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Introduzione

Un gruppo di Carnot è un gruppo di Lie connesso, semplicemente connesso e con

algebra di Lie stratificata.

Un esempio non banale di gruppi di Carnot è dato dal gruppo di Heisenberg Hn,

l’ambiente in cui si sviluppano i risultati di questa tesi.

Siamo interessati a studiare una nozione di continuità Lipschitz, che dipenda solo

dalle proprietà algebriche del gruppo di Heisenberg, per funzioni che hanno il grafico

contenuto in Hn.

Analogamente al caso euclideo, dobbiamo, prima di tutto, definire una “buona” de-

composizione di Hn in sottogruppi complementari. Poichè vogliamo apprezzare la strut-

tura algebrica di Hn, consideriamo solo sottogruppi omogenei, ovvero sottogruppi che

sono invarianti per dilatazioni del gruppo. Diciamo che Hn = G1 · G2 è una decompo-

sizione in sottogruppi complementari se ogni punto q ∈ Hn si scrive in modo unico come

il prodotto di un elemento di G1 e uno di G2.

Seguendo [17, 16, 15], studiamo i grafici di funzioni che agiscono tra sottogruppi

complementari di Hn. Intuitivamente, S ⊂ Hn è un grafico intrinseco (sinistro), in

direzione di un sottogruppo omogeneo G, se S interseca ogni laterale sinistro di G in al

più un punto.

Definiamo grafici intrinsecamente Lipschitz come grafici intrinseci che intersecano

in al più un punto un oggetto costruito ad hoc: un cono intrinseco. Questo oggetto,

definito a partire da una decomposizione adeguata di Hn in sottogruppi complementari,

è invariante per dilatazioni del gruppo.

Dopo un primo capitolo in cui ricordiamo al lettore alcuni risultati riguardanti i gruppi

di Carnot e le loro principali proprietà, nel secondo capitolo dell’elaborato presentiamo

iii
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alcune caratterizzazioni e proprietà dei grafici intrinsecamente Lipschitz. Dopo aver stu-

diato in generale questi grafici, ci restringiamo al caso di grafici di codimensione 1. Viene

studiato ([17]) un teorema di estensione del tipo McShane-Whitney e si dimostra che i

grafici intrinsecamente Lipschitz sono bordi di insiemi che hanno localmente H-perimetro

finito. Successivamente, introducendo una nozione di differenziabilità intrinseca, ancora

una volta tratta da [17], viene presentata la prova di un teorema di tipo Rademacher per

funzioni intrinsecamente Lipschitz.

L’ultima parte della tesi è dedicata alle applicazioni della teoria studiata nei primi due

capitoli. Definiamo i domini con bordo intrinsecamente Lipschitz come insiemi aperti,

connessi e limitati il cui bordo è localmente il grafico di una funzione intrinsecamente

Lipschitz. Viene dimostrato che questi sono domini (ε, δ). Da tale risultato segue che i

domini intrinsecamente Lipschitz sono anche domini di Boman. Siamo cos̀ı autorizzati

ad estendere alcuni risultati dell’Analisi Funzionale su questo tipo di insiemi, come ad

esempio la Disuguaglianza di Poincaré e un Teorema di estensione per funzioni di Sobolev

che prendono valori in un dominio intrinsecamente Lipschitz.

Un’ultima applicazione riguarda la teoria degli operatori subellittici. Se L è un

sub-Laplaciano in Hn e Ω ⊂ Hn è un dominio intrinsecamente Lipschitz, proviamo,

utilizzando il test di regolarità di Wiener, che il problema al contorno Lu = 0, in Ω

u|∂Ω
= ϕ,

ammete una unica soluzione.



Introduction

A Carnot group G is a connected, simply connected Lie group, whose Lie algebra g

admits a stratification

g = V1 ⊕ ...⊕ Vr.

In other words g decomposes in a direct sum of r vector spaces. The first layer V1 (called

horizontal layer) generates the entire algebra g and it can be identified with a linear

subspace of the tangent space at the origin e of G. Moreover, by left translation, V1

determines a subbundle HG of the tangent bundle TG. HG is called the horizontal

bundle.

Through the exponential map, each Carnot group can be identified with Rn endowed

with a (non commutative) group law and with a family of (non isotropic) dilations δt,

t > 0.

A non trivial example of Carnot group is the Heisenberg group Hn, the setting of this

thesis. We denote (z, t) a point in Cn × R. The n-th Heisenberg group Hn is given by

Cn × R endowed with the following group law:

(z, t) · (z′, t′) =

(
z + z′, t+ t′ +

1

2
=(z · z̄′)

)
,

where z · z̄′ denotes the usual Hermitian product of Cn. Dilations in Hn are defined as

follows, for λ ∈ R+,

δλ : Cn × R −→ Cn × R

(z, t) 7−→
(
λz, λ2t

)
.

For an exhaustive introduction to Carnot groups, we refer to [3].

v
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What about metric structures over a Carnot group G? We can introduce over G
a left invariant metric, the Carnot-Carathéodory metric: nothing else than the sub-

Riemannian metric associated with HG. Throughout this thesis, we will use this metric

or other metrics which are topologically equivalent to the Carnot-Carathéodory one.

The reader interested in general spaces endowed with a Carnot-Carathéodory metric is

referred to [21] for further informations.

Recently, efforts were made at studying geometric measure theory on metric spaces

and, in particular, Carnot groups. For instance, in a large amount of works, the main

focus is on rectifiable sets, finite perimeters sets and their properties.

Let us think for a moment to the Euclidean case. Rectifiable sets are generalizations

of regular and Lipschitz submanifolds. Going one step further, submanifolds are locally

graphs.

When we translate these points into our setting, the Heisenberg group (Carnot groups,

more generally), we need to pay attention to the algebraic structure of the group and

to the fact that Carnot groups, in general, can not be viewed as Cartesian products of

subgroups.

Hence, we define a good decomposition of Hn in complementary subgroups. Since

we would like to stand out the algebraic structure of Hn, we consider only homogeneous

subgroups, i.e. subgroups which are invariant under group dilations. We say that G1

and G2 are complementary subgroups of Hn if they are homogeneous and if any element

p ∈ Hn can be uniquely written as product of pG1 ∈ G1 and pG2 ∈ G2.

Thank to this decomposition, following [16, 15, 17], we can define graphs of functions

acting between complementary subgroups of Hn. This notion will be an intrinsic notion,

i.e. a notion depending only on the group structure.

Definition. Let Hn = G1 · G2. We say that S ⊂ Hn is a (left) intrinsic graph over G1

along G2 if there exists a function f : E ⊂ G1 −→ G2 such that

S = {ξ · f(ξ) | ξ ∈ E} .

In this case we write S = graph(f).
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This definition is intrinsic in the following sense: S keeps being a graph after left

translations and dilations of the group.

The purpose of this thesis is to study a special type of graphs: graphs of intrinsic Lip-

schitz continuous functions. This new notion, originally suggested in [15] and developed

in [17], extends the notion of Lipschitz continuity but it depends only on the structure

of hn, the Lie algebra of Hn.

Let us recall here the geometric approach to this new concept. First we need to define

intrinsic cones.

Definition. Let Hn = G1 · G2 and let q ∈ Hn and α ∈ R+ be fixed. We call intrinsic

cone of base G1, axis G2, vertex q and opening α

CG1,G2(q, α) = q · CG1,G2(e, α),

where

CG1,G2(e, α) := {p ∈ Hn | ‖pG1‖ ≤ α‖pG2‖} .

Once again, these geometric objects are invariant under group dilations and, analo-

gously to the Euclidean case, they let us give the following

Definition. We say that f : G1 −→ G2 is intrinsic Lipschitz continuous if, at each point

q ∈ graph(f), there exists an intrinsic cone with vertex q and fixed opening, intersecting

graph(f) only in q.

Staying close to [17], we present some analytic and geometric characterizations and

some general properties. In a second step, we restrict ourselves to 1-codimensional

graphs: we decompose Hn in a vertical subgroup W, that is a subgroup which contains

the center T of Hn, and a horizontal 1-dimensional subgroup V, that is contained in

{(z, t) ∈ Hn | t = 0}.
We propose the proof of a McShane-Whitney type extension Theorem and we show

that intrinsic Lipschitz graphs are boundaries of sets of locally finite H-perimeter. In

our presentation, we give a look also to an intrinsic notion of differentiability:

Definition. We say that f : W −→ V is intrinsic differentiable at g ∈ W if there is a

homogeneous subgroup Tg of G such that, if p = g ·f(g) ∈ graph(f), p ·Tg is the tangent

plane to graph(f) in p.
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With this notion, the authors in [17] proves a Rademacher type theorem for intrinsic

Lipschitz functions.

Theorem. Let Hn = W·V, with dimV = 1, E ⊂W be an open set and f : E −→ V be an

intrinsic Lipschitz continuous function. Then f is intrinsic differentiable (L2n W)-a.e.

in E.

The second part of the thesis is centered on domains in Hn whose boundaries are

locally graphs of intrinsic Lipschitz functions. We call such domains intrinsic Lipschitz

domains.

A more analytic characterization for these domains is given in [40]: we write, locally,

the boundary of an intrinsic Lipschitz domain Ω as the zero set of a metric Lipschitz

function acting from Hn into R, endowed with the Euclidean metric. With this charac-

terization, we show here that intrinsic Lipschitz domains are (ε, δ)-domains. This fact

opens the way for other properties.

For example, since an (ε, δ)-domain is a Boman domain, we have automatically a

Poincaré inequality. Moreover, once we defined Sobolev spaces W k,p
H (G) over a Carnot

group G, we can adapt a Theorem, first proved in [35], which provides the existence of

an extension operator for Sobolev functions over an intrinsic Lipschitz domain Ω ⊂ Hn:

Theorem. Let Ω ⊂ Hn be an intrinsic Lipschitz domain. If 1 ≤ p < ∞, then there

exists an extension operator Λ on Ω such that

‖Λf‖Wk,p
H (Hn) ≤ C‖f‖Wk,p

H (Ω),

for all f ∈ W k,p
H (Ω) and where C is a positive constant not depending on f .

A final application concerns Subelliptic PDE’s. Let L be a sub-Laplacian of Hn and

let Ω ⊂ Hn be an intrinsic Lipschitz domain. Consider the boundary value problem Lu = 0, in Ω

u|∂Ω
= ϕ,

(1)

for ϕ : ∂Ω −→ R a continuous function. The question is: has problem (1) a (unique)

solution? Using the Wiener’s regularity test we can give an affirmative answer. In con-

crete terms, each point of the boundary is a regular point, this means that the solution
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of (1) takes value on ∂Ω.

Let us now briefly summarize the contents of the whole thesis.

Chapter 1 contains a brief introduction about Carnot groups and, more precisely,

on some general aspects regarding their nature of stratified Lie groups, on the Carnot-

Carathéodory metric and on Heisenberg groups and their homogeneous subgroups.

Chapter 2 is entirely dedicated to intrinsic Lipschitz graphs. In the first part of

the Chapter we study general intrinsic graphs, then we concentrate to 1-codimensional

graphs.

Chapter 3 presents some applications to the theory introduced in Chapter 2. After a

self contained introduction to some particular domains and their geometric aspects, we

define intrinsic Lipschitz domains and we study a pair of applications from Functional

Analysis and from Subelliptic PDE’s theory.

Three Appendices close the thesis with the aim of helping the reading.
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Chapter 1

Main Notions

This first chapter is a brief introduction to some fundamental notions and results that

we need through our thesis. We start with basic properties of Lie groups and Lie algebras,

with a focus on Carnot groups, with the purpose of studying Carnot-Carathéodory metric

and the notion of P -differentiability. In the second part we concentrate on Heisenberg

groups, on the structure of their subgroups and, finally, on the notions of BVH-functions

and H-Caccioppoli sets.

1.1 Lie Groups and Lie Algebras

We recall some notations and results about Lie groups and their Lie algebras. Let us

start with the definition of Lie group (for a comprehensive treatment and for references

to the extensive literature on the subject one may refer to the book [39]).

Definition 1.1.1. A Lie group is a differentiable manifold G endowed with a group

structure, which is differentiable in the sense that the product (x, y) 7→ x · y and the

inverse x 7→ x−1 are smooth maps.

Definition 1.1.2. A Lie subgroup of G is an embedded submanifold of G which is also

a subgroup of G.

Definition 1.1.3. Let G and H be Lie groups. A Lie homomorphism from G to H is a

Ck-map

ϕ : G −→ H

1
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that is also a group homomorphism.

Remark 1.1.4. A map ϕ : G → H is called a Lie isomorphism if it is a Lie homomor-

phism and also its inverse is a Lie homomorphism.

To understand the objects we are working with, let us treat two simple examples of

Lie groups on Euclidean spaces: we will consider Rn endowed with an algebraic group

structure such that (Rn, ∗) is a Lie group.

Example 1.1.1. Consider Rn with the usual operation of addiction. (Rn,+) is a Lie

group, indeed the maps

(x , y ) 7−→ x + y

x 7−→ x−1

are polynomials.

In the next example we introduce Heisenberg groups, which will be the setting of our

studies. We postpone the general case and main properties until Section 1.4.

Example 1.1.2. We consider R3 identified to C× R and use the notation

x = (x1, x2, t) = (z, t) ∈ C× R,

with z = x1 + ix2. We give to C× R a Lie group structure with group law:

(z , t) · (w , s) =

(
z + w , t + s +

1

2
=(z · w̄)

)
.

It is not difficult to check that the identity is 0 and that the inverse is given by (z, t)−1 =

(−z,−t). We call the Lie Group H1 = (R3, ·) the first Heisenberg Group.

Definition 1.1.5. Fixed g ∈ G, we denote by

τg : G −→ G

x 7−→ g · x

the left translation by g on G.
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By definition of Lie group, for each g ∈ G, τg is a diffeomorphism of the group onto

itself, that maps the identity e to g. We can interprete this fact to mean that a Lie group

is a homogeneous space. This says (roughly speaking) that to study the local structure

of a Lie group, it is sufficient to examine a neighbourhood of the identity. One must,

therefore, notice that the tangent space of G at e, TeG, plays a key role: we will discover

that, with a suitable operation, TeG has a richer structure.

We start by giving the definition of smooth left invariant vector fields. For a complete

understanding, we recommend to compare next results and definitions to Appendix A,

in which the reader will be reminded of some basic theory about differential geometry.

Definition 1.1.6. A smooth vector field X ∈ Γ(TG) is said to be left invariant if, for

every g ∈ G,

dτgX = X ◦ τg, (1.1)

where dτg : TG→ TG is the derivative map of the left translation τg.

Since τg is a Lie isomorphism (a diffeomorphism more generally), notice that dτgX

is well defined as vector field. The condition (1.1) is equivalent to the following one:

(dxτg (X(x)) = X(g · x),

for every g, x ∈ G. If we apply the previous formula at the identity of G, we obtain

deτg (X(e)) = X(g),

for every g ∈ G. Moreover, the condition of left invariance can be rewritten in this way

X (f ◦ τg) (x) = Xf ◦ τg(x),

for all x, g ∈ G and for all smooth function f on G.

Definition 1.1.7. Let G be a Lie group. We call the Lie algebra of G, and write g, the

set of all smooth left invariant vector fields on G.
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Proposition 1.1.1. g is a Lie Algebra1 under the Lie Bracket product define as

[X, Y ] = XY f − Y Xf,

for all X, Y ∈ g, and for all f ∈ Ck(G).

Remark 1.1.8. The dimension of g as vector space equals that of G. Indeed, g is canon-

ically isomorphic to TeG via the identification of X and X(e).

Example 1.1.3. Return to the first Heisenberg group H1. It is not difficult to show that

the vector fields

X1 = ∂x1 +
1

2
x2 ∂t

X2 = ∂x2 −
1

2
x1 ∂t

are left invariant with respect to the group law.

1.1.1 The Exponential Map

Given a Lie group G, we defined its Lie algebra. The question now is: is there a

canonical way to associate each element of g to a point of G? The answer is given in the

following paragraph. We start with a proposition (for more details we refer the reader

to [3]):

Proposition 1.1.2. The left invariant vector fields on a Lie group G are complete.2

Given g ∈ G and X ∈ g, let us consider the solution of the following Cauchy problem:{
γ̇g(t) = X(γg(t))

γg(0) = g.

1We recall that a vector space g is a Lie algebra if there is a bilinear and antisymmetric map

[·, ·] : g× g→ g which satisfies the Jacobi’s identity

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0,

for all X,Y, Z ∈ g.
2See Definition A.0.27 on page 109.
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Remark 1.1.9. Notice that, by Proposition 1.1.2, the integral curve γg is defined for each

t ∈ R.

In the following, we set

expX(t) := γe(t).

Thanks to this notation, we can construct a canonical map which, with each vector field

in g, associates a point of G. We consider once again the integral curve of a fixed left

invariant vector field X, we stop at time t = 1, that point will be the element of G
associated with X:

Definition 1.1.10. Let G be a Lie group with Lie algebra g, we set

exp : g −→ G

X 7−→ exp(X) := expX(1).

This map is called exponential map related to the Lie group G.

In the following proposition, we summarize some of the main properties of the expo-

nential map and of integral curves more generally.

Proposition 1.1.3. Let G be a Lie group and g its Lie algebra. Then

(i) The exponential map is a smooth map;

(ii) For every X ∈ g and for any t, s ∈ R, expX(t+ s) = expX(t) expX(s);

(iii) The derivative map of the exponential map d exp : T0g→ TeG is the identity map,

under the canonical identification of both T0g and TeG with g;

(iv) The exponential map is a local diffeomorphism from some neighborhood of 0 in g

to a neighborhood of e in G.

Proposition 1.1.4. If G is a nilpotent,3 simply connected Lie group, then the exponential

map is a global diffeomorphism of g onto G. Moreover, if H is a Lie subgroup of G, and

h is its Lie algebra, then H = exp h.

3A Lie group is nilpotent of step k if its Lie algebra is nilpotent of step k, that is, defined the

descending central serie of g, g(1) = g and g(k+1) =
[
g(k), g

]
, for k > 1 , there exists r ∈ N such that

g(r+1) = 0.
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Consider now two vector fields X, Y ∈ g, we aim to reconstruct the group law of the

Lie group associated with g; we define C(X, Y ) ∈ g setting

exp(C(X, Y )) = exp(X) · exp(Y ).

It is possible to compute explicitly C(X, Y ). We start with some notations: let α =

(α1, ..., αl) be a multiindex of non negative integers, we define

|α| := α1 + ...+ αl

α! := α1! · ... · αl!,

we say that l is the length of the multiindex α. Let β = (β1, ..., βl) another multiindex,

with the same legth as α, such that αl + βl ≥ 1. We set

Cα,β(X, Y ) :=

{
(adX)α1(adY )β1 · ... · (adX)αl(adY )βl−1Y, if βl > 0

(adX)α1(adY )β1 · ... · (adX)αl−1X, if βl = 0,

where (adX)(Y ) := [X, Y ]. Then the Baker-Campbell-Hausdorff formula states that

C(X, Y ) :=
∞∑
l=1

(−1)l+1

l

∑
α,β

αl+βl≥1

1

α!β!(α + β)
Cα,β(X, Y ), (1.2)

whenever the serie at the right hand side makes sense. Moreover, it is clear that (1.2)

holds in nilpotent Lie groups.

1.1.2 Carnot Groups

In this subsection we will approach to the setting of our studies. As already men-

tioned, we are interested in Heisenberg groups, which forms a particular family of Carnot

groups. Therefore, we need a little background about them (for more details we refer,

once more, the reader to [3]). We start with a definition:

Definition 1.1.11. A Lie algebra g is called stratified if it admits a stratification, i.e.

there exists V1, ..., Vr ⊂ g subspaces such that

g = V1 ⊕ ...⊕ Vr,
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where

Vj = [V1, Vj−1], for j = 2, ..., r

[V1, Vr] = {0}.

Remark 1.1.12. It is clear that Vr is contained in the center of g. We point out also that

V1 generates the whole Lie algebra. Because of its major role, we will call it horizontal

layer.

Definition 1.1.13. A group G is called stratified if its Lie algebra g admits a stratifi-

cation. Moreover, if the dimension of G is finite, then it is nilpotent of step r, exactly

the number of subspaces in the stratification of g.

From the definition of stratified Lie algebra, we can construct on g a one parameter

group of Lie homomorphisms, called dilations and denoted by {δλ}. We fix λ ≥ 0 and

define, for X ∈ Vj:

δλX = λjX,

and then we extend this map over the entire g. Moreover, if λ < 0, we set

δλX = −δ|λ|X.

Proposition 1.1.5. The following properties hold

(i) δλµ = δλ ◦ δµ;

(ii) δλ ([X, Y ]) = [δλX, δλY ];

(iii) δλ (C[X, Y ]) = C (δλX, δλY ),

for any λ, µ and for any X, Y ∈ g.

Definition 1.1.14. A Carnot group G is a finite dimensional, connected, simply con-

nected Lie group, whose Lie algebra admits a stratification. If r is the step of the strati-

fication, we say that G is of step r.
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Remark 1.1.15. We should stress that a Carnot group can admit more than one strat-

ification. For example, consider again the first Heisenberg group H1. Its Lie algebra h

admits the following stratifications:

span{X1, X2} ⊕ span{[X1, X2]}

span{X1 − 3[X1, X2], X2} ⊕ span{[X1, X2]}

span{X1 +X2, 3X1 + [X1, X2]} ⊕ span{[X1, X2]}.

Definition 1.1.16. Let G be a Carnot group with Lie algebra g. Let V = (V1, ..., Vr) be

a fixed stratification of g. We say that a basis B of g is adapted to V if

B =
(
E

(1)
1 , ..., E(1)

m1
; ....;E

(r)
1 , ..., E(r)

mr

)
,

where, for i = 1, ..., r, we have mi := dim (Vi) and
(
E

(i)
1 , ..., E

(i)
mi

)
is a basis for Vi.

Notation 1.1.1. We say that G has m generators, where m := dim (V1).

In Remark 1.1.15, we saw that a Lie algebra of a Carnot group could admit more

than one stratification. In the following proposition we point out that the main algebraic

aspects of a Carnot group do not depend on the choice of the stratification:

Proposition 1.1.6. Let G a Carnot group and g its Lie algebra. Let (V1, ..., Vr) and

(W1, ...,Wr) be two stratifications of g. Then r = s and dimVi = dimWi for every

i = 1, ..., r. Moreover, the real number

Q :=
r∑
i=1

i · dimVi

depends only on the stratified nature of G and not on the particular stratification. Q is

called homogeneous dimension of G.

We conclude the section introducing on Carnot groups the so-called exponential co-

ordinates. Let (X1, ..., Xn) a basis for the Lie algebra of G, g. As usual, for general

manifolds, in particular for Lie groups, we can write uniquely two vector fields in coor-

dinates, setting X =
∑n

i=1 xiXi and Y =
∑n

i=1 yiXi.
4 This fact permits us to give the

following

4The reader should keep in mind that Carnot Groups are connected, simply connected and nilpotent.

Then the exponential map, being a global diffeomorphism (Proposition 1.1.4), provides a global chart

for the manifold.
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Definition 1.1.17. A system of exponential coordinates associated with X1, ..., Xn is

the map

Ψ : Rn −→ G

(x1, ..., xn) 7→ exp

(
n∑
i=1

xiXi

)
.

(1.3)

We endow Rn with a group law, so that Ψ is a group isomorphism, that means x·y = z

if and only if, using (1.1.1),

n∑
i=1

ziXi = C

(
n∑
i=1

xiXi,

n∑
i=i

yiXi

)
.

With this group law, Rn is a Lie group whose Lie algebra is isomorphic to g. Now, G
and Rn are both nilpotent, connected and simply connected, so, by Proposition 1.1.4, Ψ

is also a diffeomorphism. From now on, we identify abstract Carnot groups with Carnot

groups on Rn. We will refer to coordinates (1.3) as graded exponential coordinates.

As reminded before, the exponential map is a global diffeomorphism, then also its

inverse in well defined. This allows us to introduce a one parameter group of automor-

phisms on G. Using for simplicity the same notation of algebras case, we define dilations

on G, and write {δλ}, as follows

δλ(x) := exp
(
δλ(exp−1(x))

)
,

for every x ∈ G. With the same notation as in 1.1.16, if i is an index such that

m1 + ...+mdi−1
< i ≤ m1 + ...+mdi ,

for some 1 ≤ di < k, the coordinate xi of x = (x1, ..., xn) ∈ G is said to have degree di.

With this definition, group dilations δλ : G→ G can be written as

δλ(x) =
(
λd1x1, λ

d2x2, ..., λ
dnxn

)
.

Using Proposition 1.1.5, one can prove the following properties:

(i) δλµ = δλ · δµ;
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(ii) δλ(x y) = δλ(x) · δλ(y).

Using the notions introduced in Section 1.1, since the exponential map is a diffeo-

morphism from g and G, it follows, for each x, y ∈ G,

x · y = exp (C(X, Y )) := P (x, y),

where X and Y ∈ g are such that exp(X) = x and exp(Y ) = y. From this formula, one

can prove some facts about group law:

Proposition 1.1.7. There exists a polynomial vector function

Q : G×G −→ Rn = Rm1 ⊕ ...⊕ Rmr ,

where Q(x, y) = (Q1(x, y), ..., Qr(x, y)), and Qi(x, y) =
(
Q

(i)
1 (x, y), ..., Q

(i)
mi(x, y)

)
, for all

i = 1, ..., r, such that

x · y = x+ y +Q(x, y).

Lemma 1.1.8. The following properties hold:

(i) for all x, y ∈ Rn λ > 0, P (δλ(x), δλ(y)) = δ(P (x, y));

(ii) for all x ∈ Rn, P (x, 0) = P (0, x);

(iii) for all x, y ∈ G, Q(j)(x, y) = 0, for j = 1, ...,m1, and Q(j)(x, 0) = Q(j)(0, x) =

Q(j)(x, x) = Q(j)(x, x−1) = 0, for j ≥ m1 + 1.

Let us consider {X1, ..., Xn}, a basis of g as a vector space. We can write, for j =

1, ..., n,

Xj(x) =
n∑
i=1

aij(x)∂i,

with aij ∈ C∞(Rn). We assume also that Xj(0) = ∂j, for each j = 1, ..., n. Then

aij(δλ(x)) = λdi−djaij(x), (1.4)

for λ > 0 and x = (x1, ..., xn) ∈ Rn. Indeed, let γ : ] − δ, δ[→ Rn be a integral curve of

∂j (γ is a regular curve such that γ(0) = 0 and γ̇(0) = ∂j), and let f ∈ C1(Rn). We

compute the derivative of f along Xj:

Xjf(x) = Xj(f ◦ τx)(e) = lim
t→0

f (P (x, γ(t)))− f (P (x, e))

t
,
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the first equality holds, since Xj is a left invariant vector field, the second comes from

the fact that γ is an integral curve of ∂j. Now,

lim
t→0

f (P (x, γ(t)))− f (P (x, e))

t
=

∂f

∂x
(x)

∂P

∂y
(x, 0)γ̇(0) =

∂f

∂x
(x)

∂P

∂yj
(x, 0).

