ALMA MATER STUDIORUM
UNIVERSITA DEGLI STUDI DI BOLOGNA

Seconda Facolta di Ingegneria
Corso di Laurea Magistrale in Ingegneria Informatica

TOWARDS MODEL DRIVEN SOFTWARE
DEVELOPMENT FOR ARDUINO
PLATFORMS: A DSL AND AUTOMATIC CODE
GENERATION

Elaborata nel corso di: Ingegneria dei Sistemi Software LM

Tesi di Laurea di: Relatore:
MIRCO BORDONI Prof. ANTONIO NATALI

Co-Relatore:
Prof ALESSANDRO RICCI

ANNO ACCADEMICO 2011-2012
SESSIONE I

KEYWORDS

Model Driven Software Development
Arduino

Meta-Modeling

Domain Specific Languages

Software Factory

Contents

Introduction ix

1

Introduction to Model Driven Software Development 1
1.1 Models and Meta-Models in Software Engineering . . . 2
1.2 Model Driven Development 3
1.3 Model-Driven Architecture 6
1.4 From Standard to Domain Specific Modeling Language 8
1.5 Ecoreand EMF 9

1

2

1.6 Domain Specific Languages 1
1.7 XText and XTend2 Brief Introduction 1
Embedded Systems 15
2.1 Main Features 15
2.2 Software 18
2.2.1 Software Tools 18
2.2.2 Programming Languages 18
2.2.3 Embedded Software Architectures 21
224 Wiring oo 22
Introduction to Arduino 23
3.1 Arduino Software Introduction 24
3.2 IDE 26
3.3 Libraries 27
3.4 Arduino Hardware Introduction 28
Arduino DSL and Semantic Mapping 31
4.1 A First Domotic System 32
4.2 Basic Arduino Meta-Model 36

4.3 DSL Syntactic Definition

4.3.1 Structure,
4.3.2 Behaviour
4.3.3 Interaction.
4.4 Semantic Mapping L.
4.4.1 Structure
4.4.2 Behaviour
4.5 Domotic Example Model

Towards a System perspective

5.1 Provided Supports L.
5.2 Structure of the System
5.3 Messageso
5.4 High Level Operation
5.5 Semantic Mapping of System Perspective Concepts . .

5.5.1 TCP Support

5.5.2 Server

55,3 Client
5.6 UDP Support L.
5.7 Serial Support
5.8 Communication Params Mapping
5.9 Message Exchange
510 TCP Mapping
5.11 Serial Mapping
5.12 Utility o o

Code Generators Overview

6.1 Generators Access Point
6.2 MainArduinoGenerator Behaviour
6.2.1 MainStructureGenerator
6.2.2 BasicLibrariesGenerator
6.2.3 HandlerGenerator
6.2.4 TaskGenerator
6.2.5 CommunicationGenerator
6.3 Tests

vi

55
57
57
o8
59
62
62
63
65
66
66
67
67
69
71
71

7 A Case Study with Multiple Arduino Platforms 81

7.1 User Requirements 81
7.2 Brief Requirements Analysis 83
7.3 Hardware Setup L. 84
7.4 Domoticl Model 86
7.5 Domotic2 Model 92
8 Conclusions And Future Development 97
8.1 Conclusions 97
8.2 Future Development 98

vii

viil

Introduction

The aim of this thesis is the production of a Meta-Model to character-
ize the main concepts introduced by a particular family of Embedded
Systems, named Arduino.

The Meta-Model will be defined trying to capture all the concepts
introduced by these kinds of Systems. The reference platform will be
Arduino because it is a widely used platform to easily realize hardware
systems.

Arduino provides a successful combination of good quality, low
complexity and low price. In fact, with an Arduino board and some
sensors or actuators everyone can create its own embedded system.

The production of a Meta-Model will lead to the implementation
of a Software Factory to enhance fast prototyping and fast implemen-
tation of Arduino systems, through automatic code generation. The
Meta-Model will be expressed through an EBNF that formally defines
a Domain Specific Language. The framework used to define the DSL
is XText. Such DSL has then been mapped on the proper Arduino
code through automatic code generation. This aims at providing a
programming language to write models, instance of the defined meta-
model, that will be mapped automatically on an Arduino program.

The thesis goes in this direction because Meta-Modeling and DSLs
are one of the main trends of Software Engineering of the last few years
and they are gradually changing the way a Software is conceived and
produced, speeding up its development.

Once a Meta-Model of an Embedded System is defined, the level of
Abstraction has been raised trying to define some of the concepts that
characterize a System of different entities, regardless from their nature.
All the newly introduced concepts will describe the System Structure
and the Interaction with the other components of the System, seen

X

from each entity viewpoint.

The thesis is composed by eight chapters describing in order: what
Model Driven Software Development means, an introduction on Em-
bedded Systems, a brief description of Arduino, the defined Meta-
Model for an Arduino platform, the definition of the Meta-Model re-
lated to the System perspective, a brief overview of implemented code
generators, a Use Case and conclusions.

Chapter 1

Introduction to Model
Driven Software
Development

One of the main concept that an Engineer relies on is the concept of
Model. A Model is always used as a representation of a known domain
or system trying to capture all relevant characteristics and ignoring
no relevant ones.

Since the beginning of Computer Science, research has worked to raise
the level of abstraction at which softwares are written. Model Driven
Development is going in this direction and is the natural continuation
of that process.

In this section the concepts of Meta-Modeling and Modeling will be
exploited, trying to focus on all their characteristics and on how they
can help Software Engineers to solve difficult problems, to better or-
ganize their work or to increase development processes quality.

After a first theoretical introduction we will go through the definition
of what is meant with Model Driven Software Development and how
it is now supported by some Environments, e.g. Xtext.

CHAPTER 1. INTRODUCTION TO MODEL DRIVEN
2 SOFTWARE DEVELOPMENT

1.1 Models and Meta-Models in Software
Engineering

In Software Engineering Models are used to introduce the needed level
of abstraction and take into account the aspects of interest of a given
System.

The aspects of interest can change from case to case, depending
on the level of abstraction, on what the model refers to and on which
are the important characteristics of the actual abstraction.

At a first sight it can sometimes seems easy to develop a software,
following a short process to develop the solution: acquiring knowledge
about the problem from experts on that domain, developing a solution
and deploying it to the customer. This process does not take care
about many problems raised for different reasons:

- Knowledge about the problem can be ambiguous if not correctly
formalized. This issue borns from interactions between humans
in natural language. Natural language is not formal at all and
can lead to misunderstanding and ambiguity.

- Legacy is one of the main problem in Software Engineering. In
fact rarely a software is started from scratch, but it often has
to cohabit, collaborate or use previous software, maybe written
years before, on different technologies and from unknown devel-
opers.

- Complex Softwares are often developed by teams of people. Some-
times the team can be unique and others more than only one.
This means that the work should be somehow organized and, fol-
lowing the approach ”Divide et Impera”, different tasks should
be distributed to different people.

- The development process is never a straightforward top-down
process. It is often needed to go back in previous phases and
modify what was produced before. This approach, even if not
the unique, is largely used and behaves like a spiral, continuously
reviewing (if needed) what previously produced.

CHAPTER 1. INTRODUCTION TO MODEL DRIVEN
SOFTWARE DEVELOPMENT 3

These are the main motivations of models. It is in fact funda-
mental the production of proper formal artifacts in each phase of the
development process and models aims at the formalisation of all the
processes and artifacts involved.

So engineers rely on models to understand and formalize complex
systems. They can be derived from existing systems or developed to
formalize what will be produced.

A Model is defined as an instance of a Meta-Model. A Meta-Model
is a set of abstractions introduced to produce Models and they can
be introduced at different levels of a Modeling hierarchy. This means
that a Model is an instance of a Meta-Model and a Meta-Model can
be an instance of a Meta-Meta-Model, and so on.

Sometimes it can be useful to traduce a Model to another at an
equivalent level of abstraction.

The concept of Meta-Model is well introduced in [1] where it is
defined as:

A metamodel is a model used to model modeling itself.

The definition emphasizes the concept that a metamodel is itself a
model and is used to model, so to formalize, the process of modeling
itself. Previous phrase focuses also on the fact that a metamodel can
be used to model itself as well as other models or meta models.

1.2 Model Driven Development

The introduced definitions of Models and Meta-Models have led to a
Software Development process referred as Model Driven Development.
In this approach the attention is posed on models and not on code.
The primary condition to adopt MDD is having a Meta-Metamodel
enough expressive for the modeling of the main concepts introduced by
the faced domain. Once that the highest Meta-Metamodel has been
defined, we can proceed top-down in the definition of all the needed
layers. One of the main objective of this method is the introduction
of a set of formal models that can directly be mapped on code, possi-
bly without the need of additional information in the implementation
phase. To have an idea of which are the current practices of interaction

CHAPTER 1. INTRODUCTION TO MODEL DRIVEN
4 SOFTWARE DEVELOPMENT

and synchronization between models and code, we can have a look to
a picture introduced in [2], shown in Figure 1.1. The first approach

Code Visualization Roundtrip
Code Only Engineering Model-Centrie Model-Only
MODEL MODEL MODEL MODEL
' i
CODE CODE CODE CODE
"What's a "The code is "Code and Model "The model is "Let’s do same
model?"” the model” coexist” the code” design”

Figure 1.1: Relation between modeling and code

shown in the figure is the classical Extreme Programming approach.
There is no model of the system to produce and the developers simply
start by coding, each of them having a mental representation of the
system and of the problem solution. It is like if the model is repre-
sented by the formally defined constructs found in the programming
language used. This approach often leads to the so called Software
Crisis because each developer can have a different idea of the solution
and ambiguity is the main issue. When the software is completed it
usually has low quality and is not scalable or reusable. The manage-
ment of the evolution of the software becomes indeed really difficult
and often brings to the need of rewriting the whole system or some
parts of it.

The second diagram introduces the concept of model, even if still
weak. In this case a model is a representation (in a defined notation)
of the structure and behaviour of a system. These kind of models are
referred to as ”code models”, because they only represent the written

CHAPTER 1. INTRODUCTION TO MODEL DRIVEN
SOFTWARE DEVELOPMENT 5

code. Sometimes changes to the system can be made upon the model,
but always bringing them also on the code.

Roundtrip Engineering is similar to the spiral we previously intro-
duced. Now the developers start from the definition of a model of the
system architecture and behaviour. This model tipically reports three
main characteristics of the system: Structure, Behaviour and Inter-
action within the parts. The level of detail is decided by developers
and can vary from model to model. Once the model has been vali-
dated, a new phase is started called Model-To-Code transformation.
During the translation of the model into the proper code, the code
can show some weaknesses of the model, leading to a model refactor-
ing. These kind of backward steps can be activated also during the
modeling phase.

The Model to Code phase can be manual or automatic, depending on
the technology adopted for the definition of the model. Typically, in
case of automatic generation, the main skeleton of the application is
generated and then the developer has to add some little parts related
to the business logic.

This is the main approach used in Model Driven Software Develop-
ment. It is worth noting that MDSD is still not a top-down process,
but still iterative.

The Model-Centric approach has the objective to model all the
system details so to generate all the needed code without the addition
of any information. This means that the model has to include the
representation of the persistent and non-persistent data, business logic
and presentation elements. All the complexity is indeed brought at
the model level.

This is the direction where MDSD is going. In this approach the
produced model should be Platform Independent, so to be applicable
to each desired platform.

Last method is the development of a system only focusing on
model. This is the typical approach of companies that outsource
projects implementation and maintenance, while they keep control
on the overall models. Developers only produce models of the system,
providing a formal description of all the involved details.

The direction of MDD is indeed the development of a Software
through the definition of a Model that includes the functionalities and

CHAPTER 1. INTRODUCTION TO MODEL DRIVEN
6 SOFTWARE DEVELOPMENT

the architecture of the system. Code is the last part of the development
phase and often is automatically generated.

Companies are moving in MDD direction because it also promotes
a dramatic improvement of productivity and an important decreasing
of costs. The improvement of productivity is either short-term and
long-term.

Short term productivity is due to the chance of automatically gen-
erate a system only providing its model. This means that, once the
initial model is produced, a prototype of the working system can be
developed quite fast (Fast Prototyping).

Long term productivity depends on the primary software artifact’s
longevity. When a model is well defined and captures all the proper
details of the system, it remains valid for a long period.

In the next sections we will describe some of the standard tools
introduced to promote modeling, giving also an overview of the main
standard meta-models and meta-metamodels.

1.3 Model-Driven Architecture

Model-Driven Architecture (MDA) is a style of MDD formalized by
the Object Management Group (OMG). It is based on a set of stan-
dards to define a set of models, notations and transformation rules.
These standards are developed by OMG and among them we find:
Unified Modeling Language (UML), Meta-Object Facility (MOF) and
Common Warehouse Metamodel (CWM).

To define MDA conceptual framework and vocabulary the OMG
has introduced a set of layers: Computational Indipendent Model
(CIM), Platform Independent Model (PIM), Platform Specific Model
(PSM) and Implementation Specific Model (ISM). A representation
of the architecture can be found in Figure 1.2 and is taken from [2].
Having multiple layers, and consequently models, we can think that
the development of a system is based on the definition and refinement
of models. These operations can be critical and can involve insertion
of details or convertion from one model to another.

MDA approach let the developer focus on the essential parts and
details of the system, ignoring all the platform characteristics. Models

CHAPTER 1. INTRODUCTION TO MODEL DRIVEN

SOFTWARE DEVELOPMENT 7
Business and Models ‘ Computation Independent Model (CIM) I
j =
Analysis and Design Models Platform Independent Model (PIM)
A T\'
v Platf S ifi Platf Specifi
atform Specific atform Specific
Detailed Df;[fn Models Model (PS f"‘h‘ (PSM)
V Impl
Implementation and Runtime Models Specific Specific

Model Model

(ISMm)

Figure 1.2: MDA architecture layers and transformation

become indeed Platform Independent and can be applied to every
existing platform. With the world ”platform” we can intend a wide
variety of existing technologies, like Operating Systems, environments
and so on. It is remarkable the fact that, whatever we intend with
platform, the important is to think in term of models at different level
of details and abstraction. In this way the transformation between
models becomes first-class elements of the development process.

Models tranformation requires a clear and formal way to describe
the semantic of a model. So each model has to be described in another
model, called meta-model. OMG recognize that for modeling it is
fundamental the concepts of metamodels and formal semantics. For
this reason they defined a set of meta-modeling levels and a standard
language to define metamodels, called Meta-Object Facility (MOF).

CHAPTER 1. INTRODUCTION TO MODEL DRIVEN
8 SOFTWARE DEVELOPMENT

1.4 From Standard to Domain Specific
Modeling Language

OMG has formally defined its standard meta-modeling language, called
MOF. The MOF 2 Model can be used to model itself as well as other
models and other meta-models (e.g. UML).

UML is based on MOF, in the sense that it is a meta-model defined
on the MOF meta-metamodel. A graphic representation of the stack
is in Figure 1.3. In this picture we can see the layers we have talked

Class
“"'; “&. bl el
<<instanceOf=> L TTe.. =<instanceOfs
‘,," <<instanceCf=> S
o - e
classifier
Attribute Class = Instance
.
-
A 4 A
] -~ -]
[el -]
<<instanceCf=> <<instanceCf=> <<instanceCf=> <<instanceCf=>
l = a o i
M 1 i - r i

r

I

- o !

