ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
SEDE DI CESENA
SECONDA FACOLTA DI INGEGNERIA CON SEDE DI CESENA
CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

SUPPORTING SEMANTIC WEB
TECHNOLOGIES IN THE
PERVASIVE SERVICE
ECOSYSTEMS MIDDLEWARE

Subject
COMPUTATIONAL LANGUAGES AND MODELS LM

Supervisor Student
Prof. MIRKO VIROLI Dr. Eng. PAOLO CONTESS!

Co-Supervisor
Eng. Dr. DANILO PIANINI

Session |
Academic Year 2011/2012






ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA
SEDE DI CESENA
SECONDA FACOLTA DI INGEGNERIA CON SEDE DI CESENA
CORSO DI LAUREA MAGISTRALE IN INGEGNERIA INFORMATICA

SUPPORTING SEMANTIC WEB
TECHNOLOGIES IN THE
PERVASIVE SERVICE
ECOSYSTEMS MIDDLEWARE

Subject
COMPUTATIONAL LANGUAGES AND MODELS LM

Supervisor Student
Prof. MIRKO VIROLI Dr. Eng. PAOLO CONTESS!

Co-Supervisor
Eng. Dr. DANILO PIANINI

Session |
Academic Year 2011/2012






ABSTRACT

Semantic Web technologies are strategic in order to fulfill the openness
requirement of Self-Aware Pervasive Service Ecosystems. In fact they
provide agents with the ability to cope with distributed data, using
RDF to represent information, ontologies to describe relations between
concepts from any domain (e.g. equivalence, specialization/extension,
and so on) and reasoners to extract implicit knowledge.

The aim of this thesis is to study these technologies and design an
extension of a pervasive service ecosystems middleware capable of ex-
ploiting semantic power, and deepening performance implications.

SOMMARIO

La openness € un requisito fondamentale nell’ambito dei Self-Aware Per-
vasive Service Ecosystems: i componenti (agenti) di un sistema open come
questo, il loro comportamento ed i protocolli impiegati non sono stati-
camente determinati, ma variano continuamente durante 1’esecuzione.
In tale scenario e fondamentale che ogni parte del sistema sia in grado
di gestire informazioni provenienti da diverse fonti ed interpretarle cor-
rettamente, anche nel caso in cui non sia possibile utilizzare la stessa
rappresentazione. Le tecnologie del Semantic Web sono quindi strate-
giche, perché sono nate per gestire situazioni di questo genere: RDF
permette la descrizione delle informazioni, OWL ¢ in grado di model-
lare le relazioni fra concetti (equivalenza, specializzazione/estensione,
...) e iservizi di reasoning sono in grado di far emergere informazioni
celate nei dati.

Lo scopo di questa tesi e esplorare queste tecnologie e valutarne 1'in-
clusione in un pervasive ecosystems middleware, ponendo attenzione alle
implicazioni in termini di prestazioni.



ACKNOWLEDGEMENTS

I would like to thank all the people that contributed to the realization
of this master thesis. First of all my supervisor, Prof. Mirko Viroli, who
gave me the possibility to work on this project and provided me his
experience in the field.

I am also very grateful to Eng. Dott. Danilo Pianini, my co-
supervisor, for having shared his knowledge with me whenever I
needed, and for having corrected the first version of this volume;
thanks to him someone else, other than me, will be able to understand
what I have achieved in these months.

Moreover I want to thank my family, my girlfriend and my friends
for supporting me in this period: I owe you my graduation.

As a final note I have to acknowledge the debt I owe to the SAPERE
project members [Viroli et al., 2012; Zambonelli et al., 2011] for provid-
ing documentation and [Miede, 2011; Pantieri and Gordini, 2011] for
this volume’s style and layout.

I am sure I have forgotten to list something or someone (maybe I
have also forgotten english grammar), I am sorry. Thank you all.

vi



CONTENTS

1
2
2.1
2.2
3 THE
3.1
3.2

INTRODUCTION 1

SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

W3C Specifications 5

2.1.1  RDF 5

2.1.2 RDF Schema 14

2.1.3 OWL 16

2.1.4 SPARQL 26

2.1.5 SPARQL Update 31

Technologies 33

2.2.1  Apache Jena: RDF Graph Store 33
2.2.2 Pellet: OWL-DL Reasoner 36

SAPERE MODEL 39

Defining SAPERE domain 39

3.1.1  Architecture 40

3.1.2  Computational and Operational model
Mapping to Semantic framework 43

3.2.1 Live Semantic Annotations (LSA) 43
3.2.2 Eco-laws 44

4 SEMANTIC WEB SAPERE 47
4.1 Requirements 48
4.2 Logic architecture 48
4.2.1  The ecosystem as a network of nodes
4.2.2 Inside the SAPERE node 49
4.2.3 The LSA-space 54
4.3 Developed system 56
4.3.1  OSGi bundles 60
4.4 Middleware usage 62
4.4.1  Modelling an ecosystem 63
4.5 A demo scenario 67
4.5.1 Realization details 67
5 PROFILING PERFORMANCE 71
5.1 Profile scenarios setup 71
5.1.1  Distributed demo 72
5.1.2 Evaluating Parse-Compile impact 73
5.1.3 Reasoner Overhead 74
5.2 Results analysis 74

5.2.1 Distributed Demo Results 75
5.2.2 Parse-Compile Results 77

41

49

vil



vitt | CONTENTS

5.2.3 Reasoner Overhead Results 79
6 CONCLUSIONS 81

BIBLIOGRAPHY 83



LIST OF FIGURES

Figure 1
Figure 2

Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Figure 13

Example of SAPERE architecture [Viroli et al.,
2011] 41

Semantic Web SAPERE: Logic Architec-
ture 50

LSA model 53

Eco-laws model 53

LSAs compilation 54

Eco-laws compilation 55

Interaction between agents and LSA-
space 55

Inside the LSA-space 56

OSGi bundle and dependencies 61

SAPERE demo screenshots 68

Distributed Demo scenario 72

Frequency of diffusion messages reception
over sensor data generation rate. Data are ex-
pressed in s~!. The diffusion mechanism is not
able to follow the sensor emission rate, mainly
because the TCP connections between nodes are
established when needed, and then closed (once
the LSA has been sent). Future works should
improve performance, for example by caching
connections. Moreover the reported sensor rate
is the one specified at launch time and it does
not highlight possible rate variations, caused
by OS threads scheduling policy. Horizontal
lines represent the maximum rates that have
been measured while running the scenario (the
thresholds), respectively 14.08 when semantic
reasoning was enabled and 23.37 when it was
not. 75

Frequency of MAX-AGGREGATE eco-law trig-
gering over diffusion messages reception rate.
Even if scheduling rate is ASAP, the effective
execution depends on sensor data availability.
When semantic reasoning is enabled, match ex-
ecution takes more time — due to the embedded
inference process — and the triggering rate drops
down. 76

ix



Figure 14

Figure 15

Figure 16

LISTINGS

Listing 1
Listing 2
Listing 3
Listing 4
Listing 5
Listing 6
Listing 77
Listing 8
Listing 9
Listing 10
Listing 11
Listing 12
Listing 13
Listing 14

Listing 15
Listing 16
Listing 17
Listing 18

Listing 19
Listing 20
Listing 21

Fraction of sensor data that have not been ag-
gregated after the last diffusion occurred. As
consequence of the reduction of the aggregation
rate — when the reasoner is on — not all the LSAs
are processed in time. When no inference pro-
cess is run instead, MAX-AGGREGATE is trig-
gered fast enough for completing the elabora-
tion. 77

PARSE and COMPILE performance. The com-
pilation process is linear and faster than the
parse one. Although the standard deviation
highlights a greater uncertainty, the parse opera-
tion seems to have linear complexity too (accord-
ing to mean values). 78

Agent’s READ performance. The reasoner over-
head slows down the execution of the primitive,
despite the uncertainty of data. In both cases
the trend seems not depend on LSA size too
much. 79

A RDF/XML Snippet 7
A more compact RDF/XML description 9
The example expressed in Turtle 10

A shortcut for type definition in Turtle 10
A N-Triples example 11

Blank nodes in action 12

Reification in action 12

RDF Containers: a rdf:Bag 12

RDF Containers: a rdf:List 13

RDF Containers: a handier rdf:List 13

An example of class definition 14

Example of subclassing 15

An example of property definition 16

An example of Negative Property Asser-
tion 19

Some examples of Value Restrictions 20
Defining an owl:SelfRestriction 21
An example of Cardinality Restriction 22

An example of Qualified Cardinality Restric-
tion 22

How to enumerate class instances 23
Using set operators 23
Example of Disjoint class 24



Listing 22
Listing 23

Listing 24
Listing 25
Listing 26
Listing 27
Listing 28
Listing 29
Listing 30
Listing 31
Listing 32
Listing 33
Listing 34
Listing 35
Listing 36
Listing 37

Listing 38
Listing 39

Listing 40
Listing 41
Listing 42
Listing 43
Listing 44
Listing 45

Listing 46

Listing 47
Listing 48
Listing 49
Listing 50
Listing 51
Listing 52
Listing 53
Listing 54
Listing 55
Listing 56
Listing 57
Listing 58

Shortcuts for Disjoint class definition 24

Example of Equivalence among Individu-
als 26

Example of FILTER usage 28
Example of OPTIONAL usage 28
Example of UNION usage 29
Example of subgraph queries 29
Example of CONSTRUCT query 30
Example of ASK query 30

Example of DESCRIBE query 31
DESCRIBE query with WHERE clause 31
SPARQL/Update INSERT syntax 32
SPARQL/Update DELETE syntax 32
SPARQL/Update MODIFY syntax 32
SPARQL/Update LOAD syntax 32
SPARQL/Update CLEAR syntax 33

SPARQL/Update = CREATE GRAPH syn-
tax 33

SPARQL/Update DROP GRAPH syntax 33

Example of Jena API usage [Foundation and HP-
Labs, 2010] 34

SPARQL query creation 35

SPARUL query creation 35

SELECT query execution 35

SPARUL query execution 36

Pellet-Jena usage 37

LSA Serialization example [Montagna et al.,

2012] 44
Eco-law Serialization example [Viroli et al,

2011] 44

Storage/Reasoning initialization 57
Reactions Scheduler 58

Network Manager 59
SAPEREAgentsFactory interface 60
How to spawn an agent on SAPERE node 63
A simple Hello World agent 64
How to define eco-laws 65
Topology definition 66

Person LSA (Demo scenario) 68
Eco-laws (Demo scenario) 69

A custom function: distance 70
Demo ontology 70

Xi



Xit

Listing 59 The "increasing-lsas" dataset 73
ACRONYMS

SAPERE Self-Aware Pervasive Service Ecosystems
LSA Live Semantic Annotation

RDF Resource Description Framework
RDFSchema Resource Description Framework Schema
N3 Notation 3

Turtle Terse RDF Triple Language

OWL Web Ontology Language

OWL-DL OWL-Description Logic

OWL-EL OWL-E Logic

OWL-QL OWL-Q Logic

SPARQL Simple Protocol and RDF Query Language
SPARUL SPARQL/Update

URI Uniform Resource Identifier

URL Uniform Resource Locator

URIref URlIreference

XML eXtensible Markup Language

XSD XML Schema Definition

W3C World Wide Web Consortium

WWWw World Wide Web

OSGi Open Service Gateway initiative

API Application Programming Interface

SPI System Programming Interface

ooP Object-Oriented Paradigm

CTMC Continuous-time Markov Chains



1 INTRODUCTION

Nowadays information is everywhere: Internet and Web 2.0 paved the
road to remote interaction and knowledge sharing between people and
services. When a human being writes or says something to someone
each word has a meaning, that is implicitly known or specified through
a common vocabulary, while a dialog between two software agents is
merely based on syntax, so on how each phrase is spelled. In fact seman-
tic, which is a synonym of language meaning, is generally provided by
the developer at compile time and if concepts and their encoding are
not pre-shared communication is compromised [Hebler et al., 2009].

This is the reason why World Wide Web Consortium (W3C) started
defining a set of standards, meant to attach a significant to resources
on the web, so giving birth to the Semantic Web. Using these frame-
works means publishing decorated data and enacting each piece of
software to understand them wherever they come from, just merging
those decorations with common, or application-specific, vocabularies
and exploiting inferential capabilities of available reasoning services. In
other words strong agents acquire the ability to cope with distributed
data.

Another wide-spread phenomena of the last years is the appearance
of ever more powerful mobile systems and sensors. Computer Science
is defining new paradigms, mainly focused on concepts like context-
awareness, self-organization and distribution; pervasive services is one
of them. Applications are designed to exploit connectivity, build a net-
work for data exchange and elaboration, supporting people in every-
day life: trying to guess what the user needs, possibly without asking
or specifying how the task should be executed.

Once again information understanding and management is vital:
how can Semantic Web enhance these kind of systems? In terms of
openness [Zambonelli et al., 2011]. In pervasive computing boundaries
are not defined: components should always know (1) where they are,
(2) what are they with and (3) what resources are nearby and available
[Wikipedia, 2012; Zambonelli et al., 2011], because next time something
could change and application logic should adapt, avoid failure and
reach its goal. In this context, for example, recent and older devices
would occasionally interact and should be able to understand each
other, even if they do not have common data representation. Think-
ing about developing services that are aware of every past and future
protocol they will meet isn’t feasible (at least for the future part). On
the other side, defining a vocabulary that explains how information is



2

| INTRODUCTION

structured, will allow future applications to deal with them, just defin-
ing concepts mapping.

In this thesis Semantic Web technologies will be presented and dis-
cussed according to the idea of producing a pervasive service ecosystems
middleware, capable of providing required abstractions built on seman-
tic notions. In particular the middleware will be designed accord-
ing to the model defined in the Self-Aware Pervasive Service Ecosys-
tems (SAPERE) project [Viroli et al., 2012; Zambonelli et al., 2011], which
is meant to address requirements such as dynamism, mobility, context-
awareness and self-organization, through a set of nodes where agents
live, manifest themselves and share information by means of LSA-
spaces and bio-chemical mechanisms.

Apache Jena and Pellet has been chosen for LSA-space realization:
the former provides an efficient and stable RDFStore implementation,
letting data be memorized, while the latter offers reasoning capabili-
ties over stored data. The rest of the middleware will supply basic
facilities, enabling (1) the specification of agents, meant to publish and
observe information about their business in the space, (2), the defini-
tion of a static topology of computational nodes, each one with a local
LSA-space and one or more SAPERE-agents, and (3) bio-chemical re-
sembling rules — namely eco-laws — scheduling, through a dedicated
entity called ReactionManager. Thanks to it, information exchange be-
tween SAPERE-nodes is enabled according to the diffusion mechanism,
via a NetworkManager which will physically handle data relocation.

The resulting platform has been tested, in order to verify require-
ments satisfaction and analyze performance. A couple of examples
have been created in order to demonstrate middleware usage and po-
tential: one focuses data description and interpretation and the other
implements a typical scenario in which data are spread in the environ-
ment and used by other services to provide useful information to the
user. Run benchmarks show that the developed system scales better
when the reasoner is not enabled — as expected — but the overall per-
formance is encouraging, considering that all the LSA-space operations
have to be serialized, due to Pellet lack of multi-threading support.

The whole architecture has been designed in order to ease future ex-
tensions: component-oriented paradigm has been used to obtain mod-
ularization and separation of concerns has been stressed in order to
simplify the implementation and integration of new behaviors when
needed. Possible improvements may concern: (1) eco-laws scheduling
policies, (2) network protocol support and (3) performance tuning.

The work is structured as follows:

CHAPTER 2 is dedicated to a survey on Semantic Web Technologies

CHAPTER 3 reports relevant concepts of the SAPERE model for
semantic-enabled middleware designing (principally data formal-
ization).



INTRODUCTION | 3

CHAPTER 4 presents problem analysis and solution design according
to previous chapters

CHAPTER 5 deepens performance implications of the proposed plat-
form

Finally, conclusions are discussed on Chapter 6.






2 SEMANTIC WEB

SPECIFICATIONS AND
TECHNOLOGIES

CONTENTS

2.1 W3C Specifications 5
2.1.1  RDF 5
2.1.2 RDF Schema 14
2.1.3 OWL 16
2.1.4 SPARQL 26
2.1.5 SPARQL Update 31
2.2 Technologies 33
2.2.1  Apache Jena: RDF Graph Store 33
2.2.2  Pellet: OWL-DL Reasoner 36

This chapter is meant to introduce Semantic Web Technologies, start-
ing with specifications from W3C, which represent a global standard
in this field, and completing with a survey on some of the most famous
Java-based technologies implementing these standards. At the end of
this section the reader will have a basic idea of how to realize a Java
program which handles Semantic Web Data.

2.1 W3C SPECIFICATIONS

21.1 RDF

The Resource Description Framework (RDF) is a language for repre-
senting information about resources in the World Wide Web.
According to W3C specification a Resource is everything that can be
accessed via a URlreference [W3C, 2004], such as pages, things, people
and so on.
Each resource can be described in terms of a set of multi-valued
properties, whose value can be:

¢ another Resource (obviously identified by an URIreference
(URIref))

e a Literal , which is a double-apices-delimited String representing a
concrete value (such as a number or a message and so on) but not
a resource

Consequently an RDF Statement is represented as a set of RDF
Triples, composed by:



URIreferences

6

| SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

¢ A subject identified by an URIref
¢ A predicate (or property) identified by an URIref

¢ An object which is the value of the property, so a Literal or an
URIref to a Resource

Given its structure, as previously stated, an RDF model can be rep-
resented as a Graph, in which arcs are properties and nodes are Re-
sources or Literal, providing a graphical format. Generally this rep-
resentation is only used for little models and surely not for exchange
purposes for which other textual alternatives are: RDF/XML, Turtle,
N3 and N-Triples.

RDF/XxML : the normative format for RDF models exchange (machine-
processable)

Terse RDF TripLE LANGUAGE (TurTLE) :  compact and human
friendly format, defined as a subset of the more expressive
Notation 3 (N3)

N-TRIPLES : easy to parse format useful for streaming serialization

Details about these formats have been reported in the following. In
order to provide comparison terms between each representation here
is provided an informal description of an RDF model to be stated:

There is a resource (a webpage) "index.html"
created on August, 16 1999 by a developer named Bob Smith.
This page is written in english.

ABOUT URIREFERENCES AND LITERALS Let’s now go deeply in the
definition of these two essential elements.

RDF uses URIref to name subjects, predicates, and objects in RDF
statements. A URIref is a Uniform Resource Identifier (URI), together
with an optional fragment identifier at the end.

For example, the URIref http://www.example.org/index.html#
Section2 consists of the URI http://www.example.org/index.html
and (separated by the “#” character) the fragment identifier Section2.
RDF URIrefs can contain Unicode characters, allowing many languages
to be reflected in URIrefs.

In order to obtain a human-readable identifiers, a namespace can
be declared: this way the URI part of an URIref can be mapped in a
prefix (also called QName, from eXtensible Markup Language (XML)),
obtaining something like <prefix>:<fragment-id>.

In order to obtain World Wide Web (WWW) compatibility the number
sign (“#”), used as URIref’s components separator, can be substituted
by a slash (“/”); in particular the latter should be used to define a tax-
onomy of concepts (when the vocabulary is very large) split in several


http://www.example.org/index.html#Section2
http://www.example.org/index.html#Section2
http://www.example.org/index.html

2.1 W3C SPECIFICATIONS |

tiles, while the former should be adopted when referring to a simple
entity' [Hebler ef al., 2009].