Hence, Xjf(x) = ∂f
∂x

(x) ∂P
∂yj

(x, 0), which is the same as

Xj(x) =
n∑
∂yj

∂Pi
∂yj

(x, 0)∂i. (1.5)

To conclude, if λ > 0, applying (i) of Lemma 1.1.8,

aij(δλ(x)) =
∂Pi
∂yj

(δλ(x), 0) =
∂

∂yj
(δλ(Pi(x, 0)))

= λdi−dj
∂Pi
∂yj

(x, 0) = λdi−djaij(x).

1.2 Carnot-Carathéodory Metric

The purpose of this section is to introduce a metric on Carnot groups. We start

by giving to Rn (supposed to not be provided with any particular structure) the so-

called Carnot-Carathéodory metric, induced by a family of vector fields which satisfies

certain conditions. After doing that, in Subsection 1.2.1, we will discover that, because of

their peculiarities, Carnot groups can be naturally equipped with a Carnot-Carathéodory

metric.

Let us consider a family of locally Lipschitz continuous vector fields on an open set

Ω ⊆ Rn

Xj(x) =
n∑
i=1

aij(x)∂i, j = 1, ...,m.

As usual, we call horizontal fiber at the point x, and write HxRn, the subspace of TxRn

generated by X1(x), ..., Xm(x). HRN will be the horizontal subbundle of TRn.

Notation 1.2.1. We denote by

A =


a11 · · · a1m

...
. . .

...

an1 · · · anm


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the matrix whose columns are the coefficients of the vector fields X := (X1, ..., Xm).

Definition 1.2.1. We say that a Lipschitz continuous curve γ : [0, T ] → Ω is X-

admissible if there exists a measurable vector function h = (h1, ..., hm) : [0, T ] → Ω

such that

(i) γ̇(t) =
∑m

j=1 hj(t)Xj(γ(t)), for a.e. t ∈ [0, T ];

(ii) |h| ∈ L∞ ([0, T ]).

The curve γ is called X-subunit if it is X-admissible and ‖h‖∞ ≤ 1, for a.e. t ∈ [0, T ].

Proposition 1.2.1. A Lipschitz continuous curve γ : [0, T ] → Ω is X-subunit if and

only if

〈γ̇(t), ξ〉2 ≤
m∑
j=1

〈Xj(γ(t)), ξ〉2 , (1.6)

for all ξ ∈ Rn and for a.e. t ∈ [0, T ].

Proof. Let us consider γ : [0, T ]→ Ω a subunit curve and fix ξ ∈ Rn. Applying Schwarz’

inequality,

〈γ̇(t), ξ〉2 =

(
m∑
j=1

hj(t) 〈Xj(γ(t)), ξ〉

)2

≤
m∑
j=1

〈Xj(γ(t)), ξ〉2 ,

for a.e. t ∈ [0, T ].

Vice versa, let γ : [0, T ]→ Ω be a curve such that (1.6) holds. Let t ∈ [0, T ] a point

at which γ is differentiable. We can write

γ̇(t) =
m∑
j=1

hj(t)Xj(γ(t)) +
n∑
i=1

bi(t)∂i,

for suitable coefficients h(t) = (h1(t), ..., hm(t)) ∈ Rm and b(t) = (b1(t), ..., bn(t)) ∈ Rn.

Since m < n, it is possible to select ξ ∈ Rn such that 〈Xj (γ(t)) , ξ〉 = 0, for every

j = 1, ...,m. Then,

〈γ̇(t), ξ〉 =
m∑
j=1

hj(t) 〈Xj(γ(t)), ξ〉+
n∑
i=1

bi(t) 〈∂i, ξ〉

= 〈b(t), ξ〉 .
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By (1.6),

〈b(t), ξ〉2 = 〈γ̇(t), ξ〉2 ≤
m∑
j=1

〈Xj(γ(t)), ξ〉2 = 0,

and thus 〈b(t), ξ〉 = 0. This means that γ̇(t) ∈ span{X1(γ(t)), ..., Xm(γ(t))} and we can

write γ̇(t) = A(γ(t))h(t). Assuming that h(t) = (A(γ(t)))T · ξ, for some ξ ∈ Rn,

|h(t)|4 =
〈
h(t), (A(γ(t)))T · ξ

〉2

= 〈A(γ(t)) · h(t), ξ〉2 = 〈γ̇(t), ξ〉2

≤
m∑
j=1

〈Xj(γ(t)), ξ〉2 = | (A(γ(t)))T ξ|2 = |h(t)|2,

and this proves that |h2(t)| ≤ 1, and h(t) is defined for a.e. t ∈ [0, T ].

Definition 1.2.2. We define d : Ω× Ω −→ [0,∞] as follows

d(x, y) = inf{T ≥ 0 | ∃ γ : [0, T ]→ Ω subunit curve : γ(0) = x, γ(T ) = y}.

If there exists no X-subunit curve in Ω which joins x to y, then we write d(x, y) =∞.

Definition 1.2.3. We say that Ω ⊆ Rn is X-connected if for all x, y ∈ Ω, there is a

X-subunit curve joining x to y.

Theorem 1.2.2. If d(x, y) <∞ for all x, y ∈ Ω, then (Ω, d) is a metric space. We call

d the Carnot-Carathéodory metric on Ω (CC-metric for short).

In order to prove this result we need a pair of lemmas.

Lemma 1.2.3. Let x0 ∈ Ω and r > 0 be such that U := {x ∈ Rn | |x− x0| < r} ⊂⊂ Ω.

Let M := supx∈U ‖A(x)‖ and γ : [0, T ] −→ Ω be a X-subunit curve such that γ(0) = x0.

If MT < r, then γ(t) ∈ U for all t ∈ [0, T ].

Proof. We prove the Lemma by contradiction: we assume that, for some t ∈ [0, T ],

γ(t) /∈ U . We set

t̄ := inf {t ∈ [0, T ] | γ(t) /∈ U} .
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Then

|γ(t̄)− x0| =

∣∣∣∣∣
∫ t̄

0

γ̇(s)ds

∣∣∣∣∣ =

∣∣∣∣∣
∫ t̄

0

A(γ(s))h(s)ds

∣∣∣∣∣
=

∫ t̄

0

|A(γ(s)| · |h(s)|ds ≤
∫ t̄

0

‖A‖ · |h(s)|ds

≤ M

∫ t̄

0

|h(s)|ds ≤ Mt̄ ≤ M · T < r.

Therefore γ(t̄) ∈ U , which is a contradiction.

Lemma 1.2.4. Let K ⊂⊂ Ω be a compact set. There exists a constant C > 0 such that

d(x, y) ≥ C|x− y| (1.7)

for all x, y ∈ K.

Remark 1.2.4. Inequality (1.7) says that the Euclidean metric is continuous with respect

to the Carnot-Carathéodory metric d.

Proof of Lemma 1.2.4. Let ε ∈ R+ be so that Kε ⊂⊂ Ω, where

Kε :=

{
x ∈ Ω

∣∣∣∣min
y∈K
|x− y| ≤ ε

}
.

Let us take x, y ∈ K and set r = min{ε, |x − y|} and M := supz∈Kε ‖A(z)‖. Let

γ : [0, T ] −→ Ω be a X-subunit curve such that γ(0) = x and γ(T ) = y. Since |γ(T ) −
γ(0)| = |y − x| ≥ r, by the previous Lemma, we have T ·M ≥ r. If r = ε, then

T ≥ ε

M
≥ ε

M

|x− y|
supx,y∈K |x− y|

.

If r = |x− y|, then

T ≥ 1

M
|x− y|.

We chose an arbitrary X-subunit curve γ, therefore, by definition of d, we get

d(x, y) ≥ min

{
1

M
,

ε

supx,y∈K |x− y|

}
.
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We are now ready to proceed to the proof of Proposition 1.2.2:

Proof of Proposition 1.2.2. Let us consider x, y, x ∈ Ω. Firstly, we notice that d(x, x) =

0, indeed it is sufficient to consider the constant X-subunit curve at x. Moreover, by

(1.7), if x 6= y, then d(x, y) > 0.

The symmetry property follows from the fact that if γ : [0, T ] → Ω is a X-subunit

curve, then γ̄(t) := γ(T − t) is X-subunit too.

Finally, if γ1 : [0, T1] −→ Ω and γ2 : [0, T2] −→ Ω are X-subunit curves such that

γ1(0) = x, γ1(T1) = y and γ2(0) = y, γ2(T2) = z, then

γ̃(t) =

{
γ1(t), t ∈ [0, T1]

γ2(t), t ∈ [T1, T1 + T2]

is a X-subunit curve such that γ̃(0) = x and γ̃(T1 +T2) = z. Taking the infimum, we get

d(x, z) ≤ d(x, y) + d(y, z).

Notation 1.2.2. We can define, as usual, the metric balls with respect to the Carnot-

Carathéodory metric setting, for r > 0,

U(x, r) := {y ∈ Rn | d(x, y) < r} and B(x, r) := {y ∈ Rn | d(x, y) ≤ r}.

We point out that the metric d is finite on Rn, and in general we can assume that

the identity map between (Rn, d) and (Rn, | · |) is a homeomorphism. This condition

is satisfied when d is the CC-metric associated with a family of smooth vector fields

X1, ..., Xm which satisfy Hörmander condition:

rank (L(X1, ..., Xm)) (x) = n (1.8)

for all x ∈ Rn. With L(X1, ..., Xm) we denote the Lie algebra generated by X1, ..., Xm.

Geometrically, condition (1.8) means that the vector fields X1, ..., Xm and their iterated

brackets generate the whole tangent space at every point.

Theorem 1.2.5. Let X1, ..., Xm be smooth vector fields on Rn. Let K ⊂ Rn be a com-

pact set and assume that, on K, Hörmander condition (1.8) is guaranteed by iterated

commutators of length less or equal r. Then there exists a constant C ∈ R+ such that

d(x, y) ≤ C|x− y|
1
r (1.9)

for all x, y ∈ K
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Remark 1.2.5. Notice that the inequality (1.9), together with (1.7), ensures us that

topology induced by CC-metric d is the same of topology induced by the Euclidean

metric.

1.2.1 Carnot-Carathéodory Metric on Carnot Groups

Let us consider a Carnot group G with Lie algebra g. We know that we can represent

G by Rn, endowed with a Carnot structure, through a system of exponential coordinates,

associated with a basis adapted to a stratification of g. Using the same notations as

above, let g = V1 ⊕ ... ⊕ Vr, r ≥ 2, m = dimV1 and fix a basis X = (X1, ..., Xm) of

V1. From definition of stratified algebra, V1 generates the whole g as an algebra. Hence,

X1, ..., Xm satisfy Hörmander’s condition, inducing a Carnot-Carathéodory metric on G.

Proposition 1.2.6. For all x, y, z ∈ Rn and λ ∈ R+, the following properties hold:

(i) d(τz(x), τz(y)) = d(x, y);

(ii) d(δλ(x), δλ(y)) = λd(x, y).

Proof. Statements (i) follows from the fact that γ : [0, T ] −→ Rn is a subunit path

joining x to y, if and only if γ̃ := τz(γ) is a subunit curve from τz(x) to τz(y).

Assume γ(t) =
∑m

j=1 hj(t)Xj(γ(T )), then

˙̃γ(t) = dτz(γ(t)) · ˙γ(t) = dτz(γ(t)) ·

(
m∑
j=1

hj(t)Xj(γ(t))

)

=
m∑
j=1

hj(t)dτz(γ(t))Xj(γ(t)) =
m∑
j=1

hj(t)Xj(τz(γ(t)))

=
m∑
j=1

hj(t)Xj(γ̃(t)),

which proves that γ̃ is a subunit curve.

We prove now (ii). Let us consider an X-subunit curve γ : [0, T ] −→ Rn such that

γ(0) = x and γ(T ) = y. We define γλ : [0, λT ] −→ Rn by γλ(t) = δλ(t)γ( t
λ
). Then, by
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(1.4), since dj = 1 for j = 1, ...,m (using the notations introduced in Definition 1.2.1)

γ̇(t) =
n∑
i=1

λdi−1

(
m∑
j=1

hj

(
t

λ

)
aij

(
γ

(
t

λ

)))
∂i

=
n∑
i=1

(
m∑
j=1

hj

(
t

λ

)
aij(γλ(t))

)
∂i

=
m∑
j=1

hj

(
t

λ

)
Xj(γλ(t)).

As γλ(0) = δλ(x), γλ(λT ) = δλ(y) and γλ is a subunit curve, one has that d(δλ(x), δλ(y) ≤
λT . Since γ is arbitrary, we can conclude that d(γλ(x), γλ(y) ≤ λd(x, y), and the converse

inequality can be obtained in the same way.

We conclude this section with some remarks about measures and metrics.

If we denote Hk
d and Skd 5 the k-dimensional Hausdorff and Spherical Hausdorff mea-

sures associated with the Carnot-Caratéodory metric d, then one can check that

(i) Hk
d(x · E) = Hk

d(E),

(ii) Hk
d(δλE) = λkHk

d(E),

for every Lebesgue measurable set E ⊂ Rn and for all x ∈ Rn and λ ∈ R+. The same

formulæhold for Skd . The homogeneous dimension Q of (Rn, ·) is the Hausdorff dimension

of Rn with respect to the CC-distance.

Moreover, we recall that the n-dimensional Lebesgue measure Ln is the Haar measure

of the group. Therefore, the translation and dilation conditions read as follows:

Proposition 1.2.7. Let E ⊂ Rn be a Lebesgue measurable set. Then, for all x ∈ Rn

and λ ≥ 0.

5We recall that, give E ⊂ Rn and k ≥ 0, the k-dimensional Hausdorff and Spherical Hausdorff

measures of E are defined, respectively, by

Hkd(E) := lim
δ↘0

inf

{ ∞∑
i=1

(diamEi)
k

∣∣∣∣∣E ⊂
∞⋃
i=0

Ei, diamEi < δ

}

Skd (E) := lim
δ↘0

inf

{ ∞∑
i=1

(diamBi)
k

∣∣∣∣∣E ⊂
∞⋃
i=0

Bi, diamBi < δ, Bi ⊂ Rn balls

}
.
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(i) Ln (x · E) = Ln (E · x) = Ln (E);

(ii) Ln (δλE) = λQLn (E) .

In particular Ln (B(x, r)) = rQLn (B(x, 1)).

Definition 1.2.6. We say that a metric ρ on G is a homogeneous distance if, for all

x, y, z ∈ G and λ ∈ R+

(i) ρ(x, y) = ρ(τz(x), τz(y));

(ii) ρ(δλ(x), δλ(y)) = λρ(x, y).

In Proposition 1.2.6, we proved that the Carnot-Carathéodory metric is a homoge-

neous metric. We can construct other examples of homogeneous metrics. We start by

defining the following quasi-metric

d∞(x, y) = ‖y−1 · x‖, (1.10)

where ‖ · ‖ is a homogeneous norm. For example we can choose

‖x‖∞ =
n∑
i=1

|xi|
1
di

or

‖x‖ = max
i

{
εi|xi|

1
di

}
,

where the εi’s are suitable positive constants which depend on the group’s structure and

which let d∞ be a distance on the group.

Remark 1.2.7. We notice that these homogeneous metrics induce the same topology as

the Carnot-Carathéodory one.

Remark 1.2.8. In the case of Heisenberg group (see Section 1.4), we introduce the Korányi

norm: if p = (z, t) ∈ Hn,

‖p‖ = 4

√
‖z‖4

R2n + |t|2.

If it is not specified, through this thesis we will use this homogeneous norm. To verify

that d∞(x, y) = ‖y−1 · x‖ is a metric, when ‖ · ‖ is the Korányi norm, one needs to prove

the triangle inequality

d∞(x, y) ≤ d∞(x, z) + d∞(z, y). (1.11)
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This can be done by a direct computation.

First, we can replace z−1 · x with x and y−1 · z with y; then it is sufficient to prove

(1.11) in the case when z = e and to show that

‖x · y‖ ≤ ‖x‖+ ‖y‖.

Writing x = (z, t) and y = (w, s) and using the group law (1.12), we find

‖x · y‖4 = ‖v + w‖4
R2n +

(
t+ w +

1

2
=(v · w̄)

)2

=

∣∣∣∣‖v + w‖2
R2n + 2i

(
t+ w +

1

2
=(v · w̄)

)∣∣∣∣2
=
∣∣‖v‖2

R2n + 2it+ v̄ · w + ‖w‖2
R2n + 2is

∣∣2
≤
(
‖x‖2 + 2‖v‖2

R2n‖w‖2
R2n + ‖y‖2

)2

≤ (‖x‖+ ‖y‖)4 .

1.3 Calculus on Carnot Groups

Definition 1.3.1. Let G1 and G2 be Carnot groups, with homogeneous norm ‖ · ‖1, ‖ · ‖2

and dilations δ1
λ and δ2

λ. We say that a function L : G1 −→ G2 is H-linear if L is a

group homomorphism and if, for all g ∈ G1 and λ ∈ R+,

L(δ1
λg) = δ2

λ(g).

The set of all H-linear functions between G1 and G2 can be endowed with the norm

‖L‖ := sup
‖g‖1≤1

‖Lg‖2.

Analogously to the classical case, we have the following

Proposition 1.3.1. Let G1 and G2 be Carnot groups with homogeneous norms ‖ · ‖1

and ‖ · ‖2. If L : G1 −→ G2 is H-linear. Then L is continuous and

‖Lg‖2 ≤ ‖L‖ · ‖g‖1,

for each g ∈ G1.
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Proposition 1.3.2. Let G1, G2 and G3 be Carnot groups with homogeneous norm ‖ ·‖1,

‖ · ‖2 and ‖ · ‖3, and let L : G1 −→ G2 and M : G2 −→ G3 be H-linear maps. Then

M ◦ L : G1 −→ G3 is H-linear and ‖L ◦M‖ ≤ ‖L‖ ‖M‖.

We give the notion of P -differentiability for functions acting between Carnot groups.

This key notion of differentiability was introduced by Pansu in [36].

Definition 1.3.2. Let G1 and G2 be Carnot groups with homogeneous norm ‖ · ‖1 and

‖ · ‖2. We say that f : E ⊂ G1 −→ G2 is P -differentiable in g0 ∈ E if there exists a

H-linear function, called P -differential of f at g0,

dg0f : G1 −→ G2

such that

lim
g→g0

‖(dg0f(g−1
0 · g))−1 · f(g0)−1 · f(g)‖2

‖g−1
0 · g‖1

= 0.

We say that f : E −→ G2 is continuously P -differentiable in E if f is P -differentiable

at every point g ∈ E and dgf depends continuously on g. In this case we write f ∈
C1
H(E ,G2).

1.4 Heisenberg Groups

In this section we study some peculiarities of the Heisenberg group, which is the most

simple non Abelian Carnot group and the setting of this thesis. We start by recalling

the definition and some general properties, then successively we will give a close look to

the structure of subgroups.

Notation 1.4.1. We denote by (z, t) a point in Cn × R, where z = (z1, ..., zn) ∈ Cn and

t ∈ R. If zj = xj + iyj, we write z = (x1, ..., xn, y1, ..., yn), with xj, yj ∈ R for j = 1, ..., n.

Let us consider in Cn × R the following composition law

(z, t) · (z′, t′) =

(
z + z′, t+ t′ +

1

2
=(z · z̄′)

)
, (1.12)

where z · z̄′ denotes the usual Hermitian product in Cn:

z · z̄′ =
n∑
j=1

(xj + iyj)(x
′
j − iy′j).
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Remark 1.4.1. If we identify Cn with R2n, we can rewrite the operation law (1.12) in the

following way:

(z, t) · (z′, t′) =

(
z + z′, t+ t′ +

1

2
〈Jz, z′〉

)
,

where J is the unit (n× n)-symplectic matrix and 〈·, ·〉 denotes the usual inner product

in Rn.

It is not difficult to verify that (R2n+1, ·) is a Lie group, whose identity is the origin of

R2n+1 and the inverse is (z, t)−1 = (−z,−t). We call this Lie group the n-th Heisenberg

group, and we write Hn := (R2n+1, ·).
The Heisenberg group Hn is the Lie group associated with the 2n + 1-dimensional

real Lie algebra hn generated by {X1, ..., Xn, Y1, ..., Yn, T}, that satisfies the relations

[Xi, Xj] = 0, [Yi, Yj] = 0, [Xj, Yj] = T,

for every i, j = 1, ..., n. By the Jacobi’s identity, we get that [Xi, T ] = [Yi, T ] = 0, for

each i = 1, ..., n. This means that hn is a nilpotent Lie algebra. It is also clear that its

center is span{T}.
Let us denote

h1 = span{X1, ..., Xn, Y1, ..., Yn} and h2 = span{T}.

Then the Heisenberg algebra is stratified of step 2 with stratification

hn = h1 ⊕ h2.
6

Remark 1.4.2. By the structure of hn, we can say that the center of the group Hn is

T = {(z, t) ∈ R2n+1 | z = 0},

and the homogeneous dilations are, for λ ∈ R+,

δλ : R2n+1 −→ R2n+1

(z, t) 7−→ (λz, λ2t).

6Using exponential coordinates, one can prove that Hn is the unique simply connected, nilpotent Lie

group associated with hn.
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We can realize the Heisenberg Lie algebra hn as an algebra of left invariant differential

operators on R2n+1. For example, using formula (1.5), one can found T = ∂t and,

consequently,

Xj = ∂xj +
1

2
yj∂t, Yj = ∂yj −

1

2
xj∂t,

for j = 1, ..., n. With this identification between vector fields and first order differ-

etial operators, X1, ..., Xn, Y1, ..., Yn generate a vector bundle on Hn, called horizontal

bundle HHn. The horizontal bundle is a subbundle of the tangent bundle THn. By

definition of vector bundle, we know that we can identify canonically each fiber of HHn

with a vector subspace of R2n+1, so each section ϕ of HHn can be identified with a

map ϕ : Hn −→ R2n+1. We denote by HxHn the fiber of HHn at a point x ∈ Hn.

On Hn is defined a Sub-Riemannian structure: we can endow each fiber HxHn with a

scalar product, denoted by 〈·, ·〉x, and the associated norm | · |x that make the basis

of HxHn, X1(x), ..., Xn(x), Y1(x), ..., Yn(x), orthonormal; in other words, if we consider

v =
∑n

i=1 (viXi(x) + vn+iYi(x)) and w =
∑n

i=1 (wiXi(x) + wn+iYi(x)) vectors of HxHn,

then 〈v, w〉x :=
∑n

i=1 vi · wi + vn+i · wn+i and |v|2x := 〈v, v〉x .
We end this subsection by giving a definition that will be useful throughout this

thesis:

Definition 1.4.3. Let (x, y, t) and x0 be fixed points in Hn. We set

πx0 ((z, t)) =
n∑
j=1

xjXj(x0) +
n∑
j=1

yjYj(x0).

The map x0 7−→ πx0 ((z, t)) . is a smooth section of HHn.

1.4.1 Homogeneous Subgroups of Hn

In Chapter 2 we will study the notion of intrinsic Lipschitz graphs; roughly speaking

we will study the graph of some special functions whose graphs lie in the Heisenberg group

Hn. We can compare these notions with the Euclidean case, in which we decompose Rn in

the sum of subgroups. In Heisenberg setting, on the other side, we need more conditions

for a “nice” decomposition in subgroups. We start with the definition of homogeneous

subgroups, which are subgroups invariant under group dilations:
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Definition 1.4.4. We say that a subgroup G of Hn is a homogeneous Lie subgroup if,

for all g ∈ G and λ > 0, δλ(g) ∈ G.

We point out that Definition 1.4.4 can be stated also for a general Carnot group of

step k. In this case, one can prove that each homogeneous subgroup is necessarily a

graded subgroup with step at most k, but in general it is not a Carnot group.

Definition 1.4.5. We say that Hn is a semidirect product of homogeneous subgroups

W and V, and we write Hn = W · V, if W = exp(w) and V = exp(v), where w and v

are homogeneous subalgebras of hn such that

(i) hn = w⊕ v;

(ii) w is an ideal in hn.

We will say that W and V are complementary subgroups in Hn.

Remark 1.4.6. If Hn = W · V, then W ∩ V = {e}. From (ii), it follows also that W is a

normal subgroup of Hn.

Example 1.4.1. A simple example of a semidirect product is given by Hn = W ·V, where

V = {(x1, 0, ..., 0) |x1 ∈ R}

and

W = {(0, x2, ..., xn, y1, ..., yn, t) |xi, yj, t ∈ R, i = 2, ..., n, j = 1, ..., n}.

Proposition 1.4.1. Let Hn = W · V be as in Definition 1.4.5. Then each q ∈ Hn has

unique components qW ∈W and qV ∈ V such that q = qW · qV.

Proof. Let us assume that q ∈ Hn admits two decompositions: q = qW ·qV and q = q′W ·q′V.

Then, since e is the unique common element of W and V,

(q′W)−1 · qW = q′V · (qV)−1 = e.

Thus, q′W = qW and q′V = qV.
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Proposition 1.4.2. Let Hn = W ·V be a semidirect product as in Definition 1.4.5. Then

the maps

ΠW : Hn −→ W

q 7−→ qW

and

ΠV : Hn −→ V

q 7−→ qV

are continuous.

Proof. See [1], Proposition 3.4.

Proposition 1.4.3. All homogeneous subgroups of Hn are either horizontal, that are

contained in {(z, t) ∈ Hn | t = 0}, which can be identified with the horizontal fiber HeHn,

or vertical, that are containing the subgroup T.

A horizontal subgroup V has linear dimension k, with 1 ≤ k ≤ n; moreover, V is

algebraically isomorphic and isometric to Rk.

A vertical subgroup W can have any dimension d, with 1 ≤ d ≤ n+ 1, and its metric

dimension is d+ 1.

Proof. Let V ⊂ Hn be a homogeneous subgroup. Then there exists v, a homogeneous

subalgebra of hn, such that exp v = V. Then there exist linear independent vector fields

v1, ..., vk ∈ hn, with ≤ k ≤ 2n+ 1, such that v = span{v1, ..., vn} and [vi, vj] ∈ v, for each

i, j = 1, ..., k. If V is horizontal, that means that vi ∈ h1, for all i = 1, ..., k, necessarily

one has [vi, vj] = 0, for all i, j = 1, ..., k, and it must be k ≤ n.

On the other hand, let T be a vector field in the center of hn, and suppose there exists

v ∈ h1 such that v+T ∈ v. Then, for λ ∈ R, λv+λT ∈ v and, since V is a homogeneous

subgroup, λv + λ2 T ∈ v too. Hence, necessarily, it follows that T ∈ v, implying that V
is a vertical subgroup.

Now, let us consider a horizontal subgroup V with dim v = k, and let x, y ∈ V. The

points x · δλ(x−1 · y) ∈ V, for λ ∈ [0, 1], form a horizontal segment connecting x and y,

then it follows that V is isomorphic and isometric to Rk.
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On the contrary, if W is a vertical subgroup with dim(w) = k, then, in general, W
is not isomorphic to Rk and it is never isometric to Rk, indeed it has metric dimension

equal to k + 1.

From the previous Proposition, we have directly

Proposition 1.4.4. All possible couples W and V of complementary subgroups of Hn

are of the type

(i) V horizontal of dimension k, 1 ≤ k ≤ n,

(ii) W normal of dimension 2n+ 2− k.

Proof. See [1], Proposition 3.21.