User Model { Video <<snapshot>> ,*’ iaVideo
+itle: String fitle="Casablanca”
)
T i
A
1]
M 0 <<instanceOf>>

Runtime
Instances

Figure 1.3: UML layers

about earlier. M3 is the meta-metamodel level and formally defines a
set of concepts. These concepts are used to define the level M2, the
so called metamodel. In this case the metamodel is UML. In M1 we

CHAPTER 1. INTRODUCTION TO MODEL DRIVEN
SOFTWARE DEVELOPMENT 9

find the model of the system expressed as a set of concepts defined in
M2. MO defines the runtime instances of the designed system.

Actually the MOF 2 Model is made up of two main packages: the
Essential MOF (EMOF) and the Complete MOF (CMOF). A deeper
description can be found in [1].

UML is a really powerful language, but it includes also some limits.

When a domain presents peculiar characteristics that often appears
in problems on that domain, we can start thinking about a specific
Meta-Model for that Domain.

The Meta-Model should be based upon MOF and should express
the set of concepts that are specific of the observed domain.

We now come to the central point of this chapter: the definition
of custom Domain Specific Models by the replacement of the M2 level
of Figure 1.3 with a new Meta-Model defined by the developer. Once
this Meta-Model is defined, a Model of the system can be expressed
in the level M1.

Figure 1.4 reports a scheme of the models architecture to be de-
fined. M3 level is of course the MOF level. We can then say that each
application domain has peculiar recurrent requirements and entities,
so Domain Specific Models (DSM) can be more useful than UML.
These DSM must be defined as instances of (E)MOF so to define a
language different from UML.

A Meta-Model expressed in MOF can be seen as the Abstract Syn-
tax of a language to define models. MOF itself constitutes a Domain
Specific Language (DSL) to define meta-models, as the EBNF nota-
tion costitutes a DSL to define grammars.

1.5 Ecore and EMF

Ecore is the version of EMOF implemented in Eclipse IDE. It defines
the following concepts:

- EPackage: represents a container of information.

- EClass: represents a class. Can have zero or more attributes
and zero or more references.

- EAttribute: represents an attribute with a name and a type.

CHAPTER 1. INTRODUCTION TO MODEL DRIVEN
10 SOFTWARE DEVELOPMENT

M3 Level
Meta-metamodel

A

{ i
! instance-of
.

M2 Level
Domain Specific Meta-Model

A

| instance-of

MI1 Level
User Defined Model

A

i
' instance-of

MO Level
Object Diagram

Figure 1.4: Architecture to be achieved when a Domain Specific Model
is defined

EReference: represents an association between classes. It has a
name, a boolean to indicate containment and a reference target
type that is a second class.

EDataType: to represent a type.

EENum: to represent an enumerative type.

EOperation: represents an Operation in a EClass.

Eclipse IDE implements also a modeling tool called Eclipse Modeling
Framework (EMF) to define models instances of the ECore Meta-
metamodel. Actually EMF is now considered as de facto standard for
Java Model Driven Software Development (MDSD) on Eclipse because

10

CHAPTER 1. INTRODUCTION TO MODEL DRIVEN
SOFTWARE DEVELOPMENT 11

it automatically generates the code related to a define ECore model
(Model to Code translation). Actually the defined model should be
instance of a Meta-Model that in turn is instance of the ECore Meta-
metamodel.

EMF can also generate plugins that can be used as syntax driven
editors and also a graphical representation of the defined model.

1.6 Domain Specific Languages

A Meta-Model can be seen as the Abstract Syntax of a language.
Since MOF is also a Meta-metamodel and can be used to define Meta-
models, we can use MOF as a reference language for the definition of
these specialized languages.

When we talk about good quality software, we refer to softwares
built following a specific organization and devided into three main
parts:

e generic part: a part that could be shared in all future applica-
tions.

e schematic part: a part organized according to known schemas
reusable in different contexts. This can be the ”skeleton” of the
application.

e specific part: specific to the application, also called application
logic or business logic.

The definition of a software system through Domain Specific Lan-
guages can introduce several benefits, related to the quality and reusabil-
ity.

The definition of a DSL starts from the recongnition of the domain
common concepts that can be expressed by specific rules in the lan-
guage. In this way analysts do not have to start each time from the
beginning, having defined all common features of the explored domain
in the DSL.

Designers can focus on the problem and not on the platform, de-
veloping Platform Independent projects.

11

CHAPTER 1. INTRODUCTION TO MODEL DRIVEN
12 SOFTWARE DEVELOPMENT

Programmers (or Application Designers) can use automatic code
generators developed by System Designers to automatically generate
the code related to a model defined as an instance of a meta-model.

The definition of DSLs aim at the creation of Software Factories
related to specific domains. A company that often has to cope with
problems in the same domain should think about creating its own
DSL, to automate the coding phase and to have an important saving
on producing costs.

Of course the definition of a DSL and proper code generators can
be quite expensive, but it is a one time task and its costs can then be
spread on all future applications on that domain.

Actually, one of the main framework developed to define DSL is
XText.

1.7 XText and XTend2 Brief Introduc-
tion

grammar org.eclipse.xtext.example.domainmodel.Domainmodel with org.eclipse.xtext.common.

Terminals

generate domainmodel "http://www.xtext.org/example/Domainmodel”

DomainModel:
elements+=Type*;

Type:
Entity | Datatype;

Datatype:
"datatype" name=ID;

Entity:
"entity" name=ID ("extends" superType=[Entity]l)? "{"
features+=Feature=

nye s

Feature:

Property;

Property:
name=ID ":" type=[Typel;

Figure 1.5: Example of Xtext specification

12

CHAPTER 1. INTRODUCTION TO MODEL DRIVEN
SOFTWARE DEVELOPMENT 13

XText is a framework that allows the definition of a Meta-Model
through the Abstract Syntax of a language expressed in EBNF nota-
tion.

It has born as part of the framework OpenArchitectureWare (OAW),
coupled with the language XTend, but now it has become opensource
and part of the Eclipse community. In fact XText comes as a feature
to the Eclipse IDE and supports EMF, so the parsing of an XText
defined language is automatically mapped on an Ecore meta-model.
In Figure 1.5 there is an example of how a simple XText specification
looks like.

XText builds a bridge between the world of Programming Lan-
guages and the world of (meta)modeling. Before the definition of
EMOF there was no standard language for modeling.

Furthermore, other XText tools are available to perform Model-to-
Code or Model-to-Model transformations, like for example XTend2.

XText not only generates a parser for the defined grammar (as
normally done by standard parser generators), but also a Model for
the Abstract Syntax Tree and a customizable Eclipse syntax driven
editor, related also to the concrete syntax of the language.

Without this tool the mapping of the concepts introduced by the
Meta-Model on the proper language constructs should be done man-
ually by the developer, so the time and costs reduction is evident.

XText also includes the chance to write custom validator for the
written model, that dinamically control if specific rules are observed.
These controllers are written in the form of Java functions.

The XText version used in this thesis is the 2.3.

13

14

CHAPTER 1.

INTRODUCTION TO MODEL DRIVEN
SOFTWARE DEVELOPMENT

14

Chapter 2

Embedded Systems

An Embedded System is a computer system built to accomplish spe-
cific tasks possibly inside a larger system. These systems are often
provided with various mechanical parts, like sensors, actuators and
other hardware.

Embedded systems often include supports for real time computing,
meaning that they usually support computational models that are
strictly coupled with the concept of time and that some functions
have to be executed respecting proper time constraints. Real-Time
computing is a key feature in controllers, automation etc.

Embedded Systems are special purpose computers. They are in
fact in contrast with the definition of general purpose machines, like
PCs, that are much more flexible and can be used for a wide variety
of functions.

Nowadays we can find Embedded Systems inside a lot of common
devices e.g. printers, cars, ovens, washing machines, dishwashers etc.

In this chapter some of the main characteristics of an Embedded
System will be introduced, giving a general overview of the argument.

2.1 Main Features

Embedded Systems always incorporate a Microcontroller or a Digital
Signal Processor (DSP). In general, microcontrollers used are quite
simple and often are not even comparable to what we find in PCs.
The motivation of this choice is that these systems often have to con-

15

16 CHAPTER 2. EMBEDDED SYSTEMS

tinuously accomplish simple tasks and in a complex system we can
find more than only one; so there is no reason to have much powerful
microcontrollers that unnecessarily raise their price. In fact the other
main reason is the cost. As in every computer system costs must be
proportioned with the tasks it will have to execute. For this reason
their cost is kept quite low.

In general it is not possible to define all the architectures and char-
acteristics of Embedded Systems because they can be really different
each other. So in this section we will discuss some key features com-
mon to every embedded system.

Embedded Systems are designed to execute some specific task,
rather than dedicated to multiple tasks like general purpose comput-
ers. Some of them can also have strong real-time constraints to be
met, while others may have not. Real-time constraints are introduced
to ensure safety and performances.

As we saw earlier, an Embedded System may be not a standalone
device. It can be integrated within a larger system, like in the auto-
motive field.

Interface with the user or with other devices can be done in several
ways: hardware components, LCDs, Ethernet, Serial etc.

Hardware interaction can be reached through the introduction of
special buttons and other means to check the result of an interaction,
like for example LEDs. More advanced techniques concern the use of
LCDs to display some information or to interact with the hardware.

Some Embedded Systems come with the support to Serial proto-
cols (via e.g. RS232, 12C, USB) or network protocols (e.g. Ethernet).
Of course these supports let the definition of more powerful user in-
terfaces, like, for example an interface on a PC.

Processors In embedded systems there is always the need of a
computational unit. The most common are microprocessors, micro-
controllers and DSP. The architecture of these units can vary from
case to case and includes: Von Neuman, various degrees of Harvard
architectures, RISC, non RISC and VLIW.

Bus parallelism can go from 4 to 64 bit, even though most common
is from 8 to 16 bit.

16

CHAPTER 2. EMBEDDED SYSTEMS 17

Peripherals Many peripherals are supported to communicate
with other systems, supporting a wide range of protocols.
The main supported protocols and hardwares are:

- Serial: it can be synchronous or asynchronous.
- Univesal Serial Bus (USB)

- Network: like Ethernet, XBee etc.

- Multimedia Storage: like SD, Flash etc.

- Fieldbuses: like CANBUS, PROFIBUS etc.

- Discrete 10

- Analog to Digital and Digital to Analog converters

Reliability These kind of systems are often hidden to the user,
or sometimes completely inaccessible. This means that they have to
guarantee an high degree of reliability, even because they usually have
to correctly work 24/7.

Reliability concerns either Hardware and Software. Hardware reli-
ability is reached in the design phase, while software one is much more
difficult to reach. To have a good software it has to be well designed
and well tested and debugged. Sometimes these softwares should be
capable of react to some occurred error and recover themselves.

To cope with software errors a variety of techniques have been
introduced. One is the introduction of a watchdog timer: if the system
does not periodically notify the timer, it means that some problem
happened, so the watchdog reset it.

To have an higher reliability, redundant circuits can be added,
like power supplies, backups etc. In these systems redundancy is not
considered as a problem because it can solve reliability problems with
relatively low prices.

17

18 CHAPTER 2. EMBEDDED SYSTEMS

2.2 Software

The software produced and installed in these systems is usually called
Firmware. A firmware is intended as a software born to be run on
special purpose devices and it includes all the needed features. It in
fact has to implement all the registers management operations, all the
communication protocols needed and all the computational operators.

The word ”firmware” reminds a non modifiable software installed
on a read only memory. In present devices, firmwares are installed on
ROMs or Flash Memory, always persistent memories.

2.2.1 Software Tools

The implementation of a firmware always requires a compiler and a
way to transfer the generated program on the Embedded System mem-
ory.

Usually a program is written in an IDE, using an high level lan-
guage. Actual embedded systems are infact programmed in high level
languages like C, C++ etc. while first firmwares were written directly
in assembly or other low level languages.

Once a program is written, it is compiled in the supported low
level language and then uploaded in some way on the proper memory,
e.g. via USB.

All the tools needed to write, debug and upload the program have
to be provided by the producer.

2.2.2 Programming Languages

There are many supported programming languages for embedded sys-
tems, depending on their characteristics and on the producers. Here
an overview of which are the main languages is provided.

C Language

C is one of the most used programming language for these systems,
including also all its evolutions, like C++-.

Usually supports for special purpose operations, like hardware
ones, are introduced through libraries.

18

CHAPTER 2. EMBEDDED SYSTEMS 19

Statecharts Diagram

The Statechart diagram is used to model the evolution and the be-
haviour of a system. It is a set of states, representing the actual state
of the system, events, actions and guards. States can be initial, inter-
mediate or final and represent a defined moment in the life cycle of
the system.

The system evolves from one state to another thanks to the hap-
pening of an Event; a transition is activated from an event, and the ac-
tion is the consequent event. The other main component of statcharts
are guards. They are further conditions to be met to execute an action.

Statecharts diagrams have also been introduced in the UML stan-
dard.

VHDL and Verilog

VHDL is the acronym of VHSIC (Very High Speed Integrated Circuits)
Hardware Description Language and it is, with Verilog, the most used
language for the design of digital electronic systems.

Even though this language presents the classical structure of a
programming language (control statements, loops etc.) it is used as
a model to describe the structure of the hardware components of the
system. It also supports the definition of concurrent parts, intended
as parts of the software with their own control flow.

VHDL allows also the definition of the interaction between the
functional blocks that constitute the system. The exchanged informa-
tion are essentially control signals and data. Each functional block is
also descripted by a input-output relation.

The language Verilog supports the design, test and implementation
of digital circuit using a C-like syntax. Coupled with the VHDL it can
be considered one of the few languages used in the industrial design
and simulation.

Also this language supports parallel and concurrent processes.

All the sequential operations are written inside a block delimited
by a begin and an end. All the concurrent instructions and all the
begin/end blocks are executed concurrently. It is also possible to define
a hierarchy of modules.

19

20 CHAPTER 2. EMBEDDED SYSTEMS

PLC Programming Languages

PLCs are special purpose computers, originally used in industrial
plants to manage production processes. They are capable of executing
programs and interact with sensors and actuators.

Now, with the continuos reduction of size and costs we find them
in smaller systems too, also in houses.

PLCs are composable and extremely reliable. In fact they are often

used in environments with high electrical interference, high tempera-
ture, high umidity and so on.
The structure is always adapted to the functions covered and they can
be programmed in a wide range of languages. Usually programs are
written in PCs on specilized softwares that promote also the upload
of the program on the memory of the on board CPU.

PLCs programming languages are divided into to families: graphic
and tertual languages.

Among graphic languages we find:

e Ladder Diagram: it is based on graphic diagrams of electronic
circuits based on relay logic hardware. It was the main pro-
gramming language for PLC because it maps directly electronic
circuits into software.

e Function Block Diagram: it uses block diagrams to model the
behaviour of the system. Each block describes a function be-
tween input and output variables.

e Sequential Function Chart: a program is a sequence of steps,
each one with associated actions. The other main component is
the transition, each coupled with a condition and directed linked
to steps.

Textual languages are instead:

o [Instruction List: it is a low level language, similar to assembly.
It can give the full control of the PLC, but it is quite difficult to
use.

o Structured Text: it is an high level programming language, really
similar to Pascal. It supports conditional statements, loops and
functions.

20

CHAPTER 2. EMBEDDED SYSTEMS 21

2.2.3 Embedded Software Architectures

There are many kinds of software architecture defined in the Embed-
ded Systems field and here a brief summary of them is presented.