Literals are used to identify values such as numbers and dates by
means of a lexical representation. Anything represented by a literal
could also be represented by a URI, but it is often more convenient or
intuitive to use literals.

A literal may be the object of an RDF statement, but neither the sub-
ject nor the predicate.

Literals can be plain or typed :

o A plain literal is a string combined with an optional language tag.
This may be used for plain text in a natural language. As recom-
mended in the RDF formal semantics, these plain literals are self-
denoting, meaning that they should be understandable as they
are.

o A typed literal is a string combined with a datatype URI. It denotes
the member of the identified datatype’s value space obtained by
applying the lexical-to-value mapping to the literal string.

An example of a plain literal with language tag is "car"@en (only
“car” if language tag is omitted), while a typed literal is some-
thing like "35"""<http://www.w3.0rg/2001/XMLSchema#integer> (or
xsd:integer if xmlns:xsd="http://www.w3.0rg/2001/XMLSchema" has
been declared).

RDF/XML format

As stated by its name, RDF/XML exploits the XML language to repre-
sent RDF statements.

This choice make the format really handy for a machine and that’s
why it has been chosen as normative language for RDF exchange. De-
spite this, a document of this type cannot be correctly interpreted if
it is partial, because some information could be missing: for example
if some tags are not closed a parser will fail. In conclusion this for-
mat doesn’t fit streaming serialization cases, as a counterpart N-Triples
format fits better.

RDF/XML syntax is reported in the following (with reference to the
presented example).

Listing 1: A RDF/XML Snippet

<?xml version="1.0"7>

<!-- Namespaces declaration -->

<rdf:RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:exterms="http://www.example.org/terms/"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

NN A W R

1 This convention is useful in order to be compatible with browsers

7

Literals


http://www.w3.org/2001/XMLSchema#integer
http://www.w3.org/2001/XMLSchema

8 | SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

8

9 <!-- Description of a resource -->

10 <rdf:Description

11 rdf:about="http://www.example.org/index.html">

12 <!-- Example of datatype tag -->

13 <exterms:creation-date

14 rdf:datatype="http://www.w3.0rg/2001/XMLSchema#date">
15 1999-08-16

16 </exterms:creation-date>

17 </rdf:Description>

18

19 <rdf:Description

20 rdf:about="http://www.example.org/index.html">

21 <!-- Literal property -->

22 <dc:language>en</dc:language>

23 </rdf:Description>

24

25 <rdf:Description

26 rdf:about="http://www.example.org/index.html">

27 <!-- Property which points to a resources -->

28 <dc:creator

29 rdf:resource="http://www.example.org/staffid/85740"/>
30 </rdf:Description>

31

32 <rdf:Description

33 rdf:about="http://www.example.org/staffid/85740">
34 <!-- Example of language tag -->

35 <foaf:name xml:lang="en">Bob Smith</foaf:name >

36 </rdf:Description>
37 </ rdf:RDF>

Looking at listing 1 we can infer some information:

e The root of an RDF/XML is the <rdf:RDF> tag, with namespaces
declarations, which are used to import external vocabularies. A
vocabulary is an RDF model, expressed in Resource Description
Framework Schema (RDFSchema), which defines a set of classes
and properties.

¢ Inside the root some <rdf:Description> tags are listed (order
doesn’t matter): each description is about a resource, specified in
the rdf:about attribute via its URIref. A description is defined by
a set of properties, contained in it

— Each property is defined by a tag named as the property
itself

— If the property should point to a resource then its URIref
should be specified in the rdf:resource attribute

— If the property expects a literal then the value is written in-
side property’s tags.



O 0N ONuU A~ WN R

N N B B oR R R Rl R R e
H O O N O U A~ W N R O

N
N

2.1 W3C SPECIFICATIONS |

e Given the fact that literals are String representations of a value,
it is possible to specify the language tag and/or the datatype tag: the
former specifies the language in which the String is written, the
latter specifies the original value datatype.

This description is really verbose and as the model grows even the
number of tags grows too. A first method to reduce the dimension of
produced documents is defining the properties, which are relative to
the same resource in the same description.

Moreover if resources to be described have a rdf: type statement (see
RDFSchema specification, on Section 2.1.2), then it is possible to replace
the <rdf:Description> tag with a specific tag reporting the name of
the relative rdf:Class. This method is similar to the one used to define
properties.

The result is reported in the following (see Listing 2):

Listing 2: A more compact RDF/XML description

<?xml version="1.0"7>

<rdf:RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:exterms="http://www.example.org/terms/"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

<exterms:WebPage
rdf:ID="http://www.example.org/index.html">
<exterms:creation-date
rdf:datatype="http://www.w3.0rg/2001/XMLSchema#date">
1999-08-16
</exterms:creation-date>
<dc:language>en</dc:language>
<dc:creator
rdf:resource="http://www.example.org/staffid/85740"/>
</exterms:WebPage>

<exterms:Developer rdf:ID="http://www.example.org/staffid/85740">
<foaf:name xml:lang="en">Bob Smith</foaf:name >
</exterms:Developer>
</rdf:RDF>

Obviously exterms:WebPage and exterms:Developer should be two
classes defined somewhere referred by the exterms namespace declara-
tion.

Turtle format

This is the most human-readable format, in fact Turtle provides a com-
pact representation of each resource with all its properties reported
below it. Despite its structural similarities with RDF/XML (see last
RDF/XML example, on Listing 2) the absence of tags, which has been

9

Reducing Verbosity:
The typed node
abbreviation



10

O 0N OoNuU A~ WN R

BB
= O

R
N

=
W

14

15
16
17
18
19
20

=

NN O U A~ WN

| SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

substituted with indentation, punctuation and brackets, let the focus
be maintained on information.

The shared example, formatted in Turtle, looks like in the following
(N.B.: sharp-starting lines are comments).

Listing 3: The example expressed in Turtle

# Namespaces declarations

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix dc: <http://purl.org/dc/elements/1.1/> .

@prefix ex: <http://www.example.org/> .

@prefix exterms: <http://www.example.org/terms/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

# Each resource is followed by an
# indented list of properties, separated by ";"
# and terminated by "." (as each statement)
ex:index.html
# Example of datatype tag
exterms:creation-date "1999-08-16"""<http://www.w3.0rg/2001/
XMLSchema#date> ;
# If a Property has more than one value than value list is comma-
separated
dc:language "en" ;
# URIref are enclosed in angle brackets
dc:creator <http://www.example.org/staffid/85740> .

# Example of language tag
<http://www.example.org/staffid/85740> foaf:name "Bob Smith"@en .

Obviously, in order to declare the type of a class, the rdf:type prop-
erty can be specified. Generally, in this case, type declaration is stated
as first and written in the same line of the resource’s URIref. A typi-

cal shorthand adopted in Turtle is using “a” in place of “rdf:type”, as
shown in the following listing:

Listing 4: A shortcut for type definition in Turtle

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .
@prefix ex: <http://www.example.org/> .

@prefix exterms: <http://www.example.org/terms/> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

# In alternative rdf:type property can be used
<http://www.example.org/staffid/85740> a exterms:Developer ;
foaf:name "Bob Smith"@en .

Turtle is defined as a subset of N3: in order to empower readability
part of its expressive power has been reduced.
N-Triple format

This is the simplest format. It consist in listing all RDF triples that
compose the model. This feature make it convenient when a model



AUl A~ W N R

2.1 W3C SPECIFICATIONS | 11

needs to be streamed over the network, in fact each line represent a
complete statement.

As usual, the example, in N-Triples format, is reported in the follow-
ing; for the sake of brevity only information about the developer has
been listed.

Listing 5: A N-Triples example
<http://www.example.org/staffid/85740>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://www.example.org/terms/Developer>
<http://www.example.org/staffid/85740>
<http://xmlns.com/foaf/0.1/name>
"Bob Smith"@en

In order to distinguish an URIref from a Literal the former is en-
closed in angle brackets (<...>), the latter in double quotes ("...");
this notation equals to the one used in Turtle.

In this notation no prefix can be declared, according to the streaming-
friendly policy, so they have not been used. This way each line is mean-
ingful and does not depends from other ones Sometimes this rule is
overcome to obtain a more human-readable format, such as while de-
bugging, but it’s not a common practice, because the reader should
know in advance Prefix to URIref mapping (otherwise information are
useless).

ADVANCED FEATURES What have been presented are the fundamen-
tals of RDF. In the following we will walk to some advanced construct.

A blank node is a resource whose URIref has not been designated to
be globally valid; this feature is achieved by omitting URIref’s names-
pace (generally, in Turtle, is indicated with an underscore).

Blank nodes are used to represent existential variables, that are vari-
ables not bound to a specific resource, because they model an abstract
concept. An example is the phrase: “There’s someone special out there for
everyone.”: in order to express this information in RDF we cannot use
specific resources because the concepts of someone and everyone are
generic.

Stating that a person has a residence at a particular address is poten-
tially another use case. In this example, if we use a global variable, we
are forced to identify a particular residence and, in case we have two
models defining a globally valid residence, their merge would produce
a double residence. On the other side, if we use a blank node, the res-
idence, which is only a mean to associate a residency to a person, has
only local meaning and the model is correct.

Examples of how to use blank nodes are also reported in the para-
graphs about Reification and RDF Containers (see RDF List example,
on Listing 9). Here we report only the shorthand provided by Turtle to
obtain a compact formalization (with reference to the residency exam-
ple[Hebler et al., 2009]).

Blank nodes



Reification

RDF Containers

12

N oUW N

O 0Ny O U A WN R

[y
o

| SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

Listing 6: Blank nodes in action

@prefix ex: <http://example.org/residences> .
@prefix sw: <http://semwebprogramming.net/resources#> .

sw:Bob sw:hasResidence [
sw:isInCity "Arlington" ;
sw:isInState "VA"
|

The Reification process consist in stating something about another RDF
statement. This is an extremely valuable tool for practical Semantic Web
systems. It can be employed to qualify or annotate information in use-
ful ways. One application might be to tag information with provenance
or with a creation timestamp.

As usual an example is reported in the following.

Listing 7: Reification in action

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf.syntax-ns#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix : <http://www.semanticwebprogramming.net/people> .

:Matt :asserts _:stmt .

_:stms a rdf:Statement ;
rdf:subject :John ;
rdf:predicate foaf:knows ;
rdf:object :Ryan .

In this RDF model we stated that “Matt says that John knows Ryan”.
A RDF Statement is a resource which always has three properties: a
rdf:subject, a rdf:predicate and a rdf:object.

RDF defines three types of resources that are understood to be collec-
tions of resources:

RDF:BAG (OR RDF:LIST) is used to represent an unordered grouping
of resources

RDF:SEQ is used to represent an ordered one

RDF:ALT a rdf:Bag whose elements represents equivalent alternatives

In order to fill the container there are two available options: (1) state a
relation from the container to the contained resource whose predicate is
rdf:_n, where n is the resource position, or (2) state a simpler relation
whose predicate is rdf:1i; in the latter case the ordering determines
the actual position.

In the following an example, in Turtle notation, is reported:

Listing 8: RDF Containers: a rdf:Bag

@prefix ex: <http://www.example.org/> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf.syntax-ns#> .



O O NN O~ W

10

11

O N Ol A W N KR

I T T S G O SO
©®3 o0U A W N R O

=

AN Ul A~ W N

2.1 W3C SPECIFICATIONS | 13

@prefix people: <http://www.semwebprogramming.org/people> .

ex:Authors a rdf:Bag

rdf:_1 people:Ryan # or rdf:li
rdf:_2 people:Matt # or rdf:li
rdf:_3 people:Andrew # or rdf:li
rdf:_4 people:John # or rdf:li

ex:Book ex:writtenBy ex:Authors

Unfortunately if we have two models that refer to a homonymous
bag like the ex:Authors one, the result of a merge will be a single bag
containing all the authors. To solve this problem, in the case this is ac-
tually a problem, an rdf:List can be used, in fact this class represents
a sealed list, defined recursively (see the following listing, in Turtle).

Listing 9: RDF Containers: a rdf:List

@prefix ex: <http://www.example.org/> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf.syntax-ns#> .
@prefix people: <http://www.semwebprogramming.org/people> .

ex:Authors a rdf:List ;
rdf:first people:Ryan ;
rdf:rest _:rl .

_:rl a rdf:List ;
rdf:first people:Matt ;
rdf:rest _:r2 .

_:r2 a rdf:List ;
rdf:first people:Andrew ;
rdf:rest _:r3 .

_:r3 a rdf:List ;
rdf:first people:John ;
rdf:rest rdf:nil .

ex:Book ex:writtenBy ex:Authors

This can be a valuable tool, but it is an extremely awkward, cumber-
some and unreadable way to represent RDF lists. Thankfully, Turtle
provides very concise shorthand to represent RDF lists; previous exam-
ple can then be reviewed as follows (on Listing 10).

Listing 10: RDF Containers: a handier rdf:List

@prefix ex: <http://www.example.org/> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf.syntax-ns#> .
@prefix people: <http://www.semwebprogramming.org/people> .

ex:Book
ex:writtenBy (people:Ryan people:Matt people:Andrew people:John)

The syntax of the other structures has not been reported here, be-
cause they are similar. More details can be found in [Hebler et al., 2009;



14

1

2
3

4
5

| SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

W3C, 2004], which has been adopted as source of material for this sec-
tion.

2.1.2 RDF Schema

RDF provides a way to express simple statements about resources, us-
ing named properties and values. However, RDF user communities
also need the ability to define the vocabularies (terms) they intend to
use in those statements, specifically, to indicate that they are describing
specific kinds or classes of resources, and will use specific properties in
describing those resources.

That’s what RDFSchema was born for. RDFSchema provides the
facilities needed to define those classes and properties. In other words,
RDFSchema provides a type system for RDF [W3C, 2004]. The RDFSchema
type system is similar in some respects to the type systems of object-
oriented programming languages such as Java.

The RDFSchema facilities are themselves provided in the form
of an RDF vocabulary; that is, as a specialized set of predefined
RDF resources with their own special meanings. The resources in the
RDFSchema vocabulary have URIrefs with the prefix http://www.w3.0rg/
2000/01/rdf-schema# (conventionally associated with the namespace prefix
rdfs) [W3C, 2004]. Vocabulary descriptions (schemas) written in the
RDFSchema language are legal RDF graphs.

The following subsections will illustrate RDFSchema’s basic re-
sources and properties.

Describing a taxonomy

In RDFSchema is possible to define a taxonomy of concepts exploiting
two simple URIrefs:

RDFS:CLASS which represents a generic type or category

RDFS:SUBCLASSOF which models that the subject class extends or spe-
cialize the object one

A new class can be defined asserting that a resource has rdf:type
the resource rdfs:Class; the subject resource will be the new class. For
example, in Turtle notation, we can say that (namespaces declaration
has been omitted, but are the same as in RDF specification, on Sec-
tion 2.1.1):

Listing 11: An example of class definition

@prefix ex: <http://www.example.org/> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf.syntax-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

ex:MotorVehicle rdf:type rdfs:Class .



http://www.w3.org/2000/01/rdf-schema#
http://www.w3.org/2000/01/rdf-schema#

AU A~ W N R

2.1 W3C SPECIFICATIONS |

Obviously this new class can be the object of a rdf: type assertion. In
order to specify that a class is subclass of another one (like in “A truck
is a motor vehicle”) we can state:

Listing 12: Example of subclassing

@prefix ex: <http://www.example.org/> .
@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf.syntax-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .

ex:Truck rdf:type rdfs:Class .
ex:Truck rdfs:subClassOf ex:MotorVehicle .

As said while explaining RDF/XML notation (see Footnote 1), once
a vocabulary has been defined, it can be used to exploit typed node
annotation.

Defining properties

After defining classes, another useful feature is defining which proper-
ties characterize those classes. This can be done through the following
URIrefs:

RDF:PROPERTY the object of an rdf:type statement used to define a new
property (like in class definition)

RDFS:DOMAIN a predicate used to specify the classes (object) which
the property (subject) applies to

RDFS:RANGE a predicate used to specify the range of possible prop-
erty’s values, in particular what kind of classes (one, more than
one, a subset, and so on)

The latter statement should be interpreted only if present: if no range has
been specified nothing should be inferred. Another consideration is
that in this way the definition of properties is not part of class defini-
tion, like in the Object-Oriented Paradigm (OOP); this choice has some
consequences (in agreement with RDF’s open world assumption, see
Section 2.1.3):

o A defined property can be applied to every classes that wanted to
have it just by adding a rdfs:domain, in particular to classes that
has not defined yet;

e Once defined a property has a global scope, so it has a unique
(set of) range(s) and a unique (set of) domain(s):

— Is not possible to have locally-different ranges or domains
for a property

- If a new range (or domain) is defined somewhere, then it
become globally valid

15



16

O Oy OB~ WON KR

10
11

12

13

| SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

It's also possible to state the rdfs:subPropertyOf relation, like for
classes. A complete example is reported in the following;:

Listing 13: An example of property definition

@prefix ex: <http://www.example.org/> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf.syntax-ns#> .
@prefix rdfs: <http://www.w3.0rg/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.0rg/2001/XMLSchema#>

ex:Person rdf:type rdfs:Class .
ex:age rdf:type rdf:Property .
ex:age rdfs:range xsd:integer .
ex:age rdfs:domain ex:Person .
ex:legalAge rdf:type rdf:Property .

ex:legalAge rdfs:subProperty0Of ex:age .

Looking at this example a person could think about how to specify
the range of ex:legalAge property, which is an xsd:integer whose
value is greater than 18 (or 21 if we're in the USA). It is simply not
possible in RDFSchema; in order to have that expressive power OWL
is needed (see Section 2.1.3 in the following).

21.3 OWL

Web Ontology Language (OWL) is a tool for specifying semantics and
defining knowledge models. It can be said that OWL represents an
extension of RDFSchema, which provides more expressive power, but,
in order to provide that power, it's computational complexity raises
and in some cases becomes a not-decidable problem.

With the aim of limiting this problem from the whole specification,
called OWL-Full, some subsets and profiles has been defined, provid-
ing limited versions of the language, otherwise useless. A diffuse ex-
ample is OWL-Description Logic (OWL-DL), named after Description
Logic because it provides many of the capabilities of this kind of logic,
which is an important subset of first-order logic; other examples are
OWL-E Logic (OWL-EL), which is designed to perform consistency
checks and instance-class mapping in polinomial-time, and OWL-Q
Logic (OWL-QL), which is designed to enable the satisfiability of con-
junctive queries in logspace with respect to the number of assertions in
the queried knowledge base [Hebler et al., 2009].

OWL is merely an ontology language; it is not an application. As such,
OWL alone doesn’t really do anything, but combined with a reasoner
like Pellet (see Section 2.2.2), represent the added value against other
approaches for exchanging information. A reasoning engine (or rea-
soner) is a system that infers new information based on the contents of a
knowledge base. This can be accomplished using rules and a rule engine,



2.1 W3C SPECIFICATIONS |

triggers on a database or RDF store, decision trees, tableau algorithms,
or even programmatically using hard-coded business logic. Many Se-
mantic Web frameworks perform inference using rules-based reasoning
engines. These engines combine the assertions contained in a knowledge base
with a set of logical rules in order to derive assertions or perform actions.
Rules comprise two parts, modeling an if-then statement. The first part
is the condition for the rule, and the second part is conclusion of the
rule. Rules can be used to express much of the semantics of OWL and as a tool
for users to express arbitrary relationships that cannot otherwise be modeled
in OWL.

