N2 = |V ′′|, while Λ(k), Λ′(k1), Λ′′(k2) are the number of

possible dimeric configuration with k, k1, k2 dimers on the graph G, G′, G′′

respectively.

Notice that the (disjoint) union of a dimeric configuration on G′ and a dimeric

configuration on G′′ is always a dimeric configuration on G, therefore

Λ(k) ≥
∑

k1+k2=k

Λ′(k1) Λ′′(k2) ∀ k = 0, . . . , bN/2c .

Now multiplying the polynomials ZG′ and ZG′′ , one finds

ZG′(w, x) ZG′′(w, x) =

bN/2c∑

k=0

( ∑

k1+k2=k

Λ′(k1) Λ′′(k2)

)
wk xN−2k ≤ ZG(w, x) .

Taking the logarithms it follows that PG′(w, x) + PG′′(w, x) ≤ PG(w, x) .

Remark 12. The proposition 23 (or equivalently the previous remark) will

permit to prove the existence of the thermodynamic limit for the pressure

of the monomer-dimer model on some sequences of graphs (GN)N∈N that do
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not need any normalisation of the weights when N grows.

Actually it’s important to notice that when we break the graph G into the

two subgraphs G′, G′′ , we did not change the weights.

Proposition 24. If H is a subgraph of G then PH(w, x) ≤ PG(w, x).

Proof. Denote DH , DG the set of all possible dimeric configurations on H,

G respectively. If H is a subgraph of G, it is clear that DH ⊆ DG. Hence,

since the weights are positive,

ZG(w, x) =
∑

D∈DG

∏
ij∈D

wij

∏

k∈MD

xk ≥
∑

D∈DH

∏
ij∈D

wij

∏

k∈MD

xk = ZH(w, x) .

And the statement follows by the monotonicity of the logarithm.

2.2 General bounds for the pressure

We are interested in the behaviour of the system when the number of vertices

N goes to infinity, i.e. in the thermodynamic limit.

Therefore we consider a sequence of graphs GN = (VN , EN), N ∈ N with

|VN | = N and we provide them with dimeric and monomeric weights wN , xN

(a priori depending on N , but chosen uniform on each graph for the sake of

simplicity). We’ll denote ZN , PN the partition function and the pressure of

the monomer-dimer model on GN .

It is clear that in such a generality we can’t hope to obtain many results.

A more precise sequence of graphs need to be chosen, and that’s what we’ll

do in next sections. But for the moment let see how the weights should be

chosen.

From a physical point of view we expect that the free energy grows linearly

with the number of particles N . To guarantee that this condition is satisfied,

it is important to find some bounds for the free energy of the monomer-dimer

models.
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Proposition 25.

log xN ≤ PN

N
(wN , xN) ≤ log xN +

|EN |
N

log
(
1 +

wN

x2
N

)
.

Proof. By remark 7, the pressure can be written

PN(wN , xN) = log
( bN/2c∑

k=0

ΛN(k) wk
N xN−2k

N

)
,

where ΛN(k) is the number of possible dimeric configurations composed by

k dimers on the graph GN .

Start assuming wN = 1. A lower bound is given choosing k = 0, that is the

configuration with a monomer on each vertex of the graph:

PN

N
(1, xN) =

1

N
log

( bN/2c∑

k=0

ΛN(k) xN−2k
N

) ≥ 1

N
log(1 · xN

N) = log xN .

On the other side an upper bound can be found observing ΛN(k) ≤ (|EN |
k

)
,

since any dimeric configuration composed by k dimers is a (particular) subset

of k edges. In addition notice that if |EN | < bN/2c then Λ(k) = 0 ∀ k ≥ |EN |.
Therefore:

PN

N
(1, xN) =

1

N
log

( bN/2c∑

k=0

ΛN(k) xN−2k
N

) ≤ 1

N
log

( |EN |∑

k=0

(|EN |
k

)
xN−2k

N

)

?
=

1

N
log

(
xN

N (1 + x−2
N )|EN |) = log xN +

|EN |
N

log(1 + x−2
N ) ,

where the Newton’s binomial formula is used at ?.

Now use the remark 8 to deal with the general case. Since

PN

N
(wN , xN) = log

√
wN +

PN

N

(
1,

xN√
wN

)
,

the previous bounds can be transformed in the desired ones.

Remark 13. In finite dimensional lattices or in diluted graphs, the number

of edges is of the same order of the number of vertices. In this situation we
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may choose the dimeric and monomeric weights independently on N .

Indeed if |EN | ≤ CN and we set wN = w, xN = x, by the previous proposi-

tion we get

log x ≤ PN

N
(w, x) ≤ log x + C log

(
1 +

w

x2

)
,

so that the free energy is of order N .

On the contrary in complete graphs the number of edges is of the order of

the square of the number of vertices. In this situation we need to normalize

the dimeric weight by N .

Indeed if |EN | ≤ CN2 and we set wN = w/N , xN = x, by the previous

proposition we get

log x ≤ PN

N

( w

N
, x

) ≤ log x + CN log
(
1 +

w

Nx2

) ≤ log x + C
w

x2
,

so that the free energy is again of order N .

2.3 Monomer-dimer model on the line

Consider a line of N points, each one interacting only with his two (or one

at the extremes) neighbours. This can be represented by the graph LN =

(VN , EN) with VN = {1, . . . , N} and EN = {{k, k + 1}| k = 1 . . . N − 1} .

For the sake of simplicity we want to consider uniform dimeric and monomeric

weights. Therefore by remarks 8 and 13 we may take w
(N)
ij = 1 ∀ ij ∈ EN

and x
(N)
i = x ∀ i ∈ VN for every N ∈ N. In this section we denote ZLN

(x),

PLN
(x) the partition function and the pressure of the monomer-dimer model

on the line LN with the weights introduced.

We are interested in the behaviour of the pressure per particle PLN
/N as N

goes to infinity. With the aim of illustrating two different techniques, first

we’ll prove the existence of the limit and after we’ll compute it.
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2.3.1 Existence of the thermodynamic limit

Proposition 26. There exists limN→∞ 1
N

PLN
(x) = supN∈N

1
N

PLN
(x) ∈ R.

Proof. Let N1, N2, N ∈ N such that N1 + N2 = N . Consider the line LN

and its two subgraphs LN1 and L̃N2 induced respectively by the first N1 and

the last N2 vertices. Notice the graph L̃N2 is isomorphic to LN2 .

Figure 2.4: The line graph LN and its two subgraphs LN1 and L̃N2

Proposition 23 applies, hence

PLN
(x) ≥ PLN1

(x) + PL̃N2
(x) = PLN1

(x) + PLN2
(x) .

Therefore by Fekete’s lemma

∃ lim
N→∞

PLN

N
(x) = sup

N∈N

PLN

N
(x) .

Since |EN | = N − 1, thank to proposition 25 this limit is finite. Precisely

log x ≤ lim
N→∞

PLN

N
(x) ≤ log x + log

(
1 +

1

x2

)
.

2.3.2 Exact solution

Now we’ll compute the value of the polynomial ZLN
(x) for any N ∈ N, using

a recurrence technique due to Heilmann and Lieb. Then from this result

we’ll derive the value of the limN→∞ 1
N

PLN
(x).

It is convenient to introduce a new (real) polynomial related to the partition

function:

QLN
(x) := i−N ZLN

(i x) =

bN/2c∑

k=0

(−1)k ΛLN
(k) xN−2k
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where i is the imaginary unit and ΛLN
(k) denotes the number of possible

dimeric configurations formed by k dimers on the line LN .

Proposition 27. The partition function of the monomer-dimer model on

the line LN is

ZLN
(x) = iN UN

(−i x

2

)

where UN is the N th Chebyshev polynomial of the second kind.

Proof. Look for a recursive formula for ΛLN
. For any dimeric configuration

D on the line LN two possibilities can be distinguished:

I. There is a monomer on the vertex N , i.e. {N−1, N} /∈ D. This case is

equivalent to say that D = D′ is a dimeric configuration on the sub-line

LN−1.

II. There is a dimer between the vertices N and N−1, i.e. {N−1, N} ∈ D.

In order that this may happen it is necessary {N−2, N−1} /∈ D. Hence

this case is equivalent to say

D = {N− 1, N} ∪ D′′ ,

where D′′ is a dimeric configuration on the sub-line LN−2.

Therefore for any k = 0, . . . , bN/2c

ΛLN
(k) = ΛLN−1

(k) + ΛLN−2
(k − 1) .