Simple Control Loop

In this approach the software is based on a continuous loop. All the
functions are called in the loop and the system repeatedly executes
the same functions. Each function manages an aspect of the software
or hardware.

Interrupted Controlled Systems

Some Embedded Systems are mainly controlled through Interrupts.
An Interrupt is the execution of a task caused by the happening of a
predefined event, for example a timer or a rising edge generated by a
Sensor.

Event handlers should always be as simple and as fast as possible
to introduce low latency and guarantee a good level of reactivity and
reliability.

Cooperative Multitasking

A nonpreemptive multitasking system is really similar to the control
loop architecture where the loop is hidden in an API. The program
is composed of tasks, each one executed in its protected environment.
Tasks are executed in a queue and when they are not in execution
they become idle.

Preemptive Multitasking or Multithreading

In this type of systems a low level program switches between all the
defined tasks or threads using a timer. With this approach it seems
that tasks are executed in parallel, even if it is not like that.

To switch between tasks the scheduling algorithm becomes a re-
ally important part of the ”operating system kernel” in execution on
the embedded system. This behaviour promotes interleaving between

21

22 CHAPTER 2. EMBEDDED SYSTEMS

different control flows, so softwares should be well defined to avoid
inconsistency problems.

This architecture is often implemented in Real-Time operating sys-
tems, so the developer can implement programs without the need of
taking care of the scheduling algorithm.

2.2.4 Wiring

Wiring is an opensource programming framework for microcontrollers
based on C++. It allows writing cross-platform software to control
devices attached to a wide range of microcontrollers boards.

Currently it supports the Wiring hardware and all the hardware
based on the AVR atmega processors.

The software architecture used in Wiring is the Single Control
Loop. Each program (called Sketch) has to be organized in two main
functions: setup and loop. The setup procedure is executed only once
during the initialization of the board, while the loop procedure is
repeatedly executed infinite times.

Arduino is based on the ATmega328P and Wiring is used as a
framework to program it. Wiring introduces libraries to communicate
with hardware devices, while removes other features introduced by the
C++ (e.g. processes instantiation).

Further details on Wiring can be found in citel.

22

Chapter 3

Introduction to Arduino

Arduino is an Open-Source Project born in Italy with the goal of
enhancing fast-prototyping and development of general-purpose hard-
ware.

Figure 3.1: Arduino UNO Board

It is an Embedded System that provides a wide set of hardware
pins conceived to directly interact with different kinds of hardwares in
a simple and fast manner. It is easily extensible by exploiting the stack

23

24 CHAPTER 3. INTRODUCTION TO ARDUINO

mechanism it is conceived with. In fact many features are introduced
on different hardware boards, called Shields, that can be stacked on
the main Arduino board.

In this chapter we will go through a brief overview of the features
implemented in Arduino UNO, starting from the Software viewpoint
and then proceding to the Hardware. Some features will be described
in following chapters because they are strict related to what will be
introduced there.

3.1 Arduino Software Introduction

Arduino is programmed in C++ using a special framework called
Wiring. Wiring is an Opensource programming framework for mi-
crocontrollers that allows to write cross-platform software to control
devices attached to a wide range of microcontroller boards.

Wiring is a C++ based framework, where some features of the
language have been removed (due to resource limitations of embedded
systems) and other added (with specific libraries) to interact with
hardware. For example it does not provide multi threading support,
but it provides functions to read from hardware pins.

Wiring has a predefined software structure composed by two functions:

void setup(O{}

void loopO{}

The Setup function is executed only once during board initialization.
Loop is instead repeatedly executed.

The computational model implemented is indeed a single control
flow that repetedly executes a sequence of instructions written in the
loop function. The control flow pass through the procedure setup only
once during the initialization of the program. A sequence diagram
that describes this behaviour is in Figure 3.2.

It is a classical Single Control Loop approach, even though it pro-
vides also a support for interrupts. The diagram in Figure 3.2 refers
to the control flow of a Wiring program that is not affected by In-
terrupts. Arduino supports in fact two kinds of Interrupt: External

24

CHAPTER 3. INTRODUCTION TO ARDUINO 25

setup loop

Figure 3.2: Basic Sequence Diagram of a Wiring Program

and PinChange; a deeper description of them will be provided in the
following sections.

By now we will only focus on the general concept of Interrupt and on
its semantic. An Interrupt, in an Embedded System like Arduino, is
an Asynchronous event raised by an electronic signal that interrupts
the normal control flow of the program to execute a predefined rou-
tine. This routine is an handler of the event and can modify the state
of the system.

We can indeed say that Arduino supports a unique control flow
that can however be perturbed by the occurrence of certain events. To
graphically explain better the concept let’s have a look to the Picture
3.3. In the picture the loop procedure is interrupted by a certain event
and the control flow passes to the handler of the Interrupt. When the
routine is completed the control returns to the next instruction still
to be executed of the procedure loop. In the picture the control flow
starts again the loop function when it completes, but, during the next
execution, it will not pass through the handler, unless an interrupt is
raised again.

In [10] the reader can find a good overview on the relation between
Wiring and C++.

25

26 CHAPTER 3. INTRODUCTION TO ARDUINO

setup loop InterruptHandler

1 Registered Event Happens

Handler Completed

Figure 3.3: Sequence Diagram of a Wiring Program interrupted by an
Interrupt

3.2 IDE

The Development Environment is based on Processing and let the user
write Arduino programs and upload them on the board.

The code is uploaded to Arduino through the USB port and, in
case of multiple boards, the user can select to which board upload the
code changing the destination USB port.

The IDE provides also a Serial Monitor to show what has been
received on the USB. This is the fastest way to debug the code or to
see the results of the application.

The only way to send data to the Serial Monitor is through the
Serial. The Arduino program should first initialize its Serial with the
proper Baudrate, the default in Serial Monitor is 9600, and then send
data to the PC using the function Serial.print.

A screenshot of an Arduino IDE is in Figure 3.4.

26

CHAPTER 3. INTRODUCTION TO ARDUINO

27

3.3 Libraries

void loop]
int i;

Scrivi il bootloader

i=digitalRead (PIRPin) ;

Serial.println(i);
delay(200];

Figure 3.4: Arduino IDE

PIR | Arduino 1.0.1 . =NEl X
File Modifica Sketch [Strumenti| Aiuto
Formattazione automatica Ctrl+T
Archivia sketch [~
Correggi codifica e ricarica
int PIRPin=8; ; N . -
Monitor seriale Ctrl+Maiusc+M
e luseapili Tipo di Arduino v
pinMode (PTRPin,] L .
Serial.hegin (960 orta seriale
} Programmatore +

Arduino comes with a wide range of supported libraries, implemented
to support various features. A brief list follows:

Ethernet: introduce support to Ethernet networks

27

EEPROM: manage Storage and Retreiving of Data in the EEP-
ROM Memory

Firmata: implementation of the Firmata protocol to communi-
cate with other Software

LiquidCrystal: implements APIs to use LCDs compatible with
the Hitachi HD44780 driver

28 CHAPTER 3. INTRODUCTION TO ARDUINO

- PinChangelnt: this library is used to easily take advantage of
interrupts on each pin of the board

- SD: used to read and write on SD cards
- Servo: ease the usage of Servo motors

- SoftwareSerial: introduce a support for Serial communication on
each pin of the board, instead of only on pin 0 and 1

- SPIL: allows the communication with SPI devices. SPI (Serial
Peripheral Interface) is a synchronous serial protocol used by
microcontrollers to communicate with other peripherals

- Stepper: used to control Stepper Motors

- Wire: implements I12C communication within Arduino and other
devices

Obviously all the introduced features could be reached also without
using the proper library, but not in such a straightforward manner.

3.4 Arduino Hardware Introduction

Arduino UNO is based on the microcontroller ATmega 328p and its
pin mapping is shown in Figure 3.5. Each pin of the microcontroller
has a well defined function and features.

The pure electrical pins (power supply and so on) are 7, 8, 20, 21
and 22. Pin 7 is the 5V output. Pins 8 and 22 are connected to the
Ground. Pin 20 is the AVCC, that is the supply voltage pin for the
A/D Converter. Pin 21 is the AREF pin and is used to configure the
reference voltage for analog input.

The remaining pins are mapped on three different Ports:

e B (digital pin 8 to 13)
e C (analog input pins)

e D (digital pins 0 to 7)

28

CHAPTER 3. INTRODUCTION TO ARDUINO 29

Arduino function
28] PC5 (ADCS5/SCL/PCINT13) analog input 5
2711 PC4 (ADC4/SDA/PCINT12) analog input 4
26] 1 PC3 (ADC3/PCINT11) analog input 3
2511 PC2 (ADC2/PCINT10) analog input 2

Arduino function
reset (PCINT14/RESET) PC6]t
digital pin 0 (RX) (PCINT16/RXD) PDO[J2
digital pin 1 (TX) (PCINT17/TXD) PD103
digital pin 2 (PCINT18/INTOQ) PD2}+
digital pin 3 (PWM) (PCINT19/0C2B/INT1) PD3[]s 2411 PC1 (ADC1/PCINT9) analog input 1
digital pin 4 (PCINT20/XCK/ITO) PD4 s 23] PCO (ADCO/PCINT8) analog input 0
\'[¢o] veeq 227]GND GND
GND GND[Je 21] AREF analog reference
crystal (PCINT6/XTAL1/TOSC1) PB6[Jo 20| AVCC VCC
crystal (PCINT7/XTAL2/TOSC?2) PB7 [J10 19[] PB5 (SCK/PCINTS) digital pin 13
digital pin 5 (PWM) (PCINT21/0COB/T1) PD5 1 18]] PB4 (MISO/PCINT4) digital pin 12
digital pin 6 (PWM) (PCINT22/0C0A/AINO) PD6 12 171 PB3 (MOSI/OC2A/PCINT3) digital pin 11(PWM)
digital pin 7 (PCINT23/AIN1) PD7 13 18] PB2 (SS/OC1B/PCINT2) digital pin 10 (PWM)
digital pin 8 (PCINTO/CLKO/CP1) PBO 151 PB1 (OC1A/PCINT1) digital pin 9 (PWM)

Figure 3.5: ATmega 328p Pin Mapping

In the picture they are indicated respectively by the prefixes PB, PC
and PD. A Port is only a concept introduced to identify a register on
the microcontroller. Actually not only one register for each port, but
three registers for each one of them. Indicating with X the letter that
identifies each port, the description of each register follows:

e DDRX - Data Direction Register X: each bit of this register is
associated to a pin belonging to port X. This register records
if a pin is configured as Input or Output. A pin configured as
an Input is stored as 0, while a pin configured as an Output is
stored as 1.

e PORTX: this register is used to set the state of the output pins.
So for example if a pin is configured as an Output (1 in DDRX)
and the corresponding bit in the PORTX register is set to 1, on
that pin that will be the value 1. This register can be either
written or read.

e PINX: this is the Input register. It stores the value of each
Input pin and let the user read the value of a group of pins at
the same time. So for example if a pin is configured as an Input
(0 in DDRX) and the corresponding bit in the PINX register is

29

30 CHAPTER 3. INTRODUCTION TO ARDUINO

set to 1, it means that on that pin there is a logical high value.
This register is read only.

Arduino supports Digital Input and Output and Analog Input.
Analog Output is not supported, but it is simulated through PWM
outputs.

In Figure 3.5 there are two additional columns reporting the Ar-
duino function associated to each pin of the microcontroller. Following
these functions we can talk about two different categories of pins:

e Digital Pins: can be used either as Digital Input or Digital Out-
put. Some of them are marked as PWM meaning that they can
be used as PWM outputs. This feature is introduced to simul-
tate Analogic Output and is described later in this document.

e Analog Inputs: can be used to read an Analogic value. They
can also be used as Digital Inputs or Outputs.

Each pin can be set as Input or Output, not both at the same time.

The Microcontroller ATmega 328p supports a 16 MHz clock and
provides quite limited resources, especially for memory. It in fact
provides:

- Flash Memory : 32KB. It is used to store the Bootloader and
the Sketch. It can be used to store varables too, declaring the
variable with the keyword PROGMEM.

- SRAM (Static RAM): 2KB. This is a volatile memory that stores
variables at runtime.

- EEPROM: 1KB. This memory is used to store long-term infor-
mation.

30

Chapter 4

Arduino DSL and Semantic
Mapping

In this chapter will be shown all the steps followed to reach the defi-
nition of a Meta-Model for Arduino.

The defined meta-model will abstract from the kind of hardware,
trying to capture the main features provided by the framework Wiring.
In this way it is possible to translate a Model into the appropriate code,
specifing the hardware where it will run on.

To give a first sight of what it means developing an Arduino pro-
gram we will start from a first example to introduce the main concepts
of the platform. Then we will go through the definition of the Meta-
Model and of some new abstractions.

We will then go up in abstraction and start talking about the
concept of System composed by a set of Entities communicating each
other.

The introduction of a metamodel for these kind of systems is also
motivated by the need to bring at the software level some concepts
that normally are part of the operating systems, like interrupts, event
management and so on, and by the need to abstract from the hardware
viewpoint and bring the computation on the software side.

At the end of the chapter is proposed the Model of the example
introduced at the beginning. The Model is an instace of the introduced
Meta-Model. In this way the reader can have an idea of which are
the main advantages of Meta-Modeling and how the classical software

31

32 CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING

development cycle is affected by the introduction of Meta-Models.

As introduced in Chapter 1, a Meta-Model can be formalized
through the definition of a set of EBNF rules that define a Domain
Specific Language. In this work the Meta-Model will be specified using
a DSL.

4.1 A First Domotic System

Now that an introduction to Arduino Software and Hardware has been
provided, we can face a first example to further understand it.

Suppose we want to realize a simple Domotic System to monitor
our apartment. The requirements are:

e When the temperature is over 30 Celsius a red LED has to turn
ON. It has to stay OFF otherwise.

e When it is getting dark a green LED has to turn ON. Otherwise
it has to stay OFF.

e When the entrance doorknob is rotated, previous LEDs have to
blink three times at the same time.

Let’s start from the electronic components we should have to imple-
ment this simple domotic system. We need to sense the temperature
and the light, so we will have to introduce at least a Thermistor and
a Photoresistance. We also have to buy two LEDs, one red and one
green.

To react to the doorknob rotation we need a T4lt sensor.

In the Analysis phase, we also consider that it is not necessary
to continuously check all the sensors, but it is enough to check them
every 400ms. This is also thought to avoid high power consumption.
Of course everything will be connected to an Arduino UNO board.

The complete circuit should be like the one shown in Figure 4.1.
Of course this is not the only possible implementation, but just one

of the many.
The code that implements the system has been organized with a
modular approach and it follows:

32

CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING 33

www.arduino.cc

POWER ANALOG IN
5 Gnd Vin 012 3 45

L] L]

l | :
Po o oGO O O OOEO OSSN *oe e 00 L N LY L B BN BN N o e e e
P OSSOSO OO OO O OSSO OTOESESDNS PSS S0 S0 O OSSP OEOSIOITOTORSOEEON TSNS
PO SO OSSO OEOPOEOTDOOTPOTS LA o0 o 000G OPPO O LR
PO O OO OO OOOOIPO OO LA N LN 00O O OOOPODPS LN
Po oo oGO OO OOIOOEOEPOSTPOTOON L N e o0 OO O OO L]
PO OO O OO OO OO OOOPOOOPOOINOPOPOTDOTPODS 0O OO0 OO OSSO L
[N N R O N e

Figure 4.1: First simple domotic example ciruit

#include "Arduino.h"

int redLEDPin=A5;

int greenLEDPin=A4;

int thermistorPin=A0;

int photoresistancePin=A3;
int tiltPin=2;

int lightVal;

int tempVal;

void setup(O{
// Configure LED pins as OUTPUT
pinMode (redLEDPin,OUTPUT) ;
pinMode (greenLEDPin, QUTPUT) ;

33

34 CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING

// Configure other pins as INPUT
pinMode (thermistorPin, INPUT) ;
pinMode (photoresistancePin, INPUT) ;
pinMode (tiltPin, INPUT);

// Attach interrupt routine to pin 2.