An ontology purpose is letting a concept be machine-understandable.
Generally these concepts are spread in the WWW, so the knowledge
base (expressed in RDF) is considered distributed. In the same way
RDF supports distribution, OWL should support it too; this is called
distributed knowledge. To provide a foundation on which to make
valid inferences in this model, we must make two important assump-
tions:

OPEN WORLD ASSUMPTION : not knowing whether a statement is ex-
plicitly true does not imply that the statement is false; in this
context new information must always be additive. It can be con-
tradictory, but it cannot remove previously asserted information.

NO UNIQUE NAMES ASSUMPTION : it is unreasonable to assume that
everyone is using the same URI to identify a specific resource;

unless explicitly stated otherwise, you cannot assume that resources that
are identified by different URIs are different.

An ontology, expressed in OWL-Full version 2.0, is composed by:
¢ Ontology header

Classes and individuals

Properties: object and datatype

Annotations

Datatypes: standard or restricted

Ontology header

An ontology header is a resource that represents the ontology itself,
containing comments, labels, versioning and a list of the imported on-
tologies, which is very important because it instructs the reasoner to
refer to them to in order to comprehend the expressed concepts and
relationships.

17



18

| SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

Classes and individuals

An OWL class is a special kind of resource that represents a set of re-
sources that share common characteristics or are similar in some way. A
resource that is a member of a class is called an individual and represents an
instance of that class.

Like in RDFSchema two classes might be one the subclass of the
other; but, when not explicitly stated, a class is automatically subclass
of owl:Thing (similarly to Java with Object). In OWL owl:Nothing is
also defined: it is the subclass of every class, so specialized that it has
literally no individuals (its an empty class).

Another relevant concept is class equivalence, in fact in general two
classes, even if has the same local name, may express different ideas.
Two classes are equivalent only if explicitly stated in the ontology, otherwise
they aren’t; extension does not imply equivalence because they are asserted
with different unrelated properties.

The individuals of a class may be uniquely identified by a subset of
their properties (other than by URIref); these properties determine a
key, which can be enumerated in a special property called owl:hasKey.

Properties
In OWL properties can be of two types, based on the resources used:
OWL:DATATYPEPROPERTY : these properties has a literal object

OWL:0BJECTPROPERTY : these properties state a relation between two
individuals

The predicates rdf:domain and rdf:range globally define the class
membership for property subject and object. This implies that a
class which does not match with membership definition cannot use
those properties, avoiding unwanted and unpredicted inferences; if
ex:name is a property for ex:Mammal and we use the same property
for ex:Institution we automatically assume that an institution is a
mammal, which is false.

As with classes, properties can be arranged into taxonomies using
the property rdfs:subProperty0f. Be careful that asserting that prop-
ertyz is sub-property of property: implies that two resources in re-
lationship by propertyz are also related by propertyi. Similar to
owl:Thing and owl:Nothing, owl:topObjectProperty and owl:bottom
ObjectProperty represents the most general an most specific proper-
ties of the taxonomy with reference to owl:0bjectProperties domain;
owl:topDataProperty and owl:bottomDataProperty are the same for
owl:DataProperties.

Other features of properties, descending from mathematics, are:

INVERSE PROPERTIES : a property that states the inverse relationship
stated by another property (e.g. if A owns B then B isOwnedBy
A)



NN A W R

2.1 W3C SPECIFICATIONS |

DISIOINT PROPERTIES : if two resources are related by propX then
they cannot be related by propY (e.g. if A hasFather B then not(A
hasMother B))

PROPERTY CHAINS : using a couple or more properties two define a
new one (e.g. if A hasFather B and B hasBrother C then A hasUn-
cle C)

SYMMETRIC, REFLEXIVE, TRANSITIVE PROPERTIES : like in mathe-
matic relationships

(INVERSE) FUNCTIONAL PROPERTY : each subject (object) is related to
only one object (subject)

While in general a property is stated in order to assert that some-
thing is true, it is also possible to define the opposite (that if stated
then something is false) using the type owl:NegativeProperty. The
following example models that is not true that ex:Daisy ex:hasOwner
ex:Amber.

Listing 14: An example of Negative Property Assertion

@prefix ex: <http://example.org/> .

[1 rdf:type owl:NegativePropertyAssertion;
owl:sourceIndividual ex:Daisy;
owl:assertionProperty ex:hasOwner;
owl:targetIndividual ex:Amber.

Annotations

Annotations are statements that describe resources using annotation
properties. Annotation properties are semantics-free properties.

Common examples of annotations are: rdf:label, rdf:comment and
rdf:versionInfo.

Datatypes

Datatypes represent ranges of data values that are identified using
URIs. OWL allows you to use a number of predefined datatypes, most
of which are defined in the XML Schema Definition (XSD) namespace.

Otherwise OWL allows the definition of custom datatypes, in two
ways:

e by Datatypes Restriction, which consists in defining a new
rdfs:Datatype and specifying:
OWL:ONDATATYPE : a primitive datatype

OWL:WITHRESTRICTIONS : a list of facets (constraints) on data
value, length, char pattern and so on

19

Negative Property
Assertion



20

O O3 Ol A W N KR

| SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

¢ by Definition in terms of other Datatypes, in particular by inter-
section or union of a bunch of datatypes (primitive or custom)

Property Restrictions

A property restriction describes the class of individuals that meet the
specified property-based conditions. The restriction is declared using
the construct owl:Restriction, and the property to which the restric-
tion refers is identified using the property owl:onProperty.

Restrictions are applied to a particular class by stating that the
class is either a subclass (rdfs:subClass0f) or the equivalent class
(owl:equivalentClass) of the restriction. In the former case all members
of the class must meet the conditions specified by the restriction, in the
latter case class members must meet the conditions of the restriction
and any individual who meets the conditions of the restriction is implicitly
a member of the class (restriction specifies conditions that are not only
necessary but also sufficient).

The OWL specification requires that restriction cannot be named
and must be defined using anonymous resources. This is a reasonable
condition because restrictions are relevant only to the context of the
class in which they are defined and never need to be referred to.

There are three types of Property Restrictions: (1) Value restriction, (2)
Cardinality restriction and (3) Qualified cardinality description, which
is a combination of the former two.

VALUE RESTRICTION A Value restriction can be formalized in three
different ways, whose difference is relative to the number of occur-
rences of the restricted property that must fit the constraint.

OWL:ALLVALUESFROM states that each occurrence of the property (if
any) must have the object value in the specified range

OWL:SOMEVALUESFROM states that at least one occurrence of the prop-
erty must have the object value in the specified range

OWL:HASVALUE states that an occurrence of the property must have the
specified object value

Listing 15: Some examples of Value Restrictions

@prefix ex: <http://example.org/>.

# owl:allValuesFrom example
# This restriction defines a class, ex:CallableEntities,
# whose name have a range of xsd:string
ex:CallableEnties rdfs:subClassOf [

rdf:type owl:Restriction;

rdf:onProperty ex:name;



10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

O 0Ny O~ WN R

HooR
= O

[
N

[
w

2.1 W3C SPECIFICATIONS |

owl:allValuesFrom xsd:string

1.

# owl:someValuesFrom example
# This restriction defines a class whose members
# extends a serializeable class
ex:SerializeableClass rdfs:subClassOf [

rdf:type owl:Restriction;

rdf:onProperty ex:extends;

owl:someValuesFrom ex:SerializeableClass;

I c

# owl:hasValue example

# This restriction define a class of mammals
# whose owner is ex:Ryan

ex:Mammal rdf:type owl:Class.

ex:hasOwner rdf:type owl:0bjectProperty.

ex:PetsOfRyan rdf:type owl:Class;
rdfs:subClassOf ex:Mammal;
rdfs:subClassOf(
rdf:type owl:Restriction;
owl:onProperty ex:hasOwner;
owl:hasValue ex:Ryan

1.

There’s also another type of value restriction, owl:SelfRestric
tion, which states that value of the property is the subject itself.
owl:SelfRestriction is an alternative to owl:Restriction.

Listing 16: Defining an owl:SelfRestriction

@prefix ex: <http://example.org/>.

# owl:SelfRestriction example.
ex:cleans rdf:type owl:0bjectProperty.

# Self cleaners are all individuals who clean
# themselves (range is implicit)
ex:SelfCleaner rdf:type owl:Class;
owl:equivalentClass [
rdf:type owl:SelfRestriction;
owl:onProperty ex:cleans

1.

CARDINALITY RESTRICTION It provides a way to specify how many
occurrences of the property are required. This can be done using the
following predicates (obviously N >= 0):

OWL:MINCARDINALITY , #occs >= N

OWL:MAXCARDINALITY , #occs <= N

21

owl:SelfRestriction



22

=

XN O Ul A~ W N

O Oy Ol A W N KR

[ T W = S S G S
oW A O N R O

17
18

20
21
22
23
24

26

27
28

29

| SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

OWL:CARDINALITY , #occs ==

Listing 17: An example of Cardinality Restriction

@prefix ex: <http://example.org/>.

ex:Person rdfs:subClassOf [
rdf:type owl:Restriction;
owl:onProperty ex:name;
owl:cardinality 1
1.

QUALIFIED CARDINALITY RESTRICTION It represents a way to define
both cardinality and type. It is useful to model a system made of some
components of which you need to assert that there are N components of
type X, M components of type Y and so on.

Listing 18: An example of Qualified Cardinality Restriction

# This examples models that a person has 2 biological
# parents: a male and a female.
@prefix ex: <http://example.org/>.

ex:Person rdf:type owl:Class;

ex:Male rdf:type owl:Class;
rdfs:subClassOf ex:Person.

ex:Female rdf:type owl:Class;
rdfs:subClassOf ex:Person.

ex:hasBiologicalParent rdf:type owl:0bjectProperty.

ex:Person rdfs:subClassOf [

rdf:type owl:Restriction;
owl:cardinality 2;
owl:onProperty ex:hasBiologicalParent
1

rdfs:subClassOf [
rdf:type owl:Restriction;
owl:qualifiedCardinality 1;
owl:onProperty ex:hasBiologicalParent;
owl:onClass ex:Male
1;

rdfs:subClassOf [
rdf:type owl:Restriction;
owl:qualifiedCardinality 1;
owl:onProperty ex:hasBiologicalParent;
owl:onClass ex:Female

1o




O O NN O A~ WN R

I S S O S
o U A W N R O

O 0N O Ul A~ WN R

e T T S S e S ST o
oy oW A W N R O

2.1 W3C SPECIFICATIONS | 23

Advanced Class Description
OWL provides a few more methods for describing classes.
ENUMERATING CLASS MEMBERSHIP  In some cases you may be inter-

ested in the enumeration of the only individuals that can be members
of a defined class. This can be done with the predicate owl:one0f.

Listing 19: How to enumerate class instances

@prefix ex: <http://example.org/>.

ex:Daisy rdf:type ex:Canine.

ex:Cubby rdf:type ex:Canine.
ex:Amber rdf:type ex:Canine.
ex:London rdf:type ex:Canine.

# Each friend of Daisy’s is explicitly included in this class
ex:FriendsOfDaisy rdf:type owl:Class;
owl:oneOf (
ex:Cubby
ex:Amber
ex:London

SET OPERATORS In order to define new classes it could be useful
to specify that a class is the union, intersection or complementary of
two or more classes. That’s why owl:union0f, owl:intersectionOf,
owl:complementaryOf exists. An example of each one is reported in
the following.

Listing 20: Using set operators

@prefix ex: <http://example.org/>.

# Example 1: intersection of
ex:PetsOfRyan rdf:type owl:Class;
owl:intersectionOf (
ex:Mammal
[
rdf:type owl:Restriction;
owl:onProperty ex:hasOwner;
owl:hasValue ex:Ryan

# Example 2: union of
ex:isFriendsWith rdf:type owl:0bjectProperty.

ex:FriendsOfRyan rdf:type ex:Class;



24

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

=

U A~ N

| SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

owl:unionOf (

[
rdf:type owl:Class;
owl:oneOf (

ex:Daisy

)

]

ex:FriendsOfDaisy

[
rdf:type owl:Restriction;
owl:onProperty ex:isFriendsWith;
owl:hasValue ex:Ryan

#Example 3: complement of
ex:EnemiesOfRyan rdf:type owl:Class;
owl:complementOf ex:FriendsOfRyan.

DISIOINTED CLASS  Similarly to properties case it is possible to define
that if an individual is instance of a class it cannot be also instance of another
class, called disjointed.

Listing 21: Example of Disjoint class

@prefix ex: <http://example.org/>.

# canine and human are disjoint classes
ex:Canine owl:disjointWith ex:Human.

In order to reduce the time spent in defining disjunctions (which is
considerably augmenting with the model size), some shorthands has
been defined:

OWL:ALLDISIOINTEDCLASSES is an anonymous resource whose
owl:members property refers to a list of classes that will be con-
sidered disjointed. Listed classes must be defined as subclasses
of the same root type.

OWL:DISJOINTUNIONOF let directly define a class as the union of a list
of disjointed classes

The drawback of the use of a disjoint union to define a superclass is
that any future attempt to incorporate a new subclass will require you
to redefine the disjoint union to include the new subclass.

Let’s present some examples (Listing 22).

Listing 22: Shortcuts for Disjoint class definition

@prefix ex: <http://example.org/>.



O O NN O~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

2.1 W3C SPECIFICATIONS |

# --> Example 1
# canine and human are disjoint classes
ex:Canine owl:disjointWith ex:Human.

# --> Example 2
ex:Animal rdf:type owl:Class.

ex:Bird rdf:type owl:Class;
rdfs:subClassOf ex:Animal.

ex:Lizard rdf:type owl:Class;
rdfs:subClassOf ex:Animal.

ex:Feline rdf:type owl:Class;
rdfs:subClassOf ex:Animal.

# Each of the classes is pair-wise disjoint
_: rdf:type owl:AllDisjointClasses;
owl:members ( ex:Bird ex:Lizard ex:Feline ex:Canine ).

# --> Example 3
# Each of the classes is pair-wise disjoint
# and Animal is the union of those classes
ex:Animal owl:disjointUnionOf (

ex:Bird

ex:Lizard

ex:Feline

ex:Canine

Equivalence in OWL

At this point the last thing to be told is how OWL states the equivalence
between two entities.

There are several ways of defining an equivalence and each one of
them involves different type of entities, which involves: Individuals,
Classes, or Properties.

EQUIVALENCE AMONG INDIVIDUALS It can be stated in two ways: (1)
asserting that two individuals are equal, (2) assuring that two individ-
uals have nothing in common (not-equals).

In the former case the owl:sameAs predicate is used to suggest that
two URIref refer to the same resource, even if syntactically different,
while in the latter case the owl:differentFrom predicate is available.
owl:AllDifferent can be used In order to reduce the number of decla-
rations, like for disjoint classes:

This property is very important, because the combination of the open
world assumption and the no unique names assumption results in an
environment where there are very few situations in which you can as-
sume that resources identified by different URIs are actually different.

25



26

| SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

Listing 23: Example of Equivalence among Individuals

@prefix ex: <http://example.org/>.

# owl:sameAs example
<mailto:rblace@bbn.com>
owl:sameAs <http://example.org/people#rblace>.

# owl:AllDifferent example
[1 rdf:type owl:AllDifferent;
owl:distinctMembers (
ex:Daisy
ex:Cubby
ex:Amber
ex:London

EQUIVALENCE AMONG CLASSES When asserted (via the owl:
equivalentClass) causes two classes to be considered as a single re-
source.

EQUIVALENCE AMONG PROPERTIES When you assert that two prop-
erties are equivalent (via the owl:equivalentProperty), the property
descriptions are combined. Every statement that uses one of the properties
as a predicate implicitly exists with the other equivalent property as a predicate
as well.

2.1.4 SPARQL

Simple Protocol and RDF Query Language (SPARQL) is a W3C Recom-
mendation; other alternatives exists (e.g. RDQL and SeRQL) but they
are not recommended so they will not become a future standard.

The specification defines the concept of endpoint (or processor) as a
service (generally a Web service) that accept and processes SPARQL
queries and returns results in different formats, depending on the
query form, via HTTP, using the so called SPARQL protocol.

Despite the query language is the most visible and known part of
the specification, even the protocol is an important part of it, other-
wise clients and effector would not be able to interact. Following the
stream we will focus on the query language because it’s more relevant:
thanks to the Jena framework (see Section 2.2.1) it is possible to perform
queries without knowing the protocol.

SPARQL language is very similar to SQL, in particular for what con-
cerns the SELECT statement (obviously adapted in order to handle RDF
features). Unlike SQL, this language is read-only, in fact it does not
provide any statement that enables the requestor to modify RDF mod-



2.1 W3C SPECIFICATIONS |

els; This goal is reached using another language: SPARQL/Update
(SPARUL) which is described in Section 2.1.5
The four foundational query forms available in SPARQL are:

seLecT : like SQL SELECT it returns a table which reports all instances
(in this case statements, individuals) which can be found in places
enumerated in the FORM clause and fit a set of conditions speci-
fied in the WHERE clause, called graph pattern.

CONSTRUCT : it provides an easy and powerful way to map some RDF
information in a different, but legal, form; the result can be added
to or merged with other RDF stores.

Ask : it checks if a particular graph exists and returns the verdict as a
boolean value

DESCRIBE : it is an interesting tool that enables the interrogation of the
RDF store without requiring a specific knowledge of repository’s
data structure; in fact, given a few information, the endpoint will
decide what should be returned.

In the following subsections each form is covered in details, with a
particular focus on valid syntax.

SELECT statement

A simple SELECT query is structured as follows:

1. Preamble: it reports all prefixes that will be used in the query.
An example of prefix declaration is (similar to Turtle): PREFIX ex:
<http://www.example.org#>. In the same area a BASE can be
defined: in this way each time a relative URIref is specified the
BASE is taken to obtain the absolute one, like a sort of implicit
prefix. The syntax is similar to the previous one, just replace
PREFIX with BASE.

2. SELECT followed by the list of variables whose bindings should
be returned, or a star (“x+”) if every binding should be reported.
After the keyword is possible to specify some modifiers:

o DISTINCT in order to obtain a table without duplicates

o REDUCED in order to suggest (without imposing it) the ap-
plication of DISTINCT to the endpoint

¢ ORDER BY in order to require a sorting process: it uses
keywords ASC(?var) and DESC(?var)

e OFFSET and LIMIT are useful when returning a large
amount of data. Used with ORDER BY, which allows a cor-
rect handling (it makes result well-ordered and repeatable),
it instructs the endpoint to return at most LIMIT solutions,
starting from the OFFSET one

27



28 | SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

3.

WHERE { } which encloses a graph pattern (a set of partially spec-
ified RDF statements) which determines what kind of triples the
requestor is searching for. In order to have a valid clause, each
line specified should match Turtle syntax; if a term is a variable
its name should be prefixed by a question mark (“?”).

In order to add flexibility in quering, as the real world requires,
some keywords (to be used in graph pattern definition) have been in-
troduced:

FILTER returns a subset of pattern matching triples which verify the

O 0N o~ WON R

[
o

=
=

specified boolean conditions.