Remark 1.4.7. We aim to highlight that any horizontal subgroup V has a complemen-

tary normal subgroup W; also the converse is true for normal subgroup W with linear

dimension larger than n+ 1. On the contrary, normal subgroups of dimension less than

or equal to n do not have complementary subgroups. For example the center T does not

have a complementary subgroup.

Proposition 1.4.5. Let Hn = W · V be as in Proposition 1.4.4. Then there exists a

positive constant C = C(W,V) such that

C (‖qV‖ + ‖qW‖) ≤ ‖q‖ ≤ (‖qV‖ + ‖qW‖) . (1.13)

Moreover, (q−1)V = (qV)−1, (q−1)W = q−1
V · (qW)−1 · qV, (p · q)V = pV · qV, and (p · q)W =

pW · pV · qW · p−1
V .

Proof. We start by proving (1.13). By homogeneity, it is enough to show the left hand

side of (1.13) when ‖q‖ = 1. In this case, the inequality holds. Indeed, by compactness,

‖qW‖ and ‖qV‖ have a maximum when ‖q‖ = 1. The right hand side of (1.13) is just the

triangular inequality.

Coming to the second part of the Proposition, we notice that q−1 = (q−1)W · (q−1)V,

but also q−1 = (qV)−1 · (qW)−1 = (qV)−1 · (qW)−1 · qV · (qV)−1. The assertion follows by the

uniqueness of the coordinates. The remaining equalities follow from similar arguments.
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Remark 1.4.8. By the previous Proposition, it follows that ΠV is a group homomorphism

from Hn to V; while, in general, ΠW is not a group homomorphism from Hn to W.

Moreover, one can notice that ΠV : Hn −→ V is a Lipschitz map. Indeed, let p = (z, t)

and q = (z′, t′) ∈ Hn. Since V is isometric to Rk,

‖ΠV(p)−1 · ΠV(q)‖ = ‖ΠV(q)− ΠV(p)‖.

Then it follows

‖ΠV(q)−1 − ΠV(p)‖ ≤ ‖z′ − z‖R2n ≤ ‖p−1 · q‖.

On the contrary, ΠW : Hn −→ W is not, in general, a Lipschitz map. For example,

consider the first Heisenberg group H1 decomposed in complementary subgroups as H1 =

W · V, where W = {(0, y, t)} and V = {(x, 0, 0)}. Now, for ε ∈ R+, let p = (1, 0, 0) and

q = (0, ε, ε
2
). Then pW = (0, 0, 0) and qW = (0, ε, ε

2
). Thus,

‖ΠW(q)−1 · ΠW(p)‖ = ‖qW‖ ≈ ε
1
2

‖p−1 · q‖ = ‖(0, ε, 0)‖ ≈ ε

Proposition 1.4.6. Let Hn = W · V be as in Proposition 1.4.4 with dim(v) = k, and

let p ∈ Hn be fixed. Then there exists a positive constant C = C(W,V) such that, for

B(p, r) ⊂ Hn,

L2n+1−k (ΠW(B(p, r))) = C(W,V) r2n+2−k. (1.14)

Proof. First of all we notice that, for every Lebesgue measurable set E ⊂ Hn,

L2n+1−k (ΠW(p · E)) = L2n+1−k (ΠW(E)) . (1.15)

Indeed, since

ΠW(p · E) =
{
pW · pV · qW · p−1

V | q ∈ E
}

= pW · pV · ΠW(E) · p−1
V ,

the linear mapping

W −→ W

w 7−→ pW · pV · w · p−1
W

has determinant equal to 1, therefore (1.15) holds. Now, by group dilations

ΠW(B(e, r)) = ΠW (δr(B(e, 1))) = δr (ΠW(B(e, 1))) ,
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thus

L2n+1−k (ΠW(B(p, r))) = L2n+1−k (ΠW(B(e, 1))) r2n+2−k.

Setting C = C(W,V) = L2n+1−k (ΠW(B(e, 1))) and using (1.15), one has the thesis.

1.5 Rectifiability in Heisenberg Groups

In [12, 13, 14], the authors prove analogous statements of De Giorgi’s results in the

setting of Heisenberg group. In this section we aim to re-propose some of these results

in order to use them in the next chapters. We start briefly by summarizing the classical

results: If E ⊂ Rn is a Caccioppoli set,7 then the associated perimeter measure |∂E| is

concentrated on a portion of the boundary, the reduced boundary ∂∗E ⊂ ∂E, and this

means that ∂∗E, up to a set of Hn−1-measure zero, is a countable union of compact

subset of C1-manifolds.

In the first subsection we recall the definition of functions with bounded H-variation

and introduce some properties, in the second part we present the restatement of De

Giorgi’s theory in the case of Heisenberg groups. For proofs and a more details we refer

the reader to [12, 13, 14].

1.5.1 BVH-functions

We start with some notations. If Ω is an open set of Hn and k is a non negative integer,

we denote by Ck(Ω) and C∞(Ω) the spaces of real valued continuously differentiable

functions. We denote by Ck(Ω, HHn) the set of all Ck-sections of HHn, analogously we

define C∞(Ω, HHn) and C∞0 (Ω, HHn).

Definition 1.5.1. Let Ω be an open subset of Hn, ϕ = (ϕ1, ..., ϕn) ∈ C1(Ω, HHn) and

7We say that a set E ⊂ Rn is a set of locally finite perimeter, or a Caccioppoli set, if the total

variation of its characteristic function is finite, i.e., if Ω i s any open set in Rn,

|∂E|(Ω) := sup

{∫
Ω

divϕdx

∣∣∣∣ ϕ ∈ C1
0 (Ω) , |ϕ(x)| ≤ 1

}
<∞.

We recall that the perimeter measure |∂E| defines a Radon measure on Rn.
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f ∈ C1(Ω). We define the horizontal gradient of f

∇H f := (X1f, ..., Xnf, Y1f, ..., Ynf)

and the horizontal divergence of ϕ

divHϕ :=
n∑
j=1

(Xjϕj + Yjϕn+j) .

Remark 1.5.2. We can define the horizontal gradient as a section of the horizontal bundle

HHn:

∇Hf =
n∑
j=1

((Xjf)Xj + (Yjf)Yj) ,

whose coordinates are (X1f, ..., Xnf, Y1f, ..., Ynf). We point out that this definition

depends on the choice of the basis of the first layer: if we choose a different basis, say(
X̃1, ..., X̃n, Ỹ1, ..., Ỹn

)
, then in general

n∑
j=1

((Xjf)Xj + (Yjf)) 6=
n∑
j=1

((
X̃jf

)
X̃j +

(
Ỹjf
)
Ỹj

)
.

Only if the two basis are one orthonormal with respect to the scalar product induced by

the other, we have that

n∑
j=1

((Xjf)Xj + (Yjf)) =
n∑
j=1

((
X̃jf

)
X̃j +

(
Ỹjf
)
Ỹj

)
.

We are now ready for the definition of boundary H-variation functions.

Definition 1.5.3. Let Ω ⊂ Hn be an open set. We say that f : Ω → Hn is of bounded

H-variation if f ∈ L1(Ω) and

‖∇Hf‖ (Ω) := sup

{∫
Ω

f divHϕdh

∣∣∣∣ ϕ ∈ C1
0(Ω, HHn) , |ϕ(x)|x ≤ 1

}
<∞.8

We denote by BVH(Ω) the space of all functions of bounded H-variation. The space

BVH,loc(Ω) is the set of functions belonging to BVH(U) for each open set U ⊂⊂ Ω.

8We denote with dh the integration with respect the Haar measure of the group, that, as already

point out, is the n-dimensional Lebesgue measure on Rn.
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We present now some properties of functions with bounded H-variation, BVH-functions

for short. For details and proofs in the general context of subriemannian geometries we

refer the reader to [19, 14].

Theorem 1.5.1. If f ∈ BVH(Ω), then ‖∇Hf‖ is a Radon measure on Ω. Moreover,

there exists ‖∇Hf‖-measurable horizontal section σf : Ω → HHn such that |σf (x)|x = 1

for ‖∇Hf‖-a.e. x ∈ Ω and∫
Ω

f divHϕdh = −
∫

Ω

〈ϕ, σf〉 d‖∇Hf‖,

for ϕ ∈ C1
0(Ω, HHn).

Finally, we can extend the notion of the horizontal gradient ∇H from regular functions

to BVH-functions, defining ∇Hf as vector valued function:

∇Hf := −σf ‖∇Hf‖ = (−(σf )1 ‖∇Hf‖, ...,−(σf )2n ‖∇Hf‖) ,

where (σf )1, ..., (σf )2n are the components of σf with respect to the horizontal basis

X1, ..., Xn, Y1, ..., Yn.

Theorem 1.5.2. BVH,loc(Ω) is compactly embedded in L1
loc(Hn) for 1 ≤ p < Q

Q−1
.

1.5.2 H-Caccioppoli Sets

Keeping in mind the classical definition of De Giorgi, we define the H-Caccioppoli

sets:

Definition 1.5.4. A measurable set E ⊂ Hn is of locally finite H-perimeter, or is a

H-Caccioppoli set, if the characteristic function 1E ∈ BVH,loc(Hn). In this case we call

H-perimeter of E the measure

|∂E|H := ‖∇H1E‖.

Remark 1.5.5. The value of H-perimeter depends on the choice of the generating vector

fields X1, ..., Xn, Y1, ..., Yn. However the perimeters induced by different families of gen-

erating vector fields are equivalent as measures. As a consequence, the property of being

a H-Caccioppoli depends only on the group Hn.
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We point out that the H-perimeter is invariant under group translation, that is

|∂E|H(A) = |∂(τp(E)|H(τp(A)),

for all p ∈ Hn and for every Borel set A ⊂ Hn. Indeed divH is invariant under group

translations and the Jacobian determinant of τp : Hn → Hn is equal 1. It is important

to remark also that the H-perimeter is homogeneous of degree Q− 1 with respect to the

dilations of the group, that means

|∂(δλE)|H(A) = λ1−Q|∂E|H (δλ(A)) ,

for every Borel set A ⊂ Hn.

Proposition 1.5.3. The perimeter measure is lower semicontinuous with respect to the

L1 convergence of the characteristic functions of the sets.

From the 1.5.1, in the special case when f = 1E and E is a H-Caccioppoli set, the

section σ1E can be interpreted as a generalized inward normal to the set E and shall be

indicated as νE. Theorem 1.5.1 can be restated as follows:

Theorem 1.5.4. There exists a |∂E|H-measurable section νE of HHn such that∫
E

divHϕdh = −
∫
Hn
〈νE, ϕ〉 d|∂E|H,

for all ϕ ∈ C∞0 (Ω, HHn), |νE(x)|x = 1 for |∂E|H-a.e. x ∈ Hn.

If E ⊂ Hn, we introduce the measure theoretic boundary ∂∗,HE, which is called also

essential boundary, and the reduced boundary ∂∗HE.

Definition 1.5.6. Ler E ⊂ Hn be a measurable set, we say that x ∈ ∂∗,HE if

lim sup
r→0+

L2n+2(E ∩ U(x, r))

L2n+2(U(x, r))
> 0

lim sup
r→0+

L2n+2(Ec ∩ U(x, r))

L2n+2(U(x, r))
> 0.

Definition 1.5.7. Let E ⊂ Hn be a H-Caccioppoli set. We say that x ∈ ∂∗HE if

(i) |∂E|H(U(x, r)) > 0 for every r > 0;
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(ii) there exists limr→0 −
∫
U(x,r)

νE d|∂E|H;

(iii)
∣∣∣limr→0 −

∫
U(x,r)

νE d|∂E|H
∣∣∣ = 1.

Remark 1.5.8. As after definition 1.5.4, we observe that the H-reduced boundary of a

set is invariant under group translation, that is x ∈ ∂∗HE if and only of τp(x) ∈ ∂∗H(τpE).

Moreover νE(x) = ντpE(τp(x)), for all p ∈ Hn.

Remark 1.5.9. Notice that two different but equivalent doubling distances on Hn yield

the same measure theoretic boundary of E. On the contrary, the respectively induced

reduced boundary can be different.

Next result states that H-Caccioppoli sets have an approximate tangent plane at each

point of their reduced boundary. First, let us fix some notations:

Notation 1.5.1. For any set E ⊂ Hn, x0 ∈ Hn and r > 0, we define

Er,x0 := {x ∈ Hn |x0 · δr(x) ∈ E } .

Moreover, if ν ∈ HHn. We define the hemispaces S+
H (ν) and S−H (ν) as follows

S+
H (ν) := {x ∈ Hn | 〈πx0x, ν〉 ≥ 0},

S−H (ν) := {x ∈ Hn | 〈πx0x, ν〉 ≤ 0}.
(1.16)

The common topological boundary N(ν) of S+
H (ν) and S−H (ν) is

N(ν) := {x ∈ Hn | 〈πx0x, ν〉 = 0}.

Theorem 1.5.5. Let E ⊂ Hn be a H-Caccioppoli set and x0 ∈ ∂∗HE. Let νE(xo) ∈ Hx0Hn

be the unit inward normal as defined above. Then

lim
r→0

1Er,x0
= 1S+

H (νE(x0)) in L1
loc(Hn).

Moreover, for every R > 0,

lim
r→0
|∂Er,x0|H(U(0, R)) = |∂S+

H (νE(x0))|H(U(0, R)).

Proposition 1.5.6. Let E be a H-Caccioppoli set. Then

(i) ∂∗HE ⊆ ∂∗,HE ⊆ ∂E;
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(ii) SQ−1
d (∂∗,HE \ ∂∗HE) = 0.

Proposition 1.5.7. Let E be a H-Caccioppoli set. Then

|∂E|H = cS2n+1
d ∂∗,HE,

where c is a dimensional constant.

1.6 Convolution on Groups

In this last section, we would like to recall the classical technique of convolution in

homogeneous groups (see [10]). Let G be a Carnot group with Lie algebra g. We fix over

G a homogeneous metric. Let η ∈ C∞0 (G) be such that

(i) 0 ≤ η ≤ 1,

(ii)
∫
G η(x) dh(x) = 1,

(iii) supp(η) ⊂ U(0, 1).

Let ε ∈ R+, we denote, for x ∈ G,

ηε(x) := ε−Qη
(
δ 1
ε
(x)
)

the standard mollifier. Thanks to this definition, we can construct a convolution as

follows: let f : G −→ R,

(ηε ∗ f) (x) : =

∫
G
ηε(y)f

(
y−1 · x

)
dh(y)

=

∫
G
ηε
(
x · z−1

)
f(z) dh(z).

Remark 1.6.1. Analogously to the classical case, if f ∈ Lp(G), 1 ≤ p <∞, then ηε ∗ f ∈
C∞(G).

Proposition 1.6.1. The following properties hold:

(i) if f ∈ C0(G), for a suitable open set Ω ⊂ G, then ηε∗f −→ f uniformly on compact

subsets of Ω as ε→ 0;
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(ii) if f ∈ Lploc(G), 1 ≤ p <∞, then ηε ∗ f −→ f in Lploc(G), as ε→ 0;

(iii) X(ηε ∗ f) = ηε ∗X(f), for any f ∈ C1(G) and for any X ∈ g.

Proof. We start with the proof of (i). Consider an open subset V of Ω and choose a

compact set W , such that V ⊂ W ⊂ Ω. Let x ∈ V be fixed, we compute

ηε ∗ f(x) =

∫
G
ηε(x · y−1)f(y) dh(y)

= ε−Q
∫
U(x,ε)

η
(
δ 1
ε
(x · y−1)

)
f(y) dh(y)

=

∫
U(0,1)

η(x)f
(
(δε(z))−1 · x

)
dh(z).

(1.17)

Just applying the definition of mollifier, one has

|ηε ∗ f(x)− f(x)| ≤
∫
U(0,1)

η(z) ·
∣∣f ((δε(z))−1

)
− f(x)

∣∣ dh(z).

Now, f is continuous on W , therefore we can conclude, from the last estimate, that

ηε ∗ f → f uniformly on V , and the proof of (i) follows.

Let us prove (ii). Consider f ∈ Lploc(Ω), Ω ⊂ G open subset, and take V ⊂ W ⊂ Ω,

as above. We fix x ∈ V and ε ∈ R+. For case 1 < p <∞:

|ηε ∗ f(x)| ≤
∫
U(0,1)

∣∣η(z)f ((δε(z))−1 · x)
∣∣ dh(z)

=

∫
U(0,1)

|η(z)|
1
q |η(z)|

1
p

∣∣f ((δε(z))−1 · x
)∣∣ dh(z),

(1.18)

where 1
q

+ 1
p

= 1. Using Hölder’s inequality, we get:

|ηε ∗ f(x)| ≤
(∫

U(0,1)

η(z) dh(z)

) 1
q
(∫

U(0,1)

η(z)
∣∣f ((δε(z))−1 · x

)∣∣p dh(z)

) 1
p

=

(∫
U(0,1)

η(z)
∣∣f ((δε(z))−1 · x

)∣∣p dh(z)

) 1
p

.

(1.19)

Now, we need to extend also to the case p = 1:∫
V

|ηε ∗ f(x)|p dh(x) ≤
∫
U(0,1)

(∫
V

∣∣f ((δε(z))−1 · x
)∣∣p dh(x)

)
dh(z)

≤
∫
W

|f(y)|p dh(y),

(1.20)
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for ε ∈ R+ small enough. Now, fix δ ∈ R+. Since f ∈ Lp(W ), there exists g ∈ C0
(
W
)

such that

‖f − g‖Lp(W ) < δ.

By inequality (1.20), we can also say that

‖ηε ∗ f − ηε ∗ g‖Lp(V ) < δ.

Therefore,∫
V

|ηε ∗ f(x)− f(x)|p dh(x) ≤
∫
V

|ηε ∗ f(x)− ηε ∗ g(x)|p dh(x) +

+

∫
V

|ηε ∗ g(x)− g(x)|p dh(x) +

∫
V

|g(x)− f(x)|p dh(x),

(1.21)

and so ‖ηε ∗ f − f‖Lp(V ) ≤ 2δ + ‖ηε ∗ g − g‖Lp(V ). Using assertion (i), also (ii) is proved.

We conclude by proving (iii). Let f ∈ C1(G) and X ∈ g be fixed. We compute

X(ηε ∗ f) = X

(∫
G
ηε(y)f(y−1 · x) dh(y)

)
=

∫
G
X
(
ηε(y)f(y−1 · x)

)
dh(y).

(1.22)

Now, since X ∈ g is a left invariant vector field, we have∫
G
X
(
ηε(y)f(y−1 · x)

)
dh(y) =

∫
G
ηε(y) (Xt) (y−1 · x) dh(y)

= ηε ∗X(f)(x),

(1.23)

and the proof of the statement is complete.

Lemma 1.6.2. Any left invariant vector field X ∈ g is self-adjoint, i.e.∫
G
v Xv = −

∫
G
uXv,

for any u, v ∈ C∞0 (G).

Proposition 1.6.3. Let f : G −→ R be a continuous function and X ∈ g be such that

the distributional derivative Xf is represented by a continuous function on G. Then

X(ηε ∗ f) = ηε ∗ (Xf).
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Proof. Since ηε ∗ f ∈ C∞0 (G), it is sufficient to prove that

〈X(ηε ∗ f) , g〉 = 〈ηε ∗ (Xf) , g〉 , 9

for any g ∈ C∞0 (G).

Using Proposition 1.6.1 and Lemma 1.6.2, one has

〈X(ηε ∗ f) , g〉 = −〈ηε ∗ f , Xg〉 = −〈f , ηε ∗ (Xg)〉

= −〈f , X(ηε ∗ g)〉 = 〈ηε ∗ (Xf) , g〉 .

9We use the classical notation

〈u , v〉 :=

∫
G
u v,

for u, v : G −→ R.
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Chapter 2

Intrinsic Lipschitz Graphs

In this Chapter, following [17, 16, 15], we study some characterizations and properties

of graphs of functions acting between complementary subgroups of Heisenberg group

Hn. Let us think for a moment about Euclidean setting. We know that, locally, each

submanifold of dimension k in Rn can be viewed as the graph of a function acting between

Rk and Rn−k In the same way, a Lipschitz submanifold can be viewed, locally, as a graph

of a Lipschitz function.

As already noticed in Section 1.4.1, the case of Heisenberg group (Carnot groups,

more generally) needs more attention: we studied a semidirect product of homogeneous

subgroups. With such a decomposition of the ambient space, we are allowed, analogously

to the Euclidean case, to consider functions acting between subgroups and to study

geometrical properties of their graphs.

In the first section we introduce the notion of intrinsic graph, where with ”intrinsic”

the authors in [16] mean properties defined only in terms of the group structure of Hn

or its Lie algebra hn.

In the second section, following more closely [18], we study intrinsic Lipschitz graphs :

intrinsic graphs of intrinsic Lipschitz continuous functions.

37
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2.1 Intrinsic Graphs

Definition 2.1.1. Let G1 and G2 be homogeneous subgroups of Hn, with Hn = G1 · G2

a semidirect product. We say that S ⊂ Hn is a (left) graph over G1 along G2 (or from

G1 to G2) if

S ∩ (ξ ·G2)

contains at most one point for all ξ ∈ G1.

Remark 2.1.2. An equivalent definition is the following: we say that S ⊂ Hn is a (left)

graph from G1 to G2 if there exists a function f : E ⊂ G1 −→ G2 such that

S = {ξ · f(ξ) | ξ ∈ E} .

In this case we write S = graph(f).

Proposition 2.1.1. Let Hn = G1 ·G2 be a semidirect product of Hn and let S be a graph

from G1 to G2. Then, for all λ ∈ R+, δλ(S) is a graph.

Proof. Since S is a graph, there exists a function f : E ⊂ G1 −→ G2 such that S =

{ ξ · f(ξ) | ξ ∈ E }. Let us define

fλ := δλ ◦ f ◦ δ 1
λ

: δλE ⊂ G1 −→ G2.

Therefore, δλS := graph(fλ). Indeed

δλ(S) = { δλ(ξ · f(ξ)) | ξ ∈ E }

= { δλ(ξ) · δλ(f(ξ)) | ξ ∈ E };

setting η := δλ(ξ), η ∈ δλ(E), then{
η · δλf

(
δ 1
λ
(η)
) ∣∣∣ η ∈ δλ(E)

}
= { η · fλ(η) | η ∈ δλ(E) } = graph(fλ).

In the following two propositions we prove that the translation of a graph is a graph

as well.
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Proposition 2.1.2. Let Hn = W · V be as in Proposition 1.4.4. Let S ⊂ Hn be a left

graph such that

S = { ξ · f(ξ) | ξ ∈ E ⊂W },

with f : E ⊂W −→ V. Then, for every q ∈ Hn, there are

Eq = { q · ξ · (qV)−1 | ξ ∈ E } and

fq : Eq −→ V, fq(η) = qV · f(q−1
V · q

−1
W · η · qV),

such that

q · S = graph(fq) = { η · fq(η) | η ∈ Eq }.

Proof. First of all we notice that Eq ⊂W, because W is a normal subgroup. By definition

of left graph and left translation, q · S = { q · ξ · f(ξ) | ξ ∈ E }. We can write

q · ξ · f(ξ) = qW · qV · ξ · f(ξ)

= qW · qV · ξ · q−1
V · qV · f(ξ).

Now, calling η = qW · qV · ξ · q−1
V , we get ξ = q−1

V · q
−1
W · η · qV. Therefore q · ξ · f(ξ) ∈ q · S

can be written as η · qV · f(q−1
V · q

−1
W · η · qV), and the proof is completed.

Proposition 2.1.3. Let Hn = W · V be as in Proposition 1.4.4. Let S ⊂ Hn be a left

graph such that

S = { ξ · f(ξ) | ξ ∈ A ⊂ V },

with f : A ⊂ V −→W. Then, for every q ∈ Hn, there are

Aq = { q · ξ | ξ ∈ A} and

fq : Aq −→ V, fq(η) = η−1 · qW · η · f(q−1
V · η),

such that

q · S = graph(fq) = { η · fq(η) | η ∈ Aq }.

Proof. By definition of left graph

q · S = { q · ξ · f(ξ) | ξ ∈ A},
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Recalling Proposition 1.4.5, we rewrite

q · ξ · f(ξ) = qW · qV · ξ · f(ξ)

= qV · q−1
V · qW · qV · ξ · f(ξ)

= qV · ξ · ξ−1 · q−1
V · qW · qV · ξ · f(ξ).

Notice that qV ·ξ ∈ V and ξ−1 ·q−1
V ·qW ·qV ·ξ ∈W. Then, setting η := qV ·ξ and observing

that

ξ−1 · q−1
V · qW · qV · ξ = η−1 · qW · qV · q−1

V · ξ = η−1 · qW · η,

q · ξ · f(ξ) ∈ q · S can be rewrite as

q · ξ · f(ξ) = η−1 · qW · η · f(q−1
W · η) = fq(η).

Remark 2.1.3. Let f : A ⊂ V −→ W be such that S = { ξ · f(ξ) | ξ ∈ A ⊂ V } is a

left graph in Hn. Then S is also an Euclidean graph over V. Indeed, recalling that V
is isometric and isomorphic to Rk, for some 0 < k < 2n + 1, we can identify V with

a k-dimensional vector subspace of R2n+1. On the contrary, if S = graph(f), where

f : E ⊂W −→ V, then, in general, S is not an Euclidean graph.

An example is given in [16]: consider the semidirect product H1 = W · V, where

W = { (0, y, t) | y, t ∈ R } and V = { (x, 0, 0) |x ∈ R }. Let us fix 1
2
< α < 1 and take

f : W −→ V defined as

f(0, y, t) = (|t|α, 0, 0).

It is clear that graph(f) = S is not an Euclidean graph near the origin:

S = { ξ · f(ξ) | ξ ∈W } = { (|t|α, y, t+ 2y|t|α) | t, y ∈ R }.

2.2 Intrinsic Lipschitz Graphs

In the previous Section we studied graphs of functions acting between complementary

subgroups of Hn. Now we aim to specialize to graphs of intrinsic Lipschitz continuous

functions. This notion was originally suggested in [15], where the authors describe sub-

manifolds in Heisenberg group. Let us see more details about, in order to justify the

notion of intrinsic Lipschitz continuity.
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Definition 2.2.1. Let k be an integer, 1 ≤ k ≤ n.

(i) We say that S ⊂ Hn is a k-dimensional H-regular submanifold if, for each p ∈ S,

there exists an open neighbourhood U of p in Hn, an open set E ⊂ Rk and an

injective continuously P -differentiable function f : E −→ U , with injective P -

differential, such that

S ∩ U = f(E).

(ii) We say that S ⊂ Hn is a k-codimensional H-regular submanifold if, for each p ∈ S,

there exist an open neighbourhood U ⊂ Hn of p, f ∈ C1
H(U,Rk), with surjective P -

differential, such that

S ∩ U = {x ∈ U | f(x) = 0 }.

Remark 2.2.2. Although Definition 2.2.1 seems similar to the Euclidean case, we em-

phasize that, for example, k-codimensional H-regular submanifolds can be very irregular

objects from the Euclidean point of view (for the details we refer the reader to [15]).

We state now the Implicit function Theorem for k-codimensional H-regular subman-

ifolds, without giving the proof. It will be clear how this theorem suggested the notion

of intrinsic Lipschitz continuity that we are going to introduce.

Theorem 2.2.1. Let S be a k-codimensional H-regular submanifold, with 1 ≤ k ≤ n.