Figure 2.5: The two kinds of dimeric configuration D on LN : with a monomer on

N or with a dimer between N and N− 1.
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Now introduce the recurrence relation for the coefficients in the expression

of the polynomial QLN
(x) and find

QLN
(x) = xQLN−1

(x)−QLN−2
(x) .

Complete this recurrence relation with the initial conditions

QL1(x) = x , QL0(x) = 1 .

Now the Chebyshev polynomials of the second kind are defined as the solution

of the following recurrence problem
{

UN(x) = 2xUN−1(x)− UN−2(x)

U1(x) = 2x , U0(x) = 1
.

Therefore it’s easy to check that UN(x/2) verifies the same recurrence prob-

lem as QLN
(x). Hence

QLN
(x) = UN

( x

2

)
.

Conclude observing that by definition of QLN
,

ZLN
(x) = iN QLN

(−i x) .

Corollary 28. The partition function of the monomer-dimer model on the

line LN is

ZLN
(x) =

(
x +

√
x2 + 4

)N+1 − (
x−√x2 + 4

)N+1

2N+1
√

x2 + 4
.

Proof. Remind the Chebyshev polynomials of the second kind admit the

following explicit form:

UN(x) =

(
x +

√
x2 − 1

)N+1 − (
x−√x2 − 1

)N+1

2
√

x2 − 1
.

Substitute this expression in the formula for ZLN
(x) given by the previous

proposition and after few computations find the desired result.
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Set pL(x) := limN→∞ 1
N

PLN
(x), the thermodynamic limit of the pressure per

particle. By proposition 26 we already know that this limit exists, now we

are going to compute it (it is not required to know the existence before).

Corollary 29. The thermodynamic limit of the pressure on the line is

pL(x) = − log 2 + log
(
x +

√
x2 + 4

)

Proof. Use the explicit expression for the partition function ZLN
(x) found in

the previous corollary to compute

1

N
PLN

(x) =
1

N
log

[(
x +

√
x2 + 4

)N+1 − (
x−

√
x2 + 4

)N+1
]

+

− 1

N

(
(N + 1) log 2 + log

√
x2 + 4

)
.

Denote S1, S2 respectively the first and the second addend in this expression.

Clearly S2 −−−→
N→∞

− log 2 . To study S1 isolate the leading part:

S1 =
1

N
log

[
1−

(
x−√x2 + 4

x +
√

x2 + 4

)N+1 ]
+

1

N
log

[(
x +

√
x2 + 4

)N+1 ]

and then observe −1 < x−√x2+4
x+
√

x2+4
< 0 so that

1

N
log

[
1−

(
x−√x2 + 4

x +
√

x2 + 4

)N+1 ]
−−−→
N→∞

0 ,

while

1

N
log

[(
x+
√

x2 + 4
)N+1 ]

=
N+ 1

N
log

(
x+
√

x2 + 4
) −−−→

N→∞
log

(
x+
√

x2 + 4
)

This concludes the proof.

2.4 Monomer-dimer model on the d-dimensional

cube

Fix d ∈ N≥1. Consider the points of a d-dimensional lattice, each one inter-

acting only with the nearest (in the standard euclidian metric) neighbours.
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This situation can be represented by the graph In = (Vn, En) with Vn =

{0, 1, . . . , n}d and En =
{{(i1, . . . , id), (j1, . . . , jd)}

∣∣ 1 ≤ is, js ≤ n,
∑d

s=1 |is−
js| = 1

}
.

Observe that the numbers of vertices and edges of the d-dimensional cube In

are respectively:

Nn := |Vn| = (n + 1)d , |En| = d n (n + 1)d−1 .

We will consider uniform dimeric and monomeric weights. Therefore by

remarks 8 and 13 we may take w
(N)
ij = 1 ∀ ij ∈ EN and x

(N)
i = x ∀ i ∈ VN

for all N ∈ N. We denote ZIn(x) and PIn(x) the partition function and the

pressure of the monomer-dimer model on the d-dimensional cube In with the

weights introduced.

Remark 14. Notice the bounds for the pressure found in proposition 25

here become

log x ≤ 1

Nn

PIn(x) ≤ log x + d log(1 + x−2) .

We will not approach the problem of computing the thermodynamic limit

of the pressure per particle when d ≥ 2. Anyway it is easy to show that it

exists, thank to the super-additivity proved in proposition 23 .

Proposition 30. There exists limn→∞ 1
Nn

PIn(x) = supn∈N
1

Nn
PIn(x) ∈ R .
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Proof. Let n,m ∈ N with n > m. Do the euclidean division of n by m:

n = q m + r with q ∈ N, q ≥ 1, r ∈ {0, 1, . . . , m− 1} .

First partition the cube In in the sub-cube Iq m and in its complementary

graph In − Iq m . By proposition 23

PIn(x) ≥ PIqm(x) + PIn−Iqm(x) .

Now investigate the two terms separately.

1) Divide the cube Iqm in qd cubes of side length m (hence isomorphic to

Im). Reducing by 1 vertex the sides of each of these cubes, we can suppose

they are disjoint. Therefore by proposition 23

PIqm(x) ≥ qd PIm−1(x) .

2) On the other hand count the number of vertices contained in the graph

In − Iq m, they are Nn −Nq m = nd − (q m)d. Then bound the pressure from

below using proposition 25

PIn−Iqm(x) ≥ (
nd − (q md)

)
log x .

Figure 2.6: The square lattice In (d = 2) and its sub-square Iqm. Iqm is again

divided in 2q squares isomorphic to Im, which are ”almost disjoint”.

In the end the inequality found, divided by Nn = (n + 1)d, is

1

(n + 1)d
PIn(x) ≥ qd

(n + 1)d
PIm−1(x) +

nd − (q m)d

(n + 1)d
log x .
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Keep m fixed and let n →∞; it’s easy to check that the inequality becomes

lim inf
n→∞

1

(n + 1)d
PIn(x) ≥ 1

md
PIm−1(x) + 0 ;

since m is arbitrary, it is true also for the supremum over m, hence

lim inf
n→∞

1

(n + 1)d
PIn(x) ≥ sup

m∈N

1

md
PIm−1(x) ≥ lim sup

m∈N

1

md
PIm−1(x) .

It is clear that lim supm∈N
1

md PIm−1(x) = lim supm→∞
1

(m+1)d PIm(x). There-

fore conclude that

∃ lim
n→∞

1

(n + 1)d
PIn(x) = sup

n∈N

1

(n + 1)d
PIn(x)

and the previous remark guarantees that it is finite.

2.5 Monomer-dimer model on the complete

graph

Consider a set of N points each one interacting with all the others. That is the

graph KN = (VN , EN) with VN = {1, . . . , N} and EN = {{i, j}| i, j ∈ VN} .

For the sake of simplicity we want to consider uniform dimeric and monomeric

weights. Therefore by remarks 8 and 13 we may take w
(N)
ij = 1/(N−1) ∀ ij ∈

EN and x
(N)
i = x ∀ i ∈ VN for all N ∈ N.

In this section we denote ZKN
(x) ≡ ZKN

(
1

N−1
, x

)
and PKN

(x) ≡ PKN

(
1

N−1
, x

)

the partition function and the pressure of the monomer-dimer model on the

complete graph KN with the weights introduced.
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As observed in remark 12, the proposition 23 cannot be used to prove the

convergence of the pressure per particle PKN
/N on the complete graph, since

here the dimeric weights are normalised by N . We would need a more spe-

cific interpolation which takes account of the dependence of the weights on

the size N . . .We’ll treat this problem later. Let’s first prove the existence of

the thermodynamic limit directly computing it.

2.5.1 Exact solution

As usual we start computing the value of the polynomial ZKN
(x), using

the recurrence technique due to Heilmann and Lieb. Define two supporting

polynomials related to the partition function

QKN

( 1

N − 1
, x

)
:= i−N ZKN

(i x) =

bN/2c∑

k=0

(−1)k ΛKN
(k)

( 1

N − 1

)k
xN−2k ,

QKN
(1, x) :=

bN/2c∑

k=0

(−1)k ΛKN
(k) xN−2k ,

where ΛKN
(k) denotes the number of possible dimeric configurations formed

by k dimers on the complete graph KN . Notice the coefficient 1/(N − 1)k in

the first polynomial, due to the normalized dimeric weight.

Proposition 31. The partition function of the monomer-dimer model on

the complete graph KN is

ZKN
(x) =

iN

(N − 1)N/2
HN

(− i
√

N − 1 x
)

where HN is the N th probabilistic Hermite polynomial.