Listing 24: Example of FILTER usage
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>

PREFIX dbprop: <http://dbpedia.org/property/>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>
SELECT ?prop ?object
WHERE {
?person rdfs:label "George Washington"@en;
dbprop:presidentStart ?start;
?prop ?object.
FILTER(xsd:integer(?object) >= xsd:integer(?start) + 4)
}

opTIONAL allows to collect additional information without discarding

O 0N O U~ WON R

R
= O

=
N

=
W

any triple if it does not have them but leaving, a blank field in-
stead.

Listing 25: Example of OPTIONAL usage

# Hopefully all of George Washington'’s Namesakes!
PREFIX ex: <http://www.example.com/>

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX dbprop: <http://dbpedia.org/property/>

SELECT ?11 ?12 ?13 ?14
WHERE {
?person rdfs:label "George Washington'@en.
?11 dbprop:namedFor ?person.
OPTIONAL { ?12 dbprop:blankInfo ?person }
OPTIONAL { ?13 ex:isNamedAfter ?person }
OPTIONAL { ?person ex:wasFamousAndGaveNameTo ?14 }

If more than a pattern is specified inside an OPTIONAL clause, then
all of them should match, otherwise all mentioned fields are left
blank.

UNION let the specification of the result as all the triples that match at

least one of the specified sub-graph patterns.



O 0N OoNu A~ WN R

L
A~ W N B O

2.1 W3C SPECIFICATIONS |

Listing 26: Example of UNION usage
1 PREFIX foaf: <http://xmlns.com/foaf/0.1/>

2 SELECT =

3 WHERE {

4 { ?unknown foaf:gender "male" } UNION { ?unknown foaf:gender
"female2" } .

5 {

6 ?2unknown foaf:interest <http://www.iamhuman.com>

7 } UNION {

8 ?unknown foaf:interest <http://lovebeinghuman.org>

9 }

10 }

Until now data has been retrieved by a so called default graph, that’s
the repository where the endpoint searches for results. Generally a
query is run against at least one default graph and/or one or more
named graphs, which can be specified by the requestor via the FROM
and FROM NAMED clauses:

FrRom followed by an URIref enclosed in angle brackets
(FROM <http:// www.w3.org/People/Berners-Lee/vcard>).
Each specified repository is merged with the others and the
default graph (if any) and the pattern is applied to the whole
merged repository.

FROM NAMED allows the declaration of subgraph queries. While defin-
ing the WHERE clause, it is possible to scope each pattern, applying
it to a specific named graph or at each graph separately. In the
following example we want to obtain, for each repository, the list
of nickname and realname pairs of each known person”.

Listing 27: Example of subgraph queries

SELECT *

FROM NAMED <http://www.koalie.net/foaf.rdf>

FROM NAMED <http://heddley.com/edd/foaf.rdf>

FROM NAMED <http://www.cs.umd.edu/~hendler/2003/foaf.rdf>

WHERE {
GRAPH ?originGraph {
_:blankl foaf:knows _:blank2.
_:blank2 rdf:type foaf:Person;
foaf:nick ?nickname;
foaf:name ?realname

The blank node is used as a sort of hidden variable which can assume every value but
cannot be reported in the result table.

29



30

O 0N O Ul A~ WN R

=R
= O

R
N

[
[SS)

O 0N O Ul A~ WN R

SR
= O

R
N

| SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

CONSTRUCT statement

This statement runs a SELECT and then produces a set of RDF state-
ments using all values bound to the variables.
An example of its syntax is reported in the following.

Listing 28: Example of CONSTRUCT query

PREFIX myfriends: <http://www.example.com/2008/myfriends/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

CONSTRUCT {
?person rdf:type myfriends:Humanoid;
myfriends:handle ?rname;
myfriends:homepage ?hpage;
myfriends:informalName ?nick;
myfriends:email ?mbox.
?mbox myfriends:isOwnedBy ?person.
?hpage myfriends:isManagedBy ?person.
}
FROM NAMED ... # The following is like a SELECT query

The first part defines the structure of RDF triples that will be created,
in the second a SELECT query, which will provide values for the variable
that has been used, is stated (FROM, FROM NAMED and WHERE clauses).

ASK statement

ASK returns boolean values in response to a query. Given a graph pat-
tern, an endpoint can tell you whether or not the pattern exists in the
underlying data store. An example is reported in Listing 29.

Listing 29: Example of ASK query
PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX dbprop: <http://dbpedia.org/property/>
PREFIX xsd: <http://www.w3.0rg/2001/XMLSchema#>

ASK
WHERE {
?person rdfs:label "George Washington"@en;
dbprop:presidentStart ?startDate;
dbprop:presidentEnd ?endDate.
FILTER(xsd:integer(’1795") > xsd:integer(?startDate) &&
xsd:integer(?endDate) > xsd:integer(’1795"))

DESCRIBE statement

A statement of this type is useful in order to obtain a reasonable
amount of information about a resource even if we don’t know any-
thing about it.

Given a resource like dbpedia:George_Washington we can request:



=

N

AU A~ W N R

2.1 W3C SPECIFICATIONS |

Listing 30: Example of DESCRIBE query

PREFIX dbpedia: <http://dbpedia.org/resource/>
DESCRIBE dbpedia:George_Washington

Each endpoint has its own policy to handle this type of requests, so
the result is not standard and not every processor is able to provide it.

It is also possible to provide a WHERE clause and use a syntax like the
one in the following, but the former solution should be preferred.

Listing 31: DESCRIBE query with WHERE clause

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX dbpedia: <http://dbpedia.org/resource/>
DESCRIBE *
WHERE {
?person ?anyProperty dbpedia:George_Washington

}

Final note

All information that has been presented in this section is referred to
version 1.0 of the protocol, but since o5 January 2012 a new version (1.1)
has been submitted. It is now a Working Draft [W3C, 2012a], supported
by last releases of the technologies presented in Section 2.2.

2.1.5 SPARQL Update

SPARUL (a.k.a. SPARQL Update) is a language to express updates to a
Graph store; a Graph Store is a repository of RDF graphs managed by
a single service. SPARUL is intended to be a standard mechanism by
which updates to a remote RDF Store can be described, communicated
and stored. It is a companion language to SPARQL and is envisaged to
be used in conjunction with the SPARQL query language.

The reuse of the SPARQL syntax, in both style and detail, reduces
the learning curve for developers and reduces implementation costs.

SPARUL provides the following facilities:

e Insert new triples to an RDF graph.

e Delete triples from an RDF graph.

e Perform a group of update operations as a single action.
¢ Create a new RDF Graph in a Graph Store.

o Delete an RDF graph from a Graph Store.

SPARUL is not intended to distribute and exchange modifications
among different RDF stores.

In the following we report basic syntax for each statement (template,
pattern and triple entities are expressed in SPARQL syntax).



32 | SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

INSERT Inserts a set of triples

Listing 32: SPARQL/Update INSERT syntax

1 {"PREFIX" namespace-declaration}
2

3 "INSERT" ["DATA"] ["INTO" uri] "{"
4 (template | triples)

5 "}

6 [ "WHERE" "{"

7 pattern

8 "} ]

o If DATA is specified, then ground triples (no variables) must
be provided; otherwise a pattern should be specified

o This statement is a special case of a MODIFY statement
DELETE Removes a set of triples

Listing 33: SPARQL/Update DELETE syntax

1 {"PREFIX" namespace-declaration}
2

3 "DELETE" ["DATA"] ["INTO" uri] "{"
4 template

5 "}

6 [ "WHERE" "{"

7 pattern

8 "} ]

e Considerations made for the INSERT clause still hold.

moDIFY Modifies an RDF graph, deleting and inserting some RDF
triples in a single operation

Listing 34: SPARQL/Update MODIFY syntax

1 # UPDATE outline syntax : general form:
2 "MODIFY" [ <uri> ]

3 "DELETE" "{" template "}"

4 "INSERT" "{" template "}"

5 [ "WHERE" "{" pattern "}" ]

o The WHERE clause is evaluated only once

e DELETE must occur before INSERT

LoAD This statement copies all triples from the remoteURI to the speci-
fied (or default) graph.

Listing 35: SPARQL/Update LOAD syntax
1 "LOAD" <remoteURI> [ "INTO" <uri> ]




2.2 TECHNOLOGIES | 33

cLEAR This statement removes all triples in the specified (or default)
graph.

Listing 36: SPARQL/Update CLEAR syntax
"CLEAR" [ "GRAPH" <urix> ]

CREATE GRAPH This statement creates a new graph; the provide URI
will be its name.

Listing 37: SPARQL/Update CREATE GRAPH syntax
1 "CREATE" [ "SILENT" ] "GRAPH" <uri>

The SILENT keyword is intended to suppress a warning raised, by
the endpoint, if creating an already existing graph.

DROP GRAPH This operation removes the specified named graph from
the Graph Store associated with the SPARUL service endpoint.
After successful completion of this operation, the named graph is
no longer available for further graph update operations.

Listing 38: SPARQL/Update DROP GRAPH syntax
1 "DROP" [ "SILENT" ] "GRAPH" <uri>

The SILENT keyword is intended to suppress a warning raised, by
the endpoint, if removing a graph that does not exists.

Reported information has been taken from [W3C, 2008b] (for more Final note
detail follow the previous link). On January, 5 2012 a new working
draft, which introduces relevant modifications, has been published
(IW3C, 2012b]).

2.2 TECHNOLOGIES

The libraries reported in the following are not the only options avail-
able for working in the Semantic Web field: on Internet a plenty of so-
lutions exist, each one with its own strengths and weaknesses. Apache
Jena and Pellet have been chosen on the base of previous work from
SAPERE team members (WP1 and WP3), and because they’re two ma-
ture projects, providing a sufficiently stable and easy to exploit frame-
work, because developed in the Java programming language.

2.2.1  Apache Jena: RDF Graph Store

The Jena Semantic Web Framework, initially developed by HP labora-
tories and now moved to the Apache Incubator project?, provides a set

3 More details on Apache Incubator at http://incubator.apache.org/


http://incubator.apache.org/

34

12

14
15
16
17
18

| SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

of RDFStore implementations fitting different requirements and levels
of abstraction. At the higher level (the Application Programming In-
terface (API)) a store is called Model: its interface is meant to handle
information in the form of Resources, properties, URI, Literals and
Statements (each of these concept is explained in Section 2.1).

A Model can be created through a ModelFactory, which provides a
plenty of methods, designed to produce models with different capabil-
ities*:

DEFAULTMODEL is an elementary in-memory unnamed model, with no
persistence support (it means that model content is not automati-
cally serialized in files or databases when the application is shut
down).

INFMODEL is a model meant to be used in combination with a reasoner
for inferred statements storage

TDBMODELFACTORY is a totally different type of factory, meant to pro-
vide a realization tuned for high-performance applications, with
a database back-end which provides fast and persistent storage
with also ACID transaction support, through a write-ahead-logging
[Foundation, 2011]

Resources can be created an retrieved, calling createResource method,
decorated with properties (through createProperty, addProperty and
so on) inspected and deleted (1istXXX and removeXXX). An example of
usage is reported in the following listing.

Listing 39: Example of Jena API usage [Foundation and HP-Labs, 2010]

String personURI = "http://somewhere/JohnSmith";
String person2URI = "http://somewhere/JoeBlack";
String givenName = "John";

String familyName = "Smith";

String fullName = givenName + " " + familyName;

Model model = ModelFactory.createDefaultModel();

Resource johnSmith = model.createResource(personURI)
.addProperty(VCARD.FN, fullName)
.addProperty(VCARD.N,
model.createResource()
.addProperty(VCARD.Given,
givenName)
.addProperty(VCARD.Family,
familyName));

Resource joeBlack = model.createResource(person2URI)

4 only a relevant subset of all models has been reported



21
22
23
24

2.2 TECHNOLOGIES |

.addProperty(VCARD.FN, "Joe Black")
.addProperty(VCARD.EMAIL,
"joe.black@me.com");

model. remove (
model.listResourcesWithProperty(VCARD.N));

In order to obtain quering capabilties, the Jena System Programming
Interface (SPI) is required: it provides a low-level access where the con-
cepts of Graph and GraphStore take the place of Models. A GraphStore
can be derived from a Model and automatically kept synchronized (in
fact they are two different abstractions of the same information): this
way the power of SPAROL and SPARUL can be exploited only when
required; in case of simple listings the navigation interface, provided
by the API, should be used (see Listing 39, line 23).

To run a query two steps are required:

1. Creation A factory should be used, in order to parse the query
from a String representation:

QUERYFACTORY creates a Query from SPARQL.

Listing 40: SPARQL query creation
1 String sparql = "SELECT * WHERE { }";

2

3 Query query = QueryFactory.create(sparql);

UPDATEFACTORY creates an UpdateRequest from SPARUL, or
programmatically.

Listing 41: SPARUL query creation
1 String sparul = "INSERT DATA {
2 <http://www.example.org#subject>
<http://www.example.org#predicate>
<http://www.example.org#object>.
f

UpdateRequest query = UpdateFactory
.create(sparul);

2. Execution Two other factories are available in order to generate a
Processor able to visit the Graph and run the desired operations:

QUERYEXECUTIONFACTORY with Query objects

Listing 42: SELECT query execution

1 Query query = ...; // From creation phase
2 Model aModel = ModelFactory
3 .createDefaultModel();

35



Apache Jena 2.7.0

36

| SEMANTIC WEB SPECIFICATIONS AND TECHNOLOGIES

4

5
6

ResultSet result = QueryExecutionFactory
.create(query, aModel).execSelect();

As discussed in Section 2.1.4, SELECT is not the only state-
ment available in the language. Given the specific state-
ment (ASK, DESCRIBE, CONSTRUCT) the right method should
be called: execAsk(), execDescribe(), execConstruct().

After the execution, each match that has been found is re-
turned in the form of a ResultSet, which is an iterator over
QuerySolution items (one per match). Each solution, re-
trievable through result.next() contains the mapping be-
tween variables and values, that can be retrieved invoking
the method sol.get(String) on it and passing the variable
name.

UPDATEEXECUTIONFACTORY with UpdateRequests

N

o e A

Listing 43: SPARUL query execution

UpdateRequest uReq = ...; // From creation phase

Model aModel = ...;

GraphStore aGraphStore = GraphStoreFactory
.create(DatasetFactory.create(aModel));

UpdateExecutionFactory
.create(uReq, aGraphStore[, bindings])
.execute();

The bindings parameter, whose type is QuerySolution, is
optional: it is meant to be used to set some variables values
according to the result of a SPARQL query.

As an alternative, from Apache Jena 2.7.0, UpdateAction can be used.
It provides both parsing and execution facility, but does not support
the bindings-passing option°.

2.2.2 Pellet: OWL-DL Reasoner

Pellet is a Java-based OWL-DL reasoner (a full list of library features is
reported in [mindswap, 2003] and [Clarké&Parsia, 2011]). It is available
under dual licensing terms: (1) an open-source license for open-source
projects and (2) a proprietary, closed-source one for commercial applica-
tion with commercial support.

It is an interesting choice, because it can be easily integrated with
Apache Jena in two manners:

with reference to with the bindings argument for the UpdateExecutionFactory.create(
UpdateRequest, GraphStore, QuerySolution) method



N

O 0NN o U A~ W

10
11

12

13

2.2 TECHNOLOGIES |

o through the DIG interface (see http://dig.sourceforge.net/),
which exploits an HTTP-based protocol, letting the application
communicate with Pellet in a separate process;

e through a dedicated interface, which extends Jena’s Reasoner in-
terface, providing a faster interaction.

The first solution generates a lot of overhead (that’s why the second
one is generally preferred) but it is safer in case of multi-thread appli-
cations. Despite this handicap it’s possible to enforce thread-safety by
serializing RDF model access with a mutex lock and triggering the clas-
sification process® in specific spots where that lock has been already ac-
quired (or using DIG and accepting the overhead) [Clarké&Parsia, 2011].

Let’s now look at how to exploit Pellet capabilities in conjunction
with Apache Jena. The process requires the creation of one or more
Jena’s Models and establishing a link to the reasoner” Two approaches
exist: the former consists in a one-line statement which uses the pre-
defined specification provided by developers, the latter will manually
build the required set of models; it is more complex than the former,
but allows more customization (if needed).

Check the following listing (Listing 44) for details.

Listing 44: Pellet-Jena usage

// Approach #1
OntModel model = ModelFactory
.createOntologyModel(
PelletReasonerFactory.THE_SPEC);

// Approach #2

Reasoner reasoner = PelletReasonerFactory
.theInstance().create();

Model infModel = ModelFactory.createInfModel(reasoner,
ModelFactory.createDefaultModel());

return ModelFactory.createOntologyModel(
OntModelSpec.OWL_DL_MEM, infModel);

Each time a RDF Triple is inserted, updated or removed the Reasoner
decides if the Knowledge Base should be refreshed and classified.
The same process can be triggered through the interface, calling the
refresh() method (on Reasoner) or, if custom initialization has been
used, retrieving the InfGraph instance, casting it to PelletInfGraph
and invoking the classify() operation.

The classification process which is the computation of inferred subclass relationships.
Other features, included in the reasoner, are: (1) Realization, the process that links
individuals with classes, (2) Consistency Checking, which checks ontology consistency
Pellet is not the unique choice: Jena is shipped with a built-in reasoner and other third-
part solutions can be found and, probably, linked to Jena’s Models but here we deepen
only Pellet integration

37


http://dig.sourceforge.net/




3 THE SAPERE MODEL

CONTENTS
3.1 Defining SAPERE domain 39
3.1.1  Architecture 40
3.1.2  Computational and Operational model 41
3.2 Mapping to Semantic framework 43
3.2.1  Live Semantic Annotations (LSA) 43
3.2.2  Eco-laws 44

The content of this chapter is based on SAPERE project’s deliverable
D1.1 [Viroli et al., 2011] and technical report TR.2011.06 [Stevenson and
Viroli, 2011]. The first section is dedicated to the presentation of frame-
work concepts, while the second one reports a proposal for a semantic-
based realization.

3.1 DEFINING SAPERE DOMAIN

The SAPERE framework is meant to satisfy typical requirements of
pervasive computing scenarios by adopting a bio-chemical inspired ap-
proach. Self-aware pervasive services ecosystems try to address prob-
lems like:

moBILITY SAPERE agents should deal with people movement in phys-
ical space, because generally running on mobile devices.

SHARED-ENVIRONMENT as means of coordination between agents,
which manifest themselves affecting a local space and perceive
other resources manifestations.

SITUATEDNESS Activities of SAPERE agents should depend from the
place they are located in. This can be achieved by restricting their
actions to a portion of environment their allowed to interact with,
so defining a context, they are aware of, by environment percep-
tion[Viroli et al., 2011].

SELF-ORGANISING COORDINATION LAWS The environment should
handle dynamism and complexity, through a set of local
stochastic coordination laws, designed to make global patterns
emerge, as in nature. The idea behind the SAPERE project is
considering information as molecules which can be bond, as a

39



40

| THE SAPERE MODEL

form of interaction, and resembled through chemical-like laws
(see Section 3.1.2). These molecules could also be diffused in
the neighborhood like in physics and biology (e.g. ant colonies
pheromone gradient).