// Raised on rising edge!

attachInterrupt (0,tiltHandler,RISING);
}

void loop(){
pollLightVal();
pollTemperatureVal() ;
delay(400) ;

}

// Check the value of the light sensor
void pollLightVal(){
// Read analog sensor value
lightVal=analogRead (photoresistancePin);
// If it is getting dark (val<550) turn ON the Green LED
if (lightVal<550)handleGettingDark() ;
// Otherwise turn it OFF
else handleSunIsShining();
}

// Check the value of the temperature sensor

void pollTemperatureVal(){
// Read analog sensor value
tempVal=analogRead(thermistorPin);
// 1f temperature > 30A°C (tempVal>164) turn ON the Red LED
if (tempVal>164)handleTempOver30() ;
// Otherwise turn it OFF
else handleTempUnder30();

}

void handleGettingDark(){
digitalWrite(greenLEDPin,HIGH) ;
}

void handleSunIsShining(){
digitalWrite(greenLEDPin,LOW) ;
}

void handleTempOver30(){
digitalWrite(redLEDPin,HIGH) ;
}

void handleTempUnder30(){
digitalWrite(redLEDPin,LOW);
}

void tiltHandler (){
int i;
// Blink both LEDs three times

34

CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING 35

for(i=0;i<3;i++){
digitalWrite(greenLEDPin,HIGH) ;
digitalWrite(redLEDPin,HIGH) ;
digitalWrite(greenLEDPin,LOW) ;
digitalWrite(redLEDPin,LOW) ;

The loop function is only composed by three procedures calling, pol-
[LightVal, pollTemperatureVal and delay. As the names suggest, the
first two will implement a Polling and the third one will suspend the
loop for 400ms.

The polling procedures check the actual value of a pin and, if
a condition is met, execute the proper function. In both pollings,
the procedures executed when a condition is met are called with a
name that starts with the keyword handle. This means that their
aim is handling a particular event. Following what is declared in the
requirements, they act on the proper pins to achieve those desiderata.

The Arduino examples proposed in the Web are almost never or-
ganized in such a modular way. We would have found a bunch of
code written in the loop function, with no other procedures, except
the interrupt one that has to be declared necessarily.

This code structure is proposed to give an idea of the good quality
code that will result from the Software Factory developed in this thesis.

From this little example we can also start to capture some of the
main concepts of Arduino.

We observe that some of the pins are set as input and others as
output using the procedure pinMode. This suggests that input pins are
linked to some kind of Sensors, while Actuators are linked to output
pins. Sensors can be Digital (like the tilt sensor) or Analog (thermistor
and photoresistance). Digital pins are read with procedure digitalRead,
while analog pins are read with analogRead.

In the setup procedure there are all the initialization operations,
while in the loop procedure we find the logic of the application. Par-
ticularly interesting is the implementation of the behaviour related
to light and temperature values. What is done here is a continuous
Polling on the proper Sensors, taking the right decision depending on
their values.

35

36 CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING

The behaviour related to the doorknob is managed through an
Interrupt. As we will see later in this document, Arduino supports
External Interrupts only on pin 2 and 3. Related interrupts are in-
dicated respectively with 0 and 1. In the setup phase, the procedure
attachInterrupt is called to attach an interrupt routine to the event
Rising Edge on pin 2. When this event happens (transition 0 to 1) the
normal control flow is interrupted and a Handler named tiltHandler
is called. The Rising Transition happens when the doorknob is ro-
tated. When the Handler has completed its execution the control flow
returns where it was before the interrupt.

It is worth noting that integer numbers are used to check analog
sensors values (instead of float), like in the lightVal condition. This is
because float values read from analogic pins are converted in integers
mapped in the range 0-1023. Further details will be found in the
semantic mapping of Sensors.

4.2 Basic Arduino Meta-Model

The previous example shows some high level concepts (highlighted
in the discussion that follows the example), but also that an Arduino
program can basically be modeled using lower level abstractions (based
on C++), like:

e Set and Get of a Variable: a pin can also be intended as a
variable, so providing this concept at the meta-model level, we
have covered all the interactions with external devices and with
data.

e Procedure Calling: Arduino is programmed in C++, so a basic
construct that it expresses is the Procedure.

e Delay: one of the main concept in Arduino loops are delays.
They are used to suspend the control flow for a specific amount
of time.

e Basic Control Structures: control structures like if and while.
The structure for can be derived from the while.

36

CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING 37

e (Class instantiation: this can be optional because all the needed
behaviours could be modeled also using basic procedures.

This can be a basic meta-model, but it is really close to the Arduino
programming level.

The purpose of this thesis is not the definition of such a low level
meta-model, but the creation of an higher level meta-model that cap-
tures the concepts identified in the example above. Then it can be
mapped (with a Model to Model tranformation) on the basic meta-
model.

This process can asymptotically lead to the definition of high level
meta-models, specific of certain domains, that can then be mapped on
the meta-model defined in this thesis.

So for example we can think about the definition of a meta-model
for the Domotic Domain. The main entities could be the fridge, the
oven and so on. A model, instance of such a meta-model, can then
be mapped with a Model to Model transformation on the meta-model
defined in this thesis, or on other lower level meta-models.

The aim of this process is the creation of a hierarchy of meta-models,
one for each needed level of abstraction.

In the next sections we will describe the metamodel introduced in
this work and define it through a DSL.

4.3 DSL Syntactic Definition

Arduino Meta-Model has been defined through a DSL using XText
2.3.

The entry point rule of the DSL is Sketch. This rule defines the meta-
model of a Sketch (this is how an Arduino program is called) and
its definition has been splitted in the three dimensions Structure, Be-
haviour and Interaction.

Sketch :
’Sketch’ name=ID
’Hardware:’ hardware=(’Arduino UNO’ | ’Arduino MEGA
2560° | ’Arduino FIO’|’Arduino MEGA ADK’ | ’Arduino
PRO’ | ’Arduino NANQ’|’Arduino BT’ | ’Arduino MINI’ |

37

38 CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING

’Wiring S’)

// Structure
(devices+=AbstractDevice)*
(handlers+=Handler) *
(tasks+=Task) *

// Behaviour

(interrupts+=Interrupt)*

(pollings+=Poll)*

(’execution cycle:’ (loop+=LoopItem)* ’;’)7?

//Interaction

4.3.1 Structure

The Structure defines the structure of an Arduino program and it is
composed by: Devices, Handlers and Tasks.

Devices

An AbstractDevice represents a pin of the board and can be either a
Sensor, an Actuator or an I/O Device.
Let’s define them:

AbstractDevice:
Sensor | Actuator | IODevice

Actuator:
’Actuator’ name=ID ’pin’ pin=STRING ’;’

Sensor:
’Sensor’ name=ID ’pin’ pin=STRING (analog?=’analog’)?
(pullup?=’pullup’)? ’;’

38

CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING 39

I0Device:
’I/0 Device’ name=ID ’pin’ pin=STRING
(analog?=’analog’)? (pullup?=’pullup’)? ’;’
Actuators, Sensors and IODevices all have a name and a pin number.
An Actuator represents a pin set as Output, a Sensor represents a pin
set as Input and an IODevice is a pin that can change its direction
(Input or Output) at runtime.

A Sensor can be either Digital or Analog (Arduino provides A/D
Converters for some pins) and it can be pulled up.

An IODevice is modeled as a Sensor and can be analogical or
pulledup.

The pin attribute is not defined as an Integer, but as a String,
because some pins are expressed with the name Az where the ’A’
refers to the fact that they are part of the Analogic pins of the board,
while 'x” express the number. In Arduino UNO we find 6 Analog pins,
from A0’ to ’A5’. A Sensor or IODevice can be defined as attached to
a pin of the kind ’Ax’, but with the attribute analog set to false. This
means that the device is read as digital, even if linked to an analogical
pin.

Handler

An Handler is a function executed to take care of certain events. It
is identified by a name and can use other Devices to keep its own
decisions or act on the environment.

It is defined in the meta-model as an entity with the name as a
unique attribute:

Handler:

’Handler’ name=ID

))
I

It expresses the reactive part of an Arduino program, that is, the part
that is activated by a raised event.

39

40 CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING

Task

A Task is intended as a sequential operation executed in the Arduino
Loop function in a well defined position of the loop. As we already
said, an Arduino program is characterized by the cyclic execution of
a set of operation. A task is thought to be the representation of such
operations.

This is how the Proactive part of an Arduino program is modeled.
The proactive part of a program can be also modeled through Proce-
dure Calling, but it is a too basic way. For this reason, to enhance a
modular organization of the application, the concept of Task has been
introduced as a first class abstraction in the Arduino concept space.

It is identified by a name and can use Sensors, Actuators and
I0Devices to interact with the environment. It is defined as a set of
actions executed if some preconditions are met or in each cycle of the
loop.

A Task can be defined as follows:

Task:

’Task’ name=ID (external?=’external’)?

))
)

b

The external attribute refers to the fact that a Task can also be defined
in other boards of the System. A deeper description of this feature is
in Chapter 5, where the abstracion is raised at the System level.

4.3.2 Behaviour

The Behaviour defines several different concepts:

e Interrupt: interrupt represents the interrupt concept that follows
from Embedded Systems theory, that is, a mechanism that starts
a predefined function when an hardware event is perceived. The
function executed is of the type Handler and its execution stops
the main control flow of the program, restoring it when Handler
completes.

40

CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING 41

e Poll: this is another way to check the value of a particular sensor.
A polling function reads the value of a sensor once for each cycle
of the Loop.

e Loop: this represent the loop cycle introduced by the platform.

In this work the behaviour is conceived as the specification of how each
component of the structure behaves in reaction to events or during the
execution of the process.

Interrupt
The first concept we define is Interrupt:

Interrupt:
’Interrupt’ name=ID ’kind’ interruptKind = (’External’ |
’PinChange’) ’on’ sensor=[Sensor]
’event kind’ eventKind=(’Change’ | ’Rising’ | ’Falling’)
’handled by’ handler=[Handler]

) o)
I

I

An Interrupt can be of two types: External or Pinchange. An External
interrupt has a higher priority than PinChange interrupts, but it is
supported only on a few pins of the board. PinChange interrupt is
intead supported on each pin of the board.

The Interrupt is raised by a Sensor when a particular event hap-
pens. This event can be of three types: Change (0 -> 1 or 1 -> 0),
Rising (0 -> 1) or Falling (1 -> 0). When the event is perceived, an
handler has to be executed.

Polling
Another important concept found in the Domotic example is Polling.

Poll:
’Poll’ sensor=[Sensor]
’if’ (type=’CHANGE’ | type=’RISING’ | type=’FALLING’ |
type=’BETWEEN’ 1=INT ’&’ h=INT)
’call’ handler=[Handler]

41

42 CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING

I

A Polling can be executed on a particular Sensor to investigate its
value and consequently decide if a particular event is happened. An
event can be of the kinds: Change, Rising, Falling and Between two
thresholds. The last event type concerns only analogical Sensors and
can not be captured by previously defined Interrupts. This is one of
the main reason that cause the introduction of Pollings.

If Interrupts could also capture events on Analogic sensors, proba-
bly that would be no need of pollings. Furthermore pollings generates
continuous wordload for the microcontroller, decreasing the battery
life, that is a key feature for these systems.

When an event is perceived it is handled by a predefined Handler.

Loop

To model which Task has to be executed and in which position of
the cycle, a new abstraction called Loopltem has been introduced. A
Loopltem is expressed in the DSL from:

LoopItem:
’exec task’ task=([Task]) (’preconditions:{’
(precondition = Precondition) ’}’)7?

3

A Loopltem declares indeed each Task to be executed in the loop and
the preconditions to be satisfied for each one. Preconditions can be:
a check on the value of a Sensor or an empty condition. They can be
a conjunction or a disjunction of conditions.

Preconditions are defined in the Meta-Model as:

Precondition:
prel=Preconditionl op=(’&&’|’||’) pre=Precondition |
prel=Preconditionl

Preconditionl:
(pre=SensorValuePrecondition | pre=EmptyPrecondition)

42

CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING 43

EmptyPrecondition:
name=ID

SensorValuePrecondition:
sensor=[Sensor] cond=(’==’ | <=’ | ’>=7 | ’1=7)
value=PossibleValues

PossibleValues:
Double | INT

Empty preconditions becomes part of the Application Logic.

4.3.3 Interaction

Wiring is a C++ based framework, so Interaction between entities
of the program is expressed by the classical interactions provided by
Object-Oriented programming languages. In this languages an ob-
ject can communicate with other objects through procedure calling or
shared memory.

The interaction between the components declared in the structure
part of the meta-model has not been brought to the meta-model level
because the system is concentrated on a unique platform and each
component shares memory with all the others. This means that it
is possible to share data and also call procedures from one object to
another.

So the interaction part is left to the Application Designer.

Now that all the concepts have been introduced we can pass to the
description of their mapping on the Wiring framework.

43

44 CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING

4.4 Semantic Mapping

To give a formal semantic to the defined Meta-Model, we need to map
each concept on an already formally defined entity. The mapping is
done with reference to Wiring because its Semantic is already formally
defined.

Wiring uses C++ as a reference languange, so we can take advan-
tage of all its Object-Oriented features.

4.4.1 Structure
Sketch

A Sketch is translated into the entry point of a Wiring program, that
is, a file with extension .ino and with the appropriate name (specifiend
in the model) that declares the two main functions of the framework:
Setup and Loop.

Sensor

What is meant with the concept of Sensor is a pin configured as an
Input and that can be Digital or Analogical. To configure a pin as
input or output Wiring provides the function:

void pinMode(uint8_t pin, uint8_t mode)

where mode can be the defined constants INPUT, OUTPUT or IN-
PUT_PULLUP. At the beginning of page 34 we can see an example of
the definition of three input pins. A Sensor has indeed to be set as an
INPUT. It is possible to enable an internal 20KOhm pullup resistor
configuring a pin as an INPUT_PULLUP. Writing a LOW value on
the pin will disable the pullup. An input pin can be read as Digital or
Analogical. Arduino boards provide well defined Analog pins where
Analogical inputs are converted into Digital integer values in the range
0-1023. The functions used to read from a pin are:

int digitalRead(uint8_t pin) // Read a digital value
int analogRead(uint8_t pin) // Read an analog value

44

CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING 45

We now have all the tools we need to define a Sensor class and all its
properties. The class is implemented in an header file that will look
like:

class Sensor{

protected:

uint8_t pin; // Pin number

boolean analog; // Analog or Digital?

boolean pulledUp; // True if pullup resistor enabled
public:

Sensor (uint8_t p, boolean pullup, boolean an);

int getValue(); // Get the pin value (Dig or Analog)

void setAnalog(boolean a); // Change the pin analog
// configuration
void pullupQ);
void disablePullup();
s

Only certain pins of Arduino boards provide A /D conversion and they
can be read either as Digital or Analogical. For this reason has been
introduced the function setAnalog to change at runtime the way the
pin is read.