Proof. For any D dimeric configuration on the graph KN there are two dis-

tinct possibilities:

I. On the vertex N there is a monomer, i.e. {1, N}, . . . , {N−1, N} /∈ D.

This case is verified if and only if D = D′ is a dimeric configuration on

the complete sub-graph KN−1.
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II. There is a dimer between the vertex N and (exactly) one of the other

vertices, i.e. ∃ ! i = 1, . . . , N−1 s.t. {i, N} ∈ D. In order that this may

happen it’s necessary for i not have any dimer with the other vertices.

Thus this case is verified if and only if

D = {i, N} ∪ D′′ ,

where D′′ is a dimeric configuration on K̃
(i)
N−2, the complete subgraph

of KN−1 induced removing the vertex i.

Figure 2.7: The two kinds of dimeric configuration D on KN : with a monomer

on the vertex N or with a dimer between N and one of the previous vertices i.

Notice any K̃
(i)
N−2 is isomorphic to KN−2. Therefore for any k = 0, . . . , bN/2c

ΛKN
(k) = ΛKN−1

(k) + (N− 1) ΛKN−2
(k−1) .

Now introduce the recurrence relation for the coefficients in the expression

of the polynomial QKN
(1, x) and find

QKN
(1, x) = x QKN−1

(1, x)− (N− 1) QKN−2
(1, x) .

Complete this recurrence relation with the initial conditions

QK1(1, x) = x , QK0(1, x) = 1 .

Now the probabilistic Hermite polynomials are proven to be the solution of

the following recurrence problem
{

HN(x) = xHN−1(x)− (N − 1) HN−2(x)

H1(x) = x , H0(x) = 1
.
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Therefore QKN
(1, x) = HN(x) . Notice, as previously done in remark 8, that

QKN

(
1/(N− 1) , x

)
= 1/(N − 1)N/2 QKN

(
1 ,
√

N − 1 x
)

. Hence

QKN

( 1

N − 1
, x

)
=

( 1

N − 1

)N/2
HN

(√
N − 1 x

)
.

Conclude reminding that ZKN
(x) = iN QKN

(
1/(N− 1) ,−i x

)
.

Corollary 32. The partition function of the monomer-dimer model on the

complete graph KN is

ZKN
(x) =

bN/2c∑

k=0

N !

k! (N − 2k)!
2−k (N− 1)−k xN−2k .

Proof. Remind the probabilistic Hermite polynomials have the following ex-

pansion:

HN(x) =

bN/2c∑

k=0

(−1)k N !

k! (N − 2k)!
2−k xN−2k .

Substitute this expression in the formula for ZKN
(x) given by the previous

proposition and after few computations find the desired result.

Remark 15. This expansion of the partition function ZKN
(x) can be found

also with a simple combinatorial argument. By definition

ZKN
(x) =

bN/2c∑

k=0

ΛKN
(k) (N− 1)−k xN−2k .

Notice any dimeric configuration D on KN can be built following the iterative

procedure here described:

• choose two different vertices i and j in V s (notice it can be done in
(|V s|

2

)

different ways) and link them by a dimer setting Ds := Ds−1 ∪ ij ,

• set V s+1 := V s r {i, j} ;
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repeat for s = 1, . . . , k, with initial sets V 1 := VN = {1, . . . , N}, D0 := ∅
and finally D := Dk .

Therefore the number ΛKN
(k) of possible dimeric configuration with k dimers

on the complete graph KN is

ΛKN
(k) =

(
N

2

)(
N − 2

2

)
. . .

(
N − 2(k − 1)

2

) /
k! ,

where one divides by k! as not interested in the order of the dimers.

This can be rewritten as

ΛKN
(k) =

N !

k! (N − 2k)!
2−k ,

giving the desired expression for ZKN
.

Set pK(x) := limN→∞ 1
N

PKN
(x), the thermodynamic limit of the pressure

per particle. We are going to prove this limit exists directly computing it.

Corollary 33. The thermodynamic limit of the pressure on the complete

graph exists and it is

pK(x) = f(x)
(
1− log f(x)− log 2

)
+ g(x)

(
1− log g(x) + log x

)− 1

where

f(x) =
1

4

(
2 + x2 − x

√
x2 + 4

)
, g(x) = 1− 2 f(x)

Proof. It is convenient to set for k = 0 . . . bN/2c

aN(k, x) =
N !

k! (N − 2k)!
2−k (N − 1)−k xN−2k ,

MN(x) = max
k=0...bN/2c

aN(k, x) .

By the previous corollary (or remark) the explicit expansion of the partition

function is

ZKN
(x) =

bN/2c∑

k=0

aN(k, x) ,
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hence

MN(x) ≤ ZKN
(x) ≤ (N

2
+ 1

)
MN(x) .

Taking the logarithms and dividing by N one gets

1

N
log MN(x) ≤ 1

N
PKN

(x) ≤ 1

N
log

(N

2
+ 1

)
︸ ︷︷ ︸−−−→

N→∞
0

+
1

N
log MN(x) .

Therefore if one proves that (log MN)/N −−−→
N→∞

l , it will follow that also

PKN
/N −−−→

N→∞
l thank to the squeeze theorem. So concentrate on the asymp-

totic behaviour of log MN/N .

I) The first step is to understand which is the maximum term of each sum,

studying the trend of aN(k, x) as a function of k ∈ {0, . . . , bN/2c} .

Simplifying the factorials and isolating k and k2, on finds

aN(k, x) ≤ aN(k + 1, x) ⇐⇒
4 k2 − 2

(
2N − 1 + (N − 1) x2

)
k + N2 −N − 2 (N − 1) x2 ≥ 0 (? )

Solve this second degree equation in k, finding for all N sufficiently large

k ≤ 1

4

(
2N − 1 + (N − 1) x2

)− 1

8

√
∆(N, x) =: k−(N, x) or

k ≥ 1

4

(
2N − 1 + (N − 1) x2

)
+

1

8

√
∆(N, x) =: k+(N, x) ,

with

∆(N, x) = 4
[
(x4 + 4x2) N2 + (2x2 − 2x4) N + x4 − 6x2 + 1)

]
> 0 .

As N →∞ one may estimate

k±(N, x) = f±(x) N + O(
√

N ) ,

with

f±(x) =
1

4

(
2 + x2 ± x

√
x2 + 4

)
.

Observe that f+(x) > 1/2 while f−(x) < 1/2 , hence for N sufficiently large

k+(N, x) > N/2 while k−(N, x) < N/2.
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Therefore the inequality (? ) with k < N/2 is equivalent to k ≤ k−(N, x) .

To resume for N sufficiently large

aN(k, x) ≤ aN(k + 1, x) ⇐⇒ k ≤ k−(N, x) = f−(x) N + O(
√

N ) .

II) Now one knows the maximum term of the sum is that with index k =

kmax = bk−(N, x)c+ 1, one can compute

MN(x) = max
k=0...bN/2c

aN(k, x) = aN(kmax, x) = aN

(
f−(x) N + O(

√
N ) , x

)

=
N !

(
2 (N− 1)

)−f(x) N+O(
√

N )

(
f(x) N + O(

√
N )

)
!
(
N − 2f(x) N + O(

√
N )

)
!

xN−2 f(x) N+O(
√

N )

where f(x) := f−(x). Set also g(x) := 1− 2 f(x).

Take the logarithm, divide by N and use the Stirling formula (in the form

log(n!) = n log n− n + O(log n) as n →∞) to find

1

N
log MN(x) ∼

N→∞
N log N −N

N
− f(x)N log

(
f(x)N

)− f(x)N

N
+

− g(x)N log
(
g(x)N

)− g(x)N

N
− f(x)N log(2N)

N
+

g(x)N log x

N

Simplifying N and isolating log N and then f(x) and g(x), one finds

1

N
log MN(x) ∼

N→∞

(
1− f(x)− g(x)− f(x)

)
log N +

+ f(x)
(−log f(x) + 1− log 2

)
+ g(x)

(−log g(x) + 1 + log x
)−1

Notice here the coefficient of log N is zero, hence the limit of (log MN(x))/N

is found. As observed before PKN
(x)/N converges to the same limit and so

the statement is proved.

2.5.2 An open problem: monotonicity

We may ask if the thermodynamic limit pK(x) is reached in a monotone way,

or more generally if pK(x) = supN∈N
1
N

PKN
(x) or pK(x) = infN∈N

1
N

PKN
(x).

Super-additivity or sub-additivity of the sequence (PKN
)N∈N would give this

result, but since on the complete graph the dimeric weight depends on N the



88 2. Monomer-dimer models

proposition 23 can’t be used to infer the super-additivity of PKN
.