Presented requirements and proposed abstractions have led to the
following basic ontology:

LsA A Live Semantic Annotation (LSA) is a structured, semantically
founded, and continuously updated annotation reflecting some
relevant information for the coordination of a SAPERE ecosystem.
It plays the role of the molecule in the bio-chemical abstraction.

SHARED LSA-SPACE Represents the global chemical environment,
composed by multiple (local) LSA-spaces: contains all the ecosys-
tem’s LSAs.

NoDE A SAPERE node is any computational node of the ecosystem. It
is the fundamental brick of the virtual topology. Each LSA and
agent belongs to a node.

(LocAaL) LsAa-sPAcCE The portion of the SAPERE shared LSA-space that
belongs to a specific node is a single LSA-space. LSAs which are
local to the node are stored in the space.

AGENT A piece of active software which runs on a SAPERE node. It
manifest itself to the rest of the ecosystems through one or more
LSAs, published on node’s LSA-space.

BOND Similar to chemical bonds, it works as a direct, oriented, con-
nection from a source LSA to a target one, letting the source to
observe the target and be affected by it [Stevenson and Viroli,
2011].

eco-LAwW Works like a chemical law: if a a subset of (local) LSA-space’s
data fits reactants templates, then it atomically substitutes them
with relative products. Allowed operation are: creation, modifica-
tion and deletion of LSAs on local space and diffusion to neigh-
bor nodes. Eco-laws are associated to a rate that influences its
scheduling, so how often is it applied.

3.1.1  Architecture

The resulting architecture is a network of interconnected SAPERE
nodes, each one with a (local) LSA-space and a set of SAPERE agents
which interacts through it with the rest of the ecosystem.

An example of possible scenario is reported in Figure 1: four nodes,
each one with a bunch of agents and a LSA-space, have been installed
on two smartphones and two public displays; owned data are repre-
sented with the color of the owner agent.



3.1 DEFINING SAPERE DOMAIN \

Eco-laws

SAPERE
M

SAPERE
nade

/A n-JIIIIl\:-:E‘IIIJ?-.N_

Helghbouring

Figure 1: Example of SAPERE architecture [Viroli et al., 2011]

3.1.2  Computational and Operational model
The abstract computational model states some basic ingredients of the
proposed framework:

1. Structure and shape of an LSA
2. Role of contextualization
3. Structure and shape of the eco-laws

4. Agents behavior and interaction primitives

It is meant to enclose a set of principles that will be concretized in an
operational model, which can have more than one declination, but will
remain stick to those principles, providing coherence. In the following,
concepts will be expressed in an informal way, simplifying the com-
prehension: in case of ambiguity the reader should refer to the formal
model in [Viroli et al., 2011].

LSAs

LSA is conceived as a set of multi-valued properties, namely a semantic
description, identified by a unique system-wide identifier, so called LSA-

41



42

| THE SAPERE MODEL

id. The adjective "semantic" implies possibile integration with Semantic
Web technologies (see Chapter 2) in order to satisfy the openness require-
ment. Context information should be attached and formalized with the
same structure in order to present a uniform and easy to understand
content.

LSA-ids are used as a key for content retrieval and bonding support
on by reference basis. The bonding should be realized keeping simplic-
ity in mind, with the aim of support a weak and directional form of
interaction between two LSAs.

A final aspect is the LSA-ownership. LSA’s context should contain a
reference to the owner, if it is not the case then the underlying system
(the middleware) is responsible for its management. This is a tool for
additional information reification.

Contextualization: synthetic properties and LSAs

Every contextual information should be reified as an LSA and injected
in the LSA-space as part of its semantic description, namely skeleton
description. Examples of relevant data are current location (mandatory
and equal to the node on which it is actually stored), creation and last
update time, creator identifier and so on; each one is called synthetic

property.

Eco-laws

Eco-laws are modeled as chemical resembling rules, like P1 + P> +...+
PnLP{ +P,+...+ P/ (n,m>0). It is composed by:

REACTANTS The left-hand side of the law. A set of P;, namely patterns.

propucTs The right-hand side of the law. A set of P{, also called
patterns.

RATE EXPRESSION which influences law’s scheduling frequency.

A chemical pattern, which can be a reactant/reagent or product pat-
tern, is defined as x[F]: the former (x) is a symbolic pattern name, which
will be substituted with a LSA-id during the matching phase, while the
latter is a filter which is applied to the LSA whose identifier matches the
pattern name. When used in left-hand side a filter defines a template
and restricts the number of eligible LSAs; whereas on the right-hand
side it describes a manipulation of data.

Substantially an eco-law is a template that describes a set of reactions,
which differ from it because all variables are instantiated, so defining
a unique atomic modification of data. That instantiation is obtained by
matching: a semantic description D is said to match filter F by substitution ¢,
if it matches the application of ¢ to F. Once retrieved a reaction it will be
scheduled, according to the actual rate value for application in the local



3.2 MAPPING TO SEMANTIC FRAMEWORK \

LSA-space: matching data are removed from it and replaced with the
one derived from products patterns.

Diffusion process is handled through eco-laws too, even preserving
local behavior. In fact it is modeled with a change of the context’s
location property. As a consequence the middleware will arrange the
transfer, so to reflect the stated scenario.

Finally let’s spend two words on scheduling rates . The correct ab-
straction to be adopted is the Continuous-time Markov Chains (CTMC)
framework. The main reason is that this is a good, solid model, per-
vasive in nature, so realistic. Moreover a set of optimizations has been
designed and tested over time, in order to support real-time execu-
tion. The simplest solution is implementing a scheduler that, once
determined the first occurring reaction, waits for the predicted time
to come and then triggers the update; if, in the meanwhile, LSA-space
content changes, next action is rescheduled. Another approach consists
in exploiting dependency-graphs; this way rescheduling is done only if
actually necessary, but realizing this logic is really much harder.

Agents behaviour

SAPERE agents are defined as active autonomous entities, belonging
to a SAPERE node from birth to death. Their existence is manifested
in the (local) LSA-space through a non-empty set of LSA, owned and
continuously updated, by them, in order to reflect current status. Other,
non-owned, LSAs are perceivable thanks to direct or indirect bonding,
but editing is not allowed. The agent who injected an information is
the only allowed to destroy it.

3.2 MAPPING TO SEMANTIC FRAMEWORK

Now that a model has been formalized it is possible to analyze pos-
sible serializations into concrete languages, grounded by existings se-
mantic web frameworks. The main idea is to translate each LSA into
a RDF triples packet (see Section 2.1.1) and each eco-law into queries:
SPARQL for the left-hand side and SPARUL for the right-hand one (see
Section 2.1.4 and Section 2.1.5).

3.2.1  Live Semantic Annotations (LSA)

Given its structure the simplest way to serialize an LSA is asserting a
set of RDF triples of the type < i,p,v >, where i is the LSA-id, p is a
property name and v a property value. In order to be compliant with
RDF specification i and p must be defined as URI, while the value (v)
can be both a literal or a resource identifier, based on its nature. In
fact it can be a string, an integer number, a date, another resource and,

43

CTMC rates



44 | THE SAPERE MODEL

Nested Descriptions according to [Montagna et al., 2012], even nested semantic descriptions:
in this case a natural translation is a blank node, because the underlying
meaning is the same.

Listing 45 reports an example of possible LSA and relative RDF
triples packet.

Listing 45: LSA Serialization example [Montagna et al., 2012]

R e
2 # SAPERE LSA EXAMPLE (part of original example)
LR A e T
4 #

5 # lsa:exhibitionl1432 [

6 # eco:type museum:exhibition;

7 # eco:location "node34165@rooml31";

8 # sos:request [syn:rate "1.0";

9 # syn:prop museum:exh_request;

10 # syn:syn_prop sos:request];

11 # museum:poi_desc "michelangelo" "david" "sculpture"
12 # "renaissance";

13 # 1]

T L
15

16 @prefix ... # Namespaces declaration

17

18 lsa:exhibitionl432 a sapere:LSA;

19 eco:type museum:exhibition;

N
o

eco:location "node34165@rooml131";
21 sos:request [

22 syn:rate "1.0";

23 syn:prop museum:exh_request;

24 syn:syn_prop sos:request .

25 118

26 museum:poi_desc "michelangelo", "david", "sculpture",
27 "renaissance".

3.2.2 Eco-laws

Once LSAs are turned into RDF, it is natural to try to consider existing
languages to query and manipulate RDF stores: SPARQL is a good
candidate for reactant patterns, in particular a SELECT clause, while a
sequence of SPARUL statements, INSERT and DELETE, can play the role
of product patterns updating LSA-space content. Variable terms can
be mapped into variable names and constraints on their value can be
expressed in terms of FILTERs and BINDings in the WHERE clause.

Listing 46 reports an example of eco-law serialization. The form
<vname>! represents a variable, in a SPARUL statement whose value
has been determined in the matching phase.

Listing 46: Eco-law Serialization example [Viroli et al., 2011]




N

O 0NN o L W

H O O OH OH OB R H

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

3.2 MAPPING TO SEMANTIC FRAMEWORK \

H H
m
=)
o
=
=
=
m
X
=
=
)
—
m

?TARGET: [?PROP has ?VALUES] +
?SRC: [bond: request has (?BONDREQ); ?B has-not (?TARGET)] +
?BONDREQ: [sapere:type has (bond:request_pv);
bond:bond_prop=(?B);
bond:target_prop=(?PROP);
bond:target_value=?VALUES]
-—-==>

?SRC:[?B has (?TARGET)] + ?BONDREQ + ?TARGET

# Left-hand side
SELECT DISTINCT x*
WHERE{
?SRC bond:request ?BONDREQ .
FILTER NOT EXISTS {
?SRC ?B ?TARGET
} FILTER NOT EXISTS {
?TARGET ?PROP 7?0 .
FILTER NOT EXISTS {
?BONDREQ bond:target_value ?0

}
?BONDREQ sapere:type bond:request_pv .
?BONDREQ bond:bond_prop 7B .
FILTER NOT EXISTS {
?BONDREQ bond:bond_prop ?o.
FILTER (?0 !'= 7B)
}
?BONDREQ bond:target_prop ?PROP .
FILTER NOT EXISTS {
?BONDREQ bond:target_prop ?o.
FILTER (?0 != ?PROP)

}

# Right-hand side
INSERT DATA {!SRC !B !TARGET .}

For details about adopted syntax and translation formalization check
[Stevenson and Viroli, 2011].

45






4 SEMANTIC WEB SAPERE

CONTENTS
4.1 Requirements 48
4.2 Logic architecture 48
4.2.1  The ecosystem as a network of nodes 49

4.2.2 Inside the SAPERE node 49
4.2.3  The LSA-space 54
4.3 Developed system 56
4.3.1  OSGi bundles 60
4.4 Middleware usage 62
4.4.1  Modelling an ecosystem 63
4.5 A demo scenario 67
4.5.1 Realization details 67

This chapter is dedicated to the presentation of the middleware that
has been developed.

The resulting piece of software represents an innovation from previ-
ous works (see [Desanti, 2011]) because of two main features:

1. The adoption of Semantic Web Technologies, already described
in Chapter 2, which represents a breakpoint from the past, from
some model and API realization aspects to effective LSA-space
implementation;

2. The choice of following Open Service Gateway initiative (OSGi)
specification and component-oriented paradigm, in order to pro-
mote modularization, extension and maintainability.

Main concepts expressed in the SAPERE model (see Chapter 3) have
been mapped into a set of OSGi services and an high-level API, which
has been consequently implemented in order to fulfill requirements; as
long as defined interfaces are not modified single service realization
can be substituted providing different bundles to the container.

The whole development has taken advantage of a set of tools, meant  Development
to standardize a process, ease team collaboration and assure high-  process
quality software; first of all Apache Maven'. It allowed to define a mod-
ular workflow: the middleware has been divided in sub-projects — then
deployed as OSGi bundles — each one with its documentation updated
at every build. Plugins such as Checktyle, PMD, FindBugs, Cobertura,

1 see http://maven.apache.org

47


http://maven.apache.org

48

| SEMANTIC WEB SAPERE

Pax-Exam and Surefire have been included in the process aiming to im-
plement test-driven development — also useful for future extensions —
common pitfalls avoidance and documentation completeness.

After the middleware was fully developed some performance tests
have been run, as reported in Chapter 5, trying to reach a deeper un-
derstanding of the platform capabilities.

4.1 REQUIREMENTS

Semantic Web SAPERE is meant to address pervasive services ecosys-
tems problems, exploiting semantic power to enhance services quality.
The abstract architecture of the middleware has been fixed once the
SAPERE project has been chosen as reference. The main, and most
complex, component involved in the semantic-enabling revolution is
the LSA-space, followed by the formalization of information units, the
LSAs. In fact the main requirements can be summarized as follows:

e Use RDF for information representation and, consequently, enact
the translation of each LSA in a set of RDF statements and vicev-
ersa;

o Let the application logic provide a description of data that will
share during its lifecycle, allowing their understanding by the
rest of the ecosystem;

o Allow eco-laws to exploit these enriched information for ecosys-
tem regulation;

e Provide a set of extension points for further middleware refine-
ments;

o Support the diffusion mechanism: once defined a virtual topol-
ogy of SAPERE nodes, LSAs could be relocated from a node to
another.

Topology creation and maintenance is out of the scope of this work,
it is considered to be provided through a configuration file and consid-
ered to be static.

4.2 LOGIC ARCHITECTURE

A logic architecture has been defined as a result of the expressed re-
quirements and consequently mapped into an API, modeled in such a
way that multiple implementations can be provided. Section 4.3 will
describe one of the possible realizations, focused on Jena and Pellet
libraries as enabling technologies, but nothing prevents to choose dif-
ferent ones.



4.2 LOGIC ARCHITECTURE |

In order to ensure a better understanding of the architecture, it will
be presented in a layered way, from the highest level of abstraction to
the lowest one:

1. SAPERE nodes and topology structure
2. The SAPERE node sub-system
3. LSA-space components

An overall perspective is given in Figure 2.

4.2.1  The ecosystem as a network of nodes

At the highest level we can think about a Self-Aware Pervasive Services
Ecosystem as a multitude of autonomous nodes, each one running on
a device of any kind, from a computer, to a smartphone, a sensor plat-
form or a display.

What these devices must have in common is the ability to communi-
cate with other ones, in order to establish a network and enact infor-
mation sharing. In particular, in a pervasive context, it is important to
define a topology, which means that a node should know both which
other nodes it can speak to, and its interlocutor approximative distance:
in this way they can understand if a proximity relationship subsists,
creating the concept of neighborhood.

As stated before, topology definition is not the main concern of this
work, but it is important that the resulting middleware can provide a
basic communication mechanism, on which build more complex behav-
iors.

4.2.2 Inside the SAPERE node

Let’'s now go deeper. A SAPERE node is a whole new system, com-
posed by a set of entities each one modeled to satisfy a particular re-
quirement. The central entity is the LSA-space, whose responsibility is
storing all data, formalized as LSAs and serialized in RDF*. Given its
importance next sub-section will describe its internal structure; by now
we focus on the interface and the other parts of the sub-system.

According to the SAPERE model the space is a shared-environment
for some agents, running locally and able of publishing LSAs about
their state and willings. Coordination is obtained letting other agents
retrieve and observe what other have published. This goal is reached
by defining an interface between the agents and the space that provides
the following primitives:

INJECT inserts a new LSA in the LSA-space;

2 see sub-sections 3.1.2 and 3.2.1

49

Neighborhood

Agent’s primitives



50

| SEMANTIC WEB SAPERE

SAPERE ecosystem

:

ELs Management

a Diffusion Handler ES i
I

I
I
Network Manager |
I

pel

-
- :
e ]
Reaction Manager i ?a‘;\
f e

LSA Management
Logging Utilities

Figure 2: Semantic Web SAPERE: Logic Architecture



4.2 LOGIC ARCHITECTURE |

uPDATE modifies previously injected LSA content according to the pro-
vided one;

REMOVE removes a previously injected LSA from the LSA-space;

READ Given a known LSA-id, find the whole LSA and return it to the
agent;

oBSERVE Given a known LSA-id, instruct the system to notify the
agent of every modification of the associated content.

Other primitives could be adopted, even if not declared in the model:

IGNORE with the purpose of stating that an agent is no more interested
in observing an LSA;

LOADONTOLOGY , in order to address the need of providing data de-
scription — in OWL format — so that reasoning can take place.
Given the fact that a lot of ontologies are available over internet,
their Uniform Resource Locator (URL) should be passed and the
content must be managed according to the specific implementa-
tion.

According to previous considerations, two different abstractions of
agent concept are required. In fact the ones that compose the mid-
dleware need to run operations that should not be allowed to normal
(application logic) agents: modification of data that are not owned by
the agent or bonded to it (see Section 3.1), is an example of a potential
security leak that could be raised if no regulation is imposed. That’s
why System Agents has been modeled as full-fledged entities, generally
used to improve middleware capabilities, while User Agents has been
provided to the final user in order to build a pervasive services ecosys-
tem, without risking model constraints violations. The component that
is demanded to model constraints enforcement is called AccessPolicy
and is intended as a mediator of all the interactions between User Agents
and the LSA-space.

Recalling what has been told in the previous sub-section, a
NetworkManager is required in order to provide a mechanism for re-
locating information from a node to others. In particular a system
agent should be designed for listening to the network and injecting
what has been received in the LSA-space, while observing what hap-
pens in it and determining if an LSA is eligible for diffusion. Space
observation has been modeled as a passive component, namely the
DiffusionHandler, which is responsible for Network Manager notifica-
tion whenever an information is marked as outgoing>. Another system
agent is the ReactionManager , responsible for enabling the Eco-laws

The mark is intended to be expressed via a dedicated LSA’s property, called
"sapere:location"”, whose value is "sapere:local" when the information should not be
relocated and a neighbor identifier (the destination) when should be moved

51

System and User
Agents

LSA-space Access
Policy

Network Manager

Reaction Manager



52

| SEMANTIC WEB SAPERE

execution, as mentioned in Section 4.4.1. In order to accomplish its
task two things are required: (1) a way to express and pass eco-laws
and (2) a dedicated access to the LSA-space, such as law match and
application can be run. These two functionalities has been mapped in
two other primitives:

MATCH which tries to bind variable terms to values stored in the space

APPLY which modifies the space content according to what is stated by
the law and the bindings that have been retrieved by the previous
primitive

The ReactionManager’s behavior is cyclic and consists of (1) try to match
each known eco-law and choose the one that should be scheduled first
— according to the actual value of the Markovian Rate — then (2) wait
for scheduling time to come and (3) apply, the law, as soon as it is
reached. If the LSA-space status changes before the application phase
then match condition should be verified before proceeding.

Other middleware services

Other than LSA-space and agents, a set of services/components has
been defined in order to help the latters pursuing their goals; they are
listed in the following.

LOGGING uTILITIES are demanded to handle agent’s standard output
and error*. This service should be used each time an agent would print
a message for the user to be read: this way, according to different levels
of detail, single messages will be routed to console and/or log files
simplifying monitoring, debug and final deployment.

LSAS AND ECO-LAWS MANAGEMENT facilities are meant to be used
respectively for the creation of LSAs and Eco-laws, with reference to
the models presented in Section 3.1.