The pullup resistor can be also enabled or disabled at runtime
respectively with the functions pullup and disable Pullup.

The implementation of each method can be found in the same
header file.

Actuator

The semantic of the concept Actuator is: a pin configured as an OUT-
PUT and that can be used to write a particular value.

The function pinMode allows to configure a pin as an output, like
what we did for Sensors but changing the mode value.
To write a value on a pin two functions are provided:

void digitalWrite(uint8_t pin, uint8_t value);
void analogWrite(uint8_t pin, int value);

The function digital Write sets the pin pin to value, either 0 or 1.

45

46 CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING

Arduino does not support analogical output, but it allows to write
an analog value (PWM wave) to a pin. Calling analogWrite, the pin
will generate a steady square wave of the specified duty cycle until
the next call to analogWrite (or a call to digitalRead or digital Write
on the same pin). The frequency of the PWM signal is approximately
490 Hz. The range of value accepted from analogWrite is from 0 to

255. Figure 4.2 shows some examples of PWM signals.

S5v

Ov

5v

Ov

Sv

Ov

Sv

Ov

Sv

Ov

Pulse Width Modulation

0% Duty Cycle - analogWrite(0)

1

25% Duty Cycle - analogWrite(64)

L T T

50% Duty Cycle - analogWrite(127)

~J

5% Duty Cycle - analogWrite(191)

i

100% Duty Cycle - analogWrite(255)
|

U U o L

Figure 4.2: PWM Samples

The header file that defines an Actuator is:

class Actuator{
protected:
uint8_t pin;

public:

// Pin number

Actuator(uint8_t p);
void writeDigitalVal(uint8_t val);

46

CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING 47

void writeAnalogVal(uint8_t val);
s

The introduced methods are self explained by their names: writeDigi-
talVal simply sets val as digital output, while writeAnalogVal sets val
as PWM output.

IODevice

In this Meta-Model with IODevice is intended a pin that can change
its mode configuration at runtime, that is, it can pass from Input to
Output and viceversa during the execution of the program.
An IODevice can be indeed either a Sensor or an Actuator. Using the
mechanism of Multiple Inheritance allowed by C++, we can define an
appropriate hierarchy to reuse what we already have.

The implementation of the header file that defines an IODevice is:

class IODevice: public Sensor, public Actuator{
private:
boolean currentlylnput;
public:
I0Device(uint8_t pin, boolean p, boolean a):
Sensor(pin,p,a), Actuator(pin){currentlyInput=false;};

void writeDigitalVal(uint8_t val);

void writeAnalogVal(uint8_t val);

int getValue(Q);

void pullupQ);

void disablePullup();
I
It inherits all the methods and properties defined in the father classes
and redefines them to take care of the actual configuration of the pin.

For example, if the pin is set as Output and the method getValue is
called, it has first to be reconfigured as Input and then read.

System Resources

To have a complete access to each Structural Resource of the System
(i.e. Sensors, Actuators and IODevices) it can be useful to have a place

47

48 CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING

where all those resources are instantiated and can be retreived. For
this reason an header file called SystemResources.h is implemented
and it instantiates all the resources of the system providing also a
getter for each one of them.

Task

A Task is defined as an operation to do at a certain point of the
Loop. To further modularize the architecture of a program each task
is mapped on a class, so to encapsulate in it its behaviour. A super
class called Task has been implemented, containing the name and
an abstract method doJob. A defined task will extend the class Task
and implement the method doJob where the Application Designer will
write the Business Logic of the task.
The definition of the superclass Task follows:

class Task{

private:
String name;

public:
Task(String n){

name=n;

}
// Abstract method doJob
virtual void doJob();
String getName () {return name;}

};

A method getName is already implemented in this class.

Tasks can access all the Devices needed as if they were declared as
global variables. Actually Devices are not global, but can be used by
tasks through the mechanism of the #include directive. Tasks may
need Devices (Sensors, Actuators or IODevices) to perform their job
and to take all the proper decisions

A defined task will be generated as a new class that extends the
class Task:

class <SpecificTask> : public Task{
public:

48

CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING 49

<SpecificTask>(String name) :Task(name){}
void doJob();

};

The Application Designer has to implement the method doJob of each
defined task.

Handler

An Handler is a function called when an event is perceived. It can be
called as an Interrupt routine or from a Polling.

The Application Designer can, in this way, separate the Business
Logic related to the pure reactive behaviour of the system from the
one related to the normal cyclic behaviour.

As for Tasks, Handlers can access all the Devices needed as if they
were declared as global variables, simply calling them with their name.

The Semantic Mapping of a Handler in Wiring involves several
steps. As already seen for Tasks, a specific handler extends a base
class called Handler and defined as:

class Handler{
private:
String name;
public:
Handler (String n){name=n;}
virtual void doJob(){}
I
A handler will then extend the previous class and implement the

method doJob:

class <SpecificHandler> : public Handler{
public:
<SpecificHandler>(String name) :Handler (name){}
void doJob();

};

In the doJob function the Application Designer will write the Business
Logic of the Handler.

49

50 CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING

4.4.2 Behaviour

Interrupt

Arduino supports two kinds of Interrupt: External and PinChange
Interrupt. To turn interrupts ON and OFF Wiring implements the
commands:

void sei(); // Turn ON Interrupts
void c1i(); // Turno OFF Interrupts

By default when an Interrupt is perceived, a cli command is executed
so the board becomes ”blind” to external events. Nested interrupts are
indeed not supported. This configuration can be of course changed.

External Interrupts are supported only by few pins of the board
(e.g. pin 2 and 3 in Arduino UNO) and they have the highest priority.
The routines called by this kind of interrupts can be installed with
the avrgce preprocessor macro "ISR”. Specifying the name of the
interrupt vector it is possible to install the appropriate routine in this
way:

// Install the interrupt routine.
ISR(INTX_vect) { // X stands for the number
// of vector (INTO or INT1)
// Insert here the Interrupt Routine

b

To declare which event has to trigger the interrupt we have to set the
proper bits on register MCUCR. External Interrupts can be triggered
on events Change, Rising, Falling or Low. In Arduino UNO there are
two bits dedicated in MCUCR respectively in position 0 and 1. This
is how events are mapped on those bits:

low

change
falling slope
rising slope

= = O O
= O = O

To enable interrupts the proper bit has to be set in the register GICR
(General Interrupt Control Register): bit 7 for INT1 and bit 6 for

20

CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING 51

INTO.

Now everything is set to react to particular events.

Actually there is no need to manually act on registers because Wiring
provides a simple operation to manage External Interrupts and install
the right handler routine. The function is:

void attachInterrupt(uint8_t int, void (%) (void) routine,
int mode);

The variable int is the number of the interrupt (i.e. for Arduino UNO
it is 0 for interrupts on pin 2 and 1 for the ones on pin 3). The function
that has to be executed when interrupt is triggered is specified with
parameter routine, while mode selects the kind of event. It can be
expressed with the defined constants: RISING, FALLING,CHANGE
or LOW.

PinChange interrupts are instead available on each pin of the
board, but they have less priority than External ones. To enable
these interrupts we can use the PinChange library, available on Ar-
duino website.

Using the library we can set proper routines in a really simple manner.
The only static function used is:

void attachInterrupt(uint8_t pin, PCIntvoidFuncPtr
userFunc, int mode);

where pin is the pin where the interrupt is enabled, userFunc is
the routine and mode is the kind of event (RISING, FALLING or
CHANGE).

The main problem of interrupts is that electronics components that
generate them are not ideal. This means that e.g. when a component
generates a transition from 0 to 1, it is not istantaneous, but may
be affected by Bouncing problems. So, these bouncings, can lead to
multiple execution of interrupt handlers. To solve this problem, when
an interrupt is received, the system checks if that interrupt has been
received less than 10 milliseconds before; if not, interrupts are disabled,
the handler is called and, when it completes, interrupts are re-enabled.
If the same interrupt was received less than 10 milliseconds before, the
system simply does not execute the handler.

The timeout has been pragmatically determined after several tests.

ol

52 CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING

Polling

Another way to check the current value of a pin is through Polling. It
involves the reading of the value of a pin once for each Loop cycle and
execute an handler in case of a certain event.

Pollings can intercept more events than interrupts because inter-
rupts for analogical values are not supported. For this reason, in the
Polling entity of the Meta-Model, the event between two values has
also been defined.

In the generated code the order in which pollings are executed is
the same of pollings declaration in the Model. Pollings are mapped on
procedures that check the value of a Sensor and, if an event happened,
call the proper handler doJob method.

In the loop function pollings are executed before tasks.

Loop

The execution cycle defined in the meta-model is a ordered set of tasks,
optionally with preconditions.

It is mapped on a set of calling to the method doJob of the specific
task, specified as a Loopltem. If the Loopltem also declares precondi-
tions, the generated code becomes like:

void loop(){
if (<list of preconditions>)<Specific Task>.doJob();

}

The list of preconditions is a conjunction or disjunction of conditions
on Sensors, or empty preconditions mapped on procedures to be im-
plemented by the Application Designer.

Preconditions are optional. If they are not specified in the model,
in the code we will only find the calling to the doJob method.

4.5 Domotic Example Model

Now that the DSL that describes a Meta-Model of Wiring has been
introduced, we can provide a model of the previous domotic example.

52

CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING 53

Reminding that a Model is an instance of a Meta-Model, we can
express the model through the DSL implemented. So the Model will
be expressed by:

Sketch FirstDomotic Hardware: Arduino UNO

// Sensors Declaration

Sensor Thermistor pin "AO" analog ;
Sensor PhotoResistance pin "A3" analog ;
Sensor Tilt pin "2"

// Actuators Declaration
Actuator redLED pin "A5" ;
Actuator greenLED pin "A4";

// Handlers Instances (One for each event to manage)
Handler tiltHandler ;

Handler gettingDark ;

Handler sunIsShining ;

Handler tempOver30 ;

Handler tempUnder30 ;

// Attach event Rising of sensor Tilt to handler tiltHandler
Interrupt tiltInterrupt kind External on Tilt
event kind RISING handled by tiltHandler;

// Pollings declaration

Poll PhotoResistance if BETWEEN 550 & 1023 call sunlsShining;
Poll PhotoResistance if BETWEEN O & 549 call gettingDark;
Poll Thermistor if BETWEEN 164 & 1023 call tempOver30;

Poll Thermistor if BETWEEN O & 163 call tempUnder30;

Once the model has been implemented, it will automatically be trans-
lated into the skeleton of the application, leaving to the Application
Desinger the implementation of the business logic. In this example
what he/she should do is creating a file called handlersImplementa-
tion.h and then implement the doJob method of each Handler:

void gettingDark::doJob(){

93

54 CHAPTER 4. ARDUINO DSL AND SEMANTIC MAPPING

greenLED.writeDigitalVal(1);
}

void sunIsShining::doJob(){
greenLED.writeDigitalVal(0);
}

void tempOver30::doJob(){
redLED.writeDigitalVal(1);
}

void tempUnder30::doJob(){
redLED.writeDigitalVal(0);
}

void tiltHandler::doJob(){
int 1i;
// Blink both LEDs three times
for(i=0;i<3;i++){
greenLED.writeDigitalVal(1);
redLED.writeDigitalVal(1l);
greenLED.writeDigitalVal(0);
redLED.writeDigitalVal(0);
}
}

Each procedure specifies the business logic of each handler, in fact
when an event happens, the proper handler doJob method is executed.

From the Software Engineering viewpoint we have a much more
modular view of the whole system and the translation of concepts
identified in the Problem Analysis becomes immediate.

When a model has been specified, what is left to do for the Applica-
tion Designer is the implementation of the business logics of: Handlers,
Tasks and empty preconditions of tasks.

o4

Chapter 5

Towards a System
perspective

In the previous chapters we focused on the definition of the concepts
that characterize a microcontroller (based on Wiring) considered as an
isolated entity. In the following sections we will go up in abstraction
and identify some of the features of Systems composed by a set of
entities. We will then integrate these features in the DSL.

There are many definitions of Software System. In this work we
define a Software System as a set of interacting heterogeneous parts
organized to constitute a "whole” whose properties are not directly
attributable to the sum of the properties of each part.

The introducion of the concepts related to a Software System is
actually not related to the meta-model of Arduino introduced in the
previous chapter. It is instead part of the traditional model of a dis-
tributed system. The necessity of this concepts comes from a series of
application domains that require the introduction of multiple Arduino
systems, like for example the control of some key features in farms or
factories. When the complexity of the system grows the developer
can decide to use more than one Arduino, possibly coupled with other
kinds of elaboration units.

For this reason the concepts introduced are not only related to the
Arduino field, but will try to capture all the features that characterize
a distributed system in general.

In the definition of the Meta-Model, a SW System is considered

95

56 CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE

as seen from the Embedded System viewpoint. As part of the SW
System, each Arduino board is interested in Who it is interacting
with and How it can interact with it.

Observing the SW System from one component viewpoint we can
define in order:

e Who is the component and which communication supports it
provides.

e Which messages the component needs to exchange.
e How those messages are exchanged.

It is worth noting that each component does not need to know What is
the component it is interacting with. This derives from the definition
of SW System provided before, where it is emphasized the concept of
heterogeneity of the parts.

To define all this concepts in the Meta-Model it is necessary the
introduction of a new part in the sketch definition:

// System Definition
(’define System{’
systemDefinition=SystemDefinition

37

Defining then the rule SystemDefinition:

SystemDefinition:
’Communication Parameters:’ mydatat+=CommunicationParams
(’,’” mydata+=CommunicationParams)* ’;’

(messages+=Message) *

(operation+=HighLevelOperation)*
It is an optional part and defines in order: which supports it provides
for the communication, which kind of messages it will exchange and
how they will be exchanged.

Of course the definition of all previous properties is optional, mean-
ing that the embedded system does not need to be integrated in a SW

26

CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE 57

System, but it can stand by itself and carry on its own functionalities.
From here on, the word system is used with the meaning of a sin-
gle Arduino board, while the word System means a set of distributed
interacting parts.

5.1 Provided Supports

The CommunicationParams rule defines which supports the compo-
nent will provide and their main configuration parameters.

An embedded system like Arduino can have a wide range of com-
munication supports. By now we only consider rules to define the
Ethernet and Serial parameters.

The rule is described with the following specification:

CommunicationParams:
type="Ethernet" ’mac=’ mac=STRING (’ip=’ip=STRING
(’dns="dns=STRING (’gateway=’gateway=STRING
(’subnet=’subnet=STRING)?)?)?)? | type="Serial"
’baudrate=’ baudrate=INT

I

Ethernet is characterized by a MAC number and optionally by an IP,
DNS, Gateway and a Subnet. Each one of them can be specified in
the model only if the previous has been already defined.

A Serial has only one parameter that describes the number of sym-
bols transmitted per second, also known as Baudrate.

5.2 Structure of the System

Each component of the System does not need to know the structure
of the whole System and each entity that constitutes it.

As we already said before, in this Meta-Model the Structure of
the System is defined from the component viewpoint and in this sense
each component only needs to know which are the entities it has to
communicate with.