Then, for each p0 ∈ S, there are an open set U ⊂ Hn, with p ∈ U , and complementary

subgroups W and V of Hn as in Proposition 1.4.4, such that

(dpf) |V : V −→ Rk

is injective for all p ∈ U . Moreover, there are an open set E ⊂ W1 and continuous

ϕ : E −→ V such that

S ∩ U = { ξ · ϕ(ξ) | ξ ∈ E }.

Finally, there is a positive constant L such that, for all ξ and ξ̄ ∈ E,

‖ϕ(ξ̄)−1 · ϕ(ξ)‖ ≤ L ‖ϕ(ξ̄)−1 · (ξ̄−1 · ξ) · ϕ(ξ̄)‖. (2.1)

1When we say that E is open in W, we mean with respect to the relative topology of W, induced by

Hn.
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Exactly from inequality (2.1), we have the following

Definition 2.2.3. Let Hn = G1 ·G2 be a semidirect product. We say that

f : E ⊂ G1 −→ G2

is an intrinsic Lipschitz continuous function if there exists a positive constant L such

that, for all q ∈ graph(f),

‖fq−1(x)‖ ≤ L ‖x‖, (2.2)

for each x ∈ Eq−1. As usual, we call the intrinsic Lipschitz constant of f the infimum of

the numbers L such that (2.2) holds.

Remark 2.2.4. Let Hn = W ·V be as in Proposition 1.4.4. Using Propositions 2.1.2 and

2.1.3, we can specify the two cases:

(i) f : W −→ V is said an intrinsic Lipschitz function, if there exists a positive

constant L such that, for all ξ, ξ̄ ∈W,

‖f(ξ)−1 · f(ξ̄)‖ ≤ L ‖f(ξ)−1 · ξ−1 · ξ̄ · f(ξ)‖;

(ii) f : V −→ W is said an intrinsic Lipschitz function, if there exists a positive

constant L such that, for all η, η̄ ∈ V,

‖η̄−1 · η · f(η)−1 · η−1 · η̄ · f(η̄)‖ ≤ L ‖η−1 · η̄‖.

Our aim now is to give a more geometrical definition of intrinsic Lipschitz continuity:

if Hn = G1 · G2 is a semidirect product and f : G1 −→ G2, we will say that f is

intrinsic Lipschitz continuous if, at each p ∈ graph(f), there is an intrinsic closed cone,

with vertex p and axis G2, intersecting graph(f) only in p. Once again, “intrinsic cone”

means that properties of the cone depend only on the structure of the Lie algebra hn.

Definition 2.2.5. Let Hn be the semidirect product of two subgroups G1 and G2. Let

q ∈ G and α ∈ R+ be fixed. We call intrinsic closed cone with base G1, axis G2, vertex

q and opening α

CG1,G2(q, α) := q · CG1,G2(e, α),

where

CG1,G2(e, α) := {p ∈ Hn | ‖pG1‖ ≤ α‖pG2‖}.
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Proposition 2.2.2. Let Hn = G1 · G2 be a semidirect product, t ∈ R+ and 0 < α < β.

Then the following statements hold:

(i) CG1,G2(e, 0) = G2;

(ii) CG1,G2(q, α) ⊂ CG1,G2(q, β);

(iii) δt (CG1,G2(e, α)) = CG1,G2(e, α).

Proof. Since (i) and (ii) are trivial, we prove just (iii). Because of the uniqueness of the

components (δtp)Gi = δt(pGi), for i = 1, 2, then

δt(CG1,G2(e, α)) = δt{p ∈ Hn | ‖δt(p)G1 ≤ α ‖pG2‖}

= {δt(p) ∈ Hn | ‖δt(p)G1‖ ≤ α ‖δt(p)G2‖}

= {δt(p) ∈ Hn | t ‖pG1‖ ≤ α t ‖pG2‖}

= {δt(p) ∈ Hn | ‖pG1‖ ≤ α ‖pG2‖} = CG1,G2(e, α).

Definition 2.2.6. Let Hn = G1 ·G2 be a semidirect product. We say that

f : E ⊂ G1 −→ G2

is intrinsic Lipschitz continuous in E, if there exists a positive constant L such that, for

all q ∈ graph(f),

CG1,G2

(
q,

1

L

)
∩ graph(f) = {q}. (2.3)

As usual we call the Lipschitz constant of f in E the infimum of the numbers L such that

(2.3) holds.

We prove now the equivalence between the two definitions of intrinsic Lipschitz con-

tinuity:

Proposition 2.2.3. Let Hn = W ·V be as in Proposition 1.4.4. A function f : W −→ V
is intrinsic Lipschitz continuous according to Definition 2.2.3, with Lipschitz constant L,

if and only if , for each q ∈ graph(f) and for all α such that 0 ≤ α < 1
L

,

CW,V(q, α) ∩ graph(f) = {q}.
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Proof. If q ∈ graph(f),

CW,V(e, α) ∩ graph(fq−1) = {e},

hence, by Proposition 2.2.2,

τq (CW,V(e, α) ∩ graph(fq−1)) = {q}.

On the other hand,

τq (CW,V(e, α) ∩ graph(fq−1)) = τq (CW,V(e, α)) ∩ τq (τq−1graph(f))

= CW,V(q, α) ∩ graph(f).

Proposition 2.2.4. Let Hn = W · V be as in Proposition 1.4.4. Then

(i) f : E ⊂ V −→ W is intrinsic Lipschitz continuous in E, if and only if the

parametrization map

Φf : E −→ Hn,

defined as Φf (v) = v · f(v), is metric Lipschitz continuous

(ii) f : E ⊂ V −→ W is intrinsic Lipschitz continuous in E, if and only if there is a

positive constant L such that, for all η, η̄ ∈ E,

‖f(ξ)−1 · f(ξ̄)‖ ≤ L ‖f(ξ)−1 · ξ−1 · ξ̄−1 · f(ξ)‖.

Proof. We start by proving statement (i). If q = x · f(x) ∈ graph(f), then, from

Proposition 2.1.3, for each η ∈ Eq−1 ,

fq−1(η) = η−1 · f(x)−1 · η · f(x · η).

Assuming that Φf is metric Lipschitz continuous, denoting by L̃ its Lipschitz constant,

for η = x−1 · v, we have

‖fq−1(η)‖ = ‖v−1 · x · f(x)−1 · x−1 · v · f(v)‖

≤ ‖v−1 · x‖ + ‖f(x)−1 · x−1 · v · f(v)‖

= ‖v−1 · x‖ + ‖Φf (x)−1 · Φf (v)‖

≤ ‖v−1 · x‖ + L̃ ‖x−1 · v‖

= (1 + L̃) ‖x−1 · v‖ = (1 + L̃) ‖η‖.
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Vice versa, assume that f is intrinsic Lipschitz. We want to show that Φf is metric

Lipschitz. We start writing, for v̄ = x · v,

Φf (v)−1 · Φf (v̄) = f(v)−1 · v−1 · v̄ · f(v̄)

= f(v)−1 · v−1 · (x · v) · f(x · v)

= x · x−1 · f(v−1) · x · f(x · v)

= x · fq−1(x),

where the last equality follows from Proposition 2.1.3. Now, taking the norm,

‖Φf (v)−1 · Φf (v̄)‖ = ‖x · fq−1(x)‖

≤ ‖x‖ + ‖fq−1(x)‖

≤ (2 + L) ‖x‖ = (2 + L) ‖v−1 · v̄‖.

Let us prove statement (ii). By Proposition 2.2.3 and Proposition 2.1.3, for each

x̄ ∈ E and y ∈ Eq−1 ,

‖fq−1(y)‖ =
∥∥f(x̄)−1 · f(x̄ · f

(
x̄) · y · f(x̄)−1

)∥∥ ≤ L ‖y‖.

Setting x := x̄ · f(x̄) · y · f(x̄)−1, y = f(x̄)−1 · x̄−1 · x · f(x̄), then it follows that

‖f(x̄)−1 · f(x)‖ ≤ L ‖f(x̄)−1 · (x̄−1 · x) · f(x̄)‖.

Remark 2.2.7. Since W and V are subsets of Hn, they are metric spaces, then also the

usual definition of metric Lipschitz continuity is available. We say that f : W −→ V, or

f : V −→W, is a metric continuous Lipschitz function if there is a constant L > 0 such

that, for all η, η̄ ∈ V,

‖f(η)−1 · f(η̄)‖ = d(f(η), f(η̄)) ≤ Ld(η, η̄) = L ‖η−1 · η̄‖. (2.4)

As pointed out in [17], the definition of metric Lipschitz continuous function could

seem to be more natural. Actually, intrinsic Lipschitz continuity is more appropriate

for functions acting between complementary subgroups and, first and last, more closely

related to the group structure. Indeed, intrinsic Lipschitz continuity is invariant under

left translations:
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Proposition 2.2.5. Let Hn = G1 · G2 be a semidirect product. Then, for all q ∈ Hn,

f : E ⊂ G1 −→ G2 is intrinsic Lipschitz in E, with constant L > 0, if and only if

fq : Eq ⊂ G1 −→ G2 is intrinsic Lipschitz in Eq with the same constant L.

Proof. By definition, we know that graph(fq) = q · graph(f). Hence, p ∈ graph(fq) if

and only if p = q · p̄, for some p̄ ∈ graph(f). First, assume that f is intrinsic Lipschitz,

then

{p} = {q · p̄} = q · (CW,V(p̄, α) ∩ graph(g))

= CW,V(p, α) ∩ graph(fq).

Hence fq is intrinsic Lipschitz. The other implication can be analogously deduced keeping

in mind that, if p, q ∈ Hn,

graph ((fp)q) = q · graph(fp) = q · (p · graph(f))

= (q · p) · graph(f).

Let us now consider two examples (Example 3.3 in [17]). In the first, we consider a

function which is metric Lipschitz but not intrinsic Lipschitz. At the same time, we will

show that metric Lipschitz continuity is not a left-invariant property.

Example 2.2.1. Let us consider the semidirect product H1 with the homogeneous norm

‖ · ‖ defined as in Section 1.2.1. Let H1 = W · V, where

W = {(0, y, t) | y, t ∈ R} and V = {(x, 0, 0) |x ∈ R}.

Notice that, for w = (0, y, t) ∈ W, ‖w‖ = max{|y|, |t| 12}, and, for v = (x, 0, 0) ∈ V,

‖v‖ = |x|. Let f : W −→ V be defined as

f(0, y, t) = (1 + |t|
1
2 , 0, 0).

It is a metric Lipschitz continuous function, indeed

‖f(0, y, t)−1 · f(0, ȳ, t̄)‖ =
∣∣∣ |t̄| 12 − |t| 12 ∣∣∣ ≤ | t̄ − t |

1
2 = ‖ (0, y, t)−1 · (0, ȳ, t̄) ‖.
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On the contrary, f is not intrinsic Lipschitz continuous. To see this we translate graph(f)

moving p = (1, 0, 0) ∈ graph(f) to the origin e. We know, by Proposition 2.1.2, that the

translated set is the graph of fp−1 : W −→ V, which is, setting η = (0, y, t),

fp−1(η) = (p−1)V · f(pV · pW · η · p−1
V ) = (| y + t |

1
2 , 0, 0).

The definition of intrinsic Lipschitz continuity, applied to this function, should be equiv-

alent to the inequality

| y + t |
1
2 ≤ L ·max{|y|, |t|

1
2}, (2.5)

that is, in general, not true. This shows us also that property (2.4) is not invariant under

graph translations, indeed the following inequality, because of (2.5), is false:

‖fp−1(0, y, t)−1 · fp−1(0, ȳ, t̄)‖ = |(| ȳ + t̄ |
1
2 + | y + t |

1
2 , 0, 0)|

≤ L̃ ‖(0, y, t)−1 · (0, ȳ, t̄)‖

= L̃ | t̄− t |
1
2 ,

for some constant L̃.

The previous example shows us that metric Lipschitz continuous functions are not

necessarily intrinsic Lipschitz. Also the converse is true: not each intrinsic Lipschitz

continuous function is metric Lipschitz.

Example 2.2.2. Consider again the semidirect product in Example 2.2.1. Let g : W −→ V
be defined as follows

g((0, y, t)) :=
(

1 + | t− y |
1
2 , 0, 0

)
.

We aim to show that it is not metric Lipschitz continuous but it is intrinsic Lipschitz.

Let us start proving that it is not metric Lipschitz:

‖g−1(0, y, t) · g(0, ȳ, t̄)‖ =
∣∣∣(| t̄− ȳ | 12 − | t− y | 12 , 0, 0)∣∣∣

= | t̄ − t − ( ȳ − y ) |
1
2 ,

and there are no constants L̃ > 0 such that

| t̄ − t − ȳ − y |
1
2 ≤ L̃

∥∥ (0, y, t)−1 · (0, ȳ, t̄)
∥∥ .
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On the contrary, g is intrinsic Lipschitz continuous. Indeed, if p = (1, 0, 0) and we define

ϕ : W −→ V

ϕ(w) :=
(
|t|

1
2 , 0, 0

)
,

we have that g(w) = ϕp(w), therefore, since ϕ is trivially intrinsic Lipschitz continuous,

by Poposition 2.2.5, g is intrinsic Lipschitz too.

In Proposition 1.4.3 on page 24, we studied all possible semidirect products in which

one can decompose the Heisenberg group. In particular, we proved that Hn always can

be decomposed in a horizontal subgroup V with linear dimension, say k, and a vertical

subgroup W with metric dimension 2n+ 2− k. The following proposition tells us what

is the relation between metric dimension of the graph of an intrinsic Lipschitz function

and metric dimension of the subgroup W.

Proposition 2.2.6. Let Hn = W · V be as in Proposition 1.4.4, and let 1 ≤ k ≤ n be

the dimension of V. If f : E ⊂W −→ V is an intrinsic L-Lipschitz function and E is an

open set W, then graph(f) has metric dimension 2n+ 2− k. Moreover, for any RinR+

there is a positive geometric constant C = C(W,V, L,R) such that, for all p ∈ Hn,

S2n+2−k
d (graph(f) ∩B(p,R)) ≤ C. (2.6)

Simmetrically, if f : E ⊂ V −→ W is intrinsic L-Lipschitz and E is an open subset of

V, then graph(f) has metric dimension k and, for all p ∈ Hn and R ∈ R+,

Skd (graph(f) ∩B(p,R)) ≤ C, (2.7)

for C = C(W,V, L,R) > 0.

Proof. We prove in details only the case of f : W −→ V. The second case is analogous

to the Euclidean one. Indeed, by Porposition 2.2.4, the parametrization of graph(f),

Φf : V −→ Hn, is a metric Lipschitz map, then Skd (graph(f)) < ∞, and in particular

(2.7) holds. On the other hand, by Remark 1.4.8, ΠV : Hn −→ V is a metric Lipschitz

map, then Skd (graph(f)) > 0, implying that k is the metric dimension of graph(f).

Let f : E ⊂ W −→ V be an intrinsic Lipschitz function. The lower bound for

S2n+2−k
d ((graph(f)) is consequence of Proposition 1.4.6. Indeed, assume that

S2n+2−k
d (graph(f)) <∞.
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Let us fix ε ∈ R+ and choose r = r(ε) > 0. We cover graph(f) with balls Bi = B(pi, ri)

such that ri ≤ r. By definition of Hausdorff spherical measure (see Footnote 5 on

page 17), ∑
i

r2n+2−k
i ≤ S2n+2−k(graph(f)) + ε.

Hence, by (1.14),

L2n+2−k(E) ≤
∑
i

L2n+2−k(ΠW(Bi))

= C(W,V)
∑
i

r2n+2−k
i

≤ C(W,V)S2n+2−k
d (graph(f)) + ε.

Now, to get inequality (2.6), it is enough to prove that for every p ∈ graph(f), R > 0

and ε > 0, graph(f)∩B(p,R) can be covered by at most N := c ·
(

1
ε

)2n+2−k
metric balls

with radius less than ε.2 Notice that, here, the constant c depends on R, W, V and L.

Without loss of generality, we assume that p = e (remember that intrinsic Lipschitz

continuity is invariant under left translations). Using a Vitali covering argument, we

choose a covering of graph(f) ∩ B(e, R) with metric balls {B(pi, 5ε)}i, where pi = w̄i ·
f(w̄i) ∈ graph(f), such that Bi = B(pi, ε) are pairwise disjoint.

Let us extimate the number N . We fix a notation:

Ei :=

{
w ∈W

∣∣∣∣ ∥∥f(w̄i)
−1 · w̄−1

i · w · f(w̄i)
∥∥ < ε

(1 + L)(1 + 2L)

}
,

for 1 ≤ i ≤ N .

Because the balls B(pi, ε) are pairwise disjointed and f : E ⊂ W → V is intrinsic

Lipschitz,

2ε ≤
∥∥f(w̄i)

−1 · w̄−1
i · w̄j · f(w̄j)

∥∥
≤
∥∥f(w̄i)

−1 · w̄−1
i · w̄j · f(w̄i)

∥∥+
∥∥f(w̄i)

−1 · f(w̄j)
∥∥

≤ (1 + L)
∥∥f(w̄i)

−1 · w̄−1
i · w̄j · f(w̄i)

∥∥
2It is sufficient since Rm, with the Carnot-Carathéodory metric, is a doubling space. Doubling spaces

have the following covering property: there exists a function ϕ :]0, 1
2 ] −→]0,∞[ such that every set of

diameter, say d, can be covered by at most ϕ(ε) sets of diameter less than or equal to ε d. The function

ϕ is called a covering function, and can be chosen to be of the form ϕ(ε) = C
(

1
ε

)β
, for some constant

C ≥ 1 and β > 0. In case of Rm, the infimum of the constants β is exactly the Hausdorff dimension.
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that is
2ε

1 + L
≤
∥∥f(w̄i)

−1 · w̄−1
i · w̄j · f(w̄i)

∥∥ .
Now assume, by contradiction, that there exists w ∈ Ei ∩ Ej, then

2ε

1 + L
≤
∥∥f(w̄i)

−1 · w̄−1
i · w̄j · f(w̄i)

∥∥
≤
∥∥f(w̄i)

−1 · w̄−1
i · w · f(w̄i)

∥∥+
∥∥f(w̄i)

−1 · f(w)
∥∥+

∥∥f(w)−1 · f(w̄j)
∥∥

+
∥∥f(w̄j)

−1 · w−1 · w̄j · f(w̄j)
∥∥+

∥∥f(w̄j)
−1 · f(w)

∥∥+
∥∥f(w)−1 · f(w̄i)

∥∥
< (2 + 4L)

ε

(1 + L)(1 + 2L)
=

2ε

1 + L
,

a contradiction. In this way we proved that

Ei ∩ Ej = ∅,

for i 6= j. Now observe that

Ei = w̄i · f(w̄i) ·
{
w ∈W

∣∣∣∣ ‖w‖ < ε

(1 + L)(1 + 2L)

}
· f(w̄i)

−1,

and consider the map χ : W→W

w 7→ χ(w) := w̄ · v̄ · w · v̄−1,

for fixed w̄ ∈W and v̄ ∈ V. It is clear that its Jacobian determinant is identically equal

to 1 (here W is identified with R2n+1−k). Therefore, it preserves the Lebesgue measure

L2n+1−k W. Hence,

L2n+1−k (Ei) = L2n+1−k
({

w ∈W
∣∣∣∣ ‖w‖ < ε

(1 + L)(1 + 2L)

})
= Cε2n+2−k

Finally, the sets Ei are not only pairwise disjoint but also contained in a fixed bounded

set (dependent on R, L but independent on ε ∈]0, 1[) because w̄i are all contained

in the bounded set ΠW(B(e, R)) and ‖f(w̄i)‖ is bounded by L ‖w̄i‖. Thus, there is

C = C(W,V, L,R) > 0 such that

N ≤ c

(
1

ε

)2n+2−k

.
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2.2.1 1-Codimensional Intrinsic Lipschitz Graphs

In this section we restrict ourselves to 1-codimensional graphs of intrinsic Lipschitz

continuous functions. According to Proposition 1.4.4, we can decompose the Heisenberg

group Hn in the semidirect product of a horizontal subgroup V, of dimension 1 ≤ k ≤ n,

and a vertical subgroup W, of metric dimension 2n + 2 − k. From now on, we assume

that k = 1. In other words, we make the following

Assumption 2.2.7. Let Hn = W ·V be a semidirect product as in Proposition 1.4.4, we

assume that there exists a fixed vector field V ∈ h1 such that

V = { exp(tV ) | t ∈ R }.

Without loss of generality, we assume also that |V | = 1.

From this assumption, it follows also that if f : E ⊂ W −→ V, then there exists a

real-valued function ϕ : E −→ R such that

f(w) = exp(ϕ(w) · V ),

for every w ∈ E .

We aim now to expound the proof of an Extension Theorem given in [18]. The

authors follow the idea of the McShane-Whitney Extension Theorem for Lipschitz maps

(see Appendix B).

We start with a technical Lemma, that holds for general step 2 Carnot groups:

Lemma 2.2.8. Let G be a step 2 Carnot group and p, q ∈ G. Then there exists a

constant c = c(G) such that

‖p−1 · q−1 · p · q‖ ≤ C ‖p‖
1
2 · ‖q‖

1
2 . (2.8)

From (2.8), it follows

‖q−1 · p · q‖ ≤ ‖p‖ + C ‖p‖
1
2 · ‖q‖

1
2 . (2.9)

Proof. As usual, we identify G with Rn through exponential coordinates, so that the

group law is written as

p · q = p+ q +Q(p, q).
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Then

p−1 · q−1 · p · q = (−p− q +Q(p, q)) · (p+ q +Q(p, q))

= Q(−p,−q) +Q(p, q) + Q(−p− q +Q(p, q), p+ q +Q(p, q))

By Lemma 1.1.8, we have

Q(−p− q +Q(−p,−q), p+ q +Q(p, q)) = Q(−p− q, p+ q) = 0.

Hence, since Qm1+1, ..., Qn are homogeneous polynomials of degree 2 containing only

terms as ph qk, for 1 ≤ k, h ≤ m1,

‖p−1 · q−1 · p · q‖ ≤ ‖Q(−p,−q)‖ + ‖Q(p, q)‖

≤ ‖p‖
1
2 · ‖q‖

1
2 .

To conclude, we notice that

‖q−1 · p · q‖ ≤ ‖p‖ + ‖p−1 · q−1 · p · q‖

≤ ‖p‖ + ‖p‖
1
2 · ‖q‖

1
2 .

Lemma 2.2.9. Let Hn = W · V be as in Assumption 2.2.7. For L > 0, we define

ϕL : W −→ V as

ϕL(w) := exp(L ‖w‖V ).

Then there exists a constant L1 = L1(L,W,V) ≥ L such that the function ϕL is intrinsic

L1-Lipschitz. The constant L1 will be made precise during the proof.

Moreover,

graph(ϕL) = ∂C+
W,V

(
e,

1

L

)
,

where

C+
W,V

(
e,

1

L

)
:= exp ({Z ∈ hn | 〈Z, V 〉 ≥ 0}) ∩ CW,V

(
e,

1

L

)
.

Proof. According to Remark 2.2.4, we need to prove that, for all w, η ∈W,∥∥ϕL(w)−1 · ϕL(η)
∥∥ ≤ L1

∥∥ϕL(w)−1 · w−1 · η · ϕL(w)
∥∥ . (2.10)
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Notice that, since V is isometric to R and the isometry is realized by the exponential

map, ∥∥ϕL(w)−1 · ϕL(η)
∥∥ = ‖exp(−L‖w‖ · V ) · exp(L‖η‖ · V )‖

= L ‖exp((‖η‖ − ‖w‖) · V )‖

= L |‖η‖ − ‖w‖| .

Now, let V = exp(v) = exp(tV ) and W = exp(w) = exp (span{W1, ...,W2n, T}),
where V,W1, ...,W2n ∈ h1. We call M the 2n × 2n-matrix that gives the vector fields

V,W1, ...,W2n in terms of the standard basis X1, ..., Xn, Y1, ..., Yn. With respect to the

new basis of v and w, a fixed point p ∈ Hn can be written as

p = exp

(
p̃1 +

2n∑
i=1

p̃iWi + p2n+1T

)
.

In this case, we use the notation

p ' (p̃1, ..., p̃2n, p2n+1) = (p̃′, p2n+1).

It turns out also that p′ = MT p̃′. Moreover, the group law of the Heisenberg group can

be reformulated in this form

p · q '
(
p̃′ + q̃′, p2n+1 + q2n+1 −

1

2

〈
JMT p̃′,MT q̃′

〉
R2n

)
,

and the Korányi norm

‖p‖ =
(∥∥MT p̃′

∥∥4

R2n + p2
2n+1

) 1
4
.

In these new coordinates, ϕL is as follows

ϕL(w) = exp (L‖w‖ · V ) ' (L‖w‖, 0, ..., 0)

:= L ‖w‖ · e1.

Therefore, for all w and η ∈W,

ϕL(w)−1 · w · η·ϕL(w)

' (0, η̃2− w̃2, ..., η̃2n − w̃2n, η2n+1 − w2n+1

+
1

2

〈
JMT w̃′,MT η̃′

〉
R2n − L‖w‖

〈
JMT (η̃′ − w̃′),MT e1

〉
R2n

)
.
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To simplify the notations, we set

V :=

(
η2n+1 − w2n+1 +

1

2

〈
JMT w̃′,MT η̃′

〉
R2n − L‖w‖

〈
JMT (η̃′ − w̃′),MT e1

〉
R2n

)
,

H :=
∥∥M t (η̃′ − w̃′)

∥∥ ,
I := ‖ϕL(w)−1 · w−1 · η · ϕL(w)‖ =

4
√
H4 + V2.

Then, inequality (2.10) can be written as

‖ϕL(w)−1 · ϕL(η)‖ = L |‖η‖ − ‖w‖| ≤ L1 I. (2.11)

Now, without loss of generality, we assume that ‖η‖ ≤ ‖w‖ and ‖w‖ > 0. Notice that

inequality (2.10) is invariant by Heisenberg dilations. Hence, with

η 7−→ δ 1
‖w‖
η, w 7−→ δ 1

‖w‖
w,

(2.11) is equivalent to

L (1− ‖η‖) ≤ L1 I, (2.12)

for ‖η‖ ≤ 1 and ‖w‖ = 1.

Let us prove (2.12). Notice that

0 ≤ 1− ‖η‖ ≤ 1 − 4

√
‖MT η̃′‖4

R2n + |η2n+1|2

= 1 − 4

√
1− 1 + ‖MT η̃′‖4

R2n + |η2n+1|2

≤ 1 −
∥∥MT η̃′

∥∥4

R2n − η2
2n+1

= ‖w‖ −
∥∥MT η̃′

∥∥4

R2n − η2
2n+1

=
∥∥MT w̃′

∥∥ − ∥∥MT η̃′
∥∥4

R2n + w2
2n+1 − η2

2n+1

Observe that, for ‖η‖ ≤ 1 and ‖w‖ = 1,∥∥MT w̃′
∥∥4

R2n −
∥∥MT η̃′

∥∥4

R2n =

=
(∥∥MT w̃′

∥∥2

R2n −
∥∥MT η̃′

∥∥2

R2n

)
·
(∥∥MT w̃′

∥∥2

R2n +
∥∥MT η̃′

∥∥2

R2n

)
≤ 2

∣∣∣∥∥MT w̃′
∥∥2

R2n −
∥∥MT η̃′

∥∥2

R2n

∣∣∣
= 2

∣∣〈MT (w̃′ − η̃′) , MT (w̃′ + η̃′
〉
R2n

∣∣
≤ 4

∥∥MT (w̃′ − η̃′)
∥∥
R2n

= 4H ≤ 4 I.