The first idea is to define a new interpolation, which takes account of the

dependence of the weights on the size of the system.

Given N, N1, N2 ∈ N such that N1 +N2 = N , we defined the following linear

interpolating dimeric weights for t ∈ [0, 1]

wij(t) = w
(N,N1,N2)
ij (t) =





t
N−1

+ 1−t
N1−1

, if i, j ∈ {1 . . . N1}
t

N−1
+ 1−t

N2−1
, if i, j ∈ {N1 +1 . . . N}

t
N−1

, if i ∈ {1 . . . N1} , j ∈ {N1 +1 . . . N}
Notice that when t = 1 we have the normalized dimeric weight on KN ,

whereas when t = 0 we have the normalised dimeric weights on the two

complete subgraphs KN−1, K̃N−2 and no connection (i.e. zero dimeric weight)

between them.

Denote Zt := ZKN

(
w(t), x

)
the interpolating partition function and Pt :=

log Zt. Along the lines of the proof of proposition 23, it’s easy to check that

Z0 = ZKN1

( 1

N1 − 1
, x

)
ZKN2

( 1

N2 − 1
, x

)
, Z1 = ZKN

( 1

N − 1
, x

)

and in consequence:

PKN

( 1

N
, x

)−
[
PKN1

( 1

N1 − 1
, x

)
+PKN2

( 1

N2 − 1
, x

)]
= P1−P0 =

∫ 1

0

dPt

dt
dt .

But for the moment we did not manage to show if dPt/dt has a constant sign.

Also if we didn’t prove the result by interpolation, we conjecture the same

that the thermodynamic limit is reached in a monotone way, with direction

changing if the dimeric weight is normalised by N − 1 or by N . Precisely,

denoting with pK(x) the limit computed in corollary 33, we think that

Conjecture 34. For every x > 0 there exist N(x) , N(x) ∈ N such that

pK(x) = inf
N> N(x)

1

N
PKN

(
(N−1)−1, x

)
= inf

N∈ 2N

1

N
PKN

(
(N−1)−1, x

)
,

pK(x) = inf
N> N(x)

1

N
PKN

(N−1, x) = inf
N∈ 2N+1

1

N
PKN

(N−1, x) .
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It’s easy to check that if we take dimeric weight 1/(N−1), as done in the

previous subsection, or 1/N , the limit of the pressure per particle as N →∞
is always pK(x) (in fact the proof of corollary 33 is the same).

Anyway from a graphical analysis it is clear that the direction from which

this limit is reached does change.

(a) (b)

(c) (d)

Figure 2.8: The pressure per particle x 7→ 1
N PKN

(w(N), x) for some values of N

and in the limit N →∞. We can compare the behaviour if the dimeric weight is

w(N) = 1/(N−1) (graphs a, c) or w(N) = 1/N (graphs b, d). In the first case the

limit is reached from above, in the second one it is reached from below.

We can also see there is no uniformity w.r.t. x, unless we restraint to N even in

the first case or N odd in the second one.

Another way to prove our conjecture could be to investigate directly the

sub-additivity or super-additivity inequality, since we know the explicit ex-

pression of the partition function ZKN
.

To fix the ideas let’s take dimeric weight 1/(N −1). Let N, N1, N2 ∈ N
such that N1 + N2 = N ; obviously the sub-additivity of the pressure can be
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rewritten as

PKN

(
(N−1)−1, x

) ≤ PKN1

(
(N1−1)−1, x

)
+ PKN2

(
(N2−1)−1, x

) ⇐⇒
ZKN

(
(N−1)−1, x

) ≤ ZKN1

(
(N1−1)−1, x

) · ZKN2

(
(N2−1)−1, x

)

A sufficient (but not necessary) condition is given comparing coefficient by

coefficient the left-hand polynomial and the right-hand one. That is, looking

at the expression of the partition function given by corollary 32,

N ! (N − 1)−k

k! (N − 2k)!
≤

∑

k1+k2=k

N1! N2! (N1 − 1)−k1 (N2 − 1)−k2

k1! k2! (N1 − 2k1)! (N2 − 2k2)!

for every k = 0, . . . , bN/2c .

The numerical investigation of this inequality gives good results: if we take

N1, N2 even, it seems to be always verified.

2.6 Monomer-dimer model on a regular tree

Consider a tree of n generations (root included), in which each node has ρ > 1

sons except for those of the last generation. This is represented by the graph

Tn = (Vn, En) with Vn = {(k, i) | k = 1, . . . , n, i = 1, . . . , ρk−1} and En ={ {(k, i) , (k+1, j)} | k =1, . . . , n−1, i =1, . . . , ρk−1, j =ρ (i−1)+1, . . . , ρ i
}
.

Notice the number of vertices and the number of edges are respectively

Nn := |Vn| = 1 + ρ + · · ·+ ρn−1 =
ρn − 1

ρ− 1
, |En| = Nn− 1 .

We want to consider uniform dimeric and monomeric weights. Therefore by

remarks 8 and 13 we may take w
(n)
ij = 1 ∀ ij ∈ En and x

(n)
i = x ∀ i ∈ Vn
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for every n ∈ N. In this section we denote ZTn(x), PTn(x) the partition

function and the pressure of the monomer-dimer model on the tree Tn with

the weights introduced.

The tree graphs are generalisations of the line, which is obtained for ρ = 1.

So we’ll proceed studying the monomer-dimer model on a tree along the lines

of what we have done in section 2.3. Pay attention because the quantity to

study here is the pressure per particle PTn/Nn as n →∞ (and not PTn/n).

2.6.1 Existence of the thermodynamic limit

Remark 16. Notice the bounds for the pressure found in proposition 25,

here become the following

log x ≤ 1

Nn

PTn ≤ log x + log(1 + x−2) .

Proposition 35. There exists

lim
n→∞

1

Nn

PTn(x) = sup
n∈N

( 1

ρn
log x +

1

Nn

PTn(x)
) ∈ R .

Notice that if x ≥ 1 this supremum equals supn∈N
1

Nn
PTn(x) .

Proof. Let n,m ∈ N with n > m.

Divide the tree Tn in its sub-tree Tn−m (induced by the vertices from the root

to n−mth generation) and in the complementary forest Tn−Tn−m. Observe

this forest is composed by ρn−m disjoint trees, each one isomorphic to Tm.

Therefore by proposition 23

PTn(x) ≥ PTn−m(x) + ρn−m PTm(x) .

Now observe that by proposition 25

PTn−m(x) ≥ ρn−m − 1

ρ− 1
log x .

Thus dividing by Nn = (ρn − 1)/(ρ− 1) one obtains

ρ− 1

ρn − 1
PTn(x) ≥ ρn−m − 1

ρn − 1
log x +

(ρ− 1) ρn−m

ρn−1
PTm(x) .
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Figure 2.9: Here ρ = 2. The tree Tn partitioned in the sub-tree Tn−m and in ρn−m

isomorphic copies of the tree Tm.

Keep m fixed and let n go to infinity:

lim inf
n→∞

ρ− 1

ρn − 1
PTn(x) ≥ ρ−m log x + (ρ− 1) ρ−m PTm(x) ;

then take the supremum over all m:

lim inf
n→∞

ρ− 1

ρn − 1
PTn(x) ≥ sup

m∈N

(
ρ−m log x + (ρ− 1) ρ−m PTm(x)

) ≥

lim sup
m∈N

(
ρ−m log x + (ρ− 1) ρ−m PTm(x)

)
= lim sup

m∈N

ρ− 1

ρm − 1
PTm(x) .

Therefore there exists

lim
n→∞

1

Nn

PTn(x) = sup
n∈N

( 1

ρn
log x +

1

Nn

PTn(x)
)

and by the previous remark it is finite.

2.6.2 Exact solution

We’ll compute the value of the polynomial ZTn(x), using the recurrence tech-

nique due to Heilmann and Lieb. Define the supporting polynomial related

to the partition function

QTn(x) := i−Nn ZTn(i x) =

bNn/2c∑

k=0

(−1)k ΛTn(k) xNn−2k
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where i is the imaginary unit and ΛTn(k) denotes the number of possible

dimeric configurations formed by k dimers on the tree Tn.

Proposition 36. The partition function of the monomer-dimer model on

the tree Tn is

ZTn(x) = iNn ρn/2 Un

( −i x

2 ρ1/2

) n−1∏
j=1

(
ρj/2 Uj

( −i x

2 ρ1/2

))(ρ−1) ρn−1−j

where Un is the nth Chebyshev polynomial of the second kind.