The entities that interacts within the System can be identified from
the same concept of Task introduced in the Arduino meta-model. For

57

58 CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE

this reason they incapsulate the attribute external, meaning that the
Task is not in the system defined by the model, but on another board.

The interaction part of the Meta-Model (messages and operations)
has been taken by the DSL named Contact introduced in the course
Software Systems FEngineering. A deeper overview can be found in
[11]. This is a further proof of how a platform independent meta-
model can be applied to every specific platform that supports some of
the protocols introduced.

We can say that a Task represents the same concept of a Subject in
Contact and HighLevelOperations is the way tasks communicate each
other.

5.3 Messages

In this section it will be explained which kind of messages have been
introduced to exchange information between the parts of the System
and their semantic.

As already said, defined messages are inspired by Contact.

In this work messages are divided into two main families: OutOn-
lyMessages and OutInMessages.

OutOnlyMessages can only be sent and no answer is expected.

OutInMessages are instead messages that are sent, but that expect an
answer.
All the defined messages are intended as asynchronous, in the sense
that, when a message is sent, the sender does not have to wait for
a reply, even for OutInMessages where the sender sends a message
and than can check if the counterpart has sent an answer, but always
without the need of remain blocked.

In the DSL, messages are defined in this way:

Message: OutOnlyMessage | OutInMessage ;

OutOnlyMessage : Dispatch ;
OutInMessage: Request | Invitation ;

Dispatch: "Dispatch" name=ID ";";
Request: "Request" name=ID ";";

o8

CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE 59

Invitation: "Invitation" name=ID ";"

Each message has a name that tries to capture some application level
communication features. In this way the Application Designer can re-
fer to different semantics mapped on proper messages. In the DSL each
message is characterized only by a name because all the information
that describe the exchange phase are specified in the HighLevelOper-
ation rule.

The introduction of three different messages needs a brief expla-
nation, even though not in a formal language.

- Dispatch: it is a message that one can forward to one specific
receiver, with the expectation that it will serve it

- Invitation: an invitation is a message that an entity can ask to
one or more receivers with the expectation to acquire zero or
more ack. The receiver can accept the invitation and send back
an acknowledge.

- Request: a Request is a message that one can demand to one
or more receivers with the expectation to acquire zero or more
response. The receiver can grant the request and send back the
response.

Of course more kind of messages could have been modeled, but, for
the purpose of the thesis, the previous set of messages is enough.

5.4 High Level Operation

The exchange of messages is described in the DSL by the rule High-
LevelOperation. This rule says that, from the Arduino system view-
point, there are, as expected, two directions of exchange: in and out.

HighlLevelOperation:
OutOperation | InOperation

99

60 CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE

InOperation will characterize how to receive all the incoming messages,
while OutOperation describes how to send all outgoing messages.
Let’s start from the first rule:

InOperation:
InAcquireOperation

InAcquireOperation :
ServeDispatch | GrantRequest | AcceptInvitation

b

/* DISPATCH x/

ServeDispatch:
receiver=[Task] "serve" serve=[Dispatch]
("support=" support=SupportSpecification)? ";"

3

/* REQUEST x*/

GrantRequest:
receiver=[Task] "grant" grant=[Request]
("support=" support=SupportSpecification)? ";"

I

/* INVITATION */
AcceptInvitation:

receiver=[Task] "accept" accept=[Invitation]

("support=" support=SupportSpecification)? ";"
In InOperation we find the description of how to receive each possi-
ble incoming message and, as said before, they can be of the kinds:
Dispatch, Request and Invitation. We also find some keywords high-
lighted in the former Messages description: a Dispatch has to be
served, a Request is granted and an Invitation is accepted.

Each operation can specify a support. This is how the receiver can

be reached.

SupportSpecification: TCP | Serial;

60

CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE 61

Serial: supportType="Serial";

TCP: supportType="TCP" info = SupportData ;

SupportData : ExplicitSupportData;

ExplicitSupportData : "[" "host=" host=STRING
"port=" port=INT "]"

Of course the SupportSpecification can declare more than two types of
support. In Contact we also find UDP, HTTP, etc. In this meta-model
the supported protocols are only TCP and Serial, but other supports
can be added.

OutOperation are thought to declare which messages are sent to
which receivers and its definition in the meta-model follows:

OutOperation:
ForwardDispatch | DemandRequest | AskInvitation

/* REQUEST */

DemandRequest:
sender=[Task]
"demand" demand=[Request] "to"
receiver+=[Task] ("," receiver+=[Task])*x ";"

/* DISPATCH */
ForwardDispatch:
sender=[Task]
"forward" forward=[Dispatch] "to" receiver=[Task] ";"

/* INVITATION */
AskInvitation:
sender=[Task]
"ask" ask=[Invitation] "to"
receiver+=[Task] ("," receiver+=[Task])* ";"
Also for these rules we find some keywords highlighted in the messages
description: a Request has to be demanded, a Dispatch is forwarded

61

62 CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE

and an Invitation is asked.
A Request has a sender and one or more receivers, just like the
Invitation. The Dispatch instead can have only one receiver.

5.5 Semantic Mapping of System Perspec-
tive Concepts

Once defined all the concepts to describe the interaction with other
entities of the System, they have to be mapped on Wiring, so to
formally define them.

Actually the support to communication is introduced in Arduino
through special libraries, so it is not a native feature. This can also be
deduced by the fact that to support TCP it is needed a new hardware
stacked on the Arduino board.

First of all is provided an overview of how Wiring implements the
communication supports introduced in the Meta-Model.

In this work we will focus on communication through TCP/IP net-
works and Serial, even though Arduino supports other means like 12C,
XBee or Bluetooth.

Networking in Arduino is supported either on TCP and UDP.

5.5.1 TCP Support

TCP communication is based on the concepts of Server and Client and
they become fundamental to establish a bi-directional communication
channel between two boards.

The Ethernet support in Arduino is provided by the library FEth-
ernet and it uses the hardware Ethernet Shield, shown in Figure 5.1.
The class Ethernet has to be initialised through the method begin,
whose prototypes are:

int begin(uint8_t #*mac_address);

void begin(uint8_t *mac_address, IPAddress local_ip);

void begin(uint8_t *mac_address, IPAddress local_ip,
IPAddress dns_server);

void begin(uint8_t *mac_address, IPAddress local_ip,

62

CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE 63

Figure 5.1: Ethernet Shiled

IPAddress dns_server, IPAddress gateway);

void begin(uint8_t *mac_address, IPAddress local_ip,
IPAddress dns_server, IPAddress gateway,
IPAddress subnet);

Looking to previous prototypes we understand the reason why in the
CommunicationParams rule of the DSL each attribute can be defined
only if the previous was already defined. In fact, each prototype con-

tains a limited number of parameters in the same order defined in the
DSL.

5.5.2 Server

A Server is a socket used to receive incoming connection. Arduino
can handle a maximum of 4 simultaneous connections and does not

63

64 CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE

provide blocking operations to read data.
A Server is created as an instance of the class EthernetServer and
started with the method begin. The constructor of EthernetServer
only accept a Port number as parameter:

EthernetServer (uint16_t port);

To check if data have been received on the Server, Wiring provides
the method Awailable. This method returns an EthernetClient object
that can be used to read or write to the connected client.

A typical scheme followed to use Ethernet is:

#include <SPI.h>
#include <Ethernet.h>

byte mac[] = { OxDE, OxAD, OxBE, OxEF, OxFE, OxED };
byte ip[]l = { 10, 0, 0, 177 };

byte gateway[]l = { 10, 0, 0, 1 };

byte subnet[] = { 255, 255, 0, 0 };

// Server initialised to port 23
EthernetServer server = EthernetServer(23);

void setup()

{
// initialize the ethernet device
Ethernet.begin(mac, ip, gateway, subnet);

// start listening for clients
server.begin();

void loop()
{
// if an incoming client connects, there will be
// bytes available to read:
EthernetClient client = server.available();
if (client == true) {

64

CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE 65

// read bytes from the incoming client and write
// them back to all clients connected to the server:
server.write(client.read());

b
}

An EthernetServer object does not provide the chance to write to a
specific connected client. If a write is executed, it sends the specified
data to all clients connected to the Server.
It is not even possible to understand which client has sent data just
received because EthernetClient class does not implement a method
to retreive the IP address of the counterpart.
Another missing feature is a method to get an EthernetClient refer-
ence to a just connected Client. If a Client connects to a Server, the
EthernetServer object does not have a way to get a reference to an
EthernerClient object connected to that Client. It becomes possible
only if that Client sends some data to the Server.

All these limits will influence the way TCP communication is im-
plemented.

5.5.3 Client

A Client is represented by an instance of the class EthernetClient.
EthernetClient can connect to a Server using the method connect
that can be in the form:

int connect(IPAddress ip, uint16_t port);
int connect(const char *host, uintl6_t port);

The return value indicates success or failure.
When a connection has been established, a data flow can be started
through the methods read and write.

The method connect is the only blocking method implemented and
it blocks until a connection is established or until a timeout expires.
Timeout is hard coded in the EthernetClient library and it is about
30 seconds. I changed this value to 2 seconds, so to leave to the
application the control of the desired behaviour.

To check if data are available in the buffer it implements the
method available, really similar to the one in EthernetServer.

65

66 CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE

A Client socket can be used in each Arduino to connect to other
components of the System and to send data to them. As written
before, to receive data from other components the program should
check the proper Server socket.

It is important to know that Arduino UNO supports only a maxi-
mum of four simultaneous connections.

5.6 UDP Support

Arduino provides a really limited UDP library. It is only possible
to use it to send datagrams to only one destination, and it is not
reconfigurable.

For this reason I decided to not map the UDP support in the DSL
on this library and leave it to future development.

5.7 Serial Support

Arduino supports Serial communication on digital pins 0 and 1, re-
spectively Receiver Pin (RX) and Transmitter Pin (TX).

Of course if those pins are used for serial communication, they can
not be used for digital input or output.

The initialisation of Serial is achieved through the method begin.

void begin(uint16_t baud_count)

passing the Baudrate as argument.

Arduino implements proper procedures to send and receive data
through Serial. They are similar to what we found in the Ethernet
library: print, printin, read, available etc.

Hardware Serial is supported only on digital pins 0 and 1. To
fill this lack of serial pins, a library has been implemented. It is
called SoftwareSerial Library and allows the usage of each pin of the
board as a Serial pin. This library introduces some big limitations
too. In fact if the system uses more than one serial port, only one
at a time can receive data (as we can expect because of the single
control flow constraint). Furthermore it makes a massive usage of Pin
Change Interrupts to be aware of arrived bits. This means that if the

66

CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE 67

Application Designer decides to use this library, it can not use pin
change interrupts at all. And this is quite a big constraint.

For the reasons just explained the serial communication introduced
in the Meta-Model will not be mapped on SoftwareSerial Library, but
only on Hardware Serial pins.

This represents a good tradeoff between the reactive behaviour that
an Application Designer would like to model and the communication
with other entities of the System.

5.8 Communication Params Mapping

The first concept mapped on Wiring is the communication parame-
ters list. Ethernet parameters are mapped on the call to the proper
method Ethernet.begin depending on the number of parameters spec-
ified (MAC,IP,DNS,Gateway and Subnet).

Serial support is mapped on the procedure Serial.begin with the
right Baudrate.

5.9 Message Exchange

Each exchange rule is mapped on a procedure with well defined name
syntax.
The Xtext syntax is:

ProcedureName:
ReturnType Keyword ’_’ (Sender | Receiver) ’_’
MessageName (’_’ Receiver)? ’_’ Proto
ReturnType:
’void’ | ’String’
Keyword:

DispatchKey | RequestKey | InvitationKey
DispatchKey:
>forward’ | ’serve’

67

68 CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE

RequestKey:
’demand’ | ’grant’
InvitationKey:
’ask’ | ’accept’
MessageName:
String
Receiver:
String
Sender:
String
Proto:
>TCP’
b

Each procedure can return a void or a String. InOperation always has
a String return type, while OutOperation always has a void one. The
Keyword depends on the kind of message.

Depending on the direction of the message, it can have a Sender
or a Receiver. Out messages will have a Sender, while In messages
will have a Receiver. The MessageName is the name of the message
defined in the model.

In case of an Out message, a receiver has to be specified. Actually
this is true only when there is a unique receiver, like in the Dispatch.
Requests and Invitations have multiple receivers, so none of them are
reported in the statement of the operation.

The Proto rule describes which protol has been chosen. By now
the only supported are TCP and Serial.

The Application Designer can communicate with other Tasks of
the System simply calling the right procedure.

So, for example, if the actual Arduino wants to grant a request
called request?2 from Task task2 on TCP support, the name of proce-
dure will be:

68

CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE 69

String grant_request2_ent2_TCP()

Messages exchanged are mapped on Strings with a well defined
syntax too:

Content:
MessageName ’(’ Sender ’,’ MessageContent ’)’

where MessageName, Sender and MessageContent are mapped on
Strings.

If an Application Designer wants to forward from Task MyTask to
Task Taskl a dispatch with name dispatchl with content Hello World
on TCP support he has to call the operation:

int forward_MyTask_dispatchl_Taskl_TCP("HelloWorld")
and the dispatch will contain the String:

dispatchl (MyTask,HelloWorld)

5.10 TCP Mapping

Semantic mapping between messages and TCP depends on the direc-
tion of the communication.

For outgoing messages there is only the need of one client socket,
that connects to the destination entity and sends the message.
The syntax of client name is:

ClientName:
’client_’ Sender ’_’ MessageName (’_’ Counterpart)*

I

For incoming messages syntax is defined in the same way, but now we
need to declare two objects: a Server socket to receive the message
and a Client socket initialized when a message is received.

Both client and server, in case of incoming messages, have the
name of the Receiver task instead of the Sender.

Server sockets start listening for messages during the setup phase
of the system.

69

70 CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE

Procedures introduced to get incoming messages are non blocking
and always return a String. This String can be empty too, meaning
that a message has not arrived yet.

As the reader might have guessed, each message exchanged through
TCP is mapped on a separate connection, bringing to a 1:1 mapping
between messages and connections. This assumption is motivated by
the limited hardware resources and hereinafter it will be explained
better.

The original idea was to associate to each task a well defined IP
address and port, so the actual Arduino could send every desired mes-
sage to each entity only on one proper port. This implies that in the
receiver entity there should be the way to maintain all the messages
received for example in a (perhaps dynamic) Software Buffer or tuple
space. There should be one software buffer for each incoming con-
nection and they should store all the messages received. So, if e.g.
an entity is waiting for a Response message, it calls the procedure to
get the response and this procedure should receive all messages from
the ethernet buffer, store them in software buffer and then check if a
response has been received. In this way all messages received (that
can be more than one and of different kinds) are stored in the buffer
and can be retreived from proper procedures implemented in the TCP
stub.

If the entity has received more than one message of the same kind,
when it will check for that kind of message, it will get all the received
messages in the right order.

I have implemented this mechanism, but the result was a really fast
Out of Memory. The problem with this kind of embedded systems is
that they provide a really limited data memory. Memory provided by
Arduino UNO has been introduced in the Hardware overview.

Data can be stored on Flash Memory too, but I decided to do not
use it for this purpose because the amount of code that a user may
want to generate is initially unknown and using it to store data would
have meant introduce a further limitation to programs. Given this
limitations, I decided to map 1:1 connections and messages, meaning
that an Arduino can exchange a maximum of four different messages
with other entities of the System.