An LSA is composed by an LSA-id, which globally identifies it, and a
Semantic Description (also known as Content) which is organized as a
set of multi-valued properties, which can refer to URIs, LSA-ids, strings
- representing simple text, numbers, date and so on - or, recursively,
other Semantic Descriptions. LSA-id and Properties are mapped to
URIs, while the rest is mapped to tagged strings, meaning that they are
serialized and decorated with metadata that specifies the original type;
in order to simplify the management each concept has been mapped to
an interface, so to a Java type (see Figure 3).

The same approach has been used for modeling Eco-laws (see Fig-
ure 4): they are composed by a set of Reactants and Products which
are specific types of ChemicalPatterns, described as a PatternName

4 Standard input has been considered irrelevant by now



4.2 LOGIC ARCHITECTURE |

package itapice.sapere.apilsas [ | & LSAS y

+get( name : PropertyName ) : Property
+removeProperty( prop : Property )
+properties() : Property [0..*]

LSA O -
+gell SAd() entiier [LsAid O] vawe [javanetURi -
+getSemanticDescription() | 1 [content 1 [igetid() |
SemanticDescription O
+addProperty( prop : Property ) properties Property Ol."ame_|i @)

0.+ |+getName() : PropertyName
+values() : PropertyValue [0.."]

+addValue( val : PropertyValue )
+removeValue( val : PropertyValue )

11 _m
values

+hasValue( val : PropertyValue ) : boolean [* ¢+

PropertyValue O

9|l OJ | [im

I C J|E

LDateTImeVaIueOl { Ol
L ] I

)
+geLanguageCode() : String

plus a set of Filters. Filters® can be content-related such as clones and
extends or property-related, such as assign, has, has-not and matches.

LSAFactory and EcolawFactory has been provided as generators,
while LSAParser has been defined in order to extract LSAs from a tex-
tual representation in RDF/ XML, Turtle/N3 or N-Triples language (see

Section 2.1).

COMPILERS

Figure 3: LSA model

package it.apice.sapere.api.ecolaws [ [ Ecolaws u

Ecolaw @)
+setRate(r - rate )

rate

+addReactant( patt : Reactant )
+addProduct( patt : Product )

reactants

[

+getLabel() : String 0. products
sgetRate() : Rate o JPmduct @) ChemicalPattern ()
+reactants() : Reactant [0..°] - E— +fiters()
+products() : Product [0..] +getName()
Reactant ()
1 [dfers
name
Filter O
OpFilter ()
Term (O +getleftTerm() |
+getRightTerm()

T

Formula ()] formula _|AnnotatedVarTerm ()
1

?

right

[ValueTerm O
; ]

[
[Listrerm O]
[ ik

‘sDescTerm O‘ ‘PmpertyTerm (@)
L | L i

[1

source

CopyFilter ()
+getSource()

left

Figure 4: Eco-laws model

have been defined, encapsulating the translation from
SAPERE to RDF/SPARQL-SPARUL: the former is still under devel-
opment, while Semantic Web languages are almost standardized. Com-

5 More details on types meaning can be gathered in [Viroli et al., 2012; Zambonelli et al.,

2011]

53



CompiledLSA

CompiledEcolaw
and relatives

Storage

54

| SEMANTIC WEB SAPERE

piled LSAs and eco-laws rely on those standards stability and let node
services be reused over time even if some SAPERE concept changes.
This means paying a little overhead (see Section 5.2.2) for improving
maintainability: System agents, as part of the middleware, will use
compiled versions, while User Agents should not, in order to be com-
pliant with SAPERE requirements.

The compilation process should generate a CompiledLSA by mapping
each LSA property into a RDF predicate and listing property values as
objects. The subject of each statement must be the LSA-id (once con-
verted to URI) or a blank-node id, when serializing a nested semantic
description. Moreover the creation of empty CompiledLSAs and some
basic modifications should be allowed, in order to support informa-
tion update and management at middleware level: just think about the
sapere:location property in diffusion context. The result is summa-
rized in Figure 5

package itapice.sapere.apie.space.core [ [ LSACompiation U

RDFFormat
+compile(Isa : LSA ) : CompiedLSA wsen
+parse( rdf : String, format : RDFFormat ) : CompiledLSAf- — — — >{TURTLE

+create() : CompiledLSA N3

LSACompiler r ‘> «enumeration»

RDF/XML
creates N_TRIPLES

CompiledLSA O
+getLSAd() : LSAd
+getRDF Statements()
+assertProperty( name : URI, val : Object )
+clearProperty( name : URI )
+readProperty( name : URI )

Figure 5: LSAs compilation

Supporting eco-laws is more complex. In fact each reagent should
compose the WHERE clause of a SELECT query and each product should
be translated in a SPARUL statement. Therefore the variables assigned
during the match phase must be reused in the application step, in order
to reduce execution time. That’s why eco-law compilation has been
defined in order to produce a template that will be concretized as soon
as bindings are available: the structure of the query is still the same,
only variable values change. Figure 6 shows the result.

The presented services are provided to each agent with reference to
their privilege (system or user); the resulting architecture is detailed in
Figure 7, with particular attention to the interaction between compo-
nents.

4.2.3 The LSA-space

Finally let’s look at how the LSA-space is structured.
The most important component is the one that provides Storage fa-
cility. This facility will handle CRUD® primitives, namely inject,

CRUD is an acronym which means Create-Read-Update-Delete. It is generally used in
order to indicate basic operation that can be executed on a DB.



4.2 LOGIC ARCHITECTURE |

package itapice.sapere.apie.space.core [ || EcoLawsCompil u

EcolawCompiler O

+compile( law : Ecolaw ) : CompiledEcolaw
+create( mQuery : String, uQuery : String, rate : String, label : String ) : CompiledEcolaw

create

CompiledEcolaw O Rate can be
+getLabel() : String defined as a
+getRate() : String _ _ _ _|constantvalue
+getMatchQuery() : String (Double) or a
+hasVariableRate() : boolean variable to be
+variablesNames() : String [0.."] assigned by the
+getSource() : Ecolaw match query
+getUpdateQuery()
updateTemplate
MatchingEcolawTemplate )
" g P O «se» MatchResult (@)
+bind( bindings : MatchResult ) - =
+variablesNames() : String [0..*] +ookup( varName : String ) Str\/n
'
creates 7
AN

from LSAspace's

MatchingEcolaw O match(CompiledEcolaw)

+getUpdateQuery() : String
+apply()

Figure 6: Eco-laws compilation

UISER AGENTS SYSTEM AGENTS

<< uses>>

0
1: match(cEcolaw); 2: apphfmEcoLaw)
LSA Factary LSA Parser || LSA Compiler ey V
: A I
e . 2 N
(N I 5

Reaction Manager

PU]
i F&
: I se(res : = 0o
tecusas>> | 4: parse[result) : :.2 compie(lsa) ., [E——
H v v

1: sendRequest LSA-space LSAspace < observes modfications > | ddd
I Access Policy o %G
% %
o
®
@ Network Manager

A
H
H
|
3 forwardRequest }
L

Figure 7: Interaction between agents and LSA-space

read, update, remove. In order to provide thread-safety a lock should
be acquired before executing each operation, because of the shared-
environment assumption. According to what has been previously pre-
sented, input is passed already in an RDF format — thanks to the
CompiledLSA.getStatements() operation — and, in case of read-only
primitives, the LSA-id is already provided in URI form. Before stor-
ing or retrieving data some requirements must be checked and sat-
isfied. Some constraints — e.g. an LSA cannot be injected twice —
are implemented but, according to the idea of allowing future exten-
sions, a customization pipeline has been placed before the actual execu-
tion of each primitive. This mechanism, modeled through the concept
of CustomStrategyPipeline, is nothing but an ordered list of steps
(CustomStrategyPipelineStep), each one able of decorating/modify-
ing parameters and, if some pre-condition is violated, preventing prim-

55

Customization
Pipeline



Space observation

Reasoning facility

56

| SEMANTIC WEB SAPERE

itive execution. Synthetic Properties management is an example of a
situation that could be handled this way: just before injecting an LSA
the manager can append a context, or sapere:lastModified property
could be adjusted each time an update is required. Since some mid-
dleware services should be reactive to LSA-space changes — e.g. Reac-
tion and Network Managers, see Figure 7 — another important feature
provided is space observation. It realizes a pattern observer and pro-
vide notification each time an operation successfully completes. The
observe primitive can rely on the same mechanism: when requested,
an observer should be notified each time a relevant event is raised; obvi-
ously the relevance of perception is different between middleware and
agents.

LSA-space < event notification >

Customization Pipeline

r 1 —
| Syntetic Custom [l -
————— BN Step [l Propertis RS Step I EEE
| 1 Handler N 1 =
L )

___________________ + Reasoner

Figure 8: Inside the LSA-space

The only remaining component to be presented is the reasoner. Its
interface and how it interacts with the Storage is specific to the chosen
implementation, so it will be explained in the following section. What
can be said by now is that, in some way, it should be aware of data
modification in order to update the inferences and provide coherent
information: using Jena and Pellet will give it almost for free.

4.3 DEVELOPED SYSTEM

This section focuses on design choices and description of the final mid-
dleware.

LSA-space: Jena + Pellet

Let’s start from the adoption of Jena and Pellet libraries. The former is
used as storage facility: the Model interface — presented in Section 2.2.1
— allows the creation of a resource for each LSA and its removal each
time a remove is requested; the update operation is the composition of
the previous two.

According to the Jena documentation, RDF resources are handled
with the flyweight pattern, which means that memory fingerprint is re-
duced because less objects are created, and also the performances of
these features are improved. This feature is exploited in the read prim-
itive.

The actual performances, and the linkage to Pellet reasoner, are
merely based on the Models and GraphStore created during the LSA-
space initialization: a parameter (ReasonerLevel) has been exposed in



N

O NN o U~ W

10
11
12
13
14
15
16
17
18
19
20
21

22

4.3 DEVELOPED SYSTEM |

order to determine if the reasoner should be used and at what level of
inference. Listing 47 shows the real implementation: if OWL_DL level is
chosen then an inference model — the one which stores all produced
inferences — is instantiated and linked to a DefaultModel; this pattern
has been taken from [Hebler et al., 2009].

Listing 47: Storage/Reasoning initialization

Model initRDFGraphModel(final ReasoningLevel level) {
if (level.equals(ReasoninglLevel.OWL_DL)) {
final Reasoner reasoner = PelletReasonerFactory
.theInstance().create();
final Model infModel = ModelFactory.createInfModel(
reasoner,
ModelFactory.createDefaultModel());
setInfGraph(infModel.getGraph());
return ModelFactory.createOntologyModel(
OntModelSpec.OWL_DL_MEM,
infModel);
} else if (level.equals(ReasoningLevel.RDFS_INF)) {
return ModelFactory
.createOntologyModel (
OntModelSpec.OWL_DL_MEM_RDFS_INF);
} else if (level.equals(ReasoningLevel.NONE)) {
return ModelFactory.createOntologyModel (
OntModelSpec.OWL_DL_MEM) ;
} else {
return ModelFactory.createDefaultModel();

A reference to that model is kept because of the thread-safety policy:
read and match primitives use it to trigger the reasoner before retriev-
ing information. Storage access, and reasoning phase, are protected
with a read-write lock which regulates critical sections, but replaced with
a mutex when Pellet is active’.

In order to speed up match and apply execution, some optimizations
have been introduced. Studying the idea beyond eco-laws mechanism
and how queries are managed by Apache Jena a couple of HashMaps has
been used to provide caching. In fact nor the left side of an eco-law nei-
ther the right one changes; what is different between two applications
is the value of the variables that have been assigned during the match
phase. Jena 2.7.0-incubating is able to pre-initialize bindings in a query
object, enabling us to cache those bindings and pass them when exe-
cuting SPARUL statements. Therefore parsing overhead can be avoided

Letting Jena + Pellet operations be serialized assures a correct execution, because Pellet
is not meant to be used with Jena in multi-threaded scenarios. An alternative could be
exploiting DIG interface, but it introduces the overhead of a HTTP protocol stack

57

Thread-safety



Synthetic Properties
and Security
Policies

58

1

O N o U A

10

11

12

| SEMANTIC WEB SAPERE

after the first time by keeping track of Query and UpdateRequest objects
once created.

About middleware policies, now we discuss the synthetic properties
management. Continuing from what has been told in Section 4.2.2, a
step — the only one — is dedicated to it in the CustomStrategyPipeline.
It is responsible for registering timings and location data, but is not able
of checking if the requestor is allowed to run the operation. This task
is demanded to the LSAspaceAccessPolicy component, which is aware
of the agent identity: in fact, after calling the Compiler, it specifies
the owner, during injection, and filters forbidden operations. The ex-
clusive access to synthetic properties is ensured through an additional
invariant on the LSA model: this way they can only be edited after the
compilation phase, which is not accessible to user agents.

Finally let’'s spend two words on SPARQL/SPARUL expressive
power. A feature that has not been presented until now is the exten-
sibility of those languages: thanks to Jena’s Function abstraction it is
possible to add new functionalities, just extending a class and register-
ing it into a FunctionRegistry, in association with a URI that will be
used to refer them in queries. A new service has been defined in order
to support this, namely the CustomFunctRegistry: it simply wraps the
supplied functionality in order to publish it in the OSGi context.

Reaction Manager

The Reaction Manager business logic has been split in two parts: in
fact what concerns the scheduling policy has been encapsulated in a
dedicated component — its interface is reported in Listing 48 — which
receives notifications about possible matches and decides the next eco-
law to be applied, but also monitors space changes and aborts last
decision if found bindings are no more valid.

Listing 48: Reactions Scheduler

interface ReactionsScheduler extends ReactionManagerObserver

{

long ecolawMatched(SchedulableMatchResult match, long
schedulingTime);

Entry<MatchingEcolaw, Long> next();

void checkDependencies(SpaceEvent ev, MatchingEcolaw law)
throws AbortException;

SchedulableMatchResult eval(MatchResult mResult) throws
SAPEREException;

SchedulableMatchResult[] eval(MatchResult[] mResults)



13
14

4.3 DEVELOPED SYSTEM |

throws SAPEREException;

This choice has been taken because the current approach has been
implemented in order to optimize execution time, but is prone to live-
locks: if threads interleaving would let agents modify the LSA-space
before a scheduled eco-law is applied then no reaction would occur.
In this way future works can deepen scheduling policy optimization —
by considering dependency graphs implementation and rate adjustment
strategies in order to avoid this kind of situation — and plug it in with-
out creating a reaction manager from scratch. Listing 48 shows that an
eval method has been designed to evaluate the proposed match and
return a SchedulableMatchResult which contains the scheduling time,
calculated according to CTMC no-memory process®, whose mean value
is the actual eco-law’s rate. checkDependencies operation is the one re-
sponsible for space events analysis and abortion handling. Last but not
least, ecolawMatched allows the scheduling logic to be notified when-
ever new bindings have been found and to build some optimization
mechanism; its return value is meant to be used to modify the update
apply time, in fact ReactionManager main cycle only cares about the
next coming rule.

Network Manager

Network Manager has been designed to offer nodes intercommuni-
cation through TCP/IP sockets, but with a little modification of the
register method (see Listing 49) it could be able of handling any
means of transport.

Listing 49: Network Manager

interface NetworkManager {

N

NN o U~ W

void diffuse(Object to, NodeMessage msg);

boolean register(String id, InetSocketAddress addr)
throws SAPEREException;

void loadTable(File config);

Actual implementation opens a server socket (onto a customizable
port) and listens to incoming connections. The diffuse operation plays
the role of the deliverer: connects to the server on the other node (spec-
ified by the to parameter) and sends the diffused LSA to it. The dif-
fusion is triggered by the DiffusionHandler, which observes the LSA-
space and causes a diffusion according to the sapere:location prop-
erty value: if it equals to sapere:local then no relocation occurs, oth-
erwise it supplies the identifier of the node to which the LSA must be

8 time = -Math log(rng.nextDouble()) / rate + currentTime

59



60

| SEMANTIC WEB SAPERE

sent (the to parameter). On the server side, at each time message is
received, the data are extracted and published in the space (using the
inject primitive).

The adopted solution is naive but effective. Supporting a dynamic
environment and multiple protocols will be a future work.

4.3.1  OSGi bundles

Final architecture has been deployed as a set of bundles. Figure 9 and
the following list, show all of them along with their dependencies:

SEMANTICWEBSAPERE-API Contains all the interfaces and enumera-
tions needed to model semanticwebsapere middleware. In prac-
tice it contains the definition of the logic architecture presented
before (see Section 4.2). No service is published.

SEMANTICWEBSAPERE-REQUIREMENTS Wraps Jena libraries, and rela-
tives ones, in order to let them available in the context. No service
is published.

SEMANTICWEBSAPERE-PELLET Wraps Pellet libraries in order to let
them be imported in LSA-space component. No service is pub-
lished.

SEMANTICWEBSAPERE-RDFMODEL Implements APIs for what con-
cerns LSAs and eco-law models: data entities, factories and
parsers. The latters are published as OSGi services.

SEMANTICWEBSAPERE-RDFSPACE Implements the LSA-space abstrac-
tion, exploiting Jena and Pellet facilities; it also handles LSA
(de)compilation. The space, compilers and custom-functions reg-
istry are published as OSGi services.

SEMANTICWEBSAPERE-NODE Provides the concept of SAPERE node as
computational node in which a set of agents run locally interact-
ing through an LSA-space.

As shown in Figure 9, each application is packed in a bundle and
declared as dependent from semanticwebsapere-node; for transitivity
all other bundles are imported.

Listing 50: SAPEREAgentsFactory interface

interface SAPEREAgentsFactory {

SAPEREAgent createAgent(String agentLocalld, final
SAPEREAgentSpec spec)
throws SAPEREException;

SAPEREAgent getAgent(String agentLocalld) throws
SAPEREException;



10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26

27
28
29
30
31
32

4.3 DEVELOPED SYSTEM

aQ
p=4

: g <<BUNDLE>> <<BUNDLE> <<BUNDLE>

i semanticwebsapere-demo Application 1 T Application N

z

[

=

<<BUNDLE>>
semanticwebsapere-node

MIDDLEWARE

<BUNDLE>
semanticwebsapererdfspace

<BUNDLE>
semanticwebsapererdfmodel

<<BUNDLE> <<BUNDLE> <<BUNDLE>>
semanticwebsapere-api semanticwebsapere-requirements semanticwebsaperepellet

Figure 9: OSGi bundle and dependencies

SAPEREAgent createSysAgent(String agentLocalld,
final SAPERESysAgentSpec spec) throws SAPEREException;

void KillAll();

/** User Agent Specification. */
interface SAPEREAgentSpec {

void behaviour(LSAFactory factory, LSAParser parser,
LSAspace space,
LogUtils out, SAPEREAgent me) throws Exception;

/*x System Agent Specification. x*/
interface SAPERESysAgentSpec {

void behaviour(NodeServices services, LogUtils out,

SAPEREAgent me)
throws Exception;

interface SAPEREAgent {

61



Agents Factory

62

33
34
35
36
37
38
39
40
41
42
43

| SEMANTIC WEB SAPERE

void spawn();

void kill();

URI getAgentURI();

String getlLocalAgentId();

boolean isRunning();

In order to simplify the deployment of an agent to the middleware a
SAPEREAgentsFactory has been defined (see Listing 50). An agent can
be created providing a specification to the factory method — a subtype
of SAPEREAgentSpec or SAPERESysAgentSpec — with a locally-valid iden-
tifier; after that the agent can be spawn. This way there is no need
to manually handle services retrieval: this is automatically done by
SAPERENodeActivator?, so the factory can pass them to each agent.