Proof. Denote ∅ the root of the tree Tn. Given a vertex v and an integer k

small enough, denote by Tk(v) the sub-tree of Tn rooted at v and composed

by k generations. Furthermore denote v(1), . . . , v(ρ) the sons of v.

Now look for a recursive formula for ΛTn . Let D be a dimeric configuration

on the tree Tn. Distinguish two possibilities:

I. On the root ∅ there is a monomer, i.e. {∅,∅(1)}, . . . , {∅,∅(ρ)} /∈ D.

This case is verified if and only if

D = D1 ∪ · · · ∪ Dρ ,

where Di is a dimeric configuration on the sub-tree Tn−1(∅(i)) for each

i = 1, . . . , ρ.

II. There is a dimer between the root ∅ and (exactly) one of its sons , i.e.

∃ ! i = 1, . . . , ρ s.t. {∅,∅(i)} ∈ D. In order that this may happen it’s

necessary for ∅(i) not to have any dimer with its sons. Hence this case

is verified if and only if

D = D1 ∪· · ·∪ Di−1 ∪
[
{∅,∅(i)} ∪ Di,1 ∪· · ·∪ Di,ρ

]
∪ Di+1 ∪· · ·∪ Dρ

where Dj is a dimeric configuration on Tn−1(∅(j)) for each j = 1, . . . , ρ,

j 6= i, whereas Di, l is a dimeric configuration on Tn−2(∅(i)(l)) for each

l = 1, . . . , ρ.
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Figure 2.10: The two kinds of dimeric configuration on the tree Tn: with monomer

on the root ∅ or with a dimer between the root ∅ and one of its sons ∅(i).

Notice the trees Tn−1(∅(i)) and Tn−2(∅(i, l)) are isomorphic to Tn−1 and Tn−2

respectively. Therefore for any k = 0, . . . , bNn/2c

ΛTn(k) =
∑

k1+···+kρ=k

ρ∏
i=1

ΛTn−1(ki) + ρ
∑

k1+···+kρ−1+

+h1+···+hρ=k

ρ−1∏
j=1

ΛTn−1(kj)

ρ∏

l=1

ΛTn−2(hl) .

Substitute this identity in the expression of the polynomial QTn(x) and after

some computations find

QTn(x) = x
(
QTn−1(x)

)ρ − ρ
(
QTn−1(x)

)ρ−1 (
QTn−2(x)

)ρ
.

Now define a further supporting polynomial:

Q̂Tn(x) := QTn(x)
n−1∏
j=1

(
QTj

(x)
)−(ρ−1)

(? )

From the recurrence relation for QTn deduce the following one for Q̂Tn :

Q̂Tn(x) = x Q̂Tn−1(x)− ρ Q̂Tn−2(x) ,

which is completed by the initial conditions

Q̂T1(x) = x , Q̂T0(x) = 1 .

Now remind the Chebyshev polynomials of the second kind are defined as

the solution of the following recurrence problem
{

Un(x) = 2xUn−1(x)− Un−2(x)

U1(x) = 2x , U0(x) = 1
.
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Therefore it’s easy to check that ρn/2 Un

(
x/(2ρ1/2)

)
verifies the same recur-

rence problem as Q̂Tn(x). Hence

Q̂Tn(x) = ρn/2 Un

( x

2 ρ1/2

)
(?′ )

On the other side inverting the definition (? ) one finds

QTn(x) = Q̂Tn(x)
n−1∏
j=1

(
Q̂Tj

(x)
)(ρ−1) ρn−1−j

using the fact that ρn−1−j − 1 = (ρ − 1) (ρn−1−(j+1) + · · · + ρn−1−(n−1)) for

every j = 1, . . . , n− 2.

To conclude substitute the expression (?′ ) in the last relation and remember

that, by definition, ZTn(x) = iNn QTn(−i x) .

Corollary 37. The partition function of the monomer-dimer model on the

tree Tn is

ZTn(x) =
(1

2

) ρn−1
ρ−1 ψn(x, ρ)

n−1∏
j=1

ψj(x, ρ)(ρ−1) ρn−1−j

,

where

ψj(x, ρ) =
(x +

√
x2 + 4 ρ)j+1 − (x−

√
x2 + 4 ρ)j+1

2
√

x2 + 4 ρ
.

Proof. Remind the Chebyshev polynomials of the second kind admit the

following explicit form:

Uj(x) =

(
x +

√
x2 − 1

)j+1 − (
x−√x2 − 1

)j+1

2
√

x2 − 1
.

With few computations it follows that

Uj

( −i x

2 ρ1/2

)
=

( −i

2 ρ1/2

)j

ψj(x, ρ) .

It is useful also to compute the following sum (related to the derivative of a

geometric sum):

(ρ− 1)
n−1∑
j=1

j ρn−1−j = −n +
ρn − 1

ρ− 1
.
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Using these two results the formula for ZTn(x) found in the previous propo-

sition can be easily transformed in the desired one.

Set pT (x) := limn→∞ 1
Nn

PTn(x), the thermodynamic limit of the pressure per

particle on the trees sequence. Remind Nn = (ρn− 1)/(ρ− 1).

Corollary 38. The thermodynamic limit of the pressure on the tree exists

and it is

pT (x) =− log 2− ρ− 1

ρ
log

(
2
√

x2 + 4 ρ
)

+
2 ρ− 1

ρ
log

(
x +

√
x2 + 4 ρ

)

+ (ρ− 1)2

∞∑
j=1

ρ−(j+1) log

[
1−

(
x−

√
x2 + 4 ρ

x +
√

x2 + 4 ρ

)j+1 ]

where the series is absolutely convergent.

Proof. Before starting compute the following two sums:

(ρ− 1)
n−1∑
j=1

ρn−1−j = ρn−1− 1 , (ρ− 1)
n−1∑
j=1

j ρn−1−j = −n +
ρn − 1

ρ− 1
.

Use the explicit expression of the partition function ZTn(x) found in the

previous corollary to compute

PTn(x) = −Nn log 2 + S1 − S2 + S3 − S4 ,

with

S1 = log
[(

x+
√

x2 + 4ρ
)n+1−(

x−
√

x2 + 4ρ
)n+1]

, S2 = log
(
2
√

x2 + 4ρ
)
,

S3 = (ρ− 1)
n−1∑
j=1

ρn−1−j log
[(

x +
√

x2 + 4ρ
)j+1− (

x−
√

x2 + 4ρ
)j+1]

,

S4 = (ρ− 1)
n−1∑
j=1

ρn−1−j log
(
2
√

x2 + 4ρ
)
.
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Divide by Nn and study the asymptotic behaviour addend by addend.

For S1 notice −1 < (x −
√

x2 + 4ρ) / (x +
√

x2 + 4ρ) < 0 and separate this

vanishing part from the rest:

S1

Nn

=
ρ− 1

ρn− 1
log

[
1−

(
x−√·
x +

√·
)n+1 ]

︸ ︷︷ ︸
→0

+
ρ− 1

ρn− 1
(n + 1)

︸ ︷︷ ︸
→0

log
[
x+
√· ] −−−→

n→∞
0 .

S2 and S4 can be studied together, using the computation of the sum done

at the beginning:

S2 + S4

Nn

=
ρ− 1

ρn− 1
ρn−1 log

(
2
√

x2 + 4ρ
) −−−→

n→∞
ρ− 1

ρ
log

(
2
√

x2 + 4ρ
)
.

For S3 it’s better to separate the vanishing part in the logarithm from the

rest, that is write S3 = S ′3 + S ′′3 with:

S ′3 = (ρ− 1)
n−1∑
j=1

ρn−1−j log

[
1−

(
x−

√
x2 + 4ρ

x +
√

x2 + 4ρ

)j+1 ]
,

S ′′3 = (ρ− 1)
n−1∑
j=1

ρn−1−j (j + 1) log
[
x +

√
x2 + 4ρ

]
.

For S ′′3 use the computation of the two sums done at the beginning:

S ′′3
Nn

=
ρ− 1

ρn− 1

(− n +
ρn− 1

ρ− 1
+ ρn−1 − 1

)
log

(
x +

√
x2 + 4ρ

) −−−→
n→∞

(
0 + 1 + (ρ− 1)ρ−1

)
log

(
x +

√
x2 + 4ρ

)
=

2ρ− 1

ρ
log

(
x +

√
x2 + 4ρ

)
.