(2.13)
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To conclude the proof, we need to extimate
∣∣w2

2n+1 − η2
2n+1

∣∣ in terms of I. We divide

into two cases:

1

2
| η2n+1 − w2n+1 | < |V| and

1

2
| η2n+1 − w2n+1 | ≥ |V| .

We start with the case
1

2
| η2n+1 − w2n+1 | < |V| .

We have, from definition of V ,

1

2
| η2n+1 − w2n+1 | <

1

2

∣∣〈JMT w̃′ , MT η̃′
〉
R2n

∣∣ + L ‖w‖
∣∣〈JMT (η̃′ − w̃′) , MT e1

〉
R2n

∣∣
=

1

2

∣∣〈JMT (w̃′ − η̃′) , MT e1

〉
R2n

∣∣
≤ 1

2
‖MT‖ (1 + 2L)

∥∥MT (w̃′ − η̃′
∥∥ ,

where the last inequality follows trivially from the Schwartz inequality. Therefore,

|w2
2n+1 − η2

2n+1 | ≤ 2 |w2n+1 − η2n+1 |

≤ 2
∥∥MT

∥∥ (1 + 2L) I.
(2.14)

Consider now the second case

|V| ≥ 1

2
|η2n+1 − w2n+1|.

We have

|w2
2n+1 − η2

2n+1 | ≤ 2 |w2n+1 − η2n+1 |

≤ 2
√

2 |w2n+1 − η2n+1 |
1
2

≤ 4
4
√
V ≤ 4 I.

(2.15)

Then, from inequalities (2.13), (2.14) and (2.15), we get

1 − ‖η‖ ≤
(∥∥MT w̃′

∥∥4 −
∥∥MT η̃′

∥∥4
)

+ |w2
2n+1 − η2

2n+1 |

≤ 2 max
{

2,
∥∥MT

∥∥ · (1 + 2L)
}
I,

which, setting L1 = 2 max
{

2,
∥∥MT

∥∥ · (1 + 2L)
}

, completes the proof.
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Lemma 2.2.10. Let Hn = W · V be as in Assumption 2.2.7. For each α > 0, there

exists α1 = α1(α,W,V) ≤ α such that, for all v ∈ exp(tV ) ∈ V with t > 0,

C+
W,V(v, α1) := v · C+

W,V(e, α1) ⊂ C+
W,V(e, α).

Proof. Let p ∈ C+
W,V(e, α1) be fixed. By Proposition 1.4.5, (v · p)W = v · pW · v−1 and

(v · p)V = v · pV. Moreover, since V is isometric to R,

‖(v · p)V‖ = ‖pV‖ + ‖v‖.

On the other hand, by (2.9)

‖(v · p)W‖ = ‖v · p · v−1‖

≤ ‖pW‖ + c ‖v‖
1
2 ‖pW‖

1
2 .

Now, using the fact that p ∈ C+
W,V(e, α1), one has

‖(v · p)W‖ ≤
(

1 +
c

2

)
‖pW‖ +

c

2
‖v‖

≤ α1

(
1 +

c

2

)
‖pV‖ +

c

2
‖v‖

≤ max
{
α1

(
1 +

c

2

)
,
c

2

}
(‖pV‖ + ‖v‖)

= max
{
α1

(
1 +

c

2

)
,
c

2

}
‖(v · p)V‖.

Hence, if we choose α > 0 such that α = max
{
α1

(
1 + c

2

)
, c

2

}
, we have that v · p ∈

C+
W,V(e, α).

In classical proof of McShane and Whitney, we define a family {fi}i∈I of Lipschitz

functions fi : A −→ R. Lemma B.0.16 ensures us that infi∈I fi(x) and supi∈I fi(x), for

each x ∈ A, are Lipschitz functions as well. It is possible to do the same for a family

of intrinsic Lipschitz functions on Hn. Since V = {exp(tV ) | t ∈ R}, it can be identified

with R so that the exponential map induced an order on it. Then it makes sense to

speak about the supremum oder the infimum of a collection of V-valued functions.

In the next lemmas, our goal is to prove the analogous result of Lemma B.0.16.

Definition 2.2.8. Let Hn = W · V be as in Assumption 2.2.7 and let {fα}α∈A be a

collection of V-valued functions

fα(w) : W −→ V

fα(w) = exp(ϕα(w)V ),
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where ϕα : W −→ R. We define infα∈A fα : W −→ V as

inf
α∈A

fα(w) := exp

(
inf
α∈A

ϕα(w)V

)
,

for all w ∈W such that infα∈A ϕα(w) is finite.

Analogously, we define supα∈A fα : W −→ V as

sup
α∈A

fα(w) := exp

(
sup
α∈A

ϕα(w)V

)
.

In the same way, we define max{fα, fβ} and min{fα, fβ}.

Notation 2.2.1. Let f : W −→ V be a continuous function such that f(w) = exp(ϕ(w)V ),

for ϕ : W −→ R. We define the subgraph of f and the supergraph of f , respectively,

E−(f) = E−f := {w · exp(tV ) |w ∈W, t < ϕ(w)}

E+(f) = E+
f := {w · exp(tV ) |w ∈W, t > ϕ(w)}.

Notice that we can consider E−f and E+
f just taking also equalities in the two sets.

Remark 2.2.9. Let {fα}α∈A be a family of V-valued functions. it is clear that

E−
(

inf
α∈A

fα

)
=
⋂
α∈A

E−fα and E+

(
inf
α∈A

fα

)
=
⋃
α∈A

E+
fα
.

In the next lemma we prove a characterization for 1-codimensional graphs of intrinsic

Lipschitz functions:

Lemma 2.2.11. Let Hn = W · V be as in Assumption 2.2.7. Then f : W −→ V,

f(w) := exp(ϕ(w)V ), where ϕ : W −→ R, is intrinsic L-Lipschitz, if and only if, for all

w ∈W,

C+
W,V

(
w · f(w),

1

L

)
⊂ E+

f and C−W,V

(
w · f(w),

1

L

)
⊂ E−f .

Proof. The first implication is trivial. Indeed, if we assume that f is intrinsic L-Lipschitz,

then, by definition, for all w ∈W and 0 < α < 1
L

,

CW,V (w · f(w), α) ∩ graph(f) = {w · f(w)}.
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We prove the converse implication by contradiction: let w̄ ∈ W and t̄ > ϕ(w̄) ∈ R
be such that

w̄ · exp(t̄ V ) ∈ C+
W,V (w̄ · f(w), α) ∩ E−f . (2.16)

Then again, for all t̄ ≥ t

exp(t V ) ∈ C+
W,V (w̄ · f(w̄), α) .

In particular,

w̄ · exp(t V ) ∈ C+
W,V (w̄ · f(w̄), α)

and this contradicts (2.16).

Lemma 2.2.12. Let Hn = W · V be as in Assumption 2.2.7. Let fα, fβ : W −→ V be

intrinsic L-Lipschitz functions. Then there exists a constant L2 = L2(L,W,V) ≥ L such

that g := max{fα, fβ} is intrinsic L2-Lipschitz.

Proof. Let w ∈W be fixed. We apply Lemma 2.2.10, with α1 = 1
L

and L2 := 1
α2

to have

C+
W,V

(
w · g(w),

1

L2

)
⊂ E−fα and C+

W,V

(
w · g(w),

1

L2

)
⊂ E+

fβ
.

Hence, by Remark 2.2.9,

C+
W,V

(
w · g(w),

1

L2

)
⊂ E+

fα
∩ E+

fβ
= E+

g ,

which, by Lemma 2.2.11, implies that g is intrinsic L2-Lipschitz.

Proposition 2.2.13. Let Hn = W·V be as in Assumption 2.2.7. Let {fα}α∈A be a collec-

tion of intrinsic L-Lipschitz functions. Then, there exists a constant L2 = L2(L,W,V) ≥
L such that

f := inf
α∈A

fα

is f ≡ −∞ or f is defined on all W and it is intrinsic L2-Lipschitz.

Proof. Using Remark 2.2.4, we can prove the assertion showing that, for w, η ∈W,∥∥f(w)−1 · f(η)
∥∥ ≤ L2

∥∥f(w)−1 · w−1 · η · f(w)
∥∥ .
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Let w and η ∈W be fixed, and let ε ∈ R+. We choose α = α(ε) and β = β(ε) ∈ A such

that ∥∥fα(w)−1 · f(w)
∥∥ < ε and

∥∥fβ(η)−1 · f(η)
∥∥ < ε.

Notice also that it is always possible to choose such an α and β, because of the definition

of infimum.

Now, define g := max{fα, fβ}, and observe that, from Lemma 2.2.12, g is intrinsic

L2-Lipschitz. Moreover, g is such that

‖g−1(w) · f(w)‖ < ε and ‖g(η)−1 · f(η)‖ < ε.

Hence,

‖f(w)−1 · f(η)‖ = ‖f(w)−1 · g(w) · g(w)−1 · g(η) · g(η)−1 · f(η)‖

≤ ‖f(w)−1 · g(w)‖ + ‖g(η)−1 · f(η)‖ + ‖g(w)−1 · g(η)‖

≤ 2 ε + L2 ‖g(w)−1 · w−1 · η · g(w)‖

= 2 ε + L2 ‖g(w)−1 · f(w) · f(w)−1 · w−1 · η · f(w) · f(w)−1 · g(w)‖

≤ 2 ε+ 2 εL2 + L2 ‖f(w)−1 · w−1 · η · f(w)‖.

Choosing ε small enough, one has the assertion.

We are now ready to give the proof of the Extension Theorem:

Theorem 2.2.14. Let Hn = W · V be as in Assumption 2.2.7. Let B be a Borel subset

of W and f : B −→ V be an intrinsic L-Lipschitz function. Then there are f̃ : W −→ V
and a constant L3 = L3(L,W,V) ≥ L such that

(i) f̃ is intrinsic L3-Lipschitz;

(ii) f̃(w) = f(w), for all w ∈ B.

Proof. Let w̄ ∈ B. We define

ϕL,w̄ : W −→ V

w 7−→ f(w̄) · ϕL
(
f(w̄)−1 · w̄−1 · w · f(w̄)

)
,
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where ϕL is the function defined in Lemma 2.2.9. We notice that

graph(ϕL,w̄) = ∂C+
W,V

(
w̄ · f(w̄),

1

L

)
. (2.17)

We can write, for real valued functions

ϑw̄ : W −→ R and ϕ : B −→ V,

that

ϕL,w̄(w) = exp(ϑw̄(w) · V ) and f(w) = exp(ϕ(w) · V ).

Since, on B, ϕL,w̄ = f , one has that

ϑw̄(w̄) = ϕ(w̄), for all w̄ ∈ B. (2.18)

Let us define f̃ : W −→ V as

f̃(w) = inf
w̄∈B

ϕL,w̄(W ),

for all w ∈W.

From Lemma 2.2.9, we know that ϕL,w̄ is intrinsic L2-Lipschitz for all w̄ ∈ B, where

L1 is the constant defined in Lemma 2.2.9. Therefore, by Proposition 2.2.13, one has

that f̃ is intrinsic L2-Lipschitz.

Our aim, now, is to show that f(w) = f̃(w) for all w ∈ B. Given (2.18), it is sufficient

to show, for a fixes w ∈ B, that

ϑw̄(w) ≥ ϕ(w),

for all w ∈ C. Now, f is intrinsic L-Lipschitz, then, since t 7−→ exp(tV ) is an isometry,

|ϕ(w)− ϑw̄(w̄) | = |ϕ(w)− ϕ(w̄) |

= ‖f(w̄)−1 · f(w)‖

≤ L ‖f(w̄)−1 · w̄−1 · w · f(w̄)‖.

On the other hand, from (2.17),

|ϑw̄(w)− ϑw̄(w̄)| = ‖ϕL,w̄(w̄)−1 · ϕL,w̄(w)‖

= ‖ϕL,w̄(w̄)−1 · w−1 · w · ϕL,w̄(w)‖

≤ L ‖f(w̄)−1 · w̄−1 · w · f(w̄)‖.
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Hence,

|ϕ(w)− ϑw̄(w̄)| ≤ |ϑw̄(w)− ϑw̄(w̄)|,

which is exactly what we wanted.

We aim to conclude this Section by proving that subgraphs of intrinsic Lipschitz

functions are sets of locally finite H-perimeter. We start with a useful characterization:

Theorem 2.2.15. Let Ω be an open subset of Hn.

(i) If SQ−1
d (∂Ω) is locally finite in H, then Ω has locally finite H-perimeter;

(ii) if SQ−1
d (∂Ω) <∞, then there exists a positive geometric constant c > 0 such that

|∂Ω|H ≤ cSQ−1
d ∂Ω.

Proof. We divide the proof in three steps.

Step 1. First, suppose that Ω is bounded and SQ−1
d (∂Ω) < ∞. We have to show

that |∂Ω|H(Hn) < ∞. Let ε ∈ R+, we can cover ∂Ω with open metric balls {Uj,ε}j∈N,

with radius rj,ε < ε, such that∑
j∈N

rQ−1
j,ε < c̃SQ−1

d (∂Ω) =: c < ∞.

Setting Sε :=
⋃
j∈N Uj,ε and Ωε := Ω ∩ Sε, we have

Ωε −→ Ω in L1, as ε −→ 0. (2.19)

Indeed,

L2n+1(Ωε4Ω) = L2n+1 (Ωε \ Ω)

≤ L2n+1(Sε)

≤ c
∑
j∈N

r2n+2
j,ε

≤ c ε.

Claim. The following inequality holds

|∂Ωε|H(Hn) ≤ c |∂Sε|H(Hn). (2.20)
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Assuming the Claim true, the proof of this first step follows from (2.19) and by the

L1-lower semicontinuity of the perimeter, since

|∂Sε|H(Hn) ≤
∑
j∈N

|∂Uj,ε|H(Hn)

≤ c
∑
j∈N

r2n+1
j,ε

≤ c <∞.

Step 2. Let us prove the Claim. First observe that ∂Ωε ⊂ Ω̄c, dist(∂Ωε, Ω̄) > 0 and

Ωε ∩ Ω̄c. Therefore,

|∂Ωε|H(Hn) = |∂Ωε|H(Ω̄c) = |∂(Ωε ∩ Ω̄c)|H(Ω̄c)

= |∂(Sε ∩ Ω̄c)|H(Ω̄c) = |∂Sε|H(Ω̄c)

≤ |∂Sε|H(Hn).

Step 3. We drop now the assumption of the boundedness of Ω. Let U be a fixed

open ball, such that ∂Ω ∩ U 6= ∅ and S2n+1
d (∂Ω ∩ U) < ∞. Now, since S2n+1

d (U) < ∞,

we have

S2n+1
d (∂(U ∩ Ω)) ≤ S2n+1

d (∂U ∪ (∂Ω ∩ U))

≤ S2n+1
d (∂U) + S2n+1

d (∂Ω ∩ U) < ∞.

Thus, from Step 1, it follows that

|∂(U ∩ Ω)|H(Hn) < ∞,

and consequently

|∂Ω|H(U) = |∂(Ω ∩ U)|H(U)

= |∂(Ω ∩ U)|H(Hn) < ∞.

Theorem 2.2.16. Let Hn = W·V be as in Assumption 2.2.7. If f : W −→ V is intrinsic

Lipschitz, then the subgraph E−f is a set with locally finite H-perimeter.



2.2. INTRINSIC LIPSCHITZ GRAPHS 63

Proof. By Proposition 2.2.6, it follows that S2n+1
d (∂E−f ) is locally finite in Hn. Therefore,

statement (i) in Theorem 2.2.15 implies the assertion.

Proposition 2.2.17. Let Ω be an open set in Hn. If U is an open ball such that ∂Ω∩U
is an intrinsic Lipschitz graph, then

|∂Ω|H(U) = cS2n+1(∂Ω ∩ U). (2.21)

Proof. If ∂Ω ∩ U is an intrinsic Lipschitz graph, then its measure theoretic boundary in

U coincides with ∂Ω∩U (this fact follows simply from the definition of intrinsic Lipschitz

graph and from Definition 1.5.6). Proposition 1.5.7 implies directly (2.21).

2.2.2 Intrinsic Differentiable Graphs and a Rademacher type

Theorem

Following again [18], in this subsection we aim to apply ourselves to the proof of a

Rademacher type results for intrinsic Lipschitz maps. First, we need a notion of differ-

entiability which is dependent only of the group structure: the intrinsic differentiability.

As usual, differentiability is connected to the existence of approximating linear func-

tions. Hence, we start with the definition of intrinsic linear functions.

Definition 2.2.10. Let Hn = G1 ·G2 be a semidirect product of homogeneous subgroups.

We say that L : G1 −→ G2 is an intrinsic linear function if

graph(L) := {g · L(g) | g ∈ G1}

is a homogeneous subgroup of Hn.

Remark 2.2.11. We point out that graph(L) is a closed set and that intrinsic linear

functions are continuous functions from G1 to G2.

Once more, if we assume that Hn = W ·V is as in Proposition 1.4.4, we have different

characterizations depending if the intinsic linear map L is defined on V or on W.

Proposition 2.2.18. Let Hn = W · V be as in Proposition 1.4.4. Then

(i) L : V −→ W is intrinsic linear if and only if the parametric map Φf : V −→ Hn,

Φf (g) := g · f(g), is H-linear.
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(ii) L : W −→ V is intrinsic linear if and only if L is H-linear.

Proof. See [1], Proposition 3.26.

In the following example, again taken from [1], we highlight that it is really necessary,

in Proposition 2.2.18, to distinguish the two cases:

Example 2.2.3. Let H1 = W · V be as in Example 2.2.1, and let a ∈ R be fixed. The

function L : V −→W, define as

L ((x, 0, 0)) =

(
0, ax,−ax

2

2

)
,

is intrinsic linear. To prove this it is enough to show that graph(L) is a homogeneous

subgroup of H1.

Let (v1, 0, 0) ∈ V. Then

(v1, 0, 0) · L ((v1, 0, 0)) = (v1, 0, 0) ·
(

0, av1,−
av2

1

2

)
=

(
v1, av1,

a

2
v2

1 −
1

2

(
av2

1

))
= (v1, av1, 0).

Hence, graph(L) = {(t, at, 0) | t ∈ R}, which is clearly a horizontal 1-dimensional sub-

group of H1. On the contrary, L is not a group homomorphism from V to W.

Analogously, the function L : W −→ V, defined as

L ((0, y, t)) = (ay, 0, 0),

is intrinsic linear. Indeed, graph(L) = {(at, t, s) | t, s ∈ R}, which is a vertical subgroup

of H1 of dimension 2. But the parametric function ΦL : W −→ V acts as

ΦL ((0, y, t)) =
(
ay, y, t− a

2
y2
)
,

and, consequently, it is not a group homomorphism from W to H1.

Definition 2.2.12. Let Hn = G1 · G2 be a semidirect product and f : E ⊂ G1 −→ G2,

with E an open subset of G1. For p̄ := ḡ · f(ḡ), we consider the translated function fp̄−1
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defined on Ep̄−1. We say that f is intrinsic differentiable in ḡ ∈ E if there exists an

intrinsic linear map

dḡf : G1 −→ G2

such that, for all g ∈ Ep̄−1,

lim
‖g‖→0

‖dḡf(g)−1 · fp̄−1(g)‖
‖g‖

= 0. (2.22)

The map dḡf is called the intrinsic differential of f in ḡ.

Remark 2.2.13. Intrinsic differentiablity is invariant by left translations of the graph.

Indeed, let q1 = g1 ·f(g1) and q2 = g2 ·f(g2) ∈ graph(f). Now, f is intrinsic differentiable

in g1 ∈ G1 if and only if fq−1
1

is intrinsic differentiable in e. Consequently, f is intrinsic

differentiable in g1 if and only if fq2·q−1
1
≡
(
fq−1

1

)
q2

is intrinsic differentiable in g2.

Intrinsic differentiable functions, within Hn, can be characterized in the following

algebraic way.

Proposition 2.2.19. Let Hn = W · V be as in Proposition 1.4.4. Then,

(i) f : E ⊂ V −→ W in intrinsic differentiable in ḡ ∈ E if and only if the parametric

function Φf : E −→ Hn is P -differentiable in ḡ;

(ii) f : E ⊂ W −→ V is intrinsic differentiable in ḡ ∈ E if and only if there is an

intrinsic linear map dḡf : W −→ V such that∥∥dḡf(ḡ · g)−1 · f(ḡ)−1 · f(g)
∥∥ = o

(∥∥f(ḡ)−1 · ḡ−1 · g · f(ḡ)
∥∥) ,

for g ∈ E and ‖f(ḡ)−1 · ḡ−1 · g · f(ḡ)‖ −→ 0.

Remark 2.2.14. We should stress that, by assumption, V is a horizontal subgroup of Hn.

This implies, in particular, that V is isomorphic and isometric to Rk (Proposition 1.4.3

on page 24). Therefore, V is a Carnot group and it makes sense to speak about P -

differentiability in (i).

Proof of Proposition 2.2.19. We start with case (i) and assume that f is intrinsic differen-

tiable in ḡ with intrinsic differential dḡf . By Proposition 2.2.18, the map g 7−→ g ·dḡf(g)

is a homogeneous homomorphism from V to Hn. We define dḡΦf : V −→ Hn as follows

dḡΦf (g) := g · dḡf(g).
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Notice that, by Proposition 2.1.3 and using the same notations introduced in Definition

2.2.12,

dḡf(η)−1 · fp̄−1(η) = dḡf(η)−1 · η−1 · f(ḡ)−1 · η · f(ḡ · η).

Therefore, setting g := ḡ · η, we get

dḡf(ḡ−1 · g) · fp̄−1(ḡ−1 · g) = dḡf(ḡ−1 · g)−1 · (ḡ−1 · g)−1 · f(ḡ)−1 · ḡ−1 · g · f(g)

= dḡΦf (ḡ
−1 · g)−1 · Φf (ḡ)−1 · Φf (g).

Hence, the intrinsic differentiability of f implies∥∥dḡΦf (ḡ
−1 · g)−1 ·Φf (ḡ)−1 · Φf (g)

∥∥ =

=
∥∥dḡf(ḡ−1 · g)−1 · fp̄−1(ḡ−1 · g)

∥∥
= o

(∥∥ḡ−1 · g
∥∥) ,

as ‖ḡ−1 · g‖ −→ 0.

Vice versa, assume that Φf is P -differentiable in ḡ. By definition of P -differentiability,

we have that dḡΦf : V −→ Hn is a homogeneous homomorphism.

We claim that

dḡΦf (g) = g · Lf,ḡ(g), (2.23)

for some intrinsic linear map Lf,ḡ : V −→W.

Once (2.23) is proved, defining Lf,ḡ as the intrinsic differential of f at ḡ, we have that

o
(
‖g−1 · g‖

)
=
∥∥dḡΦf (ḡ

−1 · g)−1 · Φf (ḡ)−1 · Φf (g)
∥∥

=
∥∥dḡf(ḡ−1 · g)−1 · fp̄−1(ḡ−1 · g)

∥∥ ,
the intrinsic differentiability of f in ḡ.

Let us prove (2.23). By definition of P -differentiability and by Proposition 1.4.5,

components along V and W of dḡΦf (ḡ
−1 · g)−1 · Φf (ḡ)−1 · Φf (g) have to be o (‖ḡ−1 · g‖).

In particular,

o
(
‖ḡ−1 · g‖

)
=
∥∥(dḡΦf (ḡ

−1 · g)−1)V · (Φf (ḡ))−1
V · (Φf (g))V

∥∥
=
∥∥(dḡΦf (ḡ

−1 · g)−1)V · ḡ−1
V · gV

∥∥ .
Hence, since (dḡΦf )V is a linear map from V, identified with Rk, to itself, we get that

(dḡΦf )V = IV,
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which provides (2.23).

We prove, now, case (ii). by Proposition 2.1.2, for each η ∈W, we have

dḡf(η)−1fp̄−1(η) = dḡf(η)−1 · f(ḡ)−1 · f
(
ḡ · f(ḡ) · η · f(ḡ)−1

)
.

Let g = ḡ · f(ḡ) · η · f(ḡ)−1. Then

dḡf(η)−1 · f(ḡ)−1 · f(ḡ)−1·f
(
ḡ · f(ḡ) · η · f(ḡ)−1

)
=

= dḡf
(
f(ḡ)−1 · ḡ−1 · g · f(ḡ)

)−1 · f(ḡ)−1 · f(g)

= dḡf(ḡ−1 · g)−1 · f(ḡ)−1 · f(g),

where the last inequality follows because dḡf is a homogeneous homomorphism and V
ia an Abelian subgroup.

Now, assume that f is intrinsic differentiable. Then∥∥dḡf(η)−1 · fp̄−1(η)
∥∥ = o (‖η‖) ,

for ‖η‖ −→ 0. This implies that

o
(
‖f(ḡ)−1 · ḡ−1 · g · f(ḡ)

∥∥) =
∥∥dḡf(η)−1 · fp̄−1(η)

∥∥
=
∥∥dḡf(ḡ−1 · g)−1 · f(ḡ)−1 · f(g)

∥∥ ,
for ‖f(ḡ)−1 · ḡ−1 · g · f(ḡ)‖ −→ 0. Analogously one can prove the converse.

Once more following [18], our aim, now, is to study more geometric feature for intrinsic

differentiability. Next theorem provides us two characterizations. The first is in terms

of blow-ups: we approximate the graph of an intrinsic differentiable function f , from a

vertical subgroup W to a horizontal one V, with a vertical subgroup complementary to

V. The second characterization is in terms of intrinsic cones. First, we need the following

Lemma 2.2.20. Let Hn = G1 ·G2 be a semidirect product. If M is another homogeneous

subgroup such that M ∩G2 = {e}, then there exists a continuous function

ψ : ΠG1(M) −→ G2

such that M = graph(ψ).

In particular, if W, V and W′, V′ are two couples of complementary subgroups as in

Proposition 1.4.4, then there exists an intrinsic linear function ψ : W −→ V such that

W′ = graph(ψ).
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Proof. We start by proving that ΠG1 : M −→ G2 is injective. Assume that p, p̄ ∈ M
have the same projection on G1, that is p = g1 · g2 and p̄ = g1 · ḡ2. Since M is a group,

p−1 · p̄ = g−1
2 · g−1

2 · g1 · ḡ2 = g−1
2 · ḡ2 ∈M ∩G2.

Hence p−1 · p̄ = e, which implies p = p̄.

Now, any point p ∈ M can be written as p = ΠG1(p) · ΠG2(p). Hence, setting

g1 := ΠG1(p) ∈ ΠG1(W), we can define p = g1 · ψ(g1), with ψ = ΠG2 · (ΠG1)−1. Clearly

graph(ψ) = M, then we have to show that ψ is a continuous mapping. By Proposition

1.4.2, ΠG1 is continuous, then the continuity of ψ follows from the continuity of (ΠG1)−1.