Since this is a prototype middleware, the System agent creation is
exposed to the public despite in a real context it should be hidden.

The whole node has been tested on Apache Felix platform. It has
been chosen because it offered the best debug tools; however according
to OSGi specification each OSGi container should be able of running
them. A couple of examples have been reported in Section 4.5 and
Section 5.1.1.

4.4 MIDDLEWARE USAGE

In this section all the aspects of configuring and launching a SAPERE
node are presented and explained, in order to enable future users to
exploit its features. Since the platform has been tested on Apache Felix
all information reported are relative to it, but other containers could be
used in similar way.

First of all, the bundles presented as part of the middleware in
the previous section — semanticwebsapere-api, semanticwebsapere
-rdfmodel, semanticwebsapere-requirements, semanticwebsapere
-pellet, semanticwebsapere-rdfspace and semanticwebsapere-node
— should be installed and started in the container. Once started,
even the application-specific bundle can be launched; in Felix this
can be all done through the config.properties, specifying the
felix.auto.start property.

During the container launch it is possible to set some options pro-
vided by the middleware in order to tune it according to what is needed.

9 An activator is what allows to publish and retrieve services in OSGi context.



N

U s~ W

4.4 MIDDLEWARE USAGE |

This can also be done through configuration file, otherwise it can be
passed when starting the Java Virtual Machine:

java

-D<prop-name>=<prop-

value> ...

-jar bin/felix.jar

Table 1 reports all possible key-value pairs and describes their impli-

cations.
Table 1: Middleware Options

Key Default | Description

sapere.log.console.level INFO Level of CONSOLE log, ac-
cording to Log4j specifica-
tions

sapere.log.file.level INFO Level of FILE log, according
to Logyj specifications

node-uri <auto> Sets a URI for the node, oth-
erwise it is automatically gen-
erated

sapere.diffusion.port 20021 The port on which the Net-
work Manager listens to in-
coming connections

sapere.diffusion.config <none> | Path to a Properties file
(XML) which lists all known
neighbors

sapere.space.reasoner none Selects one of the different
levels of reasoning: (none,
rdfs, owl-dl)

sapere.space.optimization | true Enables/Disables the query

parsing optimization

The next section will deepen how to define an application on this
middleware. In other words how to deploy the application bundle.

4.4.1

Modelling an ecosystem

In order to let the application run on this version of the SAPERE node a
BundleActivator must be defined. This way the SAPEREAgentsFactory
service can be retrieved and agents can be created and spawn.

Listing 51: How to spawn an agent on SAPERE node

void start(BundleContext context) {

ServiceReference<SAPEREAgentsFactory> factRef =
context.getServiceReference(SAPEREAgentsFactory.class);

if (factRef != null) {

final SAPEREAgentsFactory agentsFact =

(factRef);

context.getService

63



64

el )

10

11

12

O 0NN o

10
11
12
13
14
15
16
17

18
19
20
21

22

| SEMANTIC WEB SAPERE

agentsFactory.createAgent("hello_agent",
new HelloAgentSpec()).spawn();

context.ungetService(factRef);

Defining SAPERE agents

As already said before, agents can be modeled through the
SAPEREAgentSpec type. An example — an enhanced version of the clas-
sic hello world - is reported in Listing 52. Please note that all the
needed services are provided as parameters of the behaviour method.

Listing 52: A simple Hello World agent

class HelloAgentSpec implements SAPEREAgentSpec {

@Override

public void behaviour(final LSAFactory factory, final
LSAParser parser,
final LSAspace space, final LogUtils out, final

SAPEREAgent me)
throws Exception {
// Print a message
me.log("Hello World");
// Create and populate a LSA
LSA 1lsa = factory.createlLSA();
lsa.getSemanticDescription()
.addProperty (
factory.createProperty (
URI.create("http://www.example.org#name"),
factory.createPropertyValue(me.getLocalAgentId())
)

// Inject a LSA
space.inject(lsa);

}

}

Defining Eco-laws

There are two solutions in order to declare some eco-laws to be exe-
cuted on a node. The first one consists in defining a System Agent,



N

O© 0o N o U~ W

10

11
12
13
14
15
16
17
18
19

20

21
22
23
24
25
26
27
28

which has obviously access to all the services, running as an initial-

4.4 MIDDLEWARE USAGE

ization service, then start the rest of the system. The second choice is
to directly obtain a reference to EcolawCompiler and ReactionManager
services, then use it directly from the BundleActivator.

Since eco-laws language is not yet completed, only a part of the
compilation process has been implemented™.
EcolawCompiler has a create operation, which allows the ecosystem
designer to specify rules directly in SPARQL and SPARUL syntax.

Listing 53 shows how to realize the second approach. In order to use
the former the user should just ignore the OSGi-related part: services
will be retrieved and provided by the platform.

For this reason the

Listing 53: How to define eco-laws

void start(BundleContext context) {

final ServiceReference<ReactionManager> rref = context
.getServiceReference(ReactionManager.class);
final ServiceReference<EcolawCompiler> cref = context
.getServiceReference(EcolawCompiler.class);

if (rref !'= null && cref != null) {

final ReactionManager mng = context.getService(rref);
final EcolawCompiler cmp = context.getService(cref);

mng.addEcolaw(cmp.create(getMatchQuery(),

getUpdateQuery(),
getRate()));

context.ungetService(rref);

String getMatchQuery() {

final StringBuilder builder = new StringBuilder();
builder.append("PREFIX ex: <http://www.example.org/profile

# "),

builder.append("PREFIX xsd: <http://www.w3.0rg/2001/

XMLSchema#> ");

builder.append("SELECT DISTINCT * WHERE { ");

builder.append("?lsa ex:prop ?value .

return builder.append("}").toString();

String getUpdateQuery() {

“);

10 Only reactants to SPARQL translation is supported, but not updated to handle nested

semantic descriptions

65



66

29
30

31

32
33
34

35
36

37
38
39
40
41
42
43

N

A U A~ W

| SEMANTIC WEB SAPERE

final StringBuilder builder = new StringBuilder();

builder.append("PREFIX ex: <http://www.example.org/profile
# "),

builder.append("PREFIX xsd: <http://www.w3.0rg/2001/
XMLSchema#> ") ;

builder.append("MODIFY DELETE { !lsa ex:prop !value . } ");
builder.append("INSERT { !lsa ex:prop ?newval . } ");
builder.append("WHERE { ");

builder.append("BIND(( xsd:integer(!value) + 1 ) AS ?newval

) ")

return builder.toString();

String getRate() {
return "1.0";

Defining a topology

The sapere.diffusion.config property, which should be passed when
the OSGi container is launched, is meant to provide a network topology
to the node. In particular its value must be a file path and the file must
list all the neighbors” s names and TCP/IP address; if no file is specified
then the node is considered to be isolated.

Listing 54 shows an example of a neighbors list: the syntax used is
the one specified for Java’s Properties XML serialization: each entry
key is interpreted as neighbor name, while the value is the address.

Listing 54: Topology definition

<?xml version="1.0" encoding="utf-8" standalone="no"?>

<IDOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd
">

<properties>

<comment>Diffusion configuration</comment>

<entry key="nodeB">nodeB.example.org:20021</entry>

</properties>

In order to actually establish a connection between nodes, provided
URL have to be resolvable or, if an IP is specified, it has to be reach-
able by the local host. The neighbor’s NetworkManager is supposed
to wait for incoming connections on 20021 , which is the default
port. If more than a node is running on the same host then the port
must be unique for each one, otherwise a BindException is raised;
sapere.diffusion.port is meant to be used for this purpose (see Ta-
ble 1).



11

4.5 A DEMO SCENARIO |

4.5 A DEMO SCENARIO

As conclusion of this chapter, let’s see a demo scenario at work.

This is the first of two cases and is mostly focused on exploiting
semantics in a SAPERE node; the next one will show a distributed
situation and will be used as test for performance profiling (see Sec-
tion 5.1.1).

The environment is represented by a room, where a SAPERE node is
installed. It keeps track of people moving and eventually approaching
to one of two displays. Whenever a person comes next to a display, it
shows a welcome message.

People and displays are represented with dedicated agents: the for-
mer type shares its name, and updates its current location every time
a motion is detected, while the latter observes its owned LSA, once
published with its position in the room.

Coordination is obtained defining two eco-laws, whose application
modifies the involved display LSA, raising a space event that triggers
it:

NEAR Tries to find a person which has become closer to a display. It
checks if their distance is less than an arbitrary range — 7.0 meters
— and if that person was not already classified as "next-to".

FAR It is dual to the previous one. Checks if a person considered in
range has moved out of range.

The rate that has been assigned to both rules is 1.0, which means that
they will be scheduled on an average of one time per second.

Some screenshots have been taken and reported in Figure 10. In ini-
tial state (top-left screenshot), Bob, Alice and John are in the room and
the two displays are off, because no one is close enough (displays range
has been marked with a darker circle around the device). Whenever
someone becomes in range the NEAR eco-law is executed and a message
is displayed as consequence of a reaction chain; as shown in the top-
right picture that message is a string like "Welcome {<person-name>}".
As soon as people go away their name is removed from the welcome
string and, if no one is left, the display automatically switches off
thanks to the FAR eco-law.

4.5.1 Realization details

Now that the scenario has been explained, it’s time to report how each
entity has been realized.

Let’s start with the definition of PersonAgents and the information
they publish. A person has been modeled as attached to a fake sensor,
from which it can retrieve its current location by polling'; the LSA it

The actual value is obtained by the current position of the related dot on the JFrame.
People can be moved by drag and drop

67

Description

PersonAgent



68 | SEMANTIC WEB SAPERE

SAPERE demo SAPERE demo

SAPERE demo

Figure 10: SAPERE demo screenshots

maintains is presented in Listing 55. Please note that John represents in-
formation in a different way: while Bob and Alice declare their name with the
ex:name property, he uses foaf:name'>. This way we are able to simulate
the presence of agents that use different application domains, for de-
scribing data, and to show how this situation can be overcome thanks
to semantics.

Listing 55: Person LSA (Demo scenario)

=

@prefix sapere : <...> .

@prefix xsd : <...> .

@prefix foaf: <...> .

@prefix ex : <http://www.example.org/demo#> .

# Bob Agent (Alice is similar)
sapere:1sa0l234 a sapere:LSA ;
ex:type "Person" ;
ex:name "Bob"
ex:x "0.0"*xsd:double ;
ex:y "0.0""xsd:double .

O 0Ny ol A~ W N

R
= O

oy
N

# John Agent
sapere:1sal2345 a sapere:LSA ;

=R
S~ W

12 Friend-Of-A-Friend is an ontology freely available on Internet, whose intent is describ-
ing contacts and their relationships.



15
16
17
18

N

O 0NN o 1 s~ W

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

4.5 A DEMO SCENARIO |

ex:type "Person" ;
foaf:name "John" ;
ex:x "0.0"~"xsd:double ;
ex:y "0.0""xsd:double .

The eco-laws previously presented has been reported in Listing 56,
using SPARQL/SPARUL syntax. ex:distance is a custom function that
has been implemented ad-hoc, for distance evaluation, and registered
in the CustomFunctionsRegistry at startup; its code has been reported
in Listing 57. The effect of each eco-law execution is the modification of
the list of people which is actually using the display and so should be
welcomed; in particular the information provided is a set of LSA-ids.

Listing 56: Eco-laws (Demo scenario)

# [NEAR] reactants
PREFIX ex: <http://www.example.org/demo#>
SELECT DISTINCT * WHERE {
?plsa ex:type "Person";
ex:x 7px;
ex:y ?7py.
?dlsa ex:type "Display";
ex:x ?dx;
ex:y ?dy.
FILTER NOT EXISTS {
?dlsa ex:user ?plsa.

}
FILTER (ex:distance(?px, ?py, ?dx, ?dy) < 7.0).

}
# [NEAR] products
INSERT { !'dlsa ex:user !plsa. } WHERE { }

# [FAR] reactants
SELECT DISTINCT * WHERE {
?dlsa ex:type "Display";
ex:x ?dx;
ex:y ?dy;
ex:user ?plsa.
?plsa ex:type "Person";
ex:Xx 7px;
ex:y ?7py.
FILTER (ex:distance(?px, ?py, ?dx, ?dy) > 7.0).
}
# [FAR] products
DELETE { !'dlsa ex:user !plsa. } WHERE { }

69

Eco-laws



DisplayAgent

Exploiting semantic

70

=

N

O 0NN o U1 b~ W

10
11
12
13
14
15
16
17
18
19

=

N ou bk~ WwN

| SEMANTIC WEB SAPERE

Listing 57: A custom function: distance

package it.apice.sapere.demo.functions.impl;

import com.hp.hpl.jena.sparql.expr.NodeValue;
import com.hp.hpl.jena.spargl.function.FunctionBase4;

public class DistanceFunction extends FunctionBase4 {

@Override
public NodeValue exec(final NodeValue x1,
final NodeValue yl, final NodeValue x2,
final NodeValue y2) {
return NodeValue.makeDecimal (
Math.sqrt(
Math.pow(
x2.getDouble() - x1.getDouble(), 2)
+ Math.pow(y2.getDouble() - yl.getDouble(), 2)));

DisplayAgents publish their location in the space and register as ob-
servers for their own LSA™. This way a refresh can be triggered each
time a user’s LSA-id is added, or removed, from values. The agent
reads from the space those LSAs and extracts the name property; then
it composes the message and shows it.

If the demo is run as it has been presented until now, agent John
would never be greeted. In fact DisplayAgents do not know what
foaf:name is and are not able to determine John’s name. Thanks to an
ad-hoc ontology and the reasoning capabilities of the middleware, it is
possible to overcome the problem. As shown in Listing 58 foaf:name
can be declared as equals to ex:name (see Section 2.1.3); this way when
the former is asserted the latter is inferred and viceversa. Now the
whole scenario works fine.

Listing 58: Demo ontology

@prefix owl: <http://www.w3.0rg/2002/07/owl#> .

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix ex: <http://www.example.org/demo#> .

@prefix rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#> .

ex:name rdf:type rdf:Property ;
owl:equivalentProperty foaf:name.

13 Lines 20-23 of the previous listing show a template of that LSA



5 PROFILING PERFORMANCE

CONTENTS
5.1 Profile scenarios setup 71
5.1.1  Distributed demo 72
5.1.2  Evaluating Parse-Compile impact 73

5.1.3 Reasoner Overhead 74

5.2 Results analysis 74
5.2.1  Distributed Demo Results 75
5.2.2 Parse-Compile Results 77
5.2.3  Reasoner Overhead Results 79

This chapter is meant to dive into the middleware performance. The
following section will walk through three test cases:

1. a Distributed Demo, which realizes a producer-consumer sce-
nario in which a sensor platform produces and diffuses temper-
ature data to an analysis node, which aggregates it in order to
determine the maximum temperature ever sensed;

2. a micro-benchmark focused on understanding the impact of the
compile operation, from the LSA model to RDF, and of the parse
its opposite (see Section 4.2.2);

3. a micro-benchmark dedicated to profile the degradation of
agent’s READ primitive performance when the reasoner is en-
abled and semantic reasoning is exploited.

Section 5.2 is dedicated to the analysis of the results. The distributed
demo is the most interesting scenario, because it stresses the architec-
ture and allows determining the maximum diffusion throughput the
platform can handle, by checking how far eco-laws scheduling is able
to follow the incoming data rate.

Other tests have been run, but they have not been reported here, be-
cause not conclusive; in future, this work should be extended in order
to reach a better understanding of the potential of this platform.

5.1 PROFILE SCENARIOS SETUP

Let’s spend two words presenting the tools that have been chosen to
actually profile the middleware, before describing the details of each
scenario realization.

71



72

| PROFILING PERFORMANCE

In order to avoid the pollution of the code that is under test with
the one required to run it, the profiler (VisualVM") has been attached
to the runtime environment, thanks to dedicated Java agents. BTrace
plugin has been adopted: it is a dynamic tracing tool, which instru-
ments target application classes to inject tracing code at bytecode level.
In particular it allows the definition of simple methods for JVM events
observation; in this way it is possible to collect information such as
timings, parameters that have been passed and so on.

5.1.1  Distributed demo

Analyzer Agent

~
~
~

~
f_emission ™~ /
:_emission . l

situation:situation

£y

]

ST B-n1s,31)?

Figure 11: Distributed Demo scenario

This scenario is composed by two SAPERE nodes, which are neigh-
bors. The former (on the left in Figure 11) is a sensor platform, in which a
SensorAgent updates an LSA of type sensor:observation, containing
the last sensed temperature® decorated with some additional informa-
tion, which may be useful for data interpretation (e.g. Unit of Mea-
surement, Sensor Type, etc.). The sensing operation is programmed to
occur at a specific rate, passed on startup.

On the other side there is an analysis platform, which runs an
AnalyzerAgent. It is able to observe an LSA, generated on launch, and
print the actual maximum temperature that is stored.

Every time a new temperature is sensed and published, the diffusion
mechanism is triggered, causing the LSA to be injected in the LSA-
space of the analysis node. As soon as possible an aggregation eco-law
verifies if the received value is greater than the maximum registered
temperature — if known — and, in that case, updates the aggregated
value; finally the incoming LSA is deleted. The update notifies the
agent on observation, causing the actual value to be printed.

The goal of this scenario is to test the system with increasing sensor
emission frequency and check how long the ReactionManager is able
to apply aggregation eco-law before a new value is received. In other
words we try to determine the maximum rate at which the platform

1 http://visualvm.java.net/
2 Sensing action has been simulated with a Random Generator Number


http://visualvm.java.net/

O O N O u A~ WN R

I T S o S S S~ S~ N SR R
O O N oMU A~ W N R OO

21
22
23
24

5.1 PROFILE SCENARIOS SETUP |

can work. The same test has been run both with the reasoner enabled
and disabled, and results has been compared.

The emission frequency is not the only relevant variable: what hap-
pens if more sensors are run on a node? what if the topology is
composed by more than two nodes and each one diffuses data to the
analysis platform? Considering how the diffusion mechanism is im-
plemented there is no need to run other tests. In fact, the scalability
actually depends on the frequency at which information is received by
the node, no matter what the source is. As long as the time necessary to
schedule the aggregation, and apply it, is less than the period between
two diffusions receival, the analysis platform would keep the pace; oth-
erwise some delays should be expected. This is already measured by
the proposed test.

5.1.2 Evaluating Parse-Compile impact

The Parse-Compile scenario has been designed in order to measure the
time spent on an LSA compilation into a set of RDF statements, and
the time that is necessary to parse those statements and obtain the LSA
back.

The dataset used as data source has been generated in order to test
the operations on an increasing amount of data: Listing 59 shows the
structure of produced LSAs.

Listing 59: The "increasing-lsas" dataset

@prefix ...

sapere:1lsa0-0
a sapere:LSA .

sapere:lsal-1
a sapere:LSA ;
ex:propl "vall-1-1" .

sapere:lsal-2
a sapere:LSA ;
ex:propl "vall-2-1" ;
ex:propl "vall-2-2" .

sapere:lsa2-1
a sapere:LSA ;
ex:propl "val2-1-1" ;
ex:prop2 "val2-1-1" .

sapere:lsa2-2
a sapere:LSA ;
ex:propl "val2-2-1" ;

73



74

| PROFILING PERFORMANCE

ex:propl "val2-2-2" ;
ex:prop2 "val2-2-1" ;
ex:prop2 "val2-2-2" .

sapere:lsa2-3

a sapere:LSA ;

ex:propl "val2-3-1" ;
ex:propl "val2-3-2" ;
ex:propl "val2-3-3" ;
ex:prop2 "val2-3-1" ;
ex:prop2 "val2-3-2" ;
ex:prop2 "val2-3-3" .