In S ′3 take ρn out of the sum:

S ′3
Nn

= (ρ− 1)2 ρn

ρn− 1︸ ︷︷ ︸
→1

n−1∑
j=1

ρ−j−1 log

[
1−

(
x−

√
x2 + 4ρ

x +
√

x2 + 4ρ

)j+1 ]

and observe the remaining series is absolutely convergent as n →∞. Indeed

−1 < (x−
√

x2 + 4ρ) / (x +
√

x2 + 4ρ) < 0, so that

0 ≤ log

[
1 +

(√· − x√·+ x

)j+1 ]
≤

(√· − x√·+ x

)j+1

,

log
[
1−

√· − x√·+ x

] ≤ log

[
1−

(√· − x√·+ x

)j+1 ]
≤ −

(√· − x√·+ x

)j+1

.

This concludes the proof.
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2.7 Plots of the pressure per particle

Up to now we have computed explicitly the thermodynamic limits for the

pressure per particle of the monomer-dimer model on the line, on the com-

plete graph and on a regular tree with ρ ∈ N≥2 sons. The following plot

compares them.

Figure 2.11: Monomer-dimer models. The thermodynamic limit of the pressure

per particle on the line, on the regular trees with ρ = 2, 3, 4 sons and on the

complete graph is plotted as a function of the monomeric weight x (while the

dimeric weight is fixed at 1 or 1/N for the complete graph).

2.8 Monomer-dimer model on the Erdös-Rényi

diluted graph

In this section we want consider a random graph in which each couple of

vertices has a probability of being linked by an edge, independently from the

other ones. Furthermore we want the linked couples to be ”not too much”.
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What we described is a diluted random graph à la Erdös-Rényi.

That is a simple graph GN = (VN , EN) such that VN = {1, . . . , N} and

EN = {{i, j} | i, j ∈ VN , εN
ij = 1}, where

(εN
ij )ij i.i.d. random variables

d∼ Bernoulli
( 2 c

N−1

)

and c > 0 is a fixed constant.

For brevity set εN = (εN
ij )ij. Often we’ll drop the index N .

We denote (Ω,F ,P) the probability space on which the εN
ij are defined, and

E[·] the expected value w.r.t. to the measure P. Namely for any function f

of the graph structure,

E[f(ε)] =
∑

e∈{0,1}N

f(e) P(ε = e) .

Reminding remarks 8 and 13, we introduce the random uniform dimeric

weight w
(N)
ij = 1 ∀ ij ∈ EN and the deterministic uniform monomeric weight

x
(N)
i = x > 0 ∀ i ∈ VN for every N ∈ N. We’ll denote ZGN

, PGN
the partition

function and the pressure of the monomer-dimer model on the diluted random

graph GN with the random weights introduced.

Remark 17. Notice the mean number of edges in the graph GN is of the

order of the number of vertices. Precisely:

E[|EN| ] =

(
N

2

)
P(εij = 1) =

(
N

2

)
2 c

N−1
= cN .

This is the reason why this random graph is called diluted.

Therefore our choice of the dimeric and monomeric weights was well done,

in the sense that the pressure per particle is bounded. Indeed, applying the

expectation to the bounds found in remark 13, we obtain

1

N
E[|PGN

| ] ≤ | log x|+ c log
(
1 +

1

x2

)
< ∞ .

Notice the partition function ZGN
is a random variables w.r.t. the measure

P, since it depends on the structure assumed by the graph. Nevertheless, as

we’ll prove in the next proposition, when N grows the pressure per particle

gradually looses any random behaviour, concentrating around its mean value.
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Lemma 39. Let G = (V,E) be a graph, |V | = N− 1. Let i /∈ V .

For every V ′ ⊆ V , denote G[ i, V ′] the graph obtained from G by adding the

new vertex i and linking it to the vertices in V ′.

The maximum variation of the pressure of the monomer-dimer models on

these graphs with fixed weights is

sup
V ′,V ′′⊆V

∣∣ PG[ i,V ′](1, x)− PG[ i,V ′′](1, x)
∣∣ ≤ log(x + N− 1) .

Proof. Notice that if V ′′ ⊆ V ′ then G[ i, V ′′] is a subgraph of G[ i, V ′] and so

PG[ i,V ′′](1, x) ≤ PG[ i,V ′](1, x) (see proposition 24).

Therefore, being V and ∅ respectively the maximum and the minimum sub-

sets of V , it follows that

sup
V ′,V ′′⊆V

∣∣ PG[ i,V ′](1, x)− PG[ i,V ′′](1, x)
∣∣ = PG[ i,V ](1, x)− PG[ i,∅](1, x) .

Denote G := G[ i, V ] the graph obtained from G by adding the vertex i and

linking it to all the others. Notice the monomer-dimer model on the graph

G[ i,∅], obtained from G by adding the vertex i and leaving it isolated, is

equivalent to the monomer-dimer model on the graph G− i = G.

Figure 2.12: In black the graph G; on the left the graph G[ i,∅], on the right

the graph G[ i, V ]. Our task is to compute the difference of the pressure of the

monomer-dimer model on these two graphs.

Now let D be a dimeric configuration on Ḡ. Distinguish two possibilities:

I. There is monomer on the vertex i. This case is equivalent to say D is

a dimeric configuration on G− i.
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II. There exists one vertex v ∈ V such that there is a dimer on {i, k}. This

case is equivalent to say

D = {i, v} ∪ D′

with D′ dimeric configuration on the graph G − i − v, obtained from

G by removing the vertices i, v and all their links.

Therefore for every k = 0, . . . , N , the number ΛG (k) of possible dimeric

configurations composed by k dimers on the graph G is

ΛG (k) = ΛG−i(k) +
∑
v∈V

ΛG−i−v(k − 1) .

Introducing this relation in the expression of the partition function given by

remark 7, one finds

ZG (1, x) = xZG−i(1, x) +
∑
v∈V

ZG−i−v(1, x) .

It follows that

ZG (1, x)

ZG−i(1, x)
= x +

∑
v∈V

ZG−i−v(1, x)

ZG−i(1, x)
≤ x + |V | = x + N− 1 ,

using the fact that ZG−i−v ≤ ZG−i as G − i − v is a subgraph of G − i (see

again proposition 24) . Finally take the logarithm

PG(1, x)− PG−i(1, x) = log
ZG (1, x)

ZG−i(1, x)
≤ log(x + N− 1) .

Proposition 40. For every ε > 0

P
( 1

N
|PGN

− E[PGN
]| ≥ ε

) ≤ exp
(− ε2

2

N

(log(x + N))2

) −−−→
N→∞

0 .

In consequence, assuming the whole graph sequence (GN)N∈N defined on the

same probability space (Ω,F ,P),

P
( 1

N
|PGN

− E[PGN
]| −−−→

N→∞
0
)

= 1
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Proof. I) Fix N ∈ N.

Consider the filtration (Fi)i=1...N such that at the ith step one knows the

subgraph of GN induced by the vertices 1, . . . , i. That is set

F1 = {Ω,∅} , F2 = σ(ε2,1) , Fi = Fi−1 ∪ σ(εi,1 , εi, 2 , . . . , εi, i−1)

for every i = 2, . . . , N . After that define the Doob martingale of PGN
/N with

respect to the filtration (Fi)i=1...N . That is

Ai :=
1

N
E[PGN

|Fi ] , ∀ i = 1, . . . , N .

Observe that Ai is well defined since by the previous remark PGN
∈ L1(P).

Furthermore notice:

• (Ai)i=1...N is a martingale w.r.t. (Fi)i=1...N ; indeed from the definition

of conditional expectation Ai is Fi-measurable and belongs to L1(P),

and by the tower propriety E[Ai|Fi−1] = Ai−1 .

• AN − A1 = (PGN
− E[PGN

] )/N , since the entire graph GN is FN -

measurable while F1 is the trivial σ-algebra.

Let i = 2, . . . , N . Now imagine all the edges of the graph GN are fixed, except

for those depending on the σ-algebra FirFi−i (i.e. linking the vertex i with

a previous one): each of these edges may be present or not in the graph.

Bound the maximum variation of the pressure under these constraints:

sup
{ |PGN

(ε = e)− PGN
(ε = e′)|

 e, e′ ∈{0, 1}(N
2 ) may differ on i 1, . . . , i(i−1)

}

≤ sup
{ |PGN

(ε = e)− PGN
(ε = e′)|

 e, e′ ∈{0, 1}(N
2 ) may differ on i 1, . . . , iN

}

≤ log(x + N − 1) ≤ log(x + N) ,

where the second last inequality is due to the previous lemma.