Let {qn}n∈N ⊂ ΠG1(M) be a sequence such that qn → q̄ ∈ ΠG1(M), as n→ +∞. Sup-

pose for the moment that there exists a subsequence (not renamed) of
{

(ΠG1)−1 (qn)
}
n∈N

such that (ΠG1)−1 (qn) −→ m̄, for some m̄ ∈ Hn. Since M is closed, m̄ ∈ M. Further-

more, by continuity of ΠG1 ,

qn = ΠG1 ◦ (ΠG1)−1 (qn) −→ ΠG1(m̄).

Hence, q̄ = ΠG1(m̄) and (ΠG1)−1 (q̄) = m̄, which gives the continuity of (ΠG1)−1.

The proof will be complete if we prove the existence of a convergent subsequence of{
(ΠG1(qn))−1}

n∈N. First, we notice that

(ΠG1)−1 : ΠG1(M) −→ M

is homogeneous, that is (ΠG1)−1 ◦ δλ = δλ ◦ (ΠG1)−1, for all λ > 0.

Now, let us consider cn :=
∥∥(ΠG1)−1 (qn)

∥∥. Striving for a contradiction, suppose that

{cn}n∈N is unbounded. Then pn := δc−1
n

(qn) −→ e and∥∥(ΠG1)−1 (δc−1
n

(qn)
)∥∥ = c−1

n

∥∥(ΠG1)−1 (qn)
∥∥ = 1.

Hence, with the same argument as before, we get that

(ΠG1)−1 (δc−1
n

(qn)
)

= δc−1
n

(ΠG1)−1 (qn) −→ e,

as n −→ +∞. Now we have the required contradiction since
∥∥(ΠG1)−1 (pn)

∥∥ = 1, for

each n ∈ N.
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Theorem 2.2.21. Let Hn = W ·V be as in Proposition 1.4.4 and f : E ⊂W −→ V, with

E an open subset of W. Let w0 ∈ E and g0 := w0 · f(w0). Then the following statements

are equivalent:

(i) f is intrinsic differentiable in w0 ∈ E.

(ii) There exists a vertical subgroup Tf,g0, complementary to V, characterized by

lim
λ→+∞

δλ
(
g−1

0 · graph(f)
)

= Tf,g0 , (2.24)

in the sense of Hausdorff convergence3 in compact subsets of Hn.

(iii) There exists a vertical subgroup T′f,g0
, complementary to V, and, for any α > 0,

there exists r0 = r0(f, w0, α) > 0, such that

CTf,g0 ,V(g0, α) ∩B(g0, r0) ∩ graph(f) = {g0}.

Notice that Tf,g0 = T′f,g0
= graph(dw0f).

Notation 2.2.2. We call Tf,g0 the tangent subgroup to graph(f) at g0.

Proof. We can assume, without loss of generality, that w0 = e and f(w0) = g0 = e.

Indeed, each condition (i), (ii) and (iii) depends on notions which are invariant by left

translations.

First, we prove that (i) implies (iii). Denote by T′f,g0
:= graph(def). Let p ∈ Hn.

Then

p = pW · pV
= pW · (def(pW))︸ ︷︷ ︸

∈T′f,e

· (def(pW))−1 · pV︸ ︷︷ ︸
∈V

. (2.25)

Moreover, if x · def(x) ∈ V, for some x ∈ W, then x ∈ V, implying that x = e. Hence,

T′f,e ∩ V = {e}.
3On the set K of all compact subsets of Hn, we define the Hausdorff metric as follows:

dH(E,F ) := inf
{
ε ∈ R+ |Eε ⊆ F, F ε ⊆ E

}
.

With this metric, we say that a sequence {Kn}n∈N ⊂ K converges to K̃, if dH(Kn, K̃) −→ 0, as n→ 0.
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Our goal now is to prove

CTf,e,V(e, α) ∩B(e, r0) ∩ graph(f) = {e}. (2.26)

We have to show that, for all α > 0, there exists r0 = r0(f, e, α) > 0 such that if

0 < ‖x · f(x)‖ < r0, then x · f(x) /∈ CT′f,e,V(e, α). That is equivalent to prove that if 0 <

‖x · f(x)‖ < r0, then
∥∥∥ΠT′f,e(x · f(x))

∥∥∥ > α ‖ΠV(x · f(x)‖. By a standard compactness

argument, we know that the geometric constant

c := inf
v∈V

x∈W, ‖x‖=1

‖x · v‖

is positive (notice that it depends only on the group structure). Therefore, by homo-

geneity, we can conclude that

‖x‖ ≤ 1

c
‖x · v‖,

for all x ∈W and for all v ∈ V.

Let α ∈ R+ be fixed and choose ε = c
α

. By equation (2.22), there exists δ ∈ R+ such

that, for each ‖x‖ < δ,

‖ΠV(x · f(x))‖ = ‖def(x)−1 · f(x)‖

<
c

α
‖x‖ ≤ 1

α
‖x · def(x)‖

=
1

α

∥∥ΠTf,e(x · f(x)
∥∥ .

Hence, choosing r0 := c δ, we have (2.26).

Let us prove that (iii) implies (ii). Fix R ∈ R+ and choose Tf,e = T′f,e. Notice that,

for each ε > 0, there exists a positive constant α = α(Tf,e,V, R, ε) such that

B(e, R) ⊂ (Tf,e)ε ∪ CTf,e,V(e, α), (2.27)

where (Tf,e)ε is an ε-neighbourhood of Tf,e. Now, by hypothesis, we know that, for each

α > 0, there exists r0(α) > 0 such that, for all 0 < r < r0

CTf,e,V(e, α) ∩ B(e, r) ∩ graph(f) = {e}.

Hence, for all λ > R
r0

, we have

CTf,e,V(e, α) ∩ B(e, R) ∩ δλ (graph(f)) = {e}, (2.28)
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which implies, together with (2.27), that, for all ε ∈ R+, there exists λ0 = λ0(e, r0, ε) > 0

such that, for any λ > λ0,

B(e, R) ∩ δλ (graph(f)) ⊂ (Tf,e)ε .

For the converse inclusion, we need to prove that, for all ε ∈ R+ and R > 0, Tf,e ∩
B(e, R) is contained in an ε-neighbourhood of δλ (graph(f)), for λ > λ0(R, ε).

By Lemma 2.2.20, we know that there exists a continuous map ψ : ΠW(Tf,e) ⊂
W −→ V such that Tf,e = graph(ψ). For simplicity of notation, we set w = δ 1

λ
(w̄),

where p̄ = w̄ · ψ(w̄). Since E is an open subset of W, there exists λ̄ > 0, which depends

on E and R but not on point p̄, such that w ∈ B(e, r0) ∩W, for all λ > λ̄. With this

choice of λ̄, we have

δλ (w · f(w)) = w̄ · δλ
(
f
(
δ 1
λ
(w̄)
))

.

The preceding observation leads to estimate dist (p̄, δλ(graph(f))):

dist (p̄, δλ(graph(f)) ≤ d (p̄, δλ (w · f(w)))

=
∥∥p̄−1 · δλ(w · f(w))

∥∥
=
∥∥∥ψ(w̄)−1 · w̄−1 · w̄ · δλ

(
f
(
δ 1
λ
(w̄)
))∥∥∥

=
∥∥ψ(w̄)−1 · δλ (f(w))

∥∥ .
On the other side, from (2.28) and (iii), we know that, for all α > 0 and r0 > 0, there

exists λ0 = λ0(r0, α) such that, for all λ > λ0,

CTf,e,V(e, α) ∩ B(e, r0) ∩ δλ (graph(f)) = {e},

which is equivalent, for all λ > λ0 and for w · f(w) ∈ B(e, r0), to

α · ‖ΠV (δλ (w · f(w)))‖ <
∥∥ΠTf,e (δλ (w · f(w)))

∥∥ . (2.29)

We calculate explicitly the projections in order to rewrite (2.29):

δλ(w · f(w)) = w̄ · δλf(w) = w̄ · ψ(w̄)︸ ︷︷ ︸
∈Tf,e

·ψ(w̄)−1 · δλ (f(w))︸ ︷︷ ︸
∈V

.

This completes the second part of the proof. Indeed, (2.29) can be rewritten in the form∥∥ψ(w̄)−1 · δλf(w)
∥∥ <

1

α
‖w̄ · ψ(w̄)‖ ≤ R

α
.
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We come to the last part of the proof: (ii) implies (i). We have to show that there

exists an intrinsic linear function def : W −→ V, such that∥∥def(w)−1 · f(w)
∥∥ = o (‖w‖) , (2.30)

as ‖w‖ −→ 0. Lemma 2.2.20 asserts that there exists a continuous intrinsic linear

function ψ : W −→ V such that Tf,e = graph(ψ). Then we can choose def(w) := ψ(w),

for all w ∈W.

Let {wn}n∈N ⊂ W be a sequence such that wn 6= e, for all positive integer n, and

wn −→ e, as n −→∞. Let us define λn := 1
‖wn‖ . Then from homogeneity of the distance

λn d (def(wn), f(wn)) = d (δλn(wn) · def (δλnwn) , δλn (wn · f(wn)))

≤ d (δλn(wn) · def (δλn(wn) · def (δλnwn) , pn))

+ d (pn, δλn (wn · f(wn))) ,

(2.31)

where we have chosen pn = ηn · def(ηn) ∈ Tf,e ∩B(e, 2) such that

dist (δλn (wn · f(wn)) ,Tf,e) = d (δλ(wn · f(wn)), pn) .

Now, by assumption,

d (pn, δλn(wn · f(wn))) := d (ηn · def(ηn), δλn(wn · f(wn))) −→ 0, (2.32)

as n −→ +∞. Hence, since projections are continuous maps (Proposition 1.4.2) and we

remember that ΠW(pn) = ηn and ΠW (δλn (wn · f(wn))) ,

d (δλnwn, ηn) −→ 0 (2.33)

as n −→ +∞. It follows, because of continuity of def , that

d (def(δλw), def(ηn)) −→ 0, (2.34)

as n −→ +∞. Thus, once more from (2.24), (2.33) and (2.34),

d (δλn(wn) · def(δλnwn), pn) = d (δλnwn · def(δλnwn), ηn def(ηn)) −→ 0, (2.35)

as n −→ +∞. The proof is complete; indeed, from (2.31), together with (2.35) and

(2.31), we get

lim
n→+∞

d (def(wn), f(wn))

‖wn‖
= 0.
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We are now ready to proceed to the main result of this section: the Rademacher-type

Theorem. We confine ourselves to discussing the case of 1-codimensional graphs: from

now on, we consider, once again, Hn = W · V as in Assumption 2.2.7.

Let f : E ⊂ W −→ V be an intrinsic Lipschitz continuous function, where E is an

open subset of W. Analogously to the classical case, we aim to prove that f is intrinsic

differentiable almost everywhere in E .

Let us recall some notations introduced in Section 1.5.

Notation 2.2.3. Let ν ∈ h1 be a fixed horizontal vector field. We define the vertical

hemispaces S+
H (ν) and S−H (ν) and their common boundary N(ν) as

S+
H (ν) := exp ({Z ∈ hn | 〈Z, ν〉 ≥ 0}) ,

S−H (ν) := exp ({Z ∈ hn | 〈Z, ν〉 ≤ 0}) ,

N(ν) := exp ({Z ∈ hn | 〈Z, ν〉 = 0}) .

Remark 2.2.15. Since {Z ∈ hn | 〈Z, ν〉 = 0} is a 1-codimensional ideal of hn, N(ν) is a

1-codimensional normal subgroup of Hn. Moreover, L(ν) := exp {t ν | t ∈ R} and N(ν)

are complementary subgroups in Hn.

Proposition 2.2.22. Let Hn = W · V be as in Assumption 2.2.7, and let f : W −→ V
be an intrinsic L-Lipschitz function. Consider also p = w · f(w) ∈ graph(f).

If there exists ν ∈ h1 such that

lim
r→0

1(E−f )
r,p

= 1S+
H (ν) (2.36)

in L1
loc(Hn), where (

E−f
)
r,p

=
{
q ∈ Hn | p · δrq ∈ E−f

}
,

then f is intrinsic differentiable in w.

The proof is a direct consequece of the following lemmas and of Theorem 2.2.21.

Lemma 2.2.23. Under the same assumption of Proposition 2.2.22, there exists an in-

trinsic linear function f∞ : W −→ V such that

(i) δ 1
r
◦ f ◦ δr := f 1

r
−→ f∞, as r −→∞, uniformly on compact sets;

(ii) graph(f∞) = N(ν);
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(iii) N(ν) and V are complementary subgroup in Hn.

Proof. For M > 0, we consider F :=
{
f 1
r

: B(e,M) ∩W −→ V
∣∣∣ r > 0

}
. The collection

F is equibounded. Indeed∥∥∥f 1
r
(w)
∥∥∥ =

1

r
‖f(δr(w))‖ ≤ L

r
‖δr(w)‖

= L‖w‖ ≤ LM.

Moreover, by Proposition 2.2.5, each element of F is intrinsic L-Lipschitz. This fact

implies that F is equicontinuous. Indeed, for r > 0, by Remark 2.2.4,∥∥∥f 1
r
(w) · f 1

r
(w̄)−1

∥∥∥ ≤ L
∥∥∥f 1

r
(w̄)−1 · w̄−1 · w · f 1

r
(w̄)
∥∥∥

≤ LC

(∥∥w̄−1 · w
∥∥ +

∥∥∥f 1
r
(w̄)
∥∥∥ 1

2 · ‖w′ − w̄′‖
1
2

R2n

)
≤ C LM

1
2

(
1 +M

1
2

)
,

where in the second inequality we applied (2.9).

By Arzelà-Ascoli Theorem and a standard diagonal argument, we obtain that there

exists a subsequence {rk}k∈N, converging to zero as k −→ +∞, such that f 1
rk

−→ f∞

uniformly on compact sets, as k −→ +∞.

Statement (i) will follow from statement (ii), because of definition of intrinsic graph,

which determines uniquely f∞. Thus, we need to prove statement (ii). First we show

that

N(ν) ⊂ graph(f∞). (2.37)

To do this, we take a point p̄ /∈ graph(f∞); for instance, suppose p̄ ∈ E−f∞ . We aim to

show that 1S+
H (ν)(p̄) = 1. Let us consider a ball B, centered at p̄ with radius ρ > 0, such

that

dist (B, graph(f∞)) > 0.

Since
{
f 1
rk

}
k∈N

is uniformly convergent on compact sets, we can assume that B ⊂ E−f1/rk
,

for k large enough. It follows that 1E−f1/rk
≡ 1, for k large. By (2.36), since E−f1/rk

=(
E−f
)
rk,e

, we have that 1S+
H (ν) = 1 almost everywhere in B. This implies that 1S+

H (ν) = 1

on B and hence 1S+
H (ν) = 1. The case p̄ ∈

(
E−f∞

)c \ graph(f∞) can be handled in the

same way, concluding the proof of (2.37).
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To prove the converse inclusion, we notice that p̄ ∈ graph(f∞) is both the limit of

a sequence (pn)n∈N in E−f∞ and of a sequence (qn)n∈N in
(
E−f∞

)c \ graph(f∞). Indeed, if

p̄ = w̄ · f(w̄), recalling that f(w̄) = exp (ϕ(w̄)V ), it is enough to choose

pn = w̄ · exp

((
ϕ(w̄)− 1

n

)
· V
)

and qn = w̄ · exp

((
ϕ(w̄) +

1

n

)
· V
)
.

On the other hand, we have just shown that E−f∞ ⊂ S+
H (ν) and

(
E−f∞

)c \ graph(f∞) ⊂
S−H (ν), therefore p̄ ∈ S+

H (ν) ∩ S−H (ν) = N(ν). This complete the proof of statements (i)

and (ii).

Let us prove statement (iii). First we prove that if v ∈ V, then v /∈ graph(f∞). By

assumption f is intrinsic L-Lipschitz, therefore, if we fix 0 < α < 1
L

, then

CW,V(e, α) ∩ graph(f) = {e}.

Hence, since cones are invariant under group dilations ((iii) of Proposition 2.2.2),

CW,V(e, α) ∩ graph
(
f 1
r

)
= {e},

for any r > 0. This implies that

CW,V

(
e,
α

2

)
∩ graph(f∞) = {e}. (2.38)

Indeed, take a point p = w · f 1
r
(w), we have

p = lim
r→0

pr.

Now, it is clear that pr ∈ graph
(
f 1
r

)
; we can also assume that pr 6= e, for every r > 0.

Then pr /∈ CW,V(e, α), for any r > 0. From (ii) of Proposition 2.2.2, we can coclude also

that pr /∈ CW,V
(
e, α

2

)
, hence (2.38).

Since v ∈ CW,V
(
e, α

2

)
and v 6= e, v /∈ graph(f∞), implying that N(ν)∩V = {e}. This

implies that, in hn

{Z ∈ hn | 〈Z, ν〉 = 0} ∩ span {V } = {0}.

Hence, we have necessarily that

hn = {Z ∈ hn | 〈Z, ν〉 = 0} ⊕ span {V } ,

that is exactly what we wanted.



76 CHAPTER 2. INTRINSIC LIPSCHITZ GRAPHS

Lemma 2.2.24. With the same assumption as in Proposition 2.2.22, for every α > 0,

there exists δ = δ(α) > 0 such that

graph(f) ∩ B(e, δ) ∩ CN(ν),V(e, α) = {e}. (2.39)

Proof. Let us assume, by contradiction, that (2.39) fails. Then we can find a sequence

pn := wn · f(wn) ∈ graph(f) ∩ CN(ν),V(e, α) such that pn 6= e, for every n ∈ N, but

pn −→ e, as n −→ +∞.

For simplicity of notation, we set ξn := δ 1
‖wn‖

(wn), for every n ∈ N, and we assume,

without loss of generality, that ξn −→ ξ0, as n→ +∞, with ‖ξ0‖ = 1. We have

δ 1
‖wn‖

(pn) = ξn · δ 1
‖wn‖

(
f
(
δ‖wn‖(ξn)

))
= ξn · f 1

‖wn‖
(ξn);

hence δ 1
‖wn‖

(pn) ∈ CN(ν),V(e, α) ∩ graph
(
f 1
‖wn‖

)
. Applying Lemma 2.2.23, it follows

ξ0 · f∞(ξ0) ∈ CN(ν),V(e, α) ∩ graph(f∞) = CN(ν),V(e, α) ∩ N(ν) = {e}.

Thus, ξ0 ∈W ∩ V = {e}, which contradicts the fact that ‖ξ0‖ = 1.

Theorem 2.2.25. Let Hn = W · V be as in Assumption 2.2.7. Let U ⊂ W be an

open subset and f : U −→ V be an intrinsic Lipschitz function. Then f is intrinsic

differentiable (L2n W)-a.e. in U .

Proof. First, from Theorem 2.2.14, we can assume that f is intrinsic Lipschitz on all of

W. Now, by Theorem 1.5.5, we know that the reduced boundary

∂∗HE
−
f ⊂ ∂E−f = graph(f),

is such that ∣∣∂E−f ∣∣ (graph(f) \ ∂∗HE−f
)

=
∣∣∂E−f ∣∣H (∂E−f \ ∂∗HE−f ) = 0, (2.40)

and, for every p ∈ ∂∗HE−f , there exists ν = ν(p) ∈ h1, ‖ν(p)‖ = 1, the inward unit normal

to E−f at p,

lim
r→0

1(E−f )
r,p

= 1S+
H (ν(p)) in L1

loc(Hn).
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From Proposition 2.2.22, f is intrinsic differentiable at every point w ∈ W such that

w · f(w) ∈ ∂∗HE−f .

The proof is concluded if we show that graph(f)\∂∗HE−f has (L2n W)-measure zero.

Since we know that (2.40) holds, it is enough to prove the following Lemma:

Lemma 2.2.26. Under the same assumptions of Theorem 2.2.25, let f : W −→ V be an

intrinsic Lipschitz function and let Φf : W −→ Hn be the parametric map. Then there

exists a positive constant c = c(W,V), such that

(Φf )]
(
L2n W

)
= c · 〈ν , V 〉 |∂E−f |H, 4

where ν denote the horizontal generalized inward normal to E−f .

Proof. We are assuming that there exists a vector field V ∈ h1 such that

V = { exp(tV ) | t ∈ R } .

Therefore, we can find a non zero vector a = (a1, ..., a2n) such that

W = { p = (p′, p2n+1) ∈ Hn | 〈a , p′〉R2n = 0 } .

Since a does not vanishes, we can assume, without loss of generality, that a1 = 1.

By Theorem 2.2.16, we know that E−f has locally finite H-perimeter, then∫
E−f

(V g) dL2n+1 =

∫
Hn
〈ν , V 〉 g d|∂E−f |H, (2.41)

for all g ∈ C1
0(Hn).

Now, it is avantageous to define a change of variables. Let Φ : R2n+1 −→ R2n+1 ≡ Hn

be defined as follows:

Φ(ξ1, 0, ..., 0) = δξ1v ∈ V,

Φ(0, ξ2, ..., ξ2n+1) =

(
−

2n∑
i=2

aiξi, ξ2, ..., ξ2n+1

)
∈ W,

4We denote by (Φf )]
(
L2n W

)
the push-forward of the Lebesgue measure restricted to W under the

map Φf .
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and such that

Φ(ξ1, ..., ξ2n+1) = Ψ(0, ξ2, ..., ξ2n+1) ·Ψ(ξ1, 0, ..., 0).

Explicitly, the components of Ψ can be represented in the form

Ψ1(ξ) = −
2n∑
i=1

aiξi + v1ξ1,

Ψj(ξ) = ξj + ξ1vj, for j = 2, ..., 2n,

Ψ2n+1(ξ) = ξ2n+1 −
ξ

2

(
−

n∑
i=2

ξivn+i +
n∑
i=1

ξn+ivi +
2n∑
i=2

aiξi

)
.

Because of our requirements about the decomposition Hn = W · V, Ψ is injective.

Furthermore,

Ψ−1(W) = { ξ ∈ Hn | ξ1 = 0 } ,

which should be identified with a subset of R2n, and

Ψ(0, ·) : R2n −→ W

is still an injective map. Now, the Jacobian matrix of Ψ is non singular, i.e. c1(W,V) :=∣∣∣det ∂Ψ
∂ξ

∣∣∣ 6= 0. Indeed,

det
∂Ψ

∂ξ
= det



v1 −a2 −a3 · · · −a2n 0

v2 1 0 · · · 0 0
...

...
. . . . . .

...
...

...
...

. . . . . . 0 0

v2n 0 0 · · · 1 0

∗ ∗ ∗ · · · ∗ 1


= v1 +

2n∑
i=2

aivi 6= 0,

since v /∈W.

Using the same notation as above, we denote f(w) = exp (ϕ(w) · V ), with ϕ : W −→
R. We also write

Ê−f := Ψ−1
(
E−f
)

=
{
ξ ∈ R2n+1 | ξ1 < ϕ (Ψ(0, ξ2, ..., ξ2n+1))

}
.
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We thus get ∫
Ê−f

∂

∂ξ1

(g ◦Ψ) dL2n+1 =

∫
Ê−f

(V g) ◦Ψ dL2n+1

=
1

c1(W,V)

∫
E−f

V g dL2n+1.

(2.42)

On the other hand, using Coarea Formula, we obtain∫
Ê−f

∂

∂ξ1

(g ◦Ψ) dL2n+1 =

∫
{ξ1=0}

g ◦ Φf ◦Ψ dL2n. (2.43)

If we combine this with Theorem 1.19, on page 16, of [30], we see that∫
Hn
g d
(
(Φf ◦Ψ(0, ·))

(
L2n W

))
=

∫
{ξ1=0}

g ◦ Φf ◦Ψ(0, ·) dL2n.

Now, we apply classical Area Formulæfor linear maps: there exists a positive constant

c2(W) such that, for all g ∈ C1
0(Hn),∫

{ξ1=0}
g ◦ Φf (0, ·) dL2n = c2(W)

∫
W
g ◦ Φf d

(
L2n W

)
.

Therefore, by (2.42) and (2.43), we obtain∫
Hn
g d
(

(Φf )]
(
L2n W

))
= c(W,V)

∫
Hn
〈ν , V 〉 g d|∂E−f |H,

for all g ∈ C1
0(Hn). This completes the proof.

Corollary 2.2.27. Under the same assumptions of Lemma 2.2.26, we have(
L2n W

) (
W \ ΠW(∂∗E−f )

)
= 0.

Proof. We apply the previous Lemma. We can write, using again Theorem 1.40 of [30],(
L2n W

) (
W \ ΠW(∂∗E−f )

)
=

∫
W\ΠW(∂∗E−f )

d
(
L2n W

)
=

∫
Hn\∂∗E−f

d (Φf )]
(
L2n W

)
= c(W,V)

∫
Hn\∂∗E−f

〈ν , V 〉 d|∂E−f |H = 0,

because |∂E−f |H
(
Hn \ ∂∗E−f

)
= 0.
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Chapter 3

Intrinsic Lipschitz Domains and

Applications

In this Chapter we study intrinsic Lipschitz domains, which are connected open

subsets of Hn whose boundaries are locally graphs of intrinsic Lipschitz maps. The main

point of the chapter is the proof of the fact that intrinsic Lipschitz domains are uniform

domains. In our setting being a uniform domain means to be a Boman domain. This fact

is of considerable importance because this condition plays a key role in proving theorems

of classical Functional Analysis and, more precisely, in Potential Theory.

In the first Section we study some particular domains in general metric space. In

the second Section we prove that intrinsic Lipschitz domains are uniform and we study

some properties which follows from this fact. Then we conclude the Chapter with an

application concerning the regularity of intrinsic Lipschitz domains for the Dirichlet

problem.

3.1 Geometry of Domains

We start by fixing our setting: from now on (if it is not differently specified) we

assume that (M,d) is a general metric space.

Definition 3.1.1. We say that a metric space (M,d) is with geodesics if, for every

couple of points x, y ∈M , there exists a continuous rectifiable curve γ : [0, t] −→M such

81
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that γ(0) = x and γ(t) = y and length(γ) = d(x, y).

In this Section we investigate some properties of domains in general metric spaces.

Together with the definitions of different classes of domains, we state also some relations

between them. To follow our presentation, it could be useful to keep in mind the diagram

in Figure 3.1 on the facing page.

Let us introduce some basic properties used in definitions we will give.

Definition 3.1.2. Let Ω ⊂M be a bounded open set and let α ≥ 1. A sequence of balls

B0, B1, ..., Bk ⊂ Ω is an α-Harnack chain of Ω if

(i) Bi ∩Bi−1 6= ∅, for all i = 1, ..., k;

(ii) every ball Bi is α-non tangetial in Ω, i.e.

1

α
dist (Bi, ∂Ω) ≤ diam (Bi) ≤ α dist (Bi, ∂Ω) .

Definition 3.1.3. Let Ω ⊂M be a bounded open set. We say that Ω satisfies the Harnack

chain condition if, for every ε ∈ R+ and x, y ∈ Ω with dist (x, ∂Ω) > ε, dist (y, ∂Ω) > ε

and d(x, y) < Cε for some C > 0, there exists, for α ≥ 1, an α-Harnack chain joining x

to y with length k = k(ε).

Definition 3.1.4. Let E ⊂ M be a general subset. We say that E satisfies the interior

corkscrew condition ( exterior corkscrew condition) if there exist r0 > 0 and k ≥ 1 such

that, for every r ∈]0, r0] and x ∈ ∂E, there is y ∈ E (y ∈M \E) for which the following

two inequalities hold
r

k
≤ dist (y, ∂E) and d(x, y) ≤ r.