Actually a new connection is established when the message has

70

CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE 71

to be sent and then is terminated when the exchanging session is
completed. So exchanged messages could be more than four, but only
if the communication is designed properly.

To bypass this limit the Application Designer could also map sev-
eral information on one kind of message, assigning the right semantic
at the application level.

5.11 Serial Mapping

Serial communication is mapped on Hardware Serial, as said before,
keeping the implementation quite simple.

The initialization of Serial support is made in the setup phase of
the system, with the Communication Parameters semantic mapping.

Once setup, the only two procedures needed to send data through
Serial support are: print and read.

The convention about procedure names syntax is still valid, so it
becomes easy for the Application Designer to identify what a proce-
dure has been implemented for and to use it properly.

5.12 Utility

When an entity receives a message it needs to get the proper informa-
tion from it. For this reason a utility file has been implemented, and
some functions are provided:

String getMessageType(String Message)
String getMessageSender (String Message)
String getMessageContent (String Message)

As suggested by the names of the operations, each function takes a
message expressed in the syntax introduced before and returns a part
of it: the Type, the Sender and the Content.

71

72 CHAPTER 5. TOWARDS A SYSTEM PERSPECTIVE

72

Chapter 6

Code Generators Overview

The aim of this work is creating a Software Factory for applications
in the Embedded Systems domain. Once defined a meta-model and
the corresponding DSL through the framework Xtext, we can proceed
with the implementation of the Code Generators.

The language used for this purpose is Xtend?2.

When an Xtext DSL has been defined it is possible to automatically
generate all the artifacts (Ecore Java classes) by running the workflow
created by the IDE in the file Generate” Language”.mwe2. The word
Language has to be changed with the name of the language specified
when the Xtext project was created in the IDE. In this case it is
"arduino”.

It is worth noting that the code is generated in Eclipse, but to
upload it to Arduino it has to be opened with the Arduino IDE.

In this chapter I will give an overview of the code generators ar-
chitecture so to give an idea of the roadmap followed and of the mo-
tivations behind the decisions taken.

6.1 Generators Access Point

After the creation of the DSL and the execution of the workflow,
every needed artifact is generated and the syntax driven editor can
be started. This editor is actually a new instance of the Eclipse IDE.
To create a new model based on the defined meta-model (the DSL),
a new Eclipse project has to be created. In the src folder of the new

73

74 CHAPTER 6. CODE GENERATORS OVERVIEW

project we must create a new file, with extension ”.language_name”,
where ”language name” is the name of the language defined when the
Xtext project was first set up.

Now a new model can be specified, taking advantage of the syntax
driven editor. When the model is saved, the Xtext plugin automati-
cally runs the method doGenerate of the class language_nameGenerator
that represents the access point of the code generator, in my case it
is ArduinoGenerator. Generated files will be put, by default, in the
source folder named src-gen that should be manually created in the
just instantiated project.

This method has a reference to the Abstrax Syntax Tree (AST) repre-
senting the defined model and also a reference to an object (fsa) used
to access the file system to generate proper code files.

We can now start to navigate the AST and generate all the needed
code.

To store the reference to the fsa I have implemented a utility class
called GenUtils that contains also a method to generate a file, given
the name, the extension and the content.

The only thing that doGenerate does is calling a method called
main in the class MainArduinoGenerator.

6.2 MainArduinoGenerator Behaviour

I tried to keep the implemented generators as modular as possible, so
to have a simpler view of how they behave.

The method main of the class MainArduinoGenerator executes in
order a list of generators, passing to each one a reference to the root
node of the AST and a reference to the utility file. Actual generators
are related to the hardware Arduino UNO, so they are called only if
the specified hardware in the model is that one. The generators called
are, in order:

o MainStructureGenerator: generates the main structure of the
Arduino program, that is, the Sketch file with the setup and
loop functions.

e BasicLibrariesGenerator: generates a set of header files that
represent the basic libraries of the application. Among them we

74

CHAPTER 6. CODE GENERATORS OVERVIEW 75

find the definition of the class Sensor, Actuator, IODevice, Han-
dler and Task. Here there is also the definition of the previously
introduced file SystemResources containing the instantiation of
all the devices introduced in the model.

HandlerGenerator: defines all the handlers classes.

TaskGenerator: defines all the tasks classes.

o CommunicationGenerator: generates all the communication stubs.

UtilityGenerators: generates the utility class that contains all
the methods to process incoming messages.

In the following sections we will have a look at what is inside each
generator, giving a brief view of what is the used logic.

6.2.1 MainStructureGenerator

This class generates the main structure of the Sketch, starting from
the inclusion of the needed header files. To save memory if a file is
not needed it is not included. This is the reason why in the code we
find several calling to methods with statement similar to checkIfSome-
thinglsNeeded; e.g. the first #include list is about Ethernet libraries.
They are quite heavy, so if in the model the Application Designer did
not specify any Ethernet support, we do not need to import them.
This check is done through the function checkIfStublsNeeded, passing
the protocol T'CP. Same check is done for Serial support.

A similar control is done for pollings. The implementation of
pollings is on a different header file and, if the model do not spec-
ify pollings, it is useless to include that file.

The Application Logic in the generated code is only related to Han-
dlers and Tasks. If the Application Designer declares handlers or tasks
in the model, then their logic has to be implemented in the proper file,
respectively handlersImplementation.h and tasksImplementation.h. If
no tasks or handlers are found in the model, these files are not in-
cluded in the Sketch.

These files are, however, not generated automatically. If the user has
specified handlers or tasks in the model, the proper file is included in

75

76 CHAPTER 6. CODE GENERATORS OVERVIEW

the Sketch, but not generated. At compile time this will result in a
"file missing” error. I made this choice to remember to the user to
implement them with the business logic of the application.

In the Sketch file all the tasks are instantiated, so to be called in
the loop function and all the supports are initialized.

If some pollings have been defined in the model they are executed
through the procedure ezecute_pollings once for each cycle of the loop.
Pollings are executed before tasks.

In the loop function it is implemented the loop of tasks defined in
the model, with the proper preconditions. Empty preconditions have
to be implemented in the file tasksImplementations together with the
tasks application logic.

6.2.2 BasicLibrariesGenerator

This class generates all the basic libraries previously introduced, each
one in a different header file.

We also find the instantiation of all the declared devices, with the
right parameters passed to the constructor.

6.2.3 HandlerGenerator

We saw in the semantic mapping that each handler is implemented
as a class that extends the main class Handler and implements the
virtual method doJob. Here there is the generation of these classes,
one for each declared handler.

Handlers” name have to be unique in the model.

6.2.4 TaskGenerator

Here we find three functions:

e generateTasks: is used to generate every task class that extend
the class Task, like what is done for handlers.

o generateTaskDeclaration: this is called by the MainStructure-
Generator and returns a String with the instantiation of all the
tasks declared in the model.

76

CHAPTER 6. CODE GENERATORS OVERVIEW 7

e generateLoop: this is where the loop of tasks is generated, taking
care of the right set of preconditions.

6.2.5 CommunicationGenerator

This is the access point to the generation of all communication stubs.
It in fact executes in order T'CPSupportGenerator and SerialSupport-
Generator.

These two classes explores the AST checking if some messages
are exchanged using the protocol they implement and generate the
proper functions in dedicated header files called Protocol_stub.h, where
”Protocol” is replaced with the protocol implemented.

In this class we also find the implementation of the previously
introduced function checklfStublsNeeded. What it does is exploring
all exchanged messages checking if at least one uses the specified stub.

The function initCommunication is used to generate the code to
initialize the communication supports like Serial and Ethernet.

The class TCPSupportGenerator first of all explores all the InOp-
eration declared. For each InOperation, if it declares a TCP Explicit-
SupportData, it adds to an hashmap the address and port specified,
identified with the key Receiver_MessageName. In this way we have a
map of all the destination or receiving addresses. In case of an Out-
Operation, an address in the map is a destination and can be retreived
taking each receiver task of the message and the message name, and
check if it is contained in the map. In case of an InOperation, an ad-
dress in the map is interpreted as a receiving address, so the created
ServerSocket will have those parameters.

6.3 Tests

To check if the generated code is correct and works as expected several
tests have been carried out.
The first part is focused on the concentrated part of the code, that
is the one running on a unique platform. The second part checks the
code generated to manage the communication with other entities of
the System.

Starting from the concentrated part:

7

78 CHAPTER 6. CODE GENERATORS OVERVIEW

e the definition of a Device (Actuator or Sensor) has been tested
using different type of devices: temperature sensors, light sen-
sors, LEDs, potentiometer, tilt sensor. All the operations to
read or write a value works properly.

e both PinChange and External Interrupts have been tested, on
several pins of the board. They react to all the event declared in
the meta-model and execute the proper handler. There are still
some problems related to the bouncing of the generated signals.
The solution introduced is a check on the timing of interrupts
handlers, that is, if the handler of a certain interrupt has been
executed less than a time limit before the actual execution, it
means that this handler is run after a bounce. The established
time limit is 10 milliseconds, but sometimes it seems to be not
enough. One solution can be the introduction of an external
hardware debouncing circuit. It is important to remember that
in Interrupt handlers the use of delays is forbidden.

e Pollings have been defined for all the kinds of event that they
can detect, checking each time if the handler was called only
when an event happened. From the tests done we can say they
works correctly.

e The Loop concept is translated correctly and all the tasks are
executed in the same order as they are defined in the model.
Also preconditions are translated as expected. Remember that

tasks are executed after pollings.

The distributed part have been tested among two Arduino boards and
the tests run are:

e exchanging of one or more Dispatch between two Arduino boards.

e exchanging of one or more Requests between two Arduino boards.
Of course also the Responses have been checked.

e exchanging of one or more Invitations between two Arduino
boards. Of course also the Acks have been checked.

78

CHAPTER 6. CODE GENERATORS OVERVIEW 79

Initial problems were given by the TCP stub and they were related
to the management of the connections. It happened that everything
was working fine only if the system that runs the server was started
first. The problem was solved changing the TCP stub and properly
managing all the connections.

The resulting code is very modular and the Application Designer
has not to write a big amount of code, even for more complex be-
haviours. I think that the provided example gives an idea of the
amount of code to be written.

All the examples provided in the thesis have been tested too and
work as expected.

79

80

CHAPTER 6. CODE GENERATORS OVERVIEW

30

Chapter 7

A Case Study with Multiple
Arduino Platforms

In this chapter it will be discussed a distributed use case obtained from
an extension of the first domotic example seen before. This example
is thought to be a proof of concept of what can be done with the
meta-model developed and a tutorial on how to do it.

We will start from the requirements, passing then to the modeling
phase and after to the implementation of the business logic of the
application.

7.1 User Requirements

Suppose the user wants to realize a system based on two Arduino
UNO boards, interacting each other. One board is connected mainly
to Sensors and sends regularly some messages to the other board whose
content is based on the observed values. The second board executes
some tasks depending on the messages received.

The first Arduino is called Domotic1, while the second is Domotic2.

The requirements for the first Arduino can be summarized in the
following list:

e When the temperature is over 30°C, send a TCP message to
Domotic2 to communicate it is over.

81

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
82 PLATFORMS

e When the temperature is under 30°C, send a TCP message to
Entity2 to communicate it is not over.

e When there is still a good level of light, send a TCP message to
Entity2 with the light level.

e When it is getting dark, that is the level of light is under a
certain boundary, send a TCP message to Entity2.

e The board should be connected to a potentiometer used to reg-
ulate the level of the light emitted by a Lamp (in this case a
LED).

e A sensor is connected to the doorknob of the main door, and
when it is rotated the board has to send a TCP message to
Entity2 to communicate it.

e Domoticl does not have to send anything, until it receives a
signal from Entity2 meaning that a button has been pressed. If
the button is pressed again, it has to stop sending messages to
Domotic2.

The second Arduino, called Domotic2, has the following require-
ments:

e When the board receives a TCP message, it has to choose from
the following situations:

— if it contains information about the temperature: if it is
over 30°C turn ON a red LED, otherwise turn it OFF.

— if it contains information about the light: if it is getting
dark turn ON a green LED, otherwise turn it OFF.

— if it contains information about the doorknob rotation, blink
three times the previous introduced red and green LEDs.

e When a button is pressed notify it to the Domoticl, so it can
start or stop its work. In fact the button can either start or stop
the system, depending on its actual state.

82

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
PLATFORMS 83

7.2 Brief Requirements Analysis

In this chapter we will not follow all the steps that normally char-
acterize the Analysis and the Design of a Software because, in this
phase, what is relevant to show is an example and a tutorial of how
to develop a system based on Arduino boards, focusing on modeling
and not on the code.

Reading the requirements for Entityl we deduce that we will of
course need a Temperature and a Light sensor. They will be both
analogic sensors.

To cope with the rotation of the doorknob we have to use a Tilt
Sensor.

Domoticl and Domotic2 communicate through TCP, so an Ether-
net shield has to be stacked on the Arduinos we are using.

The messages exchanged with Domotic2 have to be mapped on the
messages defined in the meta-model. I decided to use three Dispatches
called: manageTemperature, manageLight and manageTilt. The infor-
mation about each sensor will be mapped on those messages, respec-
tively information about temperature, light and tilt. The content of
the messages will not be the value read from the sensor, but a string
that expresses the actual situation of the observed environment. In
this way the policies about the actual value and boundaries are kept
in the Domoticl side.

So the content of messages sent will be:

e for the temperature the board will send the string ”over” if the
temperature is over 30 degree and "under” otherwise.

e the light level will be expressed by the string ”sunny” if it is over
a defined boundary and ”dark” otherwise.

e the activation of the tilt sensor is expressed with the string
"true” and it will be "false” otherwise.

To be signaled when the button is pressed on Domotic2, one pin of
Domotic2 must be connected to a pin on Domoticl. In this way Do-
motic2 can emit a signal when the button is pressed.

A brief discussion on analog boundaries is needed because we have
to decide which is the bounday value for temperature and light.

33

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
84 PLATFORMS

Arduino accepts values from 0 to 5V and maps them on integers in
the range 0 - 1023. So what should be done is deciding an analog limit
in the 0-5V range and then map it in the range 0-1023.

All the sensors, except the tilt one, have to be read periodically,
so we will use pollings to read them and generate proper events. Tilt
is instead managed with an interrupt; when it goes to 1, it raises an
interrupt handled by a defined handler.

Each handler has to manage the events generated by pollings and
interrupts and take the right decision on the basis of the actual value
read. The potentiometer handler, called when its value changes, only
has to change the intensity of a red Led, using analogic output (PWM).

Since there are three messages to be exchanged, I decided to create
three tasks on both Domoticl and Domotic2, respectively to send data
and to receive them and act properly.

To avoid a flooding of messages from Domoticl to Domotic2 1
decided to define a task called wait that will contain a wait of 500ms.

The behaviour of Domotic2 is organized in four tasks:

e three tasks defined to receive incoming messages about temper-
ature, light and tilt.

e a wait task of 50ms because it is useless to check continuously
for new messages because Domoticl sends a maximum of three
messages every 500ms. This also prevents an high usage of bat-
teries.

The button is managed through an interrupt. When it is pressed an
interrupt is raised and the handler sends the defined signal to Do-
moticl. This signal is simply an output of an high digital value that
will be read from Domoticl.

7.3 Hardware Setup

After a fast analysis, we found what kind of hardware we need and we
can now proceed with its setup.