Since the random variables (εlm)lm are independent, it follows by proposition

44 in the appendix that

|Ai − Ai−1| = 1

N

∣∣E[PGN
|Fi ]− E[PGN

|Fi−1]
∣∣ ≤ 1

N
log(x + N) .
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Therefore by the Azuma-Hoeffding inequality applied to the martingale (Ai)i=1...N

P
( 1

N
|PGN

− E[PGN
]| ≥ ε

)
= P

(|AN − A1| ≥ ε
) ≤ exp

(
− ε2

2
∑N

i=1

(
log(x+N)

N

)2

)

= exp
(− ε2 N

2 (log(x + N))2

)
.

II) To conclude notice the founded bound is summable with respect to N ,

indeed one can easily prove that it is a O(1/N2). Hence

∞∑
N=1

P
( 1

N
|PGN

− E[PGN
]| ≥ ε

) ≤
∞∑

N=1

exp
(− ε2 N

2 (log(x + N))2

)
< ∞ .

Therefore by Borel-Cantelli lemma

P
(∃ infinitely many N s.t.

1

N
|PGN

− E[PGN
]| ≥ ε

)
= 0

and so by arbitrariness of ε > 0

P
(∀ ε ∈ Q+ ∃ N̄ε ∈ N s.t. ∀N >N̄ε

1

N
|PGN

− E[PGN
] | < ε

)
= 1 ,

that is P
(

1
N
|PGN

− E[PGN
] | −−−→

N→∞
0
)

= 1 .

Remark 18. Thank to this proposition the problem of determine the be-

haviour of the pressure per particle PGN
/N in the thermodynamic limit is

reduced to the study of its expectation E[PGN
]/N .

An interesting challenge for the future will be to prove that this quantity

converges and to compute its limit. Two possible ways could be:

1) to use an interpolation method which takes into account the depen-

dence on N of the edges distribution, indeed remind εN
ij

d∼ Bernoulli
(

2 c
N−1

)
.

Also for this purpose it would be important to find a good interpolation

method on the complete graph, as tried in section 2.5.2.

2) to play on the fact that a diluted random graph à la Erdös-Rényi has an

asymptotically tree-like structure, as done by Dembo and Montanari

for the ferromagnetic spin models.
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Appendix A

In this appendix we introduce briefly the Graph Theory, with particular

attention to the definitions and the notations that are frequently used in the

previous chapters.

Definition 9. A simple graph G is an ordered pair (V, E) such that

i. V is a non-empty set, whose elements are called vertices ;

ii. E is a subset of P(V, 2) (the family of subset of V composed by two

distinct elements), whose elements are called edges.

If ij = {i, j} belongs to E, we say that in the graph G the vertices i and j

are linked (by the edge ij).

We say that G is finite if both the sets V and E are finite.

In the thesis and in the following we usually write ”graph” for ”finite simple

graph”. For shortness often we write i ∈ G meaning i ∈ V and ij ∈ G

meaning ij ∈ E. This should not create confusion.

Clearly a graph can be represented by drawing a point for each vertex and a

line that connects each pair of vertices linked by an edge.

We expect that any meaningful propriety of a graph does not depend on the

name given to the vertices, hence we give the following definition.

Definition 10. Two graphs G = (V, E), G′ = (V ′, E ′) are isomorphic (G ∼=
G′) if there exist two bijections f : V → V ′ and g : E → E ′ such that

g(ij) = f(i)f(j) ∀ i, j ∈ V .

105
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Definition 11. A graph U = (Ṽ , Ẽ) is a subgraph of the graph G = (V, E)

if Ṽ ⊆ V and Ẽ ⊆ E .

Definition 12. Two subgraphs G′ = (V ′, E ′), G′′ = (V ′′, E ′′) of the graph

G are said:

i. vertex-disjoint or simply disjoint if V ′ ∩ V ′′ = ∅ ;

ii. edge-disjoint if E ′ ∩ E ′′ = ∅ ;

Note that to be vertex-disjoint implies to be also edge-disjoint, whereas the

contrary is false in general.

Definition 13. Let G = (V, E) be a graph. Consider a set of vertices Ṽ ⊆ V .

The subgraph of G induced by the vertices in Ṽ is the graph U = (Ṽ , Ẽ) with

Ẽ = {ij ∈ E | i ∈ Ṽ , j ∈ Ṽ } .

In particular given two subgraphs A, B of the graph G we denote:

i. A − B the subgraph of G induced by the vertices of A which are not

vertices of B ;

ii. A + B the subgraph of G induced by the vertices of A and those of B .

Note that the edge set of A + B is in general bigger than the union of the

edge sets of A and B .

Definition 14. Let G be a graph and consider a subgraph U . We call

boundary of U (in G) the set

∂U := {i ∈ U | ∃j ∈ G− U s.t. ij ∈ G} .

Definition 15. The neighbourhood of a vertex i in the graph G = (V, E) is

∂i = {j ∈ V | ij ∈ E} .

The degree of i is

deg(i) = |∂i| .
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Notice that
∑

i∈V deg(i) = 2 |E| .

An important fact is that it’s possible to introduce a distance an a graph.

Definition 16. Let G = (V, E) be a graph. A walk on G is a sequence of

vertices

W = v0, v1, . . . , vk

such that vsvs+1 ∈ E for all s = 0 . . . k − 1 .

We say that such a walk W connects the vertices v0 and vk. Further k is

called the length of W .

The graph G is connected if for any pair of vertices i, j there exists a walk

that connects them.

Definition 17. The distance between the vertices i, j in the graph G is

d(i, j) =





0 if i = j

min{lenght(W ) |W is a walk on G} if i 6= j are connected

+∞ if i 6= j are not connected

If the graph G is connected it’s easy to verify that d satisfies the proprieties

of a metric.

Definition 18. Let i be a vertex of the graph G . Let r ∈ N .

The ball of center i and radius r, denoted B(i, r) , is the subgraph of G

induced by the vertices which belong to

{j ∈ G | d(j, i) ≤ r} .

It’s useful to distinguish different kinds of walks: those which never pass twice

through the same edge, those which don’t touch twice the same vertex. . .

Definition 19. A walk W = v0, v1 . . . vk on the graph G is called

• a trail, if vsvs+1 6= vtvt+1 for any s 6= t ;

• a path, if vs 6= vt for any s 6= t ;
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• a closed walk, if v0 = vk ;

• a cycle, if v0 = vk and vs 6= vt for any s 6= t with 1 ≤ t ≤ k − 1 .

Definition 20. A graph without cycles is called a forest.

A connected graph without cycles is called a tree.

On a tree the absence of cycles entails that there exists exactly one path

connecting any given pair of vertices. This permits to introduce an order

relation on the tree.

Precisely given a tree T and fixed a vertex ∅ ∈ V , called the root, we say

that

• the vertices linked by an edge to ∅ form the 1st generation;

• the vertices linked by an edge to a vertex of the 1st generation and

which are different from ∅ compose all together the 2nd generation;
...

• the vertices linked by an edge to a vertex of the kth generation and

which does not belong the (k − 1)th generation compose all together

the (k + 1)th generation;
...

We stop at step t, when there are no more vertices remained.

A tree provided with such an order is called a rooted tree with t generations.

Note that each vertex in the kth generation with 1 ≤ k ≤ t−1 is linked by an

edge to exactly one vertex in the (k − 1)th generation, called its father, and

to some (maybe zero) vertices in the (k+1)th generation, called its offspring.
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In this appendix we’ll prove the Azuma-Hoeffding inequality for martingales

and show how it can be applied to show that a random quantity concentrates

around its mean.

Lemma 41. Let Z be a real random variable such that E[Z] = 0 and |Z| ≤ c

for some constant c > 0. Then for every λ > 0

E[eλ Z ] ≤ eλ2 c2/2 .

Proof. The function f : x 7−→ eλx is convex. Therefore given the two points(− c, f(−c)
)
,
(
c, f(c)

)
, the straight line r : x 7−→ mx + q which links them

stays always above f . That is for every x ∈ [−c, c]

f(x) ≤ mx + q

with

m =
f(c)− f(−c)

2 c
, q =

f(c) + f(−c)

2
.

Since −c ≤ Z ≤ c, one may choose x = Z and take the expectation:

E[eλ Z ] ≤ m E[Z]︸︷︷︸
=0

+ q =
eλ c + e−λ c

2
.

To conclude set λ c =: a and use the Taylor series expansions:

ea + e−a

2
=

∞∑

k=0

1

k!

ak + (−a)k

2
≤

∞∑

k=0

1

k!