As already announced in the introduction to the Chapter, these definitions play

a significant role in Potential Theory. For example, the exterior corkscrew condition

(see Definition 3.1.4) implies that the domain is regular for the Dirichlet problem (via

the Wiener criterion). Another application in this kind of theory is the following: the

Harnack chain condition (Definition 3.1.3) is used to compare values of positive harmonic

functions at different points.

Definition 3.1.5. Let Ω ⊂M be a bounded open set. We say that Ω is a non tangentially

accessible domain, NTA domain for short, if there exist r0 > 0 and k ≥ 1 such that
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Figure 3.1: (1) If (Ω, d) is a doubling space; (2) If (Ω, d) is a doubling space with geodesics;

(3) If (Ω, d) is a doubling space with geodesics; (4) If (Ω, d, µ) is an Ahlfors-regular metric

space with geodesics.
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(i) Ω satisfies the corkscrew conditions;

(ii) Ω satisfies the Harnack chain condition.

Let us consider a little example taken from [6], where the reader could find also more

details.

Example 3.1.1. We aim to give an example of a domain which is not a NTA domain. In

H1, endowed with the Carnot-Carathéodory metric, we consider an Euclidean cone

C =
{

(x, y, t) ∈ H1
∣∣ |x2 + y2|

1
2 ≤ αt

}
,

for some fixed α > 0.

The domain C does not satisfy the interior corkscrew condition near the vertex, hence

it is not an NTA domain. Let us prove this fact. By contradiction, assume that there

exist r0 > 0 and k ≥ 1 such that, for r ∈]0, r0], there is y0 ∈ C which satisfies

(i) dist(y0, 0) ≤ r;

(ii) d(y0, ∂C) ≥ r
k
.

By (i), we have that y0 ∈ B(0, r), therefore

ΠT(y0) ≤ 2

π
r2.1

Let us take an horizontal subunit segment γ from y0 to T and continue until it meets

∂C. Let y1 be the point of ∂C ∩ γ. It is well known that horizontal segments are

geodesics, then

d(y0, ∂C) ≤ d(y0, y1) ≤ length(γ) ≤ α
2

π
r2,

and this contradicts (ii).

The class of NTA domains has been introduced by Jerison and Kenig in [25]. This

class, which provides a generalization of several properties of Lipschitz domains, is a

subset of the class of uniform domain. Uniform domains in Euclidean space Rn, for

n ≥ 2, were introduced by Martio and Sarvas ([29]) and Jones ([27]).

1Compare with Appendix C.
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Definition 3.1.6. Let Ω ⊂ M be a (bounded) connected open set. We say that Ω is

a uniform domain if there exists ε ∈ R+ such that, for every x, y ∈ Ω, there exists a

continuous curve γ : [0, 1] −→ Ω, joining x to y, with

length(γ) ≤ 1

ε
d(x, y), (3.1)

and, for every t ∈ [0, 1],

dist (γ(t), ∂Ω) ≥ εmin
{

length(γ|[0,t]), length(γ|[t,1]
)
}
. (3.2)

Remark 3.1.7. Let us suppose that M = Rn and d is the Euclidean metric. Roughly

speaking, a domain Ω ⊂ Rn is uniform if each couple of points x, y ∈ Ω can be joined

by a cigar which is not too thin (condition (3.2)) or too crooked (condition (3.1)). The

reader might want to compare this approach with [38].

An example of a domain in R2 which is not a uniform domain is

Ω = R2 \
{

(x, 0) ∈ R2
∣∣ x ≤ 0

}
.

In this case the cigars are too crooked.

Remark 3.1.8. If conditions (3.1) and (3.2) hold for every x, y ∈ Ω such that d(x, y) ≤ δ,

for some δ > 0, then we say that Ω is an (ε, δ)-domain.

For completeness of exposition, we now introduce also the definition of weak uniform

domain.

Definition 3.1.9. Let Ω ⊂ M be a (bounded) connected open set. We say that Ω is a

weak uniform domain if there exists ε ∈ R+ such that, for every x, y ∈ Ω, there exists a

continuous curve γ : [0, 1] −→ Ω, joining x to y, with

diam(γ) ≤ 1

ε
d(x, y), (3.3)

and, for every t ∈ [0, 1],

dist (γ(t), ∂Ω) ≥ εmin
{

diam(γ|[0,t]), diam(γ|[t,1]
)
}
. (3.4)
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Remark 3.1.10. It could be interesting to notice that, if we assume that (M,d) is an

Ahlfors-regular2 metric space with geodesics, then a weak uniform domain Ω ⊂ M is

also a uniform domain.

Let us consider a pair of properties of uniform domains. For the detailed proofs we

refer the reader to [34].

Lemma 3.1.1. Let Ω ⊂ M be a bounded open set and let 0 < r < diam(Ω). If, for

every z ∈ ∂Ω and for every x, y ∈ Ω∩B(z, r), there exists a continuous rectifiable curve

γ : [0, 1] −→ Ω, joining x to y, such that (3.1) and (3.2) hold for some ε ∈ R+, which

does not depend on z, then Ω is a uniform domain.

Proposition 3.1.2. Let us assume that there exists 0 < δ ≤ 2 such that, for every

x ∈ M and r ≥ 0, diam (B(x, r)) ≥ δr. If Ω ⊂ M is a uniform domain, then it is a

Harnack domain.

We now recall the basic definition and some general results concerning John domains,

which have been introduced by John in [26].

Definition 3.1.11. Let Ω ⊂M be a bounded open set. We say that Ω is a John domain

if there exists x0 ∈ Ω and C > 0 such that, for every x ∈ Ω, there exists a continuous

and rectifiable curve γ : [0, 1] −→ Ω, joining x to x0, such that

dist(γ(t),Ω) ≥ C length(γ|[0,t]), (3.5)

for all t ∈ [0, 1].

Remark 3.1.12. Notice that we can assume that the curve γ is parametrized by arc

length. In this case, (3.5) can be rewritten as

dist(γ(t), ∂Ω) ≥ C t.

2A measure metric space (M,d, µ), where µ is a Borel measure, is Ahlfors-regular if there exist Q > 0

and α > 0 such that, for every x ∈M and r > 0,

1

α
rQ ≤ µ (B(x, r)) ≤ α rQ.
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Example 3.1.2. A simple example of John domains is provided by metric balls of a metric

space with geodesics. Another example of a John domain is given by the interior of Von

Koch’s snow flake.

Analogously to Uniform domain, also for John domains we have a weaker definition:

Definition 3.1.13. Let Ω ⊂ M be a bounded open set. We say that Ω is a weak John

domain if there exists x0 ∈ Ω and 0 < C ≤ 1 such that, for every x ∈ Ω, there exists a

continuous curve γ : [0, 1] −→ Ω, joining x to x0, such that

dist(γ(t),Ω) ≥ C d(γ(t), x), (3.6)

for all t ∈ [0, 1].

Remark 3.1.14. Notice that this definition is weaker than the John domain’s one in the

following sense: we do not require that γ is rectifiable, but we connect the points simply

with continuous curves.

Example 3.1.3. Let (M,d) be a bounded arcwise connected metric space. If we take

Ω = M , then Ω is a weak John domain; indeed (3.6) is satisfied for any curve joining x

to x0.

Remark 3.1.15. Each John domain satisfies the interior corkscrew condition.

Indeed, let Ω ⊂ M be a John domain and choose x0 ∈ ∂Ω. From the definition of

John domain, we know that for every x ∈ Ω there is a continuous and rectifiable curve

γ : [0, 1] −→ Ω such that γ(0) = x0, γ(1) = x and

dist(γ(t), ∂Ω) ≥ C t.

This means that we can choose t0 ∈ [0, 1], and denote y := γ(t0), so that

dist(y, ∂Ω) ≥ C t0.

Moreover, d(x0, y) ≤ t0, because γ is rectifiable.

John domains and weak John domains are strictly connected, as we can see in the

following

Theorem 3.1.3. Let us assume that (M,d) is a doubling metric space with geodesics.

Then Ω ⊂M is a John domain if and only if it is a weak John domain.
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We conclude this Section by introducing the notion of Boman domain. We will

discover that, under extra hypothesis, the definition of John domain is equivalent to

that of Boman domain. The proof of this fact was originally given in [4]. The reader

could find the detailed proof also in [19].

Definition 3.1.16. Let Ω ⊂ M be an open set. We say that Ω is a Boman domain if

there exist a covering with balls F = {Bi}i∈I of Ω and constants N ≥ 1, λ > 1 and ν ≥ 1

such that

(i) λB ⊂ Ω, for every B ∈ F ;

(ii)
∑

B∈F χλB(x) ≤ N , for every x ∈ Ω;

(iii) there exists B0 ∈ F such that, for any B ∈ F , there exists B1, ..., Bk such that

Bk = B, µ(B1 ∩Bi+1) ≥ 1
N

max {µ(Bi), µ(Bi+1)} and B ⊂ νBi, for all i = 1, ..., k.

Remark 3.1.17. Condition (ii) of the previous definition says that each point x ∈ Ω is

covered by, at most, a fixed number N of dilated balls of F . On the other hand, third

condition means (roughly speaking) the following: if we start from a fixed region of Ω

covered by a ball B0 ∈ F , then we can reach each point in Ω with a finite sequence of

balls which are comparable one to each other.

Remark 3.1.18. In Definition 3.1.16, we can skip the requirement of boundedness for the

domain Ω saying that Ω ⊂ M (unbounded) is a Boman domain if Ω = ∪i∈NΩi, with

Ωi ⊂ Ωi+1 and Ωi is a bounded Boman domain, for all i ∈ N.

Theorem 3.1.4. Let us assume that (M,d, µ) is a doubling metric space. Let Ω ⊂ M

be a proper subset. If Ω is a weak John domain, then it is a Boman domain.

Theorem 3.1.5. Let (M,d, µ) be a doubling metric space with geodesics. If Ω ⊂ M is

a Boman domain, then it is a John domain.

Remark 3.1.19. Summarizing, in a doubling metric space with geodesics (M,d, µ), being

a John domain is equivalent to being a Boman domain.
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3.2 Intrinsic Lipschitz Domain

In this section we aim to apply results of Section 3.1 in order to prove that a bounded

domain with intrinsic Lipschitz boundary is a uniform domain.

We immediately start by giving the definition of intrinsic Lipschitz domain. It could

be interesting to compare this definition to the classic definition of Lipschitz domain; we

refer the reader to the Definition on page 127 of [8].

Definition 3.2.1. Let Ω be a bounded domain of Hn. We say that Ω is an intrinsic

Lipschitz domain if, for each z ∈ ∂Ω, we can choose a decomposition Hn = W · V as in

Assumption 2.2.7, an intrinsic Lipschitz map f : E ⊂ W −→ V, with E an open set in

W, and r0 ∈ R+ such that

Ω ∩ U(z, r0) = E−f ∩ U(z, r0). (3.7)

We recall that

E−f := {w · exp(tV ) |w ∈W, t ≤ ϕ(w) },

where f(w) = exp(ϕ(w)V ), for ϕ : W −→ R.

In different words, an intrinsic Lipschitz domain is an open, connected and bounded

set in Hn, whose boundary is locally the graph of an intrinsic Lipschitz map.

We can start with the proof that an intrinsic Lipschitz domain Ω is a uniform domain.

To do that, we will use a characterization proved in [40]. We report here the results in

which we are interested.

Let us denote, as in first Chapter, X := (X1, ..., Xm) the vector fields which generate

hn, the Lie algebra of the Heisenberg group Hn. Roughly speaking, we define an X-

Lipschitz domain as a domain whose boundary is locally the zero set of a metric Lipschitz

function3 which takes value in R.

3Let (Rn, d) be a CC-space associated with a family of locally Lipschitz vector fields X = (X1, ..., Xm).

A function f : Rn −→ R is metric L-Lipschitz if , for all x, y ∈ Rn,

|f(x)− f(y)| ≤ Ld(x, y).
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Definition 3.2.2. Let Ω ⊂ Hn be a bounded open set. We say that Ω is an X-Lipschitz

domain if, for each z ∈ ∂Ω, there exists a neighbourhood of z, say U , a metric L-Lipschitz

function F : U −→ R and an index j ∈ {1, ...,m} such that

(i) Ω ∩ U = {x ∈ U |F (x) > 0} or Ω ∩ U = {x ∈ U |F (x) < 0};

(ii) there exists a positive constant l such that XjF ≥ l, Ln-a.e. on U .

Theorem 3.2.1. A set Ω ⊂ Hn is an X-Lipschitz domain if and only if it is an intrinsic

Lipschitz domain according to Definition 3.2.1.

The proof of this Theorem, given in [40], follows directly from the subsequent result,

which we report here for completeness of exposition.

Proposition 3.2.2. Let S ⊂ G be a hypersurface in a Carnot group G. The following

two statements are equivalent:

(i) for any z ∈ S there exist an open neighbourhood U ⊂ G, a Lipschitz function

F : U −→ R and a positive constant l such that

S ∩ U = {x ∈ U |F (x) = 0}

and X1F ≥ l, Ln-a.e. on U .

(ii) for any z ∈ S, there exist an open set E ⊂W, a, b ∈ R and an intrinsic Lipschitz

map ϕ : E −→]a, b[⊂ V such that z ∈ U := E·]a, b[ and S ∩ U = Φϕ(E), where Φϕ

is the parametrization map Φϕ(z) = z · ϕ(z).

Theorem 3.2.3. Let Ω ⊂ Hn be an intrinsic Lipschitz domain. Then Ω is a uniform

domain.4

Before giving the proof, we recall a result concerning metric Lipschitz continuous

functions over CC-spaces. We give the general statement, for the proof we refer to

[34]. The reader is invited to notice that our setting (the Heisenberg group with the

CC-metric) is included in the one of the theorem.

4In order to define Uniform domain (Definition 3.1.6), we just need a metric space. So, for our

setting, it does not matter if the metric is the CC-metric or another homogeneous one.
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Theorem 3.2.4. Let (Rn, d) be a CC-space associated with a family of locally Lipschitz

continuous vector fields X = (X1, ..., Xm). Let us assume that the metric d is continuous

with respect to the Euclidean topology. If f : Rn −→ R is a metric L-Lipschitz func-

tion, then the derivatives Xjf , j = 1, ...,m, exist in distributional sense, are measurable

functions and |Xjf(x)| ≤ L for a.e. x ∈ Rn.

Proof of Theorem 3.2.3. Let z ∈ ∂Ω be fixed. From Theorem 3.2.1, we know that there

exist an open neighbourhood U of z and a metric L-Lipschitz function F : U ⊂ Hn −→ R
such that, using the same notations as in the Theorem, XF ≥ l Ln-a.e. on U , for some

X ∈ {X1, ..., Xm}, and

∂Ω ∩ U = {x ∈ U | F (x) = 0 } ,

Ω ∩ U = {x ∈ U | F (x) < 0 } .

Let x, y ∈ Ω ∩ U . We shall construct a rectifiable curve Γ : [0, 1] −→ Hn such that

properties (3.1) and (3.2) are satisfied. We divide the proof in a number of small steps.

Step 1. Let R > 0 be such that the ball B(z, 2R) is entirely contained in the open

neighbourhood U of z. Let p ∈ B(z,R/2) ∩ Ω. If t ∈]0, R/2[, then

p · exp(tX) ∈ B(z, R).

Indeed, since the exponential map is an isometry along horizontal directions,

d (p · exp(tX), z) ≤ d (p · exp(tX), p) + d(p, z)

< t+
R

2
< R.

Step 2. Let again p ∈ B(z,R/2) ∩ Ω and consider a point q ∈ ∂Ω which realizes

the distance of p from ∂Ω, i.e. d(p, q) = dist(p, ∂Ω). We take σ : [0, 1] −→ Hn to be a

geodesic joining p and q. If ξ ∈ σ([0, 1]), then

d(ξ, z) ≤ d(ξ, p) + d(p, z)

≤ d(p, q) + d(p, z)

≤ 2d(p, z) < R.

This chain of inequalities implies that the support of σ is entirely contained in B(z, R).
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Step 3. The idea now is to use the function F to measure how points inside Ω are

far from the boundary. To do this, we remember that, along the integral curve of X, F

is monotone. First, since F is metric L-Lipschitz continuous, we can write

|F (p)| = |F (p)− F (q)| ≤ Ld(p, q)

= L dist(p, ∂Ω).
(3.8)

On the other hand, let us assume that p ∈ B(z, εR) ∩ Ω, for some ε ∈]0, 1/2[. We aim

to prove that

|F (p)| ≥ l dist(p, ∂Ω). (3.9)

Being a metric L-Lipschitz function, F is continuous. On the contrary, we need to

handle with regular functions, so we approximate F using mollifiers of Section 1.6. From

Proposition 1.6.3, combined with Theorem 3.2.4, we can extimate, for x ∈ B(z, R),

X(ηε ∗ F )(x) =

∫
B(x,ε)

ηε
(
x · q−1

)
(XF )(q) dh(q)

≥ l

∫
B(x,ε)

ηε
(
x · q−1

)
dh(q)

≥ l.

Notice that the first inequality holds because we are taking the integral over the ball

B(x, ε), which is entirely contained in B(z, 2R) ⊂ U . Now, using Proposition 1.6.1, we

can write, for t ∈]0, 1/2[,

F (p · exp(tX))− F (p) = lim
ε→0

[(ηε ∗ F )(p · exp(tX))− (ηε ∗ F )(p)]

= lim
ε→0

∫ t

0

X(ηε ∗ F )(p · exp(sX)) ds

≥ l t.

Therefore,

F (p · exp(tX)) ≥ lt+ F (p)

≥ lt+ min
Ω̄∩B(z,εR)

F.

By this inequality, since F (z) = 0, we can choose ε ∈ R+ such that

l
R

3
+ min

Ω̄∩B(z,εR)
> 0.
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So, from Intermediate Value Theorem, there exists tp ∈]0, R/3[ such that

p · exp(tpX) ∈ ∂Ω.

Now, dist(p, ∂Ω) ≤ d(p, p · exp(tpX)) ≤ tp; hence, if p ∈ B(z, εR) ∩ Ω, using the same

technique as above, together with the result in Step 2, we conclude

−F (p) = F (p · exp(tpX))− F (p)

≥ l tp ≥ l dist(p, ∂Ω).

Step 4. We construct the rectifiable curve needed to prove the Theorem. We want

to use Lemma 3.1.1. Let us assume that x, y ∈ B(z, δ), where δ < εR. We denote d :=

d(x, y), x′ := x ·exp(−dMX) and y′ := y ·exp(−dMX), for some constant 0 < M < R/4

to be determined. We construct the following curve

Γ(t) :=


x · exp(−tMX)), t ∈ [0, dM ],

γ(t), t ∈ [dM, dM + d(x′, y′)],

y · exp(−(M̃ − t)X)), t ∈ [dM + d(x′, y′), M̃ ],

(3.10)

where γ is a geodesics joining x′ to y′ and M̃ := 2dM + d(x′, y′). Let us prove that such

a Γ is the curve we are looking for.

Step 5. Using relation 2.9 on page 51, one has

length(Γ) ≤ 2dM + d(x′, y′)

≤ 2dM + C
∥∥exp(dMX) · y−1 · x · exp(−dMX)

∥∥
≤ 2dM + C1

∥∥y−1 · x
∥∥+ C2

∥∥y−1 · x
∥∥ 1

2 · |dM |
1
2

≤ 2dM + C3d
(

1 +
√
M
)

= d(x, y)
(

2M + C3

(
1 +
√
M
))

,

and this provides inequality (3.1).

Step 6. Let us prove inequality (3.2). We need to distinguish points in the three

pieces of Γ. Let t ∈ [0, dM ] be fixed. First, we notice that, since F (x) < 0 for x ∈ U ∩Ω,

−F (x · exp(−tX)) = −F (x · exp(−tX)) + F (x)− F (x)

≥ −F (x · exp(−tX)) + F (x)

≥ l t.
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We now combine this inequality with (3.8). Since we have that

d(x · exp(−tX)), z) ≤ d(x · exp(−tX), x) + d(x, z)

≤ dM + δ ≤ R

4
+ εR

<
1

2
R,

we can apply inequalities (3.8) and (3.9) of Step 3 in order to obtain

dist(x · exp(−tX), ∂Ω) ≥ 1

L
lt ≥ l

L
length

(
Γ|[0,t]

)
.

Exactly in the same way, one can prove the inequality also for t ∈ [dM + d(x′, y′), M̃ ].

Step 7. Let us consider t ∈ [dM, dM + d(x′, y′)] and denote ξ := Γ(t). If η ∈ ∂Ω, we

have, mimicking computations that we already did,

d(ξ, η) ≥ d(x′, η)− d(ξ, x′)

≥ dist(x′, ∂Ω)− d(x′, y′)

≥ d(x, y)

(
l

L
M − C3

(
1 +
√
M
))

.

(3.11)

On the other hand,

length
(

Γ|[0,t]

)
≤ d(x′, y′) + dM

≤ d(x, y)
(
C3

(
1 +
√
M
)

+M
)

= C4d(x, y).

(3.12)

Therefore, if we choose M > 0 such that l
L
M − C3

(
1 +
√
M
)
> 1 (consequently one

should choose δ ∈ R+), we can combine (3.11) and (3.12) and the assertion follows, thank

to Lemma 3.1.1.

Remark 3.2.3. We point out that, in the proof, we showed relations (3.1) and (3.2) for

each couple of points x, y ∈ Ω such that d(x, y) ≤ δ. Therefore, more precisely, we proved

that intrinsic Lipschitz domains are (ε, δ)-domains.

From Theorem 3.2.3, one can directly show the following
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Proposition 3.2.5. Let Ω ⊂ Hn be an intrinsic Lipschitz domain. Then Ω is a Harnack

domain.

Proof. In Theorem 3.2.3 we proved that an intrinsic Lipschitz domain is a uniform do-

main. So, we can apply Proposition 3.1.2 and the proof follows, if we show that, in Hn,

there exists a constant 0 < δ ≤ 2 such that diam(B(x, 2r)) ≥ 2r, for each ball B(x, 2r).

This fact is the content of the following Lemma.

Lemma 3.2.6. Let d be a homogeneous metric in Hn (e.g. CC-metric, the homogeneous

distance d∞, etc...). Then, for each x ∈ Hn and r ∈ R+,

diam(B(x, r)) = 2r.

Proof. Without loss of generality, we can assume that x = 0 and r = 1. It is clear that

diam(B(0, 1)) ≤ 2, so we need to prove the converse inequality.

Let ξ = (t, 0, ..., 0) be such that d(ξ, 0) = 1. By translation invariance, we point out

that d(−ξ, 0) = 1. This implies that −ξ and ξ ∈ B(0, 1). Now, because of the choice of

ξ, we can conclude that

d(−ξ, ξ) = d(0, ξ · ξ) = d(0, δ2(ξ))

= 2 d(0, ξ) = 2.

3.2.1 Applications

Theorem 3.2.3 allows us to extend some classic results on intrinsic Lipschitz domains.

A first application is given by the Poincaré inequality. As in Euclidean setting, we have

a Poincaré inequality also in open sets different from balls. But it is well known that

not any open set admits such a property. Restricting ourselves to the Heisenberg group,

we state a theorem, proved in [11], which gives a special class of open sets for which the

Poincaré inequality holds.

Notation 3.2.1. Let f : Ω ⊂ Hn −→ R. We denote the average of f in Ω

fΩ :=
1

|Ω|

∫
Ω

f(x) dh(x).
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Theorem 3.2.7. Let Ω ⊂ Hn be a Boman domain. Let 1 ≤ p < q <∞ be such that the

following balance condition holds:

r(Ũ)

r(U)

(
|Ũ |
|U |

) 1
q

≤ C

(
|Ũ |
|U |

) 1
p

,

for any balls Ũ ⊂ U , with radius r(Ũ) and r(U) respectively, centered in a neighbourhood

of Ω̄, with r(U) < r0, r0 <∞ fixed.

Then (∫
Ω

|f − fΩ|q dh
) 1

q

≤ CΩ

(∫
Ω

|∇Hf |p dh
) 1

p

with a constant CΩ > 0 independent on f .

If 1 ≤ p < Q, we can always choose q = p∗ := pQ
Q−p .

Thanks to the following Lemma (we refer the reader to [20] for the proof), we can

say that intrinsic Lipschitz domains have a Poincaré inequality.

Lemma 3.2.8. Let Ω ⊂ Hn be an (ε, δ)-domain. Then Ω is a Boman domain.

The second application concerns with an extension theorem for Sobolev functions

defined over an (ε, δ)-domain. Let us recall the definition of Sobolev spaces over a

Carnot group G. Let (X1, ..., Xm) be generators for the first layer and let N be the

dimension of g as vector space.

Notation 3.2.2. Let I = (i1, ..., iN) be a multiindex. We define the differential operator

XI := X i1
1 · ... ·X

iN
N . (3.13)

We call |I| = i1 + ...+iN the order of the differential operator and d(I) = d1i1 + ...+dN iN

its degree of homogeneity.

We can construct also more general differential operators: if J = (j1, ..., jk) be a

multiindex, with |J | < |I|, we define

XJ := Xj1
α1
· ... ·Xjk

αk
,

for α1, ..., αk ∈ {1, ...,m}.
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Remark 3.2.4. Differential operators of this kind can be always expressed as linear com-

bination of operators of the special form (3.13).

Definition 3.2.5. Let k be a positive integer, 1 < p <∞ and Ω be an open subset of G.

The Sobolev space W k,p
H (Ω) associated with the vector fields X1, ..., Xm is defined as the

set of all functions f ∈ Lp(Ω) with distributional derivatives XIf ∈ Lp(Ω), for every XI

defined above with d(I) ≤ m.

We say that the distributional derivative XIf exists and it is equal to a locally

integrable function gI if, for every ϕ ∈ C∞0 (Ω),∫
Ω

f ·XIϕdh = (−1)d(I)

∫
Ω

gI · ϕdh.

Definition 3.2.6. Let Λ : W k,p
H (Ω) −→ W k,p

H (G) be a bounded linear operator. We say

that Λ is a bounded extension operator on W k,p
H (Ω) if

Λf|Ω = f,

for each f ∈ W k,p
H (Ω). Moreover, we denote the operator norm of Λ as follows

‖Λ‖ := sup
‖f‖

W
k,p
H (Ω)

=1

‖Λf‖Wk,p
H (Hn) .

We are now ready to state the extension theorem whose proof was given firstly in

[35] and, later, for a more general setting, in [20].

Theorem 3.2.9. Let Ω ⊂ G be an (ε, δ)-domain and let k be a positive integer. If

1 ≤ p <∞, then there exists an extension operator Λ on Ω such that

‖Λf‖Wk,p
H (G) ≤ C ‖f‖Wk,p

H (Ω), (3.14)

for all f ∈ W k,p
H (Hn), where C is a positive constant which does not depend on f .

Again, if Ω ⊂ Hn is intrinsic Lipschitz, then it is an (ε, δ)-domain. Hence, if f is a

Sobolev function defined over Ω, then it admits a unique extension over the entire Hn

such that (3.14) holds.
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3.3 Intrinsic Lipschitz Domains and Subelliptic PDE’s

We conclude our work with an application concerning subelliptic PDE’s. Our goal

is to prove that intrinsic Lipschitz domains have a good behaviour with respect to the

Dirichlet problem. Therefore, before coming to the central topic of this Section, we just

recall some fundamental definitions and results about sub-Laplacian operators and their

fundamental solutions. A detailed exposition, more suited to the purposes of the present

thesis, is given in [3].