A scheme of the hardware setup is in Figure 7.1. Domoticl is the
top board, while Domotic2 is the bottom board. Both are represented
by an Ethernet Shield because they have to exchange TCP messages;

84

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
PLATFORMS 85

mmmmmmmm

aaaaa

-
RS
L E H O CH E

AECA compatible

Domoticl

.,,... = =

L N

LR NN N]

mmmmmmm

& Bl o
BB FE S

AESA compatible

Domotic2

=
[
“
Lt
e

7 1
v T, -8

m
5V 6nd 9V 123 4 A5

Figure 7.1: Hardware Setup

85

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
86 PLATFORMS

of course there should be an Ethernet cable that connects the two
shields. To maintain the picture clear I have not drawn it, but it is
required .

The semantic of the cables’ color is: black for the ground connec-
tion, red for the connection to 5V and yellow for the cables that goes
from devices to pins. The green cable delivers the Start signal from
Domotic2 to Domoticl.

Let’s start from the description of Domoticl. From the right to
the left we find:

- the potentiometer: it is a 10KOhm potentiometer and it is con-
nected to pin Al.

- the photoresistance: it has a 10KOhm resistance connected in
series to get the correct value of the potential. It is connected
to pin A3.

- the analog temperature sensor: it is connected to the pin A0

- the tilt sensor is connected to digital pin 2 because it is not
analogical. Actually the tilt sensor used in my tests is a double
angle sensor with three pins and is connected to a resistor to
have a rising edge when it is rotated of an angle greater than
45°. In the tool to realize the hardware picture, the tilt sensor
used is not available.

- the last component on the left is a red LED. It is connected to
pin 9 (that supports PWM) and is the LED whose intensity is
set by the potentiometer.

Domotic2 is only connected to two LEDs and a button. A red LED
is connected to pin 2, while a green LED is on pin 3. The button is
in series with a resistance to get a rising edge when it is pressed and
is on pin 8.

7.4 Domoticl Model

Now that we have analyzed the problem and setup the hardware we
can define the Model of the system, using the defined DSL.

36

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
PLATFORMS 87

Starting from Domoticl we can first declare the devices of the
system:

Sketch Domoticl Hardware: Arduino UNO
Sensor Thermistor pin "AO" analog ;
Sensor PhotoResistance pin "A3" analog ;
Sensor Tilt pin "2" ;

Sensor Potentiometer pin "Al1l" analog;
Sensor ButtonPressed pin "8";

Actuator potentiometerLed pin "9";

The name of the sketch is " Domoticl” and runs on an Arduino UNO
board. The hardware is composed by the previous defined devices,
connected to the pin highlited in the hardware setup. The analogic
sensors are defined as analog. The sensor ButtonPressed actually is
not a physical device; it represents an input pin used to read the signal
emitted by Domotic2 when the button is pressed.

We can now pass to the definition of the Handlers, Pollings and
Interrupts.

Handler tiltHandler ;

Handler gettingDark ;

Handler sunIsShining ;
Handler tempOver30 ;

Handler tempUnder30 ;

Handler potentiometerHandler;
Handler serveStartStop;

Interrupt TiltInterrupt kind External on Tilt
event kind RISING handled by tiltHandler;
Poll PhotoResistance if BETWEEN 550 & 1023 call sunlIsShining;
Poll PhotoResistance if BETWEEN O & 549 call gettingDark;
Poll Thermistor if BETWEEN 164 & 1023 call tempQOver30;
Poll Thermistor if BETWEEN O & 163 call tempUnder30;
Poll Potentiometer if CHANGE call potentiometerHandler;
Poll ButtonPressed if CHANGE call serveStartStop;

First a set of handler has been defined, one for each event to manage,
interrupt included (tiltHandler). Then it is defined when each handler
has to be called.

87

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
88 PLATFORMS

The tiltHandler is called when the Tilt sensor generates a rising
edge, raising an external interrupt.
Other sensors are managed with polling. Photoresistance and Ther-
mistor generate an event when they are between two thresholds, while
the Potentiometer generates an event when it changes its value. The
Button sensor is checked periodically and generates an event when its
value changes.

Let’s now define the tasks executed and their order.

Task tempSender;

Task lightSender;

Task tiltSender;

Task tempManager external;

Task lightManager external;

Task tiltManager external;

Task wait;

execution cycle:
exec task tempSender
exec task lightSender
exec task tiltSender
exec task wait;

The tasks tempSender, lightSender and tiltSender have been put in
the model to send the messages about the current situation of the
three sensors. The task wait is used to suspend the control flow for
500ms.

Other tasks are defined as external because they will be executed
by Domotic2.

We can now pass to the definition of the communication parameters
and of the exchanged messages:

define System{
Communication Parameters:
Serial baudrate=9600,
Ethernet mac="90,A2,DA,00,4E,22" ip="192.168.0.3";

Dispatch manageTemperature;
Dispatch manageLight;

38

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
PLATFORMS 89

Dispatch manageTilt;

// QOutOperations

tempSender forward manageTemperature to tempManager;
lightSender forward managelLight to lightManager;
tiltSender forward manageTilt to tiltManager;

// InOperations
tempManager serve manageTemperature

support= TCP [host="192.168.0.2" port=3000];
lightManager serve managelight

support= TCP [host="192.168.0.2" port=3001];
tiltManager serve manageTilt

support= TCP [host="192.168.0.2" port=3002];

3

Domoticl provides two communication supports: a Serial with bau-
drate 9600, used for debugging purpose, and an Ethernet with IP
address 192.168.0.3 and its proper MAC.

We also find the definition of the messages exchanged. With no
surprise we find the same messages introduced in the analysis.

The communication will be with tasks executed by Domotic2 and
declared as external. Communication is divided into Out and In op-
erations and follows the same logic introduced in the analysis.

The specification of Domoticl is completed. When the file is saved
all the code is generated and the Application Designer has only to
implement the Handlers, in the header file handlersImplementation.h,
and the Tasks, in the header file tasksImplementation.h.

The file handlersImplementation.h implementation is:

#ifndef handlers_h
#define handlers_h

#include "tasksImplementation.h"

void gettingDark::doJob(){
lightMessage="dark";

39

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
90 PLATFORMS

3

void sunIsShining::doJob(){
lightMessage="sunny";

}

void tempOver30::doJob(){
tempMessage="over";

b

void tempUnder30::doJob(){
tempMessage="under";

}

void tiltHandler::doJob(){
tiltOn=true;
}

void potentiometerHandler::doJob(){
int val=Potentiometer.getValue();
val=map(val,0,1023,0,255);
potentiometerLed.writeAnalogVal(val);

}

void serveStartStop::doJob(){
started=ButtonPressed.getValue();

}

#endif

For each defined handler the Application Designer has to implement
the doJob function. The file tasksImplementation is imported because
it defines some state variables set by the handlers. For example the
gettingDark handler sets the content of a string called lightMessage
that will be the content of the message sent from lightSender to light-
Manager.

The potentiometer handler checks the value of the potentiometer
and set it to the red LED. Of course the introduction of a wait task
in the control flow will make the potentiometer LED less reactive to

90

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
PLATFORMS 91

the changes of the potentiometer.
The file tasksImplementation.h instead becomes:

#ifndef taskimpl_h
#define taskimpl_h

boolean tiltOn=false;
String tempMessage;
String lightMessage;

boolean started=false;

void tempSender::doJob(){
if (Istarted)return;
forward_tempSender_manageTemperature_
tempManager_TCP (tempMessage) ;

void lightSender::doJob(){
if (!started)return;
forward_lightSender_manageLight_
lightManager_TCP(lightMessage) ;

void tiltSender::doJob(){
if (!started)return;
if (tilt0On)
forward_tiltSender_manageTilt_tiltManager_ TCP("true");
else
forward_tiltSender_manageTilt_tiltManager TCP("false");
tiltOn=false;

}

void wait::doJob(){
delay (500) ;

}

#tendif

91

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
92 PLATFORMS

Here the Application Designer has to implement the method doJob of
each task.

The only thing done by the three sending tasks is sending the
string set by the handlers if the started variable is set to true, meaning
that the system has been started by the button. The started variable
determines indeed if messages are sent from Domoticl to Domotic2 or
not.

7.5 Domotic2 Model

The definition of Domotic2 begins from the devices too:

Sketch Domotic2 Hardware: Arduino UNO
Actuator redLed pin "2";

Actuator greenled pin "3";

Sensor Button pin "8" ;

Actuator ButtonPressed pin "6";

The name of the sketch is "Domotic2” and runs on Arduino UNO.
It is composed by two LEDs, one on pin 2 and the other on pin 3, and
from a button, on pin 8.

The actuator defined as ButtonPressed actually is not a physical
device. It is used as an output pin set when the button is pressed to
send the signal to Domoticl.

Next thing to define are Handlers and Interrupts:

Handler buttonPressed;

Interrupt buttonPressed kind PinChange
on Button event kind RISING
handled by buttonPressed;

The only handler needed is for the interrupt generated when the but-
ton is pressed. The interrupt kind now is PinChange, because the
button is connected to pin 8 and External interrupts are only sup-
ported on pin 2 and 3.

Let’s now see the tasks definition:

Task tempSender external;

92

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
PLATFORMS 93

Task lightSender external;

Task tiltSender external;

Task tempManager;

Task lightManager;

Task tiltManager;

Task wait;

execution cycle:
exec task tempManager
exec task lightManager
exec task tiltManager
exec task wait;

Here we find the same tasks declared for Domoticl, but with different
external qualifiers.

The definition of the communication supports and messages ex-
changed is:

define System{
Communication Parameters:
Ethernet mac="90,A2,DA,0D,1E,97" ip="192.168.0.2",
Serial baudrate=9600;

Dispatch manageTemperature;
Dispatch managelight;
Dispatch manageTilt;

tempSender forward manageTemperature to tempManager;
lightSender forward managelLight to lightManager;
tiltSender forward manageTilt to tiltManager;

tempManager serve manageTemperature

support= TCP [host="192.168.0.2" port=3000];
lightManager serve managelight

support= TCP [host="192.168.0.2" port=3001];
tiltManager serve manageTilt

support= TCP [host="192.168.0.2" port=3002];

93

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
94 PLATFORMS

It defines two communication supports: a Serial with baudrate 9600,
mainly used for debugging, and an Ethernet with IP 192.168.0.2 and
the proper MAC.

We notice that the definition of the messages exchanged and of the
Operations is the same found in Domoticl.

As for Domoticl, the Application Designer has to implement the
files handlersImplementation.h and tasksImplementation.h.

The first is implemented as follows:

#ifndef handlersImplementation_h
#define handlersImplementation_h

boolean started=false;

void buttonPressed::doJob(){

if (started){
ButtonPressed.writeDigitalVal(0);
started=false;

}elsed{
ButtonPressed.writeDigitalVal(1);
started=true;

}

}

#endif

A boolean variable called started is used to save the current state of
the system. If the button is pressed and started is false it means that
the system has to be started and a signal with value 1 is emitted from
the actuator ButtonPressed. Otherwise, if started is true, it means
that the system has to be stopped and value 0 is emitted.

The tasks are implemented as:

#include "handlersImplementation.h"
String mess;

void tempManager::doJob(){

94

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
PLATFORMS 95

mess=serve_tempManager_manageTemperature_TCP() ;

if (getMessageContent (mess)=="over")
redLed.writeDigitalVal(l);

else if (getMessageContent (mess)=="under")
redLed.writeDigitalVal(0);

void lightManager::doJob(){
mess=serve_lightManager_manageLight_TCP();
if (getMessageContent (mess)=="sunny")
greenled.writeDigitalVal(0);
else if (getMessageContent(mess)=="dark")
greenled.writeDigitalVal(l);

void tiltManager::doJob(){
mess=serve_tiltManager_manageTilt_TCP();
if (getMessageContent (mess)=="true"){
int 1i;
for(i=0;i<3;i++){
greenled.writeDigitalVal(0);
redLed.writeDigitalVal(0);
delay(100);
greenled.writeDigitalVal(1);
redLed.writeDigitalVal(1);
delay(100);

void wait::doJob(){
delay(50) ;
}

Each task read a message from the TCP buffer and depending on its
content, executes a particular action. All the actions are on LEDs.
The wait task introduces a 50ms delay.

95

CHAPTER 7. A CASE STUDY WITH MULTIPLE ARDUINO
96 PLATFORMS

96

Chapter 8

Conclusions And Future
Development

It is time to summarize the work done and the goals achieved, as well
as the possible future development.

8.1 Conclusions

The aim of the thesis was the definition of a Meta-Model and the
development of a Software Factory for Arduino platforms.

The process is gone through the definition of the Meta-Model,
its formalization with a DSL and the implementation of all the code
generators.

The meta-model have been directly mapped on a DSL using the
framework Xtext. It has been designed with a bottom-up approach,
starting from a deep study of the platform (features and constraints),
so to identify the main concepts that characterize the domain.

After the definition of the DSL, the next step has been the imple-
mentation of the automatic code generators. All the generators have
been fully implemented and tested, especially for the part related to
the structure and behaviour of a single Arduino.

The distributed part has been added subsequently and it constitutes
a good basis for future development.

To explain better all the work done and how to use it, the thesis

contains some examples that can also be used as tutorials.

97

98HAPTER 8. CONCLUSIONS AND FUTURE DEVELOPMENT

At the end of the work I can say that all the targets decided at
the beginning of the thesis have been achieved, proving that a Model
Driven approach can bring to a speed up of application development
processes and to the production of good quality systems. In the ex-
amples provided it is possible to have an idea of the quality of the
software produced and of how the work of the Application Designer
becomes simpler and faster, compared to the classic Software Engi-
neering approach.

8.2 Future Development

Even for future development we can divide it into the concentrated
and distributed parts.
For the first part some features can be added:

e the introduction of special purpose sensors and actuators: the
defined concepts of Sensors and Actuators are general and refers
to devices connected only to a single pin. A device can also be
connected to more than one pin (e.g LCDs) and this feature can
be brought at the meta-model level.

e introduction of the concept of data exchanged or shared between
the components of the system.

For the distributed part the work done can be extended with:

support to synchronous message exchanging.

e introduction of proper policies related to the management of the
buffers: e.g. what should the sender do if the receiver buffer is
full?

e introduction of broadcast messages, like Events or Signals.
e introduction of other communication protocols.

e improvements of what has been done in this thesis.

98

Bibliography

[10]
[11]

OMG - Object Management Group: Meta Object Facility (MOF)
Core Specification

Sami Beydeda, Matthias Book, Volker Gruhn : Model-Driven
Software Development, Springer-Verlag Berlin Heidelberg, 2005

Antonio Natali, Ambra Molesini : Costruire Sistemi Software:
dat Modelli al Codice. Seconda Edizione. 2009,

Eclipse Foundation: FEcore Tools,
http://wiki.eclipse.org/Ecore_Tools

Denis Brighi: Progettazione e sviluppo di un DSL ad agenti per
la piattaforma Arduino, 2012

Karsten Thomas (Itemis): Language Workbench Competition
2011 Xtext Submission, 2011

XText 2.1 Documentation, October 31, 2011

Arduino Official Website: http://www.arduino.cc/

ATMEL: ATmega48A/PA/88A/PA/168A/PA/328/P Summary
Wiring Official Website: http://wiring.org.co/

Antonio Natali: Software system specifications in Contact, 2011

99