(a2

2

)k
= ea2/2 ,

where the middle inequality is easily verified term by term.
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Theorem 42 (Azuma-Hoeffding inequality).

Let M = (Mi)i=1,...,n be a real martingale on the filtered probability space(
Ω,F ,P, (Fi)i=1,...,n

)
. Suppose that for every i = 2, . . . , n there exists a real

constant ci > 0 such that

|Mi −Mi−1| ≤ ci .

Then for every ε > 0

P(|Mn −M1| > ε) ≤ 2 exp
(− ε2

2
∑n

i=1 c2
i

)
.

Proof. It suffices to prove P(Mn − M1 > ε) ≤ exp
( − ε2/(2

∑n
i=1 c2

i )
)
,

indeed reasoning with the martingale −M one will obtain the same bound for

P(Mn−M1 <−ε) and then conclude as P (|Mn−M1| > ε) ≤ P(Mn−M1 > ε)+

P(Mn −M1 <−ε) .

Let λ > 0. To estimate P(Mn −M1 > ε), first pass to the exponential and

then use the Markov inequality:

P(Mn −M1 > ε) = P(eλ (Mn−M1) > eλ ε) ≤ E[eλ (Mn−M1)]

eλ ε
(2.1)

Now set Di := Mi −Mi−1 ∀ i = 2, . . . , n and write

E[eλ (Mi−M1)] = E[eλ (Mi−1−M1) eλ Di ] = E
[
E[eλ (Mi−1−M1) eλ Di| Fi−1]

]

= E
[
eλ (Mi−1−M1) E[eλ Di| Fi−1]

] (2.2)

where the last equality is true as Mi−1 −M1 is Fi−1-measurable.

A good upper bound for E[eλ Di| Fi−1] is given by the previous lemma. No-

tice Di satisfies the hypothesis w.r.t. the conditional expectation E[ · |Fi−1],

indeed:

E[Di|Fi−1] = E[Mi −Mi−1|Fi−1] = 0 since M is a martingale ,

|Di| = |Mi −Mi−1| ≤ ci by the hypotesis .

Therefore by the lemma:

E[eλ Di| Fi−1] ≤ eλ2 c2i /2 .
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Substitute into the equality (2.2) and proceed by induction:

E[eλ (Mn−M1)] ≤ E
[
eλ (Mn−1−M1)] eλ2 c2n/2 ≤ · · · ≤ E[

eλ (M1−M1)]
n∏

i=1

eλ2 c2i /2

= eλ2 c/2 ,

where c :=
∑n

i=0 c2
i . Now substitute into the inequality (2.1) :

P(Mn −M1 > ε) ≤ E[eλ (Mn−M1)]

eλ ε
≤ eλ2 c/2

eλ ε
.

Remind λ > 0 is arbitrary. Deriving it’s easy to check that the last ratio

attains its minimum for λ = ε/c. Hence choose this value of λ and obtain:

P(Mn −M1 > ε) ≤ e(ε/c)2 c/2

e(ε/c) ε
= e−ε2/(2 c) .

The Azuma-Hoeffding inequality is a powerful result. It is often used to show

that a random variable concentrates around its expected value. We are going

to state a corollary that makes this possibility more explicit.

Let X1, . . . , Xn be random variables defined on the same probability space

(Ω,F ,P) and taking values respectively in Ξ1, . . . , Ξn. For brevity denote

X = (X1, . . . , Xn) and Xj = (X1, . . . , Xj) , Xj = (Xj, . . . , Xn).

Let f : Ξ1 × · · · × Ξn −→ R be a real function such that f(X) ∈ L1(P).

Corollary 43. Suppose that for every i = 2, . . . , n there exists a real constant

ci > 0 such that

∣∣E[f(X) |X1, . . . , Xi−1, Xi]− E[f(X) |X1, . . . , Xi−1]
∣∣ ≤ ci .

Then for every ε > 0

P(|f(X)− E[f(X)]| > ε) ≤ 2 exp
(− ε2

2
∑n

i=1 c2
i

)
.

Proof. Set F1 := {Ω,∅}, Fi := Fi−1 ∪ σ(X1, . . . , Xi) . Clearly (Fi)i=1,...,n is

a filtration. Set Mi := E[f(X)|Fi] and check that (Mi)i=1,...,n is a martingale

with respect to (Fi)i=1,...,n:
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Mi is Fi-measurable and integrable by definition of conditional expectation;

E[Mi|Fi−1] = Mi−1 by the tower propriety of conditional expectation.

This is called a Doob martingale. Now the result follows by the previous

theorem, observing that Mn = f(X) (as f(X) is Fn-measurable) and M1 =

E[f(X)] (as F1 is trivial).

In general it can be difficult to bound the averaged differences, as required

by the corollary. That is why we’ll show some easier-to-verify conditions that

leave the corollary true.

Assume that X1, . . . , Xn take discrete values. Fix an index i = 1, . . . , n and

let ci > 0 be a real constant. Consider the following statements:

1.
∣∣E[f(X)|X i]− E[f(X)|X i−1]

∣∣ ≤ ci

2. For every ai, a′i ∈ Ξi

∣∣E[f(X)|X i−1, Xi = ai]− E[f(X)|X i−1, Xi = a′i]
∣∣ ≤ ci

3. For every a1 ∈ Ξ1, . . . , ai, a
′
i ∈ Ξi, . . . , an ∈ Ξn

∣∣ f(a1, . . . , ai−1, ai, ai+1, . . . , an)− f(a1, . . . , ai−1, a′i, ai+1, . . . , an)
∣∣ ≤ ci

Proposition 44.

• If f verifies 3. and the (Xj)j=1,...,n are independent, then f verifies 2.

• If f verifies 2., then f verifies 1.

Proof. Suppose that the (Xj)j=1,...,n are independent and that f verifies the

condition 3. Let a ∈ Ξi. By the formula of total probability write

E[f(X) |X i−1, Xi = a ] =

=
∑

ai+1...an

E[f(X) |X i−1, Xi =a, X i+1 =ai+1] P(X i+1 =ai+1|X i−1, Xi =a)

=
∑

ai+1...an

E[f(X i−1, a, ai+1) |X i−1, Xi =a, X i+1 =ai+1] P(X i+1 = ai+1|X i−1, Xi =a)

=
∑

ai+1...an

E[f(X i−1, a, ai+1) |X i−1] P(X i+1 = ai+1) ,
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where the last equality is true since the (Xj)j=1,...,n are independent.

Choose a = ai, a′i successively and take the difference. Then:
∣∣E[f(X) |X i−1, Xi = ai ]− E[f(X) |X i−1, Xi = a′i ]

∣∣ ≤

≤
∑

ai+1...an

∣∣E[f(X i−1, ai, ai+1)|X i−1]− E[f(X i−1, a′i, ai+1)|X i−1]
∣∣ P(X i+1 =ai+1)

=
∑

a1...ai−1
ai+1...an

∣∣ f(ai−1, ai, ai+1)− f(ai−1, a′i, ai+1)
∣∣ 1(X i−1 =ai−1) P(X i+1 =ai+1)

≤
∑

a1...ai−1
ai+1...an

ci 1(X i−1 =ai−1) P(X i+1 =ai+1) = ci ,

where the second last passage is due to the hypothesis 3. Thus it is proven

that f verifies the condition 2.

Now suppose that f satisfies the condition 2.

By the formula of total probability

E[f(X) |X i−1] =
∑
ai

E[f(X) |X i−1, Xi =ai] P(Xi =a |X i−1) =

=
∑

ai, a′i

E[f(X) |X i−1, Xi =ai] P(Xi =a |X i−1) 1(Xi =a′i) ;

while developing the conditional expectation w.r.t. Xi

E[f(X) |X i] =
∑

a′i

E[f(X) |X i−1, Xi =a′i] 1(Xi =a′i) =

=
∑

ai, a′i

E[f(X) |X i−1, Xi =a′i] 1(Xi =a′i) P(Xi =ai |X i−1) .

Therefore taking the difference:
∣∣E[f(X) |X i−1]− E[f(X) |X i]

∣∣ ≤

≤
∑

ai, a′i

∣∣E[f(X) |X i−1, Xi =ai ]− E[f(X) |X i−1, Xi =a′i ]
∣∣ P(Xi =a |X i−1) 1(Xi =a′i)

≤
∑

ai, a′i

ci P(Xi =a |X i−1) 1(Xi =a′i) = ci ,

where the second last passage is due to the hypothesis 2. Thus it is proven

that f satisfies the condition 1.
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