The test has been run without the reasoner enabled, because it is not
involved in this kind of operations.

5.1.3 Reasoner Overhead

This test tries to highlight the impact that the reasoner has on middle-
ware performance. As explained in Section 4.3, enabling the reasoner
means serializing LSA-space operations and triggering the inference
process in some specific spots: in particular before executing match
and read primitives.

In this scenario the same dataset as before (see Listing 59) has been
used to determine how much performance scales on LSA size; the rea-
soner has been disabled in first place, in order to provide a baseline,
then it has been turned on, so providing a comparison.

Each LSA has been, in order, injected, read, updated and finally
removed. The match operation has not been tested, because it has been
already profiled in the Distributed Demo scenario (see Section 5.1.1).

5.2 RESULTS ANALYSIS

The following sections report the results obtained by running previ-
ously presented scenarios. Traced data has been aggregated over runs
and mean values has been reported.

Other than the Distributed Demo, noise has been a problem and
multiple interpolations are possible. Standard deviation has also been
reported in order to help the analysis.

Overall performance is compatible with expected results for a pro-
totype implementation of the middleware. Further test should be con-
ducted in order to lead possible improvements design for future re-
leases.



5.2.1

5.2 RESULTS ANALYSIS |

Distributed Demo Results

Data have been collected by running the scenario several times: each
time 1000 temperature values has been produced, diffused and aggre-
gated, in order to obtain a reliable mean value. Sensor rate has been
imposed at startup, this way samples has been taken in a range from
1 to 1000, which means that the period between temperature sensings
goes from 1000ms to Tms.

Three indexes have been defined and graphed:

1.

DIFFUSE receival Rate

The rate at which diffusion messages arrive to the analysis plat-
form

The rate at which the aggregation is successfully applied

. How many diffused values has been aggregated after the 1000th

temperature is received by the analysis platform

30
25 - —
20 - —
15 —
.......................................................................................... .,..............................................
[
[
10 - " :
no N n
Iu u
- - Reasoner ON ]
S _m Reasoner OFF 7
om BT Rate Threshold (Reasoner ON) ----------
punE® ™ ‘ Rate Threshold (Reasoner OFF)
0 L L L Lo I I I TR I I I |
1 10 100 1000

Sensor Rate

Figure 12: Frequency of diffusion messages reception over sensor data gen-

eration rate. Data are expressed in s~'. The diffusion mechanism
is not able to follow the sensor emission rate, mainly because the
TCP connections between nodes are established when needed, and
then closed (once the LSA has been sent). Future works should im-
prove performance, for example by caching connections. Moreover
the reported sensor rate is the one specified at launch time and it
does not highlight possible rate variations, caused by OS threads
scheduling policy. Horizontal lines represent the maximum rates
that have been measured while running the scenario (the thresh-
olds), respectively 14.08 when semantic reasoning was enabled and
23.37 when it was not.

The first remarkable information is that the diffusion mechanism is
not able to support an infinite rate. In fact, as shown in Figure 12, the

75



76

| PROFILING PERFORMANCE

maximum diffusion rate is limited by a threshold: when the reasoner
is disabled its value is around [20.0; 25.0], while, enabling the reasoner,
the maximum value drops to [10.0; 15.0].

Furthermore the diffusion frequency is always less than the one of
the sensor emission, even at the lowest rates. This is mainly due to the
simple implementation that has been provided: every time an LSA has
to be diffused (1) a new connection to the receiving node is established,
then (2) the information are sent and (3) the open socket is closed. Fu-
ture works should try to improve performance, for example by caching
connections between nodes. Moreover the reported sensor rate is the
one passed at launch time, so it is nominal: since the middleware has
not been implemented in a truely real-time environment, the actual
sleep time is not accurate and can be greater than expected, with ref-
erence to the threads scheduling policy offered by the OS and the Java
Virtual Machine.

Thanks to the adoption of the Java Executor Services every relocation
event is enqueued, waiting for the Network Manager to be available.

In this way different working speeds are balanced and all events are
handled.

30 T T T T T
@
Z 25| _
Q
T
(14
()]
£
$ 20| —
()]
2
3
S
5 15 -
(]
i
f
)
Q 10 —
[v4
O
2
X 5 B x « -
s Reasoner OFF  +
Ideal line 1:1
Reasoner ON %
0 | | | |
0 5 10 15 20 25 30

DIFFUSE receival Rate (1/s)

Figure 13: Frequency of MAX-AGGREGATE eco-law triggering over diffu-
sion messages reception rate. Even if scheduling rate is ASAP,
the effective execution depends on sensor data availability. When
semantic reasoning is enabled, match execution takes more time —
due to the embedded inference process — and the triggering rate
drops down.



5.2 RESULTS ANALYSIS | 77

The comparison of the frequency at which LSAs are received and the
rate at which aggregation is applied (see Figure 13) is ideal when no in-
ference is taking place, in fact the latter follows the former. Otherwise,
in the other case, rate 10.0 is a critical value, after whom linearity is lost.
This result is enforced by the error rate, calculated as 1 — %:
10.0 is, again, the critical frequency beyond which the reasoner cannot

work correctly.

1 T T T IIIIII T T T IIIIII T T T
Reasoner ON ——
Reasoner OFF ———
0.8 - _
0
<
%)
-
©
_02’ 0.6 - —
o
(]
[0
x
P
» 041 —
-
©
[0
Q.
2
X
@ 02} _
0
1 10 100

Sensor Rate (1/s)

Figure 14: Fraction of sensor data that have not been aggregated after the
last diffusion occurred. As consequence of the reduction of the
aggregation rate — when the reasoner is on — not all the LSAs are
processed in time. When no inference process is run instead, MAX-
AGGREGATE is triggered fast enough for completing the elabora-
tion.

Please note that, according to collected data, Network Manager im-
plementation is not a bottleneck when the reasoner is enabled. In the
other case, future optimizations should constantly be compared to LSA-
space capabilities, in order to find the right balance and put effort in
enhancing the critical component.

5.2.2 Parse-Compile Results

Unlike previous results, these show a considerable amount of noise,
probably because of the overhead of profiling tools compared to col-
lected values, that are not greater than 60ms. In fact measure sensibil-
ity can be estimated around 1ms, according to its source (the system



78

| PROFILING PERFORMANCE

clock). In addition, factors like memory management, OS policies and
other concurrent processes can affect results too.

In order to reduce standard deviation values — that has been graphed
in order to have a better understanding of the trend — profiled opera-
tions have been run 200 times over each data and then aggregated by
LSA size. Results are reported in Figure 15.

60000 I I I I I I I I
Compile Time ———i
Parse Time ¢
50000 |- A
40000 | T T -

Execution Time (us)

LSA size (RDF/XML string length)

Figure 15: PARSE and COMPILE performance. The compilation process is
linear and faster than the parse one. Although the standard devia-
tion highlights a greater uncertainty, the parse operation seems to
have linear complexity too (according to mean values).

Compiling an LSA is faster than the parsing operation. It shows a
linear trend in function of LSA size, which is aligned to what expected:
compile exploits Pattern Visitor in order to navigate LSA’s structure and
derive RDF statements.

Information about the parse operation are much more noisy and con-
fused, but execution time is always higher. According to mean values,
a linear trend can be guessed, also because it is compatible with the
implemented behavior: once a RDF model has been populated with
statements, all LSA-ids are iterated and related properties retrieved. In
future a deeper analysis is required in order to confirm this hypothesis
or reject it.

In both cases the operations scale over LSA size, letting us conclude
that the choice of providing two models — explained in Section 4.2.2 —
and paying a parse-compile cost does not degrades performance too
much.



5.2 RESULTS ANALYSIS |

5.2.3 Reasoner Overhead Results

Same considerations previously expressed about noise on data hold
here (see Section 5.2.2). In this case they are also stronger than before,
because execution time does not exceed 10ms.

In this case the comparison highlights the difference between the
execution of LSA-space primitives with or without reasoner enabled.
As expected, the only CRUD primitive affected by this variable is the
read one. The read primitive is implemented in order to trigger the
inference process while locking the space; that’s why, in Figure 16, this
is a noticeable constant difference, other than a major oscillation in
measures.

10000 T T T T T T
Reasoner ON ——¢—i
Reasoner OFF +—¢—

8000 - T ) -

6000

4000

7K
SK.
N

Execution Time (us)
/N

I

43¢

X

2000

TR

0 3000 4000 5000 6000 7000
LSA size (RDF/XML string length)

Figure 16: Agent's READ performance. The reasoner overhead slows down
the execution of the primitive, despite the uncertainty of data. In
both cases the trend seems not depend on LSA size too much.

When the reasoner is enabled reading an LSA has a linear cost and
is barely sensitive to its dimension; this confirms the existence of some
sort of indexing that speeds up RDF statements retrieval inside Jena
Models. Enabling the reasoner implies a greater variation of execution
time — due to inference process — but the overall behavior appears sim-
ilar to the previous situation.

Other primitives data has not been graphed and reported because no
remarkable differences is connected to reasoner activation. The observe
and ignore primitives have not been tested, because they do not act on
the RDF graph directly.

79






6 CONCLUSIONS

In the last few months, I have designed and developed a middleware
that is able to address the main concerns of Self-aware pervasive ser-
vices ecosystems, exploiting Semantic Web Technologies for describing
information and inferring implicit knowledge that is hidden beyond
data.

The SAPERE model has been taken as reference and the abstract
architecture has been implemented, in particular the LSA-space, which
is the component demanded to store data on each node of the modeled
ecosystem. Apache Jena and Pellet — from Clark & Parsia — have been
used as enabling technologies, because of their stability and features.

The resulting platform supports the execution of multiple agents on
each node, which manifest themselves in the local space, and share data
thanks to that space and the diffusion mechanism, which allow LSAs
to be exchanged between nodes. Eco-laws definition and scheduling
is supported in order to manipulate available information and exploit
natural-inspired coordination models. Both LSA and eco-law models
have been implemented in a technology-independent fashion and then
compiled to Semantic Web languages, respectively RDF and SPARQL
+ SPARUL. Actually, the translation from eco-laws to semantic web
queries has not been completed yet, due to modification of eco-laws
model during these months, but some components have been created
to support it as soon as a stable formalization is produced. Each agent
is also able to provide ontologies — in the OWL format — for data de-
scription and openness requirement satisfaction. This way languages,
deployed ecosystems and the middleware itself are fully extendable
and open to future refinements, also thanks to the adoption of the
component-oriented paradigm, realized with OSGi.

By now a working environment has been provided, as demonstrated
by the examples described in Section 4.5 and Section 5.1.1, and some
tests have been run to check correctness and performance. Results are
encouraging, even if enabling the reasoner reduces the scalability. This
work should be intended as starting point for future works, which can
be focused on (1) scheduling policy optimization, (2) widen and fas-
ten network protocol support, (3) deeper benchmarks execution and (4)
case studies realization. This way a better understanding and manage-
ment of the platform potential could be reached.

81






BIBLIOGRAPHY

Clarké&Parsia

2011 Pellet: OWL 2 Reasoner for Java, http://clarkparsia.com/
pellet/. (Cited on pp. 36, 37.)

Desanti, Matteo

2011 Supporto a regole Chimico-Semantiche per la coordinazione di
Pervasive Service Ecosystems, http://apice.unibo.it/xwiki/
bin/download/Theses/LSAspace/tesi.pdf, MA thesis, DEIS -
Alma Mater Studiorum Universita di Bologna (Cesena). (Cited

on p. 47.)
Foundation, Apache Software

2011 Apache Jena - TDB, http://jena.apache.org/documentation/
tdb/index.html. (Cited on p. 34.)

Foundation, Apache Software and HP-Labs

2010 Jena Tutorial, http://jena.sourceforge.net/tutorial/index.
html. (Cited on pp. xi, 34.)

Hebler, John ef al.

2009 Semantic Web Programming, http://www.semwebprogramming.
org, Wiley Publishing Inc. (Cited on pp. 1, 7, 11, 13, 16, 57.)

Miede, André
2011 A Classic Thesis style, http://www.ctan.org/tex-archive/
macros/latex/contrib/classicthesis/ClassicThesis.pdf.
(Cited on p. vi.)
mindswap

2003 Pellet  OWL  Reasoner, http://www.mindswap.org/2003/
pellet/. (Cited on p. 36.)

Montagna, Sara et al.

2012 “Injecting Self-organisation into Pervasive Service Ecosys-
tems”. (Cited on pp. xi, 44.)

Pantieri, Lorenzo

2011 Introduzione allo stile ClassicThesis, in Italian, http://www.
lorenzopantieri.net/LaTeX files/ClassicThesis.pdf.

Pantieri, Lorenzo and Tommaso Gordini

2011 L'arte di scrivere con KIgX, in Italian, http://www.
lorenzopantieri.net/LaTeX_files/ArteLaTeX.pdf. (Cited
on p. vi.)

83


http://clarkparsia.com/pellet/
http://clarkparsia.com/pellet/
http://apice.unibo.it/xwiki/bin/download/Theses/LSAspace/tesi.pdf
http://apice.unibo.it/xwiki/bin/download/Theses/LSAspace/tesi.pdf
http://jena.apache.org/documentation/tdb/index.html
http://jena.apache.org/documentation/tdb/index.html
http://jena.sourceforge.net/tutorial/index.html
http://jena.sourceforge.net/tutorial/index.html
http://www.semwebprogramming.org
http://www.semwebprogramming.org
http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/ClassicThesis.pdf
http://www.ctan.org/tex-archive/macros/latex/contrib/classicthesis/ClassicThesis.pdf
http://www.mindswap.org/2003/pellet/
http://www.mindswap.org/2003/pellet/
http://www.lorenzopantieri.net/LaTeX_files/ClassicThesis.pdf
http://www.lorenzopantieri.net/LaTeX_files/ClassicThesis.pdf
http://www.lorenzopantieri.net/LaTeX_files/ArteLaTeX.pdf
http://www.lorenzopantieri.net/LaTeX_files/ArteLaTeX.pdf

84

| BIBLIOGRAPHY

Stevenson, Graeme and Mirko Viroli

2011

A formal translation of eco-laws into SPARQL, tech. rep.,
https://sites.google.com/a/sapere-project.eu/sapere-
wiki/dissemination/techreports/, DEIS (Cesena) - Univer-
sita di Bologna. (Cited on pp. 39, 40, 45.)

Viroli, Mirko et al.

2011

Early Operational Model (D1.1), tech. rep., http://www.sapere-
project.eu, DEIS (Cesena) - Universita di Bologna. (Cited on

PP Xi, 39, 41, 44.)

Viroli, Mirko et al.

2012

2004

2008a

2008b

2009

2012a

2012b

“Pervasive Ecosystems: a Coordination Model based on Se-
mantic Chemistry”, in 27th Annual ACM Symposium on Applied
Computing (SAC 2012), ed. by Sascha Ossowski et al., ACM,
Riva del Garda, TN, Italy, 1sBN: 978-1-4503-0857-1. (Cited on

ppP- Vi, 2, 53.)

RDF Primer, http://www.w3.0rg/TR/rdf-primer/. (Cited on
Pp- 5,13, 14.)

SPARQL Query Language for RDF, http://www.w3.0rg/TR/rdf-
sparql-query/.

SPARQL Update - A language for updating RDF graphs, http:
//www.w3.0rg/Submission/SPARQL-Update/. (Cited on p. 33.)
OWL 2 Web Ontology Language Document Overview, http://
www.w3.0rg/TR/owl2-overview/.

SPARQL 1.1 Query Language, http://www.w3.0rg/TR/
sparqlll-query/. (Cited on p. 31.)

SPARQL 1.1 Update, http://www.w3.0rg/TR/sparqlll-
update/. (Cited on p. 33.)

Wikipedia

2012

Context-aware pervasive systems, http://en.wikipedia.org/
wiki/Context-aware_pervasive_systems. (Cited on p. 1.)

Zambonelli, Franco et al.

2011

“Self-aware Pervasive Service Ecosystems”, Procedia Com-
puter Science, 7 [Dec. 2011], ed. by Elisabeth Giacobino
and Rolf Pfeifer, Proceedings of the 2nd European Fu-
ture Technologies Conference and Exhibition 2011 (FET 11),
pp- 197-199, 1SSN: 1877-0509, DOIL: 10.1016/j.procs.2011.09.
006, http://www.sciencedirect.com/science/article/pii/
$1877050911005667. (Cited on pp. vi, 1, 2, 53.)


https://sites.google.com/a/sapere-project.eu/sapere-wiki/dissemination/techreports/
https://sites.google.com/a/sapere-project.eu/sapere-wiki/dissemination/techreports/
http://www.sapere-project.eu
http://www.sapere-project.eu
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/Submission/SPARQL-Update/
http://www.w3.org/Submission/SPARQL-Update/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/owl2-overview/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-update/
http://www.w3.org/TR/sparql11-update/
http://en.wikipedia.org/wiki/Context-aware_pervasive_systems
http://en.wikipedia.org/wiki/Context-aware_pervasive_systems
http://dx.doi.org/10.1016/j.procs.2011.09.006
http://dx.doi.org/10.1016/j.procs.2011.09.006
http://www.sciencedirect.com/science/article/pii/S1877050911005667
http://www.sciencedirect.com/science/article/pii/S1877050911005667

	Cover
	Titlepage
	Abstract
	Sommario
	Acknowledgements

	Contents
	List of Figures
	Listings
	Acronyms

	1 Introduction
	2 Semantic Web Specifications and Technologies
	2.1 W3C Specifications
	2.1.1 RDF
	2.1.2 RDF Schema
	2.1.3 OWL
	2.1.4 SPARQL
	2.1.5 SPARQL Update

	2.2 Technologies
	2.2.1 Apache Jena: RDF Graph Store
	2.2.2 Pellet: OWL-DL Reasoner


	3 The SAPERE model
	3.1 Defining SAPERE domain
	3.1.1 Architecture
	3.1.2 Computational and Operational model

	3.2 Mapping to Semantic framework
	3.2.1 Live Semantic Annotations (LSA)
	3.2.2 Eco-laws


	4 Semantic Web SAPERE
	4.1 Requirements
	4.2 Logic architecture
	4.2.1 The ecosystem as a network of nodes
	4.2.2 Inside the SAPERE node
	4.2.3 The LSA-space

	4.3 Developed system
	4.3.1 OSGi bundles

	4.4 Middleware usage
	4.4.1 Modelling an ecosystem

	4.5 A demo scenario
	4.5.1 Realization details


	5 Profiling Performance
	5.1 Profile scenarios setup
	5.1.1 Distributed demo
	5.1.2 Evaluating Parse-Compile impact
	5.1.3 Reasoner Overhead

	5.2 Results analysis
	5.2.1 Distributed Demo Results
	5.2.2 Parse-Compile Results
	5.2.3 Reasoner Overhead Results


	6 Conclusions
	Bibliography