Let G be a Carnot group and let (X1, ..., Xm) be generators for the first layer V1 of

g, the Lie algebra of G. The second order differential operator

L =
m∑
i=1

X2
i

is called a sub-Laplacian, or subelliptic Laplacian, on G.

Thanks to the celebrated Hörmander’s Theorem ([24]), L is hypoelliptic. This means

that if f ∈ C∞(Ω), for Ω ⊂ G an open set, then the distributional solution of Lu = f is

of class C∞.

We now give the definition of fundamental solution of a sub-Laplacian L on a Carnot

group.

Definition 3.3.1. Let G = (Rn, ·) be a Carnot group. Let L be a sub-Laplacian on G.

A function Γ : Rn \ {0} −→ R is a fundamental solution for L if

(i) Γ ∈ C∞(Rn \ {0});

(ii) Γ ∈ L1
loc(Rn) and Γ(x) −→ 0, as x→∞;

(iii) LΓ = −Dir0, where Dir0 is the Dirac measure supported at {0}.

Remark 3.3.2. One can prove, but it is hard work, that, on a Carnot group with Q > 2,

the fundamental solution of L exists and it is unique.

Let us summarize here some main properties of the fundamental solution:

(i) Γ(x−1) = Γ(x), for any x ∈ G \ {e};

(ii) Γ(δλ(x)) = λ2−QΓ(x), for any x ∈ G \ {e} and λ ∈ R+;



3.3. INTRINSIC LIPSCHITZ DOMAINS AND SUBELLIPTIC PDE’S 99

(iii) Γ(x) > 0, for any x ∈ G \ {e}.

On every Carnot group one can find some particular homogeneous norms which play

a key role for sub-Laplacian. These norms, which are smooth and symmetric, are called

gauges :

Definition 3.3.3. Let L be a sub-Laplacian on G. We call L-gauge on G a homogeneous,

symmetric norm d which is smooth on G \ {e} and satisfies

L(d2−Q) = 0 in G \ {e}.

Fundamental solutions and L-gauges are strictly related, as the following Proposition

states:

Proposition 3.3.1. Let L be a sub-Laplacian on G and Γ be the fundamental solution

of L. Then

d(x) :=

Γ(x)
1

2−Q , x ∈ G \ {e},

0, x = e

is an L-gauge on G.

Proof. See [3], Proposition 5.4.2.

Remark 3.3.4. Also the converse of Proposition 3.3.1 is true. Indeed, if d is an L-gauge

on G, then there exists a positive constant Cd such that Γ = Cd d
2−Q is the fundamental

solution of L. This fact implies that the L-gauge is unique up to a multiplicative constant.

Example 3.3.1. Let Hn be the n-th Heisenberg group. Let L be a sub-Laplacian on Hn.

Then, an L-gauge is given by the Korányi norm

d((z, t)) = 4

√
‖z‖4

R2n + |t|2.

As already said, in this section we aim to study the Dirichlet problem over an intrinsic

Lipschitz domain Ω ⊂ Hn. In other words, we want to prove that Ω is regular with respect

to a sub-Laplacian L. What does it mean to be L-regular? Let us define immediately

this concept in a general Carnot group G.
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Definition 3.3.5. Let Ω ⊂ G be a bounded open set. We say that Ω is L-regular if the

boundary value problem  Lu = 0, in Ω

u|∂Ω
= ϕ

(3.15)

has a (unique) solution u for every continuous function ϕ : ∂Ω −→ R.

We say that u solves (3.15) if it is L-harmonic in Ω and

lim
y→x

u(y) = ϕ(x),

for every x ∈ ∂Ω.

To show that an intrinsic Lipschitz domain Ω ⊂ Hn is L-regular, we will use the

Wiener’s regularity test for L. For the sake of completeness, we study a little bit the

background material concerning general notions and results which play a role in this kind

of theory. Once more, the interested reader is referred to [3] for further informations.

Notation 3.3.1. Let Ω ⊂ G be a bounded and connected open set. Following the notations

used in [3],M(Ω) denotes the set of Radon measures µ on Ω. We denote byM0(Ω) the

subset of M(Ω) of compactly supported Radon measures.

S̄(Ω) denotes the set of L-superharmonic functions in Ω, and S̄+(Ω) of non negative

L-superharmonic functions.

Definition 3.3.6. Let K ⊂⊂ G be a compact set. For any µ ∈M(K), we say that

I(µ) :=

∫
G

(Γ ∗ µ) (x) dµ(x) =

∫
K

∫
K

Γ(y−1 · x) dµ(x)dµ(y)

is the L-energy of µ. We define also the L-equilibrium value of K as

V (K) := inf{I(µ) |µ ∈M(K), µ(K) = 1 }.

Theorem 3.3.2. Let K ⊂⊂ G be a compact set. Then there exists a Radon measure

µ̄ ∈M(K) such that µ̄(K) = 1 and

I(µ̄) = V (K).

We call such a measure µ̄ an L-equilibrium distribution for K and the related potential

Γ ∗ µ̄ an L-equilibrium potential for K.
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Definition 3.3.7. Let A ⊆ G and u ∈ S̄+(G). The L-reduced function of u relative to

A is

Ru
A := inf{f | f ∈ Φu

A},

where Φu
A := {f ∈ S̄+(G) | f ≥ u in A}. We define also the L-balayage of u relative to

A as the lower semicontinuous regularization R̂u
A of Ru

A, i.e. for any x ∈ G,

R̂u
A := lim inf

y→x
Ru
A(y).

We now list some properties of the L-reduced function and the L-balayage:

(i) R̂f
A is L-subharmonic in G and L-harmonic in G \ Ā;

(ii) if 0 ≤ f ≤ g, then Rf
A ≤ Rg

A, R̂f
A ≤ R̂g

A;

(iii) if A ⊆ B ⊆ G, then Rf
A ≤ Rf

B, R̂f
A ≤ R̂f

B;

(iv) R̂f
A = Rf

A almost everywhere in G.

It could be interesting to notice that, when A ⊆ G is a compact set, then the L-

balayage takes a particular form. This fact is the content of the following theorem:

Theorem 3.3.3. Let K ⊂⊂ G be a compact set and let u ∈ S̄+(G). Then there exists a

Radon measure µ in G such that

R̂u
f = Γ ∗ µ.

We are now ready to give the definition of L-capacity. We start with the case of

compact sets. Then, just taking an approximation from inside with compact sets, we

can define the L-capacity also for general sets.

Definition 3.3.8. Let K ⊂⊂ G be a compact set. We define

WK := R1
K , VK := R̂1

K .

By Theorem 3.3.3, there exists a measure µK, called L-capacitary distribution for K,

such that VK = Γ ∗ µK. We call VK the L-capacitary potential of K.

We define the L-capacity of K as

C(K) := µK(K).
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Let us give a look to some characterizations of the L-capacity of compact sets.

Theorem 3.3.4. Let K ⊂⊂ G be a compact set. Then

K = max{µ(K) |µ ∈M(K), Γ ∗ µ ≤ 1 in G}.

Theorem 3.3.5. Let K ⊂⊂ G be a compact set and let C(K) and V (K) be the L-capacity

and the L-equilibrium value of K. Then

C(K) = (V (K))−1 .

Proposition 3.3.6. Let {Kj}j∈N be a sequence of compact subsets of G. Then the

following properties hold:

(i) if K1 ⊆ K2, then C(K1) ≤ C(K2);

(ii) if {Kj}j is a decreasing sequence, then C(Kn)↘ C(∩jKj), as n→∞;

(iii) C(K1 ∪K2) + C(K1 ∩K2) ≤ C(K1) + C(K2).

Proposition 3.3.7. Let K ⊂⊂ G be a compact set. Then, for any λ ∈ R+ and g ∈ G,

C(δλ(K)) = λQ−2(K) C(g ·K) = C(K).

We now can extend the notion of L-capacity to a larger class of sets.

Definition 3.3.9. Let E ⊆ G be a non empty set. We define the interior L-capacity of

E as

C∗(E) := sup{C(K) |K compact, K ⊆ E},

and the exterior L-capacity as

C∗(E) := inf{C∗(Ω) |Ω open, E ⊆ Ω}.

We say that E ⊆ G is L-capacitable if C∗(E) = C∗(E). In this case, we denote this

common value by C(E) and it is called the L-capacity of E.

Remark 3.3.10. Any Borel set is L-capacitable.
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We now introduce the following notation: let y ∈ G and let α > 1 be a constant. For

every n ∈ N we set

Cn := {x ∈ G |αn ≤ Γ(y−1 · x) ≤ αn+1}.

The Wiener’s regularity test for the sub-Laplacian L reads as follows:

Theorem 3.3.8 (Wiener’s regularity test for L). Let Ω be an open and connected subset

of G and let y ∈ ∂Ω. Then the following statements are equivalent:

(i) y is a L-regular point for Ω;

(ii) it holds
∑∞

n=1 α
n · C∗(Cn \ Ω) =∞;

(iii) it holds
∑∞

n=1 R̂1
Cn\Ω(y) =∞;

(iv) it holds
∫∞
α
C∗ ({x ∈ Ω |Γ(y−1 · x) ≥ t}) dt =∞.

Proof. See [3], Theorem 12.4.3.

As already announced, our final step is to use this test to show that an intrinsic

Lipschitz domain in the Heisenberg group Hn is L-regular.

Theorem 3.3.9. Let Ω ⊂ Hn be an intrinsic Lipschitz domain. The Ω is L-regular.

Proof. Let y ∈ ∂Ω be fixed. We need to show that y is an L-regular point for Ω.

Without loss of generality, we can assume that y = e. We can make this assumption

because intrinsic Lipschitz graphs are invariant under left translations and because of

Proposition 3.3.7.

Let us prove that property (i) in Theorem 3.3.8 holds. First, we notice that, since

L-capacity is monotone increasing, it is sufficient to prove (ii) for an intrinsic cone, say

C, which realizes the definition of intrinsic Lipschitz graph near e ∈ ∂Ω.

Let

β :=

(
1

α

) 1
Q−2

.

Then, keeping in mind Proposition 3.3.1, we can rewrite

Cn = B(e, β−n) \B(e, β−n−1).
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Now, intrinsic cones are invariant under group dilations, therefore, using Proposition

3.3.7,

C∗(Cn \ Ω) = C∗ (δβ−n(C1 \ C))

= (β−n)Q−2C∗(C1 \ C).

Hence,
∞∑
n=1

αn(β−n)Q−2C∗(C1 \ C) =
∞∑
n=1

C∗(C1 \ C) = ∞,

and this proves the assertion.



Appendix A

Basic Notions on Differential

Geometry

In this appendix we recall some definitions and fundamental results from differential

geometry.

Definition A.0.11. We say that a topological space M is locally Euclidean of dimension

n if every point p ∈M has a neighbourhood U homeomorphic to an open subset of Rn. We

call a chart of M the couple (U,ϕ : U → Rn), where ϕ : U −→ Rn is a homeomorphism.

Definition A.0.12. We call topological manifold M a Hausdorff, second countable,

locally Euclidean space of dimension n.

Definition A.0.13. We say that two charts (U,ϕ : U −→ Rn), (V, ψ : V −→ Rn) of a

topological manifold M are C∞-compatible if the two maps

ϕ ◦ ψ−1 : ψ(U ∩ V ) −→ ϕ(U ∩ V )

ψ ◦ ϕ−1 : ϕ(U ∩ V ) −→ ψ(U ∩ V )

are C∞.

Definition A.0.14. Let M be a topological manifold. We call a C∞-atlas a collection

A = {(Uα, ϕα)} of pairwice C∞-compatible charts such that M =
⋃
α Uα.

105
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Definition A.0.15. We say that a C∞-manifold is a topological manifold M together

with a maximal atlas.1

Remark A.0.16. One can prove that if M is a C∞-manifold with a maximal atlas A, and

(U,ϕ) ∈ A, then ϕ : U −→ ϕ(U) is a diffeomorphism.

Definition A.0.17. Let N and M be C∞-manifolds of dimension n and m, respectively.

A continuous map F : N −→ M is C∞ at a point p ∈ N if there exists (V, ψ), a chart

of M in F (p), and (U,ϕ), a chart of N in p, such that

ψ ◦ F ◦ ϕ−1 : ϕ
(
U ∩ F−1(V )

)
−→ Rm

is a C∞ in Euclidean sense.

Let M be a C∞-manifold. A germ of a C∞ function at p in M an equivalence class

of C∞ functions, defined on a neighbourhood of p in M , which agree on some open

neighbourhood of p. Denoting by C∞p (M) the set of such equivalence classes, we call a

derivation on M at p a linear map

D : C∞p (M) −→ R

such that

D(f · g) = (Df) · g(p) + f(p) ·Dg.

Definition A.0.18. We call a tangent vector to M at a point p ∈M a derivation at p.

We denote by TpM the set of all tangent vector to M at p.

Definition A.0.19. Let F : N −→M be a C∞ map between C∞-manifolds. We define

the differential of F at a point p ∈ N the linear map

dpF : TpN −→ TF (p)M,

defined as follows

dpF (Xp) (f) = Xp(f ◦ F ),

for all Xp ∈ TpN and f ∈ C∞F (p)(M).

1A maximal atlas is an atlas which is not contained in another atlas.
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Theorem A.0.10. If F : N −→M and G : M −→ P are C∞-maps between manifolds,

and p ∈ N is fixed, then the following chain rule holds

dp(g ◦ F ) = dF (p)G ◦ dpF.

Let us consider a smooth manifold M of dimension n and fix a point p ∈ M . By

definition of C∞-manifold, there exists a chart (U,ϕ) = (U, x1, ..., xn) of M at p. Since

ϕ : U −→ ϕ(U) is a diffeomorphism,

dpϕ : TpM −→ Tϕ(p)Rn

is an isomorphism of vector spaces.

Proposition A.0.11. If (U,ϕ) = (U, x1, ..., xn) is a chart of a C∞-manifold M at a

point p, then {
∂

∂x1

∣∣∣∣
p

, ...,
∂

∂xn

∣∣∣∣
p

}
is a basis for the vector space TpM , where, if with r1, ..., rn we denote the standard

coordinates of Rn, ∂
∂xi

∣∣
p
∈ TpM is defined by

dpϕ

(
∂

∂xi

∣∣∣∣
p

)
=

∂

∂ri

∣∣∣∣
ϕ(p)

.

Definition A.0.20. Let M be a C∞-manifold. A smooth curve in M is a smooth map

c : ]a, b[⊂ R −→ M . We call the velocity vector c′(t0) of the curve c at time t0 ∈]a, b[

the tangent vector

c′(t0) := dt0c

(
d

dt

∣∣∣∣
t0

)
∈ Tc(t0)M.

Proposition A.0.12. For every point p on a C∞-manifold M and for every Xp ∈ TpM ,

there exists ε ∈ R+ and a smooth curve c : ] − ε, ε[−→ M such that c(0) = p and

c′(0) = Xp.

Proposition A.0.13. Let M be a C∞-manifold and Xp be a tangent vector at a point

p ∈ M . If f ∈ C∞p (M) and c : ] − ε, ε[−→ M is a smooth curve starting at p with

c′(0) = Xp. Then

Xpf =
d

dt
(f ◦ c)

∣∣∣∣
t=0

.
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Proposition A.0.14. Let F : N −→M be a smooth map between C∞-manifolds, p ∈ N
and Xp be a tangent vector to N at p. If c : ]−ε, ε[−→ N is a smooth curve in N starting

at p with velocity Xp, then

dpF (Xp) =
d

dt
(F ◦ c)(t)

∣∣∣∣
t=0

.

Let M and E be two C∞-manifolds. Given a map π : E −→ M , we call the inverse

image π−1 ({p}) =: Ep of a point p ∈M the fiber at p.

For any two maps π : E −→ M and π̃ : Ẽ −→ M , a map ϕ : E −→ Ẽ is said to be

fiber preserving if ϕ(Ep) ⊂ Ẽp, for each p ∈M .

A surjective smooth map π : E −→ M of manifolds is said to be locally trivial of

rank r if

(i) each fiber Ep has a structure of vector space of dimension r;

(ii) for each p ∈ M , there are an open neighbourhood U of p and a fiber preserving

diffeomorphism ϕ : π−1(U) −→ U × Rr such that, for every q ∈ U , the restriction

ϕ|π−1(q) : Eq −→ {q} × Rr

is a vector space isomorphism.

Definition A.0.21. We call a C∞-vector bundle of rank r a triplet (E,M, π) consisting

of two C∞-manifolds E and M and a surjective smooth map π : E −→M that is locally

trivial of rank r. The manifold E is called the total space of the vector bundle and M

the base space. By abuse of language, we say that E is a vector bundle over M .

Definition A.0.22. Let M be a C∞-manifold, we call the tangent bundle of M the

triplet (TM,M, π)2 where TM =
⋃
p∈M{p} × TpM and π : TM −→ M is defined as

π(v) = p, if v ∈ TpM .

Definition A.0.23. Let (E,M, π) be a vector bundle. We say that a map s : M −→ E

is a section of the vector bundle if π ◦ s = idM . We say that the section is smooth if it

is smooth as a map.

2One can endow TM with a structure of C∞-manifold; the topology is just the topology induced by

M through π.
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Definition A.0.24. Let (E,M, π) be a vector bundle, and let U be an open subset of M .

We call a frame for the vector bundle (E,M, π) over U a collection of sections s1, ..., sr

such that, for each p ∈ U , {s1(p), ..., sr(p)} is a basis for the fiber Ep.

Definition A.0.25. We call a vector field X on a C∞-manifold M a section of the

tangent bundle (TM,M, π), and we write X ∈ Γ(TM). We say that a vector field

X : M −→ TM is smooth if it is a smooth section.

Let p ∈M be a fixed point and let (U,ϕ) = (U, x1, ..., xn) be a chart of M around p.

Then the value of the vector field at p ∈M is given by

X(p) =
∑
i

ai(p)
∂

∂xi

∣∣∣∣
p

.

We notice that as p varies in U , the coefficients ai can be considered as functions on U .

Proposition A.0.15. Let M be a C∞-manifold and let (U,ϕ) = (U, x1, ..., xn) be a chart

of M at a fixed point p ∈M . A vector field X =
∑

i a
i ∂
∂xi

on U is smooth if and only if

the coefficients ai are smooth functions on U .

Definition A.0.26. Let X be a smooth vector field over a C∞-manifold M . We say

that a smooth curve c : ]a, b[⊂ R −→ M is an integral curve of X if it is such that

c′(t) = X(c(t)) for all t ∈ ]a, b[. Usually, we assume that 0 ∈ ]a, b[. In this case, if

c(0) = p, we say that c is an integral curve starting at p. We say that an integral curve

is maximal if its domain can not be extended to a larger interval.

We can also study the dependence of the integral curve of a vector field on its starting

point:

Definition A.0.27. A local flow about a point p in an open set U of a manifold M is

a C∞ function

F : ]− ε, ε [×W −→ U,

where ε > 0 and W is a neighborhood of p contained in U , such that writing Ft(q) =

F (t, q), we have

(i) F0(q) = q for all q ∈ W ,

(ii) Ft (Fs(q)) = Ft+s(q) (when both sides are defined).
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If a local flow is defined on R×M , then it is called a global flow. A vector field having

a global flow is called a complete vector field.



Appendix B

McShane and Whitney Extension

Theorem

We prove the classical McShane-Whitney extension Theorem. For further informa-

tions and for proofs, the reader should look in [23]. We start with a simple lemma

Lemma B.0.16. Let A ⊂ Rn and {fi}i∈I be a family of Lipschitz functions, fi : A −→ R,

with the same Lipschitz constant L > 0. Then the functions

A −→ R

x 7−→ inf
i∈I

fi(x)

and

A −→ R

x 7−→ sup
i∈I

fi(x)

are L-Lipschitz on A, if they are finite at one point.

Theorem B.0.17 (McShane-Whitney extension Theorem). Let A ⊂ Rn and f : A −→
R be a L-Lipschitz function. The there exists a L-Lipschitz function F : Rn −→ R such

that F |A = f .

Proof. Let us define, for each a ∈ A, the following function

fa(x) := f(a) + L |x− a |.
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It is clear that it is a Lipschitz function on Rn, indeed,

|fa(x)− fa(y)| = L | |x− a| − |y − a| |

≤ L |x− a− y + a| = L |x− y|.

Hence, by Lemma B.0.16, the function

F : Rn −→ R

F (x) := inf
a∈A

fa(x),

is Lipschitz with constant L. For such a F , it is also true that F (a) = f(a), for each

a ∈ A.



Appendix C

Geodesics and Balls in Heisenberg

Group

In this Appendix we aim to present some useful ideas and notions about geodesics

and metric balls in Heisenberg group. This part is entirely taken from [33].

We start by recalling the definition of geodesics, we will use the same notations as in

Section 1.2.:

Definition C.0.28. Let Rn be endowed with a Carnot-Carathéodory metric d induced

by a Hörmander system of vector field. We say that a Lipschitz continuous X-subunit

curve γ : [0, T ] −→ Rn is a geodesic if d(γ(0), γ(T )) = T .

Theorem C.0.18. If (Rn, d) is X-connected then, for each couple x, y ∈ Rn, there exists

a geodesics γ which joins x to y.

We state now the Pontryagin Maximum Principle, which can be used to derive equa-

tions of geodesics. First we need to fix some notations and introduce a control problem,

whose solutions are exactly the geodesics.

If h ∈ L∞ ([0, 1];Rm) is the control, we define the pay-off functional as follows

J(h) =
1

2

∫ 1

0

|h(s)|2 ds. (C.1)

The state equation is

ẋ =
m∑
j=1

hj ·Xj(x), (C.2)
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and we are looking for a Lipschitz continuous function x over [0, 1] with values in Rm.

Moreover, we need also to fix initial and final data (constraints)

x(0) = x0, x(1) = x1.

Remark C.0.29. We point out that we introduced a well posed problem. Indeed, Theorem

C.0.18 ensures the existence of a curve which minimizes J .

Definition C.0.30. Given (C.1) and (C.2), we say that the pair (x, h) is optimal if the

control h minimizes J and x is almost everywhere a solution of (C.2) together with the

constraints.

Theorem C.0.19 (Pontryagin Maximum Principle). Assume that (x, h) is optimal for

our problem. Then there exist a function ξ : [0, 1] −→ Rn and a constant λ = 0 or λ = 1

such that

(i) |ξ(s)|+ λ 6= 0, for every s ∈ [0, 1];

(ii) ξ̇ = − ∂
∂x
〈A(x)h, ξ〉, a.e. on [0, 1];

(iii) 〈ξ(s),A(x)ξ(s)〉 − λ1
2
|h|2 = maxu∈Rm

(
〈A(x)u, ξ(s)〉 − λ1

2
|u|2
)
, for a.e. s ∈ [0, 1].

Remark C.0.31. Equations (ii) in Theorem C.0.19, combined with (C.2), transform in

the Hamilton system 
ẋ =

1

2

∂H(x, ξ)

∂ξ

ξ̇ = −1

2

∂H(x, ξ)

∂x
,

(C.3)

where the Hamiltonian function is

H(x, ξ) =
m∑
j=1

〈Xj(x), ξ〉2 .

Using Pontryagin Maximum Principle, one can prove, in the setting of the Heisenberg

group, the following

Theorem C.0.20. Geodesics in Hn are curves of class C∞.
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Remark C.0.31 and Theorem C.0.20 imply that geodesics in Hn are solutions of the

Hamiltonian system (C.3) with

H ((z, t), (ζ, τ)) =
n∑
j=1

(
(ξj + 2yjτ)2 + (ηj − 2xjτ)2

)
,

where we denote two generic points of Hn as (z, t) = (x, y, t) and (ζ, τ) = (ξ, η, τ).

Therefore, we write explicitly the equations



ẋ = ξj + 2τyj

ẏ = ηj − 2τxj

ṫ =
n∑
j=1

2yjξj + 4τy2
j − 2xjηj + 4τx2

ξ̇j = 2τηj − 4τ 2xj

η̇j = −2τξj − 4τ 2yj

τ̇ = 0,

for j = 1, ..., n. As initial data we take

(z(0), t(0)) = (0, 0) and (ζ(0), τ(0)) =
(
B1, ..., Bn, A1, ..., An,

ϕ

4

)
,

which provide the solution

xj(s) =
Aj(1− cos(ϕs)) +Bj sin(ϕs)

ϕ

yj(s) =
−Bj(1− cos(ϕs)) + Aj sin(ϕs)

ϕ

t(s) = 2
ϕs− sin(ϕs)

ϕ2

n∑
j=1

(
A2
j +B2

j

)
.

(C.4)

Clearly, a posteriori, the correct normalization is
∑n

j=1

(
A2
j +B2

j

)
= 1.

Using equation (C.4), we can deduce a parametrization of the unitary metric ball

centered at the origin. We restict the discussion to H1. Let

S = {(x, y, t) ∈ H1 | d((x, y, t), 0) = 1}.
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The normalization (A2 +B2) = 1 allows us to choose A = cosϑ and B = sinϑ. There-

fore, if we choose s = 1, we obtain

x(ϑ, ϕ) =
cosϑ(1− cosϕ) + sinϑ sinϕ

ϕ

y(ϑ, ϕ) =
− sinϑ(1− cosϕ) + cosϑ sinϕ

ϕ

t(ϑ, ϕ) = 2
ϕ− sinϕ

ϕ2
,

(C.5)

with 0 ≤ ϑ ≤ 2π and −2π ≤ ϕ ≤ 2π.

Remark C.0.32. Equations (C.5) imply that the surface S is of class C1 where (x, y) 6=
(0, 0).

Remark C.0.33. Set

E =

{
(ϑ, ϕ, ρ) ∈ R3

∣∣ − 2π

ρ
≤ ϕ ≤ 2π

ρ
, ρ ≥ 0

}
and define Φ : E −→ H1 by Φ(ϑ, ϕ, ρ) = (x(ϑ, ϕ, ρ), y(ϑ, ϕ, ρ), t(ϑ, ϕ, ρ)), where

x(ϑ, ϕ, ρ) =
cosϑ(1− cos(ϕρ)) + sinϑ sin(ϕρ)

ϕ

y(ϑ, ϕ, ρ) =
− sinϑ(1− cos(ϕρ)) + cosϑ sin(ϕρ)

ϕ

t(ϑ, ϕ, ρ) = 2
ϕρ− sin(ϕρ)

ϕ2
.

(C.6)

If ρ > 0 is fixed, the the equations (C.6), with ϑ ∈ [0, 2π[ and −2π
ρ
5 ϕ ≤ 2π

ρ
, parametrize

∂B(0, ρ).

We point out that the t-components of the two poles are given by

t

(
2π,±2π

ρ
, ρ

)
= ± 2

ρ2

2π
. (C.7)
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Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math.

49, 81996, 1081-1144.

[20] N. Garofalo, D.M. Nhieu, Lipschitz continuity, global smooth approximations and

extension theorems for Sobolev functions in Carnot-Caratheodory spaces, J. Anal.

Math., 74, 67-97 (1998).



BIBLIOGRAPHY 119
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